WorldWideScience

Sample records for monocyte oxidative metabolism

  1. Transcellular lipoxygenase metabolism between monocytes and platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bigby, T.D.; Meslier, N. (Univ. of California, San Francisco (USA))

    1989-09-15

    We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.

  2. Assessment of monocyte to high density lipoprotein cholesterol ratio and lymphocyte-to-monocyte ratio in patients with metabolic syndrome.

    Science.gov (United States)

    Vahit, Demir; Mehmet, Kadri Akboga; Samet, Yilmaz; Hüseyin, Ede

    2017-07-01

    We aimed to investigate the relationships between metabolic syndrome (MS) and monocyte to high density lipoprotein cholesterol ratio (MHR) and lymphocyte-to-monocyte ratio (LMR). 762 patients (n = 371 MS present and n = 391 MS absent) were enrolled. MHR was significantly higher [13.9 (10.5-18.1) vs 11.1 (8.0-14.8); p MHR [OR: 1.052 (95% CI: 1.018-1.088); p = 0.003] and C-reactive protein [OR: 1.048 (95% CI: 1.032-1.065); p MHR may be novel and useful indicators of MS.

  3. Blood monocyte oxidative burst activity in acute P. falciparum malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Theander, T G

    1989-01-01

    The release of superoxide anion from blood monocytes was studied in eight patients with acute primary attack P. falciparum malaria. Before treatment a significant enhancement of the oxidative burst prevailed, which contrasts with previous findings of a depressed monocyte chemotactic responsiveness....... During treatment and after clinical recovery the activity of superoxide anion release normalized in all patients....

  4. High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes

    DEFF Research Database (Denmark)

    Wuensch, Tilo; Thilo, Florian; Krueger, Katharina;

    2010-01-01

    Transient receptor potential (TRP) channel-induced cation influx activates human monocytes, which play an important role in the pathogenesis of atherosclerosis. In the present study, we investigated the effects of high glucose-induced oxidative stress on TRP channel expression in human monocytes....

  5. Monocyte-induced downregulation of nitric oxide synthase in cultured aortic endothelial cells.

    Science.gov (United States)

    Marczin, N; Antonov, A; Papapetropoulos, A; Munn, D H; Virmani, R; Kolodgie, F D; Gerrity, R; Catravas, J D

    1996-09-01

    Since endothelium-dependent vasodilation is altered in atherosclerosis and enhanced monocyte/endothelial interactions are implicated in early atherosclerosis, we evaluated the effects of monocytes on the endothelial nitric oxide (NO) pathway by estimating release of biologically active NO from cultured endothelial cells and levels of constitutive NO synthase (ecNOS). NO release was estimated in a short-term bioassay using endothelial cell-induced cGMP accumulation in vascular smooth muscle (SM) cells. Exposure of SM cells to porcine aortic endothelial cells (PAECs) and human aortic endothelial cells (HAECs) produced large increases in SM cGMP content; this increase was prevented by NG-nitro-L-arginine methyl ester, the inhibitor of endothelial NOS. Confluent monolayers of PAECs and HAECs cocultured with monocytes also stimulated SM cGMP formation; however, NO release from these cultures was attenuated in a coculture time (2 to 48 hours)- and monocyte concentration (20 to 200 x 10(3) per well)-dependent manner. This effect of monocyte adhesion appeared to be selective for NO release since other biochemical pathways, such as atriopeptin-and isoproterenol-induced cyclic nucleotide accumulation within the endothelial cells, were not altered by monocytes. The effects of adherent monocytes on NO release were mimicked by monocyte-derived cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 alpha. Furthermore, the conditioned medium of monocytes contained significant quantities of these cytokines. Conditioned medium, as well as monocytes physically separated from the endothelial cells, attenuated NO release, suggesting that soluble factors may mediate the effects of monocytes. An IL-1 beta neutralizing antibody fully prevented the NO dysfunction in response to directly adherent monocytes. Superoxide dismutase, catalase, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), and exogenous L-arginine failed to improve NO release, suggesting that oxidant stress

  6. Differential Oxidative Stress Induced by Dengue Virus in Monocytes from Human Neonates, Adult and Elderly Individuals

    Science.gov (United States)

    Valero, Nereida; Mosquera, Jesús; Añez, Germán; Levy, Alegria; Marcucci, Rafael; de Mon, Melchor Alvarez

    2013-01-01

    Changes in immune response during lifespan of man are well known. These changes involve decreased neonatal and elderly immune response. In addition, it has been shown a relationship between immune and oxidative mechanisms, suggesting that altered immune response could be associated to altered oxidative response. Increased expression of nitric oxide (NO) has been documented in dengue and in monocyte cultures infected with different types of dengue virus. However, there is no information about the age-dependent NO oxidative response in humans infected by dengue virus. In this study, monocyte cultures from neonatal, elderly and adult individuals (n = 10 each group) were infected with different dengue virus types (DENV- 1 to 4) and oxidative/antioxidative responses and apoptosis were measured at days 1 and 3 of culture. Increased production of NO, lipid peroxidation and enzymatic and nonenzymatic anti-oxidative responses in dengue infected monocyte cultures were observed. However, neonatal and elderly monocytes had lower values of studied parameters when compared to those in adult-derived cultures. Apoptosis was present in infected monocytes with higher values at day 3 of culture. This reduced oxidant/antioxidant response of neonatal and elderly monocytes could be relevant in the pathogenesis of dengue disease. PMID:24069178

  7. Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals.

    Directory of Open Access Journals (Sweden)

    Nereida Valero

    Full Text Available Changes in immune response during lifespan of man are well known. These changes involve decreased neonatal and elderly immune response. In addition, it has been shown a relationship between immune and oxidative mechanisms, suggesting that altered immune response could be associated to altered oxidative response. Increased expression of nitric oxide (NO has been documented in dengue and in monocyte cultures infected with different types of dengue virus. However, there is no information about the age-dependent NO oxidative response in humans infected by dengue virus. In this study, monocyte cultures from neonatal, elderly and adult individuals (n = 10 each group were infected with different dengue virus types (DENV- 1 to 4 and oxidative/antioxidative responses and apoptosis were measured at days 1 and 3 of culture. Increased production of NO, lipid peroxidation and enzymatic and nonenzymatic anti-oxidative responses in dengue infected monocyte cultures were observed. However, neonatal and elderly monocytes had lower values of studied parameters when compared to those in adult-derived cultures. Apoptosis was present in infected monocytes with higher values at day 3 of culture. This reduced oxidant/antioxidant response of neonatal and elderly monocytes could be relevant in the pathogenesis of dengue disease.

  8. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Directory of Open Access Journals (Sweden)

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  9. [Blood monocytic L-arginine metabolic changes in diabetic foot syndrome].

    Science.gov (United States)

    Barinov, E F; Sulaeva, O N; Barinova, M E

    2010-05-01

    An inhibition test was used to study mechanisms responsible for L-arginine metabolic disturbances in the blood monocytes of patients with diabetic foot syndrome (DFS). It showed enhanced baseline iNOS activity and inhibition of the arginase pathway with lower nitrite production in response to the administration of lipopolysaccharide in the monocytes of patients with DFS. Impaired L-arginine metabolism was related to the higher activities of protein kinase C (PKC), phosphodiesterase (PDE), and 5-lipoxygenase (5-LO) along with decreased cyclooxygenase activity and drastic protein kinase A (PKA) inhibition. Within the first week, no changes in the wound process were associated with persistent metabolic disturbances of arachidonic acid and serine-threonine kinases with the higher sensitivity of AT1 receptors. In patients with DFS, the condition for wound process termination was decreased baseline iNOS activity and enhanced arginase-1 activity during PKA stimulation with the lower activity of 5-LO, PDE, and PKS. However, impaired mechanisms in the regulation of monocytic L-arginine metabolism persisted even a month later, which predetermines skin remodeling disturbance and the likelihood of recurrent DFS

  10. Effect of zinc and nitric oxide on monocyte adhesion to endothelial cells under shear stress.

    Science.gov (United States)

    Lee, Sungmun; Eskin, Suzanne G; Shah, Ankit K; Schildmeyer, Lisa A; McIntire, Larry V

    2012-03-01

    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm(2) or 1 dyne/cm(2)) or reversing shear stress (time average 1 dyne/cm(2)) for 24 h. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike other shear stress regimes, reversing shear stress alone enhanced monocyte adhesion, which may be associated with increased H(2)O(2) and superoxide together with relatively low levels of nitric oxide (NO) production. L-N(G)-Nitroarginine methyl ester (L-NAME) treatment increased monocyte adhesion under 15 dynes/cm(2) and under reversing shear stress. After reversing shear stress, monocyte adhesion dramatically increased with heparinase III treatment followed by a zinc scavenger. Static culture experiments supported the reduction of monocyte adhesion by zinc following endothelial cell cytokine activation. These results suggest that endothelial cell zinc levels are important for the inhibition of monocyte adhesion to endothelial cells, and may be one of the key factors in the early stages of atherogenesis.

  11. Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Jin-Won Seo

    2015-01-01

    Full Text Available LDL plays an important role in atherosclerotic plaque formation and macrophage differentiation. However, there is no report regarding the oxidation degree of LDL and macrophage differentiation. Our study has shown that the differentiation into M1 or M2 macrophages is related to the lipid oxidation level of LDL. Based on the level of lipid peroxidation, LDL is classified into high-oxidized LDL (hi-oxLDL and low-oxidized LDL (low-oxLDL. The differentiation profiles of macrophages were determined by surface receptor expression and cytokine secretion profiles. Low-oxLDL induced CD86 expression and production of TNF-α and IL-12p40 in THP-1 cells, indicating an M1 macrophage phenotype. Hi-oxLDL induced mannose receptor expression and production of IL-6 and monocyte chemoattractant protein-1, which mostly match the phenotype of M2 macrophages. Further supporting evidence for an M2 polarization by hi-oxLDL was the induction of LOX-1 in THP-1 cells treated with hi-oxLDL but not with low-oxLDL. Similar results were obtained in primary human monocytes. Therefore, our results strongly suggest that the oxidation degree of LDL influences the differentiation of monocytes into M1 or M2 macrophages and determines the inflammatory fate in early stages of atherosclerosis.

  12. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells.

    Science.gov (United States)

    Tabe, Yoko; Yamamoto, Shinichi; Saitoh, Kaori; Sekihara, Kazumasa; Monma, Norikazu; Ikeo, Kazuho; Mogushi, Kaoru; Shikami, Masato; Ruvolo, Vivian; Ishizawa, Jo; Hail, Numsen; Kazuno, Saiko; Igarashi, Mamoru; Matsushita, Hiromichi; Yamanaka, Yasunari; Arai, Hajime; Nagaoka, Isao; Miida, Takashi; Hayashizaki, Yoshihide; Konopleva, Marina; Andreeff, Michael

    2017-03-15

    Leukemia cells in the bone marrow must meet the biochemical demands of increased cell proliferation and also survive by continually adapting to fluctuations in nutrient and oxygen availability. Thus, targeting metabolic abnormalities in leukemia cells located in the bone marrow is a novel therapeutic approach. In this study, we investigated the metabolic role of bone marrow adipocytes in supporting the growth of leukemic blasts. Prevention of nutrient starvation-induced apoptosis of leukemic cells by bone marrow adipocytes, as well as the metabolic and molecular mechanisms involved in this process, was investigated using various analytic techniques. In acute monocytic leukemia (AMoL) cells, the prevention of spontaneous apoptosis by bone marrow adipocytes was associated with an increase in fatty acid β-oxidation (FAO) along with the upregulation of PPARγ, FABP4, CD36, and BCL2 genes. In AMoL cells, bone marrow adipocyte coculture increased adiponectin receptor gene expression and its downstream target stress response kinase AMPK, p38 MAPK with autophagy activation, and upregulated antiapoptotic chaperone HSPs. Inhibition of FAO disrupted metabolic homeostasis, increased reactive oxygen species production, and induced the integrated stress response mediator ATF4 and apoptosis in AMoL cells cocultured with bone marrow adipocytes. Our results suggest that bone marrow adipocytes support AMoL cell survival by regulating their metabolic energy balance and that the disruption of FAO in bone marrow adipocytes may be an alternative, novel therapeutic strategy for AMoL therapy. Cancer Res; 77(6); 1453-64. ©2017 AACR.

  13. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Arnaud Beduneau

    Full Text Available BACKGROUND: We posit that the same mononuclear phagocytes (MP that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM were used as vehicles of superparamagnetic iron oxide (SPIO NP and immunoglobulin (IgG or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2 measures using magnetic resonance imaging (MRI were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab'(2 fragments and for Alexa Fluor(R 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab'(2, and/or Alexa Fluor(R 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated

  14. Ethanol-mediated regulation of cytochrome P450 2A6 expression in monocytes: role of oxidative stress-mediated PKC/MEK/Nrf2 pathway.

    Directory of Open Access Journals (Sweden)

    Mengyao Jin

    Full Text Available Cytochrome P450 2A6 (CYP2A6 is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown. In this study, we have examined the role of the PKC/Nrf2 pathway (protein kinase C-mediated phosphorylation and translocation of nuclear erythroid 2-related factor 2 to the nucleus in ethanol-mediated CYP2A6 induction. Our results showed that 100 mM ethanol significantly induced CYP2A6 mRNA and protein (~150% and increased ROS formation, and induction of gene expression and ROS were both completely blocked by treatment with either a CYP2E1 inhibitor (diallyl sulfide or an antioxidant (vitamin C. The results suggest the role of oxidative stress in the regulation of CYP2A6 expression. Subsequently, we investigated the role of Nrf2 pathway in oxidative stress-mediated regulation of CYP2A6 expression in U937 monocytes. Our results showed that butylated hydroxyanisole, a stabilizer of nuclear Nrf2, increased CYP2A6 levels >200%. Staurosporine, an inhibitor of PKC, completely abolished ethanol-induced CYP2A6 expression. Furthermore, our results showed that a specific inhibitor of mitogen-activated protein kinase kinase (MEK (U0126 completely abolished ethanol-mediated CYP2A6 induction and Nrf2 translocation. Overall, these results suggest that CYP2E1-mediated oxidative stress produced as a result of ethanol metabolism translocates Nrf2 into the nucleus through PKC/MEK pathway, resulting in the induction of CYP2A6 in monocytes. An increased level of CYP2A6 in monocytes is expected to further increase oxidative stress in smokers through CYP2A6-mediated nicotine metabolism

  15. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  16. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  17. Nordihydroguaiaretic acid attenuates the oxidative stress-induced decrease of CD33 expression in human monocytes.

    Science.gov (United States)

    Guzmán-Beltrán, Silvia; Pedraza-Chaverri, José; Gonzalez-Reyes, Susana; Hernández-Sánchez, Fernando; Juarez-Figueroa, Ulises E; Gonzalez, Yolanda; Bobadilla, Karen; Torres, Martha

    2013-01-01

    Nordihydroguaiaretic acid (NDGA) is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs). Oxidative stress was induced by iodoacetate (IAA) or hydrogen peroxide (H(2)O(2)) and was evaluated using reactive oxygen species (ROS) production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H(2)O(2) in human MNs. It was also shown that NDGA (20  μ M) attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H(2)O(2). These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  18. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  19. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL.

    Science.gov (United States)

    Ishikawa, K; Navab, M; Leitinger, N; Fogelman, A M; Lusis, A J

    1997-09-01

    Heme catabolic processes produce the antioxidants biliverdin and bilirubin, as well as the potent prooxidant free iron. Since these products have opposing effects on oxidative stress, it is not clear whether heme catabolism promotes or inhibits inflammatory processes, including atherosclerotic lesion formation. Heme oxygenase (HO) catalyzes the rate-limiting step of heme catabolism. We used cocultures of human aortic endothelial cells and smooth muscle cells to examine the possible role of HO in early atherosclerosis. Heme oxygenase-1 (HO-1), the inducible isoform of HO, was highly induced by mildly oxidized LDL, and augmented induction was observed with hemin pretreatment. This augmented HO-1 induction resulted in the reduction of monocyte chemotaxis in response to LDL oxidation. Conversely, inhibition of HO by a specific inhibitor, Sn-protoporphyrin IX, enhanced chemotaxis. Furthermore, pretreatment with biliverdin or bilirubin, the products of HO, reduced chemotaxis. Oxidized phospholipids in the mildly oxidized LDL appear to be responsible for HO-1 induction, since oxidized but not native arachidonic acid-containing phospholipids also induced HO-1. These results suggest that HO-1 induced by mildly oxidized LDL may protect against the induction of inflammatory responses in artery wall cells through the production of the antioxidants biliverdin and bilirubin.

  20. Bystander signaling via oxidative metabolism.

    Science.gov (United States)

    Sawal, Humaira Aziz; Asghar, Kashif; Bureik, Matthias; Jalal, Nasir

    2017-01-01

    The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.

  1. Bystander signaling via oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Sawal HA

    2017-08-01

    Full Text Available Humaira Aziz Sawal,1 Kashif Asghar,2 Matthias Bureik,3 Nasir Jalal4 1Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 2Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan; 3Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 4Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China Abstract: The radiation-induced bystander effect (RIBE is the initiation of biological end points in cells (bystander cells that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to

  2. Measuring Granulocyte and Monocyte Phagocytosis and Oxidative Burst Activity in Human Blood.

    Science.gov (United States)

    Meaney, Mary Pat; Nieman, David C; Henson, Dru A; Jiang, Qi; Wang, Fu-Zhang

    2016-09-12

    The granulocyte and monocyte phagocytosis and oxidative burst (OB) activity assay can be used to study the innate immune system. This manuscript provides the necessary methodology to add this assay to an exercise immunology arsenal. The first step in this assay is to prepare two aliquots ("H" and "F") of whole blood (heparin). Then, dihydroethidium is added to the H aliquot, and both aliquots are incubated in a warm water bath followed by a cold water bath. Next, Staphylococcus aureus (S. aureus) is added to the H aliquot and fluorescein isothiocyanate-labeled S. aureus is added to the F aliquot (bacteria:phagocyte = 8:1), and both aliquots are incubated in a warm water bath followed by a cold water bath. Then, trypan blue is added to each aliquot to quench extracellular fluorescence, and the cells are washed with phosphate-buffered saline. Next, the red blood cells are lysed, and the white blood cells are fixed. Finally, a flow cytometer and appropriate analysis software are used to measure granulocyte and monocyte phagocytosis and OB activity. This assay has been used for over 20 years. After heavy and prolonged exertion, athletes experience a significant but transient increase in phagocytosis and an extended decrease in OB activity. The post-exercise increase in phagocytosis is correlated with inflammation. In contrast to normal weight individuals, granulocyte and monocyte phagocytosis is chronically elevated in overweight and obese participants, and is modestly correlated with C-reactive protein. In summary, this flow cytometry-based assay measures the phagocytosis and OB activity of phagocytes and can be used as an additional measure of exercise- and obesity-induced inflammation.

  3. Insulin Resistance, Inflammation, and Obesity: Role of Monocyte Chemoattractant Protein-1 (orCCL2 in the Regulation of Metabolism

    Directory of Open Access Journals (Sweden)

    Anna Rull

    2010-01-01

    Full Text Available To maintain homeostasis under diverse metabolic conditions, it is necessary to coordinate nutrient-sensing pathways with the immune response. This coordination requires a complex relationship between cells, hormones, and cytokines in which inflammatory and metabolic pathways are convergent at multiple levels. Recruitment of macrophages to metabolically compromised tissue is a primary event in which chemokines play a crucial role. However, chemokines may also transmit cell signals that generate multiple responses, most unrelated to chemotaxis, that are involved in different biological processes. We have reviewed the evidence showing that monocyte chemoattractant protein-1 (MCP-1 or CCL2 may have a systemic role in the regulation of metabolism that sometimes is not necessarily linked to the traffic of inflammatory cells to susceptible tissues. Main topics cover the relationship between MCP-1/CCL2, insulin resistance, inflammation, obesity, and related metabolic disturbances.

  4. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  5. FUCOIDIN INHIBITS OXIDIZED LOW DENSITY LIPOPROTEIN FROM INDUCING HUMAN PERIPHERAL BLOOD MONOCYTE EXPRESSION OF PROINFLAMMATORY CYTOKINES mRNA

    Institute of Scientific and Technical Information of China (English)

    雷新军; 马爱群; 任冰稳; 耿涛; 张葳; 白玲

    2003-01-01

    Objective To study the significance of scavenger receptor class A(SR-A)in mediating human peripheral blood monocyte to uptake oxidized low density lipoprotein(OxLDL) and promoting the atherosclerotic immuno-pathological lesion in the local blood vessel. Methods With the Digoxenin-labeled Oligonucleotide-probes In situ Hybridization, this research investigated the effects of OxLDL on the mRNA expression of proinflammatory cytokines including MCP-1, bFGF, PDGF and IL-10 in the human peripheral blood monocyte and whether fucoidin, a peculiarly inhibitory ligand for SR-A, would influence this process. Results Monocyte was significantly increased the mRNA expression of MCP-1, bFGF, PDGF and IL-10 in a dose-dependent manner after incubating with OxLDL (10,15,20,25,30·mg·L-1, respectively)for 24 hours(P<0.001). Fucoidin(50,100,150,200,250·mg·mL-1, respectively)completely inhibited OxLDL(20·mg·L-1)from inducing monocyte the mRNA expression of above proinflammatory cytokines(P<0.001). Conclusion OxLDL can stimulate human peripheral blood monocyte to give expression to proinflammatory cytokines mRNA in a dose-dependent manner, while a peculiarly inhibitory ligand for SR-A-fucoidin has an obviously opposed role.

  6. Oxidative stress in metabolic syndrome

    OpenAIRE

    Sharma, Praveen; Mishra, Sandhya; Ajmera, Peeyush; Mathur, Sandeep

    2005-01-01

    As antioxidants play a protective role in the pathophysiology of diabetes and cardiovascular diseases, understanding the physiological status of antioxidant concentration among people at high risk for developing these conditions, such as Metabolic Syndrome, is of interest. In present study out of 187 first degree non-diabetic relatives and 192 non-diabetic spouses, 33.1% and 19.7% were found to have metabolic syndrome respectively. Subjects with metabolic syndrome (≥3 risk factors) had poor a...

  7. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    Energy Technology Data Exchange (ETDEWEB)

    Prach, Morag [Edinburgh Napier University, School of Life, Sport and Social Science, Edinburgh (United Kingdom); Stone, Vicki [Heriot-Watt University, School of Life Sciences, Edinburgh (United Kingdom); Proudfoot, Lorna, E-mail: l.proudfoot@napier.ac.uk [Edinburgh Napier University, School of Life, Sport and Social Science, Edinburgh (United Kingdom)

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form (< 44 μm mesh) and a positive charge enhanced cytotoxicity of the NP despite their relatively high dissolution. A positive charge of the particles has been shown in other studies to have an influence on cell viability. Centrifugal filtration using a cut off of 5 kDa and Zn element analysis by atomic absorption spectroscopy confirmed that exposure of the ZnO particles and NP to 10% foetal bovine serum resulted in a strong association of the Zn{sup 2+} ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.

  8. Metabolic syndrome and oxidative stress.

    Science.gov (United States)

    Ando, Katsuyuki; Fujita, Toshiro

    2009-08-01

    Metabolic syndrome is an obesity-associated collection of disorders, each of which contributes to cardiovascular risk. Metabolic syndrome is also associated with overproduction of reactive oxygen species (ROS). ROS contribute to the interrelationship between metabolic syndrome and salt-sensitive hypertension, which are both caused by obesity and excess salt consumption and are major threats to health in developed countries. ROS can induce insulin resistance, which is indispensable for the progression of metabolic syndrome, and salt-sensitive hypertension stimulates ROS production, thereby promoting the development of metabolic syndrome. Moreover, ROS activate mineralocorticoid receptors (MRs) and the sympathetic nervous system, which can contribute to the development of metabolic syndrome and salt-sensitive hypertension. Salt-induced progression of cardiovascular disease (CVD) is also accelerated in animal models with metabolic syndrome, probably owing to further stimulation of ROS overproduction and subsequent ROS-induced MR activation and sympathetic excitation. Therefore, ROS contribute to the progression of the metabolic syndrome itself and to the CVD accompanying it, particularly in conjunction with excessive salt consumption.

  9. Magnesium Oxide Induced Metabolic Alkalosis in Cattle

    OpenAIRE

    Ogilvie, T H; Butler, D G; Gartley, C J; Dohoo, I. R.

    1983-01-01

    A study was designed to compare the metabolic alkalosis produced in cattle from the use of an antacid (magnesium oxide) and a saline cathartic (magnesium sulphate). Six, mature, normal cattle were treated orally with a magnesium oxide (MgO) product and one week later given a comparable cathartic dose of magnesium sulphate (MgSO4).

  10. Mechanical deformation of monocytic THP-1 cells : occurrence of two seqential phases with differential sensitivity to metabolic inhibitors

    CERN Document Server

    Bongrand, Pierre; Richelme, Fabienne

    1997-01-01

    Blood leukocytes can exhibit extensive morphological changes during their passage through small capillary vessels. The human monocytic THP-1 cell line was used to explore the metabolic dependence of these shape changes. Cells were aspirated into micropipettes for determination of the rate of protrusion formation. They were then released and the kinetics of morphological recovery was studied. Results were consistent with Evans' model (Blood, 64 : 1028, 1984) of a viscous liquid droplet surrounded by a tensile membrane. The estimated values of cytoplasmic viscosity and membrane tension were 162 Pa.s and 0.0142 millinewton/m respectively. The influence of metabolic inhibitors on cell mechanical behaviour was then studied : results strongly suggested that deformation involved two sequential phases. The cell elongation rate measured during the first 30 seconds following the onset of aspiration was unaffected by azide, an inhibitor of energy production, and it was about doubled by cytochalasin D, a microfilament in...

  11. Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes.

    Science.gov (United States)

    Ting, S R Simon; Whitelock, John M; Tomic, Romana; Gunawan, Cindy; Teoh, Wey Yang; Amal, Rose; Lord, Megan S

    2013-06-01

    Cerium oxide nanoparticles (nanoceria) are effective in scavenging intracellular reactive oxygen species (ROS). In this study nanoceria synthesized by flame spray pyrolysis (dXRD = 12 nm) were functionalised with heparin via an organosilane linker, 3-aminopropyltriethoxysilane. Nanoceria were functionalised with approximately 130 heparin molecules per nanoparticle as determined by thermo gravimetric analysis. Heparin functionalised nanoceria were more effectively internalised by the human monocyte cell line, U937, and U937 cells that had been activated with phorbol 12 myristate 13-acetate (PMA) than bare nanoceria. The heparin functionalised nanoceria were also more effective in scavenging ROS than nanoceria in both activated and unactivated U937 cells. Heparin coupled nanoceria were found to be biologically active due to their ability to bind fibroblast growth factor 2 and signal through FGF receptor 1. Additionally, the heparin-coupled nanoceria, once internalised by the cells, were found to be degraded by 48 h. Together these data demonstrated that heparin enhanced the biological properties of nanoceria in terms of cellular uptake and ROS scavenging, while the nanoceria themselves were more effective at delivering heparin intracellularly than exposing cells to heparin in solution.

  12. Fipronil insecticide toxicology: oxidative stress and metabolism.

    Science.gov (United States)

    Wang, Xu; Martínez, María Aránzazu; Wu, Qinghua; Ares, Irma; Martínez-Larrañaga, María Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-11-01

    Fipronil (FIP) is widely used across the world as a broad-spectrum phenylpyrazole insecticide and veterinary drug. FIP was the insecticide to act by targeting the γ-aminobutyric acid (GABA) receptor and has favorable selective toxicity towards insects rather than mammals. However, because of accidental exposure, incorrect use of FIP or widespread FIP use leading to the contamination of water and soil, there is increasing evidence that FIP could cause a variety of toxic effects on animals and humans, such as neurotoxic, hepatotoxic, nephrotoxic, reproductive, and cytotoxic effects on vertebrate and invertebrates. In the last decade, oxidative stress has been suggested to be involved in the various toxicities induced by FIP. To date, few reviews have addressed the toxicity of FIP in relation to oxidative stress. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a possible mechanism for FIP-induced toxicity as well as metabolism. The present review reports that studies have been conducted to reveal the generation of reactive oxygen species (ROS) and oxidative stress as a result of FIP treatment and have correlated them with various types of toxicity. Furthermore, the metabolism of FIP was also reviewed, and during this process, various CYP450 enzymes were involved and oxidative stress might occur. The roles of various compounds in protecting against FIP-induced toxicity based on their anti-oxidative effects were also summarized to further understand the role of oxidative stress in FIP-induced toxicity.

  13. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism

    National Research Council Canada - National Science Library

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-01-01

    .... We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells...

  14. Influence of nutrition on liver oxidative metabolism.

    Science.gov (United States)

    Jorquera, F; Culebras, J M; González-Gallego, J

    1996-06-01

    The liver plays a major role in the disposition of the majority of drugs. This is due to the presence of several drug-metabolizing enzyme systems, including a group of membrane-bound mixed-function oxidative enzymes, mainly the cytochrome P450 system. Hepatic oxidative capacity can be assessed by changes in antipyrine metabolism. Different drugs and other factors may induce or inhibit the cytochrome P450-dependent system. This effect is important in terms of the efficacy or toxicity of drugs that are substrates for the system. Microsomal oxidation in animals fed with protein-deficient diets is depressed. The mixed-function oxidase activity recovers after a hyperproteic diet or the addition of lipids. Similar findings have been reported in patients with protein-calorie malnutrition, although results in the elderly are conflicting. Different studies have revealed that microsomal oxidation is impaired by total parenteral nutrition and that this effect is absent when changing the caloric source from carbohydrates to a conventional amino acid solution or after lipid addition, especially when administered as medium-chain/long-chain triglyceride mixtures. Peripheral parenteral nutrition appears to increase antipyrine clearance.

  15. In vitro evidence for the protective role of Sida rhomboidea. Roxb extract against LDL oxidation and oxidized LDL-induced apoptosis in human monocyte-derived macrophages.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjisinh V; Ramachandran, A V

    2011-06-01

    The present study was undertaken to evaluate protective role of S. rhomboidea. Roxb (SR) leaf extract against in vitro low-density lipoprotein (LDL) oxidation and oxidized LDL (Ox-LDL) induced macrophage apoptosis. Copper and cell-mediated LDL oxidation, Ox-LDL-induced peroxyl radical generation, mitochondrial activity, and apoptosis in human monocyte-derived macrophages (HMDMs) were assessed in presence of SR extract. Results clearly indicated that SR was capable of reducing LDL oxidation and formation of intermediary oxidation products. Also, SR successfully attenuated peroxyl radical formation, mitochondrial dysfunction, nuclear condensation, and apoptosis in Ox-LDL-exposed HMDMs. This scientific report is the first detailed investigation that establishes anti-atherosclerotic potential of SR extract.

  16. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, Else Kirstine

    1998-01-01

    Cardiac and major abdominal surgery are associated with granulocytosis in peripheral blood. The purpose of the present study was to describe the granulocyte and monocyte oxidative burst and the expression of adhesion molecules following cardiac surgery with cardiopulmonary bypass and abdominal...... surgery, 1, 5, 10 and 20 min after aortic clamping, and then 1, 5, 10 and 20 min and 1, 2 and 3 h after declamping. Samples from eight patients undergoing abdominal surgery were taken before surgery, at the end of surgery, and 2 and 3 h post-operatively. A decrease in number of granulocytes and monocytes...... burst of the granulocytes and monocytes decreased after declamping to 15% and 27% of initial values in vitro. Several hours after surgery, there was no significant difference between the two groups. These results can be explained by a granulocyte and monocyte refractory response developing subsequent...

