WorldWideScience

Sample records for monocyte suppressive activity

  1. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Directory of Open Access Journals (Sweden)

    Devyn D Gilette

    2014-04-01

    Full Text Available Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.

  2. Salvianolic acid B suppresses maturation of human monocyte-derived dendritic cells by activating PPARγ

    Science.gov (United States)

    Sun, Aijun; Liu, Hongying; Wang, Shijun; Shi, Dazhuo; Xu, Lei; Cheng, Yong; Wang, Keqiang; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2011-01-01

    BACKGROUND AND PURPOSE Salvianolic acid B (Sal B), a water-soluble antioxidant derived from a Chinese medicinal herb, is known to be effective in the prevention of atherosclerosis. Here, we tested the hypothesis that the anti-atherosclerotic effect of Sal B might be mediated by suppressing maturation of human monocyte-derived dendritic cells (h-monDC). EXPERIMENTAL APPROACH h-monDC were derived by incubating purified human monocytes with GM-CSF and IL-4. h-monDC were pre-incubated with or without Sal B and stimulated by oxidized low-density lipoprotein (ox-LDL) in the presence or absence of PPARγ siRNA. Expression of h-monDC membrane molecules (CD40, CD86, CD1a, HLA-DR) were analysed by FACS, cytokines were measured by elisa and the TLR4-associated signalling pathway was determined by Western blotting. KEY RESULTS Ox-LDL promoted h-monDC maturation, stimulated CD40, CD86, CD1a, HLA-DR expression and IL-12, IL-10, TNF-α production; and up-regulated TLR4 signalling. These effects were inhibited by Sal B. Sal B also triggered PPARγ activation and promoted PPARγ nuclear translocation, attenuated ox-LDL-induced up-regulation of TLR4 and myeloid differentiation primary-response protein 88 and inhibited the downstream p38-MAPK signalling cascade. Knocking down PPARγ with the corresponding siRNA blocked these effects of Sal B. CONCLUSIONS AND IMPLICATIONS Our data suggested that Sal B effectively suppressed maturation of h-monDC induced by ox-LDL through PPARγ activation. PMID:21649636

  3. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  4. High density lipoprotein suppresses lipoprotein associated phospholipase A2 in human monocytes-derived macrophages through peroxisome proliferator-activated receptor-γ pathway

    Institute of Scientific and Technical Information of China (English)

    HAN Guan-ping; REN Jing-yi; QIN Li; SONG Jun-xian; WANG Lan; CHEN Hong

    2012-01-01

    Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) is mainly secreted by macrophages,serving as a specific marker of atherosclerotic plaque and exerting pro-atherogenic effects.It is known that high-density lipoprotein (HDL) plays an important role against atherosclerosis by inhibiting pro-inflammatory factors,however,the relationship between HDL and Lp-PLA2 remains elusive.Methods In this study,reverse transcription-polymerase chain reaction (RT-PCR),Western blotting,and a platelet-activating factor (PAF) acetylhydrolase assay were performed to determine the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages upon HDL treatment of different concentrations and durations.To investigate the underlying mechanism of HDL-induced Lp-PLA2 action,pioglitazone,a peroxisome proliferator-activated receptor-y (PPARy) ligand,was introduced to human monocyte-derived macrophages and mRNA and protein levels of Lp-PLA2,as well as its activity,were determined.Results Lp-PLA2 mRNA levels,protein expression and activity were significantly inhibited in response to HDL treatment in a dose and time dependent manner in human monocyte-derived macrophages.Pioglitazone treatment (1-10 ng/ml) upregulated the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages,while the effects were markedly reversed by HDL.In addition,pioglitazone resulted in a significant increase in PPARY phosphorylation in human monocyte-derived macrophages,which could be inhibited by HDL.Conclusion These findings indicate that HDL suppresses the expression and activity of Lp-PLA2 in human monocyte-derived macrophages,and the underlying mechanisms may be mediated through the PPARY pathway.

  5. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    OpenAIRE

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Stephanie A. Amici; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Lindsay M Webb; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity o...

  6. The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Huang, Ching-Hua; Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Tai-Tsung; Tseng, Hsing-I; Chu, Yu-Te; Kuo, Chang-Hung; Chen, Huan-Nan; Hung, Chih-Hsing

    2010-04-01

    Dietary flavonoids have various biological functions, and there is increasing evidence that reduced prevalence and severity of allergic reactions are associated with the intake of flavonoids. Among natural flavonoids, apigenin is a potent anti-inflammatory agent. However, the mechanisms of apigenin's effect remain uncertain. Monocyte-derived chemokine (MDC) plays a pivotal role in recruiting T-helper (Th) 2 cells in the allergic inflammation process. In the late phase of allergic inflammation, the Th1 chemokine interferon-inducible protein 10 (IP-10) has also been found in elevated levels in the bronchial alveolar fluid of asthmatic children. We used human THP-1 monocyte cells, pretreated with or without apigenin, prior to lipopolysaccharide stimulation. By means of enzyme-linked immunosorbent assay, we found that apigenin inhibited production of both MDC and IP-10 by THP-1 cells and that the suppressive effect of apigenin was not reversed by the estrogen receptor antagonist ICI182780. The p65 phosphorylation of nuclear factor kappaB remained unaffected, but the phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase mitogen-activated protein kinase pathways were all blocked. We found that inhibition of c-raf phosphorylation might be the target of apigenin's anti-inflammation property.

  7. Human pregnancy-specific glycoprotein 1a (PSG1a) induces alternative activation in human and mouse monocytes and suppresses the accessory cell-dependent T cell proliferation.

    Science.gov (United States)

    Motrán, Claudia Cristina; Díaz, Fernando López; Gruppi, Adriana; Slavin, Daniela; Chatton, Bruno; Bocco, José Luis

    2002-09-01

    It has been proposed that pregnancy-specific factors induce the suppression of a specific arm of the maternal response accompanied by activation of the nonspecific, innate immune system. The aim of this study was to determine whether pregnancy-specific glycoprotein 1a (PSG1a), the major variant of PSG polypeptides, is able to modulate the monocyte/macrophage (Mo) metabolism to regulate T cell activation and proliferation. Using the recombinant form of this glycoprotein (rec-PSG1a), expressed in mammalian cells with a vaccinia-based expression vector, we have demonstrated that human PSG1a induces arginase activity in peripheral blood human Mo and human and murine Mo cell lines. In addition, rec-PSG1a is able to induce alternative activation because it up-regulates the arginase activity and inhibits the nitric oxide production in Mo activated by lipopolysaccharides. We also observed that rec-PSG1a is an important accessory cells-dependent T cell suppressor factor that causes partial growth arrest at the S/G2/M phase of the cell cycle. Additionally, an impaired T cell proliferative response induced by mitogens and specific antigen was observed in BALB/c mice upon in vivo expression of PSG1a. Our results suggest that PSG1a function contributes to the immunomodulation during pregnancy, having opposite effects on maternal innate and adaptative systems.

  8. IVIG inhibits TNF-α-induced MMP9 expression and activity in monocytes by suppressing NF-κB and P38 MAPK activation.

    Science.gov (United States)

    Zhou, Cuizhen; Huang, Min; Xie, Lijian; Shen, Jie; Xiao, Tingting; Wang, Renjian

    2015-01-01

    Matrix metalloproteinase-9 (MMP9) has been involved in inflammatory and pathologic processes of coronary artery lesions (CAL) in Kawasaki disease (KD). Intravenous immunoglobulin (IVIG), a traditional treatment for Kawasaki disease, could decrease the expressions of MMP9. The purpose of this study was to investigate the protective effect of IVIG in chemotactic migration of monocyte and the regulation of MMP9 induced by tumor necrosis factor-α (TNF-α) in U937s. Studies were carried out with real time polymerase chain reaction (RT-PCR), zymographic, Western blotting and immunofluorescence. U937s' migration was enhanced by TNF-α stimulation, while was inhibited by IVIG pretreatment. MMP9 expression and activity in U937s were also significantly enhanced by TNF-α and inhibited by IVIVG pretreatment. During inflammatory stimulus, nuclear factor kappa B (NF-κB) and P38 Mitogenactivated protein kinase (P38 MAPK) pathways play a significant role in regulating MMP9 gene expression. TNF-α induced nuclear translocation of NF-κB and P38 MAPK activation in U937s were inhibited significantly by IVIG. Furthermore, we clarified that nuclear NF-κB and P38 MAPK pathways play pivotal roles in regulating U937s' migration and MMP9 expressions using PDTC and SB203580, which were specific inhibitors of NF-κB and p38 MAPK pathways. IVIG displays striking biological effects, notably promoting monocyte migration. These effects involve the NF-κB and p38 pathways, and increased MMP9 activity. It might be a crucial mechanism of IVIG reducing the occurrence of CAL that IVIG inhibited monocytes expressing MMP9 and decreased chemotactic migration of monocyte.

  9. Statins attenuate polymethylmethacrylate-mediated monocyte activation.

    LENUS (Irish Health Repository)

    Laing, Alan J

    2012-02-03

    BACKGROUND: Periprosthetic osteolysis precipitates aseptic loosening of components, increases the risk of periprosthetic fracture and, through massive bone loss, complicates revision surgery and ultimately is the primary cause for failure of joint arthroplasty. The anti-inflammatory properties of HMG-CoA reductase inhibitors belonging to the statin family are well recognized. We investigated a possible role for status in initiating the first stage of the osteolytic cycle, namely monocytic activation. METHODS: We used an in vitro model of the human monocyte\\/macrophage inflammatory response to poly-methylmethacrylate (PMMA) particles after pretreat-ing cells with cerivastatin, a potent member of the statin family. Cell activation based upon production of TNF-alpha and MCP-1 cytokines was analyzed and the intracellular Raf-MEK-ERK signal transduction pathway was evaluated using western blot analysis, to identify its role in cell activation and in any cerivastatin effects observed. RESULTS: We found that pretreatment with cerivastatin significantly abrogates the production of inflammatory cytokines TNF-alpha and MCP-1 by human monocytes in response to polymethylmethacrylate particle activation. This inflammatory activation and attenuation appear to be mediated through the intracellular Raf-MEK-ERK pathway. INTERPRETATION: We propose that by intervening at the upstream activation stage, subsequent osteoclast activation and osteolysis can be suppressed. We believe that the anti-inflammatory properties of statins may potentially play a prophylactic role in the setting of aseptic loosening, and in so doing increase implant longevity.

  10. HM71224, a novel Bruton's tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis.

    Science.gov (United States)

    Park, Jin Kyun; Byun, Joo-Yun; Park, Ji Ah; Kim, Yu-Yon; Lee, Ye Ji; Oh, Jeong In; Jang, Sun Young; Kim, Young Hoon; Song, Yeong Wook; Son, Jeewoong; Suh, Kwee Hyun; Lee, Young-Mi; Lee, Eun Bong

    2016-04-18

    Bruton's tyrosine kinase (Btk) is critical for activation of B cells and myeloid cells. This study aimed to characterize the effects of HM71224, a novel Btk inhibitor, both in vitro and in a mouse model of experimental arthritis. The kinase inhibition profile of HM71224 was analyzed. The in vitro effects of HM71224 on B cells and monocytes were analyzed by examining phosphorylation of Btk and its downstream signaling molecules, along with cytokine production and osteoclast formation. The in vivo effects of HM71224 were investigated in a mouse model of collagen-induced arthritis (CIA). HM71224 irreversibly bound to and inhibited Btk (IC50 = 1.95 nM). The compound also inhibited the phosphorylation of Btk and its downstream molecules such as PLCγ2, in activated Ramos B lymphoma cells and primary human B cells in a dose-dependent manner. Furthermore, HM71224 effectively inhibited the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β by human monocytes, and osteoclast formation by human monocytes. Finally, HM71224 improved experimental arthritis and prevented joint destruction in a murine model of CIA. HM71224 inhibits Btk in B cells and monocytes and ameliorates experimental arthritis in a mouse model. Thus, HM71224 is a potential novel therapeutic agent for rheumatoid arthritis in humans.

  11. STAT3 activation in monocytes accelerates liver cancer progression

    Directory of Open Access Journals (Sweden)

    Wu Wen-Yong

    2011-12-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Methods Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN, which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Results Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Conclusion Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical

  12. Endogenous epoxygenases are modulators of monocyte/macrophage activity.

    Directory of Open Access Journals (Sweden)

    Jonas Bystrom

    Full Text Available BACKGROUND: Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known. METHODOLOGY/PRINCIPAL FINDINGS: When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR α. Human monocytes and macrophages contain PPARα and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX-2 expression and activity, and the release of TNFα, and can be reversed by either add back of the endogenous epoxygenase products and PPARα ligand 11,12- epoxyeicosatrienoic acid (EET or the addition of the selective synthetic PPARα ligand GW7647. In alternatively activated (IL-4-treated monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFα release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFα by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl(2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNFα mRNA and further decreases M2 macrophage TNFα. CONCLUSIONS/SIGNIFICANCE: In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state.

  13. Olopatadine Suppresses the Migration of THP-1 Monocytes Induced by S100A12 Protein

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Olopatadine hydrochloride (olopatadine is an antiallergic drug with histamine H 1 receptor antagonistic activity. Recently, olopatadine has been shown to bind to S100A12 which is a member of the S100 family of calcium-binding proteins, and exerts multiple proinflammatory activities including chemotaxis for monocytes and neutrophils. In this study, we examined the possibility that the interaction of olopatadine with S100A12 inhibits the proinflammatory effects of S100A12. Pretreatment of olopatadine with S100A12 reduced migration of THP-1, a monocyte cell line, induced by S100A12 alone, but did not affect recombinant human regulated upon activation, normal T cell expressed and secreted (RANTES-induced migration. Amlexanox, which also binds to S100A12, inhibited the THP-1 migration induced by S100A12. However, ketotifen, another histamine H 1 receptor antagonist, had little effect on the activity of S100A12. These results suggest that olopatadine has a new mechanism of action, that is, suppression of the function of S100A12, in addition to histamine H 1 receptor antagonistic activity.

  14. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yonghae Son

    2016-01-01

    Full Text Available Oxysterol like 27-hydroxycholesterol (27OHChol has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  15. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Kharazmi, A; Theander, T G

    1986-01-01

    The host response to Plasmodia includes the production of enlarged populations of peripheral blood monocytes and tissue macrophages in the spleen and the liver. Since the hyperplasia of the mononuclear phagocyte system is believed to arise as a consequence of an enhanced blood monocyte influx, we....... In conclusion, not all cell functions were altered in concert, and the previously unreported suppression of chemotactic migration might reflect a change in blood leucocyte subpopulations, deactivation in vivo or a direct suppressive effect of plasmodia induced products....

  16. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis.

    Science.gov (United States)

    Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S

    2004-09-01

    Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.

  17. Design of phosphorylated dendritic architectures to promote human monocyte activation.

    Science.gov (United States)

    Poupot, Mary; Griffe, Laurent; Marchand, Patrice; Maraval, Alexandrine; Rolland, Olivier; Martinet, Ludovic; L'Faqihi-Olive, Fatima-Ezzahra; Turrin, Cédric-Olivier; Caminade, Anne-Marie; Fournié, Jean-Jacques; Majoral, Jean-Pierre; Poupot, Rémy

    2006-11-01

    As first defensive line, monocytes are a pivotal cell population of innate immunity. Monocyte activation can be relevant to a range of immune conditions and responses. Here we present new insights into the activation of monocytes by a series of phosphonic acid-terminated, phosphorus-containing dendrimers. Various dendritic or subdendritic structures were synthesized and tested, revealing the basic structural requirements for monocyte activation. We showed that multivalent character and phosphonic acid capping of dendrimers are crucial for monocyte targeting and activation. Confocal videomicroscopy showed that a fluorescein-tagged dendrimer binds to isolated monocytes and gets internalized within a few seconds. We also found that dendrimers follow the phagolysosomial route during internalization by monocytes. Finally, we performed fluorescence resonance energy transfer (FRET) experiments between a specifically designed fluorescent dendrimer and phycoerythrin-coupled antibodies. We showed that the typical innate Toll-like receptor (TLR)-2 is clearly involved, but not alone, in the sensing of dendrimers by monocytes. In conclusion, phosphorus-containing dendrimers appear as precisely tunable nanobiotools able to target and activate human innate immunity and thus prove to be good candidates to develop new drugs for immunotherapies.

  18. Antiretroviral therapy in HIV-1-infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation.

    Science.gov (United States)

    Patro, Sean C; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G; Sierra-Madero, Juan G; Rassool, Mohammed S; Sanne, Ian; Montaner, Luis J

    2016-07-01

    Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14(++)CD16(+) intermediate monocytes (P CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease.

  19. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    Science.gov (United States)

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  20. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Noëlle Louise O'Regan

    2014-10-01

    Full Text Available Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive.To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses.Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10. IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner.Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in an IL

  1. Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro.

    Science.gov (United States)

    Wataha, J C; Lockwood, P E; Marek, M; Ghazi, M

    1999-06-05

    Nickel-containing alloys commonly are used in medical and dental applications that place them into long-term contact with soft tissues. The release of Ni ions from these alloys is disturbing because of the toxic, immunologic, and carcinogenic effects that have been documented for some Ni compounds. In particular, Ni ions in solution recently have been shown to cause expression of inflammatory mediators, such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and intercellular adhesion molecules (ICAMs) from keratinocytes, monocytes, and endothelial cells. However, the ability of the solid alloys themselves to induce these inflammatory effects has not been demonstrated. An in vitro system was used to determine if Ni-containing biomedical alloys could cause secretion of either IL-1beta or TNF-alpha from monocytes or expression of ICAMs on endothelial cells. Pure nickel, titanium, and three biomedical alloys-18-8 stainless steel, NiTi, and Rexillium III-were evaluated. First, it was determined whether or not the alloys or pure metals could cause cytotoxicity to THP-1 human monocytes or human microvascular endothelial cells (HMVECs) by measuring the succinic dehydrogenase (SDH) activity of the cells. Then, using identical conditions of exposure, the secretion of IL-1beta or TNF-alpha from monocytes or ICAM-1 expression on the HMVECs was determined. Only pure nickel suppressed (by 48% compared to Teflon controls) the SDH activity of the HMVECs or THP-1 monocytes. No alloy or metal caused the HMVECs to express ICAM-1, but the NiTi alloy caused a significant (ANOVA/Tukey) secretion of IL-1beta from the THP-1 monocytes. Secretion of TNF-alpha induced by NiTi was detectable but not statistically significant. The levels of IL-1beta secretion from monocytes were sufficient to induce ICAM-1 expression on HMVECs. The release of Ni from the NiTi was a logical suspect in causing the IL-1beta secretion by monocytes, but its role was not confirmed since other

  2. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  3. Vascular Leakage in Dengue Hemorrhagic Fever Is Associated with Dengue Infected Monocytes, Monocyte Activation/Exhaustion, and Cytokines Production

    Directory of Open Access Journals (Sweden)

    Sirichan Chunhakan

    2015-01-01

    Full Text Available The vascular leakage was shown by the increment of hematocrit (Hct, dengue viral infected monocyte, monocyte status, and cytokines production in patients infected with dengue virus. Dengue viral antigens were demonstrated in monocytes (CD14+ from peripheral blood mononuclear cells. The increased levels of Hct, interleukin- (IL- 10, and tumor necrosis factor-alpha (TNF-α were detected in dengue fever (DF, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS patients as compared with other febrile illnesses (OFIs. The highest levels of Hct and IL-10 were detected in DSS patients as compared with other groups (P<0.05 especially on one day before and after defervescence. The unstimulated and lipopolysaccharide- (LPS- stimulated monocytes from DSS patients showed the significantly decreased of intracellular IL-1β and TNF-α. In addition, the lowest level of mean fluorescence intensity (MFI of CD11b expression on monocytes surface in DSS patients was also demonstrated. Furthermore, the negative correlations between IL-10 levels and intracellular IL-1β and MFI of CD11b expression in unstimulated and LPS-stimulated monocytes were also detected. Nevertheless, not only were the relationships between the prominent IL-10 and the suppression of intracellular monocyte secretion, namely, IL-1β, TNF-α, demonstrated but also the effect of vascular leakage was observed.

  4. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes.

    Science.gov (United States)

    Hof-Nahor, Irit; Leshansky, Lucy; Shivtiel, Shoham; Eldor, Liron; Aberdam, Daniel; Itskovitz-Eldor, Joseph; Berrih-Aknin, Sonia

    2012-10-01

    The mechanisms underlying the immunomodulatory effects of mesenchymal stem cells (MSCs) have been investigated under extreme conditions of strong T cell activation, which induces the rapid death of activated lymphocytes. The objective of this study was to investigate these mechanisms in the absence of additional polyclonal activation. In co-cultures of peripheral mononuclear blood cells with human MSCs (hereafter referred to as hMSCs), we observed a striking decrease in the level of CD8 expression on CD8+ cells, together with decreased expression of CD28 and CD44, and impaired production of IFN-gamma and Granzyme B. This effect was specific to hMSCs, because it was not observed with several other cell lines. Downregulation of CD8 expression required CD14+ monocytes to be in direct contact with the CD8+ cells, whereas the effects of hMSCs on the CD14+ cells were essentially mediated by soluble factors. The CD14+ monocytes exhibited a tolerogenic pattern when co-cultured with hMSCs, with a clear decrease in CD80 and CD86 co-stimulatory molecules, and an increase in the inhibitory receptors ILT-3 and ILT-4. CD8+ cells that were preconditioned by MSCs had similar effects on monocytes and were able to inhibit lymphocyte proliferation. Injection of hMSCs in humanized NSG mice showed similar trends, in particular decreased levels of CD44 and CD28 in human immune cells. Our study demonstrates a new immunomodulation mechanism of action of hMSCs through the modulation of CD8+ cells towards a non-cytotoxic and/or suppressive phenotype. This mechanism of action has to be taken into account in clinical trials, where it should be beneficial in grafts and autoimmune diseases, but potentially detrimental in malignant diseases.

  5. Down-regulation of mitogen-activated protein kinases and nuclear factor-κB signaling is involved in rapamycin suppression of TLR2-induced inflammatory response in monocytic THP-1 cells.

    Science.gov (United States)

    Sun, Ruili; Zhang, Yi; Ma, Shijiang; Qi, Hengtian; Wang, Mingyong; Duan, Juhong; Ma, Shujun; Zhu, Xiaofei; Li, Guancheng; Wang, Hui

    2015-10-01

    Tripalmitoyl-S-glycero-Cys-(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signal pathway. Rapamycin can suppress TLR-induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2-induced inflammatory responses was investigated. It was found that Pam3CSK4-induced pro-inflammatory cytokines were significantly down-regulated at both the mRNA and protein levels in THP-1 cells pre-treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling did not suppress the expression of pro-inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT-PCR showed that Erk and NF-κB signal pathways are related to the production of pro-inflammatory cytokines. Inhibition of Erk or NF-κB signaling significantly down-regulated production of pro-inflammatory cytokines. Additionally, western blot showed that pre-treatment of THP-1 cells with rapamycin down-regulates MAPKs and NF-κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4-induced pro-inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2-induced inflammatory responses by down-regulation of Erk and NF-κB signaling.

  6. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    Full Text Available Coinfection with human immunodeficiency virus (HIV and hepatitis C virus (HCV challenges the immune system with two viruses that elicit distinct immune responses. Chronic immune activation is a hallmark of HIV infection and an accurate indicator of disease progression. Suppressing HIV viremia by antiretroviral therapy (ART effectively prolongs life and significantly improves immune function. HIV/HCV coinfected individuals have peripheral immune activation despite effective ART control of HIV viral load. Here we examined freshly isolated CD14 monocytes for gene expression using high-density cDNA microarrays and analyzed T cell subsets, CD4 and CD8, by flow cytometry to characterize immune activation in monoinfected HCV and HIV, and HIV-suppressed coinfected subjects. To determine the impact of coinfection on cognition, subjects were evaluated in 7 domains for neuropsychological performance, which were summarized as a global deficit score (GDS. Monocyte gene expression analysis in HIV-suppressed coinfected subjects identified 43 genes that were elevated greater than 2.5 fold. Correlative analysis of subjects' GDS and gene expression found eight genes with significance after adjusting for multiple comparisons. Correlative expression of six genes was confirmed by qPCR, five of which were categorized as type 1 IFN response genes. Global deficit scores were not related to plasma lipopolysaccharide levels. In the T cell compartment, coinfection significantly increased expression of activation markers CD38 and HLADR on both CD4 and CD8 T cells but did not correlate with GDS. These findings indicate that coinfection is associated with a type 1 IFN monocyte activation profile which was further found to correlate with cognitive impairment, even in subjects with controlled HIV infection. HIV-suppressed coinfected subjects with controlled HIV viral load experiencing immune activation could benefit significantly from successful anti-HCV therapy and may be

  7. Suppression of human monocyte interleukin-1beta production by ajulemic acid, a nonpsychoactive cannabinoid.

    Science.gov (United States)

    Zurier, Robert B; Rossetti, Ronald G; Burstein, Sumner H; Bidinger, Bonnie

    2003-02-15

    Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, reduces joint tissue damage in rats with adjuvant arthritis. Because interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNFalpha) are central to the progression of inflammation and joint tissue injury in patients with rheumatoid arthritis, we investigated human monocyte IL-1beta and TNFalpha responses after the addition of AjA to cells in vitro. Peripheral blood and synovial fluid monocytes (PBM and SFM) were isolated from healthy subjects and patients with inflammatory arthritis, respectively, treated with AjA (0-30 microM) in vitro, and then stimulated with lipopolysaccharide. Cells were harvested for mRNA, and supernatants were collected for cytokine assay. Addition of AjA to PBM and SFM in vitro reduced both steady-state levels of IL-1beta mRNA and secretion of IL-1beta in a concentration-dependent manner. Suppression was maximal (50.4%) at 10 microM AjA (Parthritis. Development of nonpsychoactive therapeutically useful synthetic analogs of Cannabis constituents, such as AjA, may help resolve the ongoing debate about the use of marijuana as medicine.

  8. High Cellular Monocyte Activation in People Living With Human Immunodeficiency Virus on Combination Antiretroviral Therapy and Lifestyle-Matched Controls Is Associated With Greater Inflammation in Cerebrospinal Fluid

    Science.gov (United States)

    Booiman, Thijs; Wit, Ferdinand W.; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A.; Harskamp, Agnes M.; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Reiss, P.; Wit, F. W. N. M.; Schouten, J.; Kooij, K. W.; van Zoest, R. A.; Elsenga, B. C.; Janssen, F. R.; Heidenrijk, M.; Zikkenheiner, W.; van der Valk, M.; Kootstra, N. A.; Booiman, T.; Harskamp-Holwerda, A. M.; Boeser-Nunnink, B.; Maurer, I.; Mangas Ruiz, M. M.; Girigorie, A. F.; Villaudy, J.; Frankin, E.; Pasternak, A.; Berkhout, B.; van der Kuyl, T.; Portegies, P.; Schmand, B. A.; Geurtsen, G. J.; ter Stege, J. A.; Klein Twennaar, M.; Majoie, C. B. L. M.; Caan, M. W. A.; Su, T.; Weijer, K.; Bisschop, P. H. L. T.; Kalsbeek, A.; Wezel, M.; Visser, I.; Ruhé, H. G.; Franceschi, C.; Garagnani, P.; Pirazzini, C.; Capri, M.; Dall’Olio, F.; Chiricolo, M.; Salvioli, S.; Hoeijmakers, J.; Pothof, J.; Prins, M.; Martens, M.; Moll, S.; Berkel, J.; Totté, M.; Kovalev, S.; Gisslén, M.; Fuchs, D.; Zetterberg, H.; Winston, A.; Underwood, J.; McDonald, L.; Stott, M.; Legg, K.; Lovell, A.; Erlwein, O.; Doyle, N.; Kingsley, C.; Sharp, D. J.; Leech, R.; Cole, J. H.; Zaheri, S.; Hillebregt, M. M. J.; Ruijs, Y. M. C.; Benschop, D. P.; Burger, D.; de Graaff-Teulen, M.; Guaraldi, G.; Bürkle, A.; Sindlinger, T.; Moreno-Villanueva, M.; Keller, A.; Sabin, C.; de Francesco, D.; Libert, C.; Dewaele, S.

    2017-01-01

    Abstract Background. Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). Methods. A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation, intestinal damage, and inflammation in plasma and cerebrospinal fluid (CSF) of PLHIV with suppressed plasma viremia on combination antiretroviral therapy and age and demographically comparable HIV-negative individuals participating in the Comorbidity in Relation to AIDS (COBRA) cohort and, where appropriate, age-matched blood bank donors (BBD). Results. People living with HIV, HIV-negative individuals, and BBD had comparable percentages of classical, intermediate, and nonclassical monocytes. Expression of CD163, CD32, CD64, HLA-DR, CD38, CD40, CD86, CD91, CD11c, and CX3CR1 on monocytes did not differ between PLHIV and HIV-negative individuals, but it differed significantly from BBD. Principal component analysis revealed that 57.5% of PLHIV and 62.5% of HIV-negative individuals had a high monocyte activation profile compared with 2.9% of BBD. Cellular monocyte activation in the COBRA cohort was strongly associated with soluble markers of monocyte activation and inflammation in the CSF. Conclusions. People living with HIV and HIV-negative COBRA participants had high levels of cellular monocyte activation compared with age-matched BBD. High monocyte activation was predictive for inflammation in the CSF. PMID:28680905

  9. Characterization of human monocyte activation by a water soluble preparation of Aphanizomenon flos-aquae.

    Science.gov (United States)

    Pugh, N; Pasco, D S

    2001-11-01

    Aphanizomenon flos-aquae (AFA) is a fresh-water microalgae that is consumed as a nutrient-dense food source and for its health-enhancing properties. The current research characterizes the effect of a water soluble preparation from AFA on human monocyte/macrophage function and compares the effect of AFA with responses from known agents that modulate the immune system. At 0.5 pg/ml the AFA extract robustly activated nuclear factor kappa B (NF-kappa B) directed luciferase expression in THP-1 human monocytic cells to levels at 50% of those achieved by maximal concentrations (10 microg/ml) of bacterial lipopolysaccharide (LPS). In addition, the AFA extract substantially increased mRNA levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), and enhanced the DNA binding activity of NF-kappa B. The effects of AFA water soluble preparation were similar to the responses displayed by LPS, but clearly different from responses exhibited by tetradecanoyl phorbol acetate (TPA) and interferon-gamma (INF-gamma). Pretreatment of THP-1 monocytes with factors known to induce hyporesponsiveness suppressed both AFA-dependent and LPS-dependent activation. These results suggest that the macrophage-activating properties of the AFA water soluble preparation are mediated through pathways that are similar to LPS-dependent activation.

  10. Blood platelet and monocyte activations and relation to stages of liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Anatol Panasiuk; Janusz Zak; Edwina Kasprzycka; Katarzyna Janicka; Danuta Prokopowicz

    2005-01-01

    AIM: Blood platelets (plt) and monocytes are the cells that play a crucial role in the pathogenesis of liver damage and liver cirrhosis (LC). In this paper, the analysis of mutual relationship between platelets and monocytes activation in LC was conducted.METHODS: Immunofluorescent flow cytometry was usedto measure the percentage of activated platelet populations(CD62P, CD63), the percentage of plt-monocyte aggregates (pma) (CD41/CD45), and activated monocytes (CD11b, CD14, CD16) in the blood of 20 volunteers and 40 patientswith LC. Platelet activation markers: sP-selectin, platelet factor 4 (PF4), beta-thromboglobulin (βTG) and monocyte chemotactic peptide-1 (MCP-1) were measured and compared in different stages of LC.RESULTS: Platelet activation with the increase in bothβTG serum concentration and elevation of plt population(CD62P and CD63 as well as MIF CD62P and CD63) is elevated as LC develops and thrombocytopenia rises. There is a positive correlation between medial intensityof fluorescence (MIF) CD62P and MIF CD63 in LC. We did not show any relationship between monocyte activation and pma level. SP-selectin concentration correlates positively with plt count and pma, and negatively with stage of plt activation and MIF CD62P and MIF CD63. There was no correlation between MCP-1 concentration andpit, monocyte activation as well as pma level in LC. CD16 monocytes and MIF CD16 populations are significantlyhigher in the end stage of LC. A positive correlation occurs between the value of CD11b monocyte population andMIF CD14 and MIF CD16 on monocytes in LC.CONCLUSION: Platelet and monocyte activation plays an important role in LC. Platelet activation stage does not influence monocyte activation and production of plt aggregates with monocytes in LC. With LC development, thrombocytopenia may be the result of plt consumption in platelet-monocyte aggregates.

  11.  Suppression of Mycobacterium Tuberculosis Induced Reactive Oxygen Species andTumor Necrosis Factor-Alpha Activity in Human Monocytes of Systemic LupusErythematosus Patients by Reduced Glutathione

    Directory of Open Access Journals (Sweden)

    Najmul Islam

    2012-01-01

    Full Text Available  Objectives: The etiology and pathogenesis of systemic lupuserythematosus remains unknown, evidence exists for theinvolvement of mycobacterial antigen. This study is aimed todetermine the effect of Mycobacterium tuberculosis on clinicalcourse of SLE patients and the role of ROS and TNF-α in thepathogenesis of tuberculosis associated SLE patients.Methods: This study was done on 100 patients divided intoSLE group (n=30, TB group (n=30, SLE-TB group (n=30 andcontrol group (n=10. All patients underwent clinical, biochemicaland immunological evaluation by employing techniques such asSDS-PAGE, direct binding and competition ELISA, PBMC andcell culture.Results: Fever, arthritis, skin rash, photosensitivity were morecommon in both SLE and SLE-TB group. Reduced glutathioneshowed amelioration of ROS and TNF-α induced action, which inturn, subsequently suppressed the immune-bindings observed inmonocytes of TB and SLE patients cultured without glutathione.Conclusion: Data shows that SLE patients are more susceptible todeveloping Mycobacterium tuberculosis, as ROS and TNF-α in SLEpatients could activate the replication of mycobacterial Ag85B (30kDa after bacilli infection.

  12. Monocyte bioenergetic function is associated with body composition in virologically suppressed HIV-infected women

    Directory of Open Access Journals (Sweden)

    Amanda L. Willig

    2017-08-01

    Full Text Available Women living with HIV may present with high levels of body fat that are associated with altered bioenergetic function. Excess body fat may therefore exacerbate the bioenergetic dysfunction observed with HIV infection. To determine if body fat is associated with bioenergetic function in HIV, we conducted a cross-sectional study of 42 women with HIV who were virologically suppressed on antiretroviral therapy. Body composition was determined via dual-energy x-ray absorptiometry. Oxygen consumption rate (OCR of monocytes was sorted from peripheral blood mononuclear cells obtained from participants in the fasting state. Differences in bioenergetic function, as measured by OCR, was assessed using Kruskal-Wallis tests and Spearman correlations adjusted for age, race, and smoking status. Participants were 86% Black, 45.5 years old, 48% current smokers, and 57% were obese (body mass index ≥30. Nearly all women (93% had >30% total fat mass, while 12% had >50% total fat mass. Elevated levels of total fat mass, trunk fat, and leg fat were inversely correlated with measures of bioenergetic health as evidenced by lower maximal and reserve capacity OCR, and Bioenergetic Health Index. Measures of extracellular acidification (ECAR in the absence (basal or maximal (with oligomycin were positively correlated with measures of bioenergetics, except proton leak, and were negatively correlated with fat mass. Despite virological suppression, women with HIV present with extremely high levels of adiposity that correlate with impaired bioenergetic health. Without effective interventions, this syndemic of HIV infection and obesity will likely have devastating consequences for our patients, potentially mediated through altered mitochondrial and glycolytic function.

  13. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models.

    Science.gov (United States)

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-02-22

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA.

  14. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models

    Science.gov (United States)

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-01-01

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA. PMID:28225075

  15. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena Druszczynska

    2013-01-01

    Full Text Available The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.

  16. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    Science.gov (United States)

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.

  17. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation.

    Science.gov (United States)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue.

  18. Reticuloendothelial cell function in autoimmune hemolytic anemia (AIHA: studies on the mechanism of peripheral monocyte activation.

    Directory of Open Access Journals (Sweden)

    Sunada,Mitsutoshi

    1985-10-01

    Full Text Available We examined the activity of peripheral blood monocytes in patients with autoimmune hemolytic anemia (AIHA using an in vitro assay of monocyte-macrophage interaction with erythrocytes and an antibody-dependent cell-mediated cytotoxicity (ADCC assay. The monocytes of AIHA patients in the hemolyzing period phagocytized autologous sensitized red cells and anti-D coated red cells more avidly than normal control monocytes. There was no significant relationship between phagocytic activity and ADCC activity. The activated monocytes phagocytized autologous sensitized red cells, but had no ADCC activity in a short time 51Cr release assay. Phagocytic activity of the patients' monocytes against autologous erythrocytes rapidly decreased after treatment with prednisolone even though the red cell sensitization with antibody remained almost the same as during the hemolyzing period. We postulated that the activation of monocytes in AIHA was due to the "arming" effect of anti-erythrocyte antibody, but we think that other mechanisms may also be involved in the activation of monocytes.

  19. Monocyte Activation by Necrotic Cells Is Promoted by Mitochondrial Proteins and Formyl Peptide Receptors

    Science.gov (United States)

    Crouser, Elliott D.; Shao, Guohong; Julian, Mark W.; Macre, Jennifer E.; Shadel, Gerald S.; Tridandapani, Susheela; Huang, Qin; Wewers, Mark D.

    2009-01-01

    Objective Necrotic cells evoke potent innate immune responses through unclear mechanisms. The mitochondrial fraction of the cell retains constituents of its bacterial ancestors, including N-formyl peptides, which are potentially immunogenic. Thus, we hypothesized that the mitochondrial fraction of the cell, particularly N-formyl peptides, contributes significantly to the activation of monocytes by necrotic cells. Design Human peripheral blood monocytes were incubated with necrotic cell fractions and mitochondrial proteins in order to investigate their potential for immune cell activation. Setting University medical center research laboratory. Subjects Healthy human adults served as blood donors. Measurements and Main Results Human blood monocyte activation was measured after treatment with cytosolic, nuclear and mitochondrial fractions of necrotic HepG2 cells or necrotic HepG2 cells depleted of N-formyl peptides [Rho(0) cells]. The specific role of the high affinity formyl peptide receptor (FPR) was then tested using specific pharmacological inhibitors and RNA-silencing. The capacity of mitochondrial N-formyl peptides to activate monocytes was confirmed using a synthetic peptide conforming to the N-terminus of mitochondrial NADH subunit 6. The results demonstrated that mitochondrial cell fractions most potently activated monocytes, and IL-8 was selectively released at low protein concentrations. Mitochondria from Rho(0) cells induced minimal monocyte IL-8 release, and specific pharmacological inhibitors and RNA-silencing confirmed that FPR contributes significantly to monocyte IL-8 responses to both necrotic cells and mitochondrial proteins. N-formyl peptides alone did not induce monocyte IL-8 release; whereas, the combination of mitochondrial N-formyl peptides and mitochondrial transcription factor A (TFAM) dramatically increased IL-8 release from monocytes. Likewise, HMGB1, the nuclear homologue of TFAM, did not induce monocyte IL-8 release unless combined with

  20. Stimulation of PBMC and Monocyte-derived-Macrophages via Toll-Like Receptor (TLRs Activates Innate Immune Pathways in HIV-Infected Patients on Virally-Suppressive Combination Antiretroviral Therapy (cART

    Directory of Open Access Journals (Sweden)

    Esther Merlini

    2016-12-01

    Full Text Available In HIV-infected cART-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the TLR pathway could be responsible for the immune hyper-activation seen in these patients.PBMC/MDM of 28 HIV+ untreated and 35 cART treated patients with HIV-RNA<40cp/mL (20 Full Responders: CD4≥350; 15 Immunological Non Responders:CD4<350 as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexV/CD69/TLR4/8 (Flow Cytometry; PBMC expression of 84 TLR pathway genes (qPCR; PBMC/MDM cytokine release (Multiplex; plasma LPS/sCD14 (LAL/ELISA. PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+MDM and failed to expand activated HLA-DR+CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38+CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from Immunological Non Responders seemed to up-regulate only type I IFN genes following TLR stimulation, whereas PBMC from Full Responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting an exhausted immune milieu, anergic to further antigen encounters.

  1. Blood monocyte oxidative burst activity in acute P. falciparum malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Theander, T G

    1989-01-01

    The release of superoxide anion from blood monocytes was studied in eight patients with acute primary attack P. falciparum malaria. Before treatment a significant enhancement of the oxidative burst prevailed, which contrasts with previous findings of a depressed monocyte chemotactic responsiveness....... During treatment and after clinical recovery the activity of superoxide anion release normalized in all patients....

  2. The immune theory of psychiatric diseases : a key role for activated microglia and circulating monocytes

    NARCIS (Netherlands)

    Beumer, Wouter; Gibney, Sinead M.; Drexhage, Roosmarijn C.; Pont-Lezica, Lorena; Doorduin, Janine; Klein, Hans C.; Steiner, Johann; Connor, Thomas J.; Harkin, Andrew; Versnel, Marjan A.; Drexhage, Hemmo A.

    2012-01-01

    This review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction of monocyte

  3. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    Energy Technology Data Exchange (ETDEWEB)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-03-05

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.

  4. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    Science.gov (United States)

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.

  5. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  6. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...

  7. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro

    NARCIS (Netherlands)

    Faas, Marijke M.; van Pampus, Maria G.; Anninga, Zwanine A.; Salomons, Jet; Westra, Inge M.; Donker, Rogier B.; Aarnoudse, Jan G.; de Vos, Paul

    2010-01-01

    In this study we tested whether plasma from preeclamptic women contains factors that can activate endothelial cells in the presence of monocytes in vitro. Plasma from preeclamptic women (n = 6), healthy pregnant women (n = 6) and nonpregnant women (n = 6) was incubated with mono-cultures and co-cult

  8. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2010-04-15

    The hereditary disorder alpha-1 antitrypsin (AAT) deficiency results from mutations in the SERPINA1 gene and presents with emphysema in young adults and liver disease in childhood. The most common form of AAT deficiency occurs because of the Z mutation, causing the protein to fold aberrantly and accumulate in the endoplasmic reticulum (ER). This leads to ER stress and contributes significantly to the liver disease associated with the condition. In addition to hepatocytes, AAT is also synthesized by monocytes, neutrophils, and epithelial cells. In this study we show for the first time that the unfolded protein response (UPR) is activated in quiescent monocytes from ZZ individuals. Activating transcription factor 4, X-box binding protein 1, and a subset of genes involved in the UPR are increased in monocytes from ZZ compared with MM individuals. This contributes to an inflammatory phenotype with ZZ monocytes exhibiting enhanced cytokine production and activation of the NF-kappaB pathway when compared with MM monocytes. In addition, we demonstrate intracellular accumulation of AAT within the ER of ZZ monocytes. These are the first data showing that Z AAT protein accumulation induces UPR activation in peripheral blood monocytes. These findings change the current paradigm regarding lung inflammation in AAT deficiency, which up until now was derived from the protease-anti-protease hypothesis, but which now must include the exaggerated inflammatory response generated by accumulated aberrantly folded AAT in circulating blood cells.

  9. Combination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway

    Science.gov (United States)

    Zhou, Wei; Liu, Libo; Xue, Yixue; Zheng, Jian; Liu, Xiaobai; Ma, Jun; Li, Zhen; Liu, Yunhui

    2017-01-01

    This study aims to investigate the effect of Endothelial-Monocyte-Activating Polypeptide-II (EMAP-II) combined with temozolomide (TMZ) upon glioblastoma stem cells (GSCs) and its possible molecular mechanisms. In this study, combination of EMAP-II with TMZ inhibited cell viability, migration and invasion in GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) and chloroquine (CQ) partly reverse the anti-proliferative effect of the combination treatment. Autophagic vacuoles were formed in GSCs after the combination therapy, accompanied with the up-regulation of LC3-II and Beclin-1 as well as the down-regulation of p62/SQSTM1. Further, miR-590-3p was up-regulated and Metastasis-associated in colon cancer 1 (MACC1) was down-regulated by the combination treatment in GSCs; MiR-590-3p overexpression and MACC1 knockdown up-regulated LC3-II and Beclin-1 as well as down-regulated p62/SQSTM1 in GSCs; MACC1 was identified as a direct target of miR-590-3p, mediating the effects of miR-590-3p in the combination treatment. Furthermore, the combination treatment and MACC1 knockdown decreased p-PI3K, p-Akt, p-mTOR, p-S6 and p-4EBP in GSCs; PI3K/Akt agonist insulin-like growth factor-1(IGF-1) partly blocked the effect of the combination treatment. Moreover, in vivo xenograft models, the mice given stable overexpressed miR-590-3p cells and treated with EMAP-II and TMZ had the smallest tumor sizes, besides, miR-590-3p + EMAP-II + TMZ up-regulated the expression level of miR-590-3p, LC3-II and Beclin-1 as well as down-regulated p62/SQSTM1. In conclusion, these results elucidated anovel molecular mechanism of EMAP-II in combination with TMZ suppressed malignant biological behaviors of GSCs via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signaling pathway, and might provide potential therapeutic approaches for human GSCs.

  10. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL.

    Science.gov (United States)

    Griffith, T S; Wiley, S R; Kubin, M Z; Sedger, L M; Maliszewski, C R; Fanger, N A

    1999-04-19

    TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) is a molecule that displays potent antitumor activity against selected targets. The results presented here demonstrate that human monocytes rapidly express TRAIL, but not Fas ligand or TNF, after activation with interferon (IFN)-gamma or -alpha and acquire the ability to kill tumor cells. Monocyte-mediated tumor cell apoptosis was TRAIL specific, as it could be inhibited with soluble TRAIL receptor. Moreover, IFN stimulation caused a concomitant loss of TRAIL receptor 2 expression, which coincides with monocyte acquisition of resistance to TRAIL-mediated apoptosis. These results define a novel mechanism of monocyte-induced cell cytotoxicity that requires TRAIL, and suggest that TRAIL is a key effector molecule in antitumor activity in vivo.