  17. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Larsson, Karin; Istenič, Katja; Wulff, Tune

    2015-01-01

    digested fresh and oxidised cod liver oils in vitro, monitored the levels of lipid peroxidation products and evaluated oxidative, proteomic and inflammatory responses to the two types of digests in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. RESULTS: Digests of cod liver......BACKGROUND: Upon oxidation of the polyunsaturated fatty acids in fish oil, either before ingestion or, as recently shown, during the gastro-intestinal passage, a cascade of potentially cytotoxic peroxidation products, such as malondialdehyde and 4-hydroxy-2-hexenal, can form. In this study, we...... oil with 22–53 µmol L−1 malondialdehyde and 0.26–3.7 µmol L−1 4-hydroxy-2-hexenal increased intracellular oxidation and cell energy metabolic activity compared to a digested blank in yeast cells and the influence of digests on mitochondrial protein expression was more pronounced for oxidised cod liver...

  18. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection

    Science.gov (United States)

    Neves-Souza, Patrícia CF; Azeredo, Elzinandes L; Zagne, Sonia MO; Valls-de-Souza, Rogério; Reis, Sonia RNI; Cerqueira, Denise IS; Nogueira, Rita MR; Kubelka, Claire F

    2005-01-01

    Abstract Mononuclear phagocytes are considered to be main targets for Dengue Virus (DENV) replication. These cells are activated after infection, producing proinflammatory mediators, including tumour-necrosis factor-α, which has also been detected in vivo. Nitric oxide (NO), usually produced by activated mononuclear phagocytes, has antimicrobial and antiviral activities. Methods The expression of DENV antigens and inducible nitric oxide synthase (iNOS) in human blood isolated monocytes were analysed by flow cytometry using cells either from patients with acute Dengue Fever or after DENV-1 in vitro infection. DENV-1 susceptibility to iNOS inhibition and NO production was investigated using NG-methyl L-Arginine (NGMLA) as an iNOS inhibitor, which was added to DENV-1 infected human monocytes, and sodium nitroprussiate (SNP), a NO donor, added to infected C6/36 mosquito cell clone. Viral antigens after treatments were detected by flow cytometry analysis. Results INOS expression in activated monocytes was observed in 10 out of 21 patients with Dengue Fever and was absent in cells from ten healthy individuals. DENV antigens detected in 25 out of 35 patients, were observed early during in vitro infection (3 days), significantly diminished with time, indicating that virus replicated, however monocytes controlled the infection. On the other hand, the iNOS expression was detected at increasing frequency in in vitro infected monocytes from three to six days, exhibiting an inverse relationship to DENV antigen expression. We demonstrated that the detection of the DENV-1 antigen was enhanced during monocyte treatment with NGMLA. In the mosquito cell line C6/36, virus detection was significantly reduced in the presence of SNP, when compared to that of untreated cells. Conclusion This study is the first to reveal the activation of DENV infected monocytes based on induction of iNOS both in vivo and in vitro, as well as the susceptibility of DENV-1 to a NO production. PMID:16109165

  19. Inducible nitric oxide synthase (iNOS expression in monocytes during acute Dengue Fever in patients and during in vitro infection

    Directory of Open Access Journals (Sweden)

    Cerqueira Denise IS

    2005-08-01

    Full Text Available Abstract Mononuclear phagocytes are considered to be main targets for Dengue Virus (DENV replication. These cells are activated after infection, producing proinflammatory mediators, including tumour-necrosis factor-α, which has also been detected in vivo. Nitric oxide (NO, usually produced by activated mononuclear phagocytes, has antimicrobial and antiviral activities. Methods The expression of DENV antigens and inducible nitric oxide synthase (iNOS in human blood isolated monocytes were analysed by flow cytometry using cells either from patients with acute Dengue Fever or after DENV-1 in vitro infection. DENV-1 susceptibility to iNOS inhibition and NO production was investigated using NG-methyl L-Arginine (NGMLA as an iNOS inhibitor, which was added to DENV-1 infected human monocytes, and sodium nitroprussiate (SNP, a NO donor, added to infected C6/36 mosquito cell clone. Viral antigens after treatments were detected by flow cytometry analysis. Results INOS expression in activated monocytes was observed in 10 out of 21 patients with Dengue Fever and was absent in cells from ten healthy individuals. DENV antigens detected in 25 out of 35 patients, were observed early during in vitro infection (3 days, significantly diminished with time, indicating that virus replicated, however monocytes controlled the infection. On the other hand, the iNOS expression was detected at increasing frequency in in vitro infected monocytes from three to six days, exhibiting an inverse relationship to DENV antigen expression. We demonstrated that the detection of the DENV-1 antigen was enhanced during monocyte treatment with NGMLA. In the mosquito cell line C6/36, virus detection was significantly reduced in the presence of SNP, when compared to that of untreated cells. Conclusion This study is the first to reveal the activation of DENV infected monocytes based on induction of iNOS both in vivo and in vitro, as well as the susceptibility of DENV-1 to a NO production.

  20. Elevated Atherosclerosis-Related Gene Expression, Monocyte Activation and Microparticle-Release Are Related to Increased Lipoprotein-Associated Oxidative Stress in Familial Hypercholesterolemia

    DEFF Research Database (Denmark)

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon

    2015-01-01

    OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the hypoth......OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate...... in subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). APPROACH AND RESULTS: We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT...

  1. Comparative nitric oxide production by LPS-stimulated monocyte-derived macrophages from Ovis canadensis and Ovis aries.

    Science.gov (United States)

    Sacco, R E; Waters, W R; Rudolph, K M; Drew, M L

    2006-01-01

    Bighorn sheep are more susceptible to respiratory infection by Mannheimia haemolytica than are domestic sheep. In response to bacterial challenge, macrophages produce a number of molecules that play key roles in the inflammatory response, including highly reactive nitrogen intermediates such as nitric oxide (NO). Supernatants from monocyte-derived macrophages cultured with M. haemolytica LPS were assayed for nitric oxide activity via measurement of the NO metabolite, nitrite. In response to LPS stimulation, bighorn sheep macrophages secreted significantly higher levels of NO compared to levels for non-stimulated macrophages. In contrast, levels of NO produced by domestic sheep macrophages in response to M. haemolytica LPS did not differ from levels detected in non-stimulated cell cultures. Nitrite levels detected in supernatants of LPS-stimulated bighorn macrophage cultures treated with an inducible nitric oxide synthase (INOS) inhibitor, N(G)-monomethyl-L-arginine, were similar to that observed in non-stimulated cultures indicating a role for the iNOS pathway.

  2. Oxidized Lipids and Lysophosphatidylcholine Induce the Chemotaxis, Up-Regulate the Expression of CCR9 and CXCR4 and Abrogate the Release of IL-6 in Human Monocytes

    Science.gov (United States)

    Rolin, Johannes; Vego, Heidi; Maghazachi, Azzam A.

    2014-01-01

    Lipids through regulation of chronic inflammation play key roles in the development of various diseases. Here, we report that a mixed population of human primary monocytes migrated towards LPC, as well as oxidized linoleic acid isoforms 9-S-HODE, 9-R-HODE and 13-R-HODE. Incubation with 9-R-HODE, 13-R-HODE and LPC resulted in increased expression of CXCR4, the receptor for SDF-1α/CXCL12, correlated with increased monocyte migration towards SDF-1α/CXCL12. Further, we report increased expression of CCR9, the receptor for TECK/CCL25, after stimulation with these lipids. Upon examining the migratory response towards TECK/CCL25, it was observed that an increase in CCR9 expression upon pre-treatment with 9-S-HODE, 9-R-HODE, 13-R-HODE and LPC resulted in increased migration of monocytes expressing CCR9. Only LPC but not any other lipid examined increased the influx of intracellular Ca2+ in monocytes. Finally, 9-S-HODE, 9-R-HODE, 13-R-HODE, or LPC inhibited the release of IL-6 from monocytes suggesting that these lipids may play important role in controlling inflammatory responses. PMID:25251539

  3. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells

    OpenAIRE

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K.; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F.; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E.; Sonveaux, Pierre

    2015-01-01

    Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning th...

  4. Biocompatibility of heparin-grafted hemodialysis membranes: impact on monocyte chemoattractant protein-1 circulating level and oxidative status.

    Science.gov (United States)

    Morena, Marion; Jaussent, Isabelle; Chalabi, Lotfi; Bargnoux, Anne-Sophie; Dupuy, Anne-Marie; Badiou, Stéphanie; Rakic, Claire; Thomas, Michel; Canaud, Bernard; Cristol, Jean-Paul; Michel, Françoise

    2010-10-01

    This prospective observational study aimed at evaluating efficacy and biocompatibility performances of the new heparin-coated Evodial dialyzers with/without systemic heparin reduction. After a 4-week wash-out period with reference polysulfone F70S dialyzers, 6 hemodialysis patients were sequentially dialyzed with Evodial, F70S, and Evodial dialyzers using 30% heparin reduction, each period of treatment was 4 weeks. Removal rates (RR) (urea, creatinine, and β2-microglobulin), dialysis dose, and instantaneous clearances (urea and creatinine) were measured as well as inflammatory (C-reactive protein, fibrinogen, interleukin 6, tumor necrosis factor α, and monocyte chemoattractant protein-1) and oxidative stress (OS) (superoxide anion, homocysteine, and isoprostanes) parameters at the end of each study period. Patients treated with Evodial or F70S dialyzers for 4 weeks presented comparable dialysis efficacy parameters including urea and creatinine RR, dialysis dose and instantaneous clearances. By contrast, a significantly lower but reasonably good β2-microglobulin RR was achieved with Evodial dialyzers. Regarding biocompatibility, no significant difference was observed with inflammation and OS except for postdialysis monocyte chemoattractant protein-1 which significantly decreased with Evodial dialyzers. Thirty percent heparinization reduction with Evodial dialyzers did not induce any change in inflammation but led to an improvement in OS as demonstrated by a decrease in postdialysis superoxide production and predialysis homocysteine and isoprostane. This bioactive dialyzer together with heparin dose reduction represents a good trade-off between efficacy and biocompatibility performance (improvement in OS with a weak decrease in efficacy) and its use is encouraging for hemodialysis patients not only in reducing OS but also in improving patient comorbid conditions due to lesser heparin side effects.

  5. Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells.

    Science.gov (United States)

    Ash, Dipankar; Subramanian, Manikandan; Surolia, Avadhesha; Shaha, Chandrima

    2015-01-01

    Nitric oxide (NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model. Death induction in vitro was mediated by an increase in NO resulting in double strand DNA breaks and the activation of both the extrinsic and the intrinsic apoptotic pathways. Double strand DNA breaks could be reduced if NO inhibitor was present during fisetin treatment. Fisetin also inhibited the downstream components of the mTORC1 pathway through downregulation of levels of p70 S6 kinase and inducing hypo-phosphorylation of S6 Ri P kinase, eIF4B and eEF2K. NO inhibition restored phosphorylation of downstream effectors of mTORC1 and rescued cells from death. Fisetin induced Ca(2+) entry through L-type Ca(2+) channels and abrogation of Ca(2+) influx reduced caspase activation and cell death. NO increase and increased Ca(2+) were independent phenomenon. It was inferred that apoptotic death of acute monocytic leukemia cells was induced by fisetin through increased generation of NO and elevated Ca(2+) entry activating the caspase dependent apoptotic pathways. Therefore, manipulation of NO production could be viewed as a potential strategy to increase efficacy of chemotherapy in acute monocytic leukemia.

  6. Monocytes harboring cytomegalovirus: interactions with endothelial cells, smooth muscle cells, and oxidized low-density lipoprotein. Possible mechanisms for activating virus delivered by monocytes to sites of vascular injury.

    Science.gov (United States)

    Guetta, E; Guetta, V; Shibutani, T; Epstein, S E

    1997-07-01

    Cytomegalovirus (CMV) infection and its periodic reactivation from latency may contribute to atherogenesis and restenosis. It is unknown how CMV is delivered to the vessel wall and is reactivated. We examined the following hypothesis: CMV, present in monocytes recruited to sites of vascular injury, is activated by endothelial cell (EC) or smooth muscle cell (SMC) contact and by oxidized low-density lipoproteins (oxLDLs). The CMV major immediate-early promoter (MIEP) controls immediate-early (IE) gene expression, and thereby viral replication. To determine whether elements of the vessel wall can activate CMV present in monocytes, we transiently transfected the promonocytic cell line HL-60 with a chloramphenicol acetyltransferase reporter gene construct driven by MIEP. MIEP activity increased 1.7 +/- 0.5-fold (P = .02) when the transfected HL-60 cells were cocultured with ECs, 4.5 +/- 1.5-fold when cocultured with SMCs (P = .03), and 2.0 +/- 0.5-fold (P = .01) when exposed to oxLDL. The combination of oxLDL and EC coculture increased MIEP activity over 7-fold. We also found that freshly isolated human monocytes, infected with endothelium-passaged CMV, were capable of transmitting infectious virus to cocultured ECs or SMCs. CMV-related progression of atherosclerosis or restenosis may, at least in part, involve monocyte delivery of the virus to the site of vascular injury, where the vascular milieu, ie, contact with ECs, SMCs, and oxLDL, can contribute to viral reactivation and/or replication by enhancing CMV IE gene expression. The virus may then infect neighboring ECs or SMCs, initiating a cascade of events predisposing to the development of atherogenesis-related processes.

  7. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells.

    Science.gov (United States)

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E; Sonveaux, Pierre

    2016-01-01

    Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling.

  8. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    Science.gov (United States)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei; Gao, Changyou

    2015-01-01

    Exposure of the CeO2 nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO2 NPs (D-CeO2 from Degussa and PC-CeO2 from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO2 NPs had a negative surface charge around -12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO2 NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO2 NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO2 NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO2 NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO2 NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO2 NPs.

  9. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei, E-mail: zwmao@zju.edu.cn; Gao, Changyou [Zhejiang University, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering (China)

    2015-01-15

    Exposure of the CeO{sub 2} nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO{sub 2} NPs (D-CeO{sub 2} from Degussa and PC-CeO{sub 2} from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO{sub 2} NPs had a negative surface charge around −12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO{sub 2} NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO{sub 2} NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO{sub 2} NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO{sub 2} NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO{sub 2} NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO{sub 2} NPs.

  10. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    Science.gov (United States)

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  11. Inhibition of nitric oxide enhances ovine lentivirus replication in monocyte-derived macrophages.

    Science.gov (United States)

    Keane, Kevin A; Mason, Gary L; DeMartini, James C

    2002-12-01

    Ovine lentivirus (OvLV) also known as maedi-visna virus, infects and replicates primarily in macrophages. This investigation examined the role of nitric oxide in the replication of OvLV in cultured macrophages. Peripheral blood mononuclear cells were collected from OvLV-free sheep and cultured in Teflon coated flasks at a high concentration of lamb serum. The cells were subsequently infected with OvLV strain 85/34. OvLV replication was assessed under different experimental treatments by comparison of reverse transcriptase (RT) activity in culture supernatant. Cultures that were treated with exogenous nitric oxide via S-nitroso-acetylpenicillamine did not have altered levels of RT activity compared to cultures treated with the inactive control compound, acetylpenicillamine. However, blockage of nitric oxide production by treatment with aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), led to a significant rise in RT activity. This rise in RT activity was partially reversed in aminoguanidine treated cultures by L-arginine, the normal substrate for iNOS. Finally, the number of viral antigen producing cells was also quantified after aminoguanidine treatment and found to be significantly higher than untreated cultures. Collectively, these results indicate that nitric oxide is a negative regulator of OvLV replication in macrophages.

  12. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, E

    1998-01-01

    Cardiac and major abdominal surgery are associated with granulocytosis in peripheral blood. The purpose of the present study was to describe the granulocyte and monocyte oxidative burst and the expression of adhesion molecules following cardiac surgery with cardiopulmonary bypass and abdominal...... surgery. The ability to respond with an oxidative burst was measured by means of flow cytometry using 123-dihydrorhodamine. The adhesion molecules CD11a/CD18, CD11c/CD18, CD44 were measured using monoclonal antibodies. Blood samples from eight patients undergoing open-heart surgery were taken before...... surgery, 1, 5, 10 and 20 min after aortic clamping, and then 1, 5, 10 and 20 min and 1, 2 and 3 h after declamping. Samples from eight patients undergoing abdominal surgery were taken before surgery, at the end of surgery, and 2 and 3 h post-operatively. A decrease in number of granulocytes and monocytes...

  13. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans.

    Science.gov (United States)

    Ludwig, Antje; Poller, Wolfram C; Westphal, Kera; Minkwitz, Susann; Lättig-Tünnemann, Gisela; Metzkow, Susanne; Stangl, Karl; Baumann, Gert; Taupitz, Matthias; Wagner, Susanne; Schnorr, Jörg; Stangl, Verena

    2013-03-01

    Magnetic resonance imaging (MRI) with contrast agents that target specific inflammatory components of atherosclerotic lesions has the potential to emerge as promising diagnostic modality for detecting unstable plaques. Since a high content of macrophages and alterations of the extracellular matrix are hallmarks of plaque instability, these structures represent attractive targets for new imaging modalities. In this study, we compared in vitro uptake and binding of electrostatically stabilized citrate-coated very small superparamagnetic iron oxide particles (VSOP) to THP-1 cells with sterically stabilized carboxydextran-coated Resovist(®). Uptake of VSOP in both THP-1 monocytic cells and THP-derived macrophages (THP-MΦ) was more efficient compared to Resovist(®) without inducing cytotoxicity or modifying normal cellular functions (no changes in levels of reactive oxygen species, caspase-3 activity, proliferation, cytokine production). Importantly, VSOP bound with high affinity to the cell surface and to apoptotic membrane vesicles. Inhibition of glycosaminoglycan (GAG) synthesis by glucose deprivation in THP-MΦ was associated with a significant reduction of VSOP attachment suggesting that the strong interaction of VSOP with the membranes of cells and apoptotic vesicles occurs via binding to negatively charged GAGs. These in vitro experiments show that VSOP-enhanced MRI may represent a new imaging approach for visualizing high-risk plaques on the basis of targeting pathologically increased GAGs or apoptotic membrane vesicles in atherosclerotic lesions. VSOP should be investigated further in appropriate in vivo experiments to characterize accumulation in unstable plaque.

  14. The effect of squalane-dissolved fullerene-C60 on adipogenesis-accompanied oxidative stress and macrophage activation in a preadipocyte-monocyte co-culture system.

    Science.gov (United States)

    Xiao, Li; Aoshima, Hisae; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-08-01

    Effects of squalane-dissolved fullerene-C60 (Sql-fullerene) on macrophage activation and adipose conversion with oxidative stress were studied using an inflammatory adipose-tissue equivalent (ATE) and OP9 mouse stromal preadipocyte-U937 lymphoma cell co-culture systems. Differentiation of OP9 cells was initiated by insulin-rich serum replacement (SR) as an adipogenic stimulant, and then followed by accumulation of intracellular lipid droplets and reactive oxygen species (ROS), both of which were significantly inhibited by Sql-fullerene. In the OP9-U937 cell co-culture system, U937 cells rapidly differentiated to macrophage-like cells during SR-induced adipogenesis in OP9 cells. The ROS accumulation was in the co-culture more marked than in OP9 cells alone, suggesting that the interaction between adipocytes and monocytes/macrophages promotes inflammatory responses. Sql-fullerene significantly inhibited macrophage activation and low-grade adipogenesis in the OP9-U937 co-culture system. We developed a three-dimensional inflammatory adipose-tissue model "ATE" consisting of, characteristically, U937 cells in the culture-wells, and, in addition, mounted a culture insert containing OP9 cells-populated collagen gel. ATE is enabled with suitable stimulation to represent the pathology of inflammatory disorders, such as macrophage infiltration in adipose tissue. Five-day culturing of ATE in SR medium occurred U937 macrophage migration and intracellular oil-droplet accumulation that were significantly inhibited by Sql-fullerene. Our results suggest that Sql-fullerene might be explored as a potential medicine for the treatment of metabolic syndrome or other obesity-related disorders.

  15. Lidocaine Oxidation by Electrogenerated Reactive Oxygen Species in the Light of Oxidative Drug Metabolism

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.

    2010-01-01

    The study of oxidative drug metabolism by Cytochrome P450s (P450) is important in the earlier stages of drug development. For this purpose, automated analytical techniques are needed for fast and accurate estimation of oxidative drug metabolism. Previous studies have shown that electrochemistry in c

  16. Effect of different degrees of impaired glucose metabolism on the expression of inflammatory markers in monocytes of patients with atherosclerosis.

    Science.gov (United States)

    Bernal-Lopez, M R; Llorente-Cortes, V; Calleja, F; Lopez-Carmona, D; Mayas, M D; Gomez-Huelgas, R; Badimon, L; Tinahones, F J

    2013-08-01

    Inflammatory markers are elevated in type 2 diabetic patients (DP) and may predict the development of type 2 diabetes. Our aims were to analyze differences in the expression of inflammatory and immunological molecules between DP and healthy subjects and to investigate whether glycemic control might prevent the overexpression of inflammatory markers in DP. Twenty-two DP with advanced atherosclerosis and eight healthy blood donors were included. DP were classified as well (HbA1c ≤ 6.5) or poorly controlled (HbA1c > 6.5). In "in vitro" studies, monocytes were exposed to low (5.5 mM) or high glucose (26 mM) concentrations in the absence or presence of insulin. Expression profiling of 14 inflammatory genes was analyzed using TLDA analysis. "In vivo" results show that monocytes from DP had increased levels of monocyte chemoattractant protein (MCP-1) and interleukin 6 (IL6) and lower levels of Toll-like receptor 2 (TLR2) mRNA than healthy subjects. Well-controlled DP had lower levels of IL-6 than poorly controlled DP, suggesting that glycemic control may prevent IL6 mRNA alterations associated with diabetes. "In vitro" results demonstrate that glucose directly and significantly induced MCP-1 and IL6 and reduced TLR2 mRNA expression. Insulin at high dose (100 IU/ml) dramatically enhanced the upregulatory effects of glucose on MCP-1 and IL-6 and reduced per se TLR2 mRNA expression. MCP-1, IL-6 and TLR2 are key inflammatory players altered in monocytes from type 2 DP. Both hyperinsulinemia and hyperglycemia contribute to alter the expression of these genes. The glycemic control only significantly prevented IL6 overexpression in this group of patients.

  17. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells.

    Directory of Open Access Journals (Sweden)

    Pss Rao

    Full Text Available While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC, which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1 and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold and both ROS (>2 fold and HIV-1 replication (>3-fold after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold, and upon chronic CSC treatment to U1 cells (>30-fold. In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in

  18. Electrochemical Oxidation by Square-Wave Potential Pulses in the Imitation of Oxidative Drug Metabolism

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.

    2011-01-01

    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of lido

  19. A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood.

    Science.gov (United States)

    Palmer, Clovis S; Anzinger, Joshua J; Butterfield, Tiffany R; McCune, Joseph M; Crowe, Suzanne M

    2016-08-12

    Monocytes are innate immune cells that can be activated by pathogens and inflammation associated with certain chronic inflammatory diseases. Activation of monocytes induces effector functions and a concomitant shift from oxidative to glycolytic metabolism that is accompanied by increased glucose transporter expression. This increased glycolytic metabolism is also observed for trained immunity of monocytes, a form of innate immunological memory. Although in vitro protocols examining glucose transporter expression and glucose uptake by monocytes have been described, none have been examined by multi-parametric flow cytometry in whole blood. We describe a multi-parametric flow cytometric protocol for the measurement of fluorescent glucose analog 2-NBDG uptake in whole blood by total monocytes and the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) monocyte subpopulations. This method can be used to examine glucose transporter expression and glucose uptake for total monocytes and monocyte subpopulations during homeostasis and inflammatory disease, and can be easily modified to examine glucose uptake for other leukocytes and leukocyte subpopulations within blood.

  20. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome.

    Science.gov (United States)

    Goodwill, Adam G; Frisbee, Jefferson C

    2012-01-01

    The evolution of the metabolic syndrome in afflicted individuals is, in part, characterized by the development of a severely pro-oxidant state within the vasculature. It has been previously demonstrated by many investigators that this increasingly pro-oxidant state can have severe negative implications for many relevant processes within the vasculature, including the coordination of dilator/constrictor tone or reactivity, the structural adaptations of the vascular wall or distal networks, as well as the integrated regulation of perfusion resistance across and throughout the vascular networks. The purpose of this review article is to present the different sources of oxidant stress within the setting of the metabolic syndrome, the available mechanism for attempts at regulation and the vascular outcomes associated with this condition. It is anticipated that this overview will help readers and investigators to more effectively design experiments and interpret their results within the extremely complicated setting of metabolic syndrome.

  1. Toll-Like Receptor 4 Promotes NO Synthesis by Upregulating GCHI Expression under Oxidative Stress Conditions in Sheep Monocytes/Macrophages.

    Science.gov (United States)

    Deng, Shoulong; Yu, Kun; Zhang, Baolu; Yao, Yuchang; Wang, Zhixian; Zhang, Jinlong; Zhang, Xiaosheng; Liu, Guoshi; Li, Ning; Liu, Yixun; Lian, Zhengxing

    2015-01-01

    Many groups of Gram-negative bacteria cause diseases that are harmful to sheep. Toll-like receptor 4 (TLR4), which is critical for detecting Gram-negative bacteria by the innate immune system, is activated by lipopolysaccharide (LPS) to initiate inflammatory responses and oxidative stress. Oxidation intermediates are essential activators of oxidative stress, as low levels of free radicals form a stressful oxidative environment that can clear invading pathogens. NO is an oxidation intermediate and its generation is regulated by nitric oxide synthase (iNOS). Guanosine triphosphate cyclohydrolase (GCHI) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, which is essential for the production of inducible iNOS. Previously, we made vectors to overexpress the sheep TLR4 gene. Herein, first generation (G1) of transgenic sheep was stimulated with LPS in vivo and in vitro, and oxidative stress and GCHI expression were investigated. Oxidative injury caused by TLR4 overexpression was tightly regulated in tissues. However, the transgenic (Tg) group still secreted nitric oxide (NO) when an iNOS inhibitor was added. Furthermore, GCHI expression remained upregulated in both serum and monocytes/macrophages. Thus, overexpression of TLR4 in transgenic sheep might accelerate the clearance of invading microbes through NO generation following LPS stimulation. Additionally, TLR4 overexpression also enhances GCHI activation.

  2. Toll-Like Receptor 4 Promotes NO Synthesis by Upregulating GCHI Expression under Oxidative Stress Conditions in Sheep Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Shoulong Deng

    2015-01-01

    Full Text Available Many groups of Gram-negative bacteria cause diseases that are harmful to sheep. Toll-like receptor 4 (TLR4, which is critical for detecting Gram-negative bacteria by the innate immune system, is activated by lipopolysaccharide (LPS to initiate inflammatory responses and oxidative stress. Oxidation intermediates are essential activators of oxidative stress, as low levels of free radicals form a stressful oxidative environment that can clear invading pathogens. NO is an oxidation intermediate and its generation is regulated by nitric oxide synthase (iNOS. Guanosine triphosphate cyclohydrolase (GCHI is the rate-limiting enzyme for tetrahydrobiopterin (BH4 synthesis, which is essential for the production of inducible iNOS. Previously, we made vectors to overexpress the sheep TLR4 gene. Herein, first generation (G1 of transgenic sheep was stimulated with LPS in vivo and in vitro, and oxidative stress and GCHI expression were investigated. Oxidative injury caused by TLR4 overexpression was tightly regulated in tissues. However, the transgenic (Tg group still secreted nitric oxide (NO when an iNOS inhibitor was added. Furthermore, GCHI expression remained upregulated in both serum and monocytes/macrophages. Thus, overexpression of TLR4 in transgenic sheep might accelerate the clearance of invading microbes through NO generation following LPS stimulation. Additionally, TLR4 overexpression also enhances GCHI activation.

  3. Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice

    Science.gov (United States)

    Peek, Clara Bien; Affinati, Alison H.; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A.; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C.; Bacsik, David J.; Gius, David; Newgard, Christopher B.; Goetzman, Eric; Chandel, Navdeep S.; Denu, John M.; Mrksich, Milan; Bass, Joseph

    2014-01-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD+) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD+ supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD+ bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding. PMID:24051248

  4. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.

    Science.gov (United States)

    Peek, Clara Bien; Affinati, Alison H; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C; Bacsik, David J; Gius, David; Newgard, Christopher B; Goetzman, Eric; Chandel, Navdeep S; Denu, John M; Mrksich, Milan; Bass, Joseph

    2013-11-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.

  5. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    Science.gov (United States)

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. ©2014 American Association for Cancer Research.

  6. Interaction between Salmonella typhimurium and phagocytic cells in pigs - Phagocytosis, oxidative burst and killing in polymorphonuclear leukocytes and monocytes

    DEFF Research Database (Denmark)

    Riber, Ulla; Lind, Peter

    1999-01-01

    Interactions between Salmonella typhimurium and peripheral blood leucocytes from healthy, Salmonella-free pigs were investigated in vitro. Both granulocytes and monocytes phagocytized FITC-labelled heat-killed Salmonella bacteria as shown by flow cytometry. Phagocytosis in whole blood and isolated...

  7. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress

    Science.gov (United States)

    2013-01-01

    Background A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Results Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Conclusions Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are

  8. Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men

    DEFF Research Database (Denmark)

    Rosenkilde, M; Nordby, P; Nielsen, L B

    2010-01-01

    OBJECTIVE: To elucidate if fat oxidation at rest predicts peak fat oxidation during exercise and/or metabolic phenotype in moderately overweight, sedentary men. DESIGN: Cross-sectional study.Subjects:We measured respiratory exchange ratio (RER) at rest in 44 moderately overweight, normotensive...... the International Diabetes Federation criteria, we found that there was a lower accumulation of metabolic risk factors in L-RER than in H-RER (1.6 vs 3.5, P=0.028), and no subjects in L-RER and four of eight subjects in H-RER had the metabolic syndrome. Resting RER was positively correlated with plasma...... triglycerides (Prest (Prest predicts a high peak fat oxidation during exercise and a healthy metabolic...

  9. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.

    Science.gov (United States)

    Hertz, Leif; Peng, Liang; Dienel, Gerald A

    2007-02-01

    Astrocytic energy demand is stimulated by K(+) and glutamate uptake, signaling processes, responses to neurotransmitters, Ca(2+) fluxes, and filopodial motility. Astrocytes derive energy from glycolytic and oxidative pathways, but respiration, with its high-energy yield, provides most adenosine 5' triphosphate (ATP). The proportion of cortical oxidative metabolism attributed to astrocytes ( approximately 30%) in in vivo nuclear magnetic resonance (NMR) spectroscopic and autoradiographic studies corresponds to their volume fraction, indicating similar oxidation rates in astrocytes and neurons. Astrocyte-selective expression of pyruvate carboxylase (PC) enables synthesis of glutamate from glucose, accounting for two-thirds of astrocytic glucose degradation via combined pyruvate carboxylation and dehydrogenation. Together, glutamate synthesis and oxidation, including neurotransmitter turnover, generate almost as much energy as direct glucose oxidation. Glycolysis and glycogenolysis are essential for astrocytic responses to increasing energy demand because astrocytic filopodial and lamellipodial extensions, which account for 80% of their surface area, are too narrow to accommodate mitochondria; these processes depend on glycolysis, glycogenolysis, and probably diffusion of ATP and phosphocreatine formed via mitochondrial metabolism to satisfy their energy demands. High glycogen turnover in astrocytic processes may stimulate glucose demand and lactate production because less ATP is generated when glucose is metabolized via glycogen, thereby contributing to the decreased oxygen to glucose utilization ratio during brain activation. Generated lactate can spread from activated astrocytes via low-affinity monocarboxylate transporters and gap junctions, but its subsequent fate is unknown. Astrocytic metabolic compartmentation arises from their complex ultrastructure; astrocytes have high oxidative rates plus dependence on glycolysis and glycogenolysis, and their energetics is

  10. Oxidative metabolism in insulin-treated gestational diabetes mellitus.

    Science.gov (United States)

    Hsu, H W; Butte, N F; Wong, W W; Moon, J K; Ellis, K J; Klein, P D; Moise, K J

    1997-06-01

    To investigate whether protein, carbohydrate, and fat metabolism was normalized in insulin-treated gestational diabetes mellitus (GDM), eight Hispanic women with GDM and eight healthy controls were studied at 32-36 wk of gestation and 6 wk postpartum. Net substrate utilization was measured using room respiration calorimetry. Exogenous substrate oxidation was determined by 13C recovered in breath CO2 from 13C-labeled leucine, glucose, and Hiolein. Women with GDM had higher 24-h oxygen consumption, carbon dioxide production, total energy expenditure, and basal metabolic rates than controls due to larger body mass. Adjusted for weight or fat-free mass, total energy expenditure, basal metabolic rate, and basal and 24-h whole body net protein, carbohydrate, and fat utilization did not differ between insulin-treated GDM subjects and controls in pregnancy or postpartum. Oxidation of [13C]leucine and [13C]glucose did not differ by group or pregnancy status. Recovery of exogenously administered [13C]Hiolein, a biosynthetic triglyceride, as breath 13CO2 was significantly lower in the GDM group antepartum and postpartum (P = 0.02), indicating lower oxidation of exogenous triglycerides in GDM.

  11. Monocyte chemoattractant protein-1 gene polymorphism and its serum level have an impact on anthropometric and biochemical risk factors of metabolic syndrome in Indian population.

    Science.gov (United States)

    Madeshiya, A K; Singh, S; Dwivedi, S; Saini, K S; Singh, R; Tiwari, S; Konwar, R; Ghatak, A

    2015-04-01

    Monocyte chemoattractant protein-1 (MCP-1), encoded by gene CCL-2 (Chemokine C-C motif 2), is the ligand of chemokine receptor CCR-2. Concurrent clinical alteration in several metabolic aspects, including central obesity, dysglycemia, dyslipidemia and hypertension, is clinically characterized as metabolic syndrome (MetS). Role of MCP-1 in each of these aspects has been established in vitro and in animal studies as well. We here report genetic association of -2518 A>G MCP-1 (rs 1024611) gene polymorphism and level of MCP-1 with MetS in North Indian subjects. We analysed (n=386, controls and n=384, MetS subjects) for MCP-1 gene polymorphism using PCR-RFLP, its serum level using ELISA, anthropometric (body mass index, waist and hip circumferences, waist-hip ratio and blood pressure) and biochemical (serum lipids, plasma glucose and insulin levels) variables in a genetic association study. The body mass index, waist circumference, hip circumference, waist-hip ratio, blood pressure, serum lipids, insulin and fasting plasma glucose level were significantly high in MetS subjects. Regression analysis showed significant correlation of body mass index, waist and hip circumference, systolic/diastolic blood pressure, fasting glucose, total cholesterol, high-density lipoprotein, low-density lipoprotein fasting insulin and HOMA-IR with MetS. MCP-1 allele and genotype were significantly associated with MetS. Serum MCP-1 level was high in overall cases. In conclusions, the MCP-1 2518A>G (rs 1024611) polymorphism has significant impact on risk of MetS, and MCP-1 level correlates with anthropometric and biochemical risk factors of MetS.

  12. Oxidative stress and DNA methylation regulation in the metabolic syndrome.

    Science.gov (United States)

    Yara, Sabrina; Lavoie, Jean-Claude; Levy, Emile

    2015-01-01

    DNA methylation is implicated in tissue-specific gene expression and genomic imprinting. It is modulated by environmental factors, especially nutrition. Modified DNA methylation patterns may contribute to health problems and susceptibility to complex diseases. Current advances have suggested that the metabolic syndrome (MS) is a programmable disease, which is characterized by epigenetic modifications of vital genes when exposed to oxidative stress. Therefore, the main objective of this paper is to critically review the central context of MS while presenting the most recent knowledge related to epigenetic alterations that are promoted by oxidative stress. Potential pro-oxidant mechanisms that orchestrate changes in methylation profiling and are related to obesity, diabetes and hypertension are discussed. It is anticipated that the identification and understanding of the role of DNA methylation marks could be used to uncover early predictors and define drugs or diet-related treatments able to delay or reverse epigenetic changes, thereby combating MS burden.

  13. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes

    Directory of Open Access Journals (Sweden)

    Ceretto Monica

    2007-06-01

    Full Text Available Abstract Background Enhanced production of nitric oxide (NO following upmodulation of the inducible isoform of NO synthase (iNOS by haemozoin (HZ, inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. Methods Adherent immunopurified human monocytes (purity >85%, and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. Results Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. Conclusion Results indicate that human monocytes fed or not with HZ/sHZ were constantly

  14. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.

    Science.gov (United States)

    Mashock, Michael J; Kappell, Anthony D; Hallaj, Nadia; Hristova, Krassimira R

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used increasingly in industrial applications and consumer products and thus may pose risk to human and environmental health. The interaction of CuO NPs with complex media and the impact on cell metabolism when exposed to sublethal concentrations are largely unknown. In the present study, the short-term effects of 2 different sized manufactured CuO NPs on metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu(2+) during dissolution of NPs in the growth media and the CuO nanostructure were considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the present study have different primary diameter, similar hydrodynamic diameter, and significantly different concentrations of dissolved Cu(2+) ions in the growth media released from the same initial NP mass. Exposures to CuO NPs or the released Cu(2+) fraction, at doses that do not have impact on cell viability, showed significant inhibition on S. cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity of S. cerevisiae growth under respiring conditions was observed. Under the tested conditions the observed metabolic inhibition from the NPs was not explained fully by the released Cu ions from the dissolving NPs. © 2015 SETAC.

  15. Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in glucose-stimulated human monocyte.

    Science.gov (United States)

    Kavoosi, Gholamreza; Teixeira da Silva, Jaime A

    2012-09-01

    The inhibitory effects of Zataria multiflora essential oil on nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) production were examined in human monocytes cultured in the presence of 20mM glucose. Z. multiflora essential oil was extracted by water-distillation and then analyzed by GC-MS. Carvacrol (29.2%), thymol (25.4%), p-cymene (11.2%), linalool (9.6%) and γ-terpinene (8%) were the main components detected in the essential oil. Cells cultured in the presence of 20mM glucose showed an increase in NO and H(2)O(2) production as well as NO synthase (NOS) and NADH oxidase (NOX) activities compared to cells cultured in the presence of 5mM glucose. Pretreatment with Z. multiflora essential oil, carvacrol and thymol reduced NO and H(2)O(2) production as well as NOS and NOX activities in those cells cultured in the presence of 20mM glucose. However, p-cymene, linalool and γ-terpinene did not show any such activities. Accordingly, it was concluded that Z. multiflora can reduce oxidative stress and can be used in the therapy of oxidative damage accompanying hyperglycemia and some inflammatory conditions.

  16. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  17. LSD1 promotes oxidative metabolism of white adipose tissue

    Science.gov (United States)

    Duteil, Delphine; Metzger, Eric; Willmann, Dominica; Karagianni, Panagiota; Friedrichs, Nicolaus; Greschik, Holger; Günther, Thomas; Buettner, Reinhard; Talianidis, Iannis; Metzger, Daniel; Schüle, Roland

    2014-01-01

    Exposure to environmental cues such as cold or nutritional imbalance requires white adipose tissue (WAT) to adapt its metabolism to ensure survival. Metabolic plasticity is prominently exemplified by the enhancement of mitochondrial biogenesis in WAT in response to cold exposure or β3-adrenergic stimulation. Here we show that these stimuli increase the levels of lysine-specific demethylase 1 (LSD1) in WAT of mice and that elevated LSD1 levels induce mitochondrial activity. Genome-wide binding and transcriptome analyses demonstrate that LSD1 directly stimulates the expression of genes involved in oxidative phosphorylation (OXPHOS) in cooperation with nuclear respiratory factor 1 (Nrf1). In transgenic (Tg) mice, increased levels of LSD1 promote in a cell-autonomous manner the formation of islets of metabolically active brown-like adipocytes in WAT. Notably, Tg mice show limited weight gain when fed a high-fat diet. Taken together, our data establish LSD1 as a key regulator of OXPHOS and metabolic adaptation in WAT. PMID:24912735

  18. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    Science.gov (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  19. H2S regulation of nitric oxide metabolism

    Science.gov (United States)

    Kolluru, Gopi K.; Yuan, Shuai; Shen, Xinggui; Kevil, Christopher G.

    2015-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives, and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions. PMID:25725527

  20. Oxidative stress and an altered methionine metabolism in alcoholism.

    Science.gov (United States)

    Bleich, S; Spilker, K; Kurth, C; Degner, D; Quintela-Schneider, M; Javaheripour, K; Rüther, E; Kornhuber, J; Wiltfang, J

    2000-11-03

    The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (Pbrain shrinkage.

  1. Uptake and metabolism of iron oxide nanoparticles in brain cells.

    Science.gov (United States)

    Petters, Charlotte; Irrsack, Ellen; Koch, Michael; Dringen, Ralf

    2014-09-01

    Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

  2. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  3. The Mediterranean diet adoption improves metabolic, oxidative, and inflammatory abnormalities in Algerian metabolic syndrome patients.

    Science.gov (United States)

    Bekkouche, L; Bouchenak, M; Malaisse, W J; Yahia, D Ait

    2014-04-01

    This study was aimed to explore the effects of Mediterranean diet (MD) adoption on insulin resistance, oxidative, and inflammatory status in metabolic syndrome (MS) patients. Eighty four patients with MS were randomly recruited in the medical centers of Oran, Algeria. Eighteen healthy participants were selected as a control group. Among these 84 patients, only 36 patients completed the nutritional advices for 3 months. Patients were instructed to follow a Mediterranean-style diet and received some other selected nutritional and physical activity instructions. Anthropometric measurements were performed and a questionnaire was used to assess dietary intake. Blood samples were drawn at baseline and after 3 months of nutritional intervention from all subjects. At baseline, the MS patients were obese and had altered anthropometric parameters, higher systolic and diastolic blood pressure, plasma lipids, glucose, insulin, HOMA-IR, HbA1c, urea, creatinine, uric acid, and lower albumin compared to healthy subjects. A decrease in plasma, erythrocyte, and platelet antioxidant enzymes, and a rise in lipid and protein oxidation, plasma CRP, and fibrinogen were noted in the MS patients. Moreover, they had an unbalanced dietary pattern when compared to Mediterranean recommendations. Patients following the Mediterranean-style diet had significantly reduced weight, BMI, waist circumference, waist/hip circumference ratio, decreased systolic and diastolic blood pressure, plasma glucose, insulin, HOMA-IR, HbA1c, cholesterol, triacylglycerols, CRP, urea, creatinine, creatinine clearance, lipid and protein oxidation, and higher plasma, erythrocyte, and platelet antioxidant enzymes. In conclusion, a lifestyle intervention based mainly on nutritional advices improves metabolic, oxidative, and inflammatory abnormalities of metabolic syndrome.

  4. Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes.

    Science.gov (United States)

    Marcuzzi, Annalisa; Tommasini, Alberto; Crovella, Sergio; Pontillo, Alessandra

    2010-06-01

    The inhibition of mevalonate pathway through genetic defects (mevalonate kinase deficiency, MKD) or pharmacologic drugs (aminobisphosphonates) causes a shortage of intermediate compounds and, in particular, of geranylgeranyl-pyrophosphate (GGPP) associated to the activation of caspase-1 and IL-1beta release. Geraniol (GOH), farnesol (FOH), geranylgeraniol (GGOH) and menthol (MOH), due to their isoprenoid structure, are supposed to enter the mevalonate pathway and to by-pass the biochemical block, reconstituting the pathway. Considering the already known side effects of aminobisphosphonates, and the lack of a specific treatment for MKD, we evaluated the impact of these natural isoprenoids compounds in a RAW cell lines chemically treated with the aminobisphosphonate alendronate, and in monocytes isolated from 2 patients affected by MKD. GOH, FOH, GGOH and MOH were all capable to diminish inflammatory marker levels induced by LPS. These natural isoprenoids could be proposed as novel therapeutic approach for the still orphan drug MKD, but also considered for the evaluation of possible inflammatory side effects of aminobisphosphonates.

  5. Neonatal cardiomyopathies and metabolic crises due to oxidative phosphorylation defects.

    Science.gov (United States)

    Schiff, Manuel; Ogier de Baulny, Hélène; Lombès, Anne

    2011-08-01

    Neonatal cardiomyopathies due to mitochondrial oxidative phosphorylation (OXPHOS) defects are extremely severe conditions which can be either isolated or included in a multi-organ disease, with or without metabolic crises, of which profound lactic acidosis is the prominent feature. Cardiomyopathy is more often hypertrophic than dilated. Antenatal manifestations such as fetal cardiomyopathy, arrhythmia and/or hydrops have been reported. Pathophysiological mechanisms are complex, going beyond ATP deficiency of the high-energy-consuming neonatal myocardium. Birth is a key metabolic period when the myocardium switches ATP production from anaerobic glycolysis to mitochondrial fatty acid oxidation and OXPHOS. Heart-specificity of the defect may be related to the specific localization of the defect, to the high myocardium dependency on OXPHOS, and/or to interaction between the primary genetic alteration and other factors such as modifier genes. Therapeutic options are limited but standardized diagnostic procedures are mandatory to confirm the OXPHOS defect and to identify its causal mutation, allowing genetic counseling and potential prenatal diagnosis.

  6. The oxidative metabolism of fenbendazole: a comparative study.

    Science.gov (United States)

    Short, C R; Flory, W; Hsieh, L C; Barker, S A

    1988-03-01

    The oxidative metabolism of fenbendazole (FBZ) was studied in hepatic fractions prepared from livers of cattle, sheep, goats, chickens, ducks, turkeys, rats, rabbits and catfish. All species produced the sulfoxide metabolite (oxfendazole; FBZ-SO), and p-hydroxyfenbendazole (FBZ-OH) was produced by all species except sheep. The product of demethoxycarbonylation, fenbendazole amine (FBZ-NH2), was not produced by liver preparations of any species. A fourth metabolite, resulting from the further oxidation of oxfendazole, fenbendazole sulfone (FBZ-SO2), was formed in all species but at highly varying rates. The chicken exhibited the highest overall rate of FBZ metabolism, followed by the duck, goat, sheep, steer, catfish, rat, rabbit, and turkey. Considerable variation was evident among avian species, the duck and turkey produced substantially less of the FBZ-OH and FBZ-SO2 metabolites than the chicken. Catfish liver preparations formed equivalent amounts of metabolite at 25 degrees C and 37 degrees C incubation temperatures. The formation of the sulfone metabolite (FBZ-SO2), however, was practically nonexistent in catfish.

  7. Oxidative metabolism of cocaine: comparison of brain and liver.

    Science.gov (United States)

    Benuck, M; Reith, M E; Sershen, H; Wiener, H L; Lajtha, A

    1989-01-01

    Norcocaine (NC) and N-hydroxynorcocaine (NHNC), products of the oxidative metabolism of cocaine, were examined in plasma, brain, and liver of mice injected intraperitoneally with cocaine. Plasma levels of NHNC were altered in vivo by inhibiting esterase activity with diazinon and chloral hydrate or activating esterase activity with phenobarbital, and activating the microsomal P-450 system with phenobarbital. Changes in plasma concentrations of NHNC resulted in similar changes in brain, which were often different from those in liver. After intracisternal administration of cocaine to mice, no appreciable amount of NC or NHNC could be detected in brain; the same results were obtained upon intracisternal and intraventricular administration to rats. Microsomal preparations from mouse brain were found to be considerably less active than those from liver in converting NC to NHNC. We conclude that the cerebral oxidative metabolism of cocaine is not appreciable and that most of the NC and NHNC found in the brain after systemic cocaine administration is derived from plasma rather than formed centrally by brain microsomal enzymes.

  8. Electrochemical and enzymatic synthesis of oxidative drug metabolites for metabolism studies: Exploring selectivity and yield

    OpenAIRE

    Gül, Turan

    2017-01-01

    Metabolism studies of drug molecules play a crucial role in drug discovery and development since the early detection of possibly toxic drug metabolites can save time and money. During the metabolic biotransformation process, oxidation of a drug molecule is catalyzed by specific enzymes which can lead to activation or inactivation of the molecule. Phase I metabolism includes primary oxidation reactions including heteroatom dealkylation/oxidation and aromatic hydroxylation reactions which are m...

  9. Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor

    Science.gov (United States)

    Wei, Libin; Zhou, Yuxin; Yao, Jing; Qiao, Chen; Ni, Ting; Guo, Ruichen; Guo, Qinglong; Lu, Na

    2015-01-01

    Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its activity, resulting in the stabilization of HIF-1α under normoxia. Mechanistically, activated hypoxia-inducible factor 1-α in THP-1 monocytes promoted the transcriptions of prostaglandin-endoperoxide synthase 2 and phosphoenolpyruvate carboxykinase, which were the key enzyme of prostaglandin E2 synthesis and gluconeogenesis, respectively, and promote the growth of human colon cancer HCT116 cells. Interestingly, lactate could not accelerate the growth of colon cancer directly in vivo. Instead, the human monocytic cells affected by lactate would play critical roles to ‘feed’ the colon cancer cells. Thus, recycling of lactate for glucose regeneration was reported in cancer metabolism. The anabolic metabolism of monocytes in inflammatory tumor microenvironment may be a critical event during tumor development, allowing accelerated tumor growth. PMID:25938544

  10. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Shu-Ju Chen

    Full Text Available Metabolic syndrome (MS represents a cluster of physiological and anthropometric abnormalities. The purpose of this study was to investigate the relationships between the levels of inflammation, adiponectin, and oxidative stress in subjects with MS. The inclusion criteria for MS, according to the Taiwan Bureau of Health Promotion, Department of Health, were applied to the case group (n = 72. The control group (n = 105 comprised healthy individuals with normal blood biochemical values. The levels of inflammatory markers [high sensitivity C-reactive protein (hs-CRP and interleukin-6 (IL-6, adiponectin, an oxidative stress marker (malondialdehyde, and antioxidant enzymes activities [catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx] were measured. Subjects with MS had significantly higher concentrations of inflammatory markers and lower adiponectin level, and lower antioxidant enzymes activities than the control subjects. The levels of inflammatory markers and adiponectin were significantly correlated with the components of MS. The level of hs-CRP was significantly correlated with the oxidative stress marker. The IL-6 level was significantly correlated with the SOD and GPx activities, and the adiponectin level was significantly correlated with the GPx activity. A higher level of hs-CRP (≥1.00 mg/L, or IL-6 (≥1.50 pg/mL or a lower level of adiponectin (<7.90 µg/mL were associated with a significantly greater risk of MS. In conclusion, subjects suffering from MS may have a higher inflammation status and a higher level of oxidative stress. A higher inflammation status was significantly correlated with decreases in the levels of antioxidant enzymes and adiponectin and an increase in the risk of MS.

  11. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    Science.gov (United States)

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Copyright © 2015 The Authprs. Published by Elsevier B.V. All rights reserved.

  12. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    Directory of Open Access Journals (Sweden)

    Andrea W.U. Busch

    2015-04-01

    Full Text Available Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  13. Monocyte Subpopulations in Angiogenesis

    Science.gov (United States)

    Dalton, Heather J.; Armaiz-Pena, Guillermo; Gonzalez-Villasana, Vianey; Lopez-Berestein, Gabriel; Bar-Eli, Menashe; Sood, Anil K.

    2014-01-01

    Growing understanding of the role of the tumor microenvironment in angiogenesis has brought monocyte-derived cells into focus. Monocyte subpopulations are an increasingly attractive therapeutic target in many pathologic states, including cancer. Before monocyte-directed therapies can be fully harnessed for clinical use, understanding of monocyte-driven angiogenesis in tissue development and homeostasis, as well as malignancy, is required. Here, we provide an overview of the mechanisms by which monocytic subpopulations contribute to angiogenesis in tissue and tumor development, highlight gaps in our existing knowledge, and discuss opportunities to exploit these cells for clinical benefit. PMID:24556724

  14. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...

  15. The effect of dialysate on peritoneal phagocyte oxidative metabolism.

    Science.gov (United States)

    Topley, N; Alobaidi, H M; Davies, M; Coles, G A; Williams, J D; Lloyd, D

    1988-09-01

    The respiratory and oxidative responses of human peritoneal polymorphonuclear leukocytes (PMN) and peritoneal macrophages (PM phi) following exposure to unused continuous ambulatory peritoneal dialysis fluid (CAPD) and early dwell effluent were studied using an open oxygen (O2) electrode system and by measurement of oxygen radical-derived luminol-dependent chemiluminescence. Both cell types responded to stimulation by increasing O2 consumption and by generating chemiluminescence even at external O2 concentrations below 50 microM O2. Oxygen concentrations in the dialysate, as measured by blood gas analysis, were never lower than 118 +/- 8.3 microM O2 even during active peritonitis. Thus oxygen availability does not appear to be rate limiting for phagocyte oxidative metabolism in the peritoneal cavity. Preexposure of both inflammatory cell types to unused fluid or early dwell CAPD effluent significantly reduced both stimulated oxygen uptake and the subsequent ability of these cells to generate chemiluminescence without significantly affecting their viability. Further investigation of this down regulatory phenomenon using unused fluid and laboratory prepared dialysis fluid revealed that low pH (5.3) and high sodium lactate concentration in combination are directly responsible for the suppressive effect of unused fluid and early dwell effluent on cell function. These observations demonstrate that cellular host defense may be impaired early in the dialysis cycle as a result of lactate mediated "stunning" of resident phagocytes. The precise nature of the molecular species responsible for this suppressive effect remains to be identified.

  16. Assessment of oxidative metabolism in Brown Fat using PET imaging

    Directory of Open Access Journals (Sweden)

    Otto eMuzik

    2012-02-01

    Full Text Available Objective: Although it has been believed that brown adipose tissue (BAT depots disappear shortly after the perinatal period in humans, PET imaging using the glucose analog FDG has shown unequivocally the existence of functional BAT in humans. The objective of this study was to determine, using dynamic oxygen-15 (15O PET imaging, to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and FDG tracer uptake.Methods: Fourteen adult normal subjects (9F/5M, 30+7 years underwent triple oxygen scans (H215O, C15O, 15O2 as well as indirect calorimetric measurements at rest and following exposure to mild cold (60F. Subjects were divided into two groups (BAT+ and BAT- based on the presence or absence of FDG tracer uptake (SUV > 2 in supraclavicular BAT. Blood flow (BF and oxygen extraction fraction (OEF was calculated from dynamic PET scans at the location of BAT, muscle and white adipose tissue (WAT. The metabolic rate of oxygen (MRO2 in BAT was determined and used to calculate the contribution of activated BAT to daily energy expenditure (DEE.Results: The median mass of activated BAT in the BAT+ group (5F, 31+8yrs was 52.4 g (14-68g and was 1.7 g (0-6.3g in the BAT- group (5M/4F, 29+6yrs. SUV values were significantly higher in the BAT+ as compared to the BAT- group (7.4+3.7 vs 1.9+0.9; p=0.03. BF values in BAT were significantly higher in the BAT+ as compared to the BAT- group (13.1+4.4 vs 5.7+1.1 ml/100g/min, p=0.03, but were similar in WAT (4.1+1.6 vs 4.2+1.8 ml/100g/min and muscle (3.7+0.8 vs 3.3+1.2 ml/100g/min. Calculated MRO2 values in BAT increased from 0.95+0.74 to 1.62+0.82 ml/100g/min in the BAT+ group and were significantly higher than those determined in the BAT- group (0.43+0.27 vs 0.56+0.24; p=0.67. The DEE associated with BAT oxidative metabolism was highly variable in the BAT+ group, with an average of 5.5+6.4 kcal/day (range 0.57–15.3 kcal/day.

  17. Toxicity and metabolism of 3'-deoxyadenosine N*O1-oxide in mice and Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Svendsen, Karsten Ramløv; Overgaard-Hansen, Kay; Frederiksen, Sune

    1992-01-01

    Medicinsk biokemi, 3'-deoxyadenosine N*O1-oxide, metabolism, Ehrlich ascites cells, toxicity, mice......Medicinsk biokemi, 3'-deoxyadenosine N*O1-oxide, metabolism, Ehrlich ascites cells, toxicity, mice...

  18. Electrochemistry in the Mimicry of Oxidative Drug Metabolism by Cytochrome P450s

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P.; Permentier, Hjalmar P.

    2011-01-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the

  19. Does iodine biofortification affect oxidative metabolism in lettuce plants?

    Science.gov (United States)

    Blasco, Begoña; Ríos, Juan Jose; Leyva, Rocío; Cervilla, Luis Miguel; Sánchez-Rodríguez, Eva; Rubio-Wilhelmi, María Mar; Rosales, Miguel Angel; Ruiz, Juan Manuel; Romero, Luis

    2011-09-01

    Plants produce low levels of reactive oxygen species (ROS), which form part of basic cell chemical communication; however, different types of stress can lead to an overexpression of ROS that can damage macromolecules essential for plant growth and development. Iodine is vital to human health, and iodine biofortification programs help improve the human intake through plant consumption. This biofortification process has been shown to influence the antioxidant capacity of lettuce plants, suggesting that the oxidative metabolism of the plant may be affected. The results of this study demonstrate that the response to oxidative stress is variable and depends on the form of iodine applied. Application of iodide (I(-)) to lettuce plants produces a reduction in superoxide dismutase (SOD) activity and an increase in catalase (CAT) and L-galactono dehydrogenase enzyme activities and in the activity of antioxidant compounds such as ascorbate (AA) and glutathione. This did not prove a very effective approach since a dose of 80 μM produced a reduction in the biomass of the plants. For its part, application of iodate (IO (3) (-) ) produced an increase in the activities of SOD, ascorbate peroxidase, and CAT, the main enzymes involved in ROS detoxification; it also increased the concentration of AA and the regenerative activities of the Halliwell-Asada cycle. These data confirm the non-phytotoxicity of IO (3) (-) since there is no lipid peroxidation or biomass reduction. According to our results, the ability of IO (3) (-) to induce the antioxidant system indicates that application of this form of iodine may be an effective strategy to improve the response of plants to different types of stress.

  20. Metabolic effects of melatonin on oxidative stress and diabetes mellitus.

    Science.gov (United States)

    Nishida, Shigeru

    2005-07-01

    Melatonin, which is synthesized in the pineal gland and other tissues, has a variety of physiological, immunological, and biochemical functions. It is a direct scavenger of free radicals and has indirect antioxidant effects due to its stimulation of the expression and activity of antioxidative enzymes such as glutathione peroxidase, superoxide dismutase and catalase, and NO synthase, in mammalian cells. Melatonin also reduces serum lipid levels in mammalian species, and helps to prevent oxidative stress in diabetic subjects. Long-term melatonin administration to diabetic rats reduced their hyperlipidemia and hyperinsulinemia, and restored their altered ratios of polyunsaturated fatty acid in serum and tissues. It was recently reported that melatonin enhanced insulin-receptor kinase and IRS-1 phosphorylation, suggesting the potential existence of signaling pathway cross-talk between melatonin and insulin. Because TNF-alpha has been shown to impair insulin action by suppressing insulin receptor-tyrosine kinase activity and its IRS-1 tyrosine phosphorylation in peripheral tissues such as skeletal muscle cells, it was speculated that melatonin might counteract TNF-alpha-associated insulin resistance in type 2 diabetes. This review will focus on the physiological and metabolic effects of melatonin and highlight its potential use for the treatment of cholesterol/lipid and carbohydrate disorders.

  1. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    OpenAIRE

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads; Kitzinger, Katharina; Herbold, Craig; Spieck, Eva; Nielsen, Per Halkjaer; Wagner, Michael; Daims, Holger

    2015-01-01

    Nitrification, the sequential aerobic oxidation of ammonia via nitrite to nitrate, is a key process of the biogeochemical nitrogen cycle and catalyzed by two aerobic microbial guilds (nitrifiers): ammonia oxidizers and nitrite-oxidizing bacteria (NOB). NOB are generally considered as metabolically restricted and dependent on ammonia oxidizers. Here, we report that, surprisingly, key NOB of many ecosystems (Nitrospira) convert urea, an important ammonia source in nature, to ammonia and CO2. Th...

  2. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.

    Science.gov (United States)

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P

    2011-05-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP.

  3. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria.

    Science.gov (United States)

    Anantharaman, Karthik; Breier, John A; Sheik, Cody S; Dick, Gregory J

    2013-01-02

    Hydrothermal vents are a well-known source of energy that powers chemosynthesis in the deep sea. Recent work suggests that microbial chemosynthesis is also surprisingly pervasive throughout the dark oceans, serving as a significant CO(2) sink even at sites far removed from vents. Ammonia and sulfur have been identified as potential electron donors for this chemosynthesis, but they do not fully account for measured rates of dark primary production in the pelagic water column. Here we use metagenomic and metatranscriptomic analyses to show that deep-sea populations of the SUP05 group of uncultured sulfur-oxidizing Gammaproteobacteria, which are abundant in widespread and diverse marine environments, contain and highly express genes encoding group 1 Ni, Fe hydrogenase enzymes for H(2) oxidation. Reconstruction of near-complete genomes of two cooccurring SUP05 populations in hydrothermal plumes and deep waters of the Gulf of California enabled detailed population-specific metatranscriptomic analyses, revealing dynamic patterns of gene content and transcript abundance. SUP05 transcripts for genes involved in H(2) and sulfur oxidation are most abundant in hydrothermal plumes where these electron donors are enriched. In contrast, a second hydrogenase has more abundant transcripts in background deep-sea samples. Coupled with results from a bioenergetic model that suggest that H(2) oxidation can contribute significantly to the SUP05 energy budget, these findings reveal the potential importance of H(2) as a key energy source in the deep ocean. This study also highlights the genomic plasticity of SUP05, which enables this widely distributed group to optimize its energy metabolism (electron donor and acceptor) to local geochemical conditions.

  4. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells.

    Science.gov (United States)

    Reisz, Julie A; Wither, Matthew J; Dzieciatkowska, Monika; Nemkov, Travis; Issaian, Aaron; Yoshida, Tatsuro; Dunham, Andrew J; Hill, Ryan C; Hansen, Kirk C; D'Alessandro, Angelo

    2016-09-22

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a key regulatory function in glucose oxidation by mediating fluxes through glycolysis or the pentose phosphate pathway (PPP) in an oxidative stress-dependent fashion. Previous studies documented metabolic reprogramming in stored red blood cells (RBCs) and oxidation of GAPDH at functional residues upon exposure to pro-oxidants diamide and H2O2 Here we hypothesize that routine storage of erythrocyte concentrates promotes metabolic modulation of stored RBCs by targeting functional thiol residues of GAPDH. Progressive increases in PPP/glycolysis ratios were determined via metabolic flux analysis after spiking (13)C1,2,3-glucose in erythrocyte concentrates stored in Additive Solution-3 under blood bank conditions for up to 42 days. Proteomics analyses revealed a storage-dependent oxidation of GAPDH at functional Cys152, 156, 247, and His179. Activity loss by oxidation occurred with increasing storage duration and was progressively irreversible. Irreversibly oxidized GAPDH accumulated in stored erythrocyte membranes and supernatants through storage day 42. By combining state-of-the-art ultra-high-pressure liquid chromatography-mass spectrometry metabolic flux analysis with redox and switch-tag proteomics, we identify for the first time ex vivo functionally relevant reversible and irreversible (sulfinic acid; Cys to dehydroalanine) oxidations of GAPDH without exogenous supplementation of excess pro-oxidant compounds in clinically relevant blood products. Oxidative and metabolic lesions, exacerbated by storage under hyperoxic conditions, were ameliorated by hypoxic storage. Storage-dependent reversible oxidation of GAPDH represents a mechanistic adaptation in stored erythrocytes to promote PPP activation and generate reducing equivalents. Removal of irreversibly oxidized, functionally compromised GAPDH identifies enhanced vesiculation as a self-protective mechanism in ex vivo aging erythrocytes.