  11. Activated p38 MAPK in Peripheral Blood Monocytes of Steroid Resistant Asthmatics.

    Directory of Open Access Journals (Sweden)

    Ling-Bo Li

    Full Text Available Steroid resistance is a significant problem in management of chronic inflammatory diseases, including asthma. Accessible biomarkers are needed to identify steroid resistant patients to optimize their treatment. This study examined corticosteroid resistance in severe asthma. 24 asthmatics with forced expiratory volume in one second of less then 80% predicted were classified as steroid resistant or steroid sensitive based on changes in their lung function following a week of treatment with oral prednisone. Heparinised blood was collected from patients prior to oral prednisone administration. Phosphorylated mitogen activated kinases (MAPK (extracellular regulated kinase (ERK, p38 and jun kinase (JNK were analyzed in whole blood samples using flow cytometry. Activation of phospho-p38 MAPK and phospho-mitogen- and stress-activated protein kinase 1 (MSK1 in asthmatics' peripheral blood mononuclear cells (PBMC were confirmed by Western blot. Dexamethasone suppression of the LPS-induced IL-8 mRNA production by steroid resistant asthmatics PBMC in the presence of p38 and ERK inhibitors was evaluated by real time PCR. Flow cytometry analysis identified significantly stronger p38 phosphorylation in CD14+ monocytes from steroid resistant than steroid sensitive asthmatics (p = 0.014, whereas no difference was found in phosphorylation of ERK or JNK in CD14+ cells from these two groups of asthmatics. No difference in phosphorylated p38, ERK, JNK was detected in CD4+, CD8+ T cells, B cells and NK cells from steroid resistant vs. steroid sensitive asthmatics. P38 MAPK pathway activation was confirmed by Western blot, as significantly higher phospho-p38 and phospho-MSK1 levels were detected in the PBMC lysates from steroid resistant asthmatics. P38 inhibitor significantly enhanced DEX suppression of LPS-induced IL-8 mRNA by PBMC of steroid resistant asthmatics. This is the first report demonstrating selective p38 MAPK pathway activation in blood monocytes of

  12. Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection.

    Science.gov (United States)

    Goncalves, Ricardo; Zhang, Xia; Cohen, Heather; Debrabant, Alain; Mosser, David M

    2011-06-01

    Leishmania species trigger a brisk inflammatory response and efficiently induce cell-mediated immunity. We examined the mechanisms whereby leukocytes were recruited into lesions after Leishmania major infection of mice. We found that a subpopulation of effector monocytes expressing the granulocyte marker GR1 (Ly6C) is rapidly recruited into lesions, and these monocytes efficiently kill L. major parasites. The recruitment of this subpopulation of monocytes depends on the chemokine receptor CCR2 and the activation of platelets. Activated platelets secrete platelet-derived growth factor, which induces the rapid release of CCL2 from leukocytes and mesenchymal cells. This work points to a new role for platelets in host defense involving the selective recruitment of a subpopulation of effector monocytes from the blood to efficiently kill this intracellular parasite.

  13. mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections

    Science.gov (United States)

    Tu, Huaijun; Guo, Wei; Wang, Shixuan; Xue, Ting; Yang, Fei; Zhang, Xiaoyan; Yang, Yazhi; Wan, Qian; Shi, Zhexin; Zhan, Xulong

    2016-01-01

    The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy.

  14. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes.

    Science.gov (United States)

    Wang, J M; Sherry, B; Fivash, M J; Kelvin, D J; Oppenheim, J J

    1993-04-01

    The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.

  15. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients.

    Directory of Open Access Journals (Sweden)

    Petronela Ancuta

    Full Text Available Elevated plasma lipopolysaccharide (LPS, an indicator of microbial translocation from the gut, is a likely cause of systemic immune activation in chronic HIV infection. LPS induces monocyte activation and trafficking into brain, which are key mechanisms in the pathogenesis of HIV-associated dementia (HAD. To determine whether high LPS levels are associated with increased monocyte activation and HAD, we obtained peripheral blood samples from AIDS patients and examined plasma LPS by Limulus amebocyte lysate (LAL assay, peripheral blood monocytes by FACS, and soluble markers of monocyte activation by ELISA. Purified monocytes were isolated by FACS sorting, and HIV DNA and RNA levels were quantified by real time PCR. Circulating monocytes expressed high levels of the activation markers CD69 and HLA-DR, and harbored low levels of HIV compared to CD4(+ T-cells. High plasma LPS levels were associated with increased plasma sCD14 and LPS-binding protein (LBP levels, and low endotoxin core antibody levels. LPS levels were higher in HAD patients compared to control groups, and were associated with HAD independently of plasma viral load and CD4 counts. LPS levels were higher in AIDS patients using intravenous heroin and/or ethanol, or with Hepatitis C virus (HCV co-infection, compared to control groups. These results suggest a role for elevated LPS levels in driving monocyte activation in AIDS, thereby contributing to the pathogenesis of HAD, and provide evidence that cofactors linked to substance abuse and HCV co-infection influence these processes.

  16. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    Science.gov (United States)

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2016-12-06

    Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  17. Inflammation and exercise: Inhibition of monocytic intracellular TNF production by acute exercise via β2-adrenergic activation.

    Science.gov (United States)

    Dimitrov, Stoyan; Hulteng, Elaine; Hong, Suzi

    2017-03-01

    Regular exercise is shown to exert anti-inflammatory effects, yet the effects of acute exercise on cellular inflammatory responses and its mechanisms remain unclear. We tested the hypothesis that sympathoadrenergic activation during a single bout of exercise has a suppressive effect on monocytic cytokine production mediated by β2 adrenergic receptors (AR). We investigated the effects of 20-min moderate (65-70% VO2 peak) exercise-induced catecholamine production on LPS-stimulated TNF production by monocytes in 47 healthy volunteers and determined AR subtypes involved. We also examined the effects of β-agonist isoproterenol and endogenous β- and α-agonists epinephrine and norepinephrine, and receptor-subtype-specific β- and α-antagonists on TNF production in a series of in vitro investigations. LPS-stimulated TNF production by peripheral blood monocytes was determined intracellularly by flow cytometry, using an intracellular protein transport inhibitor. Percent TNF-producing monocytes and per-cell TNF production with and without LPS was suppressed by exercise with moderate to large effects, which was reversed by a β2-AR antagonist in spite that plasma TNF levels did not change. This inhibitory response in TNF production by exercise was mirrored by β-AR agonists in an agonist-specific and dose-dependent manner in vitro: similar isoproterenol (EC50=2.1-4.7×10(-10)M) and epinephrine (EC50=4.4-10×10(-10)M) potency and higher norepinephrine concentrations (EC50=2.6-4.3×10(-8)M) needed for the effects. Importantly, epinephrine levels observed during acute exercise in vivo significantly inhibited TNF production in vitro. The inhibitory effect of the AR agonists was abolished by β2-, but not by β1- or α-AR blockers. We conclude that the downregulation of monocytic TNF production during acute exercise is mediated by elevated epinephrine levels through β2-ARs. Decreased inflammatory responses during acute exercise may protect against chronic conditions with low

  18. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  19. Cellular Activation and Intracellular HCV Load in Peripheral Blood Monocytes Isolated from HCV Monoinfected and HIV-HCV Coinfected Patients

    OpenAIRE

    Isabelle Dichamp; Wasim Abbas; Amit Kumar; Vincent Di Martino; Georges Herbein

    2014-01-01

    BACKGROUND: During HCV infection, the activation status of peripheral blood monocytes and its impact on HCV replication are poorly understood. We hypothesized that a modified activation of peripheral blood monocytes in HIV-HCV coinfected compared to HCV monoinfected patients may contribute to different monocytes reservoirs of HCV replication. METHODS: We performed a case-control analysis involving HCV-infected patients with and without HIV coinfection. In peripheral blood mononuclear cells (P...

  20. Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi

    Science.gov (United States)

    Magalhães, Luísa M. D.; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M. C.; Gollob, Kenneth J.; Dutra, Walderez O.

    2015-01-01

    Background Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. Methodology/Principal Findings We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Conclusion/Significance Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression. PMID:26147698

  1. Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16+ Monocytes.

    Science.gov (United States)

    Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César

    2016-10-15

    A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16(+) monocytes with a poor activation profile. In survivors, CD16(+) monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling.

    Science.gov (United States)

    Pham, Thu-Huyen; Kim, Man-Sub; Le, Minh-Quan; Song, Yong-Seok; Bak, Yesol; Ryu, Hyung-Won; Oh, Sei-Ryang; Yoon, Do-Young

    2017-01-15

    Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1β, TNF-α) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-ĸB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-ĸB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-ĸB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders. Copyright © 2016. Published by Elsevier GmbH.

  3. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2.

    Science.gov (United States)

    Reis, Sonia Regina I N; Valente, Ligia M M; Sampaio, André L; Siani, Antonio C; Gandini, Mariana; Azeredo, Elzinandes L; D'Avila, Luiz A; Mazzei, José L; Henriques, Maria das Graças M; Kubelka, Claire F

    2008-03-01

    Uncaria tomentosa (Willd.) DC., a large woody vine native to the Amazon and Central American rainforests has been used medicinally by indigenous peoples since ancient times and has scientifically proven immunomodulating, anti-inflammatory, cytotoxic and antioxidant activities. Several inflammatory mediators that are implicated in vascular permeability and shock are produced after Dengue Virus (DENV) infection by monocytes, the primary targets for virus replication. Here we assessed the immunoregulatory and antiviral activities from U. tomentosa-derived samples, which were tested in an in vitro DENV infection model. DENV-2 infected human monocytes were incubated with U. tomentosa hydro-alcoholic extract or either its pentacyclic oxindole alkaloid-enriched or non-alkaloid fractions. The antiviral activity was determined by viral antigen (DENV-Ag) detection in monocytes by flow cytometry. Our results demonstrated an in vitro inhibitory activity by both extract and alkaloidal fraction, reducing DENV-Ag+ cell rates in treated monocytes. A multiple microbead immunoassay was applied for cytokine determination (TNF-alpha, IFN-alpha, IL-6 and IL-10) in infected monocyte culture supernatants. The alkaloidal fraction induced a strong immunomodulation: TNF-alpha and IFN-alpha levels were significantly decreased and there was a tendency towards IL-10 modulation. We conclude that the alkaloidal fraction was the most effective in reducing monocyte infection rates and cytokine levels. The antiviral and immunomodulating in vitro effects from U. tomentosa pentacyclic oxindole alkaloids displayed novel properties regarding therapeutic procedures in Dengue Fever and might be further investigated as a promising candidate for clinical application.

  4. Epstein-Barr Virus Interferes with the Amplification of IFNα Secretion by Activating Suppressor of Cytokine Signaling 3 in Primary Human Monocytes

    Science.gov (United States)

    Michaud, François; Coulombe, François; Gaudreault, Eric; Paquet-Bouchard, Carine; Rola-Pleszczynski, Marek; Gosselin, Jean

    2010-01-01

    Background Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs) are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNα pathway in primary human monocytes. Methodology/Principal Findings Infection of monocytes with EBV induced IFNα secretion but inhibited the positive feedback loop for the amplification of IFNα. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3) and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNα secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7). Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA) abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNα secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta. Conclusions/Significance We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNα secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV. PMID:20689596

  5. Epstein-Barr virus interferes with the amplification of IFNalpha secretion by activating suppressor of cytokine signaling 3 in primary human monocytes.

    Directory of Open Access Journals (Sweden)

    François Michaud

    Full Text Available BACKGROUND: Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNalpha pathway in primary human monocytes. METHODOLOGY/PRINCIPAL FINDINGS: Infection of monocytes with EBV induced IFNalpha secretion but inhibited the positive feedback loop for the amplification of IFNalpha. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3 and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNalpha secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7. Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNalpha secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta. CONCLUSIONS/SIGNIFICANCE: We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNalpha secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV.

  6. Monocytosis and a Low Lymphocyte to Monocyte ratio are effective Biomarkers of Ulcerative Colitis disease activity

    Science.gov (United States)

    Cherfane, Cynthia E.; Gessel, Luke; Cirillo, Dominic; Zimmerman, Miriam Bridget; Polyak, Steven

    2016-01-01

    Background Current biomarkers in ulcerative colitis (UC) are limited by their performance, cost and limited availability in daily practice. This study examined alterations in the leukocyte profiles as biomarkers of UC activity including the effects of age, gender and medications. Methods Case control study that included 110 UC subjects, 75 subjects with C. difficile infection, and 75 non-inflammatory bowel disease (IBD) subjects, randomly selected from a single institution IBD database. Mean values of neutrophils (N), lymphocytes (L), monocytes (M) and their ratios were compared between groups. ROC curve analyses assessed the performance of each biomarker in discriminating disease states. Subgroup analyses examined leukocytes profiles with endoscopic activity. Results Elevated monocyte counts and decreased L/M values significantly differed between subjects with active UC and UC in remission and performed better than other leukocyte profiles. A monocyte count of 483 and L/M ratio of 3.1 were 60% sensitive and had a specificity of 61% and 53% respectively for active UC. Monocyte count > 860 and L/M value C. diff controls. Conclusion Monocytosis and a low L/M ratio might be effective, readily available and low cost biomarkers to identify disease activity in UC patients. N/L values were more effective at distinguishing active UC patients from patients without IBD and those with C. diff infection. PMID:25993688

  7. Biologic therapy improves psoriasis by decreasing the activity of monocytes and neutrophils.

    Science.gov (United States)

    Yamanaka, Keiichi; Umezawa, Yoshinori; Yamagiwa, Akisa; Saeki, Hidehisa; Kondo, Makoto; Gabazza, Esteban C; Nakagawa, Hidemi; Mizutani, Hitoshi

    2014-08-01

    Therapy with monoclonal antibodies to tumor necrosis factor (TNF)-α and the interleukin (IL)-12/23 p40 subunit has significantly improved the clinical outcome of patients with psoriasis. These antibodies inhibit the effects of the target cytokines and thus the major concern during their use is the induction of excessive immunosuppression. Recent studies evaluating the long-term efficacy and safety of biologic therapy in psoriasis have shown no significant appearance of serious adverse effects including infections and malignancies. However, the immunological consequence and the mechanism by which the blockade of a single cytokine by biologics can successfully control the activity of psoriasis remain unclear. In the current study, we investigated the effect of biologic therapy on cytokine production of various lymphocytes and on the activity of monocytes and neutrophils in psoriatic patients. Neutrophils, monocytes and T cells were purified from heparinized peripheral venous blood by Ficoll density gradient centrifugation, and γ-interferon, TNF-α and IL-17 production from lymphocytes was measured by flow cytometer. The activation maker of neutrophils and the activated subsets of monocytes were also analyzed. Biologic therapy induced no significant changes in the cytokine production by lymphocytes from the skin and gut-homing T cells. However, neutrophil activity and the ratio of activated monocyte population increased in severely psoriatic patients were normalized in psoriatic patients receiving biologic therapy. The present study showed that biologic therapy ameliorates clinical symptoms and controls the immune response in patients with psoriasis.

  8. Caspase-1 activation and mature interleukin-1β release are uncoupled events in monocytes

    Institute of Scientific and Technical Information of China (English)

    Amy; J; Galliher-Beckley; Li-Qiong; Lan; Shelly; Aono; Lei; Wang; Jishu; Shi

    2013-01-01

    AIM:To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β(pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events.METHODS:All experiments were performed on fresh or overnight cultured human peripheral blood monocytes(PBMCs) that were isolated from healthy donors.PBMCs were activated by lipopolysaccharide(LPS) stimulation before being treated with Adenosine triphosphate(ATP,1 mmol/L),human α-defensin-5(HD-5,50 μg/mL),and/or nigericin(Nig,30 μmol/L).For each experiment,the culture supernatants were collected separately from the cells.Cell lysates and supernatants were both subject to immunoprecipitation with anti-IL1β antibodies followed by western blot analysis with anti-caspase-1 and anti-IL-1β antibodies.RESULTS:We found that pro-IL-1β was processed to mature IL-1β in LPS-activated fresh and overnight cultured human monocytes in response to ATP stimulation.In the presence of HD-5,this release of IL-1β,but not the processing of pro-IL-1β to IL-1β,was completely inhibited.Similarly,in the presence of HD-5,the release of IL-1β,but not the processing of IL-1β,was significantly inhibited from LPS-activated monocytes stimulated with Nig.Finally,we treated LPS-activated monocytes with ATP and Nig and collected the supernatants.We found that both ATP and Nig stimulation could activate and release cleaved caspase-1 from the monocytes.Interestingly,and contrary to IL-1β processing and release,caspase-1 cleavage and release was not blocked by HD-5.All images are representative of three independent experiments.CONCLUSION:These data suggest that caspase-1 activation/processing of pro-IL-1β by caspase-1 and the release of mature IL-1β from human monocytes are distinct and separable events.

  9. The immune theory of psychiatric diseases: A key role for activated microglia and circulating monocytes

    NARCIS (Netherlands)

    W. Beumer (Wouter); S.M. Gibney (Sinead); R.C. Drexhage (Roos); L. Pont-Lezica (Lorena); J. Doorduin (Janine); H.C. Klein (Hans); J. Steiner (Johann); L. Connor; A. Harkin (Andrew); M.A. Versnel (Marjan); H.A. Drexhage (Hemmo)

    2012-01-01

    textabstractThis review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction

  10. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes.

    NARCIS (Netherlands)

    Horssen, R. van; Eggermont, A.M.M.; Hagen, T.L.M. ten

    2006-01-01

    Endothelial monocyte-activating polypeptide-II (EMAP-II) is a pro-inflammatory cytokine with anti-angiogenic properties. Its precursor, proEMAP, is identical to the p43 auxiliary component of the tRNA multisynthetase complex and therefore involved in protein translation. Although most of the activit

  11. The activation of monocyte and T cell networks in patients with bipolar disorder

    NARCIS (Netherlands)

    Drexhage, Roosmarijn C.; Hoogenboezem, Thomas H.; Versnel, Marjan A.; Berghout, Arie; Nolen, Willem A.; Drexhage, Hemmo A.

    2011-01-01

    Objectives: We recently described a monocyte pro-inflammatory state in patients with bipolar disorder (BD). We hypothesized that the CD4(+)T cell system is also activated and determined percentages of Th1, Th2, Th17 and CD4(+)CD25(high)FoxP3(+) regulatory T cells. Methods: We carried out a detailed

  12. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist

    DEFF Research Database (Denmark)

    Johansen, Pia Thermann; Zucker, Daniel; Parhamifar, Ladan;

    2015-01-01

    Objectives: Monocytes are one of the major phagocytic cells that patrol for invading pathogens, and upon activation, differentiate into macrophages or antigen-presenting dendritic cells (DCs) capable of migrating to lymph nodes eliciting an adaptive immune response. The key role in regulating ada...... cytokines. We envision this technology as a promising tool in future cancer immunotherapy....

  13. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  14. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  15. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes.

    Science.gov (United States)

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Liao, Te-Han; Hsu, Ya-Wen; Pan, Tzu-Ming

    2012-05-01

    Fermentation products of the fungus Monascus offer valuable therapeutic benefits and have been used extensively for centuries in Asia. The aim of this study is to investigate the inhibitory effect of the Monascus-fermented metabolite monascin (MS) on the molecular mechanism of ovalbumin (OVA)-induced inflammation in the human THP-1 monocyte cell line. We found that 1, 5, and 25 μM of MS significantly attenuated several proinflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)) formation caused by OVA stimulation. Further, 5 and 25 μM of MS significantly reduced the generation of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) at both the protein and mRNA levels. MS (5 and 25 μM) decreased OVA-induced phosphorylation of mitogen-activated protein kinase (MAPK) c-Jun NH(2)-terminal kinase (JNK), but not that of extracellular signal-regulated kinase (ERK) or p38 kinase. We used the peroxisome proliferator activated receptor-γ (PPAR-γ) antagonist GW9662 to show that MS inhibit JNK phosphorylation through increased expression of PPAR-γ. Thus, the metabolites from Monascus fermentation may serve as a dietary source of anti-inflammatory agents.

  16. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation.

    Science.gov (United States)

    Bessler, Waylan K; Kim, Grace; Hudson, Farlyn Z; Mund, Julie A; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D Wade; Ingram, David A; Stansfield, Brian K

    2016-03-15

    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.

  17. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes.

    Science.gov (United States)

    Duggan, Seána; Essig, Fabian; Hünniger, Kerstin; Mokhtari, Zeinab; Bauer, Laura; Lehnert, Teresa; Brandes, Susanne; Häder, Antje; Jacobsen, Ilse D; Martin, Ronny; Figge, Marc Thilo; Kurzai, Oliver

    2015-09-01

    Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.

  18. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Indian Academy of Sciences (India)

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  19. The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria.

    Directory of Open Access Journals (Sweden)

    Lis R V Antonelli

    2014-09-01

    Full Text Available Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+CD16- (classical, CD14(+CD16(+ (inflammatory, and CD14loCD16(+ (patrolling cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+ cells, in particular the CD14(+CD16(+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+CD16(+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+CD16(+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.

  20. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    Science.gov (United States)

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.

  1. Anti-citrullinated protein antibodies suppress let-7a expression in monocytes from patients with rheumatoid arthritis and facilitate the inflammatory responses in rheumatoid arthritis.

    Science.gov (United States)

    Lai, Ning-Sheng; Yu, Hui-Chun; Yu, Chia-Li; Koo, Malcolm; Huang, Hsien-Bin; Lu, Ming-Chi

    2015-12-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) could affect the expression of miRNAs in monocytes and contribute to the inflammatory responses in rheumatoid arthritis (RA). The expression profiles of 270 human miRNAs, co-cultured with ACPAs or human immunoglobulin G (IgG), were analyzed using real-time polymerase chain reaction. Ten miRNAs exhibited differential expression in U937 cells after co-cultured with ACPAs compared with human IgG. The expression levels of these miRNAs were investigated in monocytes from 21 ACPA-positive RA patients and 13 controls. Among these miRNAs, the expression levels of let-7a was decreased in monocytes from ACPA-positive RA patients. The expression levels of let-7a showed a negative correlation with positivity of rheumatoid factor in patients sampled. We found that transfection of U937 cells with let-7a mimic suppressed K-Ras protein expression. In the ACPA-mediated signaling pathway, transfection of U937 cells with let-7a mimic suppressed the ACPA-enhanced phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression and secretion of interleukin (IL)-1β. In conclusion, ACPA-mediated decreased let-7a expression in monocytes from ACPA-positive RA patients. Decreased let-7a expression was associated with the positivity of RF in ACPA-positive RA patients. The decreased expression of let-7a could facilitate the inflammatory pathway via enhanced ACPA-mediated phosphorylation of ERK1/2 and JNK and increased expression of IL-1β through an increase in the expression of Ras proteins.

  2. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Ivanova

    2016-01-01

    Full Text Available Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient’s bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization.

  3. Impaired NLRP3 inflammasome activity during fetal development regulates IL-1β production in human monocytes.

    Science.gov (United States)

    Sharma, Ashish A; Jen, Roger; Kan, Bernard; Sharma, Abhinav; Marchant, Elizabeth; Tang, Anthony; Gadawski, Izabelle; Senger, Christof; Skoll, Amanda; Turvey, Stuart E; Sly, Laura M; Côté, Hélène C F; Lavoie, Pascal M

    2015-01-01

    Interleukin-1β (IL-1β) production is impaired in cord blood monocytes. However, the mechanism underlying this developmental attenuation remains unclear. Here, we analyzed the extent of variability within the Toll-like receptor (TLR)/NLRP3 inflammasome pathways in human neonates. We show that immature low CD14 expressing/CD16(pos) monocytes predominate before 33 weeks of gestation, and that these cells lack production of the pro-IL-1β precursor protein upon LPS stimulation. In contrast, high levels of pro-IL-1β are produced within high CD14 expressing monocytes, although these cells are unable to secrete mature IL-1β. The lack of secreted IL-1β in these monocytes parallels a reduction of NLRP3 induction following TLR stimulation resulting in a lack of caspase-1 activity before 29 weeks of gestation, whereas expression of the apoptosis-associated speck-like protein containing a CARD and function of the P2×7 receptor are preserved. Our analyses also reveal a strong inhibitory effect of placental infection on LPS/ATP-induced caspase-1 activity in cord blood monocytes. Lastly, secretion of IL-1β in preterm neonates is restored to adult levels during the neonatal period, indicating rapid maturation of these responses after birth. Collectively, our data highlight important developmental mechanisms regulating IL-1β responses early in gestation, in part due to a downregulation of TLR-mediated NLRP3 expression. Such mechanisms may serve to limit potentially damaging inflammatory responses in a developing fetus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fate of gamma-interferon-activated killer blood monocytes adoptively transferred into the abdominal cavity of patients with peritoneal carcinomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, H.C.; Keenan, A.M.; Woodhouse, C.; Ottow, R.T.; Miller, P.; Steller, E.P.; Foon, K.A.; Abrams, P.G.; Beman, J.; Larson, S.M.

    1987-11-15

    Five patients with colorectal cancer widely metastatic to peritoneal surfaces have been treated i.p. with infusions of autologous blood monocytes made cytotoxic by in vitro incubation with human gamma-interferon. The monocytes were purified by a combination of cytapheresis and counter-current centrifugal elutriation procedures; each week approximately 350 million activated monocytes were given to patients as adoptive immunotherapy by a single i.p. instillation. On the eighth cycle of treatment the trafficking of i.p. infused blood monocytes was studied in two patients by prelabeling the cells with /sup 111/In. These activated cells became distributed widely within the peritoneal cavity. Two and 5 days after infusion their position within the peritoneum had not changed. When peritoneal specimens were obtained 36 h after /sup 111/In-labeled monocyte infusion, labeled monocytes were demonstrated to be associated with the serosal surfaces by autoradiographic analysis. Scintiscanning structures outside the abdominal cavity revealed that /sup 111/In-labeled monocytes infused i.p. did not traffic to other organs during the 5 days of the study. We conclude that i.p. adoptive transfer of autologous killer blood monocytes is an effective way of delivering these cytotoxic cells to sites of tumor burden on peritoneal surfaces in these cancer patients.

  5. Elevation of Platelet and Monocyte Activity Markers of Atherosclerosis in Haemodialysis Patients Compared to Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Ksenija Stach

    2017-01-01

    Full Text Available Purpose. The predominant cause of mortality in dialysis patients are cardiovascular events. Platelet and monocyte activity markers play an important role in cardiovascular mortality and were assessed and related to dialysis quality criteria in haemodialysis (HD and peritoneal dialysis (PD patients. Methods. For this prospective comparative study, HD patients (n=41 and PD patients (n=10 were included. In whole blood samples, surface expression of CD62P and CD40L on platelets, tissue factor binding on monocytes, and platelet-monocyte aggregates were measured by flow cytometry. Plasma levels of MCP-1, IL-6, TNFα, and soluble CD40L were analysed by enzyme-linked immunosorbent assay. Results. Haemodialysis patients showed a significantly higher CD62P expression on platelets (p=0.017, significantly higher amount of platelet-monocyte aggregates (p<0.0001, and significantly more tissue factor binding on monocytes (p<0.0001 compared to PD patients. In PD patients, a significant correlation between Kt/V and platelet CD40L expression (r=0.867; 0.001 and between Kt/V and platelet CD62P expression (r=0.686; p=0.028 was observed, while there was no significant correlation between Kt/V and tissue factor binding on monocytes and platelet-monocyte aggregates, respectively. Conclusion. Platelet and monocyte activity markers are higher in HD patients in comparison with those in PD patients, possibly suggesting a higher risk of cardiovascular morbidity and mortality.

  6. Elevation of Platelet and Monocyte Activity Markers of Atherosclerosis in Haemodialysis Patients Compared to Peritoneal Dialysis Patients.

    Science.gov (United States)

    Stach, Ksenija; Karb, Susanne; Akin, Ibrahim; Borggrefe, Martin; Krämer, Bernhard; Kälsch, Thorsten; Kälsch, Anna-Isabelle

    2017-01-01

    The predominant cause of mortality in dialysis patients are cardiovascular events. Platelet and monocyte activity markers play an important role in cardiovascular mortality and were assessed and related to dialysis quality criteria in haemodialysis (HD) and peritoneal dialysis (PD) patients. For this prospective comparative study, HD patients (n = 41) and PD patients (n = 10) were included. In whole blood samples, surface expression of CD62P and CD40L on platelets, tissue factor binding on monocytes, and platelet-monocyte aggregates were measured by flow cytometry. Plasma levels of MCP-1, IL-6, TNFα, and soluble CD40L were analysed by enzyme-linked immunosorbent assay. Haemodialysis patients showed a significantly higher CD62P expression on platelets (p = 0.017), significantly higher amount of platelet-monocyte aggregates (p < 0.0001), and significantly more tissue factor binding on monocytes (p < 0.0001) compared to PD patients. In PD patients, a significant correlation between Kt/V and platelet CD40L expression (r = 0.867; 0.001) and between Kt/V and platelet CD62P expression (r = 0.686; p = 0.028) was observed, while there was no significant correlation between Kt/V and tissue factor binding on monocytes and platelet-monocyte aggregates, respectively. Platelet and monocyte activity markers are higher in HD patients in comparison with those in PD patients, possibly suggesting a higher risk of cardiovascular morbidity and mortality.

  7. Ca2+/calmodulin-dependent kinase kinase alpha is expressed by monocytic cells and regulates the activation profile.

    Directory of Open Access Journals (Sweden)

    Christopher B Guest

    Full Text Available Macrophages are capable of assuming numerous phenotypes in order to adapt to endogenous and exogenous challenges but many of the factors that regulate this process are still unknown. We report that Ca(2+/calmodulin-dependent kinase kinase alpha (CaMKKalpha is expressed in human monocytic cells and demonstrate that its inhibition blocks type-II monocytic cell activation and promotes classical activation. Affinity chromatography with paramagnetic beads isolated an approximately 50 kDa protein from nuclear lysates of U937 human monocytic cells activated with phorbol-12-myristate-13-acetate (PMA. This protein was identified as CaMKKalpha by mass spectrometry and Western analysis. The function of CaMKKalpha in monocyte activation was examined using the CaMKKalpha inhibitors (STO-609 and forskolin and siRNA knockdown. Inhibition of CaMKKalpha, enhanced PMA-dependent CD86 expression and reduced CD11b expression. In addition, inhibition was associated with decreased translocation of CaMKKalpha to the nucleus. Finally, to further examine monocyte activation profiles, TNFalpha and IL-10 secretion were studied. CaMKKalpha inhibition attenuated PMA-dependent IL-10 production and enhanced TNFalpha production indicating a shift from type-II to classical monocyte activation. Taken together, these findings indicate an important new role for CaMKKalpha in the differentiation of monocytic cells.

  8. Phagocytic activity of monocytes, their subpopulations and granulocytes during post-transplant adverse events after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Döring, Michaela; Cabanillas Stanchi, Karin Melanie; Erbacher, Annika; Haufe, Susanne; Schwarze, Carl Philipp; Handgretinger, Rupert; Hofbeck, Michael; Kerst, Gunter

    2015-05-01

    Phagocytosis of granulocytes and monocytes presents a major mechanism that contributes to the clearance of pathogens and cell debris. We analyzed the phagocytic activity of the peripheral blood cell monocytes, three monocyte subpopulations and granulocytes before and up to one year after hematopoietic stem cell transplantation, as well as during transplant-related adverse events. 25 pediatric patients and young adults (median age of 11.0 years) with hemato-oncological malignancies and non malignancies were enrolled in the prospective study. Ingestion of fluorescence-labeled Escherichia coli bacteria was used to assess the phagocytic activity of monocytes and their subpopulations and granulocytes by means of flow cytometry in the patient group as well as in a control group (n=36). During sepsis, a significant increase of phagocytic activity of monocytes (P=0.0003) and a significant decrease of the phagocytic activity of granulocytes (P=0.0003) and the CD14+ CD16++ monocyte subpopulation (P=0.0020) occurred. At the onset of a veno-occlusive disease, a significant increase of phagocytic activity in the CD14++ CD16+ monocyte subpopulation (P=0.001) and a significant decrease in the phagocytic activity of the CD14++ CD16- monocyte subpopulation (P=0.0048) were observed. In conclusion, the phagocytic activity of monocytes, their subpopulations and granulocytes might be a useful and easy determinable parameter that enables identification of post-transplant complications after hematopoietic stem cell transplantation. The alterations of phagocytic activity contribute to the altered immune response that accompanies adverse events after hematopoietic stem cell transplantation.

  9. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  10. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-γ activation in human monocytes

    Science.gov (United States)

    Pang, Tao; Benicky, Julius; Wang, Juan; Orecna, Martina; Sanchez-Lemus, Enrique; Saavedra, Juan M.

    2011-01-01

    Objective Angiotensin II type 1 receptor (AT1) blockers (ARBs) reduce the bacterial endotoxin lipopolysaccharide (LPS)-induced innate immune response in human circulating monocytes expressing few AT1. To clarify the mechanisms of anti-inflammatory effects of ARBs with different peroxisome proliferator-activated receptor-γ (PPARγ)-activating potencies, we focused our study on telmisartan, an ARB with the highest PPARγ-stimulating activity. Methods Human circulating monocytes and monocytic THP-1 (human acute monocytic leukemia cell line) cells were exposed to 50 ng/ml LPS with or without pre-incubation with telmisartan. AT1 mRNA and protein expressions were determined by real-time PCR and membrane receptor binding assay, respectively. The expression of pro-inflammatory factors was determined by real-time PCR, western blot analysis and ELISA. PPARγ activation was measured by electrophoretic mobility shift assay and its role was determined by pharmacological inhibition and PPARγ gene silencing. Results In human monocytes, telmisartan significantly attenuated the LPS-induced expression of pro-inflammatory factors, the release of pro-inflammatory cytokines and prostaglandin E2, nuclear factor-κB activation and reactive oxygen species formation. In THP-1 cells, telmisartan significantly reduced LPS-induced tumor necrosis factor-α, inhibitor of κB-α, monocyte chemotactic protein-1 (MCP-1) and lectin-like oxidized low-density lipoprotein receptor-1 gene expression and MCP-1-directed migration. Telmisartan also stimulated the expression of the PPARγ target genes cluster of differentiation 36 and ATP-binding cassette subfamily G member 1 in monocytes. The anti-inflammatory effects of telmisartan were prevented by both PPARγ antagonism and PPARγ gene silencing. Anti-inflammatory effects of ARBs correlated with their PPARγ agonist potency. Conclusion Our observations demonstrate that in human monocytes, ARBs inhibit the LPS-induced pro-inflammatory response to a

  11. Intramedullary nailing of the femur and the systemic activation of monocytes and neutrophils

    Directory of Open Access Journals (Sweden)

    Koenderman Leo

    2011-10-01

    Full Text Available Abstract Background Trauma such as found patients with femur fractures, induces a systemic inflammatory response, which ranges from mild SIRS to ARDS. Neutrophils (i.e. PMN play an important role in the pathogenesis of this inflammatory condition. Additional activation of PMNs during intramedullary nailing (IMN is thought to act as a second immunological hit. Damage control orthopedics has been developed to limit this putative exacerbation of the inflammatory response. The hypothesis is tested that IMN exacerbates systemic inflammation, thereby increasing the risk for ARDS. Methods Thirty-eight trauma patients who required IMN for femur fracture were included. The development of SIRS and ARDS was recorded. Blood samples were taken prior and 18 hours after IMN. Inflammatory response was analyzed by changes in plasma IL-6 levels, monocyte (HLA-DR and PMN phenotype (MAC-1 and responsiveness for the innate immune stimulus fMLP in the context of active FcγRII. Results Plasma IL-6 was significantly enhanced in severely injured patients compared to patients with isolated femur fractures and matched controls (P = 0.005; P = 0.018. This enhanced inflammatory tone was associated with a lower percentage HLA-DR positive monocytes (P = 0.002. The systemic PMN compartment was activated, characterized by an increased MAC-1 expression and a significantly decreased sensitivity for the innate stimulus fMLP Interestingly the PMN compartment was not affected by IMN. Conclusions Multitrauma patients were characterized by a marked activation of the systemic inflammatory response, associated with a systemic activation of the monocyte and PMN compartments. IMN particularly affected the monocyte arm of the systemic innate immune system.

  12. Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice.

    Science.gov (United States)

    Ervinna, Nasib; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Tanaka, Rica; Fujimura, Satoshi; Sukmawati, Dewi; Nomiyama, Takashi; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2013-03-01

    Dipeptyl peptidase-4 (DPP-4) inhibitors modulate the progression of atherosclerosis. To gain insights into their mechanism of action, 9-wk-old male apolipoprotein E (apoE)-deficient mice were fed a DPP-4 inhibitor, anagliptin-containing diet. The effects of anagliptin were investigated in, a monocyte cell line, human THP-1 cells, and rat smooth muscle cells (SMCs). Treatment with anagliptin for 16 wk significantly reduced accumulation of monocytes and macrophages in the vascular wall, SMC content in plaque areas, and oil red O-stained area around the aortic valve without affecting glucose tolerance or body weight. Serum DPP-4 concentrations were significantly higher in apoE-deficient mice than control mice, and the levels increased with aging, suggesting the involvement of DPP-4 in the progression of atherosclerosis. Indeed, soluble DPP-4 augmented cultured SMC proliferation, and anagliptin suppressed the proliferation by inhibiting ERK phosphorylation. In THP-1 cells, anagliptin reduced lipopolysaccharide-induced TNF-α production with inhibiting ERK phosphorylation and nuclear translocation of nuclear factor-κB. Quantitative analysis also showed that anagliptin reduced the area of atherosclerotic lesion in apoE-deficient mice. These results indicated that the anti-atherosclerotic effect of anagliptin is mediated, at least in part, through its direct inhibition of SMC proliferation and inflammatory reaction of monocytes.

  13. Prostaglandin E2 suppresses beta1-integrin expression via E-prostanoid receptor in human monocytes/macrophages.

    Science.gov (United States)

    Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Active suppression after involuntary capture of attention.

    Science.gov (United States)

    Sawaki, Risa; Luck, Steven J

    2013-04-01

    After attention has been involuntarily captured by a distractor, how is it reoriented toward a target? One possibility is that attention to the distractor passively fades over time, allowing the target to become attended. Another possibility is that the captured location is actively suppressed so that attention can be directed toward the target location. The present study investigated this issue with event-related potentials (ERPs), focusing on the N2pc component (a neural measure of attentional deployment) and the Pd component (a neural measure of attentional suppression). Observers identified a color-defined target in a search array, which was preceded by a task-irrelevant cue array. When the cue array contained an item that matched the target color, this item captured attention (as measured both behaviorally and with the N2pc component). This capture of attention was followed by active suppression (indexed by the Pd component), and this was then followed by a reorienting of attention toward the target in the search array (indexed by the N2pc component). These findings indicate that the involuntary capture of attention by a distractor is followed by an active suppression process that presumably facilitates the subsequent voluntary orienting of attention to the target.

  15. Monocyte Differentiation towards Protumor Activity Does Not Correlate with M1 or M2 Phenotypes

    Directory of Open Access Journals (Sweden)

    G. Karina Chimal-Ramírez

    2016-01-01

    Full Text Available Macrophages facilitate breast cancer progression. Macrophages were initially classified as M1 or M2 based on their distinct metabolic programs and then expanded to include antitumoral (M1 and protumoral (M2 activities. However, it is still uncertain what markers define the pro- and antitumoral phenotypes and what conditions lead to their formation. In this study, monocytic cell lines and primary monocytes were subjected to commonly reported protocols of M1/M2 polarization and conditions known to engage monocytes into protumoral functions. The results showed that only IDO enzyme and CD86 M1 markers were upregulated correlating with M1 polarization. TNF-α, CCR7, IL-10, arginase I, CD36, and CD163 were expressed indistinguishably from M1 or M2 polarization. Similarly, protumoral engaging resulted in upregulation of both M1 and M2 markers, with conditioned media from the most aggressive breast cancer cell line promoting the greatest changes. In spite of the mixed phenotype, M1-polarized macrophages exhibited the highest expression/secretion of inflammatory mediators, many of which have previously been associated with breast cancer aggressiveness. These data argue that although the existence of protumoral macrophages is unquestionable, their associated phenotypes and the precise conditions driving their formation are still unclear, and those conditions may need both M1 and M2 stimuli.

  16. Monocyte Differentiation towards Protumor Activity Does Not Correlate with M1 or M2 Phenotypes

    Science.gov (United States)

    Chimal-Ramírez, G. Karina; Espinoza-Sánchez, Nancy Adriana; Chávez-Sánchez, Luis; Arriaga-Pizano, Lourdes

    2016-01-01

    Macrophages facilitate breast cancer progression. Macrophages were initially classified as M1 or M2 based on their distinct metabolic programs and then expanded to include antitumoral (M1) and protumoral (M2) activities. However, it is still uncertain what markers define the pro- and antitumoral phenotypes and what conditions lead to their formation. In this study, monocytic cell lines and primary monocytes were subjected to commonly reported protocols of M1/M2 polarization and conditions known to engage monocytes into protumoral functions. The results showed that only IDO enzyme and CD86 M1 markers were upregulated correlating with M1 polarization. TNF-α, CCR7, IL-10, arginase I, CD36, and CD163 were expressed indistinguishably from M1 or M2 polarization. Similarly, protumoral engaging resulted in upregulation of both M1 and M2 markers, with conditioned media from the most aggressive breast cancer cell line promoting the greatest changes. In spite of the mixed phenotype, M1-polarized macrophages exhibited the highest expression/secretion of inflammatory mediators, many of which have previously been associated with breast cancer aggressiveness. These data argue that although the existence of protumoral macrophages is unquestionable, their associated phenotypes and the precise conditions driving their formation are still unclear, and those conditions may need both M1 and M2 stimuli. PMID:27376091

  17. Monocyte procoagulant activity and plasminogen activator. Role in human renal allograft rejection

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.H.; Cardella, C.J.; Schulman, J.; Levy, G.A.

    1985-10-01

    Currently the mechanism of renal allograft rejection is not well understood. This study was designed to determine whether induction of monocyte procoagulant activity (MCPA) is important in the pathogenesis of renal allograft rejection. The MPCA assay was performed utilizing a one stage clotting assay both in normal and in factor-VII-deficient plasma. There was no increase in spontaneous MPCA in 20 patients with endstage renal failure and in 10 patients following abdominal or orthopedic operation, as compared with 20 normal controls. MPCA was assessed daily in 18 patients who had received renal allografts. Rejection episodes (RE) were predicted on the basis of persistent elevation in MPCA as compared with pretransplant levels. Rejection was diagnosed clinically and treated on the basis of standard criteria. Treated RE were compared with those predicted by elevated MPCA, and 3 patients were assessed as having no RE by MPCA and by standard criteria. In 8 RE, MPCA correlated temporally with RE (same day) when compared with standard criteria. In 12 RE, MPCA was predictive of rejection preceding standard criteria by at least 24 hr. There were 7 false-positive predictions on the basis of MPCA; however, there was only 1 false negative. MPCA was shown to be a prothrombinase by its dependence only on prothrombin and fibrinogen for full activity. MPCA may be important in the pathogenesis of allograft rejection, and additionally it may be a useful adjunct in the clinical management of this disease.

  18. Multiple dysfunctions in developmental and activational stages of T lymphocytes, B lymphocytes and monocytes in ARC and AIDS patients.

    Science.gov (United States)

    Sei, Y; Tsang, P H; Petrella, R J; Bekesi, J G

    1987-11-01

    Peripheral blood leukocytes from ARC and AIDS patients were examined before and after phytohemagglutinin (PHA) stimulation by dual color flow cytometry and monoclonal antibodies which identify developmental and activational stages of T lymphocytes, B cells and monocytes. There was a persistent elevation in the total number of circulating Ia+ lymphocytes with progressive selection for B1+ Ia+ lymphocytes and T suppressor cells and a concurrent reduction in the antigen-presenting monocytes. Following PHA stimulation there was a marked decrease in all subsets of Ia+ lymphocytes and monocytes. These results indicate (a) multicellular dysfunctions in the immunosurveillance mechanisms in AIDS, and (b) that many functional subsets of circulating lymphocytes and monocytes were already activated and therefore poorly responsive to additional antigenic or mitogenic stimuli.

  19. Inflammasome activation in bovine monocytes by extracellular ATP does not require the purinergic receptor P2X7.

    Science.gov (United States)

    Hussen, Jamal; Düvel, Anna; Koy, Mirja; Schuberth, Hans-Joachim

    2012-10-01

    Extracellular adenosine triphosphate (ATP) is a second signal for the assembly of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome, which form a framework to activate caspase 1, leading to the processing and secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β). The aim of the present study was to investigate the role of the ATP-gated ion channel subtype P2X7 receptor in the inflammasome activation of bovine monocytes. ATP-induced inflammasome assembly in bovine monocytes was shown by caspase-1 activation and the release of IL-1β by LPS/ATP-stimulated bovine cells. The IL-1β release depended on potassium efflux but was independent of reactive oxygen generation of bovine monocytes. Unlike in the human system, a P2X7 receptor antagonist did not block the ATP-induced release of IL-1β of LPS-primed bovine cells. P2X7 mediated pore formation was observed in subsets of bovine T lymphocytes (CD4+>CD8+) but not in monocytes. In addition, ATP and 2-MeSATP but not the high affinity P2X7 agonist BzATP induced calcium influx in bovine monocytes. The data indicate that ROS generation plays no role in the ATP-induced activation of inflammasome in bovine monocytes and that P2X7-mediated pore formation is not necessary for the release of Interleukin-1β.

  20. Suppressing IL-32 in monocytes impairs the induction of the proinflammatory cytokines TNFalpha and IL-1beta.

    Science.gov (United States)

    Hong, Jaewoo; Bae, Suyoung; Kang, Youngsun; Yoon, Doyoung; Bai, Xiyuan; Chan, Edward D; Azam, Tania; Dinarello, Charles A; Lee, Siyoung; Her, Erk; Rho, Gyujin; Kim, Soohyun

    2010-02-01

    Targeting major proinflammatory cytokines such as IL-1beta and TNFalpha is of great interest in patients with chronic inflammatory diseases, including rheumatoid arthritis, colitis, and psoriasis. The cytokine Interleukin (IL)-32 induces proinflammatory cytokines such as TNFalpha, IL-1beta, IL-6, and chemokines. We previously used an IL-32 ligand-affinity column to purify proteinase 3, which is abundantly expressed in neutrophil and monocytic leukocytes but not in other cell types, and found that IL-32 is mainly produced by monocytic leukocytes. This evidence suggested that silencing endogenous IL-32 by short hairpin RNA (shRNA) in monocytic cells might reveal the precise function of endogenous IL-32. Indeed, lipopolysaccharide (LPS)- or phorbol myristate acetate (PMA)-induced proinflammatory cytokine production was significantly inhibited in shRNA/IL-32 stable clones as compared to control clones. Furthermore, macrophages in PMA-differentiated shRNA/IL-32 stable clones displayed remarkably impaired LPS- and IL-1beta-induced proinflammatory cytokine production. These data suggest that IL-32 is not only involved in host defense against pathogens, but also might play a role in chronic inflammatory diseases. IL-32 production leads to major proinflammatory cytokine production during the initial immune response.