  5. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Bigagli, Elisabetta; Cinci, Lorenzo; Paccosi, Sara; Parenti, Astrid; D'Ambrosio, Mario; Luceri, Cristina

    2017-02-01

    The health benefits of bio-active phenolic compounds have been largely investigated in vitro at concentrations which exceed those reachable in vivo. We investigated and compared the anti-inflammatory effects of resveratrol, hydroxytyrosol and oleuropein at physiologically relevant concentrations by using in vitro models of inflammation. Human granulocytes and monocytes were stimulated with phorbol myristate acetate (PMA) and the ability of resveratrol, hydroxytyrosol and oleuropein to inhibit the oxidative burst and CD11b expression was measured. Nitric oxide (NO), prostaglandin E2 (PGE2) levels, COX-2, iNOS, TNFα, IL-1β and miR-146a expression and activation of the transcription factor Nrf2 were evaluated in macrophages RAW 264.7 stimulated with LPS (1μg/ml) for 18h, exposed to resveratrol, hydroxytyrosol and oleuropein (5 and 10μM). Synergistic effects were explored as well, together with the levels of PGE2, COX-2 and IL-1β expression in macrophages after 6h of LPS stimulation. PGE2 and COX-2 expression were also assessed on human monocytes. All the tested compounds inhibited granulocytes oxidative burst in a concentration dependent manner and CD11b expression was also significantly counteracted by resveratrol and hydroxytyrosol. The measurement of oxidative burst in human monocytes produced similar effects being resveratrol more active. Hydroxytyrosol and resveratrol inhibited the production of NO and PGE2 but did not reduce iNOS, TNFα or IL-1β gene expression in LPS-stimulated RAW 264.7 for 18h. Resveratrol slightly decreased COX-2 expression after 18h but not after 6h, but reduced PGE2 levels after 6h. Resveratrol and hydroxytyrosol 10μM induced NRf2 nuclear translocation and reduced miR-146a expression in LPS treated RAW 264.7. Overall, we reported an anti-inflammatory effect of resveratrol and hydroxytyrosol at low, nutritionally relevant concentrations, involving the inhibition of granulocytes and monocytes activation, the modulation of miR-146a

  6. In vitro mimicry of metabolic oxidation reactions by electrochemistry/mass spectrometry

    NARCIS (Netherlands)

    Jurva, U; Wikstrom, HV; Bruins, AP

    2000-01-01

    The aim of these studies was to investigate the scope and limitations of electrochemistry on-line with mass spectrometry as a quick and convenient way to mimic phase I:oxidative reactions in drug metabolism. A compound with previously reported in vitro and in vivo metabolism, the dopamine agonist 2-

  7. Electrochemical and enzymatic synthesis of oxidative drug metabolites for metabolism studies : Exploring selectivity and yield

    NARCIS (Netherlands)

    Gül, Turan

    2017-01-01

    Metabolism studies of drug molecules play a crucial role in drug discovery and development since the early detection of possibly toxic drug metabolites can save time and money. During the metabolic biotransformation process, oxidation of a drug molecule is catalyzed by specific enzymes which can lea

  8. Supercritical water oxidation of products of human metabolism

    Science.gov (United States)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  9. Oxidative Stress and Metabolic Pathologies: From an Adipocentric Point of View

    Directory of Open Access Journals (Sweden)

    Soazig Le Lay

    2014-01-01

    Full Text Available Oxidative stress plays a pathological role in the development of various diseases including diabetes, atherosclerosis, or cancer. Systemic oxidative stress results from an imbalance between oxidants derivatives production and antioxidants defenses. Reactive oxygen species (ROS are generally considered to be detrimental for health. However, evidences have been provided that they can act as second messengers in adaptative responses to stress. Obesity represents a major risk factor for deleterious associated pathologies such as type 2 diabetes, liver, and coronary heart diseases. Many evidences regarding obesity-induced oxidative stress accumulated over the past few years based on established correlations of biomarkers or end-products of free-radical-mediated oxidative stress with body mass index. The hypothesis that oxidative stress plays a significant role in the development of metabolic disorders, especially insulin-resistance state, is supported by several studies where treatments reducing ROS production reverse metabolic alterations, notably through improvement of insulin sensitivity, hyperlipidemia, or hepatic steatosis. In this review, we will develop the mechanistic links between oxidative stress generated by adipose tissue in the context of obesity and its impact on metabolic complications development. We will also attempt to discuss potential therapeutic approaches targeting obesity-associated oxidative stress in order to prevent associated-metabolic complications.

  10. Prevalence of Oxidative Stress and Metabolic Syndrome in Adults with Paraplegia and Tetraplegia

    Science.gov (United States)

    Objectives: To investigate the extent of oxidative stress and metabolic syndrome (MetS) in people with spinal cord injuries (SCI) and to identify the major factors associated with oxidative stress and MetS in this population. Methods: 24 subjects with paraplegia (PARA), 26 subjects with tetraplegia ...

  11. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Justin D Crane

    Full Text Available Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  12. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as ‘‘overflow metabolism’’ or ‘‘the...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, whereas NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic...

  13. Permethrin-induced oxidative stress and toxicity and metabolism. A review.

    Science.gov (United States)

    Wang, Xu; Martínez, María-Aránzazu; Dai, Menghong; Chen, Dongmei; Ares, Irma; Romero, Alejandro; Castellano, Victor; Martínez, Marta; Rodríguez, José Luis; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-08-01

    Permethrin (PER), the most frequently used synthetic Type I pyrethroid insecticide, is widely used in the world because of its high activity as an insecticide and its low mammalian toxicity. It was originally believed that PER exhibited low toxicity on untargeted animals. However, as its use became more extensive worldwide, increasing evidence suggested that PER might have a variety of toxic effects on animals and humans alike, such as neurotoxicity, immunotoxicity, cardiotoxicity, hepatotoxicity, reproductive, genotoxic, and haematotoxic effects, digestive system toxicity, and cytotoxicity. A growing number of studies indicate that oxidative stress played critical roles in the various toxicities associated with PER. To date, almost no review has addressed the toxicity of PER correlated with oxidative stress. The focus of this article is primarily to summarise advances in the research associated with oxidative stress as a potential mechanism for PER-induced toxicity as well as its metabolism. This review summarises the research conducted over the past decade into the reactive oxygen species (ROS) generation and oxidative stress as a consequence of PER treatments, and ultimately their correlation with the toxicity and the metabolism of PER. The metabolism of PER involves various CYP450 enzymes, alcohol or aldehyde dehydrogenases for oxidation and the carboxylesterases for hydrolysis, through which oxidative stress might occur, and such metabolic factors are also reviewed. The protection of a variety of antioxidants against PER-induced toxicity is also discussed, in order to further understand the role of oxidative stress in PER-induced toxicity. This review will throw new light on the critical roles of oxidative stress in PER-induced toxicity, as well as on the blind spots that still exist in the understanding of PER metabolism, the cellular effects in terms of apoptosis and cell signaling pathways, and finally strategies to help to protect against its oxidative

  14. Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    2012-01-01

    Electrochemistry in combination with mass spectrometry has shown promise as a versatile technique not only in the analytical assessment of oxidative drug metabolism, but also for small-scale synthesis of drug metabolites. However, electrochemistry is generally limited to reactions initiated by direc

  15. Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet.

    Science.gov (United States)

    Hjøllund, E; Pedersen, O; Richelsen, B; Beck-Nielsen, H; Sørensen, N S

    1983-11-01

    Nine non-insulin-dependent diabetics were studied before and after 3 weeks on an isoenergetic high-fiber/high-starch/low-fat diet (alternative diet), and nine non-insulin-dependent diabetics were studied on their usual diet. In the group that ate the alternative diet, the intake of fiber and starch increased 120% and 53%, whereas fat intake decreased 31%. Diabetes control improved as demonstrated by decreased fasting plasma glucose (P less than 0.05) and 24-hour urinary glucose excretion (P less than 0.05). The in vivo insulin action increased (KIVITT increased, P less than 0.05) with no change in fasting serum insulin levels. In fat cells obtained from patients in the alternative-diet group, insulin receptor binding increased (P less than 0.05) after the change of diet. Insulin binding to purified monocytes (more than 95% monocytes) also increased (P less than 0.05), whereas no change was found in insulin binding to erythrocytes. When lipogenesis was studied at a tracer glucose concentration at which glucose transport seems to be rate limiting, insulin sensitivity increased (P less than 0.02). This is the predicted consequence of increased receptor binding. Moreover, when CO2 production and lipogenesis were studied at a higher glucose concentration, where steps beyond transport seem to be rate limiting for glucose metabolism, increased insulin sensitivity was also observed. In contrast, no change was found in maximal insulin responsiveness. Fat and blood cells from the patients who continued on their usual diet showed no changes of the mentioned quantities.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy.

    Science.gov (United States)

    Obre, Emilie; Rossignol, Rodrigue

    2015-02-01

    The field of energy metabolism dramatically progressed in the last decade, owing to a large number of cancer studies, as well as fundamental investigations on related transcriptional networks and cellular interactions with the microenvironment. The concept of metabolic flexibility was clarified in studies showing the ability of cancer cells to remodel the biochemical pathways of energy transduction and linked anabolism in response to glucose, glutamine or oxygen deprivation. A clearer understanding of the large-scale bioenergetic impact of C-MYC, MYCN, KRAS and P53 was obtained, along with its modification during the course of tumor development. The metabolic dialog between different types of cancer cells, but also with the stroma, also complexified the understanding of bioenergetics and raised the concepts of metabolic symbiosis and reverse Warburg effect. Signaling studies revealed the role of respiratory chain-derived reactive oxygen species for metabolic remodeling and metastasis development. The discovery of oxidative tumors in human and mice models related to chemoresistance also changed the prevalent view of dysfunctional mitochondria in cancer cells. Likewise, the influence of energy metabolism-derived oncometabolites emerged as a new means of tumor genetic regulation. The knowledge obtained on the multi-site regulation of energy metabolism in tumors was translated to cancer preclinical studies, supported by genetic proof of concept studies targeting LDHA, HK2, PGAM1, or ACLY. Here, we review those different facets of metabolic remodeling in cancer, from its diversity in physiology and pathology, to the search of the genetic determinants, the microenvironmental regulators and pharmacological modulators.

  17. Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism.

    Science.gov (United States)

    Rowlands, Benjamin D; Lau, Chew Ling; Ryall, James G; Thomas, Donald S; Klugmann, Matthias; Beart, Philip M; Rae, Caroline D

    2015-07-01

    Silent information regulators (SIRTs) have been shown to deacetylate a range of metabolic enzymes, including those in glycolysis and the Krebs cycle, and thus alter their activity. SIRTs require NAD(+) for their activity, linking cellular energy status to enzyme activity. To examine the impact of SIRT1 modulation on oxidative metabolism, this study tests the effect of ligands that are either SIRT-activating compounds (resveratrol and SRT1720) or SIRT inhibitors (EX527) on the metabolism of (13)C-enriched substrates by guinea pig brain cortical tissue slices with (13)C and (1)H nuclear magnetic resonance spectroscopy. Resveratrol increased lactate labeling but decreased incorporation of (13)C into Krebs cycle intermediates, consistent with effects on AMPK and inhibition of the F0/F1-ATPase. By testing with resveratrol that was directly applied to astrocytes with a Seahorse analyzer, increased glycolytic shift and increased mitochondrial proton leak resulting from interactions of resveratrol with the mitochondrial electron transport chain were revealed. SRT1720, by contrast, stimulated incorporation of (13)C into Krebs cycle intermediates and reduced incorporation into lactate, although the inhibitor EX527 paradoxically also increased Krebs cycle (13)C incorporation. In summary, the various SIRT1 modulators show distinct acute effects on oxidative metabolism. The strong effects of resveratrol on the mitochondrial respiratory chain and on glycolysis suggest that caution should be used in attempts to increase bioavailability of this compound in the CNS.

  18. Cerebral blood flow and oxidative metabolism during human endotoxemia

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Qvist, Jesper;

    2002-01-01

    The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), has been suggested to mediate septic encephalopathy through an effect on cerebral blood flow (CBF) and metabolism. The effect of an intravenous bolus of endotoxin on global CBF, metabolism, and net flux of cytokines...... and catecholamines was investigated in eight healthy young volunteers. Cerebral blood flow was measured by the Kety-Schmidt technique at baseline (during normocapnia and voluntary hyperventilation for calculation of subject-specific cerebrovascular CO reactivity), and 90 minutes after an intravenous bolus...

  19. Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells.

    Science.gov (United States)

    Salem, Ahmed F; Whitaker-Menezes, Diana; Lin, Zhao; Martinez-Outschoorn, Ubaldo E; Tanowitz, Herbert B; Al-Zoubi, Mazhar Salim; Howell, Anthony; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2012-07-01

    Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.

  20. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Bryant, Donald A.; Frigaard, Niels-Ulrik

    2011-01-01

    Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains......, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR) is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation...... and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes....

  1. Estrous cycle and sex as regulating factors of baseline brain oxidative metabolism and behavior

    Directory of Open Access Journals (Sweden)

    Héctor González-Pardo

    2010-01-01

    Full Text Available The existence of sex differences in brain function is still today a controversial issue, and contradictory results are reported in the scientific literature. Part of this controversy would be solved by taken into consideration the rhythmic changes in the levels of circulating gonadal steroids during the menstrual or estrous cycle in females as compared to males. The aim of this study was to evaluate the changes in oxidative metabolism of limbic brain regions in male and female rats at two different stages of estral cycle (estrous and diestrous. Cytochrome oxidase activity was used as a reliable marker of neuronal oxidative metabolism. We found the highest levels of oxidative metabolism during the diestrous phase in several brain regions, when estrogen levels are high. Males displayed similar cytochrome oxidase activity as compared to females in estrous phase. Our results support behavioral and neurobiological studies reporting sex differences in rodents and humans.

  2. A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.

    Science.gov (United States)

    Shao, Di; Fry, Jessica L; Han, Jingyan; Hou, Xiuyun; Pimentel, David R; Matsui, Reiko; Cohen, Richard A; Bachschmid, Markus M

    2014-03-14

    Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome.

  3. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Rehrer, N J; Pilegaard, H

    2007-01-01

    AIM: Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. METHODS: Data were...... exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes....

  4. Interrelation between compensation of carbohydrate metabolism and severity of manifestations of oxidative stress in type II diabetes mellitus.

    Science.gov (United States)

    Nedosugova, L V; Lankin, V Z; Balabolkin, M I; Konovalova, G G; Lisina, M O; Antonova, K V; Tikhaze, A K; Belenkov, Yu N

    2003-08-01

    Glycosylation end-products formed during diabetes mellitus promoted atherogenic oxidative modification of low-density lipoproteins. We evaluated the effects of compensation of carbohydrate metabolism and therapy with antioxidant probucol on parameters of free radical oxidation in patients with type II diabetes mellitus. Compensation of carbohydrate metabolism reduced manifestations of oxidative stress, which was manifested in accelerated enzymatic utilization of reactive oxygen species and lipid peroxides and decreased content of free radical oxidation products in low-density lipoproteins. In patients with type II diabetes mellitus combination therapy with antioxidant probucol decreased the severity of oxidative stress and stabilized carbohydrate metabolism without increasing the dose of hypoglycemic preparations.

  5. Some aspects of the mitochondrial oxidative metabolism in human atrial tissue during cardiopulmonary by-pass.

    Science.gov (United States)

    Corbucci, G G; Gasparetto, A; Antonelli, M; Bufi, M; De Blasi, R A

    1987-01-01

    Following previous research on the hypoxic cell in human circulatory shock, the present work has investigated some mitochondrial oxidative aspects in atrial biopsies taken during cardiopulmonary by-pass. Cardioplegic solution and hypothermia were administered to 10 patients and the atrial samples were collected before and after aortic clamping. The results show a cellular protective effect of cardioplegia and hypothermia on the electron-transport chain, even if the enzymes with high KmO2 appear to be more sensitive to ischaemia. The results suggest a metabolic injury rather than an oxidative damage due to the induced ischaemia, alterations to fatty-acid beta-oxidation being especially notable. Because of the unchanged oxidative capacities, the oxyradical generation and the peroxidative damage appear to be irrelevant in the ischaemic period and during the course of reperfusion. Further studies are needed to elucidate the metabolic damage and the therapeutic implications due to the induced ischaemia in the myocardial cell during the aortic clamping.

  6. Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter

    DEFF Research Database (Denmark)

    Forchhammer, Lykke Ali; Loft, Steffen; Roursgaard, Martin

    2012-01-01

    -1 expression on HUVECs in mono-cultures. However, only the exposure to wood smoke particles was associated with increased expression of TNF and IL8 mRNA in THP-1 cells. We found no effect on the intracellular production of reactive oxygen species by the fluorescent probe DCFH-DA, whereas especially...... the wood smoke particles caused increased level of DNA strand breaks and oxidised guanines at concentrations with low cytotoxicity. In conclusion, our results indicate that the adherence of monocytes on endothelial cells in wood smoke particle exposed cultures depend on activation of both cell types....

  7. Inhibition of oxidative metabolism by propionic acid and its reversal by carnitine in isolated rat hepatocytes.

    Science.gov (United States)

    Brass, E P; Fennessey, P V; Miller, L V

    1986-01-01

    The present study was designed to study the interaction of propionic acid and carnitine on oxidative metabolism by isolated rat hepatocytes. Propionic acid (10 mM) inhibited hepatocyte oxidation of [1-14C]-pyruvate (10 mM) by 60%. This inhibition was not the result of substrate competition, as butyric acid had minimal effects on pyruvate oxidation. Carnitine had a small inhibitory effect on pyruvate oxidation in the hepatocyte system (210 +/- 19 and 184 +/- 18 nmol of pyruvate/60 min per mg of protein in the absence and presence of 10 mM-carnitine respectively; means +/- S.E.M., n = 10). However, in the presence of propionic acid (10 mM), carnitine (10 mM) increased the rate of pyruvate oxidation by 19%. Under conditions where carnitine partially reversed the inhibitory effect of propionic acid on pyruvate oxidation, formation of propionylcarnitine was documented by using fast-atom-bombardment mass spectroscopy. Propionic acid also inhibited oxidation of [1-14C]palmitic acid (0.8 mM) by hepatocytes isolated from fed rats. The degree of inhibition caused by propionic acid was decreased in the presence of 10 mM-carnitine (41% inhibition in the absence of carnitine, 22% inhibition in the presence of carnitine). Propionic acid did not inhibit [1-14C]palmitic acid oxidation by hepatocytes isolated from 48 h-starved rats. These results demonstrate that propionic acid interferes with oxidative metabolism in intact hepatocytes. Carnitine partially reverses the inhibition of pyruvate and palmitic acid oxidation by propionic acid, and this reversal is associated with increased propionylcarnitine formation. The present study provides a metabolic basis for the efficacy of carnitine in patients with abnormal organic acid accumulation, and the observation that such patients appear to have increased carnitine requirements ('carnitine insufficiency'). PMID:3790065

  8. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  9. Growth hormone enhances effects of endurance training on oxidative muscle metabolism in elderly women

    DEFF Research Database (Denmark)

    Lange, K H; Isaksson, F; Juul, A;

    2000-01-01

    The present study investigated whether recombinant human (rh) growth hormone (GH) combined with endurance training would have a larger effect on oxidative capacity, metabolism, and body fat than endurance training alone. Sixteen healthy, elderly women, aged 75 yr, performed closely monitored...... in the two subjects receiving rhGH. In conclusion, rhGH adds to the effects of endurance training on muscle oxidative enzymes and causes a reduction in body fat in elderly women....

  10. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  11. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer.

    Science.gov (United States)

    Matassa, D S; Amoroso, M R; Lu, H; Avolio, R; Arzeni, D; Procaccini, C; Faicchia, D; Maddalena, F; Simeon, V; Agliarulo, I; Zanini, E; Mazzoccoli, C; Recchi, C; Stronach, E; Marone, G; Gabra, H; Matarese, G; Landriscina, M; Esposito, F

    2016-09-01

    Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC.

  12. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.

    Science.gov (United States)

    Wicks, Shawna E; Vandanmagsar, Bolormaa; Haynie, Kimberly R; Fuller, Scott E; Warfel, Jaycob D; Stephens, Jacqueline M; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2015-06-23

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.

  13. Myocardial metabolism during hypoxia: Maintained lactate oxidation during increased glycolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, C.D.; Stanley, W.C.; Hickey, R.F.; Neese, R.A.; Cason, B.A.; Demas, K.A.; Wisneski, J.A.; Gertz, E.W. (Univ. of California, San Francisco (USA))

    1990-09-01

    In the intact animal, myocardial lactate utilization and oxidation during hypoxia are not well understood. Nine dogs were chronically instrumented with flow probes on the left anterior descending coronary artery and with a coronary sinus sampling catheter. ({sup 14}C)lactate and ({sup 13}C)glucose tracers, or ({sup 13}C)lactate and ({sup 14}C)glucose were administered to quantitate lactate and glucose oxidation, lactate conversion to glucose, and simultaneous lactate extraction and release. The animals were anesthetized and exposed to 90 minutes of severe hypoxia (PO2 = 25 +/- 4 torr). Hypoxia resulted in significant increases in heart rate, cardiac output and myocardial blood flow, but no significant change in myocardial oxygen consumption. The arterial/coronary sinus differences for glucose and lactate did not change from normoxia to hypoxia; however, the rate of glucose uptake increased significantly due to the increase in myocardial blood flow. Tracer-measured lactate extraction did not decrease with hypoxia, despite a 250% increase in lactate release. During hypoxia, 90% +/- 4% of the extracted {sup 14}C-lactate was accounted for by the appearance of {sup 14}CO{sub 2} in the coronary sinus, compared with 88% +/- 4% during normoxia. Thus, in addition to the expected increase in glucose uptake and lactate production, we observed an increase in lactate oxidation during hypoxia.

  14. A RAPID THIN-LAYER CHROMATOGRAPHIC PROCEDURE TO IDENTIFY POOR AND EXTENSIVE OXIDATIVE DRUG METABOLIZERS IN MAN USING DEXTROMETHORPHAN

    NARCIS (Netherlands)

    DEZEEUW, RA; EIKEMA, D; FRANKE, JP; JONKMAN, JHG

    1992-01-01

    A rapid TLC method is presented to distinguish poor oxidative drug metabolizers from extensive oxidative drug metabolizers. Dextromethorphan (1) is used as test probe because it is safe, well characterized, generally available and easy to measure. The method is based on the extraction of 1 and its m

  15. Monocyte functions in diabetes mellitus

    DEFF Research Database (Denmark)

    Geisler, C; Almdal, T; Bennedsen, J

    1982-01-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from...... for the elucidation of concomitant infections in diabetic patients are discussed....

  16. Differential oxidative metabolism and 5-ketoclomazone accumulation are involved in Echinochloa phyllopogon resistance to clomazone.

    Science.gov (United States)

    Yasuor, Hagai; Zou, Wei; Tolstikov, Vladimir V; Tjeerdema, Ronald S; Fischer, Albert J

    2010-05-01

    Echinochloa phyllopogon (late watergrass) is a major weed of California rice (Oryza sativa) that has evolved cytochrome P450-mediated metabolic resistance to different herbicides with multiple modes of action. E. phyllopogon populations from Sacramento Valley rice fields have also recently shown resistance to the herbicide clomazone. Clomazone is a proherbicide that must be metabolized to 5-ketoclomazone, which is the active compound that inhibits deoxyxylulose 5-phosphate synthase, a key enzyme of the nonmevalonate isoprenoid pathway. This study evaluated the differential clomazone metabolism within strains of the same species to investigate whether enhanced oxidative metabolism also confers clomazone resistance in E. phyllopogon. Using reverse-phase liquid chromatography-tandem mass spectrometry techniques in the multireaction monitoring mode, we elucidated that oxidative biotransformations are involved as a mechanism of clomazone resistance in this species. E. phyllopogon plants hydroxylated mostly the isoxazolidinone ring of clomazone, and clomazone hydroxylation activity was greater in resistant than in susceptible plants. The major clomazone metabolites resulted from monohydroxylation and dihydroxylation of the isoxazolidinone ring. Resistant plants accumulated 6- to 12-fold more of the monohydroxylated metabolite than susceptible plants, while susceptible plants accumulated 2.5-fold more of the phytotoxic metabolite of clomazone, 5-ketoclomazone. Our results demonstrate that oxidative metabolism endows multiple-herbicide-resistant E. phyllopogon with cross-resistance to clomazone through enhanced herbicide degradation and lower accumulation of the toxic metabolite in resistant versus susceptible plants.

  17. Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling.

    Science.gov (United States)

    Brustovetsky, Nickolay

    2016-07-01

    Elongation of a polyglutamine (polyQ) stretch in huntingtin protein (Htt) is linked to Huntington's disease (HD) pathogenesis. The mutation in Htt correlates with neuronal dysfunction in the striatum and cerebral cortex and eventually leads to neuronal cell death. The exact mechanisms of the injurious effect of mutant Htt (mHtt) on neurons are not completely understood but might include aberrant gene transcription, defective autophagy, abnormal mitochondrial biogenesis, anomalous mitochondrial dynamics, and trafficking. In addition, deficiency in oxidative metabolism and defects in mitochondrial Ca(2+) handling are considered essential contributing factors to neuronal dysfunction in HD and, consequently, in HD pathogenesis. Since the discovery of the mutation in Htt, the questions whether mHtt affects oxidative metabolism and mitochondrial Ca(2+) handling and, if it does, what mechanisms could be involved were in focus of numerous investigations. However, despite significant research efforts, the detrimental effect of mHtt and the mechanisms by which mHtt might impair oxidative metabolism and mitochondrial Ca(2+) handling remain elusive. In this paper, I will briefly review studies aimed at clarifying the consequences of mHtt interaction with mitochondria and discuss experimental results supporting or arguing against the mHtt effects on oxidative metabolism and mitochondrial Ca(2+) handling.

  18. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders.

    Science.gov (United States)

    Bhatti, J S; Kumar, S; Vijayan, M; Bhatti, G K; Reddy, P H

    2017-01-01

    Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.

  19. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase.

    Science.gov (United States)

    Jancura, Daniel; Stanicova, Jana; Palmer, Graham; Fabian, Marian

    2014-06-10

    In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.

  20. The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease: The Great Exploration

    Directory of Open Access Journals (Sweden)

    Rebecca Hutcheson

    2012-01-01

    Full Text Available The metabolic syndrome affects 30% of the US population with increasing prevalence. In this paper, we explore the relationship between the metabolic syndrome and the incidence and severity of cardiovascular disease in general and coronary artery disease (CAD in particular. Furthermore, we look at the impact of metabolic syndrome on outcomes of coronary revascularization therapies including CABG, PTCA, and coronary collateral development. We also examine the association between the metabolic syndrome and its individual component pathologies and oxidative stress. Related, we explore the interaction between the main external sources of oxidative stress, cigarette smoke and air pollution, and metabolic syndrome and the effect of this interaction on CAD. We discuss the apparent lack of positive effect of antioxidants on cardiovascular outcomes in large clinical trials with emphasis on some of the limitations of these trials. Finally, we present evidence for successful use of antioxidant properties of pharmacological agents, including metformin, statins, angiotensin II type I receptor blockers (ARBs, and angiotensin II converting enzyme (ACE inhibitors, for prevention and treatment of the cardiovascular complications of the metabolic syndrome.

  1. Metabolic alterations induce oxidative stress in diabetic and failing hearts: different pathways, same outcome.

    Science.gov (United States)

    Roul, David; Recchia, Fabio A

    2015-06-10

    Several authors have proposed a link between altered cardiac energy substrate metabolism and reactive oxygen species (ROS) generation. A cogent evidence of this association has been found in diabetic cardiomyopathy (dCM); however, experimental findings in animal models of heart failure (HF) and in human myocardium also seem to support the coexistence of the two alterations in HF. Two important questions remain open: whether pathological changes in metabolism play an important role in enhancing oxidative stress and whether there is a common pathway linking altered substrate utilization and activation of ROS-generating enzymes, independently of the underlying cardiac pathology. In this regard, the comparison between dCM and HF is intriguing, in that these pathological conditions display very different cardiac metabolic phenotypes. Our literature review on this topic indicates that a vast body of knowledge is now available documenting the relationship between the metabolism of energy substrates and ROS generation in dCM. In some cases, biochemical mechanisms have been identified. On the other hand, only a few and relatively recent studies have explored this phenomenon in HF and their conclusions are not consistent. Better methods of investigation, especially in vivo, will be necessary to test whether the metabolic fate of certain substrates is causally linked to ROS production. If successful, these studies will place a new emphasis on the potential clinical relevance of metabolic modulators, which might indirectly mitigate cardiac oxidative stress in dCM, HF, and, possibly, in other pathological conditions.

  2. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress.

    Science.gov (United States)

    Azad, M A K; Kikusato, M; Maekawa, T; Shirakawa, H; Toyomizu, M

    2010-03-01

    Emerging evidence has shown that acute heat exposure affects metabolic characteristics and causes oxidative damage to skeletal muscle in birds. Little is known, however, about such phenomena under chronic heat stress conditions. To address this, we designed the present study to determine the influence of cyclic (32 to 24 to 32 degrees C: 32 degrees C for 8 h/d, 32-24-32HS ), and constant (32 and 34 degrees C, 32HS and 34HS, respectively) heat exposure on the metabolic and peroxide status in skeletal muscle of 4-wk-old male broiler chickens. Heat stress, particularly in the 32HS and 34HS groups, depressed feed intake and growth, while cyclic high temperature gave rise to a less severe stress response in performance terms. Malondialdehyde (MDA) levels in skeletal muscle were enhanced (Pstress model. The 3HADH (3-hydroxyacyl CoA dehydrogenase related to fatty acid oxidation) and CS (citrate synthase) enzyme activities were lowered (Pchickens. On exposure to chronic heat stress, GPx activity remained relatively constant, though a temperature-dependent elevation in Cu/Zn-SOD activity was observed, implying that anti-oxidation ability was disturbed by the chronic stress condition. From these results it can be concluded that chronic heat stress did not induce oxidative damage to a major extent. This may probably be due to a decrease in metabolic oxidation capacity or due to a self-propagating scavenging system, though the system was not fully activated.

  3. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease.

    Science.gov (United States)

    Bottari, Nathieli B; Crivellenti, Leandro Z; Borin-Crivellenti, Sofia; Oliveira, Jéssica R; Coelho, Stefanie B; Contin, Catarina M; Tatsch, Etiane; Moresco, Rafael N; Santana, Aureo E; Tonin, Alexandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2016-03-01

    The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology.

  4. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.

    Science.gov (United States)

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus

    2016-04-01

    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.

  5. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases.

    Science.gov (United States)

    Shekhawat, Prem; Bennett, Michael J; Sadovsky, Yoel; Nelson, D Michael; Rakheja, Dinesh; Strauss, Arnold W

    2003-06-01

    The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.

  6. Filaria-induced monocyte dysfunction and its reversal following treatment.

    Science.gov (United States)

    Semnani, Roshanak Tolouei; Keiser, Paul B; Coulibaly, Yaya I; Keita, Falaye; Diallo, Abdallah A; Traore, Diakaridia; Diallo, Dapa A; Doumbo, Ogobara K; Traore, Sekou F; Kubofcik, Joseph; Klion, Amy D; Nutman, Thomas B

    2006-08-01

    Monocyte dysfunction in filarial infection has been proposed as one mechanism underlying the diminished antigen-specific T-cell response seen in patent lymphatic filariasis. Cytokine/chemokine production and gene expression in monocytes from filaria-infected patients and uninfected healthy donors were assessed unstimulated and in response to stimulation with Staphylococcus aureus Cowan I bacteria plus gamma interferon both before and 8 months following treatment. Monocytes from filaria-infected individuals were studded with intracellular microfilarial antigens. Furthermore, monocytes from these individuals were less capable of producing interleukin-8 (IL-8), Exodus II, MIP-1alpha, MIP-1beta, and IL-1alpha and preferentially expressed genes involved in apoptosis and adhesion compared with monocytes from uninfected donors. Eight months following treatment with a single dose of ivermectin-albendazole, some of these defects were reversed, with monocyte production of IL-8, IL-1alpha, MIP-1alpha, and IL-10 being comparable to that seen in the uninfected controls. In addition, a marked increase in mRNA expression of genes associated with protein metabolism, particularly heat shock proteins, was seen compared with pretreatment expression. These data suggest that the function and gene expression of monocytes in filaria-infected patients are altered but that this dysfunction is partially reversible following antifilarial treatment.