  1. LPS-activated monocytes are unresponsive to T4 phage and T4-generated Escherichia coli lysate

    Directory of Open Access Journals (Sweden)

    Katarzyna Bocian

    2016-08-01

    Full Text Available A growing body of data shows that bacteriophages can interact with different kinds of immune cells. The objective of this study was to investigate whether T4 bacteriophage and T4-generated Escherichia coli lysate affect functions of monocytes, the key population of immune cells involved in antibacterial immunity. To that end we evaluated how T4 and E. coli lysate influence the expression of main costimulatory molecules including CD40, CD80 and CD86, TLR2, TLR4 on monocytes, as well as the production of IL-6 and IL-12 in cultures of peripheral blood mononuclear cells (PBMCs. Separate experiments were performed on unactivated and LPS-activated PBMCs cultures. Both studied preparations significantly increased the percentage of CD14+CD16-CD40+ and CD14+CD16-CD80+ monocytes in unactivated PBMCs cultures, as well as the concentration of IL-6 and IL-12 in culture supernates. However, neither purified T4 nor E. coli lysate had any significant effect on monocytes in LPS-activated PBMCs cultures. We conclude that LPS-activated monocytes are unresponsive to phages and products of phage-induced lysis of bacteria. This study is highly relevant to phage therapy because it suggests that in patients with infections caused by Gram-negative bacteria the administration of phage preparations to patients and lysis of bacteria by phages are not likely to overly stimulate monocytes.

  2. Measuring Granulocyte and Monocyte Phagocytosis and Oxidative Burst Activity in Human Blood.

    Science.gov (United States)

    Meaney, Mary Pat; Nieman, David C; Henson, Dru A; Jiang, Qi; Wang, Fu-Zhang

    2016-09-12

    The granulocyte and monocyte phagocytosis and oxidative burst (OB) activity assay can be used to study the innate immune system. This manuscript provides the necessary methodology to add this assay to an exercise immunology arsenal. The first step in this assay is to prepare two aliquots ("H" and "F") of whole blood (heparin). Then, dihydroethidium is added to the H aliquot, and both aliquots are incubated in a warm water bath followed by a cold water bath. Next, Staphylococcus aureus (S. aureus) is added to the H aliquot and fluorescein isothiocyanate-labeled S. aureus is added to the F aliquot (bacteria:phagocyte = 8:1), and both aliquots are incubated in a warm water bath followed by a cold water bath. Then, trypan blue is added to each aliquot to quench extracellular fluorescence, and the cells are washed with phosphate-buffered saline. Next, the red blood cells are lysed, and the white blood cells are fixed. Finally, a flow cytometer and appropriate analysis software are used to measure granulocyte and monocyte phagocytosis and OB activity. This assay has been used for over 20 years. After heavy and prolonged exertion, athletes experience a significant but transient increase in phagocytosis and an extended decrease in OB activity. The post-exercise increase in phagocytosis is correlated with inflammation. In contrast to normal weight individuals, granulocyte and monocyte phagocytosis is chronically elevated in overweight and obese participants, and is modestly correlated with C-reactive protein. In summary, this flow cytometry-based assay measures the phagocytosis and OB activity of phagocytes and can be used as an additional measure of exercise- and obesity-induced inflammation.

  3. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant.

    Directory of Open Access Journals (Sweden)

    Martina Bauer

    Full Text Available Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs. In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs. Furthermore, monocytes accumulated DNA double-strand breaks (DSBs following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective

  4. Ability of Interleukin-33- and Immune Complex-Triggered Activation of Human Mast Cells to Down-Regulate Monocyte-Mediated Immune Responses.

    Science.gov (United States)

    Rivellese, Felice; Suurmond, Jolien; Habets, Kim; Dorjée, Annemarie L; Ramamoorthi, Nandhini; Townsend, Michael J; de Paulis, Amato; Marone, Gianni; Huizinga, Tom W J; Pitzalis, Costantino; Toes, René E M

    2015-09-01

    Mast cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). In particular, their activation by interleukin-33 (IL-33) has been linked to the development of arthritis in animal models. The aim of this study was to evaluate the functional responses of human mast cells to IL-33 in the context of RA. Human mast cells were stimulated with IL-33 combined with plate-bound IgG or IgG anti-citrullinated protein antibodies (ACPAs), and their effects on monocyte activation were evaluated. Cellular interactions of mast cells in RA synovium were assessed by immunofluorescence analysis, and the expression of messenger RNA (mRNA) for mast cell-specific genes was evaluated in synovial biopsy tissue from patients with early RA who were naive to treatment with disease-modifying antirheumatic drugs. IL-33 induced the up-regulation of Fcγ receptor type IIa and enhanced the activation of mast cells by IgG, including IgG ACPAs, as indicated by the production of CXCL8/IL-8. Intriguingly, mast cell activation triggered with IL-33 and IgG led to the release of mediators such as histamine and IL-10, which inhibited monocyte activation. Synovial mast cells were found in contact with CD14+ monocyte/macrophages. Finally, mRNA levels of mast cell-specific genes were inversely associated with disease severity, and IL-33 mRNA levels showed an inverse correlation with the levels of proinflammatory markers. When human mast cells are activated by IL-33, an immunomodulatory phenotype develops, with human mast cells gaining the ability to suppress monocyte activation via the release of IL-10 and histamine. These findings, together with the presence of synovial mast cell-monocyte interactions and the inverse association between the expression of mast cell genes at the synovial level and disease activity, suggest that these newly described mast cell-mediated inhibitory pathways might have a functional relevance in the pathogenesis of RA. © 2015, American College of Rheumatology.

  5. Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D sub 3 during monocytic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, D.H.; Raynal, M.C.; Tejwani, G.A.; Cayre, Y.E. (Cornell Univ. Graduate School of Medical Sciences, New York, NY (USA))

    1988-09-01

    Cells from the human leukemia cell line HL-60 undergo terminal monocyte-like differentiation after exposure to either the active circulating form of vitamin D{sub 3}, 1,25-dihydroxyvitamin D{sub 3} (1,25-(OH){sub 2}D{sub 3}), or phorbol 12-myristate 13-acetate. Little is known about the genes that regulate monocytic differentiation. Using clonal variant cells of HL-60 origin, the authors constructed a cDNA library enriched for genes that are induced by 1,25-(OH){sub 2}D{sub 3}. They report that in HL-60, the fructose 1,6-bisphosphatase gene is activated during 1,25-(OH){sub 2}D{sub 3}-induced monocytic differentiation. This gene encodes two closely related mRNAs; one, activated by 1,25-(OH){sub 2}D{sub 3} at an early stage of HL-60 differentiation, encodes a protein that has homology to mammalian FBPase, a key enzyme in gluconeogenesis, although it does not exhibit its classical enzymatic activity. A second mRNA is activated by 1,25-(OH){sub 2}D{sub 3} mainly in peripheral blood monocytes. This mRNA is present in kidney as a unique transcript and encodes a protein with FBPase activity. The data also show that this FBPase-encoding mRNA can be activated during monocytic maturation since it was detected in human alveolar macrophages.

  6. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    Directory of Open Access Journals (Sweden)

    Svensson S

    2014-02-01

    Full Text Available Sara Svensson,1,2 Magnus Forsberg,1,2 Mats Hulander,1,2 Forugh Vazirisani,1,2 Anders Palmquist,1,2 Jukka Lausmaa,2,3 Peter Thomsen,1,2 Margarita Trobos1,21Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 2BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; 3SP Technical Research Institute of Sweden, Borås, SwedenAbstract: The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth

  7. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment.

    Science.gov (United States)

    Clark, R A; Wikner, N E; Doherty, D E; Norris, D A

    1988-08-25

    Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell

  8. Functional activity of monocytes and macrophages in HTLV-1 infected subjects.

    Directory of Open Access Journals (Sweden)

    Camila F Amorim

    2014-12-01

    Full Text Available The Human T lymphotropic virus type-1 (HTLV-1 infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC, 22 HAM/TSP patients and 22 healthy subjects (HS not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-γ and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the

  9. Associations between Cognition, Gender and Monocyte Activation among HIV Infected Individuals in Nigeria.

    Science.gov (United States)

    Royal, Walter; Cherner, Mariana; Burdo, Tricia H; Umlauf, Anya; Letendre, Scott L; Jumare, Jibreel; Abimiku, Alash'le; Alabi, Peter; Alkali, Nura; Bwala, Sunday; Okwuasaba, Kanayo; Eyzaguirre, Lindsay M; Akolo, Christopher; Guo, Ming; Williams, Kenneth C; Blattner, William A

    2016-01-01

    The potential role of gender in the occurrence of HIV-related neurocognitive impairment (NCI) and associations with markers of HIV-related immune activity has not been previously examined. In this study 149 antiretroviral-naïve seropositive subjects in Nigeria (SP, 92 women and 57 men) and 58 seronegative (SN, 38 women and 20 men) were administered neuropsychological testing that assessed 7 ability domains. From the neuropsychological test scores was calculated a global deficit score (GDS), a measure of overall NCI. Percentages of circulating monocytes and plasma HIV RNA, soluble CD163 and soluble CD14 levels were also assessed. HIV SP women were found to be younger, more educated and had higher CD4+ T cell counts and borderline higher viral load measures than SP men. On the neuropsychological testing, SP women were more impaired in speed of information processing and verbal fluency and had a higher mean GDS than SN women. Compared to SP men, SP women were also more impaired in speed of information processing and verbal fluency as well as on tests of learning and memory. Numbers of circulating monocytes and plasma sCD14 and sCD163 levels were significantly higher for all SP versus all SN individuals and were also higher for SP women and for SP men versus their SN counterparts. Among SP women, soluble CD14 levels were slightly higher than for SP men, and SP women had higher viral load measurements and were more likely to have detectable virus than SP men. Higher sCD14 levels among SP women correlated with more severe global impairment, and higher viral load measurements correlated with higher monocyte numbers and sCD14 and sCD14 levels, associations that were not observed for SP men. These studies suggest that the risk of developing NCI differ for HIV infected women and men in Nigeria and, for women, may be linked to effects from higher plasma levels of HIV driving activation of circulating monocytes.

  10. Associations between Cognition, Gender and Monocyte Activation among HIV Infected Individuals in Nigeria.

    Directory of Open Access Journals (Sweden)

    Walter Royal

    Full Text Available The potential role of gender in the occurrence of HIV-related neurocognitive impairment (NCI and associations with markers of HIV-related immune activity has not been previously examined. In this study 149 antiretroviral-naïve seropositive subjects in Nigeria (SP, 92 women and 57 men and 58 seronegative (SN, 38 women and 20 men were administered neuropsychological testing that assessed 7 ability domains. From the neuropsychological test scores was calculated a global deficit score (GDS, a measure of overall NCI. Percentages of circulating monocytes and plasma HIV RNA, soluble CD163 and soluble CD14 levels were also assessed. HIV SP women were found to be younger, more educated and had higher CD4+ T cell counts and borderline higher viral load measures than SP men. On the neuropsychological testing, SP women were more impaired in speed of information processing and verbal fluency and had a higher mean GDS than SN women. Compared to SP men, SP women were also more impaired in speed of information processing and verbal fluency as well as on tests of learning and memory. Numbers of circulating monocytes and plasma sCD14 and sCD163 levels were significantly higher for all SP versus all SN individuals and were also higher for SP women and for SP men versus their SN counterparts. Among SP women, soluble CD14 levels were slightly higher than for SP men, and SP women had higher viral load measurements and were more likely to have detectable virus than SP men. Higher sCD14 levels among SP women correlated with more severe global impairment, and higher viral load measurements correlated with higher monocyte numbers and sCD14 and sCD14 levels, associations that were not observed for SP men. These studies suggest that the risk of developing NCI differ for HIV infected women and men in Nigeria and, for women, may be linked to effects from higher plasma levels of HIV driving activation of circulating monocytes.

  11. Bryostatin 5 induces apoptosis in acute monocytic leukemia cells by activating PUMA and caspases.

    Science.gov (United States)

    Wang, Yiwei; Zhang, Jinbao; Wang, Qixia; Zhang, Tao; Yang, Yang; Yi, Yanghua; Gao, Guangxun; Dong, Hongjuan; Zhu, Huafeng; Li, Yue; Lin, Houwen; Tang, Haifeng; Chen, Xiequn

    2013-10-15

    Acute leukemia is a malignant clonal hematopoietic stem cell disease. In the current study, we examined the effects of bryostatin 5 on acute monocytic leukemia cells in vitro and in vivo. We also explored the mechanisms and pathways underlying the increase in apoptosis induced by bryostatin 5. Bryostatin 5 inhibited the growth of primary acute monocytic leukemia cells and U937 cells in a dose- and time-dependent manners. Bryostatin 5 also induced an increase in apoptosis and a decrease in the mitochondrial membrane potential (MMP) in U937 cells. Transmission electron microscopy (TEM) revealed that bryostatin 5-treated cells displayed typical apoptotic characteristics (chromatin condensation, karyopyknosis and formation of crescents and apoptotic bodies). In addition, bryostatin 5 increased the expression of P53 upregulated modulator of apoptosis (PUMA) and slightly increased P53 expression. Bryostatin 5 also significantly decreased Bcl-XL expression and significantly increased the expression levels of Bak, Bax, cleaved caspase 9 and cleaved caspase 3. The pro-apoptotic activity of bryostatin 5 in U937 cells was inhibited by PUMA siRNA and z-LEHD-fmk (a specific caspase 9 inhibitor). In addition, the PUMA siRNA significantly affected the expression of cleaved caspase 9, whereas z-LEHD-fmk had little effect on the expression of PUMA. The results suggest that PUMA is located upstream of caspase 9 in this apoptotic signaling pathway. These novel findings provide mechanistic insight into the induction of apoptosis by bryostatin 5 and might facilitate the development of clinical strategies to enhance the therapeutic efficacy of treatments for acute monocytic leukemia. © 2013 Elsevier B.V. All rights reserved.

  12. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    Science.gov (United States)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  13. Suppression of Ostwald ripening in active emulsions

    Science.gov (United States)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  14. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  15. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis.

    Science.gov (United States)

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-09-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells.

  16. Differential Regulation of Proinflammatory Mediators following LPS- and ATP-Induced Activation of Monocytes from Patients with Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    Anush Martirosyan

    2015-01-01

    Full Text Available Antiphospholipid syndrome (APS is an acquired autoimmune disorder characterized by recurrent thrombosis and pregnancy morbidity in association with the presence of antiphospholipid antibodies. Growing evidence supports the involvement of monocytes in APS pathogenesis. Inflammatory activation of monocytes promotes thrombus formation and other APS complications. However, mechanisms underlying their activation are poorly investigated. We aimed to determine transcriptional activity of monocytes after exposing them to low concentrations of lipopolysaccharide (LPS and LPS + adenosine triphosphate (ATP using comparative qRT-PCR. The results showed that LPS significantly increased transcriptional levels of TLR2, IL-23, CCL2, CXCL10, IL-1β, and IL-6 in APS cells, while, in cells from healthy donors, LPS resulted in IL-6 and STAT3 elevated mRNAs. Double stimulation of the cells resulted in decreased mRNA levels of NLRP3 in monocytes isolated from healthy donors and CCL2, IL-1β in APS cells. By contrast, TLR2 mRNAs were elevated in both investigated groups after culture of the cells with LPS + ATP. Thus, the findings indicate increased sensitivity of APS cells to LPS that may contribute to thrombus formation and enhance development or progression of autoimmune processes. Low concentrations of ATP diminish LPS-induced inflammatory state of APS monocytes which might be a potential mechanism which regulates inflammatory state of the cells.

  17. Dynamical optical imaging monocytes/macrophages migration and activation in contact hypersensitivity (Conference Presentation)

    Science.gov (United States)

    Zhang, Zhihong

    2017-02-01

    Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.

  18. Mactinin, a fragment of cytoskeletal α-actinin, is a novel inducer of heat shock protein (Hsp-90 mediated monocyte activation

    Directory of Open Access Journals (Sweden)

    Perri Robert T

    2009-08-01

    Full Text Available Abstract Background Monocytes, their progeny such as dendritic cells and osteoclasts and products including tumor necrosis factor (TNF-α, interleukin (IL-1α and IL-1β play important roles in cancer, inflammation, immune response and atherosclerosis. We previously showed that mactinin, a degradative fragment of the cytoskeletal protein α-actinin, is present at sites of monocytic activation in vivo, has chemotactic activity for monocytes and promotes monocyte/macrophage maturation. We therefore sought to determine the mechanism by which mactinin stimulates monocytes. Results Radiolabeled mactinin bound to a heterocomplex on monocytes comprised of at least 3 proteins of molecular weight 88 kD, 79 kD and 68 kD. Affinity purification, mass spectroscopy and Western immunoblotting identified heat shock protein (Hsp-90 as the 88 kD component of this complex. Hsp90 was responsible for mediating the functional effects of mactinin on monocytes, since Hsp90 inhibitors (geldanamycin and its analogues 17-allylamino-17-demethoxygeldanamycin [17-AAG] and 17-(dimethylaminoethylamino-17-demethoxygeldanamycin [17-DMAG] almost completely abrogated the stimulatory activity of mactinin on monocytes (production of the pro-inflammatory cytokines IL-1α, IL-1β and TNF-α, as well as monocyte chemotaxis. Conclusion Mactinin is a novel inducer of Hsp90 activity on monocytes and may serve to perpetuate and augment monocytic activation, thereby functioning as a "matrikine." Blockage of this function of mactinin may be useful in diseases where monocyte/macrophage activation and/or Hsp90 activity are detrimental.

  19. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage.

    Science.gov (United States)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in -738 bp ∼  -723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies.

  20. Retinoblastoma protein induction by HIV viremia or CCR5 in monocytes exposed to HIV-1 mediates protection from activation-induced apoptosis: ex vivo and in vitro study.

    Science.gov (United States)

    Gekonge, Bethsebah; Raymond, Andrea D; Yin, Xiangfan; Kostman, Jay; Mounzer, Karam; Collman, Ronald G; Showe, Louise; Montaner, Luis J

    2012-08-01

    We have previously described an antiapoptotic steady-state gene expression profile in circulating human monocytes from asymptomatic viremic HIV(+) donors, but the mechanism associated with this apoptosis resistance remains to be fully elucidated. Here, we show that Rb1 activation is a dominant feature of apoptosis resistance in monocytes exposed to HIV-1 in vivo (as measured ex vivo) and in vitro. Monocytes from asymptomatic viremic HIV(+) individuals show a positive correlation between levels of hypophosphorylated (active) Rb1 and VL in conjunction with increases in other p53-inducible proteins associated with antiapoptosis regulation, such as p21 and PAI-1 (SERPINE1), when compared with circulating monocytes from uninfected donors. Monocytes exposed in vitro to HIV-1 R5 isolates but not X4 isolates showed lower caspase-3 activation after apoptosis induction, indicating a role for the CCR5 signaling pathway. Moreover, monocytes exposed to R5 HIV-1 or MIP-1 β induced Rb1 and p21 expression and an accumulation of autophagy markers, LC3 and Beclin. The inhibition of Rb1 activity in HIV-1 R5 viral-exposed monocytes using siRNA led to increased apoptosis sensitivity, thereby confirming a central role for Rb1 in the antiapoptotic phenotype. Our data identify Rb1 induction in chronic asymptomatic HIV-1 infection as a mediator of apoptosis resistance in monocytes in association with protective autophagy and contributing to monocyte survival during immune activation and/or HIV-1 viremia.

  1. Caspase-8 Activation Precedes Alterations of Mitochondrial Membrane Potential during Monocyte Apoptosis Induced by Phagocytosis and Killing of Staphylococcus aureus

    Science.gov (United States)

    Węglarczyk, Kazimierz; Baran, Jarosław; Zembala, Marek; Pryjma, Juliusz

    2004-01-01

    Human peripheral blood monocytes become apoptotic following phagocytosis and killing of Staphylococcus aureus. Although this type of monocyte apoptosis is known to be initiated by Fas-Fas ligand (FasL) interactions, the downstream signaling pathway has not been determined. In this work the involvement of mitochondria and the kinetics of caspase-8 and caspase-3 activation after phagocytosis of S. aureus were studied. Caspase-8 activity was measured in cell lysates by using the fluorogenic substrate Ac-IETD-AFC. Active caspase-3 levels and mitochondrial membrane potential (Δψm) were measured in whole cells by flow cytometry using monoclonal antibodies reacting with activated caspase-3 and chloromethyl-X-rosamine, respectively. The results show that caspase-8 was activated shortly after phagocytosis of bacteria. Caspase-8 activation was followed by progressive disruption of Δψm, which is associated with the production of reactive oxygen intermediates. The irreversible caspase-8 inhibitor zIETD-FMK prevented the disruption of Δψm and the release of cytochrome c from S. aureus-exposed monocytes. Caspase-3 activation occurred following disruption of Δψm. These results strongly suggest that apoptosis of monocytes that have phagocytosed and killed S. aureus is driven by the Fas-FasL-initiated pathway, which is typical for type II cells. PMID:15102767

  2. Eigenspace design techniques for active flutter suppression

    Science.gov (United States)

    Garrard, W. L.; Liebst, B. S.

    1984-01-01

    The application of eigenspace design techniques to an active flutter suppression system for the DAST ARW-2 research drone is examined. Eigenspace design techniques allow the control system designer to determine feedback gains which place controllable eigenvalues in specified configurations and which shape eigenvectors to achieve desired dynamic response. Eigenspace techniques were applied to the control of lateral and longitudinal dynamic response of aircraft. However, little was published on the application of eigenspace techniques to aeroelastic control problems. This discussion will focus primarily on methodology for design of full-state and limited-state (output) feedback controllers. Most of the states in aeroelastic control problems are not directly measurable, and some type of dynamic compensator is necessary to convert sensor outputs to control inputs. Compensator design are accomplished by use of a Kalman filter modified if necessary by the Doyle-Stein procedure for full-state loop transfer function recovery, by some other type of observer, or by transfer function matching.

  3. Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells.

    Science.gov (United States)

    Tan, Grace Min Yi; Looi, Chung Yeng; Fernandez, Keith Conrad; Vadivelu, Jamuna; Loke, Mun Fai; Wong, Won Fen

    2015-06-16

    Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.

  4. Recombinant glycoprotein 63 (Gp63) of Trypanosoma carassii suppresses antimicrobial responses of goldfish (Carassius auratus L.) monocytes and macrophages.

    Science.gov (United States)

    Oladiran, Ayoola; Belosevic, Miodrag

    2012-06-01

    We previously reported that proteins secreted by Trypanosoma carassii play a role in evasion of fish host immune responses. To further understand how these parasites survive in the host, we cloned and expressed T. carassii glycoprotein 63 (Tcagp63), and generated a rabbit polyclonal antibody to the recombinant protein (rTcagp63). Tcagp63 was similar to gp63 of other trypanosomes and grouped with Trypanosoma cruzi and Trypanosoma brucei gp63 in phylogenetic analysis. We showed that rTcagp63 down-regulated Aeromonas salmonicida and recombinant goldfish TNFα2-induced production of reactive oxygen and nitrogen intermediates. Macrophages treated with rTcagp63 also exhibited significant reduction in the expression of inducible nitric oxide synthase (iNOS)-A, TNFα-1 and TNFα-2. Recombinant Tcagp63 bound to and was internalised by goldfish macrophages. The Tcagp63 may act by altering the signalling events important in downstream monocyte/macrophage antimicrobial and other cytokine-induced functions. We believe that this is the first report on downregulation of antimicrobial responses by trypanosome gp63.

  5. Soluble CD163 masks fibronectin-binding protein A-mediated inflammatory activation of Staphylococcus aureus infected monocytes.

    Science.gov (United States)

    Kneidl, Jessica; Mysore, Vijayashree; Geraci, Jennifer; Tuchscherr, Lorena; Löffler, Bettina; Holzinger, Dirk; Roth, Johannes; Barczyk-Kahlert, Katarzyna

    2014-03-01

    Binding to fibronectin (FN) is a crucial pathogenic factor of Staphylococcus aureus mediated by fibronectin-binding protein A (FnBP-A) and extracellular adherence protein (Eap). Recently, we have shown that binding of soluble CD163 (sCD163) to FN linked to these molecules exhibits anti-microbial effects by enhancing phagocytosis and killing activity of S. aureus-infected monocytes. However, it remained unclear whether sCD163 also influences the monocytic activation status. Using genetically modified staphylococcal strains we now identified FnBP-A, but not Eap, as activator of the inflammatory response of monocytes to infection. FnBP-A-mediated inflammatory activation was masked by sCD163 binding to S. aureus promoting efficient pathogen elimination. Thus, sCD163 protects monocytes from overwhelming activation upon staphylococcal infection by dampening the secretion of pro-inflammatory cytokines TNFα, IL-1β, IL-6 and IL-8 and DAMP molecule MRP8/14. Moreover, sCD163 limited expression of pro-apoptotic transcription factor NR4A1 induced during S. aureus infection and inhibited induction of chemokine CXCL2promoting survival of staphylococci in vivo. sCD163-mediated effects were not due to general immunosuppression since MAP kinase activation and ROS production were unaltered during infection of monocytes with sCD163-bound bacteria. Thus, sCD163 promotes a specific defence of the immune system against FnBP-A-mediated inflammatory activation enabling successful pathogen elimination, tissue recovery and resolution of inflammation.

  6. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  7. Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells.

    Science.gov (United States)

    Liu, Jun; Simmons, Steve O; Pei, Ruoting

    2014-01-01

    Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.

  8. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    Energy Technology Data Exchange (ETDEWEB)

    Prach, Morag [Edinburgh Napier University, School of Life, Sport and Social Science, Edinburgh (United Kingdom); Stone, Vicki [Heriot-Watt University, School of Life Sciences, Edinburgh (United Kingdom); Proudfoot, Lorna, E-mail: l.proudfoot@napier.ac.uk [Edinburgh Napier University, School of Life, Sport and Social Science, Edinburgh (United Kingdom)

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form (< 44 μm mesh) and a positive charge enhanced cytotoxicity of the NP despite their relatively high dissolution. A positive charge of the particles has been shown in other studies to have an influence on cell viability. Centrifugal filtration using a cut off of 5 kDa and Zn element analysis by atomic absorption spectroscopy confirmed that exposure of the ZnO particles and NP to 10% foetal bovine serum resulted in a strong association of the Zn{sup 2+} ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.

  9. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria.

    Directory of Open Access Journals (Sweden)

    Caroline Lin Lin Chua

    Full Text Available In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163 is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03 and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004 and in placental blood (r = -0.259, p = 0.0001. These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.

  10. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation.

    Science.gov (United States)

    Blanchet, Marie-Renée; Israël-Assayag, Evelyne; Daleau, Pascal; Beaulieu, Marie-Josée; Cormier, Yvon

    2006-10-01

    Activation of nicotinic acetylcholine receptors (nAChRs) on inflammatory cells induces anti-inflammatory effects. The intracellular mechanisms that regulate this effect are still poorly understood. In neuronal cells, nAChRs are associated with phosphatidylinositol 3-kinase (PI3K). This enzyme, which can activate phospholipase C (PLC), is also present in monocytes. The aim of this study was to assess the role of these proteins in the signaling pathways involved in the anti-inflammatory effect of dimethylphenylpiperazinium (DMPP), a synthetic nAChR agonist, on monocytes and macrophages. The results indicate that PI3K is associated with alpha3, -4, and -5 nAChR subunits in monocytes. The PI3K inhibitors wortmannin and LY294002 abrogated the inhibitory effect of DMPP on LPS-induced TNF release by monocytes. Treatment with DMPP for 24 and 48 h provoked a mild PLC phosphorylation, which was blocked by the nAChR antagonist mecamylamine and reversed by PI3K inhibitors. Treatment of monocytes and alveolar macrophages with DMPP reduced the inositol 1,4,5-trisphosphate (IP3)-dependent intracellular calcium mobilization induced by platelet-activating factor (PAF), an effect that was reversed by mecamylamine in alveolar macrophages. DMPP did not have any effect on PAF receptor expression. DMPP also inhibited the thapsigargin-provoked calcium release, indicating that the endoplasmic reticulum calcium stores might be depleted by treatment with the nAChR agonist. Taken together, these results suggest that PI3K and PLC activation is involved in the anti-inflammatory effect of DMPP. PLC limited, but constant activation could induce, the depletion of intracellular calcium stores, leading to the anti-inflammatory effect of DMPP.

  11. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway.

    Science.gov (United States)

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-04-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.

  12. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  13. Monocyte-Derived Suppressor Cells in Transplantation.

    Science.gov (United States)

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  14. Leptospira interrogans activation of peripheral blood monocyte glycolipoprotein demonstrated in whole blood by the release of IL-6

    Directory of Open Access Journals (Sweden)

    F. Dorigatti

    2005-06-01

    Full Text Available Glycolipoprotein (GLP from pathogenic serovars of Leptospira has been implicated in the pathogenesis of leptospirosis by its presence in tissues of experimental animals with leptospirosis, the inhibition of the Na,K-ATPase pump activity, and induced production of cytokines. The aims of the present study were to investigate the induction of IL-6 by GLP in peripheral blood mononuclear cells (PBMC and to demonstrate monocyte stimulation at the cellular level in whole blood from healthy volunteers. PBMC were stimulated with increasing concentrations (5 to 2500 ng/ml of GLP extracted from the pathogenic L. interrogans serovar Copenhageni, lipopolysaccharide (positive control or medium (negative control, and supernatants were collected after 6, 20/24, and 48 h, and kept at -80ºC until use. Whole blood was diluted 1:1 in RPMI medium and cultivated for 6 h, with medium, GLP and lipopolysaccharide as described above. Monensin was added after the first hour of culture. Supernatant cytokine levels from PBMC were measured by ELISA and intracellular IL-6 was detected in monocytes in whole blood cultures by flow-cytometry. Monocytes were identified in whole blood on the basis of forward versus side scatter parameters and positive reactions with CD45 and CD14 antibodies. GLP ( > or = 50 ng/ml-induced IL-6 levels in supernatants were detected after 6-h incubation, reaching a peak after 20/24 h. The percentage of monocytes staining for IL-6 increased with increasing GLP concentration. Thus, our findings show a GLP-induced cellular activation by demonstrating the ability of GLP to induce IL-6 and the occurrence of monocyte activation in whole blood at the cellular level.

  15. Intracellular reactive oxygen species in monocytes generated by photosensitive chromophores activated with blue light.

    Science.gov (United States)

    Bouillaguet, Serge; Owen, Brandi; Wataha, John C; Campo, Marino A; Lange, Norbert; Schrenzel, Jacques

    2008-08-01

    Disinfection of the tooth pulp-canal system is imperative to successful endodontic therapy. Yet, studies suggest that 30-50% of current endodontic treatments fail from residual bacterial infection. Photodynamic therapy using red-light chromophores (630 nm) to induce antimicrobial death mediated by generated reactive oxygen species (ROS) has been reported, but red-light also may thermally damage resident tissues. In the current study, we tested the hypothesis that several blue light chromophores (380-500 nm) generate intracellular reactive oxygen species but are not cytotoxic to mammalian cells. THP1 monocytes were exposed to 10 microM of four chromophores (chlorin e6, pheophorbide-a, pheophorbide-a-PLL, and riboflavin) for 30 min before activation with blue light (27J/cm(2), 60s). After activation, intracellular ROS were measured using a dihydrofluorescein diacetate technique, and cytotoxicity was determined by measuring mitochondrial activity with the MTT method. All photosensitizers produced intracellular ROS levels that were dependent on both the presence of the photosensitizer and blue light exposure. Riboflavin and pheophorbide-a-PLL produced the highest levels of ROS. Photosensitizers except riboflavin exhibited cytotoxicity above 10 microM, and all except pheophorbide-a-PLL were more cytotoxic after blue light irradiation. The current study demonstrated the possible utility of blue light chromophores as producers of ROS that would be useful for endodontic disinfection.

  16. Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes.

    Science.gov (United States)

    Ting, S R Simon; Whitelock, John M; Tomic, Romana; Gunawan, Cindy; Teoh, Wey Yang; Amal, Rose; Lord, Megan S

    2013-06-01

    Cerium oxide nanoparticles (nanoceria) are effective in scavenging intracellular reactive oxygen species (ROS). In this study nanoceria synthesized by flame spray pyrolysis (dXRD = 12 nm) were functionalised with heparin via an organosilane linker, 3-aminopropyltriethoxysilane. Nanoceria were functionalised with approximately 130 heparin molecules per nanoparticle as determined by thermo gravimetric analysis. Heparin functionalised nanoceria were more effectively internalised by the human monocyte cell line, U937, and U937 cells that had been activated with phorbol 12 myristate 13-acetate (PMA) than bare nanoceria. The heparin functionalised nanoceria were also more effective in scavenging ROS than nanoceria in both activated and unactivated U937 cells. Heparin coupled nanoceria were found to be biologically active due to their ability to bind fibroblast growth factor 2 and signal through FGF receptor 1. Additionally, the heparin-coupled nanoceria, once internalised by the cells, were found to be degraded by 48 h. Together these data demonstrated that heparin enhanced the biological properties of nanoceria in terms of cellular uptake and ROS scavenging, while the nanoceria themselves were more effective at delivering heparin intracellularly than exposing cells to heparin in solution.

  17. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages[S

    Science.gov (United States)

    L'homme, Laurent; Esser, Nathalie; Riva, Laura; Scheen, André; Paquot, Nicolas; Piette, Jacques; Legrand-Poels, Sylvie

    2013-01-01

    The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases. PMID:24006511

  18. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages

    Directory of Open Access Journals (Sweden)

    Mariani Francesca

    2010-11-01

    Full Text Available Abstract Background In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI, mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP, in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. Methods Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. Results We have found that: 1 system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2 on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3 in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4 GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5 general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. Conclusions Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the

  19. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Zhang

    Full Text Available BACKGROUND: Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages. METHODOLOGY/PRINCIPAL FINDINGS: The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT carriers and 78 immune activated (IA patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16(+ subsets, which were closely associated with serum alanine aminotransferase (ALT levels and the liver histological activity index (HAI scores. In addition, the increased CD16(+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16(- monocytes/macrophages. Furthermore, peripheral blood CD16(+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores. CONCLUSIONS: These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.

  20. Differential effect of methotrexate on the increased CCR2 density on circulating CD4 T lymphocytes and monocytes in active chronic rheumatoid arthritis, with a down regulation only on monocytes in responders

    DEFF Research Database (Denmark)

    Ellingsen, T; Hornung, N; Møller, B K;

    2007-01-01

    arthritis. METHODS: All 34 patients with rheumatoid arthritis fulfilled the 1987 American Rheumatism Association criteria and were followed for 16 weeks after starting MTX. Peripheral blood mononuclear cells were analysed for CCR2 and CXCR3 density by three-colour flow cytometry before initiation of MTX...... and at week 12. RESULTS: 22 (65%) patients were non-responders, 12 (35%) patients responded to MTX by American College of Rheumatology (ACR)20% criteria, and 8 (24%) of these patients responded by ACR50%. In patients with active rheumatoid arthritis before starting MTX, CCR2 density on circulating monocytes......: Active chronic rheumatoid arthritis is characterised by enhanced CCR2 density on circulating monocytes and CD4(+) CXCR3(+) and CD4(+) CXCR3(-) T lymphocytes. During MTX treatment, a decrease in CCR2 density on monocytes in the ACR50% responder group was associated with decreased disease activity...

  1. Differential effect of methotrexate on the increased CCR2 density on circulating CD4 T lymphocytes and monocytes in active chronic rheumatoid arthritis, with a down regulation only on monocytes in responders

    DEFF Research Database (Denmark)

    Ellingsen, T; Hornung, N; Møller, B K

    2007-01-01

    : Active chronic rheumatoid arthritis is characterised by enhanced CCR2 density on circulating monocytes and CD4(+) CXCR3(+) and CD4(+) CXCR3(-) T lymphocytes. During MTX treatment, a decrease in CCR2 density on monocytes in the ACR50% responder group was associated with decreased disease activity...... arthritis. METHODS: All 34 patients with rheumatoid arthritis fulfilled the 1987 American Rheumatism Association criteria and were followed for 16 weeks after starting MTX. Peripheral blood mononuclear cells were analysed for CCR2 and CXCR3 density by three-colour flow cytometry before initiation of MTX...... and at week 12. RESULTS: 22 (65%) patients were non-responders, 12 (35%) patients responded to MTX by American College of Rheumatology (ACR)20% criteria, and 8 (24%) of these patients responded by ACR50%. In patients with active rheumatoid arthritis before starting MTX, CCR2 density on circulating monocytes...

  2. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  3. Nanoporosity of Alumina Surfaces Induces Different Patterns of Activation in Adhering Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Natalia Ferraz

    2010-01-01

    Full Text Available The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology, and release of proinflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology, and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells were found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants.

  4. Lactic acid delays the inflammatory response of human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Katrin, E-mail: katrin.peter@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Rehli, Michael, E-mail: michael.rehli@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Singer, Katrin, E-mail: katrin.singer@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Renner-Sattler, Kathrin, E-mail: kathrin.renner-sattler@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Kreutz, Marina, E-mail: marina.kreutz@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany)

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.

  5. Urinary monocyte chemoattractant protein-1 as a biomarker of lupus nephritis activity in children.

    Science.gov (United States)

    Ghobrial, Emad E; El Hamshary, Azza A; Mohamed, Ashraf G; Abd El Raheim, Yomna A; Talaat, Ahmed A

    2015-01-01

    Systemic lupus erythematosus (SLE) is a life-long, life-limiting and multi-systemic autoimmune disease. Glomerulonephritis is one of the most serious manifestations of SLE. Younger children have an increased incidence, severity and morbidity of lupus nephritis (LN) compared with adult-onset disease. Monocyte chemoattractant protein-1 (MCP-1) enhances leukocyte adhesiveness and endothelial permeability in the kidneys of murine and human LN models. Our study aimed to assess the role of urinary MCP-1 in the early diagnosis of LN activity. Sixty children, of whom 45 children aged from six to 12 years old and of both sexes (15 SLE patients without nephritis, 15 active LN and 15 inactive LN) fulfilling the American College of Rheumatology Classification Criteria for SLE were studied in comparison with 15 healthy subjects. We investigated the serum and urinary MCP-1 in all groups using the enzyme-linked immunosorbent assay test. Urinary MCP-1 was significantly higher in active LN in comparison with inactive LN and controls, and also significantly higher in inactive LN in comparison with SLE without nephritis and controls. There was also a significant difference between SLE without nephritis and controls. Serum MCP-1 was significantly higher in the group with active LN in comparison with the inactive group and SLE without nephritis and controls, but there was no significant difference between SLE and controls. The urinary MCP-1 level correlated well with SLE disease activity as measured by the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Urinary MCP-1 correlates positively with proteinuria, blood urea nitrogen level and creatinine and negatively with hemoglobin and creatinine clearance. We concluded that measurement of MCP-1 in urine may be useful for monitoring the severity of renal involvement in SLE. We recommend measuring urinary MCP-1 in pediatric SLE for the early diagnosis of LN and for the evaluation of the severity of renal involvement.

  6. Auxiliary diagnostic value of monocyte chemoattractant protein-1 of whole blood in active tuberculosis.

    Science.gov (United States)

    Wang, Ying; Li, Hang; Bao, Hong; Jin, Yufen; Liu, Xiaoju; Wu, Xueqiong; Yu, Ting

    2015-01-01

    The aim of this study was to study the expression level of interferon-γ (IFN-γ) and monocyte chemoattractant protein-1 (MCP-1) in peripheral blood and its auxiliary diagnostic value in active tuberculosis. A chemiluminescence enzyme immunoassay method was used to detect the levels of IFN-γ and MCP-1 in peripheral blood. Then the receiver operating characteristic curve were drawn to determine the threshold of IFN-γ and MCP-1 for diagnosis of active tuberculosis and to evaluate their diagnostic performance. The specific IFN-γ and MCP-1 levels in the active tuberculosis group were significantly higher than those in the non-tuberculous pulmonary disease group (P 0.05), but the MCP-1 levels in the non-tuberculous respiratory disease group were significantly higher than those of the healthy control group (P < 0.05). The specific IFN-γ and MCP-1 level cut off values were 256 pg/ml and 389 pg/ml as an active tuberculosis diagnostic standard. The sensitivities of IFN-γ and MCP-1 were 57.3% and 92.8%, respectively; specificities were 80% and 80.7%, respectively; the positive predictive values were 76.9% and 84.9%, respectively; negative predictive values were 61.7% and 78.7%, respectively; and accuracy rates were 76.9% and 84.9%, respectively. Compared with the detection of IFN-γ, we observed a better diagnostic performance of MCP-1 in peripheral blood in active tuberculosis. MCP-1 may become one of the active tuberculosis auxiliary diagnostic targets.

  7. Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1).

    Science.gov (United States)

    Rosenblat, M; Elias, A; Volkova, N; Aviram, M

    2013-04-01

    In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells' lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells' free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.

  8. Monocyte activation in response to polyethylene glycol hydrogels grafted with RGD and PHSRN separated by interpositional spacers of various lengths.

    Science.gov (United States)

    Schmidt, David Richard; Kao, Weiyuan John

    2007-12-01

    Polyethylene glycol (PEG) is often cited as a "stealth" polymer, capable of resisting both protein adsorption and cell adhesion. By extension, PEG would then be expected to limit the host response. Monocyte-derived macrophages play an integral role in inflammation, and thus their response to a material can potentially dictate the overall host response to a biomaterial. In the present study, monocyte responses following interaction with a photopolymerized PEG hydrogel were compared with those from standard tissue culture polystyrene (TCPS). Additionally, the effect of the spacing between RGD and PHSRN, the corresponding synergy sequence on fibronectin (FN), was evaluated using peptides with differing spacer lengths grafted to the PEG hydrogel. Monocyte adherent density on the PEG-only hydrogel was comparable with that of TCPS; however, the secretion of the proinflammatory molecules interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) increased dramatically following monocyte interaction with PEG-only hydrogels as compared with TCPS. The matrix metalloproteinase-2 (MMP-2) concentration was similar for all surfaces, while both the matrix metalloproteinase-9 (MMP-9) and FN concentrations were above the range of the assay for all substrates. Cell density was higher on the PHSRNG(13)RGD grafted substrate as compared with PHSRNG(6)RGD, but neither sequence increased cell density versus RGD alone. Although protein concentration did sometimes vary with different peptides, this variation was minimal in comparison with the surface effects between TCPS and the PEG-only hydrogel. This study explores the roles of PEG and FN-derived peptides on monocyte activation.

  9. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  10. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level.

    Science.gov (United States)

    Ishibashi, Yuji; Nishino, Yuri; Matsui, Takanori; Takeuchi, Masayoshi; Yamagishi, Sho-ichi

    2011-09-01

    Advanced glycation end products (AGE) and receptor for AGE (RAGE) interaction elicits reactive oxygen species (ROS) generation and inflammatory reactions, thereby being involved in the development and progression of diabetic nephropathy. Recently, we, along with others, found that glucagon-like peptide-1 (GLP-1), one of the incretins and a gut hormone secreted from L cells in the intestine in response to food intake, could have anti-inflammatory and antithrombogenic properties in cultured endothelial cells. However, the effects of GLP-1 on renal mesangial cells are largely unknown. Therefore, to elucidate the role of GLP-1 in diabetic nephropathy, this study investigated whether and how GLP-1 blocked AGE-induced monocyte chemoattractant protein-1 expression in human cultured mesangial cells. Gene and protein expression was analyzed by quantitative real-time reverse transcription polymerase chain reactions, Western blots, and enzyme-linked immunosorbent assay. The ROS generation was measured with dihydroethidium staining. Glucagon-like peptide-1 receptor (GLP-1R) was expressed in mesangial cells. Glucagon-like peptide-1 inhibited RAGE gene expression in mesangial cells, which was blocked by small interfering RNAs raised against GLP-1R. Furthermore, GLP-1 decreased ROS generation and subsequently reduced monocyte chemoattractant protein-1 gene and protein expression in AGE-exposed mesangial cells. An analogue of cyclic adenosine monophosphate mimicked the effects of GLP-1 on mesangial cells. Our present study suggests that GLP-1 may directly act on mesangial cells via GLP-1R and that it could work as an anti-inflammatory agent against AGE by reducing RAGE expression via activation of cyclic adenosine monophosphate pathway.

  11. Differential control of Helios+/− Treg development by monocyte subsets through disparate inflammatory cytokines

    OpenAIRE

    Zhong, Hui; Yazdanbakhsh, Karina

    2013-01-01

    Control of Helios+/− Treg subset development is mediated through distinct cytokines and monocyte subpopulations.CD16+ monocytes inhibit Helios+ Treg proliferation through IL-12, whereas CD16− monocytes suppress Helios− Treg development through TNF-α.

  12. Altered monocyte activation markers in Tourette’s syndrome: a case–control study

    Directory of Open Access Journals (Sweden)

    Matz Judith

    2012-05-01

    Full Text Available Abstract Background Infections and immunological processes are likely to be involved in the pathogenesis of Tourette’s syndrome (TS. To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha, interleukin 6 (IL-6, soluble CD14 (sCD14, IL1-receptor antagonist (IL1-ra, and serum neopterin were detected by immunoassays. Results We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions.

  13. Increased percentages of T helper cells producing IL-17 and monocytes expressing markers of alternative activation in patients with sepsis.

    Directory of Open Access Journals (Sweden)

    Milena Karina Colo Brunialti

    Full Text Available BACKGROUND: A shift from Th1 to Th2 as well as an increase in Treg CD4+T cell subsets has been reported in septic patients (SP. Furthermore, these patients display modulation of monocyte function, with reduced production of pro-inflammatory cytokines upon LPS stimulus, which resembles the phenotype of alternatively activated macrophages. In this study, we evaluated the percentages of T cells differentiated into Th1, Th17 and Treg subsets, as well as the percentage of monocytes expressing markers of alternatively activated monocytes/macrophages (AAM in SP. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMC were obtained from 32 healthy volunteers (HV and from SP at admission (D0, n = 67 and after 7 days of therapy (D7, n = 33. Th1 and Th17 (CD3+CD8- lymphocytes were identified by the intracellular detection of IFN-γ and IL-17, respectively, spontaneously and after PMA/Io stimulation, and Treg cells were identified by Foxp3+CD127- expression. Monocytes were evaluated for CD206 and CD163 expression. Absolute numbers of CD4+T lymphocytes were measured in whole blood samples by flow cytometry. The Mann-Whitney or Wilcoxon test was applied, as appropriate. The percentage of Th1 cells was lower in SP than in HV at admission after PMA/Io stimulation, whereas the percentage of Th17 cells was higher. In patients' follow-up samples, a higher percentage of Th1 cells and a lower percentage of Th17 cells were observed on D7 compared with the D0 samples. Treg cells remained unchanged. Septic patients showed a markedly increased proportion of monocytes expressing CD163 and CD206. CONCLUSIONS/SIGNIFICANCE: Upon in vitro stimulus, the percentage of T helper lymphocytes producing IL-17 was higher in SP than in HV at admission, and the percentage producing IFN-γ was lower, a pattern that was reversed during follow-up. The increased expression of CD163 and CD206 indicates that monocytes may acquire the AAM phenotype during sepsis.

  14. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment.

    Science.gov (United States)

    Sekhon, Bhagwant Kaur; Sze, Daniel Man-Yuen; Chan, Wing Keung; Fan, Kei; Li, George Qian; Moore, Douglas Edwin; Roubin, Rebecca Heidi

    2013-06-15

    Polysaccharopeptide (PSP), from Coriolus versicolor, has been used as an adjuvant to chemotherapy, and has demonstrated anti-tumor and immunomodulating effects. However its mechanism remains unknown. To elucidate how PSP affects immune populations, we compared PSP treatments both with and without prior incubation in phytohaemagglutinin (PHA) - a process commonly used in immune population experimentation. We first standardised a capillary electrophoresis fingerprinting technique for PSP identification and characterisation. We then established the proliferative capability of PSP on various immune populations in peripheral blood mononuclear cells, using flow cytometry, without prior PHA treatment. It was found that PSP significantly increased the number of monocytes (CD14(+)/CD16(-)) compared to controls without PHA. This increase in monocytes was confirmed using another antibody panel of CD14 and MHCII. In contrast, proliferations of T-cells, NK, and B-cells were not significantly changed by PSP. Thus, stimulating monocyte/macrophage function with PSP could be an effective therapeutic intervention in targeting tumors.

  15. Identification of biological markers of liver X receptor (LXR activation at the cell surface of human monocytes.

    Directory of Open Access Journals (Sweden)

    Cédric Rébé

    Full Text Available BACKGROUND: Liver X receptor (LXR α and LXR β (NR1H3 and NR1H2 are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they express LXR α and β and respond to LXR agonist stimulation in vitro. The aim of our study was to identify cell surface markers of LXR agonists on monocytes. For this, we focused on clusters of differentiation (CD markers because they are well characterized and accessible cell surface molecules allowing easy immuno-phenotyping. METHODOLOGY/PRINCIPAL FINDINGS: By using microarray analysis of monocytes treated or not with an LXR agonist in vitro, we selected three CD, i.e. CD82, CD226, CD244 for further analysis by real time PCR and flow cytometry. The three CD were up-regulated by LXR agonist treatment in vitro in a time- and dose- dependent manner and this induction was LXR specific as assessed by a SiRNA or LXR antagonist strategy. By using flow cytometry, we could demonstrate that the expression of these molecules at the cell surface of monocytes was significantly increased after LXR agonist treatment. CONCLUSIONS/SIGNIFICANCE: We have identified three new cell surface markers that could be useful to monitor LXR activation. Future studies will be required to confirm the biological and diagnostic significance of the markers.

  16. Monocyte and microglial activation in patients with mood-stabilized bipolar disorder

    Science.gov (United States)

    Jakobsson, Joel; Bjerke, Maria; Sahebi, Sara; Isgren, Anniella; Ekman, Carl Johan; Sellgren, Carl; Olsson, Bob; Zetterberg, Henrik; Blennow, Kaj; Pålsson, Erik; Landén, Mikael

    2015-01-01

    Background Bipolar disorder is associated with medical comorbidities that have been linked to systemic inflammatory mechanisms. There is, however, limited evidence supporting a role of neuroinflammation in bipolar disorder. Here we tested whether microglial activation and associated tissue remodelling processes are related to bipolar disorder by analyzing markers in cerebrospinal fluid (CSF) and serum from patients and healthy controls. Methods Serum was sampled from euthymic patients with bipolar disorder and healthy controls, and CSF was sampled from a large subset of these individuals. The levels of monocyte chemoattractant protein-1 (MCP-1), YKL-40, soluble cluster of differentiation 14 (sCD14), tissue inhibitor of metalloproteinases-1 (TIMP-1) and tissue inhibitor of metalloproteinases-2 (TIMP-2), were measured, and we adjusted comparisons between patients and controls for confounding factors. Results We obtained serum samples from 221 patients and 112 controls and CSF samples from 125 patients and 87 controls. We found increased CSF levels of MCP-1 and YKL-40 and increased serum levels of sCD14 and YKL-40 in patients compared with controls; these differences remained after controlling for confounding factors, such as age, sex, smoking, blood–CSF barrier function, acute-phase proteins and body mass index. The CSF levels of MCP-1 and YKL-40 correlated with the serum levels, whereas the differences between patients and controls in CSF levels of MCP-1 and YKL-40 were independent of serum levels. Limitations The cross-sectional study design precludes conclusions about causality. Conclusion Our results suggest that both neuroinflammatory and systemic inflammatory processes are involved in the pathophysiology of bipolar disorder. Importantly, markers of immunological processes in the brain were independent of peripheral immunological activity. PMID:25768030

  17. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation.

    Directory of Open Access Journals (Sweden)

    Lucy Baldeón R

    Full Text Available To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes.A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto-inflammatory monocytes.In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%. However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7 in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3 were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2.The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found in patients with normal serum lipids. Abnormal lipid values coincided with a reduced monocyte inflammatory state.

  18. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

    Science.gov (United States)

    Barrientos, Lorena; Bignon, Alexandre; Gueguen, Claire; de Chaisemartin, Luc; Gorges, Roseline; Sandré, Catherine; Mascarell, Laurent; Balabanian, Karl; Kerdine-Römer, Saadia; Pallardy, Marc; Marin-Esteban, Viviana; Chollet-Martin, Sylvie

    2014-12-01

    Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.

  19. Peripheral monocyte functions and activation in patients with quiescent Crohn's disease.

    Directory of Open Access Journals (Sweden)

    David Schwarzmaier

    Full Text Available Recent developments suggest a causal link between inflammation and impaired bacterial clearance in Crohn's disease (CD due to alterations of intestinal macrophages. Studies suggest that excessive inflammation is the consequence of an underlying immunodeficiency rather than the primary cause of CD pathogenesis. We characterized phenotypic and functional features of peripheral blood monocytes of patients with quiescent CD (n = 18 and healthy controls (n = 19 by analyses of cell surface molecule expression, cell adherence, migration, chemotaxis, phagocytosis, oxidative burst, and cytokine expression and secretion with or without lipopolysaccharide (LPS priming. Peripheral blood monocytes of patients with inactive CD showed normal expression of cell surface molecules (CD14, CD16, CD116, adherence to plastic surfaces, spontaneous migration, chemotaxis towards LTB4, phagocytosis of E. coli, and production of reactive oxygen species. Interestingly, peripheral blood monocytes of CD patients secreted higher levels of IL1β (p<.05. Upon LPS priming we found a decreased release of IL10 (p<.05 and higher levels of CCL2 (p<.001 and CCL5 (p<.05. The expression and release of TNFα, IFNγ, IL4, IL6, IL8, IL13, IL17, CXCL9, and CXCL10 were not altered compared to healthy controls. Based on our phenotypic and functional studies, peripheral blood monocytes from CD patients in clinical remission were not impaired compared to healthy controls. Our results highlight that defective innate immune mechanisms in CD seems to play a role in the (inflamed intestinal mucosa rather than in peripheral blood.

  20. Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation

    NARCIS (Netherlands)

    Koffel, R.; Meshcheryakova, A.; Warszawska, J.; Hennig, A.; Wagner, K.; Jorgl, A.; Gubi, D.; Moser, D.; Hladik, A.; Hoffmann, U.; Fischer, M.B.; Berg, W.B. van den; Koenders, M.I.; Scheinecker, C.; Gesslbauer, B.; Knapp, S.; Strobl, H.

    2014-01-01

    During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell s

  1. Robust control design techniques for active flutter suppression

    Science.gov (United States)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  2. Comparison The Effects of Two Monocyte Isolation Methods,Plastic Adherence and Magnetic Activated Cell Sorting Methods,on Phagocytic Activity of Generated Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Behnaz Asadi

    2013-01-01

    Full Text Available Objective: It is believed that monocyte isolation methods and maturation factors affect the phenotypic and functional characteristics of resultant dendritic cells (DC. In the present study, we compared two monocyte isolation methods, including plastic adherence-dendritic cells (Adh-DC and magnetic activated cell sorting- dendritic cells (MACS-DC, and their effects on phagocytic activity of differentiated immature DCs (immDCs.Materials and Methods: In this experimental study, immDCs were generated from plastic adherence and MACS isolated monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin 4 (IL-4 in five days. The phagocytic activity of immDCs was analyzed by fluorescein isothiocyanate (FITC-conjugated latex bead using flow cytometry. One way ANOVA test was used for statistical analysis of differences among experimental groups, including Adh-DC and MACS-DC groups.Results: We found that phagocytic activity of Adh-DC was higher than MACS-DC, whereas the mean fluorescence intensity (MFI of phagocytic cells was higher in MACS-DC (p<0.05.Conclusion: We concluded that it would be important to consider phagocytosis parameters of generated DCs before making any decision about monocyte isolation methods to have fully functional DCs.

  3. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings.

    Science.gov (United States)

    Chin-Quee, Shawn L; Hsu, Steve H; Nguyen-Ehrenreich, Kim L; Tai, Julie T; Abraham, George M; Pacetti, Stephen D; Chan, Yen F; Nakazawa, Gaku; Kolodgie, Frank D; Virmani, Renu; Ding, Nadine N; Coleman, Leslie A

    2010-02-01

    This study compares the effects of two polymers currently being marketed on commercially available drug-eluting stents, PVDF-HFP fluorinated copolymer (FP) and phosphorylcholine polymer (PC), on re-endothelialization, acute thrombogenicity, and monocyte adhesion and activity. Rabbit iliac arteries were implanted with cobalt-chromium stents coated with FP or PC polymer (without drug) and assessed for endothelialization at 14 days by confocal and scanning electron microscopy (SEM). Endothelialization was equivalent and near complete for FP and PC polymer-coated stents (>80% by SEM). Acute thrombogenicity was assessed in a Chandler loop model using porcine blood. Thrombus adherence was similar for both polymers as assessed by clot weight, thrombin-antithrombin III complex, and lactate dehydrogenase expression. In vitro cell adhesion assays were performed on FP and PC polymer-coated glass coupon surfaces using HUVECs, HCAECs, and THP-1 monocytes. The number of ECs adhered to FP and control surfaces were equivalent and significantly greater than on PC surfaces (p<0.05). There were no differences in THP-1 monocyte adhesion and cytokine (MCP-1, RANTES, IL-6, MIP-1alpha, MIP-1beta, G-CSF) expression. The data suggests that biological responses to both FP and PC polymer are similar, with no mechanistic indication that these polymers would be causative factors for delayed vessel healing in an acute timeframe.

  4. Low bone mineral density and peripheral blood monocyte activation profile in calcium stone formers with idiopathic hypercalciuria.

    Science.gov (United States)

    Ghazali, A; Fuentès, V; Desaint, C; Bataille, P; Westeel, A; Brazier, M; Prin, L; Fournier, A

    1997-01-01

    Calcium stone formers (CaSF) with idiopathic hypercalciuria (IH) have been shown to have decreased bone mineral density (BMD). The mechanism of their bone loss remains obscure. Monokines like interleukin-1 beta (IL-1 beta), IL-6, tumor necrosis factor-alpha (TNF-alpha), and granulocyte macrophage stimulating factor (GM-CSF) are involved in bone remodeling, but only IL-1 excess has been incriminated in the bone loss of CaSF with IH. Therefore, to more precisely delineate the role of monocyte activation in the pathogenesis of bone loss in these patients, we studied the production of IL-1 beta, IL-6, TNF-alpha, and GM-CSF by unstimulated or lipopolysaccharide (LPS)-stimulated cultured peripheral blood monocytes in 15 CaSF with IH, in 10 CaSF with dietary calcium-dependent hypercalciuria (DH), and in 10 healthy controls (C). Cytokines were measured in the culture medium by sensitive enzyme-linked immunosorbent assay and vertebral BMD by single energy computed tomography. The decrease of vertebral BMD in IH compared with DH, was confirmed (Z score: -1.2 +/- 0.2 vs. -0.5 +/- 0.2; P = 0.04; Mann-Whitney). In the supernatant of unstimulated peripheral blood monocytes, IL-1 beta and TNF-alpha levels were higher in IH than in C (respectively, 40 +/- 21 vs. 7 +/- 1 pg/mL, P = 0.008 and 236 +/- 136 vs. 39 +/- 23 pg/mL, P = 0.03); those of GM-CSF were greater in IH than in DH and C (respectively, 52 +/- 27 vs. 6 +/- 2, P = 0.04 and 6 +/- 2 pg/mL, P = 0.01) and those of IL-6 were not significantly different among the groups. After in vitro stimulation by LPS (10 micrograms/mL), the levels of the various monokines were not significantly different. In IH patients, the post-LPS levels of IL-6 were negatively correlated to vertebral BMD (n = 15, Z = -1.97, P = 0.04; Spearman), whereas those of GM-CSF were positively related to vertebral BMD (n = 15, Z = 2.01, P = 0.04). In this study, calcium stone formers with IH have bone mineral decrease and a particular profile of peripheral

  5. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment.

  6. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  7. Memory suppression is an active process that improves over childhood

    Directory of Open Access Journals (Sweden)

    Pedro M Paz-Alonso

    2009-09-01

    Full Text Available We all have memories that we prefer not to think about. The ability to suppress retrieval of unwanted memories has been documented in behavioral and neuroimaging research using the Think/No-Think (TNT paradigm with adults. Attempts to stop memory retrieval are associated with increased activation of lateral prefrontal cortex (PFC and concomitant reduced activation in medial temporal lobe (MTL structures. However, the extent to which children have the ability to actively suppress their memories is unknown. This study investigated memory suppression in middle childhood using the TNT paradigm. Forty children aged 8 to 12 and 30 young adults were instructed either to remember (Think or suppress (No-Think the memory of the second word of previously studied word-pairs, when presented with the first member as a reminder. They then performed two different cued recall tasks, testing their memory for the second word in each pair after the Think/No-Think phase using the same first studied word within the pair as a cue (intra-list cue and also an independent cue (extra-list cue. Children exhibited age-related improvements in memory suppression from age 8 to 12 in both memory tests, against a backdrop of overall improvements in declarative memory over this age range. These findings suggest that memory suppression is an active process that develops during late childhood, likely due to an age-related refinement in the ability to engage PFC to down-regulate activity in areas involved in episodic retrieval.

  8. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Science.gov (United States)

    Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2015-06-01

    A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  9. Activation of the damage-associated molecular pattern receptor P2X7 induces interleukin-1β release from canine monocytes.

    Science.gov (United States)

    Jalilian, Iman; Peranec, Michelle; Curtis, Belinda L; Seavers, Aine; Spildrejorde, Mari; Sluyter, Vanessa; Sluyter, Ronald

    2012-09-15

    P2X7, a damage-associated molecular pattern receptor and adenosine 5'-triphosphate (ATP)-gated cation channel, plays an important role in the activation of the NALP3 inflammasome and subsequent release of interleukin (IL)-1β from human monocytes; however its role in monocytes from other species including the dog remains poorly defined. This study investigated the role of P2X7 in canine monocytes, including its role in IL-1β release. A fixed-time flow cytometric assay demonstrated that activation of P2X7 by extracellular ATP induces the uptake of the organic cation, YO-PRO-1(2+), into peripheral blood monocytes from various dog breeds, a process impaired by the specific P2X7 antagonist, A438079. Moreover, in five different breeds, relative P2X7 function in monocytes was about half that of peripheral blood T cells but similar to that of peripheral blood B cells. Reverse transcription-PCR demonstrated the presence of P2X7, NALP3, caspase-1 and IL-1β in LPS-primed canine monocytes. Immunoblotting confirmed the presence of P2X7 in LPS-primed canine monocytes. Finally, extracellular ATP induced YO-PRO-1(2+) uptake into and IL-1β release from these cells, with both processes impaired by A438079. These results demonstrate that P2X7 activation induces the uptake of organic cations into and the release of IL-1β from canine monocytes. These findings indicate that P2X7 may play an important role in IL-1β-dependent processes in dogs.

  10. Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages.

    Science.gov (United States)

    Sokolowska, Milena; Chen, Li-Yuan; Eberlein, Michael; Martinez-Anton, Asuncion; Liu, Yueqin; Alsaaty, Sara; Qi, Hai-Yan; Logun, Carolea; Horton, Maureen; Shelhamer, James H

    2014-02-14

    Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2α) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2α activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2α, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2α inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2α, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4(-/-) and Myd88(-/-) mice, but not in Cd44(-/-) mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2α/COX2(high) and COX1/ALOX15/ALOX5/LTA4H(low) gene and PGE2/PGD2/15-HETE(high) and LXA4(low) eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism.

  11. Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages.

    OpenAIRE

    Narayan, O; Kennedy-Stoskopf, S; Sheffer, D; Griffin, D E; Clements, J E

    1983-01-01

    Lentiviruses, which cause arthritis-encephalitis and maedi-visna in goats and sheep, respectively, cause persistent infections in these animals. The viruses replicate productively at low levels in macrophages in diseased organs such as the "maedi lung" and nonproductively in other cell types such as leukocytes in peripheral blood. Nonproductive infections become productive during in vitro cultivation of the cells. This study showed that monocytes were the only cells in the peripheral blood le...

  12. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    Science.gov (United States)

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  13. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells.

    Science.gov (United States)

    Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P

    2014-08-01

    Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases.

  14. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes.

    Science.gov (United States)

    Witte, Katrin; Koch, Egon; Volk, Hans-Dieter; Wolk, Kerstin; Sabat, Robert

    2015-01-01

    Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells.

  15. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes.

    Directory of Open Access Journals (Sweden)

    Katrin Witte

    Full Text Available Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630 on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells.

  16. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  17. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    for the resolution of inflammation. Clin Exp Immunol. 2005 Dec;142(3):481-9. 2. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004 Dec;25(12):677-86. 3. Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell...

  18. CSF Biomarkers of Monocyte Activation and Chemotaxis correlate with Magnetic Resonance Spectroscopy Metabolites during Chronic HIV Disease

    Science.gov (United States)

    Anderson, Albert M.; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J.; Clifford, David B.; Marra, Christina M.; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Simpson, David M.; Morgello, Susan; Grant, Igor; Letendre, Scott L.

    2015-01-01

    Background HIV-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. Methods A multicenter cross-sectional study involving five sites in the United States was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein 1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM) and frontal gray matter (FGM): N-acetyl-aspartate (NAA), Myo-inositol (MI), Choline (Cho), and Creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Results 83 HIV-infected individuals were included, 78% on cART and 37% with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R2 0.179, p<0.001) as well as MCP-1 and MI in FWM (R2 0.137, p=0.002). Higher Cr levels in FWM were associated with MCP-1 (R2 0. 075, p=0.01) and IP-10 (R2 0.106, p=0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R2 0.224, p<0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. Conclusion These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  19. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells.

    Science.gov (United States)

    Lovelace, Erica S; Maurice, Nicholas J; Miller, Hannah W; Slichter, Chloe K; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states.

  20. Cobalt protoporphyrin induces differentiation of monocytic THP-1 cells through regulation of cytoplasmic Ref-1-related NADPH oxidase activity.

    Science.gov (United States)

    Song, Ju Dong; Lee, Sang Kwon; Park, Si Eun; Kim, Kang Mi; Kim, Koanhoi; Park, Yeong Min; Park, Young Chul

    2011-11-01

    Cobalt protoporphyrin (CoPP) is a potent and effective metalloporphyrin inducer of heme oxygenase-1 (HO-1) activity in many tissues. Here, we report that CoPP induces differentiation of monocytic THP-1 cells into macrophage-like cells. CoPP induced a marked growth inhibition with a slight reduction in viability, and increased adhesion and spreading of THP-1 cells. However, other protoporphyrins did not. CoPP also resulted in expression of CD11b, MMP9, MSR1, CD14 and ICAM-1, which are differentiation markers for macrophages. Interestingly, we observed a decrease of cytoplasmic redox factor-1 (Ref-1) levels in the process of CoPP-induced differentiation of THP-1 cells. In addition, knockdown of Ref-1 by siRNA enhanced cell adhesion induced by CoPP. Furthermore, an inhibitor of NADPH oxidase, diphenyleneiodonium (DPI), completely abolished CoPP-induced adhesion of Ref-1-deficient cells using an siRNA. A cytosolic factor for NADPH oxidase activity, p47phox, was significantly increased in THP-1 cells by CoPP treatment. Κnockdown of Ref-1 increased CoPP-induced p47phox expression in THP-1 cells. Taken together, these results suggest that CoPP induces differentiation of monocytic THP-1 cells, and that the CoPP-induced differentiation is associated with cytoplasmic Ref-1-related NADPH oxidase activity.

  1. Monocytes harboring cytomegalovirus: interactions with endothelial cells, smooth muscle cells, and oxidized low-density lipoprotein. Possible mechanisms for activating virus delivered by monocytes to sites of vascular injury.

    Science.gov (United States)

    Guetta, E; Guetta, V; Shibutani, T; Epstein, S E

    1997-07-01

    Cytomegalovirus (CMV) infection and its periodic reactivation from latency may contribute to atherogenesis and restenosis. It is unknown how CMV is delivered to the vessel wall and is reactivated. We examined the following hypothesis: CMV, present in monocytes recruited to sites of vascular injury, is activated by endothelial cell (EC) or smooth muscle cell (SMC) contact and by oxidized low-density lipoproteins (oxLDLs). The CMV major immediate-early promoter (MIEP) controls immediate-early (IE) gene expression, and thereby viral replication. To determine whether elements of the vessel wall can activate CMV present in monocytes, we transiently transfected the promonocytic cell line HL-60 with a chloramphenicol acetyltransferase reporter gene construct driven by MIEP. MIEP activity increased 1.7 +/- 0.5-fold (P = .02) when the transfected HL-60 cells were cocultured with ECs, 4.5 +/- 1.5-fold when cocultured with SMCs (P = .03), and 2.0 +/- 0.5-fold (P = .01) when exposed to oxLDL. The combination of oxLDL and EC coculture increased MIEP activity over 7-fold. We also found that freshly isolated human monocytes, infected with endothelium-passaged CMV, were capable of transmitting infectious virus to cocultured ECs or SMCs. CMV-related progression of atherosclerosis or restenosis may, at least in part, involve monocyte delivery of the virus to the site of vascular injury, where the vascular milieu, ie, contact with ECs, SMCs, and oxLDL, can contribute to viral reactivation and/or replication by enhancing CMV IE gene expression. The virus may then infect neighboring ECs or SMCs, initiating a cascade of events predisposing to the development of atherogenesis-related processes.

  2. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    of inflammatory markers (IL-1β, IL-6, IL-8, IL-10, and TNF-α) was determined by RT-qPCR. Normalized values of sCD163 and mCD163 were calculated by dividing each value by the median value of the healthy population. The MAcS-index was then calculated as the ratio between normalized sCD163 and normalized mCD163....... A MAcS-index > 1 indicates relative increase in sCD163 as compared to mCD163, suggested to reflect a predominant M1 activation.   RESULTS AND DISCUSSION: The MAcS-index of healthy individuals clustered around 1 (2.5-97.5 percentile: 0.28-3.11), whereas the MAcS-index of the patients varied from 0.......06 to 5139, with 4% below the 2.5 % limit of healthy individuals, and 60% above the 97.5 upper limit of healthy individuals.  The MAcS-index in infected patients (with assumed M1 activation) was clearly elevated. The index was significantly higher in patients with clinical signs of infection (median: 9...

  3. Stimulation of monocytes by placental microparticles involves toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells.

    Science.gov (United States)

    Joerger-Messerli, Marianne Simone; Hoesli, Irene Mathilde; Rusterholz, Corinne; Lapaire, Olav

    2014-01-01

    Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  4. Stimulation of monocytes by placental microparticles involves Toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells

    Directory of Open Access Journals (Sweden)

    Marianne Simone Joerger-Messerli

    2014-04-01

    Full Text Available Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggests a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro.STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR and fluorescence microscopy.STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation was blocked.Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  5. Active Suppression Of Vibrations On Elastic Beams

    Science.gov (United States)

    Silcox, Richard J.; Fuller, Chris R.; Gibbs, Gary P.

    1993-01-01

    Pairs of colocated piezoelectric transducers, independently controlled by multichannel adaptive controller, employed as actuators and sensors to achieve simultaneous attenuation of both extensional and flexural motion. Single pair used to provide simultaneous control of flexural and extensional waves, or two pairs used to control torsional motion also. Capability due to nature of piezoelectric transducers, when bonded to surfaces of structures and activated by oscillating voltages, generate corresponding oscillating distributions of stresses in structures. Phases and amplitudes of actuator voltages adjusted by controller to impede flow of vibrational energy simultaneously, in waves of various forms, beyond locations of actuators. Concept applies equally to harmonic or random response of structure and to multiple responses of structure to transverse bending, torsion, and compression within structural element. System has potential for many situations in which predominant vibration transmission path through framelike structure.

  6. Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ellrichmann Gisa

    2012-01-01

    Full Text Available Abstract The NF-κB/REL-family of transcription factors plays a central role in coordinating the expression of a wide variety of genes controlling immune responses including autoimmunity of the central nervous system (CNS. The inactive form of NF-κB consists of a heterodimer which is complexed with its inhibitor, IκB. Conditional knockout-mice for IκBα in myeloid cells (lysMCreIκBαfl/fl have been generated and are characterized by a constitutive activation of NF-κB proteins allowing the study of this transcription factor in myelin-oligodendrocyte-glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, a well established experimental model for autoimmune demyelination of the CNS. In comparison to controls, lysMCreIκBαfl/fl mice developed a more severe clinical course of EAE. Upon histological analysis on day 15 p.i., there was an over two fold increased infiltration of T-cells and macrophages/microglia. In addition, lysMCreIκBαfl/fl mice displayed an increased expression of the NF-κB dependent factor inducible nitric oxide synthase in inflamed lesions. These changes in the CNS are associated with increased numbers of CD11b positive splenocytes and a higher expression of Ly6c on monocytes in the periphery. Well in accordance with these changes in the myeloid cell compartment, there was an increased production of the monocyte cytokines interleukin(IL-12 p70, IL-6 and IL-1beta in splenocytes. In contrast, production of the T-cell associated cytokines interferon gamma (IFN-gamma and IL-17 was not influenced. In summary, myeloid cell derived NF-κB plays a crucial role in autoimmune inflammation of the CNS and drives a pathogenic role of monocytes and macrophages independently from T-cells.

  7. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.

    Science.gov (United States)

    Liu, Ming-Lin; Reilly, Michael P; Casasanto, Peter; McKenzie, Steven E; Williams, Kevin Jon

    2007-02-01

    Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

  8. A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Fox Sarah

    2008-07-01

    Full Text Available Abstract Background The cytoprotective nature of nitric oxide (NO led to development of NO-aspirins in the hope of overcoming the gastric side-effects of aspirin. However, the NO moiety gives these hybrids potential for actions further to their aspirin-mediated anti-platelet and anti-inflammatory effects. Having previously shown that novel NO-aspirin hybrids containing a furoxan NO-releasing group have potent anti-platelet effects, here we investigate their anti-inflammatory properties. Here we examine their effects upon TNFα release from lipopolysaccharide (LPS-stimulated human monocytes and monocyte-derived macrophages and investigate a potential mechanism of action through effects on LPS-stimulated nuclear factor-kappa B (NF-κB activation. Methods Peripheral venous blood was drawn from the antecubital fossa of human volunteers. Mononuclear cells were isolated and cultured. The resultant differentiated macrophages were treated with pharmacologically relevant concentrations of either a furoxan-aspirin (B8, B7; 10 μM, their respective furazan NO-free counterparts (B16, B15; 10 μM, aspirin (10 μM, existing nitroaspirin (NCX4016; 10 μM, an NO donor (DEA/NO; 10 μM or dexamethasone (1 μM, in the presence and absence of LPS (10 ng/ml; 4 h. Parallel experiments were conducted on undifferentiated fresh monocytes. Supernatants were assessed by specific ELISA for TNFα release and by lactate dehydrogenase (LDH assay for cell necrosis. To assess NF-κB activation, the effects of the compounds on the loss of cytoplasmic inhibitor of NF-κB, IκBα (assessed by western blotting and nuclear localisation (assessed by immunofluorescence of the p65 subunit of NF-κB were determined. Results B8 significantly reduced TNFα release from LPS-treated macrophages to 36 ± 10% of the LPS control. B8 and B16 significantly inhibited monocyte TNFα release to 28 ± 5, and 49 ± 9% of control, respectively. The B8 effect was equivalent in magnitude to that of

  9. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  10. Angiogenic activity of breast cancer patients' monocytes reverted by combined use of systems modeling and experimental approaches.

    Directory of Open Access Journals (Sweden)

    Nicolas Guex

    2015-03-01

    Full Text Available Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an

  11. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Claudine Benard

    Full Text Available Carrageenan (CGN is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1 to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2 to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-alpha expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-kappaB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype.

  12. [Characteristics of migration of adipose tissue derived mesenchymal stromal cells after co-cultivation with activated monocytes in vitro].

    Science.gov (United States)

    Grigor'eva, O A; Korovina, I V; Gogia, B Sh; Sysoeva, V Iu

    2014-01-01

    Mesenchymal stromal cells (MSC) are considered to be promising tool of regenerative medicine. Migration of MSC toward damaged inflammatory site is essential for physiological tissue reparation. Therefore we studied modifications of migratory features of adipose tissue derived MSC (AT-MSC) after co-cultivation with activated monocytes derived from THP-1 cell line. As a result, we have observed an increased migration rate of AT-MSC in vitro in the absence of chemoattractant gradient as well as toward the gradient of PDGF BB (platelet-derived growth factor BB), which is well known chemoattractant for the cells of mesenchymal origin. Furthermore, the rate of directional AT-MSC migration through fibronectin was also increased. We have established that signaling from PDGFRβ which is activated through binding of integrin receptors with extracellular matrix may be possible way to stimulate cellular migration under simulated inflammatory conditions.

  13. Artifact suppression and analysis of brain activities with electroencephalography signals

    Institute of Scientific and Technical Information of China (English)

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  14. Urine Monocyte Chemoattractant Protein-1 and Lupus Nephritis Disease Activity: Preliminary Report of a Prospective Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Sabah Alharazy

    2015-01-01

    Full Text Available Objective. This longitudinal study aimed to determine the urine monocyte chemoattractant protein-1 (uMCP-1 levels in patients with biopsy-proven lupus nephritis (LN at various stages of renal disease activity and to compare them to current standard markers. Methods. Patients with LN—active or inactive—had their uMCP-1 levels and standard disease activity markers measured at baseline and 2 and 4 months. Urinary parameters, renal function test, serological markers, and renal SLE disease activity index-2K (renal SLEDAI-2K were analyzed to determine their associations with uMCP-1. Results. A hundred patients completed the study. At each visit, uMCP-1 levels (pg/mg creatinine were significantly higher in the active group especially with relapses and were significantly associated with proteinuria and renal SLEDAI-2K. Receiver operating characteristic (ROC curves showed that uMCP-1 was a potential biomarker for LN. Whereas multiple logistic regression analysis showed that only proteinuria and serum albumin and not uMCP-1 were independent predictors of LN activity. Conclusion. uMCP-1 was increased in active LN. Although uMCP-1 was not an independent predictor for LN activity, it could serve as an adjunctive marker when the clinical diagnosis of LN especially early relapse remains uncertain. Larger and longer studies are indicated.

  15. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2015-06-01

    Full Text Available A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD- 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h and/or microbiological (S. Typhi bacteremia endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-. Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD- were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h. Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  16. Apigenin blocks IKKα activation and suppresses prostate cancer progression.

    Science.gov (United States)

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-10-13

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.

  17. Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognitive disease (HAND).

    Science.gov (United States)

    Ndhlovu, Lishomwa C; Umaki, Tracie; Chew, Glen M; Chow, Dominic C; Agsalda, Melissa; Kallianpur, Kalpana J; Paul, Robert; Zhang, Guangxiang; Ho, Erika; Hanks, Nancy; Nakamoto, Beau; Shiramizu, Bruce T; Shikuma, Cecilia M

    2014-12-01

    HIV-associated neurocognitive disorders (HAND) continues to be prevalent (30-50%) despite plasma HIV-RNA suppression with combination antiretroviral therapy (cART). There is no proven therapy for individuals on suppressive cART with HAND. We have shown that the degree of HIV reservoir burden (HIV DNA) in monocytes appear to be linked to cognitive outcomes. HIV infection of monocytes may therefore be critical in the pathogenesis of HAND. A single arm, open-labeled trial was conducted to examine the effect of maraviroc (MVC) intensification on monocyte inflammation and neuropsychological (NP) performance in 15 HIV subjects on stable 6-month cART with undetectable plasma HIV RNA (10 copies/10(6) cells). MVC was added to their existing cART regimen for 24 weeks. Post-intensification change in monocytes was assessed using multiparametric flow cytometry, monocyte HIV DNA content by PCR, soluble CD163 (sCD163) by an ELISA, and NP performance over 24 weeks. In 12 evaluable subjects, MVC intensification resulted in a decreased proportion of circulating intermediate (median; 3.06% (1.93, 6.45) to 1.05% (0.77, 2.26)) and nonclassical (5.2% (3.8, 7.9) to 3.2% (1.8, 4.8)) CD16-expressing monocytes, a reduction in monocyte HIV DNA content to zero log10 copies/10(6) cells and in levels of sCD163 of 43% by 24 weeks. This was associated with significant improvement in NP performance among six subjects who entered the study with evidence of mild to moderate cognitive impairment. The results of this study suggest that antiretroviral therapy with potency against monocytes may have efficacy against HAND.

  18. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo.

    Science.gov (United States)

    Ellery, Philip J; Tippett, Emma; Chiu, Ya-Lin; Paukovics, Geza; Cameron, Paul U; Solomon, Ajantha; Lewin, Sharon R; Gorry, Paul R; Jaworowski, Anthony; Greene, Warner C; Sonza, Secondo; Crowe, Suzanne M

    2007-05-15

    HIV-1 persists in peripheral blood monocytes in individuals receiving highly active antiretroviral therapy (HAART) with viral suppression, despite these cells being poorly susceptible to infection in vitro. Because very few monocytes harbor HIV-1 in vivo, we considered whether a subset of monocytes might be more permissive to infection. We show that a minor CD16+ monocyte subset preferentially harbors HIV-1 in infected individuals on HAART when compared with the majority of monocytes (CD14highCD16-). We confirmed this by in vitro experiments showing that CD16+ monocytes were more susceptible to CCR5-using strains of HIV-1, a finding that is associated with higher CCR5 expression on these cells. CD16+ monocytes were also more permissive to infection with a vesicular stomatitis virus G protein-pseudotyped reporter strain of HIV-1 than the majority of monocytes, suggesting that they are better able to support HIV-1 replication after entry. Consistent with this observation, high molecular mass complexes of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) were observed in CD16+ monocytes that were similar to those observed in highly permissive T cells. In contrast, CD14highCD16- monocytes contained low molecular mass active APOBEC3G, suggesting this is a mechanism of resistance to HIV-1 infection in these cells. Collectively, these data show that CD16+ monocytes are preferentially susceptible to HIV-1 entry, more permissive for replication, and constitute a continuing source of viral persistence during HAART.

  19. ACTIVE VIBRATION SUPPRESSION VIA LINEARIZING HYSTERESIS OF PIEZOCERAMIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    HU Hong; SHI Hongyan; BEN MRAD Ridha

    2007-01-01

    A novel active Vibration control technique on the basis of linearized piezoelectric actuators is presented. An experimental apparatus consisting of a cantilever beam to which are attached strain patches and piezoceramic actuators to be used for active Vibration suppression is described. A dynamical model of the cantilever beam using Lagrange's equation and two coordinate Systems are presented. Based on the Lyapunov's direct method, an active Vibration Controller with hysteresis compensation is designed. The Controller is designed so that it guarantees the global stability of the overall System. The Controller developed is assessed experimentally.

  20. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    macrophages can contribute to sustained chronic immune activation during HIV infection, e.g. through the perturbation of cytokine and chemokine networks 141516. With the acknowledged notion of chronic immune activation as a paradoxical driving force of immune suppression 17, this pro-inflammatory macrophage phenotype during HIV infection may be a crucial parameter in disease progression. Yet other macrophage dysfunctions are associated with more peripheral HIV- or ART-associated disorders such as atherosclerosis 18, lipodystrophy 19, and metabolic syndrome during HIV infection and/or combination ART 2021. Monocytes, for their part, are much less permissive to infection with HIV, both in vitro 22 and in vivo, where estimates of infected circulating monocytes are consistently low 2324. Circulating monocytes represent the most accessible primary model for macrophage dysfunction during HIV infection, however, and are furthermore of sufficient importance to study in their own right. Infectious virus can be recovered from circulating monocytes, both in untreated patients 24 and in patients undergoing long-term successful combination ART 25. Additionally, the circulating monocyte pool as a whole does seem to be affected during HIV infection, despite the low frequency of actually infected monocytes. Transcriptome studies, in particular, show a form of hybrid phenotype exhibiting both increased and decreased pro-inflammatory features 2627. This modulation of the non-infected monocyte population could be due to the virus itself through mechanisms which do not require direct infection 28, or to other factors contributing to (aberrant immune activation occurring during HIV infection, such as perturbed cytokine networks 29 or other inflammatory stimulants 30. Several key factors in the described dysregulated processes have been identified 1831, but many molecular components remain elusive. Furthermore, other aspects of HIV and combination ART pathogenesis in which monocyte

  1. Laricitrin ameliorates lung cancer-mediated dendritic cell suppression by inhibiting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Chang, Wei-An; Hung, Jen-Yu; Jian, Shu-Fang; Lin, Yi-Shiuan; Wu, Cheng-Ying; Hsu, Ya-Ling; Kuo, Po-Lin

    2016-12-20

    Natural polyphenolic compounds of grapes and their seeds are thought to be therapeutic adjuvants in a variety of diseases, including cancer prevention. This study was carried out to investigate the effect of grape phenolic compounds on the regulation of cancer-mediated immune suppression. Laricitrin exhibits the greatest potential to ameliorate the suppressive effects of lung cancer on dendritic cells' (DCs') differentiation, maturation and function. Human lung cancer A549 and CL1-5 cells change the phenotype of DCs that express to high levels of IL-10 and prime T cells towards an immune suppression type-2 response (Th2). Laricitrin treatment stimulated DC differentiation and maturation in the condition media of cancer cells, a finding supported by monocyte marker CD14's disappearance and DC marker CD1a's upregulation. Laricitrin decreases expression of IL-10 in cancer-conditioned DCs, and subsequently switches CD4+ T cell response from Th2 to Th1 in vitro and in vivo. Reversal of laricitrin on lung cancer-induced DCs' paralysis was via inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Laricitrin also potentiated the anticancer activity of cisplatin in mouse models. Thus, laricitrin could be an efficacious immunoadjuvant and have a synergistic effect when combined with chemotherapy.

  2. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    DEFF Research Database (Denmark)

    Pohl, Judith Mira; Gutweiler, Sebastian; Thiebes, Stephanie

    2017-01-01

    and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions: Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes...

  3. Monocyte activation, but not microbial translocation, is independently associated with markers of endovascular dysfunction in HIV-infected patients receiving cART

    DEFF Research Database (Denmark)

    Pedersen, Karin K; Manner, Ingjerd W; Seljeflot, Ingebjørg;

    2014-01-01

    BACKGROUND: Microbial translocation has been suggested as a driver of cardiovascular disease in HIV infection. We hypothesized that microbial translocation and the resulting monocyte activation would be associated with markers of endovascular dysfunction. METHODS: In 60 HIV-infected patients on c...

  4. Improved antitumor response to isolated limb perfusion with tumor necrosis factor after upregulation of endothelial monocyte-activating polypeptide II in soft tissue sarcoma

    NARCIS (Netherlands)

    T.E. Lans; T.L.M. ten Hagen (Timo); R. van Horssen (Remco); P.C. Wu; S.T. van Tiel (Sandra); S.K. Libutti; H.R. Alexander; A.M.M. Eggermont (Alexander)

    2002-01-01

    textabstractBACKGROUND: Experiments with tumor necrosis factor alpha (TNF) in rodents have shown that a high dose can lead to hemorrhagic necrosis in tumors. Endothelial monocyte-activating polypeptide II (EMAP-II) is a novel tumor-derived cytokine, and its expression increases the

  5. Phagocytosis of haemozoin (malarial pigment enhances metalloproteinase-9 activity in human adherent monocytes: Role of IL-1beta and 15-HETE

    Directory of Open Access Journals (Sweden)

    Giribaldi Giuliana

    2008-08-01

    Full Text Available Abstract Background It has been shown previously that human monocytes fed with haemozoin (HZ or trophozoite-parasitized RBCs displayed increased matrix metalloproteinase-9 (MMP-9 enzyme activity and protein/mRNA expression and increased TNF production, and showed higher matrix invasion ability. The present study utilized the same experimental model to analyse the effect of phagocytosis of: HZ, delipidized HZ, beta-haematin (lipid-free synthetic HZ and trophozoites on production of IL-1beta and MMP-9 activity and expression. The second aim was to find out which component of HZ was responsible for the effects. Methods Native HZ freshly isolated from Plasmodium falciparum (Palo Alto strain, Mycoplasma-free, delipidized HZ, beta-haematin (lipid-free synthetic HZ, trophozoites and control meals such as opsonized non-parasitized RBCs and inert latex particles, were fed to human monocytes. The production of IL-1beta by differently fed monocytes, in presence or absence of specific MMP-9 inhibitor or anti-hIL-1beta antibodies, was quantified in supernatants by ELISA. Expression of IL-1beta was analysed by quantitative real-time RT-PCR. MMP-9 activity and protein expression were quantified by gelatin zymography and Western blotting. Results Monocytes fed with HZ or trophozoite-parasitized RBCs generated increased amounts of IL-1beta and enhanced enzyme activity (in cell supernatants and protein/mRNA expression (in cell lysates of monocyte MMP-9. The latter appears to be causally related to enhanced IL-1beta production, as enhancement of both expression and enzyme activity were abrogated by anti-hIL-1beta Abs. Upregulation of IL-1beta and MMP-9 were absent in monocytes fed with beta-haematin or delipidized HZ, indicating a role for HZ-attached or HZ-generated lipid components. 15-HETE (15(S,R-hydroxy-6,8,11,13-eicosatetraenoic acid a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem-catalysis was identified as one mediator

  6. Cytometric analysis of surface molecules of leucocytes and phagocytic activity of granulocytes and monocytes/macrophages in cows with pyometra.

    Science.gov (United States)

    Brodzki, P; Kostro, K; Brodzki, A; Niemczuk, K; Lisiecka, U

    2014-10-01

    Pyometra is a serious problem in dairy cow herds, causing large economic losses due to infertility. The development of pyometra depends mainly on the immunological status of the cow. The aim of the study was a comparative evaluation of selected indicators involving non-specific and specific immunity in cows with pyometra and in cows without inflammation of the uterus. The study was performed in 20 cows, which were divided into two groups: pyometra group and healthy group, each comprising 10 cows, based on the results of cytological and ultrasonographic tests. A flow cytometric analysis was performed for the surface molecules CD4, CD8, CD14, CD21, CD25 and CD4(+) CD25(+) on leucocytes, and the phagocytic activity was determined from granulocytes and monocytes/macrophages in the peripheral blood and uterine washings, respectively. It was demonstrated that the percentage of phagocytic granulocytes and monocytes/macrophages in both the peripheral blood and uterine washings was significantly lower in cows with pyometra compared with the healthy group (p < 0.001). Significantly (p ≤ 0.001) lower percentage of CD4(+) , CD14(+) , CD25(+) and CD4(+) CD25(+) phenotype leucocytes was also observed in the peripheral blood of cows from the pyometra group, along with a significantly higher (p < 0.001) percentage of CD8(+) and CD21(+) lymphocytes as compared to the healthy group. The results of work indicate that disfunction of cell immunity coexisting with pyometra may be caused by a bacterial infection and the presence of blocking agents (IL-10), released by the increasing number of CD8(+) lymphocytes what leads to the advanced inflammation of uterus.

  7. Lactic acid delays the inflammatory response of human monocytes.

    Science.gov (United States)

    Peter, Katrin; Rehli, Michael; Singer, Katrin; Renner-Sattler, Kathrin; Kreutz, Marina

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Suppression of spontaneous epileptiform activity with applied currents.

    Science.gov (United States)

    Nakagawa, M; Durand, D

    1991-12-20

    It has been well established that both applied and endogenous electric fields can modulate neuronal activity in various preparations. In this paper, we present the effects of applied currents on spontaneous epileptiform activity in the CA1 region of the rat hippocampus. A computer-controlled system was designed to detect the spontaneous abnormal activity and then apply current pulses of programmable amplitude with monopolar electrodes in the stratum pyramidale. The epileptiform activity was generated by subperfusion of the neural tissue with an elevated potassium artificial cerebrospinal fluid (CSF) solution. Extracellular recordings showed that the interictal bursts could be fully suppressed in 90% of the slices by subthreshold currents with an average amplitude of 12.5 microA. Intracellular recordings showed that the anodic currents generated hyperpolarization of the somatic membrane thereby suppressing neuronal firing. This inhibitory effect of applied current pulses is important for the understanding of electric field effects on abnormal neuronal activity and could be an effective means of preventing the spread of epileptiform activity.

  9. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  10. Suppressive Activity of Quercetin on Periostin Functions In Vitro.