  7. Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: implications for insulin resistance?

    Directory of Open Access Journals (Sweden)

    Lesley M L Hall

    Full Text Available BACKGROUND: South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures. METHODOLOGY/PRINCIPAL FINDINGS: Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010; lower VO2max (40.6±6.6 vs 52.4±5.7 ml x kg(-1 x min(-1, p = 0.001; and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg x kg(-1 x min(-1 at 55% VO2max, p = 0.013, and absolute (3.46±2.20 vs 6.00±1.93 mg x kg(-1 x min(-1 at 25 ml O(2 x kg(-1 x min(-1, p = 0.021, exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10-13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity. CONCLUSIONS/SIGNIFICANCE: These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.

  8. Oxidative Stress and Metabolic Syndrome: Cause or Consequence of Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Diana Luque-Contreras

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellular β-amyloid (Aβ deposited as neuritic plaques (NP and neurofibrillary tangles (NFT made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS. Evidence indicates the critical role of Aβ metabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-β deposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβ and examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.

  9. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period.

    Science.gov (United States)

    Turk, R; Podpečan, O; Mrkun, J; Kosec, M; Flegar-Meštrić, Z; Perkov, S; Starič, J; Robić, M; Belić, M; Zrimšek, P

    2013-10-01

    The objective of this study was to evaluate metabolic disorders and oxidative stress in dairy heifers during the transition period. Possible relationships between lipid mobilisation indicators and oxidative stress markers were investigated as well. Nineteen dairy heifers were included in the study. Blood samples were collected at the time of estrus synchronisation in heifers, at insemination, three weeks after insemination, one week before calving, at calving and 1, 2, 4 and 8 weeks postpartum. Common metabolic parameters, beta-hydroxybutyrate (BHB), free fatty acids (FFA), paraoxonase-1 (PON1) activity and total antioxidative status (TAS) were analysed. Around insemination, no significant difference was observed in the majority of tested parameters (P>0.05). However, the transition period markedly affected the concentration of triglycerides, total cholesterol, HDL-C, BHB, FFA, TAS and PON1activity. Positive correlations between PON1 activity and total cholesterol, HDL-C and triglycerides were noted but inverse correlations with FFA, BHB and bilirubin were found indicating that PON1 activity changed with lipid metabolism and was influenced by negative energy balance. These findings suggest that lipid mobilisation and oxidative stress are part of a complex metabolic adaptation to low energy balance which reaches equilibrium later in advanced lactation.

  10. Metabolism evaluation of the anticancer candidate AC04 by biomimetic oxidative model and rat liver microsomes.

    Science.gov (United States)

    Pigatto, Maiara Cássia; Alves de Lima, Maria do Carmo; Galdino, Suely Lins; Pitta, Ivan da Rocha; Vessecchi, Ricardo; Assis, Marilda das Dores; dos Santos, Joicy Santamalvina; Dalla Costa, Teresa; Lopes, Norberto Peporine

    2011-09-01

    Jacobsen reagents, in the presence of monooxygen donors, appear as an alternative to produce metabolites from biological active compounds. This reaction may mimic the oxidation and oxygenation reactions of cytochrome P450 (CYP450) enzymes upon various drugs and biologically active compounds. Acridines represent a well-known group of polyaromatic compounds capable of acting as DNA intercalating agents. Viewing to search for new anticancer agents, one promising new acridine, the 5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-thiazolidine-2,4-dione (AC04) (2), has been studied by our group and the in vitro metabolism was investigated in this work, aiming to advance in the pre-clinical pharmacokinetic investigation. A systematic investigation of the gas-phase reaction, supported by computational chemistry, of the AC04 (2) was studied to help the structure elucidation of possible in vivo metabolites. To confirm the methodology, the oxidized product was obtained in large scale for NMR analysis and the data confirmed the structure. In addition, AC04 (2) was submitted to an in vitro metabolism assay employing rat liver microsomes and also, a pilot study was conducted in rats after AC04 intravenous (i.v.) dosing of 1.5 mg/kg. A single oxidized product was obtained from microsomal metabolism and detected in rat plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis corresponding to the same product formed by Jacobsen-catalyzed reaction. These results indicate that Jacobsen oxidation reactions, combined with in vitro metabolism assays employing isolated microsomes, might replace some in vivo metabolism studies, thus reducing the use of animals in new chemical entities pre-clinical investigation.

  11. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    Science.gov (United States)

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  12. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance.

    Science.gov (United States)

    Chance, B; Leigh, J S; Kent, J; McCully, K; Nioka, S; Clark, B J; Maris, J M; Graham, T

    1986-12-01

    Three types of metabolic control of oxidative metabolism are observed in the various tissues that have been studied by phosphorous magnetic resonance spectroscopy. The principal control of oxidative metabolism in skeletal muscle is by ADP (or Pi/phosphocreatine). This conclusion is based upon studies of arm muscles of humans during steady-state exercise. A work-cost (Vm vs. Pi/phosphocreatine) relationship follows a Michaelis-Menten rectangular hyperbola, where Km values from 0.5 to 0.6 and Vmax values from 50 to 200 (at nearly constant pH) are found in linearized plots of the equation V/Vmax = 1/(1 + 0.6 phosphocreatine/Pi) where V is work level (which is equal to the velocity of the enzymatic reaction) and Vmax is the maximal work capacity that is a measure of the enzyme activity (E) of oxidative metabolism. Adaptation to exercise enhances the slope of the work-cost relationship and causes large changes in Vmax or E. A second metabolic control may enhance the slope of the work-cost relationship but not Vmax. For example, the initiation of exercise can lead to an improved characteristic that can be explained by 2-fold increased substrate delivery, for example, increased oxygen delivery by microcirculatory control. Cardiac tissue of the adult dog affords an example of optimal endurance performance adaptation and exhibits the steepest work-cost relationship observed and is attributed to a coordinated control of substrate delivery that may involve Ca2+ and inorganic phosphate control of NADH; control of O2 delivery may also be involved. The calculated work-cost relationship is similar to that observed in the beagle heart. The theoretical curve illustrates that the liability of multiple controls is a sharp break point in metabolic control at the end of the multiple control range--a possible cause of instability of cardiac performance at high V/Vmax.

  13. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets.

    Science.gov (United States)

    Apontes, Pasha; Liu, Zhongbo; Su, Kai; Benard, Outhiriaradjou; Youn, Dou Y; Li, Xisong; Li, Wei; Mirza, Raihan H; Bastie, Claire C; Jelicks, Linda A; Pessin, Jeffrey E; Muzumdar, Radhika H; Sauve, Anthony A; Chi, Yuling

    2014-11-01

    Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human populations. Here we report that mangiferin (MGF), a natural compound (the predominant constituent of Mangifera indica extract from the plant that produces mango), protected against HFD-induced weight gain, increased aerobic mitochondrial capacity and thermogenesis, and improved glucose and insulin profiles. To obtain mechanistic insight into the basis for these effects, we determined that mice exposed to an HFD combined with MGF exhibited a substantial shift in respiratory quotient from fatty acid toward carbohydrate utilization. MGF treatment significantly increased glucose oxidation in muscle of HFD-fed mice without changing fatty acid oxidation. These results indicate that MGF redirects fuel utilization toward carbohydrates. In cultured C2C12 myotubes, MGF increased glucose and pyruvate oxidation and ATP production without affecting fatty acid oxidation, confirming in vivo and ex vivo effects. Furthermore, MGF inhibited anaerobic metabolism of pyruvate to lactate but enhanced pyruvate oxidation. A key target of MGF appears to be pyruvate dehydrogenase, determined to be activated by MGF in a variety of assays. These findings underscore the therapeutic potential of activation of carbohydrate utilization in correction of metabolic syndrome and highlight the potential of MGF to serve as a model compound that can elicit fuel-switching effects.

  14. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.

    Science.gov (United States)

    Shen, Tie; Rui, Bin; Zhou, Hong; Zhang, Ximing; Yi, Yin; Wen, Han; Zheng, Haoran; Wu, Jihui; Shi, Yunyu

    2013-01-27

    The ability of a microorganism to adapt to changes in the environment, such as in nutrient or oxygen availability, is essential for its competitive fitness and survival. The cellular objective and the strategy of the metabolic response to an extreme environment are therefore of tremendous interest and, thus, have been increasingly explored. However, the cellular objective of the complex regulatory structure of the metabolic changes has not yet been fully elucidated and more details regarding the quantitative behaviour of the metabolic flux redistribution are required to understand the systems-wide biological significance of this response. In this study, the intracellular metabolic flux ratios involved in the central carbon metabolism were determined by fractional (13)C-labeling and metabolic flux ratio analysis (MetaFoR) of the wild-type E. coli strain JM101 at an oxidative environment in a chemostat. We observed a significant increase in the flux through phosphoenolpyruvate carboxykinase (PEPCK), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (MEZ) and serine hydroxymethyltransferase (SHMT). We applied an ε-constraint based multi-objective optimization to investigate the trade-off relationships between the biomass yield and the generation of reductive power using the in silico iJR904 genome-scale model of E. coli K-12. The theoretical metabolic redistribution supports that the trans-hydrogenase pathway should not play a direct role in the defence mounted by E. coli against oxidative stress. The agreement between the measured ratio and the theoretical redistribution established the significance of NADPH synthesis as the goal of the metabolic reprogramming that occurs in response to oxidative stress. Our work presents a framework that combines metabolic flux ratio analysis and multi-objective optimization to investigate the metabolic trade-offs that occur under varied environmental conditions. Our results led to the proposal that the metabolic response of E

  15. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    Science.gov (United States)

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  16. Polycyclic Aromatic Hydrocarbon Metabolism by White Rot Fungi and Oxidation by Coriolopsis gallica UAMH 8260 Laccase

    Science.gov (United States)

    Pickard, Michael A.; Roman, Rosa; Tinoco, Raunel; Vazquez-Duhalt, Rafael

    1999-01-01

    We studied the metabolism of polycyclic aromatic hydrocarbons (PAHs) by using white rot fungi previously identified as organisms that metabolize polychlorinated biphenyls. Bran flakes medium, which has been shown to support production of high levels of laccase and manganese peroxidase, was used as the growth medium. Ten fungi grown for 5 days in this medium in the presence of anthracene, pyrene, or phenanthrene, each at a concentration of 5 μg/ml could metabolize these PAHs. We studied the oxidation of 10 PAHs by using laccase purified from Coriolopsis gallica. The reaction mixtures contained 20 μM PAH, 15% acetonitrile in 60 mM phosphate buffer (pH 6), 1 mM 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), and 5 U of laccase. Laccase exhibited 91% of its maximum activity in the absence of acetonitrile. The following seven PAHs were oxidized by laccase: benzo[a]pyrene, 9-methylanthracene, 2-methylanthracene, anthracene, biphenylene, acenaphthene, and phenanthrene. There was no clear relationship between the ionization potential of the substrate and the first-order rate constant (k) for substrate loss in vitro in the presence of ABTS. The effects of mediating substrates were examined further by using anthracene as the substrate. Hydroxybenzotriazole (HBT) (1 mM) supported approximately one-half the anthracene oxidation rate (k = 2.4 h−1) that ABTS (1 mM) supported (k = 5.2 h−1), but 1 mM HBT plus 1 mM ABTS increased the oxidation rate ninefold compared with the oxidation rate in the presence of ABTS, to 45 h−1. Laccase purified from Pleurotus ostreatus had an activity similar to that of C. gallica laccase with HBT alone, with ABTS alone, and with 1 mM HBT plus 1 mM ABTS. Mass spectra of products obtained from oxidation of anthracene and acenaphthene revealed that the dione derivatives of these compounds were present. PMID:10473379

  17. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons

    Directory of Open Access Journals (Sweden)

    Huan Meng

    2014-12-01

    Full Text Available The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons.

  18. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-γ activation in human monocytes

    Science.gov (United States)

    Pang, Tao; Benicky, Julius; Wang, Juan; Orecna, Martina; Sanchez-Lemus, Enrique; Saavedra, Juan M.

    2011-01-01

    Objective Angiotensin II type 1 receptor (AT1) blockers (ARBs) reduce the bacterial endotoxin lipopolysaccharide (LPS)-induced innate immune response in human circulating monocytes expressing few AT1. To clarify the mechanisms of anti-inflammatory effects of ARBs with different peroxisome proliferator-activated receptor-γ (PPARγ)-activating potencies, we focused our study on telmisartan, an ARB with the highest PPARγ-stimulating activity. Methods Human circulating monocytes and monocytic THP-1 (human acute monocytic leukemia cell line) cells were exposed to 50 ng/ml LPS with or without pre-incubation with telmisartan. AT1 mRNA and protein expressions were determined by real-time PCR and membrane receptor binding assay, respectively. The expression of pro-inflammatory factors was determined by real-time PCR, western blot analysis and ELISA. PPARγ activation was measured by electrophoretic mobility shift assay and its role was determined by pharmacological inhibition and PPARγ gene silencing. Results In human monocytes, telmisartan significantly attenuated the LPS-induced expression of pro-inflammatory factors, the release of pro-inflammatory cytokines and prostaglandin E2, nuclear factor-κB activation and reactive oxygen species formation. In THP-1 cells, telmisartan significantly reduced LPS-induced tumor necrosis factor-α, inhibitor of κB-α, monocyte chemotactic protein-1 (MCP-1) and lectin-like oxidized low-density lipoprotein receptor-1 gene expression and MCP-1-directed migration. Telmisartan also stimulated the expression of the PPARγ target genes cluster of differentiation 36 and ATP-binding cassette subfamily G member 1 in monocytes. The anti-inflammatory effects of telmisartan were prevented by both PPARγ antagonism and PPARγ gene silencing. Anti-inflammatory effects of ARBs correlated with their PPARγ agonist potency. Conclusion Our observations demonstrate that in human monocytes, ARBs inhibit the LPS-induced pro-inflammatory response to a

  19. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kayo [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Hartman, Philip S. [Biology Department, Texas Christian University, Fort Worth, TX 76129 (United States); Ishii, Takamasa [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Suda, Hitoshi [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Akatsuka, Akira [Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Shoyama, Tetsuji [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Miyazawa, Masaki [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Ishii, Naoaki, E-mail: nishii@is.icc.u-tokai.ac.jp [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan)

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  20. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena; Bouchard, Bertrand; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine) and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.

  1. Purine metabolism and oxidative stress in children with autistic spectrum disorders

    Directory of Open Access Journals (Sweden)

    Faisal Gh. Al-Rubaye

    2013-08-01

    Results: Serum ADA and SOD were significantly lower in boys with autism accompanied by significant higher serum MDA levels when compared with controls. Conclusion: Patients with ASD have impaired purine metabolism and increased oxidative stress which was supported by low levels of ADA and SOD, and high level of MDA. Further biochemical or genetic studies are required to explore the nature of autism. [J Exp Integr Med 2013; 3(4.000: 293-297

  2. Obesity and oxidative stress: potential roles of melatonin as antioxidant and metabolic regulator.

    Science.gov (United States)

    Bonnefont-Rousselot, Dominique

    2014-01-01

    Obesity is associated with an oxidative stress status, defined as an excessive production of reactive oxygen species (ROS) compared to the level of antioxidants acting in the natural defence systems. Several sources of ROS can be identified in obesity (e.g., mitochondrial respiratory chain, or NADPH oxidase) and could contribute to the pathogenesis of obesity. Indeed, these conditions favour the development of insulin resistance and metabolic syndrome through deregulation of adipokines and pro-inflammatory cytokines, so that it could be of interest to associate antioxidant therapeutic strategies with strategies of weight loss. Among antioxidants, melatonin holds a special place, on the one hand for its antioxidant and anti-inflammatory properties, and on the other hand for its role as a metabolic regulator. As melatonin modulates several processes involved in obesity and its related metabolic alterations, it could have a therapeutic interest in the treatment of obesity.

  3. HPLC analysis of in vivo intestinal absorption and oxidative metabolism of salicylic acid in the rat.

    Science.gov (United States)

    Kuzma, Mónika; Nyúl, Eszter; Mayer, Mátyás; Fischer, Emil; Perjési, Pál

    2016-12-01

    In vivo absorption and oxidative metabolism of salicylic acid in rat small intestine was studied by luminal perfusion experiment. Perfusion through the lumen of proximal jejunum with isotonic medium containing 250 μm sodium salicylate was carried out. Absorption of salicylate was measured by a validated HPLC-DAD method which was evaluated for a number of validation characteristics (specificity, repeatability and intermediate precision, limit of detection, limit of quantification, linearity and accuracy). The method was linear over the concentration range 0.5-50 μg/mL. After liquid-liquid extraction of the perfusion samples oxidative biotransformation of salicylate was also investigated by HPLC-MS. The method was linear over the concentration range 0.25-5.0 μg/mL. Two hydroxylated metabolites of salicylic acid (2,5-dihydroxybenzoic acid and 2,3-dihydroxybenzoic acid) were detected and identified. The mean recovery of extraction was 72.4% for 2,3-DHB, 72.5% for 2,5-DHB and 50.1% for salicylic acid, respectively. The methods were successfully applied to investigate jejunal absorption and oxidative metabolism of sodium salicylate in experimental animals. The methods provide analytical background for further metabolic studies of salycilates under modified physiological conditions.

  4. The role of oxidative stress on the pathophysiology of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Fabiane Valentini Francisqueti

    Full Text Available Summary Metabolic syndrome (MetS has a high prevalence around the world. Considering the components used to classify MetS, it is clear that it is closely related to obesity. These two conditions begin with an increase in abdominal adipose tissue, which is metabolically more active, containing a greater amount of resident macrophages compared to other fat deposits. Abdominal adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving MetS components, namely insulin resistance, hypertension and hyperlipidemia. One way to block the effects of oxidative stress would be through the antioxidant defense system, which offsets the excess free radicals. It is known that individuals with metabolic syndrome and obesity have high consumption of fats and sugars originated from processed foods containing high levels of sodium as well as low intake of fruits and vegetables, thus maintaining a state of oxidative stress, that can speed up the onset of MetS. Healthy eating habits could prevent or delay MetS by adding antioxidant-rich foods into the diet.

  5. Fasting ameliorates metabolism, immunity, and oxidative stress in carbon tetrachloride-intoxicated rats.

    Science.gov (United States)

    Sadek, Km; Saleh, Ea

    2014-12-01

    Fasting has been recently discovered to improve overall health, but its beneficial effects in the presence of hepatic insufficiency have not been proven. The influence of fasting on the metabolism, immunological aspects, and oxidative stress of 40 male carbon tetrachloride (CCl4)-intoxicated Wistar rats was investigated in the present study. The rats were divided into four groups, including a placebo group, CCl4-intoxicated rats, which were injected subcutaneously with 1.0 ml/kg of CCl4 solution, a fasting group, which was fasted 12 h/day for 30 days, and a fourth group, which was injected with CCl4 and fasted. The metabolism, immunity, and oxidative stress improved in CCl4-intoxicated rats fasted for 12 h/day for 30 days, as evidenced in significant increase (p fasting improved metabolism, immunity, and oxidative stress in CCl4-intoxicated rats. Thus, fasting during Ramadan is safe for patients with hepatic disorders, as the prophet Mohammed (S) said "Keep the fast, keep your health". © The Author(s) 2014.

  6. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.

    Science.gov (United States)

    Frederick, David W; Davis, James G; Dávila, Antonio; Agarwal, Beamon; Michan, Shaday; Puchowicz, Michelle A; Nakamaru-Ogiso, Eiko; Baur, Joseph A

    2015-01-16

    The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.

  7. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  8. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature

    Science.gov (United States)

    Kéraval, Benoit; Lehours, Anne Catherine; Colombet, Jonathan; Amblard, Christian; Alvarez, Gaël; Fontaine, Sébastien

    2016-11-01

    Soil heterotrophic respiration is a major determinant of the carbon (C) cycle and its interactions with climate. Given the complexity of the respiratory machinery, it is traditionally considered that oxidation of organic C into carbon dioxide (CO2) strictly results from intracellular metabolic processes. Here we show that C mineralization can operate in soils deprived of all observable cellular forms. Moreover, the process responsible for CO2 emissions in sterilized soils induced a strong C isotope fractionation (up to 50 ‰) incompatible with respiration of cellular origin. The supply of 13C glucose in sterilized soil led to the release of 13CO2 suggesting the presence of respiratory-like metabolism (glycolysis, decarboxylation reaction, chain of electron transfer) carried out by soil-stabilized enzymes, and by soil mineral and metal catalysts. These findings indicate that CO2 emissions from soils can have two origins: (1) from the well-known respiration of soil heterotrophic microorganisms and (2) from an extracellular oxidative metabolism (EXOMET) or, at least, catabolism. These two metabolisms should be considered separately when studying effects of environmental factors on the C cycle because the likelihood is that they do not obey the same laws and they respond differently to abiotic factors.

  9. Myocardial oxidative metabolic supply-demand relationships in patients with nonischemic dilated cardiomyopathy.

    Science.gov (United States)

    Kronenberg, Marvin W; Cohen, Gerald I; Leonen, Marlo F; Mladsi, Thomas A; Di Carli, Marcelo F

    2006-07-01

    Nonischemic dilated cardiomyopathy (NIDCM) is associated with left ventricular remodeling, hypertrophy, and mitochondrial metabolic abnormalities in vitro. We evaluated the hypothesis that energy supply, as judged by the rate of myocardial oxidative metabolism, is inadequate to meet oxygen demand in patients with NIDCM compared with normal subjects. We used positron emission tomography to determine the myocardial carbon 11 acetate decay rate (kmono) as an index of energy supply, and we compared kmono with the rate-pressure product (RPP) as an index of metabolic demand in 7 patients with NIDCM and 7 normal subjects. The mean kmono value (SEM) was 0.060 +/- 0.006 min(-1) in NIDCM patients versus 0.054 +/- 0.002 in normal subjects (P = not significant). The RPP was 9949 +/- 931 beats/min.mm Hg in NIDCM patients and 6521 +/- 476 in normal subjects (P = .007). The relationship of kmono to this index of demand (kmono/RPP) was 6.2 x 10(-6) in NIDCM patients but was 8.5 x 10(-6) in normal subjects (P = .003). Thus RPP, as an index of myocardial oxygen demand, was poorly matched by the rate of oxidative metabolism in those patients with NIDCM. The kmono was closely related to RPP in normal subjects (r = 0.83, P = .02) but not in NIDCM patients. Furthermore, there was no significant relationship between kmono and wall stress as another index of oxygen demand. These results are consistent with a mitochondrial metabolic abnormality in heart failure. This metabolic mismatch detected by positron emission tomography may contribute to the pathophysiology of congestive heart failure and left ventricular remodeling.

  10. Metabolic and oxidative status of Saanen goats of different parity during the peripartum period.

    Science.gov (United States)

    Radin, Lada; Šimpraga, Miljenko; Vince, Silvijo; Kostelić, Antun; Milinković-Tur, Suzana

    2015-11-01

    The aim of this study was to research changes in metabolic and antioxidative status of Saanen goats of different parity occurring during the peripartum period. Blood samples were taken on 10-7 and 3-1 d prepartally and 1-3, 14 and 28 d postpartally from goats allocated in three groups according to their parity: primiparous (PRIM), goats that kidded the 2nd or 3rd time (MID), and goats that kidded 4 or more times (MULTI)). Metabolic profile parameters (non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), glucose, triglycerides, albumin and urea) and indicators of oxidative stress ((superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA)) were determined. Intense metabolic changes associated with late pregnancy and onset of lactation were pronounced the most in MULTI goats that also had the biggest litter per goat. Significant differences were found in metabolic parameters NEFA, BHB, glucose, triglycerides within groups during peripartum period, as well as between them (the effect of parity). MDA concentrations were indicative of increased lipid peroxidation around parturition, especially pronounced in MULTI group 1-3 d prepartally, when the highest GSH-Px/SOD ratio was also found. Postpartally, antioxidant enzymes ratio in MID and MULTI group decreased while MDA concentrations remained high, suggesting antioxidant system inefficiency. Significant time × group interaction was observed for most of the parameters. The obtained results show that the goats of higher parity display higher levels of metabolism intensity and consequently, varying levels of oxidative stress during the peripartum period. Further studies should determine applicability of NEFA and BHB in periparturient metabolic profiling in dairy goats as well as establish normal ranges and cut-off levels for these biomarkers.

  11. Downregulation of nuclear-encoded genes of oxidative metabolism in dialyzed chronic kidney disease patients.

    Directory of Open Access Journals (Sweden)

    Gianluigi Zaza

    Full Text Available BACKGROUND: Mitochondria, essential eukaryotic cells organelles defined as the "powerhouse of the cell" because of their ability to produce the vast majority of energy necessary for cellular metabolism, may have a primary role in the oxidative stress-related intracellular machinery associated to chronic kidney disease (CKD. METHODS: To better assess this research assumption, we decided to study the key factors regulating mitochondrial oxidative metabolism in CKD patients in peritoneal dialysis (PD, n = 15 using several bio-molecular methodologies. RESULTS: RT-PCR experiments demonstrate that the expression level of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α and nuclear respiratory factor-1 (NRF-1, two genes primarily involved in mitochondrial biogenesis and functions, were significantly hypo-expressed in peripheral blood mononuclear cells of PD patients compared to healthy subjects (HS, n = 15. Additionally, mRNA levels of several PGC1-α downstream target genes (TFAM, COX6C,COX7C, UQCRH and MCAD were profoundly down-regulated in PD cells. TFAM protein analysis confirmed gene-expression results. High plasmatic concentration of Malondialdehyde found in PD patients, confirmed the contribution of the oxidative stress to these biological effects. Finally, Nuclear factor erythroid-derived 2-like 2 (NRF2 or NFE2L2, a transcription factor for numerous antioxidant/detoxifying enzymes and one of its target genes, superoxide dismutase-2 mitochondrial (SOD2 were up-regulated in PD compared to HS. CONCLUSIONS: Our results revealed, for the first time, that CKD-PD patients' PBMC, through a complex intracellular biochemical machinery, are able to modulate their mitochondrial functions probably in the attempt to reduce oxidative metabolic damage and to turn on a valuable defense cellular strategy against oxidative stress.

  12. Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver.

    Science.gov (United States)

    Ferreira, Andréa G K; da Cunha, Aline A; Machado, Fernanda R; Pederzolli, Carolina D; Dalazen, Giovana R; de Assis, Adriano M; Lamers, Marcelo L; dos Santos, Marinilce F; Dutra-Filho, Carlos S; Wyse, Angela T S

    2012-01-01

    The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation. Copyright © 2011 Wiley Periodicals, Inc.

  13. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.;

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  14. Monocyte functions in diabetes mellitus.

    Science.gov (United States)

    Geisler, C; Almdal, T; Bennedsen, J; Rhodes, J M; Kølendorf, K

    1982-02-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from the healthy individuals. Phagocytosis of Candida albicans was decreased in the monocytes from the patients, whereas pinocytosis of acridine and phagocytosis of latex and sheep red blood cells were normal. The chemotactic response towards casein was enhanced. The possible consequences of these findings for the elucidation of concomitant infections in diabetic patients are discussed.

  15. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    Science.gov (United States)

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases.

  16. Functional changes of the coronary microvasculature with aging regarding glucose tolerance, energy metabolism, and oxidative stress.

    Science.gov (United States)

    Mourmoura, Evangelia; Couturier, Karine; Hininger-Favier, Isabelle; Malpuech-Brugère, Corinne; Azarnoush, Kasra; Richardson, Melanie; Demaison, Luc

    2014-01-01

    This study was aimed at characterizing the functional progression of the endothelial (ECs) and smooth muscle cells (SMCs) of the coronary microvasculature between youth and old age, as well as at determining the mechanisms of the observed changes on the basis of the glucose tolerance, mitochondrial energy metabolism, and oxidative stress. Male rats were divided into four age groups (3, 6, 11, and 17 months for the young (Y), young adult (YA), middle-aged (MA), and old (O) animals). The cardiac mechanical function, endothelial-dependent dilatation (EDD) and endothelial-independent dilatation (EID) of the coronary microvasculature were determined in a Langendorff preparation. The mitochondrial respiration and H2O2 production were evaluated and completed by ex vivo measurements of oxidative stress. EDD progressively decreased from youth to old age. The relaxation properties of the SMCs, although high in the Y rats, decreased drastically between youth and young adulthood and stabilized thereafter, paralleling the reduction of mitochondrial oxidative phosphorylation. The ECs dilatation activity, low at youth, was stimulated in YA animals and returned to their initial level at middle age. That parameter followed faithfully the progression of the amount of active cardiac endothelial nitric oxide synthase and whole body glucose intolerance. In conclusion, the progressive decrease in EDD occurring with aging is due to different functional behaviors of the ECs and SMCs, which appear to be associated with the systemic glucose intolerance and cardiac energy metabolism.

  17. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; de Castro Ghizoni, Cristiane Vizioli; Bersani Amado, Ciomar Aparecida; Peralta, Rosane Marina; Bracht, Adelar; Comar, Jurandir Fernando

    2015-06-01

    The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.

  18. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Science.gov (United States)

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  19. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  20. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. RESULTS: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  1. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved?

    Directory of Open Access Journals (Sweden)

    Thalia M. T. Avelar

    2015-08-01

    Full Text Available ABSTRACTMetabolic syndrome (MS is a combination of cardiometabolic risk factors, including obesity, hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension. Several studies report that oxidative condition caused by overproduction of reactive oxygen species (ROS plays an important role in the development of MS. Our body has natural antioxidant system to reduce oxidative stress, which consists of numerous endogenous and exogenous components and antioxidants enzymes that are able to inactivate ROS. The main antioxidant defense enzymes that contribute to reduce oxidative stress are superoxide dismutase (SOD, catalase (CAT and gluthatione peroxidase (GPx. The high-density lipoprotein cholesterol (HDL-c is also associated with oxidative stress because it presents antioxidant and anti-inflammatory properties. HDL-c antioxidant activity may be attributed at least in part, to serum paraoxonase 1 (PON1 activity. Furthermore, derivatives of reactive oxygen metabolites (d-ROMs also stand out as acting in cardiovascular disease and diabetes, by the imbalance in ROS production, and close relationship with inflammation. Recent reports have indicated the gamma-glutamyl transferase (GGT as a promising biomarker for diagnosis of MS, because it is related to oxidative stress, since it plays an important role in the metabolism of extracellular glutathione. Based on this, several studies have searched for better markers for oxidative stress involved in development of MS.

  2. Metabolic changes, hypothalamo-pituitary-adrenal axis and oxidative stress after short-term starvation in healthy pregnant women

    OpenAIRE

    Schraag, Sabrina; Mandach, Ursula von; Schweer, Horst; Beinder, Ernst

    2017-01-01

    Aim: To compare metabolic effects and oxidative stress in pregnant and non-pregnant women after 12h of fasting. Methods: Twenty-six healthy women with uncomplicated singleton pregnancies between the 24th and 28th gestational week were recruited. After an overnight fast, venous blood samples and urine samples were tested for metabolic parameters characteristic for starvation, cortisol and oxidative stress products. Healthy non-pregnant women matched by age, body mass index and length of fastin...