    Science.gov (United States)

    Irie, Shinji; Kashiwabara, Misako; Yamada, Asako; Asano, Kazuhito

    2016-01-01

    Periostin, a 90-kDa extracellular matrix protein, has been attracting attention as a novel biomarker of airway inflammatory diseases such as allergic rhinitis (AR) and asthma. Although oral administration of quercetin to patients with AR can favorably modify the clinical condition of this disease, the influence of quercetin on periostin functions is not well understood. The present study was, therefore, undertaken to examine the influence of quercetin on the production of both periostin and periostin-induced eosinophil chemoattractants from human nasal epithelial cells (HNEpC) in vitro. HNEpC were stimulated with 15.0 ng/ml interleukin (IL)-4 in the absence or presence of quercetin for 72 h. Periostin levels in the culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Addition of 4.0 μM quercetin into cell cultures suppressed periostin production from HNEpC that was induced by IL-4 stimulation through inhibitation of signal transducer and activator of transcription 6 (STAT6) activation. We then examined whether quercetin could inhibit production of the periostin-induced eosinophil chemoattractants, regulated on activation, normal T-cell expressed and secreted (RANTES) and eotaxin, from HNEpC. HNEpC were stimulated with 2.0 ng/ml periostin in the absence or presence of quercetin for 72 h. RANTES and eotaxin levels in culture supernatants were examined using ELISA. Treatment of HNEpC with quercetin at a concentration of 4.0 μM suppressed the ability of cells to produce RANTES and eotaxin. This suppression was mediated through suppression of activation of the transcription factor nuclear factor-kappa B (NF-κB) p65, as measured using ELISA, and of chemokine mRNA expression, as measured using reverse transcriptase-polymerase chain reaction (RT-PCR). These results strongly suggest that quercetin suppresses the production of both periostin and periostin-induced eosinophil chemoattractants from HNEpC and results in improvement of the

  11. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  12. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    Science.gov (United States)

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this

  13. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation

    Directory of Open Access Journals (Sweden)

    V Milleret

    2011-05-01

    Full Text Available Titanium implants are most commonly used for bone augmentation and replacement due to their favorable osseointegration properties. Here, hyperhydrophilic sand-blasted and acid-etched (SBA titanium surfaces were produced by alkali treatment and their responses to partially heparinized whole human blood were analyzed. Blood clot formation, platelet activation and activation of the complement system was analyzed revealing that exposure time between blood and the material surface is crucial as increasing exposure time results in higher amount of activated platelets, more blood clots formed and stronger complement activation. In contrast, the number of macrophages/monocytes found on alkali-treated surfaces was significantly reduced as compared to untreated SBA Ti surfaces. Interestingly, when comparing untreated to modified SBA Ti surfaces very different blood clots formed on their surfaces. On untreated Ti surfaces blood clots remain thin (below 15 mm, patchy and non-structured lacking large fibrin fiber networks whereas blood clots on differentiated surfaces assemble in an organized and layered architecture of more than 30 mm thickness. Close to the material surface most nucleated cells adhere, above large amounts of non-nucleated platelets remain entrapped within a dense fibrin fiber network providing a continuous cover of the entire surface. These findings might indicate that, combined with findings of previous in vivo studies demonstrating that alkali-treated SBA Ti surfaces perform better in terms of osseointegration, a continuous and structured layer of blood components on the blood-facing surface supports later tissue integration of an endosseous implant.

  14. Unfractionated heparin suppresses lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human microvascular endothelial cells by blocking Krüppel-like factor 5 and nuclear factor-κB pathway.

    Science.gov (United States)

    Li, Xu; Li, Xin; Zheng, Zhen; Liu, Yina; Ma, Xiaochun

    2014-10-01

    Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWH), apart from anticoagulant activities, contain a variety of biological properties such as anti-inflammatory actions possibly affecting sepsis. Chemokines are vital for promoting the movement of circulating leukocytes to the site of infection and are involved in the pathogenesis of sepsis. The purpose of this study was to investigate the effects and potential mechanisms of UFH on lipopolysaccharide (LPS)-induced chemokine production in human pulmonary microvascular endothelial cells (HPMECs). HPMECs were pretreated with UFH (0.1 U/ml and 1 U/ml), 15 min prior to stimulation with LPS (10 μg/ml). Cells were cultured under various experimental conditions for 2 h and 6 h for analysis. UFH markedly decreased LPS-induced interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein expression in HPMECs. UFH also attenuated the secretion of these chemokines in culture supernatants. In addition, UFH blocked the chemotactic activities of LPS-stimulated HPMECs supernatants on monocytes migration as expected. UFH inhibited LPS-induced Krüppel-like factor 5 (KLF-5) mRNA and protein levels. Concurrently, UFH reduced nuclear factor (NF)-κB nuclear translocation. Importantly, transfection with siRNA targeting KLF-5 reduced NF-κB activation and chemokines expression. These results demonstrate that interfering with KLF-5 mediated NF-κB activation might contribute to the inhibitory effects of chemokines and monocytes migration by UFH in LPS-stimulated HPMECs.

  15. Persistence of Activated and Adaptive-Like NK Cells in HIV+ Individuals despite 2 Years of Suppressive Combination Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Anna C. Hearps

    2017-06-01

    Full Text Available Innate immune dysfunction persists in HIV+ individuals despite effective combination antiretroviral therapy (cART. We recently demonstrated that an adaptive-like CD56dim NK cell population lacking the signal transducing protein FcRγ is expanded in HIV+ individuals. Here, we analyzed a cohort of HIV+ men who have sex with men (MSM, n = 20 at baseline and following 6, 12, and 24 months of cART and compared them with uninfected MSM (n = 15 to investigate the impact of cART on NK cell dysfunction. Proportions of NK cells expressing markers of early (CD69+ and late (HLA-DR+/CD38+ activation were elevated in cART-naïve HIV+ MSM (p = 0.004 and 0.015, respectively, as were FcRγ− NK cells (p = 0.003. Using latent growth curve modeling, we show that cART did not reduce levels of FcRγ− NK cells (p = 0.115 or activated HLA-DR+/CD38+ NK cells (p = 0.129 but did reduce T cell and monocyte activation (p < 0.001 for all. Proportions of FcRγ− NK cells were not associated with NK cell, T cell, or monocyte activation, suggesting different factors drive CD56dim FcRγ− NK cell expansion and immune activation in HIV+ individuals. While proportions of activated CD69+ NK cells declined significantly on cART (p = 0.003, the rate was significantly slower than the decline of T cell and monocyte activation, indicating a reduced potency of cART against NK cell activation. Our findings indicate that 2 years of suppressive cART have no impact on CD56dim FcRγ− NK cell expansion and that NK cell activation persists after normalization of other immune parameters. This may have implications for the development of malignancies and co-morbidities in HIV+ individuals on cART.

  16. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  17. Genetic polymorphisms in the CD14 gene are associated with monocyte activation and carotid intima-media thickness in HIV-infected patients on antiretroviral therapy

    Science.gov (United States)

    Yong, Yean K.; Shankar, Esaki M.; Westhorpe, Clare L.V.; Maisa, Anna; Spelman, Tim; Kamarulzaman, Adeeba; Crowe, Suzanne M.; Lewin, Sharon R.

    2016-01-01

    Abstract HIV-infected individuals on antiretroviral therapy (ART) are at increased risk of cardiovascular disease (CVD). Given the relationship between innate immune activation and CVD, we investigated the association of single-nucleotide polymorphisms (SNPs) in TLR4 and CD14 and carotid intima-media thickness (cIMT), a surrogate measurement for CVD, in HIV-infected individuals on ART and HIV-uninfected controls as a cross-sectional, case-control study. We quantified the frequency of monocyte subsets (CD14, CD16), markers of monocyte activation (CD38, HLA-DR), and endothelial adhesion (CCR2, CX3CR1, CD11b) by flow cytometry. Plasma levels of lipopolysaccharide, sCD163, sCD14, sCX3CL1, and sCCL2, were measured by ELISA. Genotyping of TLR4 and CD14 SNPs was also performed. The TT genotype for CD14/−260SNP but not the CC/CT genotype was associated with elevated plasma sCD14, and increased frequency of CD11b+CD14+ monocytes in HIV-infected individuals. The TT genotype was associated with lower cIMT in HIV-infected patients (n = 47) but not in HIV-uninfected controls (n = 37). The AG genotype for TLR4/+896 was associated with increased CX3CR1 expression on total monocytes among HIV-infected individuals and increased sCCL2 and fibrinogen levels in HIV-uninfected controls. SNPs in CD14/−260 and TLR4/+896 were significantly associated with different markers of systemic and monocyte activation and cIMT that differed between HIV-infected participants on ART and HIV-uninfected controls. Further investigation on the relationship of these SNPs with a clinical endpoint of CVD is warranted in HIV-infected patients on ART. PMID:27495090

  18. Genetic polymorphisms in the CD14 gene are associated with monocyte activation and carotid intima-media thickness in HIV-infected patients on antiretroviral therapy.

    Science.gov (United States)

    Yong, Yean K; Shankar, Esaki M; Westhorpe, Clare L V; Maisa, Anna; Spelman, Tim; Kamarulzaman, Adeeba; Crowe, Suzanne M; Lewin, Sharon R

    2016-08-01

    HIV-infected individuals on antiretroviral therapy (ART) are at increased risk of cardiovascular disease (CVD). Given the relationship between innate immune activation and CVD, we investigated the association of single-nucleotide polymorphisms (SNPs) in TLR4 and CD14 and carotid intima-media thickness (cIMT), a surrogate measurement for CVD, in HIV-infected individuals on ART and HIV-uninfected controls as a cross-sectional, case-control study. We quantified the frequency of monocyte subsets (CD14, CD16), markers of monocyte activation (CD38, HLA-DR), and endothelial adhesion (CCR2, CX3CR1, CD11b) by flow cytometry. Plasma levels of lipopolysaccharide, sCD163, sCD14, sCX3CL1, and sCCL2, were measured by ELISA. Genotyping of TLR4 and CD14 SNPs was also performed. The TT genotype for CD14/-260SNP but not the CC/CT genotype was associated with elevated plasma sCD14, and increased frequency of CD11b+CD14+ monocytes in HIV-infected individuals. The TT genotype was associated with lower cIMT in HIV-infected patients (n = 47) but not in HIV-uninfected controls (n = 37). The AG genotype for TLR4/+896 was associated with increased CX3CR1 expression on total monocytes among HIV-infected individuals and increased sCCL2 and fibrinogen levels in HIV-uninfected controls. SNPs in CD14/-260 and TLR4/+896 were significantly associated with different markers of systemic and monocyte activation and cIMT that differed between HIV-infected participants on ART and HIV-uninfected controls. Further investigation on the relationship of these SNPs with a clinical endpoint of CVD is warranted in HIV-infected patients on ART.

  19. Levamisole enhances immune response by affecting the activation and maturation of human monocyte-derived dendritic cells

    Science.gov (United States)

    Chen, L-Y; Lin, Y-L; Chiang, B-L

    2008-01-01

    Levamisole is a synthetic phenylimidazolthiazole that was first introduced in 1966 as an anti-helmintic agent. Current studies have been focused upon its effect on immune response and on cancer treatment. We examined the molecular mechanisms of levamisole in the activation and maturation of human monocyte-derived dendritic cells (DC) and human T cells. Treatment of DC with levamisole increased the presentation of CD80, CD86, CD83 and human leucocyte antigen D-related (HLA-DR) molecules on the cell membrane, as well as the production of interleukin (IL)-12 p40 and IL-10. Levamisole-treated human DC also enhanced T cell activation towards type 1 T helper immune response by inducing interferon-γ secretion. Neutralization with antibodies against Toll-like receptor (TLR)-2 inhibited levamisole-induced production of IL-12 p40 and IL-10, suggesting a vital role for TLR-2 in signalling DC upon incubation with levamisole. The inhibition of nuclear factor-κB, extracellular signal-regulated kinases 1/2 or c-Jun N-terminal kinases pathways also prevented the effects of levamisole on DC in producing IL-12 p40 or IL-10. Taken together, levamisole could enhance immune response towards T helper 1 development through the activation of dendritic cells or T cell aspects. PMID:18005262

  20. Indoor pollutant hexabromocyclododecane enhances house dust mite-induced activation of human monocyte-derived dendritic cells.

    Science.gov (United States)

    Canbaz, Derya; Lebre, M Cristina; Logiantara, Adrian; van Ree, Ronald; van Rijt, Leonie S

    2016-11-01

    The indoor pollutant hexabromocyclododecane (HBCD) has been added as flame retardant to many consumer products but detaches and accumulates in house dust. Inhalation of house dust leads to exposure to house dust mite (HDM) allergens in the presence of HBCD. Activation of dendritic cells is crucial in the sensitization to HDM allergens. The current study examined whether exposure to HBCD affected activation/maturation of HDM-exposed human dendritic cells (DC). Human monocyte-derived DC (moDC) were exposed simultaneously to HDM and a concentration range of HBCD (0.1-20 μM) in vitro. HDM exposure of moDC induced expression of co-stimulatory molecule CD80 and production of pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. However, simultaneous exposure of moDC to HBCD and HDM enhanced the expression of antigen presenting molecule HLA-DR, co-stimulatory molecule CD86 and pro-inflammatory cytokine IL-8 depending on the dose of HBCD. Our results indicate that simultaneous exposure of HDM and HBCD can enhance the antigen presentation and maturation/activation of DC.

  1. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBPα, peroxisome proliferators-activated receptor γ2 (PPARγ2, and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  2. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Science.gov (United States)

    Zhang, Juan; Tang, Hongju; Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  3. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    Energy Technology Data Exchange (ETDEWEB)

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  4. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression.

    Science.gov (United States)

    Liu, Mo; Lee, Dung-Fang; Chen, Chun-Te; Yen, Chia-Jui; Li, Long-Yuan; Lee, Hong-Jen; Chang, Chun-Ju; Chang, Wei-Chao; Hsu, Jung-Mao; Kuo, Hsu-Ping; Xia, Weiya; Wei, Yongkun; Chiu, Pei-Chun; Chou, Chao-Kai; Du, Yi; Dhar, Debanjan; Karin, Michael; Chen, Chung-Hsuan; Hung, Mien-Chie

    2012-01-27

    Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.

  5. Chemical dampening of Ly6C(hi) monocytes in the periphery produces anti-depressant effects in mice.

    Science.gov (United States)

    Zheng, Xiao; Ma, Sijing; Kang, An; Wu, Mengqiu; Wang, Lin; Wang, Qiong; Wang, Guangji; Hao, Haiping

    2016-01-19

    The involvement of systemic immunity in depression pathogenesis promises a periphery-targeting paradigm in novel anti-depressant discovery. However, relatively little is known about druggable targets in the periphery for mental and behavioral control. Here we report that targeting Ly6C(hi) monocytes in blood can serve as a strategy for anti-depressant purpose. A natural compound, ginsenoside Rg1 (Rg1), was firstly validated as a periphery-restricted chemical probe. Rg1 selectively suppressed Ly6C(hi) monocytes recruitment to the inflamed mice brain. The proinflammatory potential of Ly6C(hi) monocytes to activate astrocytes was abrogated by Rg1, which led to a blunted feedback release of CCL2 to recruit the peripheral monocytes. In vitro study demonstrated that Rg1 pretreatment on activated THP-1 monocytes retarded their ability to trigger CCL2 secretion from co-cultured U251 MG astrocytes. CCL2-triggered p38/MAPK and PI3K/Akt activation were involved in the action of Rg1. Importantly, in mice models, we found that dampening Ly6C(hi) monocytes at the periphery ameliorated depression-like behavior induced by neuroinflammation or chronic social defeat stress. Together, our work unravels that blood Ly6C(hi) monocytes may serve as the target to enable remote intervention on the depressed brain, and identifies Rg1 as a lead compound for designing drugs targeting peripheral CCL2 signals.

  6. Highly Active Antiretroviral Therapy (HAART)-Related Hypertriglyceridemia Is Associated With Failure of Recovery of CD14lowCD16+ Monocyte Subsets in AIDS Patients.

    Science.gov (United States)

    Han, Junyan; Zhao, Hongxin; Ma, Yaluan; Zhou, Haiwei; Hao, Yu; Li, Yanmei; Song, Chuan; Han, Ning; Liu, Xiangyi; Zeng, Hui; Qin, Mingzhao

    2015-07-01

    As cellular reservoirs, CD16 monocyte subsets play important roles in the progression of HIV infection. Previous studies have shown that highly active antiretroviral therapy (HAART) reduced the percentages of CD14CD16 monocyte subsets, but did not recover the percentages of CD14CD16 subsets. Eighty-four chronic HIV-infected, HAART-naïve individuals and 55 HIV-negative subjects (31 without hyperlipidemia and 24 with hypertriglyceridemia) were enrolled. Plasma HIV-1 RNA levels, CD4 T-cell counts, triglycerides, total cholesterol, high-density lipoprotein, and low-density lipoprotein were followed up for 48 weeks during HAART treatment in the longitudinal study. We found that mild hypertriglyceridemia in HIV-negative subjects and HIV-infected patients, naïve to HAART, did not affect the percentage of monocyte subsets. However, a failure of CD14CD16 subset recovery was observed in patients with HAART-related hypertriglyceridemia at 48 weeks. Thus, HAART-related hypertriglyceridemia altered homeostasis of monocyte subsets to antiviral therapy, which might further affect immune reconstitution.

  7. Icariin suppresses bone resorption activity of rabbit osteoclasts in vitro

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian; ZHANG JinChao; ZHANG TianLan; WANG Kui

    2007-01-01

    The effect of icariin on the bone resorption activity of rabbit osteoclasts is assessed in vitro. Osteoclasts were isolated from Japanese white rabbits and cultured on plates with a sterilized bone slice in each well. After treatment with icariin at various concentrations, the bone resorption activity of osteoclasts was evaluated by examining pit areas, superoxide anion (O2-) generation, size and number of actin rings and intracellular calcium concentration [Ca2+]i. As revealed by these data, icariin elicited continuous decline of [Ca2+]1, making actin ring constricted and O2- generation decreased. These events resulted in smaller and fewer pits which indicate suppressed bone resorption activity of rabbit osteoclasts by icariin.

  8. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    Science.gov (United States)

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  9. A new stent with streamlined cross-section can suppress monocyte cell adhesion in the flow disturbance zones of the endovascular stent.

    Science.gov (United States)

    Chen, Zengsheng; Zhan, Fan; Ding, Jun; Zhang, Xiwen; Deng, Xiaoyan

    2016-01-01

    We proposed a new stent with streamlined cross-sectional wires, which is different from the clinical coronary stents with square or round cross-sections. We believe the new stent might have better hemodynamic performance than the clinical metal stents. To test the hypothesis, we designed an experimental study to compare the performance of the new stent with the clinical stents in terms of monocyte (U-937 cells) adhesion. The results showed that when compared with the clinical stents, the adhesion of U-937 cells were much less in the new stent. The results also showed that, when Reynolds number increased from 180 (the rest condition for the coronary arteries) to 360 (the strenuous exercise condition for the coronary arteries), the flow disturbance zones in the clinical stents became larger, while they became smaller with the new stent. The present experimental study therefore suggests that the optimization of the cross-sectional shape of stent wires ought to be taken into consideration in the design of endovascular stents.

  10. [Suppression of cycling activity in sheep using parenteral progestagen treatment].

    Science.gov (United States)

    Janett, F; Camponovo, L; Lanker, U; Hässig, M; Thun, R

    2004-03-01

    The objective of this study was to evaluate the effect of two synthetic progestagen preparations Chlormadinone acetate (CAP, Chronosyn, Veterinaria AG Zürich) and Medroxyprogesterone acetate (MPA, Nadigest, G Streuli & Co. Uznach) on cycling activity and fertility in sheep. A flock of 28 non pregnant white alpine sheep was randomly divided into three groups, A (n = 10), B (n = 9) and C (n = 9). During a period of 4 weeks the cycling activity was confirmed by blood progesterone analysis. Thereafter, the animals of group A were treated with 50 mg CAP, those of group B with 140 mg MPA and those of group C with physiological saline solution. All injections were given intramuscularly. Suppression of endogenous progesterone secretion lasted from 28 to 49 days (mean = 39 days) in group A and from 42 to 70 days (mean = 50 days) in group B. The synchronization effect of both preparations was unsatisfactory as the occurrence of first estrus was distributed over a period of 3 weeks in group A and 4 weeks in group B. These findings could also be confirmed by the lambing period which lasted 52 days in group A and 36 days in group B. Control animals lambed within 9 days due to the synchronizing effect of the ram. The first fertile estrus was observed 36 days (group A) and 45 days (group B) after the treatment. In group A all 10 animals and in groups B and C 8 of 9 ewes each became pregnant. Parenteral progestagen application with CAP and MPA is a simple, safe and reversible method of estrus suppression in the sheep. The minimal suppressive duration of 4 (CAP) and 5 weeks (MPA) is not sufficient when a period of 3 months (alpine pasture period) is desired.

  11. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Hasselbalch, Hans C; Nielsen, Claus H

    2013-01-01

    Activated platelets are known to modulate immune responses by secreting or shedding a range of immunomodulatory substances. We examined the influence of activated platelets on cytokine production by normal human mononuclear cells, induced by tetanus toxoid (TT), human thyroglobulin (TG), Escheric......Activated platelets are known to modulate immune responses by secreting or shedding a range of immunomodulatory substances. We examined the influence of activated platelets on cytokine production by normal human mononuclear cells, induced by tetanus toxoid (TT), human thyroglobulin (TG...

  12. A distinct peripheral blood monocyte phenotype is associated with parasite inhibitory activity in acute uncomplicated Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Pattamawan Chimma

    2009-10-01

    Full Text Available Monocyte (MO subpopulations display distinct phenotypes and functions which can drastically change during inflammatory states. We hypothesized that discrete MO subpopulations are induced during malaria infection and associated with anti-parasitic activity. We characterized the phenotype of blood MO from healthy malaria-exposed individuals and that of patients with acute uncomplicated malaria by flow cytometry. In addition, MO defense function was evaluated by an in vitro antibody dependent cellular inhibition (ADCI assay. At the time of admission, the percentages and absolute numbers of CD16+ MO, and CCR2+CX3CR1+ MO, were high in a majority of patients. Remarkably, expression of CCR2 and CX3CR1 on the CD14(high (hi MO subset defined two subgroups of patients that also differed significantly in their functional ability to limit the parasite growth, through the ADCI mechanism. In the group of patients with the highest percentages and absolute numbers of CD14(hiCCR2+CX3CR1+ MO and the highest mean levels of ADCI activity, blood parasitemias were lower (0.14+/-0.34% than in the second group (1.30+/-3.34%; p = 0.0053. Data showed that, during a malaria attack, some patients' MO can exert a strong ADCI activity. These results bring new insight into the complex relationships between the phenotype and the functional activity of blood MO from patients and healthy malaria-exposed individuals and suggest discrete MO subpopulations are induced during malaria infection and are associated with anti-parasitic activity.

  13. Monocyte-Platelet Interaction Induces a Pro-Inflammatory Phenotype in Circulating Monocytes

    OpenAIRE

    2011-01-01

    BACKGROUND: Activated platelets exert a pro-inflammatory action that can be largely ascribed to their ability to interact with leukocytes and modulate their activity. We hypothesized that platelet activation and consequent formation of monocyte-platelet aggregates (MPA) induces a pro-inflammatory phenotype in circulating monocytes. METHODOLOGY/PRINCIPAL FINDINGS: CD62P(+) platelets and MPA were measured, and monocytes characterized, by whole blood flow cytometry in healthy subjects, before an...

  14. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells.

    Science.gov (United States)

    Tabe, Yoko; Yamamoto, Shinichi; Saitoh, Kaori; Sekihara, Kazumasa; Monma, Norikazu; Ikeo, Kazuho; Mogushi, Kaoru; Shikami, Masato; Ruvolo, Vivian; Ishizawa, Jo; Hail, Numsen; Kazuno, Saiko; Igarashi, Mamoru; Matsushita, Hiromichi; Yamanaka, Yasunari; Arai, Hajime; Nagaoka, Isao; Miida, Takashi; Hayashizaki, Yoshihide; Konopleva, Marina; Andreeff, Michael

    2017-03-15

    Leukemia cells in the bone marrow must meet the biochemical demands of increased cell proliferation and also survive by continually adapting to fluctuations in nutrient and oxygen availability. Thus, targeting metabolic abnormalities in leukemia cells located in the bone marrow is a novel therapeutic approach. In this study, we investigated the metabolic role of bone marrow adipocytes in supporting the growth of leukemic blasts. Prevention of nutrient starvation-induced apoptosis of leukemic cells by bone marrow adipocytes, as well as the metabolic and molecular mechanisms involved in this process, was investigated using various analytic techniques. In acute monocytic leukemia (AMoL) cells, the prevention of spontaneous apoptosis by bone marrow adipocytes was associated with an increase in fatty acid β-oxidation (FAO) along with the upregulation of PPARγ, FABP4, CD36, and BCL2 genes. In AMoL cells, bone marrow adipocyte coculture increased adiponectin receptor gene expression and its downstream target stress response kinase AMPK, p38 MAPK with autophagy activation, and upregulated antiapoptotic chaperone HSPs. Inhibition of FAO disrupted metabolic homeostasis, increased reactive oxygen species production, and induced the integrated stress response mediator ATF4 and apoptosis in AMoL cells cocultured with bone marrow adipocytes. Our results suggest that bone marrow adipocytes support AMoL cell survival by regulating their metabolic energy balance and that the disruption of FAO in bone marrow adipocytes may be an alternative, novel therapeutic strategy for AMoL therapy. Cancer Res; 77(6); 1453-64. ©2017 AACR.

  15. Dipeptidyl peptidase-4 inhibitor decreases abdominal aortic aneurysm formation through GLP-1-dependent monocytic activity in mice.

    Directory of Open Access Journals (Sweden)

    Hsin Ying Lu

    Full Text Available Abdominal aortic aneurysm (AAA is a life-threatening situation affecting almost 10% of elders. There has been no effective medication for AAA other than surgical intervention. Dipeptidyl peptidase-4 (DPP-4 inhibitors have been shown to have a protective effect on cardiovascular disease. Whether DPP-4 inhibitors may be beneficial in the treatment of AAA is unclear. We investigated the effects of DPP-4 inhibitor sitagliptin on the angiotensin II (Ang II-infused AAA formation in apoE-deficient (apoE-/- mice. Mice with induced AAA were treated with placebo or 2.5, 5 or 10 mg/kg/day sitagliptin. Ang II-infused apoE-/- mice exhibited a 55.6% incidence of AAA formation, but treatment with sitagliptin decreased AAA formation. Specifically, administered sitagliptin in Ang II-infused mice exhibited decreased expansion of the suprarenal aorta, reduced elastin lamina degradation of the aorta, and diminished vascular inflammation by macrophage infiltration. Treatment with sitagliptin decreased gelatinolytic activity and apoptotic cells in aorta tissues. Sitaglipitn, additionally, was associated with increased levels of plasma active glucagon-like peptide-1 (GLP-1. In vitro studies, GLP-1 decreased reactive oxygen species (ROS production, cell migration, and MMP-2 as well as MMP-9 activity in Ang II-stimulated monocytic cells. The results conclude that oral administration of sitagliptin can prevent abdominal aortic aneurysm formation in Ang II-infused apoE-/-mice, at least in part, by increasing of GLP-1 activity, decreasing MMP-2 and MMP-9 production from macrophage infiltration. The results indicate that sitagliptin may have therapeutic potential in preventing the development of AAA.

  16. 1,25-Dihydroxyvitamin D3 Suppresses TLR8 Expression and TLR8-Mediated Inflammatory Responses in Monocytes In Vitro and Experimental Autoimmune Encephalomyelitis In Vivo

    Science.gov (United States)

    2013-03-14

    International Agency for Research on Cancer , Lyon, France, 3Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma...vitamin D, was able to suppress inflammatory cytokine production in the inflamed EAE spinal cords and effectively ameliorate EAE [6], [7], [8], [9...was recorded daily and presented in the Figure S1A. Immunostaining of the spinal cord sections for microglia/ macrophage maker F4/80 revealed a severe

  17. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  18. Elevated Atherosclerosis-Related Gene Expression, Monocyte Activation and Microparticle-Release Are Related to Increased Lipoprotein-Associated Oxidative Stress in Familial Hypercholesterolemia

    DEFF Research Database (Denmark)

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon

    2015-01-01

    OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the hypoth......OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate...... in subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). APPROACH AND RESULTS: We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT...

  19. Imbalance of Circulating Monocyte Subsets and PD-1 Dysregulation in Q Fever Endocarditis: The Role of IL-10 in PD-1 Modulation

    Science.gov (United States)

    Ka, Mignane B.; Gondois-Rey, Françoise; Capo, Christian; Textoris, Julien; Million, Mathieu; Raoult, Didier; Olive, Daniel; Mege, Jean-Louis

    2014-01-01

    Q fever endocarditis, a severe complication of Q fever, is associated with a defective immune response, the mechanisms of which are poorly understood. We hypothesized that Q fever immune deficiency is related to altered distribution and activation of circulating monocyte subsets. Monocyte subsets were analyzed by flow cytometry in peripheral blood mononuclear cells from patients with Q fever endocarditis and controls. The proportion of classical monocytes (CD14+CD16− monocytes) was similar in patients and controls. In contrast, the patients with Q fever endocarditis exhibited a decrease in the non-classical and intermediate subsets of monocytes (CD16+ monocytes). The altered distribution of monocyte subsets in Q fever endocarditis was associated with changes in their activation profile. Indeed, the expression of HLA-DR, a canonical activation molecule, and PD-1, a co-inhibitory molecule, was increased in intermediate monocytes. This profile was not restricted to CD16+ monocytes because CD4+ T cells also overexpressed PD-1. The mechanism leading to the overexpression of PD-1 did not require the LPS from C. burnetii but involved interleukin-10, an immunosuppressive cytokine. Indeed, the incubation of control monocytes with interleukin-10 led to a higher expression of PD-1 and neutralizing interleukin-10 prevented C. burnetii-stimulated PD-1 expression. Taken together, these results show that the immune suppression of Q fever endocarditis involves a cross-talk between monocytes and CD4+ T cells expressing PD-1. The expression of PD-1 may be useful to assess chronic immune alterations in Q fever endocarditis. PMID:25211350

  20. Pregnancy and Preeclampsia Affect Monocyte Subsets in Humans and Rats

    NARCIS (Netherlands)

    Melgert, Barbro N.; Spaans, Floor; Borghuis, Theo; Klok, Pieter A.; Groen, Bart; Bolt, Annemarie; de Vos, P.; van Pampus, Maria; Wong, Tsz Y.; van Goor, Harry; Bakker, Winston W.; Faas, Marijke M.

    2012-01-01

    Introduction: Both nonclassical and intermediate monocytes have been implicated in different inflammatory conditions. We hypothesized that these monocytes would increase during pregnancy, a condition associated with generalized activation of inflammatory responses and that they would increase even

  1. Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Ulrike Kuebler

    Full Text Available BACKGROUND: Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM, and (b that these reductions are modulated by stress hormone release. METHODS: Fourty-one healthy men (mean age 35 ± 13 years were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker before assessing HMDM microbicidal potential. RESULTS: Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05. Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72. Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001. This effect was blocked by prior incubation with phentolamine. CONCLUSIONS: Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

  2. Expression and activation of intracellular receptors TLR7, TLR8 and TLR9 in peripheral blood monocytes from HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Guillermo Valencia

    2013-05-01

    Full Text Available Introduction. TLR´s play a role in host defense in HIV infection recognizing the viral DNA or RNA. Their activation induces a signaling pathway that includes the proteins MyD88, IRAK4, TRAF6 and the transcription factor NF-kBp65. Objective. To determine the expression of TLR7, TLR8 and TLR9, and activation of its signaling pathway in monocytes from patients infected with HIV. Methods. Expression of TLR7, TLR8 and TLR9 was determined in monocytes from HIV-infected patients (n = 13 and control subjects (n = 13, which were activated with specific ligands. The expression of MyD88 and NF-kBp65 were determined by flow cytometry; IRAK4 and TRAF6 were studied by immunoblotting. Results. No statistical difference was found in the expression of TLR7, 8 and 9 in monocytes from patients compared to controls, but we observed the non-significant increased expression of TLR9 in patients. The activation showed no significant difference in the expression of MyD88 and NF-kBp65 in patients when compared to controls, but were decreased in stimulated cells over non-stimulated cells. IRAK4 and TRAF6 were not detected. Conclusions. No statistical difference was observed in the expression of intracellular TLRs, MyD88 and NFkBp65 in monocytes from patients compared to controls. This was probably due to effective antiretroviral therapy being received at the time of study entry. Additional studies are needed (ARTV under controlled conditions that include infected patients with and without ARVT, responders and non- responders, and work with different cell populations 

  3. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase.

    Science.gov (United States)

    Hughes, Paul E; Oertli, Beat; Hansen, Malene; Chou, Fan-Li; Willumsen, Berthe M; Ginsberg, Mark H

    2002-07-01

    The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.

  4. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever.

    Science.gov (United States)

    Durbin, Anna P; Vargas, Maria José; Wanionek, Kimberli; Hammond, Samantha N; Gordon, Aubree; Rocha, Crisanta; Balmaseda, Angel; Harris, Eva

    2008-07-05

    In vitro studies have attempted to identify dengue virus (DEN) target cells in peripheral blood; however, extensive phenotyping of peripheral blood mononuclear cells (PBMCs) from dengue patients has not been reported. PBMCs collected from hospitalized children suspected of acute dengue were analyzed for DEN prM, CD32, CD86, CD14, CD11c, CD16, CD209, CCR7, CD4, and CD8 by flow cytometry to detect DEN antigen in PBMCs and to phenotype DEN-positive cells. DEN prM was detected primarily in activated monocytes (CD14(+), CD32(+), CD86(+), CD11c(+)). A subset of samples analyzed for DEN nonstructural protein 3 (NS3) confirmed that approximately half of DEN antigen-positive cells contained replicating virus. A higher percentage of PBMCs from DHF patients expressed prM, CD86, CD32, and CD11c than did those from DF patients. Increased activation of monocytes and greater numbers of DEN-infected cells were associated with more severe dengue, implicating a role for monocyte activation in dengue immunopathogenesis.

  5. Stimulation of the Angiotensin II AT2 Receptor is Anti-inflammatory in Human Lipopolysaccharide-Activated Monocytic Cells

    DEFF Research Database (Denmark)

    Menk, Mario; Graw, Jan Adriaan; von Haefen, Clarissa

    2015-01-01

    in these cells. Human monocytic THP-1 and U937 cells were stimulated with lipopolysaccharide (LPS) and the selective AT2 receptor agonist Compound 21 (C21). Expression of pro- and anti-inflammatory cytokines IL-6, IL-10, tumor necrosis factor-α (TNFα), and IL-1β were analyzed on both the transcriptional...... and the translational level over course of time. Treatment with C21 attenuated the expression of TNFα, IL-6, and IL-10 after LPS challenge in both cell lines in a time- and dose-dependent manner. We conclude that selective AT2 receptor stimulation acts anti-inflammatory in human monocytes. Modulation of cytokine......Recently, AT2 receptors have been discovered on the surface of human immunocompetent cells such as monocytes. Data on regulative properties of this receptor on the cellular immune response are poor. We hypothesized that direct stimulation of the AT2 receptor mediates anti-inflammatory responses...

  6. HIV-1 gp120 activates the STAT3/interleukin-6 axis in primary human monocyte-derived dendritic cells.

    Science.gov (United States)

    Del Cornò, Manuela; Donninelli, Gloria; Varano, Barbara; Da Sacco, Letizia; Masotti, Andrea; Gessani, Sandra

    2014-10-01

    Dendritic cells (DCs) are fundamental for the initiation of immune responses and are important players in AIDS immunopathogenesis. The modulation of DC functional activities represents a strategic mechanism for HIV-1 to evade immune surveillance. Impairment of DC function may result from bystander effects of HIV-1 envelope proteins independently of direct HIV-1 infection. In this study, we report that exposure of immature monocyte-derived DCs (MDDCs) to HIV-1 R5 gp120 resulted in the CCR5-dependent production of interleukin-6 (IL-6) via mitogen-activated protein kinase (MAPK)/NF-κB pathways. IL-6 in turn activated STAT3 by an autocrine loop. Concomitantly, gp120 promoted an early activation of STAT3 that further contributed to IL-6 induction. This activation paralleled a concomitant upregulation of the STAT3 inhibitor PIAS3. Notably, STAT3/IL-6 pathway activation was not affected by the CCR5-specific ligand CCL4. These results identify STAT3 as a key signaling intermediate activated by gp120 in MDDCs and highlight the existence of a virus-induced dysregulation of the IL-6/STAT3 axis. HIV-1 gp120 signaling through STAT3 may provide an explanation for the impairment of DC function observed upon HIV exposure. This study provides new evidence for the molecular mechanisms and signaling pathways triggered by HIV-1 gp120 in human DCs in the absence of productive infection, emphasizing a role of aberrant signaling in early virus-host interaction, contributing to viral pathogenesis. We identified STAT3 as a key component in the gp120-mediated signaling cascade involving MAPK and NF-κB components and ultimately leading to IL-6 secretion. STAT3 now is recognized as a key regulator of DC functions. Thus, the identification of this transcription factor as a signaling molecule mediating some of gp120's biological effects unveils a new mechanism by which HIV-1 may deregulate DC functions and contribute to AIDS pathogenesis. Copyright © 2014, American Society for Microbiology

  7. Hybrid Active/Passive Jet Engine Noise Suppression System

    Science.gov (United States)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  8. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  9. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm.

    Science.gov (United States)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S; Buendía, Irene; Egido, Jesús; Blanco-Colio, Luis Miguel; Samaniego, Rafael; Meilhac, Olivier; Michel, Jean Baptiste; Martín-Ventura, José Luis; Moreno, Juan Antonio

    2015-12-15

    Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD163 expressing macrophages ex vivo, in vitro and in human AAA. CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent to neoangiogenic microvessels. Dual CD14/CD163 expression was observed in recently infiltrated monocytes surrounding microvessels. A higher release of soluble CD163 was observed in the conditioned medium from AAA (AAA-CM, n=10), mainly in the adventitial layer. Similar to Hb, AAA-CM induced CD163-dependent monocyte chemotaxis, especially on circulating monocytes from AAA patients. Hb or AAA-CM promoted differentiation towards CD163(high)/HLA-DR(low)-expressing macrophages, with enhanced Hb uptake, increased anti-inflammatory IL-10 secretion and decreased pro-inflammatory IL-12p40 release. All these effects were partially suppressed when Hb was removed from AAA-CM. Separate analysis on circulating monocytes reported increased percentage of pre-infiltrating CD14(++)CD16(+) monocytes in patients with AAA (n=21), as compared to controls (n=14). A significant increase in CD163 expression in CD14(++)CD16(+) monocyte subpopulation was observed in AAA patients. The presence of Hb in the adventitial AAA-wall promotes the migration and differentiation of activated circulating monocytes in AAA patients, explaining the existence of a protective CD163-macrophage phenotype that could take up the Hb present in the AAA-wall, avoiding its injurious effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta.

    Directory of Open Access Journals (Sweden)

    Juan C Salazar

    2009-05-01

    Full Text Available It is widely believed that innate immune responses to Borrelia burgdorferi (Bb are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-beta and a number of interferon-stimulated genes (ISGs, which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-alpha, IL-6, IL-10 and IL-1beta in monocytes than did lysates. Secreted IL-18, which, like IL-1beta, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-beta and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs.

  11. Dendritic cell plasticity in tumor-conditioned skin: CD14+ cells at the cross-roads of immune activation and suppression

    Directory of Open Access Journals (Sweden)

    Rieneke evan de Ven

    2013-11-01

    Full Text Available Tumors abuse myeloid plasticity to re-direct dendritic cell (DC differentiation from T cell stimulatory subsets to immune suppressive subsets that can interfere with antitumor immunity. Lined by a dense network of easily accessible DC the skin is a preferred site for the delivery of DC-targeted vaccines. Various groups have recently been focusing on functional aspects of DC subsets in the skin and how these may be affected by tumor-derived suppressive factors. IL-6, Prostaglandin-E2 and IL-10 were identified as factors in cultures of primary human tumors responsible for the inhibited development and activation of skin DC as well as monocyte-derived DC. IL-10 was found to be uniquely able to convert fully developed DC to immature macrophage-like cells with functional M2 characteristics in a physiologically highly relevant skin explant model in which the phenotypic and functional traits of crawl-out DC were studied. Mostly from mouse studies, the JAK2/STAT3 signaling pathway has emerged as a master switch of tumor-induced immune suppression. Our lab has additionally identified p38-MAPK as an important signaling element in human DC suppression, and recently validated it as such in ex vivo cultures of single-cell suspensions from melanoma metastases. Through the identification of molecular mechanisms and signaling events that drive myeloid immune suppression in human tumors, more effective DC-targeted cancer vaccines may be designed.

  12. Monocyte Subpopulations in Angiogenesis

    Science.gov (United States)

    Dalton, Heather J.; Armaiz-Pena, Guillermo; Gonzalez-Villasana, Vianey; Lopez-Berestein, Gabriel; Bar-Eli, Menashe; Sood, Anil K.

    2014-01-01

    Growing understanding of the role of the tumor microenvironment in angiogenesis has brought monocyte-derived cells into focus. Monocyte subpopulations are an increasingly attractive therapeutic target in many pathologic states, including cancer. Before monocyte-directed therapies can be fully harnessed for clinical use, understanding of monocyte-driven angiogenesis in tissue development and homeostasis, as well as malignancy, is required. Here, we provide an overview of the mechanisms by which monocytic subpopulations contribute to angiogenesis in tissue and tumor development, highlight gaps in our existing knowledge, and discuss opportunities to exploit these cells for clinical benefit. PMID:24556724

  13. Gomesin acts in the immune system and promotes myeloid differentiation and monocyte/macrophage activation in mouse.

    Science.gov (United States)

    Buri, Marcus V; Dias, Carol C; Barbosa, Christiano M V; Nogueira-Pedro, Amanda; Ribeiro-Filho, Antonio C; Miranda, Antonio; Paredes-Gamero, Edgar J

    2016-11-01

    Due to the cytotoxic effect of antimicrobial peptides (AMP) against several microorganism and tumor cells has been proposed their association with the immune system. However, just a few reports have shown this relationship. In this study, mice were treated with gomesin, a β-hairpin AMP that exhibit high cytotoxicity against bacterial and tumor cells. Different effects in the immune system were observed, such as, decrease of CD3(+) in T lymphocytes (Control: 17.7±1.4%; Gomesin: 7.67±1.2%) and in hematopoietic progenitors and increase of hematopoietic stem cell (Control: 0.046±0.004%; Gomesin: 0.067±0.003%), B220(+) B lymphocytes (Control: 38.63±1.5%; Gomesin: 47.83±0.48%), and Mac-1(+)F4/80(+) macrophages (Control: 11.76±3.4%; Gomesin: 27.13±4.0%). Additionally, macrophage increase was accompanied by an increase of macrophage phagocytosis (Control 20.85±1.53; Gomesin 31.32±1 Geometric mean), interleukin 6 (Control: 47.24±1.9ng/mL; Gomesin: 138.68±33.68ng/mL) and monocyte chemoattractant protein-1 (Control: 0.872±0.093ng/mL; Gomesin: 1.83±0.067ng/mL). Thus, this report showed immunomodulatory activity of gomesin in the immune system of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Do Biomarkers of Inflammation, Monocyte Activation, and Altered Coagulation Explain Excess Mortality Between HIV Infected and Uninfected People?

    Science.gov (United States)

    So-Armah, Kaku A; Tate, Janet P; Chang, Chung-Chou H; Butt, Adeel A; Gerschenson, Mariana; Gibert, Cynthia L; Leaf, David; Rimland, David; Rodriguez-Barradas, Maria C; Budoff, Matthew J; Samet, Jeffrey H; Kuller, Lewis H; Deeks, Steven G; Crothers, Kristina; Tracy, Russell P; Crane, Heidi M; Sajadi, Mohammad M; Tindle, Hilary A; Justice, Amy C; Freiberg, Matthew S

    2016-06-01

    HIV infection and biomarkers of inflammation [measured by interleukin-6 (IL-6)], monocyte activation [soluble CD14 (sCD14)], and coagulation (D-dimer) are associated with morbidity and mortality. We hypothesized that these immunologic processes mediate (explain) some of the excess risk of mortality among HIV infected (HIV+) versus uninfected people independently of comorbid diseases. Among 2350 (1521 HIV+) participants from the Veterans Aging Cohort Study Biomarker Cohort (VACS BC), we investigated whether the association between HIV and mortality was altered by adjustment for IL-6, sCD14, and D-dimer, accounting for confounders. Participants were followed from date of blood draw for biomarker assays (baseline) until death or July 25, 2013. Analyses included ordered logistic regression and Cox Proportional Hazards regression. During 6.9 years (median), 414 deaths occurred. The proportional odds of being in a higher quartile of IL-6, sCD14, or D-dimer were 2-3 fold higher for viremic HIV+ versus uninfected people. Mortality rates were higher among HIV+ compared with uninfected people [incidence rate ratio (95% CI): 1.31 (1.06 to 1.62)]. Mortality risk increased with increasing quartiles of IL-6, sCD14, and D-dimer regardless of HIV status. Adjustment for IL-6, sCD14, and D-dimer partially attenuated mortality risk among HIV+ people with unsuppressed viremia (HIV-1 RNA ≥10,000 copies per milliliter) compared with uninfected people-hazard ratio (95% CI) decreased from 2.18 (1.60 to 2.99) to 2.00 (1.45 to 2.76). HIV infection is associated with elevated IL-6, sCD14, and D-dimer, which are in turn associated with mortality. Baseline measures of these biomarkers partially mediate excess mortality risk among HIV+ versus uninfected people.

  15. Do Biomarkers of Inflammation, Monocyte Activation, and Altered Coagulation Explain Excess Mortality Between HIV Infected and Uninfected People?

    Science.gov (United States)

    Tate, Janet P.; Chang, Chung-Chou H.; Butt, Adeel A.; Gerschenson, Mariana; Gibert, Cynthia L.; Leaf, David; Rimland, David; Rodriguez-Barradas, Maria C.; Budoff, Matthew J.; Samet, Jeffrey H.; Kuller, Lewis H.; Deeks, Steven G.; Crothers, Kristina; Tracy, Russell P.; Crane, Heidi M.; Sajadi, Mohammad M.; Tindle, Hilary A.; Justice, Amy C.; Freiberg, Matthew S.

    2016-01-01

    Background: HIV infection and biomarkers of inflammation [measured by interleukin-6 (IL-6)], monocyte activation [soluble CD14 (sCD14)], and coagulation (D-dimer) are associated with morbidity and mortality. We hypothesized that these immunologic processes mediate (explain) some of the excess risk of mortality among HIV infected (HIV+) versus uninfected people independently of comorbid diseases. Methods: Among 2350 (1521 HIV+) participants from the Veterans Aging Cohort Study Biomarker Cohort (VACS BC), we investigated whether the association between HIV and mortality was altered by adjustment for IL-6, sCD14, and D-dimer, accounting for confounders. Participants were followed from date of blood draw for biomarker assays (baseline) until death or July 25, 2013. Analyses included ordered logistic regression and Cox Proportional Hazards regression. Results: During 6.9 years (median), 414 deaths occurred. The proportional odds of being in a higher quartile of IL-6, sCD14, or D-dimer were 2–3 fold higher for viremic HIV+ versus uninfected people. Mortality rates were higher among HIV+ compared with uninfected people [incidence rate ratio (95% CI): 1.31 (1.06 to 1.62)]. Mortality risk increased with increasing quartiles of IL-6, sCD14, and D-dimer regardless of HIV status. Adjustment for IL-6, sCD14, and D-dimer partially attenuated mortality risk among HIV+ people with unsuppressed viremia (HIV-1 RNA ≥10,000 copies per milliliter) compared with uninfected people—hazard ratio (95% CI) decreased from 2.18 (1.60 to 2.99) to 2.00 (1.45 to 2.76). Conclusions: HIV infection is associated with elevated IL-6, sCD14, and D-dimer, which are in turn associated with mortality. Baseline measures of these biomarkers partially mediate excess mortality risk among HIV+ versus uninfected people. PMID:26885807

  16. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  17. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  18. Early activation of MyD88-mediated autophagy sustains HSV-1 replication in human monocytic THP-1 cells

    Science.gov (United States)

    Siracusano, Gabriel; Venuti, Assunta; Lombardo, Daniele; Mastino, Antonio; Esclatine, Audrey; Sciortino, Maria Teresa

    2016-01-01

    Autophagy is a cellular degradation pathway that exerts numerous functions in vital biological processes. Among these, it contributes to both innate and adaptive immunity. On the other hand, pathogens have evolved strategies to manipulate autophagy for their own advantage. By monitoring autophagic markers, we showed that HSV-1 transiently induced autophagosome formation during early times of the infection of monocytic THP-1 cells and human monocytes. Autophagy is induced in THP-1 cells by a mechanism independent of viral gene expression or viral DNA accumulation. We found that the MyD88 signaling pathway is required for HSV-1-mediated autophagy, and it is linked to the toll-like receptor 2 (TLR2). Interestingly, autophagy inhibition by pharmacological modulators or siRNA knockdown impaired viral replication in both THP-1 cells and human monocytes, suggest that the virus exploits the autophagic machinery to its own benefit in these cells. Taken together, these findings indicate that the early autophagic response induced by HSV-1 exerts a proviral role, improving viral production in a semi-permissive model such as THP-1 cells and human monocytes. PMID:27509841

  19. Increased frequency of CD16+monocytes and the presence of activated dendritic cells in salivary glands in primary Sjogren syndrome

    NARCIS (Netherlands)

    Wildenberg, M. E.; Welzen-Coppens, J. M. C.; van Helden-Meeuwsen, C. G.; Bootsma, H.; Vissink, A.; van Rooijen, N.; de Merwe, J. P. van; Drexhage, H. A.; Versnel, M. A.

    2009-01-01

    Objectives: In the salivary glands of patients with primary Sjogren Syndrome (pSjS) an accumulation of dendritic cells (DCs) is seen, which is thought to play a role in stimulating local inflammation. Aberrancies in subsets of monocytes, generally considered the blood precursors for DCs, may play a

  20. Adipocyte-derived monocyte chemotactic protein-1 (MCP-1) promotes prostate cancer progression through the induction of MMP-2 activity.

    Science.gov (United States)

    Ito, Yusuke; Ishiguro, Hitoshi; Kobayashi, Naohito; Hasumi, Hisashi; Watanabe, Masatoshi; Yao, Masahiro; Uemura, Hiroji

    2015-07-01

    Obesity is known to be associated with prostate cancer development and progression, but the detailed mechanism is not clear. Monocyte chemotactic protein-1 (MCP-1) is secreted from cancer cells, stromal cells, and adipocytes, and it is involved in prostate cancer progression. Here we investigated the biological role of MCP-1 secreted from adipocytes for prostate cancer cells. Human pre-adipocytes (HPAds) were cultured and differentiated to mature adipocytes. Conditioned medium (CM) from HPAd cells was obtained using phenol red-free RPMI1640 medium. We performed a cytokine membrane array analysis to detect cytokines in the CM. To characterize the physiological function of MCP-1 in the CM, we performed an MTT-assay, a wound-healing and invasion assay with anti-MCP-1 antibody using three prostate cancer cell lines: DU145, LNCaP, and PC-3. Matrix metalloproteinase (MMP)-2 and MMP-9 activities were evaluated by gelatin zymography. A qPCR and Western blotting were used to examine the mRNA and protein expression levels of MMP-2. The cytokine membrane array of the CM showed a strong signal of MCP-1compared to the control medium, and we thus focused our attention on MCP-1 in the CM. The CM up-regulated the cancer cell proliferation, and the neutralization by anti-MCP-1 antibody inhibited the proliferative effect of the prostate cancer cell lines. The CM greatly increased the invasive activity in the prostate cancer cell lines, and anti-MCP-1 antibody decreased the invasiveness. Gelatin zymography revealed that the CM markedly enhanced the enzymatic activity of MMP-2, and anti-MCP-1 antibody down-regulated its effect. MMP-2 mRNA expression was undetected and the MMP-2 protein level was unchanged between the control medium and CM in DU145 cells. MCP-1 from adipocytes enhances the growth and invasion activity of prostate cancer cells. The inhibition of MCP-1 derived from adipocytes might be an effective treatment for prostate cancer. © 2015 Wiley Periodicals, Inc.

  1. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation.

    Science.gov (United States)

    Padi, Satyanarayana S V; Shi, Xiang Q; Zhao, Yuan Q; Ruff, Michael R; Baichoo, Noel; Pert, Candace B; Zhang, Ji

    2012-01-01

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.

  2. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion.

  3. Low-Dose Endothelial Monocyte-Activating Polypeptide-II Increases Blood-Tumor Barrier Permeability by Activating the RhoA/ROCK/PI3K Signaling Pathway.

    Science.gov (United States)

    Li, Zhen; Liu, Xiao-Bai; Liu, Yun-Hui; Xue, Yi-Xue; Liu, Jing; Teng, Hao; Xi, Zhuo; Yao, Yi-Long

    2016-06-01

    Previous studies have demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) can increase blood-tumor barrier (BTB) permeability via both paracellular and transcellular pathways. In addition, we revealed that the RhoA/Rho kinase (ROCK) signaling pathway is involved in EMAP-II-induced BTB opening. This study further investigated the exact mechanisms by which the RhoA/ROCK signaling pathway affects EMAP-II-induced BTB hyperpermeability. In an in vitro BTB model, low-dose EMAP-II significantly activated phosphatidylinositol-3-kinase (PI3K) in rat brain microvascular endothelial cells (RBMECs) at 0.75 h. Pretreatment with RhoA inhibitor C3 exoenzyme or ROCK inhibitor Y-27632 completely blocked EMAP-II-induced activation of PI3K. PKC-α/β inhibitor GÖ6976 pretreatment caused no change in EMAP-II-induced activation of PI3K. Besides, pretreatment with LY294002, a specific inhibitor of PI3K, did not affect EMAP-II-induced activation of PKC-α/β. Furthermore, LY294002 pretreatment significantly diminished EMAP-II-induced changes in BTB permeability, phosphorylation of myosin light chain and cofilin, expression and distribution of tight junction-associated protein ZO-1, and actin cytoskeleton arrangement in RBMECs. In summary, this study demonstrates that low-dose EMAP-II can increase BTB permeability by activating the RhoA/ROCK/PI3K signaling pathway.

  4. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes.

    Science.gov (United States)

    Lee, Sahmin; Lee, Hyun-Chae; Kwon, Yoo-Wook; Lee, Sang Eun; Cho, Youngjin; Kim, Joonoh; Lee, Soobeom; Kim, Ju-Young; Lee, Jaewon; Yang, Han-Mo; Mook-Jung, Inhee; Nam, Ky-Youb; Chung, Junho; Lazar, Mitchell A; Kim, Hyo-Soo

    2014-03-04

    Human resistin is a cytokine that induces low-grade inflammation by stimulating monocytes. Resistin-mediated chronic inflammation can lead to obesity, atherosclerosis, and other cardiometabolic diseases. Nevertheless, the receptor for human resistin has not been clarified. Here, we identified adenylyl cyclase-associated protein 1 (CAP1) as a functional receptor for human resistin and clarified its intracellular signaling pathway to modulate inflammatory action of monocytes. We found that human resistin directly binds to CAP1 in monocytes and upregulates cyclic AMP (cAMP) concentration, protein kinase A (PKA) activity, and NF-κB-related transcription of inflammatory cytokines. Overexpression of CAP1 in monocytes enhanced the resistin-induced increased activity of the cAMP-dependent signaling. Moreover, CAP1-overexpressed monocytes aggravated adipose tissue inflammation in transgenic mice that express human resistin from their monocytes. In contrast, suppression of CAP1 expression abrogated the resistin-mediated inflammatory activity both in vitro and in vivo. Therefore, CAP1 is the bona fide receptor for resistin leading to inflammation in humans.

  5. Effect of dialyser membranes on extracellular and intracellular granulocyte and monocyte activation in ex vivo pyrogen-free conditions.

    Science.gov (United States)

    Mahiout, A; Courtney, J M

    1994-10-01

    This study examined effects of blood-contacting materials on the monocyte reaction following the first contact of human blood with hollow fibre dialyser membranes under pyrogen-free conditions. Membrane materials were the unchanged regenerated cellulose, the synthetic polysulphone (PS), a positively charged diethylaminoethyl cellulose (DEAE-C), the negatively charged carboxymethyl cellulose (CMC) and acrylonitrile copolymer (AN). The experimental system involved perfusion with human fresh venous blood through different modules containing the materials in the form of hollow fibre membranes. Extracellular and intracellular aspects of blood reactions after the first contact with the materials were investigated in Ficoll-separated granulocytes and peripheral blood mononuclear cells. Investigations were done by release reactions of platelet activating factor (PAF), oxygen radical (O2-), leukotriene B4, prostaglandin E2 (PGE2) and cytokines (IL-1 beta, TNF-alpha, IL-6). The intracellular activation of peripheral blood mononuclear cells was done by mRNA transcription of IL-1 beta, TNF-alpha, IL-6, IL-8 and beta 2-microglobulin (beta 2-MG). From the set of parameters, release reactions were only measurable for PAF, PGE2 and O2- if a second stimulus (phorbol myristate acetate, lipopolysaccharide, zymosan and calcium ionophore) was used after blood-membrane interaction. Although the extent of the release reaction was weak, negatively charged membranes were, in general, more active. All dialysers exhibited the same increase in beta 2-MG mRNA transcription, suggesting that all blood-contacting membranes initiate the gene expression of beta 2-MG at the same level. TNF-alpha, IL-6, IL-1 beta and IL-8 mRNAs were demonstrated in the AN and CMC membranes rather than the other materials, which exhibit a lower transcription than the tubing set. As has been found, an enhanced generation of PGE2 for both CMC and AN membranes supports, therefore, the concept of an effect of the negative

  6. Cytokine treatment of macrophage suppression of T cell activation.

    Science.gov (United States)

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2010-01-01

    High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.

  7. The suppression of star formation by powerful active galactic nuclei

    CERN Document Server

    Page, M J; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodr'iguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Perez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Portal, M Sanchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2013-01-01

    The old, red stars which constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly from accretion onto black holes. It is widely suspected, but unproven, that the tight correlation in mass of the black hole and stellar components results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, while powerful star-forming galaxies are usually dust-obscured and are brightest at infrared to submillimetre wavelengths. Here we report observations in the submillimetre and X-ray which show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 Gyrs old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10^44 erg/s. This suppression of star formation in the host galaxies of powerful AGN ...

  8. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    Science.gov (United States)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  9. OSCAR Is a Receptor for Surfactant Protein D That Activates TNF-α Release from Human CCR2+ Inflammatory Monocytes

    DEFF Research Database (Denmark)

    Barrow, Alexander D; Palarasah, Yaseelan; Bugatti, Mattia;

    2015-01-01

    Surfactant protein D (SP-D) is critical for maintenance of lung homeostasis and provides a first line of defense to pathogens at mucosal surfaces. Polymorphisms in the SP-D-encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. Identification...... of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2(+) inflammatory monocytes, which secreted TNF-α when exposed...... therapeutic target in chronic inflammatory diseases of the lung as well as other diseases involving tissue accumulation of SP-D, infiltration of inflammatory monocytes, and release of TNF-α....

  10. Monocytes loaded with indocyanine green as active homing contrast agents permit optical differentiation of infectious and non-infectious inflammation.

    Directory of Open Access Journals (Sweden)

    Joani M Christensen

    Full Text Available Distinguishing cutaneous infection from sterile inflammation is a diagnostic challenge and currently relies upon subjective interpretation of clinical parameters, microbiological data, and nonspecific imaging. Assessing characteristic variations in leukocytic infiltration may provide more specific information. In this study, we demonstrate that homing of systemically administered monocytes tagged using indocyanine green (ICG, an FDA-approved near infrared dye, may be assessed non-invasively using clinically-applicable laser angiography systems to investigate cutaneous inflammatory processes. RAW 264.7 mouse monocytes co-incubated with ICG fluoresce brightly in the near infrared range. In vitro, the loaded cells retained the ability to chemotax toward monocyte chemotactic protein-1. Following intravascular injection of loaded cells into BALB/c mice with induced sterile inflammation (Complete Freund's Adjuvant inoculation or infection (Group A Streptococcus inoculation of the hind limb, non-invasive whole animal imaging revealed local fluorescence at the inoculation site. There was significantly higher fluorescence of the inoculation site in the infection model than in the inflammation model as early as 2 hours after injection (p<0.05. Microscopic examination of bacterial inoculation site tissue revealed points of near infrared fluorescence, suggesting the presence of ICG-loaded cells. Development of a non-invasive technique to rapidly image inflammatory states without radiation may lead to new tools to distinguish infectious conditions from sterile inflammatory conditions at the bedside.

  11. Gallic Acid Is the Major Active Component of Cortex Moutan in Inhibiting Immune Maturation of Human Monocyte-Derived Dendritic Cells.

    Science.gov (United States)

    Chan, Ben Chung Lap; Li, Long Fei; Hu, Shui Qing; Wat, Elaine; Wong, Eric Chun Wai; Zhang, Vanilla Xin; Lau, Clara Bik San; Wong, Chun Kwok; Hon, Kam Lun Ellis; Hui, Patrick Chi Leung; Leung, Ping Chung

    2015-09-10

    Atopic dermatitis (AD) is a widely prevalent and chronically relapsing inflammatory skin disease. Penta Herbs Formula (PHF) is efficacious in improving the quality of life and reducing topical corticosteroid used in children with AD and one of the active herbs it contains is Cortex Moutan. Recent studies showed that altered functions of dendritic cells (DC) were observed in atopic individuals, suggesting that DC might play a major role in the generation and maintenance of inflammation by their production of pro-inflammatory cytokines. Hence, the aims of the present study were to identify the major active component(s) of Cortex Moutan, which might inhibit DC functions and to investigate their possible interactions with conventional corticosteroid on inhibiting the development of DC from monocytes. Monocyte-derived dendritic cells (moDC) culture model coupled with the high-speed counter-current chromatography (HSCCC), high pressure liquid chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LCMS) analyses were used. Gallic acid was the major active component from Cortex Moutan which could dose dependently inhibit interleukin (IL)-12 p40 and the functional cluster of differentiation (CD) surface markers CD40, CD80, CD83 and CD86 expression from cytokine cocktail-activated moDC. Gallic acid could also lower the concentration of hydrocortisone required to inhibit the activation of DC.

  12. Gallic Acid Is the Major Active Component of Cortex Moutan in Inhibiting Immune Maturation of Human Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Ben Chung Lap Chan

    2015-09-01

    Full Text Available Atopic dermatitis (AD is a widely prevalent and chronically relapsing inflammatory skin disease. Penta Herbs Formula (PHF is efficacious in improving the quality of life and reducing topical corticosteroid used in children with AD and one of the active herbs it contains is Cortex Moutan. Recent studies showed that altered functions of dendritic cells (DC were observed in atopic individuals, suggesting that DC might play a major role in the generation and maintenance of inflammation by their production of pro-inflammatory cytokines. Hence, the aims of the present study were to identify the major active component(s of Cortex Moutan, which might inhibit DC functions and to investigate their possible interactions with conventional corticosteroid on inhibiting the development of DC from monocytes. Monocyte-derived dendritic cells (moDC culture model coupled with the high-speed counter-current chromatography (HSCCC, high pressure liquid chromatography (HPLC and Liquid Chromatography-Mass Spectrometry (LCMS analyses were used. Gallic acid was the major active component from Cortex Moutan which could dose dependently inhibit interleukin (IL-12 p40 and the functional cluster of differentiation (CD surface markers CD40, CD80, CD83 and CD86 expression from cytokine cocktail-activated moDC. Gallic acid could also lower the concentration of hydrocortisone required to inhibit the activation of DC.

  13. Chloroform extract of aged black garlic attenuates TNF-α-induced ROS generation, VCAM-1 expression, NF-κB activation and adhesiveness for monocytes in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Eun Na; Choi, Young Whan; Kim, Hye Kyung; Park, Jin Kyeong; Kim, Hyo Jin; Kim, Myoung June; Lee, Hee Woo; Kim, Ki-Hyung; Bae, Sun Sik; Kim, Bong Seon; Yoon, Sik

    2011-01-01

    Aged black garlic is a type of fermented garlic (Allium sativum) which has been used in Oriental countries for a long time because of various biological properties of garlic derivatives. The current study explored the potential of the chloroform extract of aged black garlic (CEABG) in attenuating the activities of adhesion molecules in tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs). The study was performed on HUVECs that were pretreated with 30 μg/mL of CEABG before TNF-α treatment. Treatment of HUVECs with CEABG significantly inhibited TNF-α-induced reactive oxygen species (ROS) formation. HUVECs treated with CEABG showed markedly suppressed TNF-α-induced mRNA expression of VCAM-1, but little alteration in ICAM-1 and E-selectin mRNA expression. CEABG treatment also significantly decreased the TNF-α-induced cell surface and total protein expression of VCAM-1 without affecting ICAM-1 and E-selectin expression. In addition, treatment of HUVECs with CEABG markedly reduced THP-1 monocyte adhesion to TNF-α-stimulated HUVECs. Furthermore, CEABG significantly inhibited NF-κB transcription factor activation in TNF-α-stimulated HUVECs. The data provide new evidence of the antiinflammatory properties of CEABG that may have a potential therapeutic use for the prevention and treatment of vascular diseases such as atherosclerosis through mechanisms involving the inhibition of VCAM-1 expression and NF-κB activation in vascular endothelial cells.

  14. Prunella vulgaris Suppresses HG-Induced Vascular Inflammation via Nrf2/HO-1/eNOS Activation

    Directory of Open Access Journals (Sweden)

    Ho Sub Lee

    2012-01-01

    Full Text Available Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV on high glucose (HG-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS. HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1, eNOS, and nuclear factor E2-related factor 2 (Nrf2, which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  15. Granulocytes and monocytes apheresis induces upregulation of TGFβ1 in patients with active ulcerative colitis: A possible involvement of soluble HLA-I.

    Science.gov (United States)

    Contini, Paola; Negrini, Simone; Bodini, Giorgia; Trucchi, Cecilia; Ubezio, Gianluca; Strada, Paolo; Savarino, Vincenzo; Ghio, Massimo

    2017-02-01

    Granulocyte and monocyte apheresis has been used in different immune-mediated disorders, mainly inflammatory bowel diseases. The removal of activated leukocytes and several additional immunomodulatory mechanisms have been so far suggested to explain the anti-inflammatory effects of the treatment. Recent data indicate that, during centrifugation based apheresis, sHLA-I adsorbed to plastic circuits is able to induce TGFβ1 production in activated leukocytes. On these bases, the present study was aimed at analyzing if this model could be applied to a noncentrifugation based apheresis, such as granulocyte and monocyte apheresis. Ten patients with ulcerative colitis were enrolled. Every patient received 5 weekly apheresis treatments. Cellulose acetate beads removed from the column post-GMA were stained by fluorescent anticlass I mAb and examined by fluorescent microscope. Moreover, sFasL plasma concentration, TGFβ1 plasma levels, and the percentage of TGFβ1 positive neutrophils were evaluated before and immediately after each single apheresis. Immunofluorescent images revealed a homogeneous layer of a sHLA-I adsorbed to the surface of the beads recovered following the procedure. sFasL plasma concentration progressively increased both following the procedures and during inter-procedure periods. Consistently, also TGFβ1 plasma levels and the percentage of TGFβ1 positive neutrophils increased during the procedures with a meaningful relationship with sFasL plasma levels. Taken together, these findings suggest that the immunosuppressive effects attributed to granulocyte and monocyte apheresis might depend, at least in part, on the sensitivity of activated leucocytes to the bioactivity of sHLA-I molecules. J. Clin. Apheresis 32:49-55, 2017. © 2016 Wiley Periodicals, Inc.

  16. Mechanism of interferon-gamma production by monocytes stimulated with myeloperoxidase and neutrophil extracellular traps.

    Science.gov (United States)

    Yamaguchi, Rui; Kawata, Jin; Yamamoto, Toshitaka; Ishimaru, Yasuji; Sakamoto, Arisa; Ono, Tomomichi; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-08-01

    Neutrophil extracellular traps (NETs) have an important role in antimicrobial innate immunity and release substances that may modulate the immune response. We investigated the effects of soluble factors from NETs and neutrophil granule proteins on human monocyte function by using the Transwell system to prevent cell-cell contact. NET formation was induced by exposing human neutrophils to phorbol myristate acetate (PMA). When monocytes were incubated with PMA alone, expression of interleukin (IL)-4, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha mRNA was upregulated, but IL-10, IL-12, and interferon (IFN)-gamma mRNA were not detected. Incubation of monocytes with NETs enhanced the expression of IL-10 and IFN-gamma mRNA, but not IL-12 mRNA. Myeloperoxidase stimulated IFN-gamma production by monocytes in a dose-dependent manner. Both a nuclear factor-kappaB inhibitor (PDTC) and an intracellular calcium antagonist (TMB-8) prevented upregulation of IFN-gamma production. Neither a combined p38alpha and p38beta inhibitor (SB203580) nor an extracellular signal-regulated kinase inhibitor (PD98059) suppressed IFN-gamma production. Interestingly, a combined p38gamma and p38delta inhibitor (BIRB796) significantly decreased IFN-gamma production. These findings suggest that myeloperoxidase induces IFN-gamma production by monocytes via p38gamma/delta mitogen-activated protein kinase.

  17. Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting.

    Science.gov (United States)

    Serences, John T; Yantis, Steven; Culberson, Andrew; Awh, Edward

    2004-12-01

    The deployment of spatial attention induces retinotopically specific increases in neural activity that occur even before a target stimulus is presented. Although this preparatory activity is thought to prime the attended regions, thereby improving perception and recognition, it is not yet clear whether this activity is a manifestation of signal enhancement at the attended locations or suppression of interference from distracting stimuli (or both). We investigated the functional role of these preparatory shifts by isolating a distractor suppression component of selection. Behavioral data have shown that manipulating the probability that visual distractors will appear modulates distractor suppression without concurrent changes in signal enhancement. In 2 experiments, functional magnetic resonance imaging revealed increased cue-evoked activity in retinotopically specific regions of visual cortex when increased distractor suppression was elicited by a high probability of distractors. This finding directly links cue-evoked preparatory activity in visual cortex with a distractor suppression component of visual selective attention.

  18. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia

    Science.gov (United States)

    Monocyte activation and migration into the arterial wall are key events in atherogenesis associated with hypercholesterolemia. CD11c/CD18, a beta2 integrin expressed on human monocytes and a subset of mouse monocytes, has been shown to play a distinct role in human monocyte adhesion on endothelial c...

  19. Sargachromenol protects against vascular inflammation by preventing TNF-α-induced monocyte adhesion to primary endothelial cells via inhibition of NF-κB activation.

    Science.gov (United States)

    Gwon, Wi-Gyeong; Joung, Eun-Ji; Kwon, Mi-Sung; Lim, Su-Jin; Utsuki, Tadanobu; Kim, Hyeung-Rak

    2017-01-01

    Vascular inflammation is a key factor in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the protective effects of sargachromenol (SCM) against tumor necrosis factor (TNF)-α-induced vascular inflammation. SCM decreased the expression of cell adhesion molecules, including intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs), resulted in reduced adhesion of monocytes to HUVECs. SCM also decreased the production of monocyte chemoattractant protein-1 and matrix metalloproteinase-9 in TNF-α-induced HUVECs. Additionally, SCM inhibited activation of nuclear factor kappa B (NF-κB) induced by TNF-α through preventing the degradation of inhibitor kappa B. Moreover, SCM reduced the production of reactive oxygen species in TNF-α-treated HUVECs. Overall, SCM alleviated vascular inflammation through the regulation of NF-κB activation and through its intrinsic antioxidant activity in TNF-α-induced HUVECs. These results indicate that SCM may have potential application as a therapeutic agent against vascular inflammation.

  20. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bouhlel, Mohamed Amine [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Brozek, John [Genfit, Loos (France); Derudas, Bruno [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Zawadzki, Christophe; Jude, Brigitte [Inserm ERI-9 and Equipe d' Accueil 2693, IFR114, Universite de Lille, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  1. Comparative Analysis of the Interaction of Helicobacter pylori with Human Dendritic Cells, Macrophages, and Monocytes

    Science.gov (United States)

    Fehlings, Michael; Drobbe, Lea; Moos, Verena; Renner Viveros, Pablo; Hagen, Jana; Beigier-Bompadre, Macarena; Pang, Ervinna; Belogolova, Elena; Churin, Yuri; Schneider, Thomas; Meyer, Thomas F.; Aebischer, Toni

    2012-01-01

    Helicobacter pylori may cause chronic gastritis, gastric cancer, or lymphoma. Myeloid antigen-presenting cells (APCs) are most likely involved in the induction and expression of the underlying inflammatory responses. To study the interaction of human APC subsets with H. pylori, we infected monocytes, monocyte-derived dendritic cells (DCs), and monocyte-derived (classically activated; M1) macrophages with H. pylori and analyzed phenotypic alterations, cytokine secretion, phagocytosis, and immunostimulation. Since we detected CD163+ (alternatively activated; M2) macrophages in gastric biopsy specimens from H. pylori-positive patients, we also included monocyte-derived M2 macrophages in the study. Upon H. pylori infection, monocytes secreted interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p40 (partially secreted as IL-23) but not IL-12p70. Infected DCs became activated, as shown by the enhanced expression of CD25, CD80, CD83, PDL-1, and CCR7, and secreted IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, and IL-23. However, infection led to significantly downregulated CD209 and suppressed the constitutive secretion of macrophage migration inhibitory factor (MIF). H. pylori-infected M1 macrophages upregulated CD14 and CD32, downregulated CD11b and HLA-DR, and secreted mainly IL-1β, IL-6, IL-10, IL-12p40, and IL-23. Activation of DCs and M1 macrophages correlated with increased capacity to induce T-cell proliferation and decreased phagocytosis of dextran. M2 macrophages upregulated CD14 and CD206 and secreted IL-10 but produced less of the proinflammatory cytokines than M1 macrophages. Thus, H. pylori affects the functions of human APC subsets differently, which may influence the course and the outcome of H. pylori infection. The suppression of MIF in DCs constitutes a novel immune evasion mechanism exploited by H. pylori. PMID:22615251

  2. Study on Blood Coagulant/Fibrinolytic Activity at Plasma andMonocytic Levels in Coronary Heart Disease Patients withBlood-Stasis Syndrome of Traditional Chinese Medicine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To explore and compare the changes of coagulant/fibrinolytic activity in coronary heart disease (CHD) patients with Blood Stasis Syndrome of TCM and evaluate the roles of these changes. Methods: Eighty patients of CHD were divided into two groups by Syndrome Differentiation of TCM, the Blood-Stasis (BS) group (30 cases) and the non-Blood-Stasis (NBS) group (50 cases, including 27 cases of Phlegm-Dampness Syndrome and 23 cases of Qi-Stagnation Syndrome); and 20 healthy persons were enrolled as normal control group. Tissue type plasminogen activator (t-PA) and its inhibitor (PAI-1) in plasma and in human peripheral blood monocyte cell (PBMC), as well as the procoagulant activity (PCA) in PBMC were measured by chromogenic substrate method. Results: The plasma PAI-1 activity and PCA of PBMC in the BS group were significantly higher than those in the NBS group and the normal control group (P<0.01). PAI-1 activity of PBMC in the two groups of CHD patients was higher than those in the normal control group significantly (P<0.01), but no significant difference was found between the BS group and the NBS group (P>0.05). The difference of plasma t-PA activity between the two groups of CHD was insignificant. The PBMC t-PA activity in the BS group was lower than that in the NBS and normal control groups (P<0.01). Conclusion: In the CHD patients with BS, the PBMC PCA was increased and the fibrinolytic activity at both plasma and monocyte levels lowered significantly, these changes in coagulant/fibrinolytic activity may be the important pathologic factors in forming BS which suggests that CHD patients with BS were in the prothrombotic state.

  3. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Pudhom, Khanitha [Department of Chemistry, Faculty of Science and Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  4. Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes.

    Science.gov (United States)

    Rolland, Olivier; Griffe, Laurent; Poupot, Mary; Maraval, Alexandrine; Ouali, Armelle; Coppel, Yannick; Fournié, Jean-Jacques; Bacquet, Gérard; Turrin, Cédric-Olivier; Caminade, Anne-Marie; Majoral, Jean-Pierre; Poupot, Rémy

    2008-01-01

    The syntheses of a series of phosphonic acid-capped dendrimers is described. This collection is based on a unique set of dendritic structural parameters-cyclo(triphosphazene) core, benzylhydrazone branches and phosphonic acid surface-and was designed to study the influence of phosphonate (phosphonic acid) surface loading towards the activation of human monocytes ex vivo. Starting from the versatile hexachloro-cyclo(triphosphazene) N(3)P(3)Cl(6), six first-generation dendrimers were obtained, bearing one to six full branches, that lead to 4, 8, 12, 16, 20 and 24 phosphonate termini, respectively. The surface loading was also explored at the limit of dense packing by means of a first-generation dendrimer having a cyclo(tetraphosphazene) core and bearing 32 termini, and with a first-generation dendrimer based on a AB(2)/CD(5) growing pattern and bearing 60 termini. Human monocyte activation by these dendrimers confirms the requirement of the whole dendritic structure for bioactivity and identifies the dendrimer bearing four branches, thus 16 phosphonate termini, as the most bioactive.

  5. Sinomenine influences capacity for invasion and migration in activated human monocytic THP-1 cells by inhibiting the expression of MMP-2, MMP-9, and CD147

    Institute of Scientific and Technical Information of China (English)

    Yang-qiong OU; Li-hua CHEN; Xue-jun LI; Zhi-bin LIN; Wei-dong LI

    2009-01-01

    Aim: The aim of this study was to investigate the mechanism of the effects of Sinomenine (SIN) on the invasion and migration ability of activated human monocytic THP-1 cells (A-THP-1). Sinomenine is a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum.Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-ac-etate (PMA). Cells were treated with different concentrations of SIN. The invasion and migration ability of cells was tested by in vitro transwell assays. The levels of CD147 and MMPs were evaluated by flow cytometric analysis and zymographic analysis, respectively. The mRNA expression of CD147, MMP-2, and MMP-9 was measured by RT-PCR. Results: The invasion and migration ability of A-THP-1 cells was significantly inhibited by SIN in a concentration-depen-dent fashion; at the same time, the levels of CD147, MMP-2, and MMP-9 were markedly down-regulated. This inhibitory effect was most notable at concentrations of 0.25 mmol/L and 1.00 mmol/L (P<0.01). Conclusion: A possible mechanism of the inhibitory effect of SIN on cell invasion and migration ability is repression of the expression of MMP-2 and MMP-9, which strongly correlates with the inhibition of CD147 activity.

  6. 1,3-Diphenylpropenone ameliorates TNBS-induced rat colitis through suppression of NF-κB activation and IL-8 induction.

    Science.gov (United States)

    Park, Su-Young; Ku, Sae Kwang; Lee, Eung Seok; Kim, Jung-Ae

    2012-03-05

    In the present study, we examined whether newly synthesized phenylpropenone derivatives, by inhibiting NF-κB activity, would inhibit IL-8 expression, inflammation and abnormal angiogenesis, resulting in amelioration of disease conditions. The phenylpropenone derivatives inhibited NF-κB transcriptional activity, which correlated with their suppressive activity against TNF-α-induced adhesion of U937 human monocytic cells to HT-29 human colonic epithelial cells, an in vitro model of IBD. Among the derivatives, 1,3-diphenylpropenone (DPhP) was most efficacious, and it significantly suppressed TNF-α-induced production of IL-8 which is a proinflammatory and proangiogenic cytokine. The anti-inflammatory activity of DPhP was also confirmed in the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model. DPhP was protective against the TNBS-induced inflammatory responses, which included weight loss, increased myeloperoxidase activity and mucosal damage. In the colon tissue, DPhP inhibited TNBS-induced NF-κB nuclear translocation, IL-8 and TNF-α expressions, and abnormal angiogenesis. In addition, DPhP also suppressed IL-8-induced angiogenesis, which was revealed by an in vivo assay using chick chorioallantoic membrane. Furthermore, the level of IL-6, a pleiotropic cytokine which is implicated in the pathogenesis of IBD and colitis-associated cancer, was suppressed by DPhP in rat colon tissue and serum. In conclusion, the results suggest that DPhP is a potential dual-acting IBD drug candidate targeting both inflammation and abnormal angiogenesis, possibly through the NF-κB and IL-8 signaling pathway.

  7. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes.

    Science.gov (United States)

    Park, Kyoung Sik

    2013-06-01

    Obesity is closely associated with a state of chronic, low-grade inflammation characterized by abnormal cytokine production and activation of inflammatory signaling pathways in adipose tissue. Tumor necrosis factor (TNF)-α is chronically elevated in adipose tissues of obese rodents and humans. Increased levels of TNF-α are implicated in the induction of atherogenic adipokines, such as plasminogen activator inhibitor (PAI)-1, adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6. Aucubin, an iridoid glycoside existing in medicinal plants, has been reported to show an anti-inflammatory activity by suppression of TNF-α production in murine macrophages. The present study is aimed to investigate the effects of aucubin on TNF-α-induced atherogenic changes of the adipokines in differentiated 3T3-L1 cells. Aucubin significantly inhibited TNF-α-induced secretion and mRNA synthesis of the atherogenic adipokines including PAI-1, MCP-1, and IL-6. Further investigation of the molecular mechanism revealed that pretreatment with aucubin suppressed extracellular signal-regulated kinase (ERK) activation, inhibitory kappa Bα (IκBα) degradation, and subsequent nuclear factor kappa B (NF-κB) activation. These findings suggest that aucubin may improve obesity-induced atherosclerosis by attenuating TNF-α-induced inflammatory responses.

  8. Patrolling Monocytes Control Tumor Metastasis to the Lung

    Science.gov (United States)

    Hanna, Richard N.; Cekic, Caglar; Sag, Duygu; Tacke, Robert; Thomas, Graham D.; Nowyhed, Heba; Herrley, Erica; Rasquinha, Nicole; McArdle, Sara; Wu, Runpei; Peluso, Esther; Metzger, Daniel; Ichinose, Hiroshi; Shaked, Iftach; Chodaczek, Grzegorz; Biswas, Subhra K.; Hedrick, Catherine C.

    2016-01-01

    The immune system plays an important role in regulating tumor growth and metastasis. For example, classical monocytes promote tumorigenesis and cancer metastasis; however, how nonclassical “patrolling” monocytes interact with tumors is unknown. Here we show that patrolling monocytes are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack patrolling monocytes, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient patrolling monocytes into Nr4a1-deficient mice prevented tumor invasion in lung. Patrolling monocytes established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature and promoted natural killer cell recruitment and activation. Thus, patrolling monocytes contribute to cancer immunosurveillance and may be targets for cancer immunotherapy. PMID:26494174

  9. Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1.

    Science.gov (United States)

    Rizzi, Chiara; Crippa, Massimo P; Jeeninga, Rienk E; Berkhout, Ben; Blasi, Francesco; Poli, Guido; Alfano, Massimo

    2006-01-15

    Pertussis toxin B-oligomer (PTX-B) inhibits HIV replication in T lymphocytes and monocyte-derived macrophages by interfering with multiple steps of the HIV life cycle. PTX-B prevents CCR5-dependent (R5) virus entry in a noncompetitive manner, and it also exerts suppressive effects on both R5- and CXCR4-dependent HIV expression at a less-characterized postentry level. We demonstrate in this study that PTX-B profoundly inhibits HIV expression in chronically infected promonocytic U1 cells stimulated with several cytokines and, particularly, the IL-6-mediated effect, a cytokine that triggers viral production in these cells independently of NF-kappaB activation. From U1 cells we have subcloned a cell line, named U1-CR1, with increased responsiveness to IL-6. In these cells, PTX-B neither down-regulated the IL-6R nor prevented IL-6 induced signaling in terms of STAT3 phosphorylation and DNA binding. In contrast, PTX-B inhibited AP-1 binding to target DNA and modified its composition with a proportional increases in FosB, Fra2, and ATF2. PTX-B inhibited IL-6-induced HIV-1 long-terminal repeat-driven transcription from A, C, E, and F viral subtypes, which contain functional AP-1 binding sites, but failed to inhibit transcription from subtypes B and D LTR devoid of these sites. In addition, PTX-B inhibited the secretion of IL-6-induced, AP-1-dependent genes, including urokinase-type plasminogen activator, CXCL8/IL-8, and CCL2/monocyte chemotactic protein-1. Thus, PTX-B suppression of IL-6 induced expression of HIV and cellular genes in chronically infected promonocytic cells is strongly correlated to inhibition of AP-1.

  10. Cold Suppresses Agonist-induced Activation of TRPV1

    OpenAIRE

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppress...

  11. MIF Promotes Classical Activation and Conversion of Inflammatory Ly6Chigh Monocytes into TipDCs during Murine Toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Juan de Dios Ruiz-Rosado

    2016-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF mediates immunity against Toxoplasma gondii infection by inducing inflammatory cytokines required to control the parasite replication. However, the role of this inflammatory mediator in the cell-mediated immune response against this infection is still poorly understood. Here, we used T. gondii-infected WT and Mif−/− mice to analyze the role of MIF in the maturation of CD11b+ and CD8α+ dendritic cells (DCs. We found that MIF promotes maturation of CD11b+ but not CD8α+ DCs, by inducing IL-12p70 production and CD86 expression. Infected Mif−/− mice showed significantly lower numbers of TNF and inducible nitric oxide synthase- (iNOS- producing DCs (TipDCs compared to infected WT mice. The adoptive transfer of Ly6Chigh monocytes into infected WT or Mif−/− mice demonstrated that MIF participates in the differentiation of Ly6Chigh monocytes into TipDCs. In addition, infected Mif−/− mice display a lower percentage of IFN-γ-producing natural killer (NK cells compared to WT mice, which is associated with reducing numbers of TipDCs in Mif−/− mice. Furthermore, administration of recombinant MIF (rMIF into T. gondii-infected Mif−/− mice restored the numbers of TipDCs and reversed the susceptible phenotype of Mif−/− mice. Collectively, these results demonstrate an important role for MIF inducing cell-mediated immunity to T. gondii infection.

  12. Helicopter air resonance modeling and suppression using active control

    Science.gov (United States)

    Takahashi, M. D.; Friedmann, P. P.

    1991-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.

  13. Deconvoluting post-transplant immunity: cell subset-specific mapping reveals pathways for activation and expansion of memory T, monocytes and B cells.

    Directory of Open Access Journals (Sweden)

    Yevgeniy A Grigoryev

    Full Text Available A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+CD62L(- effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.

  14. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs.

  15. Antioxidant and Antiradical Activities of Manihot esculenta Crantz (Euphorbiaceae Leaves and Other Selected Tropical Green Vegetables Investigated on Lipoperoxidation and Phorbol-12-myristate-13-acetate (PMA Activated Monocytes

    Directory of Open Access Journals (Sweden)

    Ange Mouithys-Mickalad

    2011-09-01

    Full Text Available Abelmoschus esculentus (Malvaceae, Hibiscus acetosella (Malvaceae, Manihot esculenta Crantz (Euphorbiaceae and Pteridium aquilinum (Dennstaedtiaceae leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N′-dimethyl-p-phenylene-diamine (DMPD. The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS in “inflammation like” conditions was studied by fluorescence technique using 2′,7′-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration.

  16. A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R.

    Science.gov (United States)

    Deng, X; Ueda, H; Su, S B; Gong, W; Dunlop, N M; Gao, J L; Murphy, P M; Wang, J M

    1999-08-15

    Because envelope gp120 of various strains of human immunodeficiency virus type 1 (HIV-1) downregulates the expression and function of a variety of chemoattractant receptors through a process of heterologous desensitization, we investigated whether epitopes derived from gp120 could mimic the effect. A synthetic peptide domain, designated F peptide, corresponding to amino acid residues 414-434 in the V4-C4 region of gp120 of the HIV-1 Bru strain, potently reduced monocyte binding and chemotaxis response to macrophage inflammatory protein 1beta (MIP-1beta) and stromal cell-derived factor 1alpha (SDF-1alpha), chemokines that use the receptors CCR5 and CXCR4, respectively. Further study showed that F peptide by itself is an inducer of chemotaxis and calcium mobilization in human monocytes and neutrophils. In cross-desensitization experiments, among the numerous chemoattractants tested, only the bacterial chemotactic peptide fMLF, when used at high concentrations, partially attenuated calcium mobilization induced by F peptide in phagocytes, suggesting that this peptide domain might share a 7-transmembrane, G-protein-coupled receptor with fMLF. By using cells transfected with cDNAs encoding receptors that interact with fMLF, we found that F peptide uses an fMLF receptor variant, FPRL1, as a functional receptor. The activation of monocytes by F peptide resulted in downregulation of the cell surface expression of CCR5 and CXCR4 in a protein kinase C-dependent manner. These results demonstrate that activation of FPRL1 on human moncytes by a peptide domain derived from HIV-1 gp120 could lead to desensitization of cell response to other chemoattractants. This may explain, at least in part, the initial activation of innate immune responses in HIV-1-infected patients followed by immune suppression.

  17. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial-mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells.

    Science.gov (United States)

    Li, A; Wang, J; Zhu, D; Zhang, X; Pan, R; Wang, R

    2015-01-01

    Transforming growth factor-β1 (TGF-β1) induces expression of the proinflammatory and profibrotic cytokine monocyte chemoattractant protein-1 (MCP-1) in tubular epithelial cells (TECs) and thereby contributes to the tubular epithelial-mesenchymal transition (EMT), which in turn leads to the progression of tubulointerstitial inflammation into tubulointerstitial fibrosis. Exactly how TGF-β1 causes MCP-1 overexpression and subsequent EMT is not well understood. Using human tubular epithelial cultures, we found that TGF-β1 upregulated the expression of reduced nicotinamide adenine dinucleotide phosphate oxidases 2 and 4 and their regulatory subunits, inducing the production of reactive oxygen species. These reactive species activated a signaling pathway mediated by extracellular signal-regulated kinase (ERK1/2) and nuclear factor-κB (NF-κB), which upregulated expression of MCP-1. Incubating cultures with TGF-β1 was sufficient to induce hallmarks of EMT, such as downregulation of epithelial marker proteins (E-cadherin and zonula occludens-1), induction of mesenchymal marker proteins (α-smooth muscle actin, fibronectin, and vimentin), and elevated cell migration and invasion in an EMT-like manner. Overexpressing MCP-1 in cells exposed to TGF-β1 exacerbated these EMT-like changes. Pretreating cells with the antioxidant and anti-inflammatory compound arctigenin (ATG) protected them against these TGF-β1-induced EMT-like changes; the compound worked by inhibiting the ROS/ERK1/2/NF-κB pathway to decrease MCP-1 upregulation. These findings suggest ATG as a new therapeutic candidate to inhibit or even reverse tubular EMT-like changes during progression to tubulointerstitial fibrosis, and they provide the first clues to how ATG may work.

  18. Suppression of ventilatory muscle activity in healthy subjects and COPD patients with negative pressure ventilation.

    Science.gov (United States)

    Gigliotti, F; Duranti, R; Fabiani, A; Schiavina, M; Scano, G

    1991-05-01

    We evaluated the ability of NPV to suppress EMGd and EMGint in seven patients with severe COPD and five normal subjects. Subjects were studied either without (A) or with mouthpiece and nose clip (B). Electromyographic suppression was assessed comparing EMG activity during NPV with the control activity without a mouthpiece and prior to the initiation of the NPV run. In normal subjects, in A, NPV resulted in a partial suppression of EMGd; in B, prior to NPV, EMGd rose compared with A prior to NPV. In patients, in A, NPV resulted in a suppression of both EMGd and EMGint. In B, prior to NPV, both EMGd and EMGint rose compared with A prior to NPV. Thus, it seems that NPV is able to produce a consistent reduction in inspiratory muscle EMG activity. This variable NPV ability would have to be assessed for better selection criteria for patient candidates in a rehabilitation program.

  19. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  20. EXPRESSION OF ADHESION MOLECULES ON PERIPHERAL BLOOD MONOCYTES DURING PREGNANCY

    Directory of Open Access Journals (Sweden)

    V. A. Mikhaylova

    2010-01-01

    Full Text Available Peripheral blood monocytes play a key role in regulation of immune response during pregnancy. Intensive adhesion of monocytes to endothelium proves that monocytes are activated during pregnancy. To determine a potential role of adhesion molecules for ability of monocytes to adhere, we studied expression of CD11a, CD11b, CD11c, CD18, CD49d, CD29 markers of monocytes from non-pregnant and pregnant women. Expression of adhesion molecules on monocytes was analyzed by flow cytometry. The amounts of CD11b-expressing monocytes increased during pregnancy, as compared with non-pregnant women. Intensity of CD11a, CD11b, CD11c, CD29 expression on the monocytes did also increase at normal pregnancy. These results suggest that intense adhesion of monocytes to endothelium during uncomplicated pregnancy may be determined by increased expression of CD11a, CD11b, CD11c, CD29, and higher amounts of CD11b+ monocytes.

  1. B-oligomer of pertussis toxin inhibits HIV-1 LTR-driven transcription through suppression of NF-kappaB p65 subunit activity.