  3. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    Full Text Available Abstract Background During HIV infection and/or antiretroviral therapy (ART, monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusive. We therefore applied a parallel approach of genome-wide microarray analysis and focused gene expression profiling on monocytes from patients in different stages of HIV infection and/or ART to further characterise these dysfunctions. Results Processes involved in apoptosis, cell cycle, lipid metabolism, proteasome function, protein trafficking and transcriptional regulation were identified as areas of monocyte dysfunction during HIV infection. Individual genes potentially contributing to these monocyte dysfunctions included several novel factors. One of these is the adipocytokine NAMPT/visfatin, which we show to be capable of inhibiting HIV at an early step in its life cycle. Roughly half of all genes identified were restored to control levels under ART, while the others represented a persistent dysregulation. Additionally, several candidate biomarkers (in particular CCL1 and CYP2C19 for the development of the abacavir hypersensitivity reaction were suggested. Conclusions Previously described areas of monocyte dysfunction during HIV infection were confirmed, and novel themes were identified. Furthermore, individual genes associated with these dysfunctions and with ART-associated disorders were pinpointed. These genes form a useful basis for further functional studies concerning the contribution of monocytes/macrophages to HIV pathogenesis. One such gene, NAMPT/visfatin, represents a possible novel restriction factor for HIV. Background Both macrophages and T lymphocyte subsets express the CD4 receptor and either the CXCR4 and/or the CCR5 coreceptor which confer susceptibility to infection with the Human Immunodeficiency Virus

  4. Lipoic acid prevents fructose-induced changes in liver carbohydrate metabolism: role of oxidative stress.

    Science.gov (United States)

    Castro, María C; Francini, Flavio; Gagliardino, Juan J; Massa, María L

    2014-03-01

    Fructose administration rapidly induces oxidative stress that triggers compensatory hepatic metabolic changes. We evaluated the effect of an antioxidant, R/S-α-lipoic acid on fructose-induced oxidative stress and carbohydrate metabolism changes. Wistar rats were fed a standard commercial diet, the same diet plus 10% fructose in drinking water, or injected with R/S-α-lipoic acid (35mg/kg, i.p.) (control+L and fructose+L). Three weeks thereafter, blood samples were drawn to measure glucose, triglycerides, insulin, and the homeostasis model assessment-insulin resistance (HOMA-IR) and Matsuda indices. In the liver, we measured gene expression, protein content and activity of several enzymes, and metabolite concentration. Comparable body weight changes and calorie intake were recorded in all groups after the treatments. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR and lower Matsuda indices compared to control animals. Fructose fed rats showed increased fructokinase gene expression, protein content and activity, glucokinase and glucose-6-phosphatase gene expression and activity, glycogen storage, glucose-6-phosphate dehydrogenase mRNA and enzyme activity, NAD(P)H oxidase subunits (gp91(phox) and p22(phox)) gene expression and protein concentration and phosphofructokinase-2 protein content than control rats. All these changes were prevented by R/S-α-lipoic acid co-administration. Fructose induces hepatic metabolic changes that presumably begin with increased fructose phosphorylation by fructokinase, followed by adaptive changes that attempt to switch the substrate flow from mitochondrial metabolism to energy storage. These changes can be effectively prevented by R/S-α-lipoic acid co-administration. Control of oxidative stress could be a useful strategy to prevent the transition from impaired glucose tolerance to type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    Science.gov (United States)

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  6. Hydroxylated bisabolol oxides: evidence for secondary oxidative metabolism in Matricaria chamomilla.

    Science.gov (United States)

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Avula, Bharathi; Zhao, Jianping; Khan, Ikhlas A

    2013-10-25

    German chamomile (Matricaria chamomilla) is one of the most popular medicinal plants used in Western herbal medicine. Among the various phytochemicals present in the essential oil of the flowers of German chamomile, bisabolol and its oxidized metabolites are considered as marker compounds for distinguishing different chemotypes. These compounds are influential in mediating the aroma of the essential oil of M. chamomilla and contribute to the therapeutic properties (anti-inflammatory, antibacterial, insecticidal, and antiulcer) of this species. In order to find other possible bisabolol derivatives as marker compounds for authentication of German chamomile in botanical and commercial products, an in-depth investigation using a GC-assisted fractionation procedure was performed on nonpolar fractions. As a result of this approach, three new hydroxylated derivatives of bisabolol oxides A and B (1-3) have been isolated from M. chamomilla. Plausible biogenetic pathways are presented.

  7. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men

    DEFF Research Database (Denmark)

    van der Beek, Christina M; Canfora, Emanuel E; Lenaerts, Kaatje

    2016-01-01

    Gut microbial-derived short-chain fatty acids (SCFA) are believed to affect host metabolism and cardiometabolic risk factors. The present study aim was to investigate the effects of proximal and distal colonic infusions with the SCFA acetate on fat oxidation and other metabolic parameters in men...

  8. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions.

    Science.gov (United States)

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-09-10

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease-age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.

  9. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

    Directory of Open Access Journals (Sweden)

    Meera eRath

    2014-10-01

    Full Text Available Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS, which metabolizes arginine to nitric oxide (NO and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and antiinflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions and cancer.

  10. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    Science.gov (United States)

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  11. Endogenous epoxygenases are modulators of monocyte/macrophage activity.

    Directory of Open Access Journals (Sweden)

    Jonas Bystrom

    Full Text Available BACKGROUND: Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known. METHODOLOGY/PRINCIPAL FINDINGS: When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR α. Human monocytes and macrophages contain PPARα and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX-2 expression and activity, and the release of TNFα, and can be reversed by either add back of the endogenous epoxygenase products and PPARα ligand 11,12- epoxyeicosatrienoic acid (EET or the addition of the selective synthetic PPARα ligand GW7647. In alternatively activated (IL-4-treated monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFα release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFα by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl(2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNFα mRNA and further decreases M2 macrophage TNFα. CONCLUSIONS/SIGNIFICANCE: In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state.

  12. Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy.

    Science.gov (United States)

    Galino, Jorge; Ruiz, Montserrat; Fourcade, Stéphane; Schlüter, Agatha; López-Erauskin, Jone; Guilera, Cristina; Jove, Mariona; Naudi, Alba; García-Arumí, Elena; Andreu, Antoni L; Starkov, Anatoly A; Pamplona, Reinald; Ferrer, Isidre; Portero-Otin, Manuel; Pujol, Aurora

    2011-10-15

    Chronic metabolic impairment and oxidative stress are associated with the pathogenesis of axonal dysfunction in a growing number of neurodegenerative conditions. To investigate the intertwining of both noxious factors, we have chosen the mouse model of adrenoleukodystrophy (X-ALD), which exhibits axonal degeneration in spinal cords and motor disability. The disease is caused by loss of function of the ABCD1 transporter, involved in the import and degradation of very long-chain fatty acids (VLCFA) in peroxisomes. Oxidative stress due to VLCFA excess appears early in the neurodegenerative cascade. In this study, we demonstrate by redox proteomics that oxidative damage to proteins specifically affects five key enzymes of glycolysis and TCA (Tricarboxylic acid) cycle in spinal cords of Abcd1(-) mice and pyruvate kinase in human X-ALD fibroblasts. We also show that NADH and ATP levels are significantly diminished in these samples, together with decrease of pyruvate kinase activities and GSH levels, and increase of NADPH. Treating Abcd1(-) mice with the antioxidants N-acetylcysteine and α-lipoic acid (LA) prevents protein oxidation; preserves NADH, NADPH, ATP, and GSH levels; and normalizes pyruvate kinase activity, which implies that oxidative stress provoked by VLCFA results in bioenergetic dysfunction, at a presymptomatic stage. Our results provide mechanistic insight into the beneficial effects of antioxidants and enhance the rationale for translation into clinical trials for X-adrenoleukodystrophy.

  13. Ordovas-Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance

    Science.gov (United States)

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baselin...

  14. Effects of α-Tocopherol on Oxidative Status and Metabolic Profile in Overweight Women

    Science.gov (United States)

    Ble-Castillo, J. L.; Cleva-Villanueva, G.; Díaz-Zagoya, J. C.; Medina-Santillán, R.; Rubio-Arias, H. O.; Méndez, J. D.

    2007-01-01

    Despite extensive research, the effects of α-tocopherol supplementation remain controversial. Few studies have been focused on obese and overweight people. We examined the effects of α-tocopherol (AT) on the oxidative status and metabolic profile in overweight women. Sixteen overweight women between the ages of 40–60 years old, received AT, 800 IU/day during 12 weeks, followed by a 6-week washout period. Blood samples were taken at the beginning and then every 6 weeks until the end of the study. AT, retinol, malondialdehyde (MDA), total antioxidant status (TAS), selenium-dependent glutathione peroxidase (GPx) and CuZn-superoxide dismutase (SOD) were quantified to evaluate the oxidative stress. The metabolic profile was estimated by measuring glycated hemoglobin (HbA1c) in erythrocytes and glucose, phosphate, magnesium, lipid and lipoprotein concentrations in serum. Under AT administration HbA1c, serum-MDA levels and erythrocyte GPx activity were markedly reduced. TAS, AT and Mg2+ concentrations in serum and SOD activity in erythrocytes were higher after AT treatment. Body weight; glucose, lipid and retinol concentrations, or blood cells count were unchanged. Lipid peroxidation was considerably reduced in AT treated women and also improved serum antioxidant status was observed, but the imbalanced response between erythrocyte SOD and GPx activities could affect normal response to oxidative stress. PMID:18180536

  15. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects.

    Science.gov (United States)

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, Branimir K; Kodrík, Dalibor

    2015-04-01

    Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality.

  16. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  17. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.

  18. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation.

    Science.gov (United States)

    Oexle, H; Gnaiger, E; Weiss, G

    1999-11-10

    Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

  19. Suppression of PGC-1α is critical for reprogramming oxidative metabolism in renal cell carcinoma

    Science.gov (United States)

    LaGory, Edward L.; Wu, Colleen; Taniguchi, Cullen M.; Ding, Chien-Kuang Cornelia; Chi, Jen-Tsan; von Eyben, Rie; Scott, David A.; Richardson, Adam D.; Giaccia, Amato J.

    2015-01-01

    Summary Long believed to be a byproduct of malignant transformation, reprogramming of cellular metabolism is now recognized as a driving force in tumorigenesis. In clear cell renal cell carcinoma (ccRCC) frequent activation of HIF-signaling induces a metabolic switch that promotes tumorigenesis. Here we demonstrate that PGC-1α, a central regulator of energy metabolism, is suppressed in VHL-deficient ccRCC by a HIF/Dec1-dependent mechanism. In VHL wild type cells, PGC-1α suppression leads to decreased expression of the mitochondrial transcription factor Tfam and impaired mitochondrial respiration. Conversely, PGC-1α expression in VHL-deficient cells restores mitochondrial function and induces oxidative stress. ccRCC cells expressing PGC-1α exhibit impaired tumor growth and enhanced sensitivity to cytotoxic therapies. In patients, low levels of PGC-1α expression are associated with poor outcome. These studies demonstrate that suppression of PGC-1α recapitulates key metabolic phenotypes of ccRCC and highlight the potential of targeting PGC-1α expression as a therapeutic modality for the treatment of ccRCC. PMID:26119730

  20. Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Edward L. LaGory

    2015-07-01

    Full Text Available Long believed to be a byproduct of malignant transformation, reprogramming of cellular metabolism is now recognized as a driving force in tumorigenesis. In clear cell renal cell carcinoma (ccRCC, frequent activation of HIF signaling induces a metabolic switch that promotes tumorigenesis. Here, we demonstrate that PGC-1α, a central regulator of energy metabolism, is suppressed in VHL-deficient ccRCC by a HIF/Dec1-dependent mechanism. In VHL wild-type cells, PGC-1α suppression leads to decreased expression of the mitochondrial transcription factor Tfam and impaired mitochondrial respiration. Conversely, PGC-1α expression in VHL-deficient cells restores mitochondrial function and induces oxidative stress. ccRCC cells expressing PGC-1α exhibit impaired tumor growth and enhanced sensitivity to cytotoxic therapies. In patients, low levels of PGC-1α expression are associated with poor outcome. These studies demonstrate that suppression of PGC-1α recapitulates key metabolic phenotypes of ccRCC and highlight the potential of targeting PGC-1α expression as a therapeutic modality for the treatment of ccRCC.

  1. Oxidative status imbalance in patients with metabolic syndrome: role of the myeloperoxidase/hydrogen peroxide axis.

    Science.gov (United States)

    da Fonseca, Lucas José Sá; Nunes-Souza, Valéria; Guedes, Glaucevane da Silva; Schettino-Silva, Glauber; Mota-Gomes, Marco Antônio; Rabelo, Luíza Antas

    2014-01-01

    The present study evaluated the cardiometabolic and redox balance profiles in patients with Metabolic Syndrome compared to apparently healthy individuals, and the participation of the myeloperoxidase/hydrogen peroxide axis in systemic lipid peroxidation. Twenty-four patients with Metabolic Syndrome and eighteen controls underwent a full clinical assessment. Venous blood samples were collected for general biochemical dosages, as well as for the oxidative stress analyses (superoxide dismutase, catalase, and arginase activities; and lipid peroxidation, myeloperoxidase activity, nitrite, and hydrogen peroxide concentrations in plasma). Arterial stiffness was assessed by radial artery applanation tonometry. Plasma lipid peroxidation, erythrocyte superoxide dismutase activity, myeloperoxidase activity, and hydrogen peroxide concentrations were shown to be increased in Metabolic Syndrome patients, without significant differences for the other enzymes, plasma nitrite concentrations, and arterial stiffness. Linear regression analysis revealed a positive and significant correlation between lipid peroxidation and myeloperoxidase and also between this enzyme and hydrogen peroxide. In contrast, such correlation was not observed between lipid peroxidation and hydrogen peroxide. In summary, Metabolic Syndrome patients exhibited evident systemic redox imbalance compared to controls, with the possible participation of the myeloperoxidase/hydrogen peroxide axis as a contributor in lipid peroxidation.

  2. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    Directory of Open Access Journals (Sweden)

    Lea Haarup Gregersen

    2011-05-01

    Full Text Available Green sulfur bacteria (GSB constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5’-phosphosulfate reductase (APR or polysulfide reductase-like complex 3 (PSRLC3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in

  3. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways.

    Science.gov (United States)

    Manesia, Javed K; Xu, Zhuofei; Broekaert, Dorien; Boon, Ruben; van Vliet, Alex; Eelen, Guy; Vanwelden, Thomas; Stegen, Steve; Van Gastel, Nick; Pascual-Montano, Alberto; Fendt, Sarah-Maria; Carmeliet, Geert; Carmeliet, Peter; Khurana, Satish; Verfaillie, Catherine M

    2015-11-01

    Hematopoietic stem cells (HSCs) in the fetal liver (FL) unlike adult bone marrow (BM) proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos) and the citric acid cycle (TCA). We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS) production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (geno)toxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.

  4. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  5. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication

    Institute of Scientific and Technical Information of China (English)

    Minjong; Lee; Jung-Hwan; Yoon

    2015-01-01

    Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.

  6. Vest Chest Physiotherapy Airway Clearance is Associated with Nitric Oxide Metabolism

    Directory of Open Access Journals (Sweden)

    Joseph H. Sisson

    2013-01-01

    Full Text Available Background. Vest chest physiotherapy (VCPT enhances airway clearance in cystic fibrosis (CF by an unknown mechanism. Because cilia are sensitive to nitric oxide (NO, we hypothesized that VCPT enhances clearance by changing NO metabolism. Methods. Both normal subjects and stable CF subjects had pre- and post-VCPT airway clearance assessed using nasal saccharin transit time (NSTT followed by a collection of exhaled breath condensate (EBC analyzed for NO metabolites (. Results. VCPT shorted NSTT by 35% in normal and stable CF subjects with no difference observed between the groups. EBC concentrations decreased 68% in control subjects after VCPT (before = 115 ± 32 μM versus after = 37 ± 17 μM; . CF subjects had a trend toward lower EBC . Conclusion. We found an association between VCPT-stimulated clearance and exhaled levels in human subjects. We speculate that VCPT stimulates clearance via increased NO metabolism.

  7. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Valkonen, Minna; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2014-12-18

    The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards.

  8. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways

    Directory of Open Access Journals (Sweden)

    Javed K. Manesia

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs in the fetal liver (FL unlike adult bone marrow (BM proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos and the citric acid cycle (TCA. We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (genotoxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.

  9. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  10. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    Science.gov (United States)

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  11. Relation of Oxidative Stress and Impaired Fibrinolysis with HDL Biogenesis in Indonesian Men with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Ida Paulina Sormin

    2010-04-01

    Full Text Available BACKGROUND: Biogenesis of HDL involves factors that regulate the synthesis, intravascular remodeling, and catabolism of HDL. Disturbance of these factors can lead to low concentration of HDL-C. Metabolic syndrome (MetS is characterized by low concentration of high-density lipoprotein cholesterol (HDL-C. In MetS occur several pathological conditions including oxidative stress and impaired fibrinolysis, which contribute to the risk of atherosclerosis process. The correlation between oxidative stress and impaired fibrinolysis with HDL biogenesis dysfunction and its correlation with low concentration of HDL-C has not been well understood and therefore needs to be further investigated. METHODS: This study was an observational study with crosssectional design, involving 163 adult men, aged 25-60 years with metabolic syndrome. Concentration of apoA-1, prebeta-1 HDL, CETP, F2-isoprostan, PAI-1, and HDL-C were measured. The apo A1/HDL ratio indicated HDL maturation, whereas the CETP/HDL-C and CETP/TG ratios indicated HDL catabolism. RESULTS: The study showed that there were a positive correlation between PAI-1 with apoA1/HDL-C ratios (r=0.226, p=0.005 and a negative correlation with the CETP/TG ratios (r=-0.215, p=0.007, whereas F2-isoprostan did not have correlation with HDL biogenesis factors. CONCLUSIONS: We concluded that there was correlation between impaired fibrinolysis with decreased HDL maturation and there was increased HDL catabolism leading to low HDL-C concentration in men with metabolic syndrome. KEYWORDS: F2-isoprostan, PAI-1, apoA-1, prebeta-1 HDL, CETP, metabolic syndrome.

  12. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  13. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress.

    Science.gov (United States)

    Lee, Yoon-Mi; Lee, Gibok; Oh, Taek-In; Kim, Byeong Mo; Shim, Do-Wan; Lee, Kwang-Ho; Kim, Young Jun; Lim, Beong Ou; Lim, Ji-Hong

    2016-01-01

    Recent studies have shown anticancer activity of apigenin by suppressing glucose transporter 1 (GLUT1) expression in cultured cancer cells; however, it is not clear whether apigenin can suppress glucose metabolism in lung cancer cells or sensitize them to inhibition of glutamine utilization-mediated apoptosis through metabolic and oxidative stress. We show that apigenin significantly decreases GLUT1 expression in mice. Furthermore, we demonstrate that apigenin induces growth retardation and apoptosis through metabolic and oxidative stress caused by suppression of glucose utilization in lung cancer cells. The underlying mechanisms were defined that the anticancer effects of apigenin were reversed by ectopic GLUT1 overexpression and galactose supplementation, through activation of pentose phosphate pathway-mediated NADPH generation. Importantly, we showed that severe metabolic stress using a glutaminase inhibitor, compound 968, was involved in the mechanism of sensitization by apigenin. Taken together, the combination of apigenin with inhibitors of glutamine metabolism may provide a promising therapeutic strategy for cancer treatment.

  14. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... preceded by an early RA-induced phosphorylation of p38 mitogen-activated protein kinase. UCP1 expression was not induced. CONCLUSION: The results indicate that RA directly favors remodeling of mature 3T3-L1 adipocytes in culture toward increased oxidative metabolism....

  15. Increasing the repeating units of ethylene glycol-based dimethacrylates directed toward reduced oxidative stress and co-stimulatory factors expression in human monocytic cells.

    Science.gov (United States)

    Tamura, Atsushi; Fukumoto, Izumi; Yui, Nobuhiko; Matsumura, Mitsuaki; Miura, Hiroyuki

    2015-03-01

    The ethylene glycol-based dimethacrylates are commonly used in biomaterials and dental restorative materials as a cross-linking agent. In this study, toxic effect of triethylene glycol dimethacrylate (TEGDMA) and poly(ethylene glycol) dimethacrylates (PEG-DMAs) with various ethylene glycol repeating units was investigated in terms of cytotoxicity, oxidative stress, and the expression of co-stimulatory factors in human leukemia cell line (THP-1 cells) to verify the effect of ethylene glycol repeating units. Note that the 1-octanol/water partition coefficient of PEG-based dimethacrylates decreased with increasing the ethylene glycol repeating units, indicating that the hydrophilicity of PEG-DMAs increased with ethylene glycol repeating units. The toxic effect of PEG-DMAs such as cytotoxicity, oxidative stress, and the expression of CD86 in treated THP-1 cells are reduced with increasing the ethylene glycol repeating units in PEG-DMAs. However, the expression of CD54 in treated THP-1 cells was not influenced with the ethylene glycol repeating units and the maximal expression level of CD54 was observed at the concentration range of 2-4 mM for all samples. Accordingly, hydrophilic character of PEG-DMAs with long ethylene glycol chains definitely alleviates the some toxic aspect of PEG-based DMAs. This finding would provide important insight into the design of new biomaterials and dental materials with superior biocompatibility. © 2014 Wiley Periodicals, Inc.

  16. The effect of seasonality on oxidative metabolism in Nacella (Patinigera) magellanica.

    Science.gov (United States)

    Malanga, Gabriela; Estevez, María Susana; Calvo, Jorge; Abele, Doris; Puntarulo, Susana

    2007-04-01

    We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09+/-0.02 micromol O2 h-1 g-1; summer: 0.31+/-0.06 micromol O2 h-1 g-1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content/ascorbate content ratio (A./AH-). The A./AH- ratio showed minimum values in winter (3.7+/-0.2 10(-5)AU) and increased in summer (18+/-5 10(-5) AU). A similar pattern was observed for lipid radical content (122+/-29 pmol mg-1 fresh mass [FW] in winter and 314+/-45 pmol mg-1 FW in summer), iron content (0.99+/-0.07 and 2.7+/-0.6 nmol mg-1 FW in winter and summer, respectively) and catalase activity (2.9+/-0.2 and 7+/-1 U mg-1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe-MGD-NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.

  17. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi.

    Science.gov (United States)

    Montibus, Mathilde; Pinson-Gadais, Laëtitia; Richard-Forget, Florence; Barreau, Christian; Ponts, Nadia

    2015-01-01

    To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.

  18. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism.

    Science.gov (United States)

    Sorolla, Ma Alba; Rodríguez-Colman, Ma José; Tamarit, Jordi; Ortega, Zaira; Lucas, José J; Ferrer, Isidre; Ros, Joaquim; Cabiscol, Elisa

    2010-08-15

    Huntington disease (HD) is an inherited neurodegenerative disorder that initially affects the striatum and progressively the cortex. Oxidative stress in HD has been described as important to disease progression. In this study, protein carbonylation, used as a marker of protein oxidation, was analyzed in human brain striatum. A comparison of HD samples to matched controls identified 13 carbonylated proteins, including enzymes involved in the glycolytic pathway and mitochondrial proteins related to ATP production. Oxidation of the mitochondrial enzymes resulted in decreased catalytic activity, in good agreement with the energy deficiency observed in HD. We also found carbonylation of pyridoxal kinase and antiquitin 1, both involved in the metabolism of pyridoxal 5-phosphate, the active form of vitamin B6. The Tet/HD94 conditional mouse model allowed us to demonstrate that increased carbonylation in striatum is dependent on mutant huntingtin expression. As in humans, pyridoxal kinase showed decreased levels and was highly carbonylated in the gene-on mice; these modifications were reverted in the gene-off mice. We hypothesize that both pyridoxal kinase and antiquitin 1 oxidation could result in decreased pyridoxal 5-phosphate availability necessary as a cofactor in transaminations, synthesis of glutathione, and synthesis of GABA and dopamine, two neurotransmitters that play a key role in HD pathology.

  19. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry.

    Science.gov (United States)

    Faber, Helene; Melles, Daniel; Brauckmann, Christine; Wehe, Christoph Alexander; Wentker, Kristina; Karst, Uwe

    2012-04-01

    Diclofenac is a frequently prescribed drug for rheumatic diseases and muscle pain. In rare cases, it may be associated with a severe hepatotoxicity. In literature, it is discussed whether this toxicity is related to the oxidative phase I metabolism, resulting in electrophilic quinone imines, which can subsequently react with nucleophiles present in the liver in form of glutathione or proteins. In this work, electrochemistry coupled to mass spectrometry is used as a tool for the simulation of the oxidative pathway of diclofenac. Using this purely instrumental approach, diclofenac was oxidized in a thin layer cell equipped with a boron doped diamond working electrode. Sum formulae of generated oxidation products were calculated based on accurate mass measurements with deviations below 2 ppm. Quinone imines from diclofenac were detected using this approach. It could be shown for the first time that these quinone imines do not react with glutathione exclusively but also with larger molecules such as the model protein β-lactoglobulin A. A tryptic digest of the generated drug-protein adduct confirms that the protein is modified at the only free thiol-containing peptide. This simple and purely instrumental set-up offers the possibility of generating reactive metabolites of diclofenac and to assess their reactivity rapidly and easily.

  20. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Science.gov (United States)

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators.

  1. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo.

    Science.gov (United States)

    Wang, Xu; Martínez, María-Aránzazu; Cheng, Guyue; Liu, Zhaoying; Huang, Lingli; Dai, Menghong; Chen, Dongmei; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-05-01

    Quinoxaline 1,4-dioxide derivatives (QdNOs) have been widely used as growth promoters and antibacterial agents. Carbadox (CBX), olaquindox (OLA), quinocetone (QCT), cyadox (CYA) and mequindox (MEQ) are the classical members of QdNOs. Some members of QdNOs are known to cause a variety of toxic effects. To date, however, almost no review has addressed the toxicity and metabolism of QdNOs in relation to oxidative stress. This review focused on the research progress associated with oxidative stress as a plausible mechanism for QdNO-induced toxicity and metabolism. The present review documented that the studies were performed over the past 10 years to interpret the generation of reactive oxygen species (ROS) and oxidative stress as the results of QdNO treatment and have correlated them with various types of QdNO toxicity, suggesting that oxidative stress plays critical roles in their toxicities. The major metabolic pathways of QdNOs are N→O group reduction and hydroxylation. Xanthine oxidoreductase (XOR), aldehyde oxidase (SsAOX1), carbonyl reductase (CBR1) and cytochrome P450 (CYP) enzymes were involved in the QdNOs metabolism. Further understanding the role of oxidative stress in QdNOs-induced toxicity will throw new light onto the use of antioxidants and scavengers of ROS as well as onto the blind spots of metabolism and the metabolizing enzymes of QdNOs. The present review might contribute to revealing the QdNOs toxicity, protecting against oxidative damage and helping to improve the rational use of concurrent drugs, while developing novel QdNO compounds with more efficient potentials and less toxic effects.

  2. Peroxisome proliferator-activated receptor α agonist attenuates oxidized-low density lipoprotein induced immune maturation of human monocyte-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    SHI Hong-yu; CAO Xue-tao; GE Jun-bo; FANG Wei-yi; YAO Kang; SUN Ai-jun; HUANG Rong-chong; JIA Qing-zhe; WANG Ke-qiang; ZOU Yun-zeng

    2008-01-01

    @@ Accumulating evidence suggests that the Th1 immune response induced by various antigens such as oxidized low density lipoprotein (ox-LDL) and heat shock proteins (HSPs) play a key role in the process of atherosclerosis.1 Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the body with the unique ability to initiate a primary immune response to certain antigens by the activation of "naive" T cells.2 The maturation of DC with the upregulation of costimulatory molecules such as CD83,CD40,CD86,and major histocompatibility complex (MHC) class molecules such as human leukocyte antigen (HLA)-DR,is required for DC to activate T cells.

  3. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  4. Circulating oxidized low-density lipoproteins and arterial elasticity: comparison between men with metabolic syndrome and physically active counterparts

    Directory of Open Access Journals (Sweden)

    Pohjantähti-Maaroos Hanna

    2010-08-01

    Full Text Available Abstract Background Accumulation of oxidized low-density lipoproteins in the intimae of arteries and endothelial dysfunction are key events in the development of atherosclerosis. Patients with metabolic syndrome are at high risk for cardiovascular diseases but the linkage between metabolic syndrome and atherosclerosis is incompletely understood. We studied whether the levels of oxidized LDL and arterial elasticity differ between metabolic syndrome patients and physically active controls. Methods 40 men with metabolic syndrome and 40 physically active controls participated in this cross-sectional study. None of the study subjects had been diagnosed with cardiovascular disease. Levels of oxidized LDL were assessed by a two-site ELISA immunoassay. Arterial elasticity was assessed non-invasively by the HDI/PulseWave™ CR-2000 arterial tonometer. Results Levels of oxidized LDL were 89.6 ± 33.1 U/L for metabolic syndrome subjects and 68.5 ± 23.6 U/L for controls (p = 0.007. The difference remained significant after adjustment for LDL cholesterol. Large artery elasticity index (C1 was 16.2 ± 4.1 mL/mmHgx10 for metabolic syndrome subjects and 19.4 ± 3.7 mL/mmHgx10 for controls (p = 0.001, small artery indices (C2 were 7.0 ± 3.2 mL/mmHgx100 and 6.5 ± 2.9 mL/mmHgx100 (NS, respectively. Conclusions Subjects with metabolic syndrome had elevated levels of oxidized LDL and reduced large arterial elasticity compared to controls. This finding may partly explain the increased risk for cardiovascular diseases among metabolic syndrome patients. Trial registration ClinicalTrials.gov NCT01114763

  5. Plasma lipoproteins and monocyte-macrophages in a peroxisome-deficient system: study of a patient with infantile refsum disease.

    Science.gov (United States)

    Mandel, H; Berant, M; Meiron, D; Aizin, A; Oiknine, J; Brook, J G; Aviram, M

    1992-01-01

    Hypocholesterolaemia in infantile Refsum disease (IRD) may link peroxisomes and lipoprotein metabolism. In our patient, plasma cholesterol levels were reduced to 26% and 29% of control in LDL and HDL fractions, respectively. Plasma apolipoproteins B-100 and A-I levels were 52% and 66% of controls, respectively. In the kindred, plasma cholesterol concentration was 61-73% of controls. The HDL-cholesterol/apo A-I ratios were: patient 0.12; kindred 0.17; controls 0.28. Analysis of the IRD patient's lipoprotein revealed compositional abnormalities in all fractions. The patient's LDL demonstrated a substantial reduction in its lipid-to-protein ratio. Alterations in plasma lipoproteins affect their interaction with macrophages. Upon incubation of the patient's LDL with J-774 macrophages, its cellular uptake, measured as cholesterol esterification rate, was only 66% of a control rate. The abnormal LDL of the IRD patient showed also only 25% of control susceptibility to in vitro oxidation. Studies of cellular cholesterol metabolism in the patient's monocyte-derived macrophages (MDM) showed 57% increased cholesterol esterification rate in comparison to normal MDM. The possible link between lipoprotein abnormalities and monocyte-macrophage cholesterol metabolism is discussed.

  6. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails.

    Science.gov (United States)

    Hermes-Lima, M; Storey, J M; Storey, K B

    1998-07-01

    The roles of enzymatic antioxidant defenses in the natural tolerance of environmental stresses that impose changes in oxygen availability and oxygen consumption on animals is discussed with a particular focus on the biochemistry of estivation and metabolic depression in pulmonate land snails. Despite reduced oxygen consumption and PO2 during estivation, which should also mean reduced production of oxyradicals, the activities of antioxidant enzymes, such as superoxide dismutase and catalase, increased in 30 day-estivating snails. This appears to be an adaptation that allows the snails to deal with oxidative stress that takes place during arousal when PO2 and oxygen consumption rise rapidly. Indeed, oxidative stress was indicated by increased levels of lipid peroxidation damage products accumulating in hepatopancreas within minutes after arousal was initiated. The various metabolic sites responsible for free radical generation during arousal are still unknown but it seems unlikely that the enzyme xanthine oxidase plays any substantial role in this despite being implicated in oxidative stress in mammalian models of ischemia/reperfusion. We propose that the activation of antioxidant defenses in the organs of Otala lactea during estivation is a preparative mechanism against oxidative stress during arousal. Increased activities of antioxidant enzymes have also observed under other stress situations in which the actual production of oxyradicals should decrease. For example, antioxidant defenses are enhanced during anoxia exposure in garter snakes Thamnophis sirtalis parietalis (10 h at 5 degrees C) and leopard frogs Rana pipiens (30 h at 5 degrees C) and during freezing exposure (an ischemic condition due to plasma freezing) in T. sirtalis parietalis and wood frogs Rana sylvatica. It seems that enhancement of antioxidant enzymes during either anoxia or freezing is used as a preparatory mechanism to deal with a physiological oxidative stress that occurs rapidly within the

  7. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance.