    Science.gov (United States)

    Iordanskiy, Sergey; Iordanskaya, Tatyana; Quivy, Vincent; Van Lint, Carine; Bukrinsky, Michael

    2002-10-10

    The binding subunit of pertussis toxin (PTX-B) has been shown recently to inhibit the entry and postentry events in HIV-1 replication in primary T lymphocytes and monocyte-derived macrophages. While the effect of PTX-B on HIV-1 entry was shown to involve CCR5 desensitization, the mechanism of postentry inhibition remained unclear. In T lymphocytes, PTX-B affected transcription or stability of Tat-stimulated HIV-1 mRNAs. In this study, we sought to identify the mechanism of postentry inhibition of HIV-1 replication by PTX-B in U-937 promonocytic cells. We demonstrate that in these cells PTX-B inhibits expression of luciferase reporter gene controlled by the HIV-1 LTR promoter. This effect is Tat-independent and is not restricted to the HIV-1 LTR promoter. Instead, PTX-B activity is mediated through suppression of the cellular transcription factor, NF-kappaB. PTX-B inhibits phosphorylation and nuclear translocation of the p65 subunit of NF-kappaB. This effect is independent of the cytoplasmic NF-kappaB inhibitor, IkappaBalpha, as PTX-B stimulates phosphorylation and subsequent degradation of this protein. The suppressive activity of PTX-B on NF-kappaB p65 phosphorylation and nuclear translocation is delayed, suggesting that PTX-B signaling might initiate synthesis and cytoplasmic accumulation of a p65 phosphorylation inhibitor.

  2. Suppressed MMP-9 Activity in Myocardial Infarction-Related Cardiogenic Shock Implies Diminished Rage Degradation.

    Science.gov (United States)

    Selejan, Simina-Ramona; Hewera, Lisa; Hohl, Matthias; Kazakov, Andrey; Ewen, Sebastian; Kindermann, Ingrid; Böhm, Michael; Link, Andreas

    2017-07-01

    Receptor for advanced glycation end products (RAGE) and its cleavage fragment soluble RAGE (sRAGE) are opposite players in inflammation. Enhanced monocytic RAGE expression and decreased plasma sRAGE levels are associated with higher mortality in infarction-related cardiogenic shock. Active matrix metalloproteinase-9 (MMP-9) has been implied in RAGE ectodomain cleavage and subsequently sRAGE shedding in vitro. We investigated MMP-9 activity in myocardial infarction-induced cardiogenic shock with regard to RAGE/sRAGE regulation. We determined MMP-9 serum activity by zymography and tissue inhibitor of matrix metalloproteinases (TIMP-1) expression by Western blot and correlated it to RAGE/sRAGE data in patients with cardiogenic shock after acute myocardial infarction (CS, n = 30), in patients with acute myocardial infarction without shock (AMI, n = 20) and in healthy volunteers (n = 20).MMP-9 activity is increased in AMI (P = 0.02 versus controls), but significantly decreased in CS with lowest levels in non-survivors (n = 13, P = 0.02 versus AMI). In all patients, MMP-9 activity correlated inversely with RAGE expression on circulating monocytes (r = -0.57; P = 0.0001; n = 50).TIMP-1 levels showed an inverse regulation in comparison to active MMP-9 with significantly decreased levels in AMI as compared with controls (P = 0.02 versus controls) and highest levels in non-survivors of CS (P RAGE-induced deleterious inflammation in cardiogenic shock.

  3. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  4. Biphasic influence of PGE2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse RAW264.7 cells.

    Science.gov (United States)

    Lutter, Anne-Helen; Hempel, Ute; Anderer, Ursula; Dieter, Peter

    2016-08-01

    Osteoclasts are large bone-resorbing cells of hematopoietic origin. Their main function is to dissolve the inorganic component hydroxyapatite and to degrade the organic bone matrix. Prostaglandin E2 (PGE2) indirectly affects osteoclasts by stimulating osteoblasts to release factors that influence osteoclast activity. The direct effect of PGE2 on osteoclasts is still controversial. To study the influence of PGE2 on osteoclast activity, human peripheral blood monocytes (hPBMC) and mouse RAW264.7 cells were cultured on osteoblast-derived extracellular matrix. hPBMC and RAW264.7 cells were differentiated by the addition of macrophage colony-stimulation factor and receptor activator of NFκB ligand and treated with PGE2 before and after differentiation induction. The pit area, an indicator of resorption activity, and the activity of tartrate-resistant acid phosphatase were dose-dependently inhibited when PGE2 was present ab initio, whereas the resorption activity remained unchanged when the cells were exposed to PGE2 from day 4 of culture. These results lead to the conclusion that PGE2 treatment inhibits only the differentiation of precursor osteoclasts whereas differentiated osteoclasts are not affected.

  5. Anti-inflammatory properties of clovamide and Theobroma cacao phenolic extracts in human monocytes: evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulation.

    Science.gov (United States)

    Zeng, Huawu; Locatelli, Monica; Bardelli, Claudio; Amoruso, Angela; Coisson, Jean Daniel; Travaglia, Fabiano; Arlorio, Marco; Brunelleschi, Sandra

    2011-05-25

    There is a great interest in the potential health benefits of biologically active phenolic compounds in cocoa (Theobroma cacao) and dark chocolate. We investigated the anti-inflammatory potential of clovamide (a N-phenylpropenoyl-L-amino acid amide present in cocoa beans) and two phenolic extracts from unroasted and roasted cocoa beans, by evaluating superoxide anion (O(2)(-)) production, cytokine release, and NF-κB activation in human monocytes stimulated by phorbol 12-myristate 13-acetate (PMA). The effects of rosmarinic acid are shown for comparison. Clovamide and rosmarinic acid inhibited PMA-induced O(2)(-) production and cytokine release (with a bell-shaped curve and maximal inhibition at 10-100 nM), as well as PMA-induced NF-κB activation; the two cocoa extracts were less effective. In all tests, clovamide was the most potent compound and also enhanced peroxisome proliferator-activated receptor-γ (PPARγ) activity, which may exert anti-inflammatory effects. These findings indicate clovamide as a possible bioactive compound with anti-inflammatory activity in human cells.

  6. Circulating CD14+ monocytes in patients with aortic stenosis

    Institute of Scientific and Technical Information of China (English)

    Sara Shimoni; Valery Meledin; Iris Bar; Jacob Fabricant; Gera Gandelman; Jacob George

    2016-01-01

    BackgroundCalcific aortic stenosis (AS) is an active process sharing similarities with atherosclerosis and chronic inflammation. The pathophysiology of AS is notable for three cardinal components: inflammation, fibrosis and calcification. Monocytes play a role in each of these processes. The role of circulating monocytes in AS is not clear. The aim of the present study was to study an association between cir-culating apoptotic and non apoptotic CD14+ monocytes and AS features.MethodsWe assessed the number of CD14+ monocytes and apoptotic monocytes in 54 patients with significant AS (aortic valve area 0.74 ± 0.27 cm2) and compared them to 33 patients with similar risk factors and no valvular disease. The level of CD14+ monocytes and apoptotic monocytes was assessed by flow cytometry.ResultsThere was no difference in the risk factor profile and known coronary or peripheral vascular diseases between patients with AS and controls.Pa-tients with AS exhibited increased numbers of CD14+ monocytes as compared to controls (9.9% ± 4.9%vs. 7.7% ± 3.9%,P= 0.03). CD14+ monocyte number was related to age and the presence and severity of AS. In patients with AS, both CD14+ monocytes and apoptotic mono-cytes were inversely related to aortic valve area.ConclusionsPatients with significant AS have increased number of circulating CD14+ monocytes and there is an inverse correlation between monocyte count and aortic valve area. These findings may suggest that inflammation is operative not only in early valve injury phase, but also at later developed stages such as calcification when AS is severe.

  7. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  8. Distinct monocyte Gene-Expression profiles in autoimmune diabetes

    NARCIS (Netherlands)

    R.C. Padmos (Roos); N.C. Schloot (Nanette); H. Beyan (Huriya); C. Ruwhof (Cindy); F.J.T. Staal (Frank); D. de Ridder (Dick); H-J. Aanstoot (Henk-Jan); W.K. Lam-Tse; H.J. de Wit (Harm); C. Herder (Christian); R.C. Drexhage (Roos); B. Menart (Barbara); R.D. Leslie

    2008-01-01

    textabstractOBJECTIVE-There is evidence that monocytes of patients with type 1 diabetes show proinflammatory activation and disturbed migration/adhesion, but the evidence is inconsistent. Our hypothesis is that monocytes are distinctly activated/disturbed in different subforms of autoimmune diabetes

  9. STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass.

    Directory of Open Access Journals (Sweden)

    Petrus R de Jong

    Full Text Available BACKGROUND: Cardiopulmonary bypass (CPB surgery initiates a controlled systemic inflammatory response characterized by a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like receptor (TLR-mediated activation decreases throughout the postoperative course. The purpose of this study was to identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNF-α production by monocytes. METHODOLOGY/PRINCIPAL FINDINGS: Pediatric patients that underwent CPB-assisted surgical correction of simple congenital heart defects were enrolled (n = 38. Peripheral blood mononuclear cells (PBMC and plasma samples were isolated at consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS stimulations and TNF-α and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein kinase (MAPK and nuclear factor (NF-κB activation by patient plasma was assessed by Western blotting. A cell-permeable peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-α but not IL-6 synthesis by monocytes. This was not associated with attenuation of p38 MAPK activation or IκB-α degradation. However, abrogation of the IL-10/STAT3 pathway restored LPS-induced TNF-α production in the presence of suppressive patient plasma. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-α synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular target for pharmacological intervention in clinical syndromes characterized by systemic inflammation.

  10. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye.

    Science.gov (United States)

    Ko, Jung Hwa; Lee, Hyun Ju; Jeong, Hyun Jeong; Kim, Mee Kum; Wee, Won Ryang; Yoon, Sun-Ok; Choi, Hosoon; Prockop, Darwin J; Oh, Joo Youn

    2016-01-01

    Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α-stimulated gene/protein (TSG)-6-dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell-suppressive activities independently of FoxP3(+) regulatory T cells. Adoptive transfer of MSC-induced B220(+)CD11b(+) monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II(+)B220(+)CD11b(+) cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages.

  11. Antiproliferative activities of lesser galangal (Alpinia officinarum Hance Jam1), turmeric (Curcuma longa L.), and ginger (Zingiber officinale Rosc.) against acute monocytic leukemia.

    Science.gov (United States)

    Omoregie, Samson N; Omoruyi, Felix O; Wright, Vincent F; Jones, Lemore; Zimba, Paul V

    2013-07-01

    Acute monocytic leukemia (AML M5 or AMoL) is one of the several types of leukemia that are still awaiting cures. The use of chemotherapy for cancer management can be harmful to normal cells in the vicinity of the target leukemia cells. This study assessed the potency of the extracts from lesser galangal, turmeric, and ginger against AML M5 to use the suitable fractions in neutraceuticals. Aqueous and organic solvent extracts from the leaves and rhizomes of lesser galangal and turmeric, and from the rhizomes only of ginger were examined for their antiproliferative activities against THP-1 AMoL cells in vitro. Lesser galangal leaf extracts in organic solvents of methanol, chloroform, and dichloromethane maintained distinctive antiproliferative activities over a 48-h period. The turmeric leaf and rhizome extracts and ginger rhizome extracts in methanol also showed distinctive anticancer activities. The lesser galangal leaf methanol extract was subsequently separated into 13, and then 18 fractions using reversed-phase high-performance liquid chromatography. Fractions 9 and 16, respectively, showed the greatest antiproliferative activities. These results indicate that the use of plant extracts might be a safer approach to finding a lasting cure for AMoL. Further investigations will be required to establish the discriminatory tolerance of normal cells to these extracts, and to identify the compounds in these extracts that possess the antiproliferative activities.

  12. Tumor-Suppressive Activity of Lunatic Fringe in Prostate through Differential Modulation of Notch Receptor Activation

    Directory of Open Access Journals (Sweden)

    Shubing Zhang

    2014-02-01

    Full Text Available Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng, which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44+CD24− and CD49f+CD24− stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

  13. Differential Activation of Human Monocyte-Derived and Plasmacytoid Dendritic Cells by West Nile Virus Generated in Different Host Cells▿

    Science.gov (United States)

    Silva, Maria Carlan; Guerrero-Plata, Antonieta; Gilfoy, Felicia D.; Garofalo, Roberto P.; Mason, Peter W.

    2007-01-01

    Dendritic cells (DCs) play a central role in innate immunity and antiviral responses. In this study, we investigated the production of alpha interferon (IFN-α) and inducible chemokines by human monocyte-derived dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) infected with West Nile virus (WNV), an emergent pathogen whose infection can lead to severe cases of encephalitis in the elderly, children, and immunocompromised individuals. Our experiments demonstrated that WNV grown in mammalian cells (WNVVero) was a potent inducer of IFN-α secretion in pDCs and, to a lesser degree, in mDCs. The ability of WNVVero to induce IFN-α in pDCs did not require viral replication and was prevented by the treatment of cells with bafilomycin A1 and chloroquine, suggesting that it was dependent on endosomal Toll-like receptor recognition. On the other hand, IFN-α production in mDCs required viral replication and was associated with the nuclear translocation of IRF3 and viral antigen expression. Strikingly, pDCs failed to produce IFN-α when stimulated with WNV grown in mosquito cells (WNVC7/10), while mDCs responded similarly to WNVVero or WNVC7/10. Moreover, the IFN-dependent chemokine IP-10 was produced in substantial amounts by pDCs in response to WNVVero but not WNVC7/10, while interleukin-8 was produced in greater amounts by mDCs infected with WNVC7/10 than in those infected with WNVVero. These findings suggest that cell-specific mechanisms of WNV recognition leading to the production of type I IFN and inflammatory chemokines by DCs may contribute to both the innate immune response and disease pathogenesis in human infections. PMID:17913823

  14. MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes

    Directory of Open Access Journals (Sweden)

    Sabine Waigel

    2016-03-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced anti-tumor immune responses [2,3]. Previous studies have revealed that monocyte-derived macrophage migration inhibitory factor (MIF is necessary for the immune suppressive function of MDSCs in mouse models of melanoma [4,5]. To investigate whether MIF participates in human melanoma-induced MDSC differentiation and/or suppressive function, we have established an in vitro MDSC induction model using primary, normal human monocytes co-cultured with human melanoma cell lines in the presence or absence of the MIF antagonist—4-IPP [4,6–9]. To identify potential mechanistic effectors, we have performed transcriptome analyses on cultured monocytes and on melanoma-induced MDSCs obtained from either untreated or 4-IPP-treated A375:monocyte co-cultures. Here, we present a detailed protocol, which can facilitate easy reproduction of the microarray results (NCBI GEO accession number GSE73333 published by Yaddanapudi et al. (2015 in Cancer Immunology Research [10].

  15. Mushroom Bodies Suppress Locomotor Activity in Drosophila melanogaster

    Science.gov (United States)

    Martin, Jean-René; Ernst, Roman; Heisenberg, Martin

    1998-01-01

    Locomotor activity of single, freely walking flies in small tubes is analyzed in the time domain of several hours. To assess the influence of the mushroom bodies on walking activity, three independent noninvasive methods interfering with mushroom body function are applied: chemical ablation of the mushroom body precursor cells; a mutant affecting Kenyon cell differentiation (mushroom body miniature1); and the targeted expression of the catalytic subunit of tetanus toxin in subsets of Kenyon cells. All groups of flies with mushroom body defects show an elevated level of total walking activity. This increase is attributable to the slower and less complete attenuation of activity during the experiment. Walking activity in normal and mushroom body-deficient flies is clustered in active phases (bouts) and rest periods (pauses). Neither the initiation nor the internal structure, but solely the termination of bouts seems to be affected by the mushroom body defects. How this finding relates to the well-documented role of the mushroom bodies in olfactory learning and memory remains to be understood. PMID:10454382

  16. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    2013-01-01

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  17. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    Science.gov (United States)

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  18. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    Science.gov (United States)

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  19. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future

    Science.gov (United States)

    2017-01-01

    Mu suppression studies have been widely used to infer the activity of the human mirror neuron system (MNS) in a number of processes, ranging from action understanding, language, empathy and the development of autism spectrum disorders (ASDs). Although mu suppression is enjoying a resurgence of interest, it has a long history. This review aimed to revisit mu's past, and examine its recent use to investigate MNS involvement in language, social processes and ASDs. Mu suppression studies have largely failed to produce robust evidence for the role of the MNS in these domains. Several key potential shortcomings with the use and interpretation of mu suppression, documented in the older literature and highlighted by more recent reports, are explored here. PMID:28405354

  20. Active Vibration Suppression R&D for the NLC

    OpenAIRE

    Frisch, Josef; Hendirckson, Linda; Himel, Thomas; Seryi, Andrei

    2001-01-01

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented.

  1. Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling

    Science.gov (United States)

    Pupjalis, Danute; Goetsch, Julia; Kottas, Diane J; Gerke, Volker; Rescher, Ursula

    2011-01-01

    The immunosuppressive effects of apoptotic cells involve inhibition of pro-inflammatory cytokine release and establishment of an anti-inflammatory cytokine profile, thus limiting the degree of inflammation and promoting resolution. We report here that this is in part mediated by the release of the anti-inflammatory mediator annexin A1 from apoptotic cells and the functional activation of annexin A1 receptors of the formyl peptide receptor (FPR) family on target cells. Supernatants from apoptotic neutrophils or the annexin A1 peptidomimetic Ac2-26 significantly reduced IL-6 signalling and the release of TNF-α from endotoxin-challenged monocytes. Ac2-26 activated STAT3 in a JAK-dependent manner, resulting in upregulated SOCS3 levels, and depletion of SOCS3 reversed the Ac2-26-mediated inhibition of IL-6 signalling. This identifies annexin A1 as part of the anti-inflammatory pattern of apoptotic cells and links the activation of FPRs to established signalling pathways triggering anti-inflammatory responses. PMID:21254404

  2. Leishmania mexicana promastigotes down regulate JNK and p-38 MAPK activation: Role in the inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells.

    Science.gov (United States)

    Rodríguez-González, Jorge; Wilkins-Rodríguez, Arturo; Argueta-Donohué, Jesús; Aguirre-García, Magdalena; Gutiérrez-Kobeh, Laila

    2016-04-01

    Dendritic cells (DC) are one of the principal host cells of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously shown that the infection of monocyte-derived dendritic cells (moDC) with Leishmania mexicana inhibits campthotecin-induced apoptosis. Nevertheless, the mechanisms involved in the inhibition of apoptosis of dendritic cells by Leishmania have not been established. Mitogen-activated protein kinases (MAPK) are key participants in the process of apoptosis and different species of Leishmania have been shown to regulate these kinases. In the present study, we analyzed the effect of L. mexicana promastigotes in the activation of JNK and p38 MAP kinase and their participation in the inhibition of apoptosis. The infection of moDC with L. mexicana promastigotes diminished significantly the phosphorylation of the MAP kinases JNK and p38. The inhibition of both kinases diminished DNA fragmentation, but in a major extent was the reduction of DNA fragmentation when JNK was inhibited. The capacity of L. mexicana promastigotes to diminish MAP kinases activation is probably one of the strategies employed to delay apoptosis induction in the infected moDC and may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.

  3. Optimal area of retinal photocoagulation necessary for suppressing active iris neovascularisation associated with diabetic retinopathy.

    Science.gov (United States)

    Shiraya, Tomoyasu; Kato, Satoshi; Shigeeda, Takashi

    2014-10-01

    To determine the optimal area of retinal photocoagulation required for suppressing active neovascularisation (NVI) associated with diabetic retinopathy. We studied 1 eye each of 4 patients in whom active NVI was ophthalmoscopically shown to have been suppressed by additional photocoagulation. These patients initially underwent pan-retinal photocoagulation for diabetic retinopathy at another hospital, but NVI developed subsequently. We compared the areas of photocoagulation before and after additional photocoagulation and compared the area of retinal photocoagulation. The photocoagulated areas before and after additional photocoagulation in the four eyes were 20.7 and 45.2, 36.6 and 56.3, 30.4 and 67.4, and 11.7 and 53.4 %, respectively. The area of retinal photocoagulation required to suppress active NVI is calculated to be ~50 %.

  4. Monocyte functions in diabetes mellitus

    DEFF Research Database (Denmark)

    Geisler, C; Almdal, T; Bennedsen, J

    1982-01-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from...... for the elucidation of concomitant infections in diabetic patients are discussed....

  5. Matrine Inhibits Infiltration of the Inflammatory Gr1hi Monocyte Subset in Injured Mouse Liver through Inhibition of Monocyte Chemoattractant Protein-1

    Directory of Open Access Journals (Sweden)

    Duo Shi

    2013-01-01

    Full Text Available Matrine (Mat is a major alkaloid extracted from Sophora flavescens Ait, an herb which is used in the traditional Chinese medicine for treatment of inflammation, cancer, and other diseases. The present study examined the impact of Mat on the CCl4-induced hepatic infiltration of Gr1hi monocytes to explore the possible mechanisms underlying its anti-inflammatory and antifibrotic effects. The results indicated that Mat protected mice from acute liver injury induced by single intraperitoneal injection of CCl4 and attenuated liver fibrosis induced by repeated CCl4 injection. Meanwhile, the infiltrations of Gr1hi monocytes in both acute and chronic injured livers were all inhibited, and the enhanced hepatic expression of MCP-1 was suppressed. Cellular experiments demonstrated that Mat directly inhibited MCP-1 production in both nonparenchymal cells and hepatic stellate cells derived from CCl4-injured livers. Transwell chemotaxis assays showed that Mat significantly inhibited the chemotactic activity of MCP-1. These results suggest that the anti-inflammatory and antifibrotic effects of Mat could be contributed, at least in part, to its prevention of Gr1hi monocyte infiltration into the injured livers and inhibition of MCP-1 production and activity. These findings extend our understanding of the mechanisms underlying the anti-inflammatory and antifibrotic effects of Mat.

  6. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages.

    Science.gov (United States)

    Jiang, Dadi; Brady, Colleen A; Johnson, Thomas M; Lee, Eunice Y; Park, Eunice J; Scott, Matthew P; Attardi, Laura D

    2011-10-11

    Over half of all human cancers, of a wide variety of types, sustain mutations in the p53 tumor suppressor gene. Although p53 limits tumorigenesis through the induction of apoptosis or cell cycle arrest, its molecular mechanism of action in tumor suppression has been elusive. The best-characterized p53 activity in vitro is as a transcriptional activator, but the identification of numerous additional p53 biochemical activities in vitro has made it unclear which mechanism accounts for tumor suppression. Here, we assess the importance of transcriptional activation for p53 tumor suppression function in vivo in several tissues, using a knock-in mouse strain expressing a p53 mutant compromised for transcriptional activation, p53(25,26). p53(25,26) is severely impaired for the transactivation of numerous classical p53 target genes, including p21, Noxa, and Puma, but it retains the ability to activate a small subset of p53 target genes, including Bax. Surprisingly, p53(25,26) can nonetheless suppress tumor growth in cancers derived from the epithelial, mesenchymal, central nervous system, and lymphoid lineages. Therefore, full transactivation of most p53 target genes is dispensable for p53 tumor suppressor function in a range of tissue types. In contrast, a transcriptional activation mutant that is completely defective for transactivation, p53(25,26,53,54), fails to suppress tumor development. These findings demonstrate that transcriptional activation is indeed broadly critical for p53 tumor suppressor function, although this requirement reflects the limited transcriptional activity observed with p53(25,26) rather than robust transactivation of a full complement of p53 target genes.

  7. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, Else Kirstine

    1998-01-01

    Cardiac and major abdominal surgery are associated with granulocytosis in peripheral blood. The purpose of the present study was to describe the granulocyte and monocyte oxidative burst and the expression of adhesion molecules following cardiac surgery with cardiopulmonary bypass and abdominal...... surgery, 1, 5, 10 and 20 min after aortic clamping, and then 1, 5, 10 and 20 min and 1, 2 and 3 h after declamping. Samples from eight patients undergoing abdominal surgery were taken before surgery, at the end of surgery, and 2 and 3 h post-operatively. A decrease in number of granulocytes and monocytes...... burst of the granulocytes and monocytes decreased after declamping to 15% and 27% of initial values in vitro. Several hours after surgery, there was no significant difference between the two groups. These results can be explained by a granulocyte and monocyte refractory response developing subsequent...

  8. Suppressive activity of acivicin on murine bone marrow hemopoietic progenitors.

    Science.gov (United States)

    Castello, G; Mencoboni, M; Lerza, R; Cerruti, A; Bogliolo, G; Pannacciulli, I

    1992-01-01

    Acivicin (AVC), a L-glutamine antagonist, is an intriguing antimetabolite coupling cell growth inhibition activity with differentiating effects. In this in vivo study the influence of acivicin on mice bone marrow hemopoietic progenitors was tested. 10 mg/kg b.w./day of acivicin were i.p. injected in B6D2F1 mice for nine days. Leucocyte and reticulocyte level (in peripheral blood), CFU-S (multipotent stem cells) and GM-CFU (granulocyte-macrophage committed progenitors) content in bone marrow were determined during drug administration and for 14 days thereafter. All tested populations decreased severely during the first days of treatment. The drop was particularly striking for bone marrow CFU-S. The recovery of hemopoietic progenitors, however, began while AVC was still administered. These results suggest that the effects of acivicin on normal mouse hemopoietic system are mainly inhibitory, causing considerable myelosuppression.

  9. Active suppression of a leaf meristem orchestrates determinate leaf growth.

    Science.gov (United States)

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-10-06

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.

  10. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-07-01

    Full Text Available We examine the effect of nm-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T > 210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (< 210 K we isolate two effects which efficiently reduce the aircraft-induced perturbation: (1 background particles growth due to H2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and ozone depletion. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  11. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-01-01

    Full Text Available We examine the effect of nanometer-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T>210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and reductions in ozone levels. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  12. Delayed translational silencing of ceruloplasmin transcript in gamma interferon-activated U937 monocytic cells: role of the 3' untranslated region

    Science.gov (United States)

    Mazumder, B.; Fox, P. L.

    1999-01-01

    Ceruloplasmin (Cp) is an acute-phase protein with ferroxidase, amine oxidase, and pro- and antioxidant activities. The primary site of Cp synthesis in human adults is the liver, but it is also synthesized by cells of monocytic origin. We have shown that gamma interferon (IFN-gamma) induces the synthesis of Cp mRNA and protein in monocytic cells. We now report that the induced synthesis of Cp is terminated by a mechanism involving transcript-specific translational repression. Cp protein synthesis in U937 cells ceased after 16 h even in the presence of abundant Cp mRNA. RNA isolated from cells treated with IFN-gamma for 24 h exhibited a high in vitro translation rate, suggesting that the transcript was not defective. Ribosomal association of Cp mRNA was examined by sucrose centrifugation. When Cp synthesis was high, i.e., after 8 h of IFN-gamma treatment, Cp mRNA was primarily associated with polyribosomes. However, after 24 h, when Cp synthesis was low, Cp mRNA was primarily in the nonpolyribosomal fraction. Cytosolic extracts from cells treated with IFN-gamma for 24 h, but not for 8 h, contained a factor which blocked in vitro Cp translation. Inhibitor expression was cell type specific and present in extracts of human cells of myeloid origin, but not in several nonmyeloid cells. The inhibitory factor bound to the 3' untranslated region (3'-UTR) of Cp mRNA, as shown by restoration of in vitro translation by synthetic 3'-UTR added as a "decoy" and detection of a binding complex by RNA gel shift analysis. Deletion mapping of the Cp 3'-UTR indicated an internal 100-nucleotide region of the Cp 3'-UTR that was required for complex formation as well as for silencing of translation. Although transcript-specific translational control is common during development and differentiation and global translational control occurs during responses to cytokines and stress, to our knowledge, this is the first report of translational silencing of a specific transcript following cytokine

  13. Cellular internalization and cytotoxicity of the antimicrobial proline-rich peptide Bac7(1-35) in monocytes/macrophages, and its activity against phagocytosed Salmonella typhimurium.

    Science.gov (United States)

    Pelillo, Chiara; Benincasa, Monica; Scocchi, Marco; Gennaro, Renato; Tossi, Alessandro; Pacor, Sabrina

    2014-04-01

    Bac7(1-35) is an active fragment of the bovine cathelicidin antimicrobial peptide Bac7, which selectively inactivates Gram-negative bacteria both in vitro and in mice infected with Salmonella typhimurium. It has a non-lytic mechanism of action, is rapidly internalized by susceptible bacteria and mammalian cells and likely acts by binding to internal targets. In this study we show that Bac7(1-35) accumulates selectively within primed macrophages with respect to resting monocytes. Confocal microscopy analysis showed that the peptide mainly distributes in the cytoplasm and perinuclear region of macrophages within 3 hours of incubation, without affecting cell viability. Cytotoxicity studies showed that the peptide does not induce necrotic or apoptotic damage up to concentrations 50-100-fold higher than minimal inhibitory concentrations (MIC). Moreover, Bac7(1-35) did not affect the ability of macrophages to engulf S. typhimurium, a species that may proliferate within this cell type. Conversely, when added to macrophages after phagocytosis, Bac7(1-35) caused a significant reduction in the number of recovered bacteria, indicating that it can kill the engulfed microorganisms directly and/or indirectly, via activation of the defense response of the cells.

  14. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Passacquale

    Full Text Available BACKGROUND: Activated platelets exert a pro-inflammatory action that can be largely ascribed to their ability to interact with leukocytes and modulate their activity. We hypothesized that platelet activation and consequent formation of monocyte-platelet aggregates (MPA induces a pro-inflammatory phenotype in circulating monocytes. METHODOLOGY/PRINCIPAL FINDINGS: CD62P(+ platelets and MPA were measured, and monocytes characterized, by whole blood flow cytometry in healthy subjects, before and two days after receiving influenza immunization. Three monocytic subsets were identified: CD14(+CD16(-, CD14(highCD16(+and CD14(lowCD16(+. The increase in high sensitivity C-reactive protein post-immunization was accompanied by increased platelet activation and MPA formation (25.02±12.57 vs 41.48±16.81; p = 0.01, along with enhancement of circulating CD14(highCD16(+ cells (4.7±3.6 vs 10.4±4.8; p = 0.003, their percentage being linearly related to levels of CD62P(+-platelets (r(2 = 0.4347; p = 0.0008. In separate in vitro experiments, co-incubation of CD14(+CD16(- cells, isolated from healthy donor subjects, with autologous platelets gave rise to up-regulation of CD16 on monocytes as compared with those maintained in medium alone (% change in CD14(+CD16(+ cells following 48 h co-incubation of monocytes with platelets was +106±51% vs monocytes in medium alone; p<0.001. This effect correlated directly with degree of MPA formation (r(2 = 0.7731; p<0.0001 and was associated with increased monocyte adhesion to endothelial cells. P-selectin glycoprotein ligand-1 (PSGL-1 blocking antibody, which abrogates MPA formation, abolished these effects, as did the cyclooxygenase (COX-2 selective inhibitor NS-398, aspirin and the EP1/EP2-selective antagonist AH6809. CONCLUSIONS/SIGNIFICANCE: These data suggest that MPA formation, as occurs in the blood under pro-inflammatory conditions, expands the pool of circulating CD14(highCD16(+ monocytes in a

  15. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

    Science.gov (United States)

    He, Ling; Chang, Evan; Peng, Jinghua; An, Hongying; McMillin, Sara M; Radovick, Sally; Stratakis, Constantine A; Wondisford, Fredric E

    2016-05-13

    Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production.

  16. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding, E-mail: qqhewd@gmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Chen, Ke, E-mail: chenke_59@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Du, Wei Ting, E-mail: duwtpumc@yahoo.com.cn [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); Han, Zhi-Bo, E-mail: zhibohan@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Ren, He, E-mail: knifesharp2000@hotmail.com [National Engineering Research Center of Cell Products, AmCellGene Co. Ltd, TEDA, Tianjin (China); Chi, Ying, E-mail: caizhuying@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); and others

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  17. Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marijke M F Alen

    Full Text Available BACKGROUND: Dendritic cells (DC, present in the skin, are the first target cells of dengue virus (DENV. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN is present on DC and recognizes N-glycosylation sites on the E-glycoprotein of DENV. Thus, the DC-SIGN/E-glycoprotein interaction can be considered as an important target for inhibitors of viral replication. We evaluated various carbohydrate-binding agents (CBAs against all four described serotypes of DENV replication in Raji/DC-SIGN(+ cells and in monocyte-derived DC (MDDC. METHODOLOGY/PRINCIPAL FINDINGS: A dose-dependent anti-DENV activity of the CBAs Hippeastrum hybrid (HHA, Galanthus nivalis (GNA and Urtica dioica (UDA, but not actinohivin (AH was observed against all four DENV serotypes as analyzed by flow cytometry making use of anti-DENV antibodies. Remarkably, the potency of the CBAs against DENV in MDDC cultures was significantly higher (up to 100-fold than in Raji/DC-SIGN(+ cells. Pradimicin-S (PRM-S, a small-size non-peptidic CBA, exerted antiviral activity in MDDC but not in Raji/DC-SIGN(+ cells. The CBAs act at an early step of DENV infection as they bind to the viral envelope of DENV and subsequently prevent virus attachment. Only weak antiviral activity of the CBAs was detected when administered after the virus attachment step. The CBAs were also able to completely prevent the cellular activation and differentiation process of MDDC induced upon DENV infection. CONCLUSIONS/SIGNIFICANCE: The CBAs exerted broad spectrum antiviral activity against the four DENV serotypes, laboratory-adapted viruses and low passage clinical isolates, evaluated in Raji/DC-SIGN(+ cells and in primary MDDC.

  18. Effects of Simvastatin on NF-κB-DNA Binding Activity and Monocyte Chemoattractant Protein-1 Expression in a Rabbit Model of Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoyun; WANG Lin; ZENG Hesong; DUBEY Laxman; ZHOU Ning; PU Jun

    2006-01-01

    To observe the effects of simvastatin on nuclear factor kappaB (NF-κB)-DNA binding activity and on the expression of monocyte chemoattractant protein-1 (MCP-1) in atherosclerotic plaque in rabbits and to explore the anti-atherosclerotic properties beyond its lipid-lowering effects.Thirty-six New Zealand male rabbits were randomly divided into low-cholesterol group (LC), highcholesterol group (HC), high-cholesterol+ simvastatin group (HC+S) and then were fed for 12weeks. At the end of theexperiment, standard enzymatic assays, electrophoretic mobility shift assay (EMSA), immunohistochemical staining, and morphometry were performed to observe serum lipids, NF-κB-DNA binding activity, MCP-1 protein expression, intima thickness and plaque area of aorta respectively in all three groups. Our results showed that the serum lipids, NF-κB-DNA binding activity, expression of MCP-1 protein, intima thickness, and plaque area of aorta in the LC and HC+S groups were significantly lower than those in the HC group (P<0.05). There was no significant difference in the serum lipids between the LC and HC+S groups (P>0.05), but the NF-κB-DNA binding activity, the expression of MCP-1 protein and the intima thickness and plaque area of aorta in the HC+S group were significantly decreased as compared to the LC group (P<0.05). This study demonstrated that simvastatin could decrease atherosclerosis by inhibiting the NFκB-DNA binding activity and by reducing the expression of MCP-1 protein.

  19. Granulocyte and monocyte adsorptive apheresis ameliorates sepsis in rats.

    Science.gov (United States)

    Ma, Shuai; Xu, Qingqing; Deng, Bo; Zheng, Yin; Tian, Hongyan; Wang, Li; Ding, Feng

    2017-12-01

    Overwhelming activation of granulocytes and monocytes is central to inflammatory responses during sepsis. Granulocyte and monocyte adsorptive apheresis (GMA) is an extracorporeal leukocyte apheresis device filled with cellulose acetate beads and selectively adsorbs granulocytes and monocytes from the peripheral blood. In this study, septic rats received the GMA treatment for 2 h at 18 h after cecal ligation and puncture. GMA selectively adsorbed activated neutrophils and monocytes from the peripheral blood, reduced serum inflammatory cytokine expression, and seemed to improve organ injuries and animal survival. GMA potentially reduced lung injury by alleviating the infiltration of inflammatory cells and the secretion of cytokines. This study showed that selective granulocyte and monocyte adsorption with cellulose acetate beads might ameliorate cecal ligation and puncture (CLP)-induced sepsis and improve survival and organ function.

  20. Circulating Biomarkers of Immune Activation Distinguish Viral Suppression from Nonsuppression in HAART-Treated Patients with Advanced HIV-1 Subtype C Infection

    Directory of Open Access Journals (Sweden)

    Glen Malherbe

    2014-01-01

    Full Text Available Few studies have examined immune activation profiles in patients with advanced HIV-1 subtype C infection or assessed their potential to predict responsiveness to HAART. BioPlex, ELISA, and nephelometric procedures were used to measure plasma levels of inflammatory biomarkers in HIV-1 subtype C-infected patients sampled before and after 6 months of successful HAART (n=20; in patients failing HAART (n=30; and in uninfected controls (n=8. Prior to HAART, CXCL9, CXCL10, β2M, sTNF-R1, TGF-β1, IFN-γ, IL-6, TNF, and sCD14 were significantly elevated in HIV-1-infected patients compared to controls (P<0.01. All of these markers, with the exception of sTNF-R1, were also elevated in patients failing HAART (P<0.05. The persistently elevated levels of CXCL9, CXCL10, and β2M in patients failing therapy in the setting of a marked reduction in these markers in patients on successful HAART suggest that they may be useful not only to monitor immune activation during HAART, but also to distinguish between good and poor responders. In the case of sCD14 and TGF-β1, the levels of these biomarkers remained persistently elevated despite HAART-induced virological suppression, a finding that is consistent with ongoing monocyte-macrophage activation, underscoring a potential role for adjuvant anti-inflammatory therapy.

  1. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  2. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  3. Suppressive effects of antigens on the activity of specific activated lymphocytes: A test to define the specificity of activated lymphocytes

    Institute of Scientific and Technical Information of China (English)

    HU Jun; PAN Sheng-jun; CAI Zhen-jie; GUAN De-lin; LIU Xiao-cheng

    2006-01-01

    Objective:With the regular mixed lymphocytes culture (MLC) to detect the allograft rejection, the reactivity of the activated lymphocytes (primed lymphocytes) of a recipient shows sometimes increase and sometimes decrease against the antigens from the donor, which is inconsistent with the clinical results. In order to establish a convenient method for testing the specificity of the activated lymphocytes in vitro, so as to know the rejection occurred or not by testing the existence of the specific activated lymphocytes against donor's HLA antigens in the recipient's peripheral blood. Methods: Anti-IL-2 neutralizing monoclonal antibody (anti-IL-2 N-mAb) and immunosuppressors were introduced in this test system in the presence of specific stimulators and activated lymphocytes. Results: When the activated lymphocytes were chosen from the one-way MLC 4 d to undergo re-stimulation by specific stimulators, the activity of activated lymphocytes in the treatment group was suppressed significantly compared with that in the control group. The result of this test method is consistent with the biopsy in the clinical diagnosis of rejection.Conclusion :It suggests that the activated lymphocytes can be inactivated by specific antigens in certain conditions. This can be a useful tool to define the specificity of the activated lymphocytes.

  4. Long-term follow-up with Granulocyte and Monocyte Apheresis re-treatment in patients with chronically active inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Karlsson Mats

    2010-07-01

    Full Text Available Abstract Background Patients with IBD and chronic inflammation refractory to conventional therapy often demonstrate higher risk of serious complications. Combinations of immunosuppression and biological treatment as well as surgical intervention are often used in this patient group. Hence, there is need for additional treatment options. In this observational study, focused on re-treatment and long-term results, Granulocyte/Monocyte Adsorption (GMA, Adacolumn® treatment has been investigated to study efficacy, safety and quality of life in IBD-patients with chronic activity. Methods Fifteen patients with ulcerative colitis and 25 patients with Crohn's disease, both groups with chronically active inflammation refractory to conventional medication were included in this observational study. The patients received 5-10 GMA sessions, and the clinical activity was assessed at baseline, after each completed course, and at week 10 and 20 by disease activity index, endoscopy and quality of life evaluation. Relapsed patients were re-treated by GMA in this follow-up study up to 58 months. Results Clinical response was seen in 85% and complete remission in 65% of the patients. Ten patients in the UC-group (66% and 16 patients in the CD-group (64% maintained clinical and endoscopic remission for an average of 14 months. Fourteen patients who relapsed after showing initial remission were re-treated with GMA and 13 (93% went into a second remission. Following further relapses, all of seven patients were successfully re-treated for the third time, all of three patients for the fourth time and one for a fifth time. Conclusions IBD-patients with chronic inflammation despite conventional therapy seem to benefit from GMA. Re-treatment of relapsing remission patients seems to be effective.

  5. Host hindrance to HIV-1 replication in monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Pancino Gianfranco

    2010-04-01

    Full Text Available Abstract Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.

  6. IFI16 Protein Mediates the Anti-inflammatory Actions of the Type-I Interferons through Suppression of Activation of Caspase-1 by Inflammasomes

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2011-01-01

    Background Type-I interferons (IFNs) are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other) inflammasome. Methodology/ Principal Findings We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14+) and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β) or type-II (IFN-γ) IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT) or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. Conclusions/Significance Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a mediator of the anti

  7. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes.

    Directory of Open Access Journals (Sweden)

    Sudhakar Veeranki

    Full Text Available BACKGROUND: Type-I interferons (IFNs are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other inflammasome. METHODOLOGY/ PRINCIPAL FINDINGS: We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14(+ and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β or type-II (IFN-γ IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. CONCLUSIONS/SIGNIFICANCE: Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a

  8. Coinfection with human herpesvirus 8 is associated with persistent inflammation and immune activation in virologically suppressed HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Mar Masiá

    Full Text Available Infection with co-pathogens is one of the postulated factors contributing to persistent inflammation and non-AIDS events in virologically-suppressed HIV-infected patients. We aimed to investigate the relationship of human herpesvirus-8 (HHV-8, a vasculotropic virus implicated in the pathogenesis of Kaposi's sarcoma, with inflammation and subclinical atherosclerosis in HIV-infected patients.Prospective study including virologically suppressed HIV-infected patients. Several blood biomarkers (highly-sensitive C-reactive protein [hsCRP], tumour necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, malondialdehyde, plasminogen activator inhibitor [PAI-1], D-dimer, sCD14, sCD163, CD4/CD38/HLA-DR, and CD8/CD38/HLA-DR, serological tests for HHV-8 and the majority of herpesviruses, carotid intima-media thickness, and endothelial function through flow-mediated dilatation of the brachial artery were measured.A total of 136 patients were included, 34.6% of them infected with HHV-8. HHV-8-infected patients were more frequently co-infected with herpes simplex virus type 2 (HSV-2 (P<0.001, and less frequently with hepatitis C virus (HCV (P = 0.045, and tended to be older (P = 0.086. HHV-8-infected patients had higher levels of hsCRP (median [interquartile range], 3.63 [1.32-7.54] vs. 2.08 [0.89-4.11] mg/L, P = 0.009, CD4/CD38/HLA-DR (7.67% [4.10-11.86]% vs. 3.86% [2.51-7.42]%, P = 0.035 and CD8/CD38/HLA-DR (8.02% [4.98-14.09]% vs. 5.02% [3.66-6.96]%, P = 0.018. After adjustment for the traditional cardiovascular risk factors, HCV and HSV-2 infection, the associations remained significant: adjusted difference between HHV-8 positive and negative patients (95% confidence interval for hsCRP, 74.19% (16.65-160.13%; for CD4/CD38/HLA-DR, 89.65% (14.34-214.87%; and for CD8/CD38/HLA-DR, 58.41% (12.30-123.22%. Flow-mediated dilatation and total carotid intima

  9. Binge-Like Eating Attenuates Nisoxetine Feeding Suppression, Stress Activation, and Brain Norepinephrine Activity

    Science.gov (United States)

    Bello, Nicholas T.; Yeh, Chung-Yang; Verpeut, Jessica L.; Walters, Amy L.

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus–norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly

  10. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    Directory of Open Access Journals (Sweden)

    Nicholas T Bello

    Full Text Available Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat, Binge (sweetened fat, Restrict (calorie deprivation, and Naive (no calorie deprivation/no sweetened fat. Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP, a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h. In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min following restraint stress (1 h. Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP4, but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01. In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz. These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly

  11. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    Science.gov (United States)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  12. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  13. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    Science.gov (United States)

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  14. Pivotal Role for CD16+ Monocytes in Immune Surveillance of the Central Nervous System.

    Science.gov (United States)

    Waschbisch, Anne; Schröder, Sina; Schraudner, Dana; Sammet, Laura; Weksler, Babette; Melms, Arthur; Pfeifenbring, Sabine; Stadelmann, Christine; Schwab, Stefan; Linker, Ralf A

    2016-02-15

    Monocytes represent a heterogeneous population of primary immune effector cells. At least three different subsets can be distinguished based on expression of the low-affinity FcγRIII: CD14(++)CD16 -: classical monocytes, CD14(++)CD16(+) intermediate monocytes, and CD14(+)CD16 ++: non-classical monocytes. Whereas CD16 -: classical monocytes are considered key players in multiple sclerosis (MS), little is known on CD16(+) monocytes and how they contribute to the disease. In this study, we examined the frequency and phenotype of monocyte subpopulations in peripheral blood, cerebrospinal fluid (CSF), and brain biopsy material derived from MS patients and controls. Furthermore, we addressed a possible monocyte dysfunction in MS and analyzed migratory properties of monocyte subsets using human brain microvascular endothelial cells. Our ex vivo studies demonstrated that CD16(+) monocyte subpopulations are functional but numerically reduced in the peripheral blood of MS patients. CD16(+) monocytes with an intermediate-like phenotype were found to be enriched in CSF and dominated the CSF monocyte population under noninflammatory conditions. In contrast, an inversed CD16(+) to CD16 -: CSF monocyte ratio was observed in MS patients with relapsing-remitting disease. Newly infiltrating, hematogenous CD16(+) monocytes were detected in a perivascular location within active MS lesions, and CD16(+) monocytes facilitated CD4(+) T cell trafficking in a blood -: brain barrier model. Our findings support an important role of CD16(+) monocytes in the steady-state immune surveillance of the CNS and suggest that CD16(+) monocytes shift to sites of inflammation and contribute to the breakdown of the blood-brain barrier in CNS autoimmune diseases.

  15. Study on Component Synthesis Active Vibration Suppression Method Using Zero-placement Technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Jianying; Liu Tun; Zhao Zhiping

    2008-01-01

    The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems.By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain.The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control stategy. Simulations have verified the validity and superiority of the proposed approach.

  16. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  17. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  18. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  19. Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma.