    Science.gov (United States)

    Tripathi, Preeti; Mishra, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Singh, Rana Pratap; Tripathi, Rudra Deo

    2012-05-01

    The mechanism of arsenic (As) tolerance was investigated on two contrasting rice (Oryza sativa L.) genotypes, selected for As tolerance and accumulation. One tolerant (Triguna) and one sensitive (IET-4786) variety were exposed to various arsenate (0-50 μM) levels for 7 d for biochemical analyses. Arsenic induced oxidative stress was more pronounced in IET-4786 than Triguna especially in terms of reactive oxygen species, lipid peroxidation, EC and pro-oxidant enzymes (NADPH oxidase and ascorbate oxidase). However, Triguna tolerated As stress through the enhanced enzymes activities particularly pertaining to thiol metabolism such as serine acetyl transferase (SAT), cysteine synthase (CS), γ-glutamyl cysteine synthase (γ-ECS), γ-glutamyl transpeptidase (γ-GT), and glutathione-S-transferase (GST) as well as arsenate reductase (AR). Besides maintaining the ratio of redox couples GSH/GSSG and ASC/DHA, the level of phytochelatins (PCs) and phytochelatin synthase (PCS) activity were more pronounced in Triguna, in which harmonized responses of thiol metabolism was responsible for As tolerance in contrast to IET-4786 showing its susceptible nature towards As exposure.

  8. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress.

    Science.gov (United States)

    Aldarini, Nohaiah; Alhasawi, Azhar A; Thomas, Sean C; Appanna, Vasu D

    2017-01-17

    Oxidative stress is known to severely impede aerobic adenosine triphosphate (ATP) synthesis. However, the metabolically-versatile Pseudomonas fluorescens survives this challenge by invoking alternative ATP-generating networks. When grown in a medium with glutamine as the sole organic nutrient in the presence of H2O2, the microbe utilizes glutamine synthetase (GS) to modulate its energy budget. The activity of this enzyme that mediates the release of energy stored in glutamine was sharply increased in the stressed cells compared to the controls. The enhanced activities of such enzymes as acetate kinase, adenylate kinase and nucleotide diphosphate kinase ensured the efficacy of this ATP producing-machine by transferring the high energy phosphate. The elevated amounts of phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase recorded in the H2O2 exposed cells provided another route to ATP independent of the reduction of O2. This is the first demonstration of a metabolic pathway involving GS dedicated to ATP synthesis. The phospho-transfer network that is pivotal to the survival of the microorganism under oxidative stress may reveal therapeutic targets against infectious microbes reliant on glutamine for their proliferation.

  9. Evaluation of Oxidative Metabolism in Leukocytes during Phagocytosis of Escherichia coli Carrying Genetic Constructs soxS::lux or katG::lux.

    Science.gov (United States)

    Karimov, I F; Deryabin, D G; Karimova, D N; Subbotina, T Yu; Manukhov, I V

    2016-06-01

    We studied ROS generation by human peripheral blood monocytes and granulocytes during phagocytosis of Escherichia coli soxS::lux or katG::lux responding by luminescence (bioluminescence) to the development of oxidative stress. Initially high sensitivity of the bioluminescent reaction of E. coli katG::lux strain to the effects of model ROS (KO2 and H2O2) and pronounced induction of luminescence upon contact with granulocytes, whereas E. coli soxS::lux demonstrated less pronounced reaction to chemical oxidants and bioluminescence was observed primarily upon contact with monocytes. A correlation was found between quantitative characteristics of E. coli katG::lux bioluminescence and luminol-dependent chemiluminescence of leukocytes in some patients, but no dependence of this kind was noted for E. coli soxS::lux. The results can provide experimental substantiation of a new approach for evaluation of ROS production by leukocytes during phagocytosis and choosing the optimal object for these studies.

  10. High-fat diet induces metabolic changes and reduces oxidative stress in female mouse hearts.

    Science.gov (United States)

    Barba, Ignasi; Miró-Casas, Elisabet; Torrecilla, José L; Pladevall, Eulàlia; Tejedor, Sergi; Sebastián-Pérez, Rubén; Ruiz-Meana, Marisol; Berrendero, José R; Cuevas, Antonio; García-Dorado, David

    2017-02-01

    After an acute myocardial infarction, obese patients generally have a better prognosis than their leaner counterparts, known as the "obesity paradox". In addition, female sex is associated with a lower risk of cardiac ischemic events and smaller infarct size compared to males. The objective of the present work was to study the metabolic phenotype and mitochondrial function associated to female sex and short-term high-fat diet. (1)H NMR spectra of mice heart extracts were analysed by mRMR variable selection and linear discriminant analysis was used to evaluate metabolic changes. In separate experiments, O2 consumption and H2O2 production were measured from isolated mitochondria as well as serum oxidation susceptibility. Fingerprinting showed that male hearts contained more myo-inositol, taurine and glutamate than female hearts. HFD reduced the levels of creatine, taurine citrate and acetate. Profiling showed increased alanine and fumarate in HFD suggesting altered glycolitic and Krebs cycle pathways. Female mice contained less glucose than males. Female sex nor HFD altered mitochondria oxygen consumption but both conditions reduced the amount of H2O2 produced in an additive manner. Serum of females had lower oxidation susceptibility than serum from males but there were no differences associated with HFD. In conclusion, female sex and short-term HFD have an effect on the myocardial metabolic pattern and reduce the amount of H2O2 produced by mitochondria in an additive manner suggesting different mechanisms of action. This could explain, at least in part, the protection afforded by female sex and the "obesity paradox".

  11. Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination

    Directory of Open Access Journals (Sweden)

    Zhenguo eMa

    2016-02-01

    Full Text Available The levels of nitric oxide (NO and reactive oxygen species (ROS, ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L. cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h postimbibition the genes encoding class 1 phytoglobin (the protein scavenging NO and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy.

  12. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway.

    Science.gov (United States)

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-04-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.

  13. Metabolism and Whole-Body Fat Oxidation Following Post-Exercise Carbohydrate or Protein Intake.

    Science.gov (United States)

    Hall, Ulrika Andersson; Pettersson, Stefan; Edin, Fredrik; Pedersen, Anders; Malmodin, Daniel; Madsen, Klavs

    2017-09-05

    This study investigated how post-exercise intake of placebo (PLA), protein (PRO) or carbohydrate (CHO) affected fat oxidation (FO) and metabolic parameters during recovery and subsequent exercise. In a cross-over design, 12 moderately trained women (VO2max 45 ± 6 ml·min(-1)·kg(-1)) performed three days of testing. A 23 min control (CON) incremental FO bike test (30-80% VO2max) was followed by 60 min exercise at 75% VO2max. Immediately post-exercise, subjects ingested PLA, 20 g PRO or 40 g CHO followed by a second FO bike test 2h later. Maximal fat oxidation (MFO) and the intensity at which MFO occurs (Fatmax) increased at the second FO test compared to the first following all three post-exercise drinks (MFO for CON=0.28±0.08, PLA=0.57±0.13, PRO=0.52±0.08, CHO=0.44±0.12 g fat·min(-1); Fatmax for CON=41±7, PLA=54±4, PRO=55±6, CHO=50±8 %VO2max, P<0.01 for all values compared to CON). Resting FO, MFO and Fatmax were not significantly different between PLA and PRO, but lower for CHO. PRO and CHO increased insulin levels at 1h post-exercise, though both glucose and insulin were equal with PLA at 2h. Increased post-exercise ketone levels only occurred with PLA. Protein supplementation immediately post-exercise did not affect the doubling in whole body fat oxidation seen during a subsequent exercise trial 2 hours later. Neither did it affect resting fat oxidation during the post-exercise period despite increased insulin levels and attenuated ketosis. Carbohydrate intake dampened the increase in fat oxidation during the second test, though a significant increase was still observed compared to the first test.

  14. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    Science.gov (United States)

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism.

  15. Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    Science.gov (United States)

    Veiga, Tânia; Gombert, Andreas K; Landes, Nils; Verhoeven, Maarten D; Kiel, Jan A K W; Krikken, Arjen M; Nijland, Jeroen G; Touw, Hesselien; Luttik, Marijke A H; van der Toorn, John C; Driessen, Arnold J M; Bovenberg, Roel A L; van den Berg, Marco A; van der Klei, Ida J; Pronk, Jack T; Daran, Jean-Marc

    2012-07-01

    Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via β-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of β-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of β-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis.

  16. Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress

    Science.gov (United States)

    Pfeiffer, Annika; Jaeckel, Martin; Lewerenz, Jan; Noack, Rebecca; Pouya, Alireza; Schacht, Teresa; Hoffmann, Christina; Winter, Jennifer; Schweiger, Susann; Schäfer, Michael K E; Methner, Axel

    2014-01-01

    Background and Purpose The hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc−. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. Experimental Approach We compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. Key Results Glutamate-resistant mitochondria were less fragmented and displayed seemingly contradictory features: mitochondrial calcium and superoxide were increased while high-resolution respirometry suggested a reduction in mitochondrial respiration. This was interpreted as a reverse activity of the ATP synthase under oxidative stress, leading to hydrolysis of ATP to maintain or even elevate the mitochondrial membrane potential, suggesting these cells endure ineffective energy metabolism to protect their membrane potential. Glutamate-resistant cells were also resistant to oligomycin, an inhibitor of the ATP synthase, but sensitive to deoxyglucose, an inhibitor of hexokinases. Exchanging glucose with galactose rendered resistant cells 1000-fold more sensitive to oligomycin. These results, together with a strong increase in cytosolic hexokinase 1 and 2, a reduced lactate production and an increased activity of glucose-6-phosphate dehydrogenase, suggest that glutamate-resistant HT22 cells shuttle most available glucose towards the hexose monophosphate shunt to increase glutathione recovery. Conclusions and Implications These results indicate that mitochondrial and metabolic adaptations play an important role in the resistance of cells to oxidative stress. Linked Articles This article is part of a themed issue on

  17. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    DEFF Research Database (Denmark)

    Assies, Johanna; Mocking, Roel J T; Lok, Christianne A

    2014-01-01

    Objective: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive...... affects the intrinsically linked FA and 1-C cycle metabolism: FAs decrease in chain length and unsaturation (particularly omega-3 polyunsaturated FAs), and lipid peroxidation products increase; the 1-C cycle shifts from the methylation to transsulfuration pathway (lower folate and higher homocysteine...... membrane peroxidizability and fluidity, eicosanoid synthesis, neuroprotection and epigenetics. Conclusion: While oxidative-stress-induced alterations in FA and 1-C metabolism may initially enhance oxidative stress resistance, persisting chronically, they may cause damage possibly underlying (co...

  18. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    Science.gov (United States)

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  19. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.

    Science.gov (United States)

    Fukushima, Arata; Lopaschuk, Gary D

    2016-12-01

    Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD(+)) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.

  20. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.

    Science.gov (United States)

    Liu, Dong; Chan, Sic L; de Souza-Pinto, Nadja C; Slevin, John R; Wersto, Robert P; Zhan, Ming; Mustafa, Khadija; de Cabo, Rafael; Mattson, Mark P

    2006-01-01

    The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased Deltapsim, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of Deltapsim to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochondrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.

  1. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.

    Science.gov (United States)

    Brück, Thomas B; Brück, Dieter W

    2011-02-01

    Mitoxantrone (MH(2)X), an anthraquinone-type anti-cancer agent used clinically in the treatment of human malignancies, is oxidatively activated by the peroxidase/H(2)O(2) enzyme system. In contrast to the enzymatic mechanisms of drug oxidation, the chemical transformations of MH(2)X are not well described. In this study, MH(2)X metabolites, produced by the horseradish, lacto- or lignin peroxidase (respectively HRP, LPO and LIP)/H(2)O(2) system, were investigated by steady-state spectrokinetic and HPLC-MS methods. At an equimolar mitoxantrone/H(2)O(2) ratio, the efficacy of the enzyme-catalyzed oxidation of mitoxantrone decreased in the following order: LPO > HRP > LIP, which accorded with the decreasing size of the substrate access channel in the enzyme panel examined. In all cases, the central drug oxidation product was the redox-active cyclic metabolite, hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione (MH(2)), previously identified in the urine of mitoxantrone-treated patients. As the reaction progressed, data gathered in this study suggests that further oxidation of the MH(2) side-chains occurred, yielding the mono- and dicarboxylic acid derivatives respectively. Based on the available data a further MH(2) derivative is proposed, in which the amino-alkyl side-chain(s) are cyclised. With increasing H(2)O(2) concentrations, these novel MH(2) derivatives were oxidised to additional metabolites, whose spectral properties and MS data indicated a stepwise destruction of the MH(2) chromophore due to an oxidative cleavage of the 9,10-anthracenedione moiety. The novel metabolites extend the known sequence of peroxidase-induced mitoxantrone metabolism, and may contribute to the cytotoxic effects of the drug in vivo. Based on the structural features of the proposed MH(2) oxidation products we elaborate on various biochemical mechanisms, which extend the understanding of mitoxantrone's pharmaceutical action and its clinical effectiveness with a particular focus on

  2. In vitro stimulation of murine peritoneal monocytes induced by alginates.

    Science.gov (United States)

    Pasquali, Paolo; Zalcman, Amy; Murtas, Susanna; Adone, Rosanna; Brambilla, Gianfranco; Marianelli, Cinzia; Cagiola, Monica; Ciuchini, Franco

    2005-08-01

    In this trial we assessed the effect of soluble alginates on murine cells. Mouse peritoneal monocytes were stimulated in vitro with a solution of alginate. The production of TNF-alpha and nitric oxide (NO), the expression of surface molecules CD80 and CD86, and the ability of monocytes to phagocyte bacteria were assessed, in order to evaluate the effect of alginate on cell functionality. We showed that mouse peritoneal monocytes stimulated with alginate produce NO and TNF-alpha. In addition, alginate is able also to increase their phagocytic activity and to a lesser extent also to increase the expression of CD80. Even with different degrees, it implies that alginates per se act directly on immune response, being able to effectively stimulate proinflammatory activity. These findings corroborate the idea that alginates can represent interesting adjuvants to use to increase the efficacy of antigenic stimulation.

  3. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Science.gov (United States)

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Presymptomatic alterations in energy metabolism and oxidative stress in the APP23 mouse model of Alzheimer disease.

    Science.gov (United States)

    Hartl, Daniela; Schuldt, Victoria; Forler, Stephanie; Zabel, Claus; Klose, Joachim; Rohe, Michael

    2012-06-01

    Glucose hypometabolism is the earliest symptom observed in the brains of Alzheimer disease (AD) patients. In a former study, we analyzed the cortical proteome of the APP23 mouse model of AD at presymptomatic age (1 month) using a 2-D electrophoresis-based approach. Interestingly, long before amyloidosis can be observed in APP23 mice, proteins associated with energy metabolism were predominantly altered in transgenic as compared to wild-type mice indicating presymptomatic changes in energy metabolism. In the study presented here, we analyzed whether the observed changes were associated with oxidative stress and confirmed our previous findings in primary cortical neurons, which exhibited altered ADP/ATP levels if transgenic APP was expressed. Reactive oxygen species produced during energy metabolism have important roles in cell signaling and homeostasis as they modify proteins. We observed an overall up-regulation of protein oxidation status as shown by increased protein carbonylation in the cortex of presymptomatic APP23 mice. Interestingly, many carbonylated proteins, such as Vilip1 and Syntaxin were associated to synaptic plasticity. This demonstrates an important link between energy metabolism and synaptic function, which is altered in AD. In summary, we demonstrate that changes in cortical energy metabolism and increased protein oxidation precede the amyloidogenic phenotype in a mouse model for AD. These changes might contribute to synaptic failure observed in later disease stages, as synaptic transmission is particularly dependent on energy metabolism.

  5. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kaczor, Marta [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Sura, Piotr [Department of Human Developmental Biology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Bronowicka-Adamska, Patrycja [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Wrobel, Maria, E-mail: mbwrobel@cyf-kr.edu.pl [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland)

    2013-02-15

    Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione - the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28 mg/L Pb(NO{sub 3}){sub 2} for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism - 3-mercaptopyruvate sulfurtransfearse, {gamma}-cystathionase and rhodanese - were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to

  6. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Campbell, Peter G.C. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2014-09-15

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  7. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    Science.gov (United States)

    Sekler, Alejandra; Jiménez, José M; Rojo, Leonel; Pastene, Edgard; Fuentes, Patricio; Slachevsky, Andrea; Maccioni, Ricardo B

    2008-01-01

    Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP), plasma malondialdehyde and total antioxidative capacity (TAC), as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59) and a control group of neurologically normal subjects (n = 29), attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery), while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol) of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC) of patients. In this context, the subset of subjects exhibiting cognitive impairment were divided into two subgroups according with their Global Dementia Scale performance: a subgroup with mild AD and a subgroup with moderate to severe AD. Significant differences in AOC were found between subgroups. The different correlations between cognitive impairment of subgroups of subjects with the oxidative stress profile are discussed in the context of AD pathogenesis. PMID:19043515

  8. Cognitive impairment and Alzheimer's disease: Links with oxidative stress and cholesterol metabolism.

    Science.gov (United States)

    Sekler, Alejandra; Jiménez, José M; Rojo, Leonel; Pastene, Edgard; Fuentes, Patricio; Slachevsky, Andrea; Maccioni, Ricardo B

    2008-08-01

    Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP), plasma malondialdehyde and total antioxidative capacity (TAC), as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59) and a control group of neurologically normal subjects (n = 29), attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery), while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol) of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC) of patients. In this context, the subset of subjects exhibiting cognitive impairment were divided into two subgroups according with their Global Dementia Scale performance: a subgroup with mild AD and a subgroup with moderate to severe AD. Significant differences in AOC were found between subgroups. The different correlations between cognitive impairment of subgroups of subjects with the oxidative stress profile are discussed in the context of AD pathogenesis.

  9. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.

    OpenAIRE

    Cushing, S D; Berliner, J A; Valente, A. J.; Territo, M C; Navab, M; Parhami, F; Gerrity, R; Schwartz, C J; Fogelman, A M

    1990-01-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human ...

  10. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  11. Some aspects of oxidative metabolism in human endometrium after long time of applying the intrauterine contraceptive device.

    Science.gov (United States)

    Bausic, V; Ionescu, N

    1996-01-01

    The paper intends to study the variation of oxidative metabolism of human endometrium (all the components) after applying the intrauterine contraceptive device for a long period of time. The results of the study show that modifications "in situ" of the oxidative enzymes vary according to the: type of the enzymes (NADH2-cytochrome-c-reductase, Lactatdehydrogenase), the hormonal cyclic stage (proliferative phase, or luteal phase), epithelial or connective tissue structures, time of resting the intrauterine contraceptive device (DIU) in uterus.

  12. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Bacterial response to nitric oxide (NO is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli, but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr and nipC (dnrN, thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include

  13. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    Dmitry A Rodionov

    2005-10-01

    Full Text Available Bacterial response to nitric oxide (NO is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli, but also in gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr and nipC (dnrN, thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include

  14. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  15. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    4.1 Nutrition imbalance 2006024 Effect of multiple micronutrients supplementation on anti - oxidative activity and oxidized DNA damage of lymphocytes in children ZHANG Ming ( 张明), Nutrit Dept, Weifang People Hosp, Weifang 261041. Chin J Epidemiol 2005 ;26(4) :268 -272. Objective:To examine the effect of multiple micronutrients supplementation on anti - oxidative activity and decreasing oxidized DNA damage of lymphocytes in Chinese children. Methods:82 healthy children in rural areas, aged 9-11 years, were selected and randomized into group receiving supplements and control group with 41 in

  16. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall

    Science.gov (United States)

    Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.

    2017-04-01

    The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease.

  17. Growth hormone enhances effects of endurance training on oxidative muscle metabolism in elderly women

    DEFF Research Database (Denmark)

    Lange, K H; Isaksson, F; Juul, A

    2000-01-01

    The present study investigated whether recombinant human (rh) growth hormone (GH) combined with endurance training would have a larger effect on oxidative capacity, metabolism, and body fat than endurance training alone. Sixteen healthy, elderly women, aged 75 yr, performed closely monitored...... endurance training on a cycle ergometer over 12 wk. rhGH was given in a randomized, double-blinded, placebo-controlled design in addition to the training program. GH administration resulted in a doubling of serum insulin-like growth factor I levels. With endurance training, peak oxygen uptake increased...... by approximately 18% in both groups, whereas the marked increase in muscle citrate synthase activity was 50% larger in the GH group compared with the placebo group. In addition, only the GH group revealed an increase in muscle L-3-hydroxyacyl-CoA dehydrogenase activity. Body weight remained unchanged in both...

  18. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  19. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver.

  20. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress.

    Science.gov (United States)

    Yu, Meiling; Xue, Jiangdong; Li, Yijing; Zhang, Weiqian; Ma, Dexing; Liu, Lian; Zhang, Zhigang

    2013-06-01

    Arsenic trioxide (As(2)O(3)) is an environmental toxicant and a potent antineoplastic agent. Exposure to arsenic causes renal cancer. Resveratrol is a well-known polyphenolic compound that is reported to reduce As(2)O(3)-induced cardiotoxicity. The present study aimed to investigate the effect of resveratrol on As(2)O(3)-induced nephrotoxicity and arsenic metabolism. Chinese Dragon-Li cats were injected with 1 mg/kg As(2)O(3) on alternate days; resveratrol (3 mg/kg) was administered via the forearm vein 1 h before the As(2)O(3) treatment. On the sixth day, the cats were killed to determine the histological renal damage, renal function, the accumulation of arsenic, and antioxidant activities in the kidney. Urine samples were taken for arsenic speciation. In the resveratrol + As(2)O(3)-treated group, activities of glutathione peroxidase, catalase, and superoxide dismutase, the ratio of reduced glutathione to oxidized glutathione, the total arsenic concentrations, and the percentage of methylated arsenic in urine were significantly increased. The concentrations of renal malondialdehyde, reactive oxygen species, 8-hydroxydeoxyguanosine, serum creatinine, blood urea nitrogen, and renal arsenic accumulation were significantly decreased and reduced renal morphologic injury was observed compared with the As(2)O(3)-treated group. These results demonstrate that resveratrol could significantly scavenge reactive oxygen species, inhibit As(2)O(3)-induced oxidative damage, and significantly attenuate the accumulation of arsenic in renal tissues by facilitating As(2)O(3) metabolism. These data suggest that use of resveratrol as postremission therapy for acute promyelocytic leukemia as well as adjunctive therapy in patients with exposure to arsenic may decrease arsenic nephrotoxicity.

  1. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hara, Kiyotaka Y; Aoki, Naoko; Kobayashi, Jyumpei; Kiriyama, Kentaro; Nishida, Keiji; Araki, Michihiro; Kondo, Akihiko

    2015-11-01

    Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.

  2. Effect of nitric oxide synthase inhibitor on proteoglycan metabolism in repaired articular cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    孙炜; 金大地; 王吉兴; 秦立赟; 刘晓霞

    2003-01-01

    Objective: To study the effect of nitric oxide synthase inhibitor, S-methyl thiocarbamate (SMT), on proteoglycan metabolism in repaired articular cartilage in rabbits. Methods: Twenty-four male New Zealand white rabbits, aged 8 months and weighing 2.5 kg±0.2 kg, were used in this study. Cartilage defects in full thickness were created on the intercondylar articular surface of bilateral femurs of all the rabbits. Then the rabbits were randomly divided into 3 groups (n=8 in each group). The defects in one group were filled with fibrin glue impregnated with recombinant human bone morphogenetic protein-2 (rhBMP-2, BMP group), in one group with fibrin glue impregnated with rhBMP-2 and hypodermic injection with SMT (SMT group) and in the other group with nothing (control group). All the animals were killed at one year postoperatively. The tissue sections were stained with safranine O-fast green and analyzed by Quantiment 500 system to determine the content of glycosaminoglycan through measuring the percentage of safranine O-stained area, the thickness of cartilages and the mean gray scale (average stain intensity). Radiolabelled sodium sulphate (Na235SO4) was used to assess the proteoglycan synthesis. Results: At one year postoperatively, the percentage of safranine O-stained area, the mean gray scale and the cartilage thickness of the repaired tissues in SMT group were significantly higher than those of BMP group (P<0.01) and the control group (P<0.05). Result of incorporation of Na235SO4 showed that the proteoglycan synthesis in SMT group was higher than those of BMP group and the control group (P<0.01). Conclusions: SMT, a nitric oxide synthase inhibitor, can significantly increase the content of glycosaminoglycan and proteoglycan synthesis, and computer-based image analysis is a reliable method for evaluating proteoglycan metabolism.

  3. Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida.

    Science.gov (United States)

    Combarros, R G; Collado, S; Díaz, M

    2016-06-05

    The increasing consumption of graphene derivatives leads to greater presence of these materials in wastewater treatment plants and ecological systems. The toxicity effect of graphene oxide (GO) on the microbial functions involved in the biological wastewater treatment process is studied, using Pseudomonas putida and salicylic acid (SA) as bacterial and pollutant models. A multiparametric flow cytometry (FC) method has been developed to measure the metabolic activity and viability of P. putida in contact with GO. A continuous reduction in the percentages of viable cells and a slight increase, lower than 5%, in the percentages of damaged and dead cells, suggest that P. putida in contact with GO loses the membrane integrity but preserves metabolic activity. The growth of P. putida was strongly inhibited by GO, since 0.05mgmL(-1) of GO reduced the maximum growth by a third, and the inhibition was considerably greater for GO concentrations higher than 0.1mgmL(-1). The specific SA removal rate decreased with GO concentration up to 0.1mgmL(-1) indicating that while GO always reduces the growth of P. putida, for concentrations higher than 0.1mgmL(-1), it also reduces its activity. Similar behaviour is observed using simulated urban and industrial wastewaters, the observed effects being more acute in the industrial wastewaters.

  4. Effects of the Crotalus durissus terrificus snake venom on hepatic metabolism and oxidative stress.

    Science.gov (United States)

    da Silva, Jonas Golart; da Silva Soley, Bruna; Gris, Vanessa; do Rocio Andrade Pires, Amanda; Caderia, Silvia Maria Suter Correia; Eler, Gabrielle Jackin; Hermoso, Aparecida Pinto Munhos; Bracht, Adelar; Dalsenter, Paulo Roberto; Acco, Alexandra

    2011-01-01

    Snake venoms present different action mechanisms because of their complex composition, represented mainly by toxins and enzymes. This work aimed to investigate the effects of the Crotalus durissus terrificus(Cdt) venom in the liver. Wistar rats were inoculated intraperitoneally with saline (control) or Cdt venom. After 3, 4, or 6 h, the following parameters were analyzed: (a) hepatic function, (b) oxidative stress parameters, and (c) the metabolism of alanine in the isolated perfused liver. Plasma activities of alanine aminotransferase and aspartate aminotransferase and hepatic glutathione S-transferase and catalase presented significant elevation in rats inoculated with 300 μg ⋅ kg(-1) Cdt venom. Liver lipoperoxidation was enormously increased by venom doses of 100, 200, and 300 μg ⋅kg(-1) , whereas glutathione S-transferase was not changed. Perfused livers from rats inoculated with 1500 μg ⋅kg(-1) venom showed increased production of lactate, pyruvate, and ammonia when alanine was the metabolic substrate. These results demonstrate that the Cdt venom can produce several changes in hepatocytes. The causes of the changes are possibly related to the disequilibrium in the redox homeostasis but also to specific needs of the poisoned organism, for example, an increased supply of lactate and pyruvate in response to an increased activity of the Cori cycle. Copyright © 2010 Wiley Periodicals, Inc.

  5. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  6. Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anaesthesia in man

    Energy Technology Data Exchange (ETDEWEB)

    Algotsson, L.; Messeter, K. (Department of Anaesthesiology, University Hospital, Lund (Sweden)); Rosen, I. (Department of Clinical Neurophysiology, University Hospital, Lund (Sweden)); Holmin, T. (Department of Surgery, University Hospital, Lund (Sweden))

    1992-01-01

    Seven normoventilated and five hyperventilated healthy adults undergoing cholecystectomy and anaesthetized with methohexitone, fentanyl and pancuronium were studied with measurement of cerebral blood flow (CBF), cereal metabolic rate of oxygen (CMRo[sub 2]), and quantified electroencephalography (EEG) under two sets of conditions: (1) 1.7% end-tidal concentration of isoflurane in air/oxygen: (2) 0.85% end-tidal concentration of isoflurane in nitrous oxide (N[sub 2]O)/oxygen. The object was to study the effects of N[sub 2]O during isoflurane anaesthesia on cerebral circulation, metabolism and neuroelectric activity. N[sub 2]O in the anaesthetic gas mixture caused a 43% (P<0.05) increase in CBF during normocarbic conditions but no significant change during hypocapnia. CMRo[sub 2] was not significantly altered by N[sub 2]O. EEG demonstrated an activated pattern with decreased low frequency activity and increased high frequency activity. The results confirm that N[sub 2]O is a potent cerebral vasodilator in man, although the mechanisms underlying the effects on CBF are still unclear. (au).

  7. Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens.

    Science.gov (United States)

    Abasht, Behnam; Mutryn, Marie F; Michalek, Ryan D; Lee, William R

    2016-01-01

    This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47-48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR1.3 or chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.

  8. Effect of Centella asiatica on Oxidative Stress and Lipid Metabolism in Hyperlipidemic Animal Models

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2014-01-01

    Full Text Available Hyperlipidemia and many other metabolic diseases are related to oxidative stress. Centella asiatica is a traditional Chinese medicine whose antioxidant effect in vitro has been reported. We are interested in whether it possesses this effect in vivo and hence modulates lipid metabolism. Therefore, experiments were carried out on mice and golden hamsters regarding its antioxidant and hypolipidemic effect. We observed that a fraction (CAF3 of the ethanol extract (CAE of Centella asiatica had a cholesterol decrease of 79% and a triglyceride decrease of 95% in acute mice model, so CAF3 was further investigated in high-fat-fed hamster model. It was shown that CAF3 increased SOD and GSH-Px activities and decreased MDA level, and it also improved TC, TG, LDL-C, HDL-C, AST, and ALT levels. L-CAT and SR-BI gene expression in hamsters were increased. Taken together, our data suggest that the CAF3 fraction of Centella asiatica has antioxidant and hypolipidemic properties.

  9. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.

    Directory of Open Access Journals (Sweden)

    Céline Aguer

    Full Text Available BACKGROUND: Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1 characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2 determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. METHODOLOGY/PRINCIPAL FINDINGS: Oxygen consumption rate (OCR, lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG, 5 mM glucose (low glucose (LG or 10 mM galactose (GAL. Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell

  10. Signal transduction pathways in erythrocyte nitric oxide metabolism under high fibrinogen levels

    Science.gov (United States)

    Saldanha, Carlota; Freitas, T.; Lopez de Almeida, J. P.; Silva-Herdade, A.