    Science.gov (United States)

    Brencicova, Eva; Jagger, Ann L; Evans, Hayley G; Georgouli, Mirella; Laios, Alex; Attard Montalto, Steve; Mehra, Gautam; Spencer, Jo; Ahmed, Ahmed A; Raju-Kankipati, Shanti; Taams, Leonie S; Diebold, Sandra S

    2017-01-01

    Dendritic cells (DC) have the potential to instigate a tumour-specific immune response, but their ability to prime naïve lymphocytes depends on their activation status. Thus, for tumour immunotherapy to be effective, the provision of appropriate DC activation stimuli such as Toll-like receptor (TLR) agonists is crucial in order to overcome immunosuppression associated with the tumour microenvironment. To address this, we investigated how ovarian carcinoma (OC)-associated ascites impedes activation of DC by TLR agonists. Our results show that ascites reduces the TLR-mediated up-regulation of CD86 and partially inhibits the production of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-12 and tumour necrosis factor α (TNFα) in monocyte-derived DC from healthy controls. We further observe an impaired T cell stimulatory capacity of DC upon activation with TLR agonists in the presence of ascites, indicating that their functionality is affected by the immunosuppressive factors. We identify IL-10 and prostaglandin E2 (PGE2) as the pivotal immunosuppressive components in OC-associated ascites compromising TLR-mediated DC activation. Interestingly, IL-10 is present in both ascites from patients with malignant OC and in peritoneal fluid from patients with benign ovarian conditions and both fluids have similar ability to reduce TLR-mediated DC activation. However, depletion of IL-10 from ascites revealed that the presence of paracrine IL-10 is not crucial for ascites-mediated suppression of DC activation in response to TLR activation. Unlike IL-10, PGE2 is absent from peritoneal fluid of patients with benign conditions and selectively reduces TNFα induction in response to TLR-mediated activation in the presence of OC-associated ascites. Our study highlights PGE2 as an immunosuppressive component of the malignant OC microenvironment rendering PGE2 a potentially important target for immunotherapy in OC.

  20. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyan [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Xue, Peng [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Zhang, Hao [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zheng, Hongzhi [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhou, Tong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Teng, Weiping [The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jingbopi@gmail.com [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China)

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  1. Human monocyte differentiation stage affects response to arachidonic acid.

    Science.gov (United States)

    Escobar-Alvarez, Elizabeth; Pelaez, Carlos A; García, Luis F; Rojas, Mauricio

    2010-01-01

    AA-induced cell death mechanisms acting on human monocytes and monocyte-derived macrophages (MDM), U937 promonocytes and PMA-differentiated U937 cells were studied. Arachidonic acid induced apoptosis and necrosis in monocytes and U937 cells but only apoptosis in MDM and U937D cells. AA increased both types of death in Mycobacterium tuberculosis-infected cells and increased the percentage of TNFalpha+ cells and reduced IL-10+ cells. Experiments blocking these cytokines indicated that AA-mediated death was TNFalpha- and IL-10-independent. The differences in AA-mediated cell death could be explained by high ROS, calpain and sPLA-2 production and activity in monocytes. Blocking sPLA-2 in monocytes and treatment with antioxidants favored M. tuberculosis control whereas AA enhanced M. tuberculosis growth in MDM. Such evidence suggested that AA-modulated effector mechanisms depend on mononuclear phagocytes' differentiation stage.

  2. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  3. Active vibration suppression in a suspended Fabry-Pérot cavity.

    Science.gov (United States)

    Canuto, Enrico

    2006-07-01

    This paper is concerned with active vibration suppression in a suspended Fabry-Pérot cavity, employed as the sensor in an innovative thrust-stand, called Nanobalance. The Nanobalance aims to exploit the sensitivity of in-vacuum Fabry-Pérot interferometers to sub-nanometric displacements in order to measure thrust (active and the passive) suspended to an athermic spacer. The thruster under test is mounted on the active pendulum and an equal dummy thruster is mounted on the passive one for balancing. The objective of the paper is to suppress the beat motion centered on the mean pendulum natural frequency (10-14 Hz depending on the thruster under test) without affecting the measurement bandwidth (2 Hz) where thrust has to be measured. Beat motion arises because of small pendulum imbalances excited by ground noise. Relevant digital control strategies and experimental results will be presented and discussed.

  4. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E; Marchand-Pauvert, Veronique

    2001-01-01

    1. The involvement of the motor cortex during human walking was evaluated using transcranial magnetic stimulation (TMS) of the motor cortex at a variety of intensities. Recordings of EMG activity in tibialis anterior (TA) and soleus muscles during walking were rectified and averaged. 2. TMS of low...... intensity (below threshold for a motor-evoked potential, MEP) produced a suppression of ongoing EMG activity during walking. The average latency for this suppression was 40.0 +/- 1.0 ms. At slightly higher intensities of stimulation there was a facilitation of the EMG activity with an average latency of 29.......5 +/- 1.0 ms. As the intensity of the stimulation was increased the facilitation increased in size and eventually a MEP was clear in individual sweeps. 3. In three subjects TMS was replaced by electrical stimulation over the motor cortex. Just below MEP threshold there was a clear facilitation at short...

  5. The effect of squalane-dissolved fullerene-C60 on adipogenesis-accompanied oxidative stress and macrophage activation in a preadipocyte-monocyte co-culture system.

    Science.gov (United States)

    Xiao, Li; Aoshima, Hisae; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-08-01

    Effects of squalane-dissolved fullerene-C60 (Sql-fullerene) on macrophage activation and adipose conversion with oxidative stress were studied using an inflammatory adipose-tissue equivalent (ATE) and OP9 mouse stromal preadipocyte-U937 lymphoma cell co-culture systems. Differentiation of OP9 cells was initiated by insulin-rich serum replacement (SR) as an adipogenic stimulant, and then followed by accumulation of intracellular lipid droplets and reactive oxygen species (ROS), both of which were significantly inhibited by Sql-fullerene. In the OP9-U937 cell co-culture system, U937 cells rapidly differentiated to macrophage-like cells during SR-induced adipogenesis in OP9 cells. The ROS accumulation was in the co-culture more marked than in OP9 cells alone, suggesting that the interaction between adipocytes and monocytes/macrophages promotes inflammatory responses. Sql-fullerene significantly inhibited macrophage activation and low-grade adipogenesis in the OP9-U937 co-culture system. We developed a three-dimensional inflammatory adipose-tissue model "ATE" consisting of, characteristically, U937 cells in the culture-wells, and, in addition, mounted a culture insert containing OP9 cells-populated collagen gel. ATE is enabled with suitable stimulation to represent the pathology of inflammatory disorders, such as macrophage infiltration in adipose tissue. Five-day culturing of ATE in SR medium occurred U937 macrophage migration and intracellular oil-droplet accumulation that were significantly inhibited by Sql-fullerene. Our results suggest that Sql-fullerene might be explored as a potential medicine for the treatment of metabolic syndrome or other obesity-related disorders.

  6. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Kumi Kimura

    2016-03-01

    Full Text Available Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  7. Global suppression of mitogen-activated ovine peripheral blood mononuclear cells by surface protein activity from Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Shahzad, W; Ajuwape, Adebowale Titilayo Phillip; Rosenbusch, Ricardo Francisco

    2010-07-01

    Mycoplasma ovipneumoniae is associated with chronic non-progressive pneumonia of sheep and goats. As with many other mycoplasmas involved in animal diseases, protective immune responses have not been achieved with vaccines, even though antibody responses can be obtained. This study focuses on characterizing the interaction of M. ovipneumoniae with ovine PBMC using carboxy-fluorescein-succinimidyl-ester (CFSE) loading and flow cytometry to measure lymphoid cell division. M. ovipneumoniae induced a strong in vitro polyclonal suppression of CD4(+), CD8(+), and B blood lymphocyte subsets. The suppressive activity could be destroyed by heating to 60 degrees C, and partially impaired by formalin and binary ethyleneimine treatment that abolished its viability. The activity resided on the surface-exposed membrane protein fraction of the mycoplasma, since mild trypsin treatment not affecting viability was shown to reduce suppressive activity. Trypsin-treated mycoplasma regained suppressive activity once the mycoplasma was allowed to re-synthesize its surface proteins. Implications for the design of vaccines against M. ovipneumoniae are discussed.

  8. Hearing an illusory vowel in noise: suppression of auditory cortical activity.

    Science.gov (United States)

    Riecke, Lars; Vanbussel, Mieke; Hausfeld, Lars; Başkent, Deniz; Formisano, Elia; Esposito, Fabrizio

    2012-06-06

    Human hearing is constructive. For example, when a voice is partially replaced by an extraneous sound (e.g., on the telephone due to a transmission problem), the auditory system may restore the missing portion so that the voice can be perceived as continuous (Miller and Licklider, 1950; for review, see Bregman, 1990; Warren, 1999). The neural mechanisms underlying this continuity illusion have been studied mostly with schematic stimuli (e.g., simple tones) and are still a matter of debate (for review, see Petkov and Sutter, 2011). The goal of the present study was to elucidate how these mechanisms operate under more natural conditions. Using psychophysics and electroencephalography (EEG), we assessed simultaneously the perceived continuity of a human vowel sound through interrupting noise and the concurrent neural activity. We found that vowel continuity illusions were accompanied by a suppression of the 4 Hz EEG power in auditory cortex (AC) that was evoked by the vowel interruption. This suppression was stronger than the suppression accompanying continuity illusions of a simple tone. Finally, continuity perception and 4 Hz power depended on the intactness of the sound that preceded the vowel (i.e., the auditory context). These findings show that a natural sound may be restored during noise due to the suppression of 4 Hz AC activity evoked early during the noise. This mechanism may attenuate sudden pitch changes, adapt the resistance of the auditory system to extraneous sounds across auditory scenes, and provide a useful model for assisted hearing devices.

  9. Percutaneous Transluminal Angioplasty in Patients with Peripheral Arterial Disease Does Not Affect Circulating Monocyte Subpopulations

    Directory of Open Access Journals (Sweden)

    Pawel Maga

    2016-01-01

    Full Text Available Monocytes are mononuclear cells characterized by distinct morphology and expression of CD14 and CD16 surface receptors. Classical, quiescent monocytes are positive for CD14 (lipopolysaccharide receptor but do not express Fc gamma receptor III (CD16. Intermediate monocytes coexpress CD16 and CD14. Nonclassical monocytes with low expression of CD14 represent mature macrophage-like monocytes. Monocyte behavior in peripheral arterial disease (PAD and during vessel wall directed treatment is not well defined. This observation study aimed at monitoring of acute changes in monocyte subpopulations during percutaneous transluminal angioplasty (PTA in PAD patients. Patients with Rutherford 3 and 4 PAD with no signs of inflammatory process underwent PTA of iliac, femoral, or popliteal segments. Flow cytometry for CD14, CD16, HLA-DR, CD11b, CD11c, and CD45RA antigens allowed characterization of monocyte subpopulations in blood sampled before and after PTA (direct angioplasty catheter sampling. Patients were clinically followed up for 12 months. All 61 enrolled patients completed 12-month follow-up. Target vessel failure occurred in 12 patients. While absolute counts of monocyte were significantly lower after PTA, only subtle monocyte activation after PTA (CD45RA and β-integrins occurred. None of the monocyte parameters correlated with long-term adverse clinical outcome. Changes in absolute monocyte counts and subtle changes towards an activation phenotype after PTA may reflect local cell adhesion phenomenon in patients with Rutherford 3 or 4 peripheral arterial disease.

  10. A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus

    Science.gov (United States)

    Scott, L. L.; Brecht, E. J.; Philpo, A.; Iyer, S.; Wu, N. S.; Mihic, S. J.; Aldrich, R. W.; Pierce, J.; Walton, J. P.

    2017-01-01

    Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain. PMID:28195225

  11. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    Science.gov (United States)

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming.

  12. Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity

    Science.gov (United States)

    Mytar, B; Siedlar, M; Woloszyn, M; Ruggiero, I; Pryjma, J; Zembala, M

    1999-01-01

    The present study examined the ability of human monocytes to produce reactive oxygen intermediates after a contact with tumour cells. Monocytes generated oxygen radicals, as measured by luminol-enhanced chemiluminescence and superoxide anion production, after stimulation with the tumour, but not with untransformed, cells. The use of specific oxygen radical scavengers and inhibitors, superoxide dismutase, catalase, dimethyl sulphoxide and deferoxamine as well as the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide, indicated that chemiluminescence was dependent on the production of superoxide anion and hydroxyl radical and the presence of myeloperoxidase. The tumour cell-induced chemiluminescent response of monocytes showed different kinetics from that seen after activation of monocytes with phorbol ester. These results indicate that human monocytes can be directly stimulated by tumour cells for reactive oxygen intermediate production. Spontaneous monocyte-mediated cytotoxicity towards cancer cells was inhibited by superoxide dismutase, catalase, deferoxamine and hydrazide, implicating the role of superoxide anion, hydrogen peroxide, hydroxyl radical and hypohalite. We wish to suggest that so-called ‘spontaneous’ tumoricidal capacity of freshly isolated human monocytes may in fact be an inducible event associated with generation of reactive oxygen intermediates and perhaps other toxic mediators, resulting from a contact of monocytes with tumour cells. © 1999 Cancer Research Campaign PMID:10070862

  13. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Sandberg, Anne; Baudoux, Pierre

    2009-01-01

    was maintained (maximal relative efficacy [E(max)], 1.0- to 1.3-log reduction in CFU) even though efficacy was inferior to that of extracellular killing (E(max), >4.5-log CFU reduction). Animal studies included a novel use of the mouse peritonitis model, exploiting extra- and intracellular differentiation assays...... concentration. These findings stress the importance of performing studies of extra- and intracellular activity since these features cannot be predicted from traditional MIC and killing kinetic studies. Application of both the THP-1 and the mouse peritonitis models showed that the in vitro results were similar...

  14. Monocyte functions in diabetes mellitus.

    Science.gov (United States)

    Geisler, C; Almdal, T; Bennedsen, J; Rhodes, J M; Kølendorf, K

    1982-02-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from the healthy individuals. Phagocytosis of Candida albicans was decreased in the monocytes from the patients, whereas pinocytosis of acridine and phagocytosis of latex and sheep red blood cells were normal. The chemotactic response towards casein was enhanced. The possible consequences of these findings for the elucidation of concomitant infections in diabetic patients are discussed.

  15. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  16. TLR7/9-mediated monocytosis and maturation of Gr-1(hi) inflammatory monocytes towards Gr-1(lo) resting monocytes implicated in murine lupus.

    Science.gov (United States)

    Santiago-Raber, Marie-Laure; Baudino, Lucie; Alvarez, Montserrat; van Rooijen, Nico; Nimmerjahn, Falk; Izui, Shozo

    2011-11-01

    Circulating monocytes are divided into two major, phenotypically and functionally distinct subsets: Gr-1(hi) "inflammatory" and Gr-1(lo) "resting" monocytes. One of the unique cellular abnormalities in lupus-prone mice is monocytosis, which is characterized by a selective expansion of Gr-1(lo) monocytes and dependent on the expression of stimulatory IgG Fc receptors (FcγR). We speculated that IgG immune complexes containing nuclear antigens could stimulate Gr-1(hi) monocytes through interaction with FcγRs and then TLR7 and TLR9, thereby promoting the maturation towards Gr-1(lo) monocytes. In the present study, we assessed this hypothesis by analyzing effects of TLR9 or TLR7 agonist on monocytes in vivo. The analysis of various surface markers differentially expressed on both subsets of monocytes in combination with selective depletion of either subset revealed that within 48 h after injection of the TLR9 agonist CpG, approximately one third of Gr-1(hi) monocytes became phenotypically identical to Gr-1(lo) monocytes. In addition, we observed approximately two-fold increases in the total monocyte population 8-24 h after injection of CpG. Moreover, the activation of TLR9 resulted in an increased expression of stimulatory FcγRIV relative to inhibitory FcγRIIB on monocytes, thereby enhancing their responsiveness to IgG immune complexes. Essentially identical results were obtained after stimulation of TLR7 with a synthetic agonist (1V136). Our results indicate that the activation of TLR7 and TLR9 not only induced the maturation of a fraction of Gr-1(hi) monocytes towards Gr-1(lo) monocytes but also promoted the overall generation of monocytes, thereby supporting the critical role of TLR7 and TLR9 for the development of monocytosis in lupus-prone mice.

  17. Suppressive Activity of a Macrolide Antibiotic, Roxithromycin, on Pro-Inflammatory Cytokine Production in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    H. Suzaki

    1999-01-01

    Full Text Available This study was designed to examine the influence of a macrolide antibiotic, roxithromycin (RXM, on the production of pro-inflammatory cytokines, interleukin (IL-1β and tumor necrosis factor (TNF-α. In the first experiments, we examined the effect of RXM on in vitro cytokine production from lipopolysaccharide (LPS-stimulated human peripheral blood monocytes. The monocytes were cultured in the presence of various doses of the agent. After 24 h, the culture supernatants were obtained and assayed for IL-1β and TNF-α contents by enzyme-linked immunosorbent assay. RXM suppressed the in vitro production of IL-1β and TNF-α in response to LPS stimulation. This was dose dependent and first noted at a concentration of as little as 0.05 μg/ml, which is much lower than therapeutic blood levels. In the second part of the experiments, we examined the influence of RXM on the appearance of IL-1β and TNF-α in mouse lung extract induced by LPS inhalation. RXM was administered orally into BALB/c mice at a single dose of 2.5 mg/kg once a day for 5-12 weeks. These mice were then instilled with LPS into the trachea and examined for the presence of cytokines in aqueous lung extracts. Pretreatment of mice with RXM for 5 weeks did not influence of the appearance of both IL-1β and TNF-α in aqueous lung extracts. However, pretreatment for more than 7 weeks dramatically suppressed the cytokine appearance in the extracts.

  18. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    Science.gov (United States)

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.

  19. The activation and suppression of plant innate immunity by parasitic nematodes.

    Science.gov (United States)

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.

  20. Marijuana effects on immunity: suppression of human natural killer cell activity of delta-9-tetrahydrocannabinol.

    Science.gov (United States)

    Specter, S C; Klein, T W; Newton, C; Mondragon, M; Widen, R; Friedman, H

    1986-01-01

    Delta-9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, was tested for its ability to modulate human natural killer (NK) cell function. THC was toxic for peripheral blood lymphocytes at 20 micrograms/ml but not at 10 micrograms/ml or less. This component of marijuana also was inhibitory for NK activity against K562, a human tumor cell line at concentrations down to 5 micrograms/ml when pre-incubated with the effector cells. Suppression of NK function was dependent upon the concentration of THC and the length of time of pre-incubation but was independent of the ratio of effector to target cells. Prostaglandins were not involved in suppression of NK activity.

  1. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays...... an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  2. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1...... with either 1.25 mg/kg DPCPX dissolved in 2 ml/kg dimethyl sulfoxide (DMSO) or the same volume of DMSO alone, 15 min before the third ischemic episode. Time to electrocortical suppression was estimated based on the decay of the root mean square of two-channel electrocorticographic recordings. During the first...

  3. Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis

    Directory of Open Access Journals (Sweden)

    Yan Gong

    2016-11-01

    Full Text Available Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPARα agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs. While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases.

  4. Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference.

    Science.gov (United States)

    Barras, Caroline; Kerzel, Dirk

    2016-12-01

    In visual search for a shape target, interference from salient-but-irrelevant color singletons can be resisted in feature search mode, but not in singleton detection mode. In singleton detection mode, we observed a contralateral positivity (PD) after 260-340ms, suggesting that the salient distractor was suppressed. Because RTs in singleton detection mode increased when a distractor was present, we conclude that active suppression of distractors takes time. In feature search mode, no increase in RTs and no PD to the distractor was observed, showing that resistance to interference was not accomplished by suppression. Rather, the smaller N2pc to the target in feature search than in singleton detection mode suggests that enhancement of target features avoided interference. Thus, the strong top-down set in feature search mode eliminated the need to suppress the early attend-to-me signal (corresponding to the Ppc, from 160 to 210ms) that was generated by salient stimuli independently of search mode.

  5. Astragalus polysaccharides suppress ICAM-1 and VCAM-1 expression in TNF-α-treated human vascular endothelial cells by blocking NF-KB activation

    Institute of Scientific and Technical Information of China (English)

    Yu-ping ZHU; Tao SHEN; Ya-jun LIN; Bei-dong CHEN; Yang RUAN; Yuan CAO; Yue QIAO

    2013-01-01

    Aim:To investigate the effects ofAstragalus polysaccharides (APS) on tumor necrosis factor (TNF)-α-induced inflammatory reactions in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanisms.Methods:HUVECs were treated with TNF-α for 24 h.The amounts of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) were determined with Western blotting.HUVEC viability and apoptosis were detected using cell viability assay and Hoechst staining,respectively.Reactive oxygen species (ROS) production was measured by DHE staining.Monocyte and HUVEC adhesion assay was used to detect endothelial cell adhesive function.NF-KB activation was detected with immunofluorescence.Results:TNF-α (1-80 ng/mL) caused dose-and time-dependent increases of ICAM-1 and VCAM-1 expression in HUVECs,accompanied by significant augmentation of IKB phosphorylation and NF-KB translocation into the nuclei.Pretreatment with APS (10 and 50 μg/mL)significantly attenuated TNFα-induced upregulation of ICAM-1,VCAM-1,and NF-KB translocation.Moreover,APS significantly reduced apoptosis,ROS generation and adhesion function damage in TNF-α-treated HUVECs.Conclusion:APS suppresses TNFα-induced adhesion molecule expression by blocking NF-KB signaling and inhibiting ROS generation in HUVECs.The results suggest that APS may be used to treat and prevent endothelial cell injury-related diseases.

  6. Transcriptomic analysis reveals the potential of highly pathogenic PRRS virus to modulate immune system activation related to host-pathogen and damage associated signaling in infected porcine monocytes

    Science.gov (United States)

    One of the largest risks to the continued stability of the swine industry is by pathogens like porcine reproductive and respiratory syndrome virus (PRRSV) that can decimate production as it spreads among individuals. These infections can be low or highly pathogenic, and because it infects monocytic ...

  7. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity

    NARCIS (Netherlands)

    Bol, K.F.; Aarntzen, E.H.J.G.; Pots, J.M.; Olde Nordkamp, M.A.M.; Rakt, M.W.M.M. van de; Scharenborg, N.M.; Boer, A.J. de; Oorschot, T.G.M. van; Croockewit, S.; Blokx, W.A.M.; Oyen, W.J.G.; Boerman, O.C.; Mus, R.D.M.; Rossum, M.M. van; Graaf, C.A.A. van der; Punt, C.J.; Adema, G.J.; Figdor, C.G.; Vries, I.J. de; Schreibelt, G.

    2016-01-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that

  8. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination.

    Science.gov (United States)

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases.

  9. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  10. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  11. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells.

    Science.gov (United States)

    Sarkar, Susobhan; Döring, Axinia; Zemp, Franz J; Silva, Claudia; Lun, Xueqing; Wang, Xiuling; Kelly, John; Hader, Walter; Hamilton, Mark; Mercier, Philippe; Dunn, Jeff F; Kinniburgh, Dave; van Rooijen, Nico; Robbins, Stephen; Forsyth, Peter; Cairncross, Gregory; Weiss, Samuel; Yong, V Wee

    2014-01-01

    Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.

  12. Altered signaling in systemic juvenile idiopathic arthritis monocytes.

    Science.gov (United States)

    Macaubas, Claudia; Wong, Elizabeth; Zhang, Yujuan; Nguyen, Khoa D; Lee, Justin; Milojevic, Diana; Shenoi, Susan; Stevens, Anne M; Ilowite, Norman; Saper, Vivian; Lee, Tzielan; Mellins, Elizabeth D

    2016-02-01

    Systemic juvenile idiopathic arthritis (sJIA) is characterized by systemic inflammation and arthritis. Monocytes are implicated in sJIA pathogenesis, but their role in disease is unclear. The response of sJIA monocytes to IFN may be dysregulated. We examined intracellular signaling in response to IFN type I (IFNα) and type II (IFNγ) in monocytes during sJIA activity and quiescence, in 2 patient groups. Independent of disease activity, monocytes from Group 1 (collected between 2002 and 2009) showed defective STAT1 phosphorylation downstream of IFNs, and expressed higher transcript levels of SOCS1, an inhibitor of IFN signaling. In the Group 2 (collected between 2011 and 2014), monocytes of patients with recent disease onset were IFNγ hyporesponsive, but in treated, quiescent subjects, monocytes were hyperresponsive to IFNγ. Recent changes in medication in sJIA may alter the IFN hyporesponsiveness. Impaired IFN/pSTAT1 signaling is consistent with skewing of sJIA monocytes away from an M1 phenotype and may contribute to disease pathology.

  13. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    Science.gov (United States)

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  14. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain.

    Science.gov (United States)

    Shimada, Nao; Kanno-Tanabe, Naoko; Minemura, Kakeru; Kawata, Takefumi

    2008-02-01

    Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.

  15. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  16. Involvement of superoxide generated by NADPH oxidase in the shedding of procoagulant vesicles from human monocytic cells exposed to bupivacaine.

    Science.gov (United States)

    Azma, Toshiharu; Ogawa, Saori; Nishioka, Akira; Kinoshita, Hiroyuki; Kawahito, Shinji; Nagasaka, Hiroshi; Matsumoto, Nobuyuki

    2017-08-17

    It is known that a variety of sized procoagulant vesicles that express tissue factor are released from several types of cells including monocytes by mechanisms related to the induction of apoptosis, while it has not yet been evaluated whether superoxide is involved in the production of such vesicles. Here, we report that a local anesthetic bupivacaine induces apoptosis in human monocytic cells THP-1 within a short observation period, where the shedding of procoagulant vesicles is associated. The property as procoagulant vesicles was evaluated using flow cytometry by the binding of FITC-conjugated fibrinogen to vesicles in the presence of fresh frozen plasma and the suppression of this binding by heparin. Bupivacaine (1 mg/ml) increased the apoptotic cells and procoagulant vesicles. LY294002 (100 µM), that inhibits the recruiting of intracellular component of NADPH oxidase to construct the activated form of this enzyme complex, or superoxide dismutase (1500 unit/ml) suppressed bupivacaine-provoked induction of apoptosis and the increase of procoagulant vesicles. We suggest that this simple experimental system is useful to explore the molecular mechanisms of action of superoxide in the shedding of procoagulant vesicles from human monocytic cells.

  17. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Directory of Open Access Journals (Sweden)

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  18. Eviprostat Activates cAMP Signaling Pathway and Suppresses Bladder Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Masayuki Takeda

    2013-06-01

    Full Text Available Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS. At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE-secreted alkaline phosphatase (SEAP (CRE-SEAP-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP and cAMP-response element-binding protein (CREB, as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3 inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS.

  19. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive.

  20. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Science.gov (United States)

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function.

  1. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  2. Tumor Suppressive Function of p21-activated Kinase 6 in Hepatocellular Carcinoma.

    Science.gov (United States)

    Liu, Weisi; Liu, Yidong; Liu, Haiou; Zhang, Weijuan; Fu, Qiang; Xu, Jiejie; Gu, Jianxin

    2015-11-20

    Our previous studies identified the oncogenic role of p21-activated kinase 1 (PAK1) in hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Contrarily, PAK6 was found to predict a favorable prognosis in RCC patients. Nevertheless, the ambiguous tumor suppressive function of PAK6 in hepatocarcinogenesis remains obscure. Herein, decreased PAK6 expression was found to be associated with tumor node metastasis stage progression and unfavorable overall survival in HCC patients. Additionally, overexpression and silence of PAK6 experiments showed that PAK6 inhibited xenografted tumor growth in vivo, and restricted cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis and anoikis in vitro. Moreover, overexpression of kinase dead and nuclear localization signal deletion mutants of PAK6 experiments indicated the tumor suppressive function of PAK6 was partially dependent on its kinase activity and nuclear translocation. Furthermore, gain or loss of function in polycomb repressive complex 2 (PRC2) components, including EZH2, SUZ12, and EED, elucidated epigenetic control of H3K27me3-arbitrated PAK6 down-regulation in hepatoma cells. More importantly, negative correlation between PAK6 and EZH2 expression was observed in hepatoma tissues from HCC patients. These data identified the tumor suppressive role and potential underlying mechanism of PAK6 in hepatocarcinogenesis.

  3. HIV-1 Tat Protein Activates both the MyD88 and TRIF Pathways To Induce Tumor Necrosis Factor Alpha and Interleukin-10 in Human Monocytes.

    Science.gov (United States)

    Planès, Rémi; Ben Haij, Nawal; Leghmari, Kaoutar; Serrero, Manutea; BenMohamed, Lbachir; Bahraoui, Elmostafa

    2016-07-01

    In this study, we show that the HIV-1 Tat protein interacts with rapid kinetics to engage the Toll-like receptor 4 (TLR4) pathway, leading to the production of proinflammatory and anti-inflammatory cytokines. The pretreatment of human monocytes with Tat protein for 10 to 30 min suffices to irreversibly engage the activation of the TLR4 pathway, leading to the production of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), two cytokines strongly implicated in the chronic activation and dysregulation of the immune system during HIV-1 infection. Therefore, this study analyzed whether the HIV-1 Tat protein is able to activate these two pathways separately or simultaneously. Using three complementary approaches, including mice deficient in the MyD88, TIRAP/MAL, or TRIF adaptor, biochemical analysis, and the use of specific small interfering RNAs (siRNAs), we demonstrated (i) that Tat was able to activate both the MyD88 and TRIF pathways, (ii) the capacity of Tat to induce TIRAP/MAL degradation, (iii) the crucial role of the MyD88 pathway in the production of Tat-induced TNF-α and IL-10, (iv) a reduction but not abrogation of IL-10 and TNF-α by Tat-stimulated macrophages from mice deficient in TIRAP/MAL, and (v) the crucial role of the TRIF pathway in Tat-induced IL-10 production. Further, we showed that downstream of the MyD88 and TRIF pathways, the Tat protein activated the protein kinase C (PKC) βII isoform, the mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-κB in a TLR4-dependent manner. Collectively, our data show that by recruiting the TLR4 pathway with rapid kinetics, the HIV-1 Tat protein leads to the engagement of both the MyD88 and TRIF pathways and to the activation of PKC, MAP kinase, and NF-κB signaling to induce the production of TNF-α and IL-10. In this study, we demonstrate that by recruiting the TLR4 pathway with rapid kinetics, the HIV-1 Tat protein leads to the engagement

  4. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  5. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  6. Analysis of Harmonics Suppression by Active Damping Control on Multi Slim DC-link Drives

    DEFF Research Database (Denmark)

    Yang, Feng; Máthé, Lászlo; Lu, Kaiyuan;

    2016-01-01

    Compared with conventional dc-link drive, slim dc-link drive is expected to achieve lower cost and longer life time. However, harmonics distortion problem may occur in such drive systems. This paper proposes to use an active damping control method to suppress the harmonic distortion...... with the benefit of low cost and also low loss. A new analysis method, based on the frequency domain impedance model, is presented to explore the mechanism of harmonics suppression. Also, a general method is presented to build the impedance model of a PMSM drive system using Field Oriented Control (FOC) method....... Some design issues, including power levels, current control bandwidth and harmonic interaction, are discussed when the drive system is fed by a weak grid. Case studies on a two-drive system composed by two slim dc-link drive units are provided to verify the proposed analysis method....

  7. Suppression of the dynamic response of cracked beams with active control

    Directory of Open Access Journals (Sweden)

    Lin Meng-Ju

    2017-01-01

    Full Text Available Recently, studies on the dynamic responses of cracked beams are quite worthy of being conferred. The theoretical dynamic properties of cracked beams previously obtained by La-DQM method were utilized to evaluate the maximum amplitudes of cracked beams. A comparatively new concept which utilized the controller gain to suppress the transverse vibration response of cracked beams in the perspective of proportional control scheme was proposed. A simulation study which applied an active control strategy to suppress the amplitude of vibration on the cracked beams with MATLAB SIMULINK software has been successfully accomplished. The maximum dynamic response of cracked beams is found to be inversely proportional to controller gain. Increasing the controller gain properly to control the vibration of the cracked beams is suggested in this study.

  8. Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity?

    Science.gov (United States)

    Askenasy, Enosh M; Askenasy, Nadir

    2013-03-01

    Two competing hypotheses are proposed to cause autoimmunity: evasion of a sporadic self-reactive clone from immune surveillance and ineffective suppression of autoreactive clones that arise physiologically. We question the relevance of these hypotheses to the study of type 1 diabetes, where autoreactivity may accompany the cycles of physiological adjustment of β-cell mass to body weight and nutrition. Experimental evidence presents variable and conflicting data concerning the activities of both effector and regulatory T cells, arguing in favor and against: quantitative dominance and deficit, aberrant reactivity and expansion, sensitivity to negative regulation and apoptosis. The presence of autoantibodies in umbilical cord blood of healthy subjects and low incidence of the disease following early induction suggest that suppression of self-reactivity is the major determinant factor.

  9. Impaired migration capacity in monocytes derived from patients with Gaucher disease.

    Science.gov (United States)

    Bettman, Noam; Avivi, Irit; Rosenbaum, Hanna; Bisharat, Lina; Katz, Tamar

    2015-08-01

    Gaucher disease (GD) is characterized by glucocerebroside (GC) accumulation due to defective activity of the glucocerebrosidase (GlcCerase) enzyme. Monocytes and macrophages exhibit the highest GlcCerase activity and are most prominently affected by GC engorgement. As GD patients tend to exert various immune system-related changes, this study was designed to investigate potential effects of monocyte dysfunction on these alterations. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of untreated GD patients and healthy volunteers. Monocyte migration capacity towards SDF1α was assessed. The GD patients exhibited reduced numbers of monocytes and decreased capability of SDF1α-dependent monocyte migration. Evaluation of CXCR4, the SDF1α receptor, revealed reduced expression of surface CXCR4 on GD-derived monocytes, despite similar CXCR4 mRNA transcript levels in the monocytes of healthy volunteers and GD patients. Reduction of surface CXCR4 was accompanied by increased intracellular CXCR4 levels in patient monocytes. This elevated intracellular CXCR4 might reflect significantly increased SDF1α concentrations characterizing patients' serum and the lysosomal impairment of GD, resulting in decreased degradation of CXCR4. Different distributions of CXCR4 expression observed in the two groups explain impaired SDF1α-dependent monocyte migration. Reduced numbers and impaired migration capacity of GD-derived monocytes could contribute to abnormal inflammation and GD-associated immune alterations seen in these patients.

  10. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  11. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Natali Shirron

    Full Text Available The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.

  12. Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure.

    Directory of Open Access Journals (Sweden)

    Shunsuke Yagi

    Full Text Available Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF, followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.

  13. [Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase].

    Science.gov (United States)

    Pokrovskaya, M V; Zhdanov, D D; Eldarov, M A; Aleksandrova, S S; Veselovskiy, A V; Pokrovskiy, V S; Grishin, D V; Gladilina, Ju A; Sokolov, N N

    2017-01-01

    The active and stable mutant forms of short chain cytoplasmic L-asparaginase type I of Rhodospirillum rubrum (RrA): RrA+N17, D60K, F61L, RrA+N17, A64V, E67K, RrA+N17, E149R, V150P, RrAE149R, V150P and RrAE149R, V150P, F151T were obtained by the method of site-directed mutagenesis. It is established that variants RrA-N17, E149R, V150P, F151T and RrАE149R, V150P are capable to reduce an expression hTERT subunit of telomerase and, hence, activity of telomeres in Jurkat cells, but not in cellular lysates. During too time, L-asparaginases of Escherichia coli, Erwinia carotovora and Wolinella succinogenes, mutant forms RrА+N17, D60K, F61L and RrА+N17, A64V, E67K do not suppress of telomerase activity. The assumption of existence in structure RrA of areas (amino acids residues in the position 146-164, 1-17, 60-67) which are responsible for suppression of telomerase activity is made. The received results show that antineoplastic activity of some variants RrA is connected both with reduction of concentration of free L-asparagine, and with expression suppression of hTERT telomerase subunit, that opens new prospects for antineoplastic therapy.

  14. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    Science.gov (United States)

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  15. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis.

    Science.gov (United States)

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W

    2015-12-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.

  16. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    Science.gov (United States)

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.

  17. Distinct functional programming of human fetal and adult monocytes.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  18. Purification of Human Monocytes and Lymphocyte Populations by Counter Current Elutriation– A Short Protocol

    OpenAIRE

    Clarke, Elizabeth V.; Benoit, Marie E.; Tenner, Andrea J.

    2013-01-01

    Investigations of the activation processes involved in human monocytes and monocyte-derived macrophages and dendritic cells often required large numbers of cells that have not been possibly altered or activated by adherence to surfaces, by binding of antibodies to surface antigens during positive selection, or by release of activators by platelets or other non myeloid cells during isolation or co-culture. Human peripheral blood monocytes as well as lymphocytes from the same blood donor can be...

  19. Helicobacter pylori outer membrane vesicles inhibit human T cell responses via induction of monocyte COX-2 expression.

    Science.gov (United States)

    Hock, Barry D; McKenzie, Judith L; Keenan, Jacqueline I

    2017-06-01

    The modulation of T cell responses by Helicobacter pylori is thought to potentiate both H. pylori persistence and development of gastric pathologies including cancer. Release of outer membrane vesicles (OMV) by H. pylori provides a potential vehicle for modulation of the immune system. Although OMV are thought to have T cell suppressive activity, this has not yet been demonstrated. Their suppressive activity was investigated in this study using the responses of peripheral blood mononuclear cells (PBMC) to T cell stimuli as a readout. We demonstrate that addition of OMV to PBMC significantly inhibits subsequent T cell proliferation in a cyclo-oxygenase-2 (COX-2)-dependent manner. Addition of OMV did not significantly modulate PBMC apoptosis, but induced strong expression of COX-2 by the monocytes present and significantly increased levels of PGE2 and IL-10. These effects were independent of vacuolating cytotoxin expression. Together, these findings demonstrate that OMV can suppress human T cell responses and that the predominant mechanism is not through a direct effect on the T cells but results from the induction of COX-2 expression in monocytes. This increased COX-2 activity may modulate not only H. pylori-directed immune responses but also wider immune responses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

    Science.gov (United States)

    Tavano, Regina; Franzoso, Susanna; Cecchini, Paola; Cartocci, Elena; Oriente, Francesca; Aricò, Beatrice; Papini, Emanuele

    2009-07-01

    Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).

  1. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, E

    1998-01-01

    Cardiac and major abdominal surgery are associated with granulocytosis in peripheral blood. The purpose of the present study was to describe the granulocyte and monocyte oxidative burst and the expression of adhesion molecules following cardiac surgery with cardiopulmonary bypass and abdominal...... surgery. The ability to respond with an oxidative burst was measured by means of flow cytometry using 123-dihydrorhodamine. The adhesion molecules CD11a/CD18, CD11c/CD18, CD44 were measured using monoclonal antibodies. Blood samples from eight patients undergoing open-heart surgery were taken before...... surgery, 1, 5, 10 and 20 min after aortic clamping, and then 1, 5, 10 and 20 min and 1, 2 and 3 h after declamping. Samples from eight patients undergoing abdominal surgery were taken before surgery, at the end of surgery, and 2 and 3 h post-operatively. A decrease in number of granulocytes and monocytes...

  2. Ketamine suppresses intestinal NF-kappa B activation and proinflammatory cytokine in endotoxic rats

    Institute of Scientific and Technical Information of China (English)

    Jie Sun; Xiao-Dong Wang; Hong Liu; Jian-Guo Xu

    2004-01-01

    AIM: To investigate the protective effect of ketamine on the endotoxin-induced proinfiammatory cytokines and NFkappa B activation in the intestine.METHODS: Adult male Wistar rats were randomly divided into 6 groups: (a) normal saline control, (b) challenged with endotoxin (5 mg/kg) and treated by saline, (c) challenged with endotoxin (5 mg/kg) and treated by ketamine (0.5 mg/kg),(d) challenged with endotoxin (5 mg/kg) and treated by ketamine (5 mg/kg), (e) challenged with endotoxin (5 mg/kg) and treated by ketamine (50 mg/kg), and (f) saline injected and treated by ketamine (50 mg/kg). After 1, 4 or 6 h, TNF-α and IL-6 mRNA were investigated in the tissues of the intestine (jejunum) by RT-PCR. TNF-α and IL-6 were measured by ELISA. We used electrophoretic mobility shift assay (EMSA) to investigate NF-kappa B activity in the intestine.RESULTS: NF-kappa B activity, the expression of TNF-α and IL-6 were enhanced in the intestine by endotoxin.Ketamine at a dose of 0.5 mg/kg could suppress endotoxininduced TNF-α mRNA and protein elevation and inhibit NFkappa B activation in the intestine. However the least dosage of ketamine to inhibit IL-6 was 5 mg/kg in our experiment.CONCLUSION: Ketamine can suppress endotoxin-induced production of proinflammatory cytokines such as TNF-α and IL-6 production in the intestine. This suppressive effect may act through inhibiting NF-kappa B.

  3. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity

    OpenAIRE

    Bol, Kalijn F.; Aarntzen, Erik H. J. G.; Pots, Jeanette M.; Olde Nordkamp, Michel A. M.; van de Rakt, Mandy W. M. M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van Oorschot, Tom G. M.; Croockewit, Sandra A. J.; Blokx, Willeke A. M.; Oyen, Wim J. G.; Boerman, Otto C.; Mus, Roel D. M.; van Rossum, Michelle M.; van der Graaf, Chantal A. A.

    2016-01-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combi...

  4. Kisspeptin Effect on Endothelial Monocyte Activating Polypeptide II (EMAP-II)-Associated Lymphocyte Cell Death and Metastases in Colorectal Cancer Patients

    Science.gov (United States)

    Stathaki, Martha; Armakolas, Athanasios; Dimakakos, Andreas; Kaklamanis, Loukas; Vlachos, Ioannis; Konstantoulakis, Manoussos M; Zografos, George; Koutsilieris, Michael

    2014-01-01

    Kisspeptin is an antimetastatic agent in some cancers that has also been associated with lymphoid cell apoptosis, a phenomenon favoring metastases. Our aim was to determine the association of kisspeptin with lymphocyte apoptosis and the presence of metastases in colorectal cancer patients. Blood was drawn from 69 colon cancer patients and 20 healthy volunteers. Tissue specimens from healthy and pathological tissue were immunohistochemically analyzed for kisspeptin and endothelial monocyte activating polypeptide II (EMAP-II) expression. Blood EMAP-II and soluble Fas ligand (sFasL) levels were examined by an enzyme-linked immunosorbent assay method. The kisspeptin and EMAP-II expression and secretion levels in the DLD-1 and HT-29 colon cancer cell lines were examined by quantitative real-time polymerase chain reaction, Western analysis and enzyme-linked immunosorbent assay, whereas lymphocyte viability was assessed by flow cytometry. The effect of kisspeptin on the viability of colon cancer cells was examined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. Exogenous, synthetic and naturally produced, kisspeptin induces through the G-protein-coupled receptor 54 (GPR54; also known as the kisspeptin receptor) the EMAP-II expression and secretion in colon cancer cell lines, inducing in vitro lymphocyte apoptosis, as verified by the use of an anti-EMAP-II antibody. These results were reversed with the use of kisspeptin inhibitors and by kisspeptin-silencing experiments. Tumor kisspeptin expression was associated with the tumor EMAP-II expression (p < 0.001). Elevated kisspeptin and EMAP-II expression in colon cancer tissues was associated with lack of metastases (p < 0.001) in colon cancer patients. These data indicate the antimetastatic effect of tumor-elevated kisspeptin in colon cancer patients that may be mediated by the effect of kisspeptin on EMAP-II expression in colon cancer tumors in patients with normal serum EMAP-II levels. These findings

  5. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    Science.gov (United States)

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  6. Melatonin Suppresses Hypoxia-Induced Migration of HUVECs via Inhibition of ERK/Rac1 Activation

    Directory of Open Access Journals (Sweden)

    Ling Yang

    2014-08-01

    Full Text Available Melatonin, a naturally-occurring hormone, possesses antioxidant properties and ameliorates vascular endothelial dysfunction. In this study, we evaluate the impact of melatonin on the migratory capability of human umbilical vein endothelial cells (HUVECs to hypoxia and further investigate whether ERK/Rac1 signaling is involved in this process. Here, we found that melatonin inhibited hypoxia-stimulated hypoxia-inducible factor-1α (HIF-1α expression and cell migration in a dose-dependent manner. Mechanistically, melatonin inhibited Rac1 activation and suppressed the co-localized Rac1 and F-actin on the membrane of HUVECs under hypoxic condition. In addition, the blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1-T17N suppressed HIF-1α expression and cell migration in response to hypoxia, as well, but constitutive activation of Rac1 mutant Rac1-V12 restored HIF-1α expression, preventing the inhibition of melatonin on cell migration. Furthermore, the anti-Rac1 effect of melatonin in HUVECs appeared to be associated with its inhibition of ERK phosphorylation, but not that of the PI3k/Akt signaling pathway. Taken together, our work indicates that melatonin exerts an anti-migratory effect on hypoxic HUVECs by blocking ERK/Rac1 activation and subsequent HIF-1α upregulation.

  7. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.

    Science.gov (United States)

    Cicchini, Michelle; Chakrabarti, Rumela; Kongara, Sameera; Price, Sandy; Nahar, Ritu; Lozy, Fred; Zhong, Hua; Vazquez, Alexei; Kang, Yibin; Karantza, Vassiliki

    2014-01-01

    Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1(+/-);MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).

  8. Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs.

    Science.gov (United States)

    Gaspelin, Nicholas; Leonard, Carly J; Luck, Steven J

    2015-11-01

    Researchers have long debated whether attentional capture is purely stimulus driven or purely goal driven. In the current study, we tested a hybrid account, called the signal-suppression hypothesis, which posits that stimuli automatically produce a bottom-up salience signal, but that this signal can be suppressed via top-down control processes. To test this account, we used a new capture-probe paradigm in which participants searched for a target shape while ignoring an irrelevant color singleton. On occasional probe trials, letters were briefly presented inside the search shapes, and participants attempted to report these letters. Under conditions that promoted capture by the irrelevant singleton, accuracy was greater for the letter inside the singleton distractor than for letters inside nonsingleton distractors. However, when the conditions were changed to avoid capture by the singleton, accuracy for the letter inside the irrelevant singleton was reduced below the level observed for letters inside nonsingleton distractors, an indication of active suppression of processing at the singleton location.

  9. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  10. PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-12-01

    Full Text Available PGC-1α plays a central role in hepatic gluconeogenesis and has been implicated in the onset of type 2 diabetes. Acetylation is an important posttranslational modification for regulating the transcriptional activity of PGC-1α. Here, we show that PCAF is a pivotal acetyltransferase for acetylating PGC-1α in both fasted and diabetic states. PCAF acetylates two lysine residues K328 and K450 in PGC-1α, which subsequently triggers its proteasomal degradation and suppresses its transcriptional <