    2014-05-01

    Previous studies show that the fibrinogen molecule modulates the metabolism of nitric oxide (NO) in erythrocyte. The in vitro induced hiperfibrinogenemia interferes in the metabolism of the NO in the erythrocyte in dependence of the phosphorylation degree of the band 3. The soluble form of fibrinogen binds into CD47 protein present in the erythrocyte membrane. The soluble thrombomodulin is an inflammatory marker that binds to the erythrocyte CD47 in a site with a sequence peptide known as 4N1K. A study done in vitro shows that when hiperfibrinogenemia was induced in the presence of the peptide 4N1K agonist of CD47 it were observed variations in the efflux of NO from erythrocyte and an increase in the concentrations of GSNO, peroxinitrite, nitrite and nitrate of the erythrocytes. The aim of this work was to study the influence of the peptide 4N1K, on the metabolism of NO in the erythrocyte under high fibrinogen concentration and in the presence of inhibitors of the status of phosphorylation of protein band 3. In this in vitro study, whole blood samples were harvested from healthy subjects and NO, peroxynitrite, nitrite, nitrate and S-nitro-glutathione (GSNO) were determined in presence of 4N1K, calpeptine, Syk inhibitor and under high fibrinogen concentrations. The results obtained in erythrocytes under high fibrinogen levels when 4N1K is present with the Syk inhibitor or with calpeptine, showed in relation to the control samples increased significant concentrations of efflux of NO and of peroxynitrite, nitrite, nitrate and GSNO. In conclusion it was verified that in the in vitro model of hiperfibrinogenemia the peptide 4N1K, agonist of CD47, induces mobilization of NO in the erythrocyte in dependence of the status of phosphorylation of protein band 3.

  11. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  12. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    Adaptive responses associated with environmental stressors are critical to cell survival. These involve the modulation of central signaling protein functions through site-specific and enzymatically reversible oxidative modifications of methionines to coordinate cellular metabolism, energy utilization, and calcium signaling. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. Thus, depending on either the ecological niche of the organism or the cellular milieu of different organ systems, cellular metabolism can be fine-tuned to maintain optimal function in the face of variable amounts of collateral oxidative damage. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met{sup 144} or Met{sup 145} results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylationdependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in

  13. Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (-)-epicatechin.

    Science.gov (United States)

    Calabró, Valeria; Piotrkowski, Barbara; Fischerman, Laura; Vazquez Prieto, Marcela A; Galleano, Monica; Fraga, Cesar G

    2016-04-01

    Fructose overload promotes functional and metabolic derangements in humans and in animal experimental models. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate the development of metabolic diseases. In this work we investigated the effects of (-)-epicatechin on the modifications induced by fructose overload in the rat heart in terms of nitric oxide and superoxide metabolism. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without (-)-epicatechin (20 mg per kg body weight per day) in the rat chow diet. These conditions of fructose overload did not lead to overt manifestations of heart hypertrophy or tissue remodeling. However, biochemical and molecular changes were observed and could represent the onset of functional alterations. (-)-Epicatechin prevented a compromised NO bioavailability and the development of oxidative stress produced by fructose overload essentially acting on superoxide anion metabolism. In this line, the increase in superoxide anion production, the overexpression of NOX2 subunit p47phox and of NOX4, the decrease in superoxide dismutase activity, and the higher oxidized/reduced glutathione ratio installed by fructose overload were absent in the rats receiving (-)-epicatechin. These results support the hypothesis that diets rich in (-)-epicatechin could prevent the onset and progression of heart dysfunctions associated with metabolic alterations.

  14. Differential Oxidative Metabolism and 5-Ketoclomazone Accumulation Are Involved in Echinochloa phyllopogon Resistance to Clomazone1[C][W][OA

    Science.gov (United States)

    Yasuor, Hagai; Zou, Wei; Tolstikov, Vladimir V.; Tjeerdema, Ronald S.; Fischer, Albert J.

    2010-01-01

    Echinochloa phyllopogon (late watergrass) is a major weed of California rice (Oryza sativa) that has evolved cytochrome P450-mediated metabolic resistance to different herbicides with multiple modes of action. E. phyllopogon populations from Sacramento Valley rice fields have also recently shown resistance to the herbicide clomazone. Clomazone is a proherbicide that must be metabolized to 5-ketoclomazone, which is the active compound that inhibits deoxyxylulose 5-phosphate synthase, a key enzyme of the nonmevalonate isoprenoid pathway. This study evaluated the differential clomazone metabolism within strains of the same species to investigate whether enhanced oxidative metabolism also confers clomazone resistance in E. phyllopogon. Using reverse-phase liquid chromatography-tandem mass spectrometry techniques in the multireaction monitoring mode, we elucidated that oxidative biotransformations are involved as a mechanism of clomazone resistance in this species. E. phyllopogon plants hydroxylated mostly the isoxazolidinone ring of clomazone, and clomazone hydroxylation activity was greater in resistant than in susceptible plants. The major clomazone metabolites resulted from monohydroxylation and dihydroxylation of the isoxazolidinone ring. Resistant plants accumulated 6- to 12-fold more of the monohydroxylated metabolite than susceptible plants, while susceptible plants accumulated 2.5-fold more of the phytotoxic metabolite of clomazone, 5-ketoclomazone. Our results demonstrate that oxidative metabolism endows multiple-herbicide-resistant E. phyllopogon with cross-resistance to clomazone through enhanced herbicide degradation and lower accumulation of the toxic metabolite in resistant versus susceptible plants. PMID:20207709

  15. Oxidized LDL Is Associated With Metabolic Syndrome Traits Independently of Central Obesity and Insulin Resistance.

    Science.gov (United States)

    Hurtado-Roca, Yamilee; Bueno, Hector; Fernandez-Ortiz, Antonio; Ordovas, Jose Maria; Ibañez, Borja; Fuster, Valentin; Rodriguez-Artalejo, Fernando; Laclaustra, Martin

    2017-02-01

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baseline data from 3,987 subjects without diabetes in the Progression of Early Subclinical Atherosclerosis (PESA) Study. For the second, third, and fourth ox-LDL quartiles versus the first, the odds ratios (95% CI) for MS were 0.84 (0.52, 1.36), 1.47 (0.95, 2.32), and 2.57 (1.66, 4.04) (P insulin resistance (HOMA-IR). Results showing the same trend were found for all MS components except glucose concentration. Ox-LDL mediated 13.9% of the association of waist circumference with triglycerides and only 1-3% of the association with HDL-cholesterol, blood pressure, and insulin concentration. HOMA-IR did not mediate the association between ox-LDL and MS components. This study found higher ox-LDL concentrations were associated with MS and its components independently of central obesity and insulin resistance. Ox-LDL may reflect core mechanisms through which MS components develop and progress in parallel with insulin resistance and could be a clinically relevant predictor of MS development. © 2017 by the American Diabetes Association.

  16. Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Eunice Molinar-Toribio

    Full Text Available SHROB rats have been suggested as a model for metabolic syndrome (MetS as a situation prior to the onset of CVD or type-2 diabetes, but information on descriptive biochemical parameters for this model is limited. Here, we extensively evaluate parameters related to CVD and oxidative stress (OS in SHROB rats. SHROB rats were monitored for 15 weeks and compared to a control group of Wistar rats. Body weight was recorded weekly. At the end of the study, parameters related to CVD and OS were evaluated in plasma, urine and different organs. SHROB rats presented statistically significant differences from Wistar rats in CVD risk factors: total cholesterol, LDL-cholesterol, triglycerides, apoA1, apoB100, abdominal fat, insulin, blood pressure, C-reactive protein, ICAM-1 and PAI-1. In adipose tissue, liver and brain, the endogenous antioxidant systems were activated, yet there was no significant oxidative damage to lipids (MDA or proteins (carbonylation. We conclude that SHROB rats present significant alterations in parameters related to inflammation, endothelial dysfunction, thrombotic activity, insulin resistance and OS measured in plasma as well as enhanced redox defence systems in vital organs that will be useful as markers of MetS and CVD for nutrition interventions.

  17. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles

    Science.gov (United States)

    Jiang, Lizhen; Yu, Yongbo; Li, Yang; Yu, Yang; Duan, Junchao; Zou, Yang; Li, Qiuling; Sun, Zhiwei

    2016-02-01

    Amorphous silica nanoparticles (SiNPs) have been extensively used in biomedical applications due to their particular characteristics. The increased environmental and iatrogenic exposure of SiNPs gained great concerns on the biocompatibility and hematotoxicity of SiNPs. However, the studies on the hemolytic effects of amorphous SiNPs in human erythrocytes are still limited. In this study, amorphous SiNPs with 58 nm were selected and incubated with human erythrocytes for different times (30 min and 2 h) at various concentrations (0, 10, 20, 50, and 100 μg/mL). SiNPs induced a dose-dependent increase in percent hemolysis and significantly increased the malondialdehyde (MDA) content and decreased the superoxide dismutase (SOD) activity, leading to oxidative damage in erythrocytes. Hydroxyl radical (·OH) levels were detected by electron spin resonance (ESR), and the decreased elimination rates of ·OH showed SiNPs induced low antioxidant ability in human erythrocytes. Na+-K+ ATPase activity and Ca2+-Mg2+ ATPase activity were found remarkably inhibited after SiNP treatment, possibly causing energy sufficient in erythrocytes. Percent hemolysis of SiNPs was significantly decreased in the presence of N-acetyl-cysteine (NAC) and adenosine diphosphate (ADP). It was concluded that amorphous SiNPs caused dose-dependent hemolytic effects in human erythrocytes. Oxidative damage and energy metabolism disorder contributed to the hemolytic effects of SiNPs in vitro.

  18. Changes in cerebral oxidative metabolism during neonatal seizures following hypoxic ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Subhabrata Mitra

    2016-08-01

    Full Text Available Seizures are common following hypoxic ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain, however the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO] and hemodynamics during recurrent neonatal seizures following hypoxic ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude integrated electro-encephalogram (aEEG. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean EEG voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism.

  19. Association of Inflammatory and Oxidative Stress Markers with Metabolic Syndrome in Asian Indians in India

    Directory of Open Access Journals (Sweden)

    Veena S. Rao

    2011-01-01

    Full Text Available Metabolic syndrome (MetS is a primary risk factor for cardiovascular disease and is associated with a proinflammatory state. Here, we assessed the contribution of inflammatory and oxidative stress markers towards prediction of MetS. A total of 2316 individuals were recruited in Phase I of the Indian Atherosclerosis Research Study (IARS. Modified ATPIII guidelines were used for classification of subjects with MetS. Among the inflammatory and oxidative stress markers studied, levels of hsCRP (P<.0001, Neopterin (P=.036, and oxLDL (P<.0001 were significantly higher among subjects with MetS. Among the markers we tested, oxLDL stood out as a robust predictor of MetS in the IARS population (OR 4.956 95% CI 2.504–9.810; P<.0001 followed by hsCRP (OR 1.324 95% CI 1.070–1.638; P=.010. In conclusion, oxLDL is a candidate predictor for MetS in the Asian Indian population.

  20. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    NARCIS (Netherlands)

    Assies, J.; Mocking, R.J.; Lok, A.; Ruhe, H.G.; Pouwer, F.; Schene, A.H.

    2014-01-01

    OBJECTIVE: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive respons

  1. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: A nutrigenomics approach

    NARCIS (Netherlands)

    Bakker, G.C.M.; Erk, M.J. van; Pellis, L.; Wopereis, S.; Rubingh, C.M.; Cnubben, N.H.P.; Kooistra, T.; Ommen, B. van; Hendriks, H.F.J.

    2010-01-01

    Background: Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Objective: It was hypothesized that specific dietary components are able to reduce low-grade inflammation as well as metabolic and oxidative stress. Design: Dietary products

  2. Chloroguanide metabolism in relation to the efficacy in malaria prophylaxis and the S-mephenytoin oxidation in Tanzanians

    DEFF Research Database (Denmark)

    Skjelbo, E; Mutabingwa, T K; Bygbjerg, Ib Christian;

    1996-01-01

    S-Mephenytoin and chloroguanide (proguanil) oxidation was studied in 216 tanzanians. The mephenytoin S/R ratio in urine ranged from 0.9, were arbitrarily defined as poor metabolizers of mephenytoin. The chloroguanide/cycloguanil ratio ranged from 0.82 to 249. There was a significant correlation b...

  3. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: A nutrigenomics approach

    NARCIS (Netherlands)

    Bakker, G.C.M.; Erk, M.J. van; Pellis, L.; Wopereis, S.; Rubingh, C.M.; Cnubben, N.H.P.; Kooistra, T.; Ommen, B. van; Hendriks, H.F.J.

    2010-01-01

    Background: Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Objective: It was hypothesized that specific dietary components are able to reduce low-grade inflammation as well as metabolic and oxidative stress. Design: Dietary products

  4. Metabolic changes, hypothalamo-pituitary-adrenal axis and oxidative stress after short-term starvation in healthy pregnant women.

    Science.gov (United States)

    Schraag, Sabrina; Mandach, Ursula von; Schweer, Horst; Beinder, Ernst

    2007-01-01

    To compare metabolic effects and oxidative stress in pregnant and non-pregnant women after 12 h of fasting. Twenty-six healthy women with uncomplicated singleton pregnancies between the 24(th) and 28(th) gestational week were recruited. After an overnight fast, venous blood samples and urine samples were tested for metabolic parameters characteristic for starvation, cortisol and oxidative stress products. Healthy non-pregnant women matched by age, body mass index and length of fasting comprised the control group. The metabolic parameters beta-hydroxybutyrate and free fatty acids in blood and ketones in urine showed no differences in pregnant and non-pregnant women. However, the oxidative stress parameters, 8,12-iso-iPF(2alpha)-VI, isoprostanes and malondialdehyde were significantly higher in pregnant subjects, as was cortisol. Healthy pregnant women are exposed to oxidative stress and activation of the hypothalamo-pituitary-adrenal axis, but not to metabolic changes resembling starvation during short fasting periods in comparison to non-pregnant healthy women.

  5. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    NARCIS (Netherlands)

    Assies, J.; Mocking, R. J. T.; Lok, A.; Ruhe, H. G.; Pouwer, F.; Schene, A. H.

    2014-01-01

    Objective: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive respons

  6. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    NARCIS (Netherlands)

    Assies, J.; Mocking, R.J.; Lok, A.; Ruhe, H.G.; Pouwer, F.; Schene, A.H.

    2014-01-01

    OBJECTIVE: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive

  7. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    NARCIS (Netherlands)

    Assies, J.; Mocking, R. J. T.; Lok, A.; Ruhe, H. G.; Pouwer, F.; Schene, A. H.

    Objective: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive

  8. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Alejandra Sekler

    2008-08-01

    Full Text Available Alejandra Sekler1,2, José M Jiménez2, Leonel Rojo2, Edgard Pastene3, Patricio Fuentes4, Andrea Slachevsky4, Ricardo B Maccioni1,21Center of Cognitive Neurosciences, International Center for Biomedicine (ICC, Santiago, Chile; 2Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile; 3Department of Pharmacy, Faculty of Pharmacy, University of Concepcion, Concepción, Chile; 4Unidad de Neurología Cognitiva y Demencias, Servicio de Neurología, Hospital del Salvador, Santiago, ChileAbstract: Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD, Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP, plasma malondialdehyde and total antioxidative capacity (TAC, as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59 and a control group of neurologically normal subjects (n = 29, attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery, while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC of

  9. Oxidative metabolism and muscle biochemical profile of polo horses supplemented with an ADE vitamin complex

    Directory of Open Access Journals (Sweden)

    Rebeca A. Weigel

    2013-12-01

    Full Text Available Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG and a control group (CG. The TG animals received the ADE vitamin complex (1mL/50 kg of body weight by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK, lactate dehydrogenase (LDH, lactate, glucose, aspartate aminotransferase (AST, glutathione (GSH, superoxide dismutase (SOD and malondialdehyde (MDA were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.

  10. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast

    Science.gov (United States)

    2013-01-01

    Abstract Significance: Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn2+, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn2+ with superoxide and specifically shield proteins from oxidative damage. Recent Advances: There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn2+ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. Critical Issues: What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn2+-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. Future Directions: Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn2+. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes. Antioxid. Redox Signal. 19, 933–944. PMID:23249283

  11. Migration of monocytes after intracerebral injection.

    Science.gov (United States)

    Kaminski, Miriam; Bechmann, Ingo; Kiwit, Jürgen; Glumm, Jana

    2012-01-01

    Recently, we monitored green fluorescent protein (GFP)-expressing monocytes after injection at the entorhinal cortex lesion (ECL) site in mice. We followed their migration out of the central nervous system (CNS) along olfactory nerve fibers penetrating the lamina cribrosa, within the nasal mucosa, and their subsequent appearance within the deep cervical lymph nodes (CLN), with numbers peaking at day 7. This is the same route activated T cells use for reaching the CLN, as we have shown before. Interestingly, GFP cells injected into the brain and subsequently found in the CLN exhibited ramified morphologies, which are typical of microglia and dendritic cells. To gain more insight into immunity and regeneration within the CNS we want to monitor injected monocytes using magnetic resonance imaging (MRI) after labeling with very small superparamagnetic iron oxide particles (VSOP). Due to their small size, nanoparticles have huge potential for magnetic labeling of different cell populations and their MRI tracking in vivo. So far we have verified that incubation with VSOP particles does not alter their migration pattern after ECL.

  12. Loss of perilipin 2 in cultured myotubes enhances lipolysis and redirects the metabolic energy balance from glucose oxidation towards fatty acid oxidation.

    Science.gov (United States)

    Feng, Yuan Z; Lund, Jenny; Li, Yuchuan; Knabenes, Irlin K; Bakke, Siril S; Kase, Eili Tranheim; Lee, Yun K; Kimmel, Alan R; Thoresen, G Hege; Rustan, Arild Christian; Dalen, Knut Tomas

    2017-08-19

    Lipid droplet (LD) coating proteins are essential for the formation and stability of intracellular LDs. Plin2 is an abundant LD coating protein in skeletal muscle, but its importance for muscle function is unclear. We show that myotubes established from Plin2-/- mice contain reduced content of LDs and accumulate less oleic acid in triacylglycerol (TAG), due to elevated LD hydrolysis compared to Plin2+/+ myotubes. The reduced ability to store TAG in LDs in Plin2-/- myotubes is accompanied by a shift in energy metabolism. Plin2-/- myotubes are characterized by increased oxidation of OA, lower glycogen synthesis and reduced glucose oxidation compared to Plin2+/+ myotubes, perhaps reflecting competition between fatty acids (FAs) and glucose as part of the Randle Cycle. In accord with these metabolic changes, Plin2-/- myotubes have elevated expression of peroxisome proliferator-activated receptor alpha and Ppar gamma coactivator 1 alpha, transcription factors that stimulate expression of genes important for FA oxidation, while genes involved in glucose uptake and oxidation are suppressed. Loss of Plin2 had no impact on insulin-stimulated Akt phosphorylation. Our results suggest that Plin2 is essential for protecting the pool of skeletal muscle LDs to avoid an uncontrolled hydrolysis of stored TAG and to balance skeletal muscle energy metabolism. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  13. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Science.gov (United States)

    Moreno-Arriola, Elizabeth; Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Carmona-Aparicio, Liliana; Ortega-Cuellar, Daniel

    2014-01-01

    Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology. PMID:24955209

  14. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Directory of Open Access Journals (Sweden)

    Elizabeth Moreno-Arriola

    2014-01-01

    Full Text Available Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.

  15. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    Science.gov (United States)

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.

  16. Dyslipidemic Diet-Induced Monocyte “Priming” and Dysfunction in Non-Human Primates Is Triggered by Elevated Plasma Cholesterol and Accompanied by Altered Histone Acetylation

    Directory of Open Access Journals (Sweden)

    John D. Short

    2017-08-01

    Full Text Available Monocytes and the recruitment of monocyte-derived macrophages into sites of inflammation play a key role in atherogenesis and other chronic inflammatory diseases linked to cardiometabolic syndrome and obesity. Previous studies from our group have shown that metabolic stress promotes monocyte priming, i.e., enhanced adhesion and accelerated chemotaxis of monocytes in response to chemokines, both in vitro and in dyslipidemic LDLR−/− mice. We also showed that metabolic stress-induced monocyte dysfunction is, at least to a large extent caused by the S-glutathionylation, inactivation, and subsequent degradation of mitogen-activated protein kinase phosphatase 1. Here, we analyzed the effects of a Western-style, dyslipidemic diet (DD, which was composed of high levels of saturated fat, cholesterol, and simple sugars, on monocyte (dysfunction in non-human primates (NHPs. We found that similar to mice, a DD enhances monocyte chemotaxis in NHP within 4 weeks, occurring concordantly with the onset of hypercholesterolemia but prior to changes in triglycerides, blood glucose, monocytosis, or changes in monocyte subset composition. In addition, we identified transitory decreases in the acetylation of histone H3 at the lysine residues 18 and 23 in metabolically primed monocytes, and we found that monocyte priming was correlated with the acetylation of histone H3 at lysine 27 after an 8-week DD regimen. Our data show that metabolic stress promotes monocyte priming and hyper-chemotactic responses in NHP. The histone modifications accompanying monocyte priming in primates suggest a reprogramming of the epigenetic landscape, which may lead to dysregulated responses and functionalities in macrophages derived from primed monocytes that are recruited to sites of inflammation.

  17. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Amit Pal Singh

    2016-01-01

    Full Text Available Nitric oxide is a gaseous signalling molecule and has a profound impact on plant growth and development. It is reported to serve as pro oxidant as well as antioxidant in plant system. In present study, we evaluated the protective role of nitric oxide against AsV toxicity in rice plants. Arsenate exposure has hampered the plant growth, reduced the chlorophyll content and enhanced the oxidative stress while the exogenous NO supplementation has reverted these symptoms. Nitric oxide supplementation has reduced the As accumulation in root as well as shoot. Nitric oxide supplementation to AsV exposed plants has reduced the gene expression level of OsLsi1 and OsLsi2. Arsenate stress significantly impacted thiol metabolism, it reduced GSH content and GSH/GSSG ratio and enhanced the level of PCs. Nitric oxide supplementation maintained the GSH/GSSG ratio and reduced the level of PCs. Nitric oxide supplementation reverted AsV induced iron deficiency in shoot and had significant impact of gene expression level of various iron transporters (OsYSL2, OsFRDL1, OsIRT1 and OsIRO2. Conclusively, exogenous application of nitric oxide could be advantageous against AsV toxicity and could confer the tolerance to AsV stress in rice.

  18. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  19. Assessment of right ventricular oxidative metabolism by PET in patients with idiopathic dilated cardiomyopathy undergoing cardiac resynchronisation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Knuuti, Juhani; Naum, Alexandru; Stolen, Kira Q.; Kalliokoski, Riikka [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); Sundell, Jan [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); University of Turku, Department of Medicine, Turku (Finland); Engblom, Erik; Koistinen, Juhani; Airaksinen, K.E. Juhani [University of Turku, Department of Medicine, Turku (Finland); Ylitalo, Antti [Satakunta Central Hospital, Department of Medicine, Pori (Finland); Nekolla, Stephan G. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Klinik und Poliklinik fuer Nuklearmedizin, Munich (Germany); Bax, K.E. Jeroen J. [Leiden University, Department of Cardiology, Leiden (Netherlands)

    2004-12-01

    Right ventricular (RV) performance is known to have prognostic value in patients with congestive heart failure (CHF). Cardiac resynchronisation therapy (CRT) has been found to enhance left ventricular (LV) energetics and metabolic reserve in patients with heart failure. The interplay between the LV and RV may play an important role in CRT response. The purpose of the study was to investigate RV oxidative metabolism, metabolic reserve and the effects of CRT in patients with CHF and left bundle brach block. In addition, the role of the RV in the response to CRT was evaluated. Ten patients with idiopathic dilated cardiomyopathy who had undergone implantation of a biventricular pacemaker 8{+-}5 months earlier were studied under two conditions: CRT ON and after CRT had been switched OFF for 24 h. Oxidative metabolism was measured using [{sup 11}C]acetate positron emission tomography (K{sub mono}). The measurements were performed at rest and during dobutamine-induced stress (5 {mu}g/kg per minute). LV performance and interventricular mechanical delay (interventricular asynchrony) were measured using echocardiography. CRT had no effect on RV K{sub mono} at rest (ON: 0.052{+-}0.014, OFF: 0.047{+-}0.018, NS). Dobutamine-induced stress increased RV K{sub mono} significantly under both conditions but oxidative metabolism was more enhanced when CRT was ON (0.076{+-}0.026 vs 0.065{+-}0.027, p=0.003). CRT shortened interventricular delay significantly (45{+-}33 vs 19{+-}35 ms, p=0.05). In five patients the response to CRT was striking (32% increase in mean LV stroke volume, range 18-36%), while in the other five patients no response was observed (mean change +2%, range -6% to +4%). RV K{sub mono} and LV stroke volume response to CRT correlated inversely (r=-0.66, p=0.034). None of the other measured parameters, including all LV parameters and electromechanical parameters, were associated with the response to CRT. In responders, RV K{sub mono} with CRT OFF was significantly lower

  20. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders.

    Science.gov (United States)

    Chen, Zhimin; Wang, Guo-Xiao; Ma, Sara L; Jung, Dae Young; Ha, Hyekyung; Altamimi, Tariq; Zhao, Xu-Yun; Guo, Liang; Zhang, Peng; Hu, Chun-Rui; Cheng, Ji-Xin; Lopaschuk, Gary D; Kim, Jason K; Lin, Jiandie D

    2017-08-01

    Brown and white adipose tissue exerts pleiotropic effects on systemic energy metabolism in part by releasing endocrine factors. Neuregulin 4 (Nrg4) was recently identified as a brown fat-enriched secreted factor that ameliorates diet-induced metabolic disorders, including insulin resistance and hepatic steatosis. However, the physiological mechanisms through which Nrg4 regulates energy balance and glucose and lipid metabolism remain incompletely understood. The aims of the current study were: i) to investigate the regulation of adipose Nrg4 expression during obesity and the physiological signals involved, ii) to elucidate the mechanisms underlying Nrg4 regulation of energy balance and glucose and lipid metabolism, and iii) to explore whether Nrg4 regulates adipose tissue secretome gene expression and adipokine secretion. We examined the correlation of adipose Nrg4 expression with obesity in a cohort of diet-induced obese mice and investigated the upstream signals that regulate Nrg4 expression. We performed metabolic cage and hyperinsulinemic-euglycemic clamp studies in Nrg4 transgenic mice to dissect the metabolic pathways regulated by Nrg4. We investigated how Nrg4 regulates hepatic lipid metabolism in the fasting state and explored the effects of Nrg4 on adipose tissue gene expression, particularly those encoding secreted factors. Adipose Nrg4 expression is inversely correlated with adiposity and regulated by pro-inflammatory and anti-inflammatory signaling. Transgenic expression of Nrg4 increases energy expenditure and augments whole body glucose metabolism. Nrg4 protects mice from diet-induced hepatic steatosis in part through activation of hepatic fatty acid oxidation and ketogenesis. Finally, Nrg4 promotes a healthy adipokine profile during obesity. Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2

  1. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    Science.gov (United States)

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  2. Correlation of serum homocysteine metabolism and oxidative stress level with peripheral nerve damage in patients with Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Wei-Xia Gu; Zhi-Qing Zhuang; Mo-Lan Wang; Jun Zhu

    2016-01-01

    Objective:To analyze the correlation of serum homocysteine metabolism and oxidative stress level with peripheral nerve damage in patients with Parkinson's disease.Methods:A total of 58 patients with Parkinson's disease and 67 normal human beings were included in the study, levels of plasma homocysteine (Hcy) as well as superoxide dismutase (SOD), GSH, malondialdehyde (MDA) and other oxidative stress indexes were detected, and common peroneal nerve motor conduction velocity (MCV), latent period (LP) and amplitude (Amp) were determined.Results: Serum Hcy level of observation group was higher than that of control group while folic acid and vitamin B6 levels were lower than those of control group; serum oxidative indexes LHP, H2O2, AOPP and MDA levels were higher than those of control group while antioxidant indexes SOD T, SOD Mn, SOD Cu-Zn, GSH-PX, T-AOC and CAT levels were lower than those of control group; common peroneal nerve MCV and Amp values were lower than those of control group while LP value was higher than that of control group. Peripheral nerve damage parameter values in patients with Parkinson's disease were directly correlated with serum levels of Hcy metabolism indexes and oxidative stress indexes. Conclusions: Peripheral nerve damage in patients with Parkinson's disease is associated with hyperhomocysteinemia and oxidative stress disorder, and intervention in serum levels of Hcy and oxidative stress indexes is expected to become a new way for treatment of Parkinson's disease.

  3. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomas P

    2012-02-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  4. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2011-01-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  5. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II-oxidizer

    Directory of Open Access Journals (Sweden)

    Jennyfer eMIOT

    2015-09-01

    Full Text Available Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is however thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had however never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry (NanoSIMS. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidences of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasm encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a strategy of survival in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern

  6. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

    Science.gov (United States)

    Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie

    2015-01-01

    Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples. PMID

  7. Interrelationships between paraoxonase-1 and monocyte chemoattractant protein-1 in the regulation of hepatic inflammation.

    Science.gov (United States)

    Camps, Jordi; Marsillach, Judit; Rull, Anna; Alonso-Villaverde, Carlos; Joven, Jorge

    2010-01-01

    Oxidative stress and inflammation play a central role in the onset and development of liver diseases irrespective of the agent causing the hepatic impairment. The monocyte chemoattractant protein-1 is intimately involved in the inflammatory reaction and is directly correlated with the degree of hepatic inflammation in patients with chronic liver disease. Recent studies showed that hepatic paraoxonase-1 may counteract the production of the monocyte chemoattractant protein-1, thus playing an anti-inflammatory role. The current review summarises experiments suggesting how paraoxonase-1 activity and expression are altered in liver diseases, and their relationships with the monocyte chemoattractant protein-1 and inflammation.

  8. Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450

    Science.gov (United States)

    Oláh, Julianna; Mulholland, Adrian J.; Harvey, Jeremy N.

    2011-01-01

    Cytochrome P450 enzymes play key roles in the metabolism of the majority of drugs. Improved models for prediction of likely metabolites will contribute to drug development. In this work, two possible metabolic routes (aromatic carbon oxidation and O-demethylation) of dextromethorphan are compared using molecular dynamics (MD) simulations and density functional theory (DFT). The DFT results on a small active site model suggest that both reactions might occur competitively. Docking and MD studies of dextromethorphan in the active site of P450 2D6 show that the dextromethorphan is located close to heme oxygen in a geometry apparently consistent with competitive metabolism. In contrast, calculations of the reaction path in a large protein model [using a hybrid quantum mechanical–molecular mechanics (QM/MM) method] show a very strong preference for O-demethylation, in accordance with experimental results. The aromatic carbon oxidation reaction is predicted to have a high activation energy, due to the active site preventing formation of a favorable transition-state structure. Hence, the QM/MM calculations demonstrate a crucial role of many active site residues in determining reactivity of dextromethorphan in P450 2D6. Beyond substrate binding orientation and reactivity of Compound I, successful metabolite predictions must take into account the detailed mechanism of oxidation in the protein. These results demonstrate the potential of QM/MM methods to investigate specificity in drug metabolism. PMID:21444768

  9. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome.

    Science.gov (United States)

    Marchesi, Chiara; Ebrahimian, Talin; Angulo, Orlando; Paradis, Pierre; Schiffrin, Ernesto L

    2009-12-01

    The metabolic syndrome represents a constellation of cardiovascular risk factors that promote the development of cardiovascular disease. Oxidative stress is a mediator of endothelial dysfunction and vascular remodeling. We investigated vascular dysfunction in the metabolic syndrome and the oxidant mechanisms involved. New Zealand obese (NZO) mice with metabolic syndrome and New Zealand black control mice were studied. NZO mice showed insulin resistance and increased visceral fat and blood pressure compared with New Zealand black mice. Mesenteric resistance arteries from NZO mice exhibited increased media:lumen ratio and media cross-sectional area, demonstrating hypertrophic vascular remodeling. Endothelium-dependent relaxation to acetylcholine, assessed by pressurized myography, was impaired in NZO mice, not affected by N(G)-nitro-l-arginine methyl ester, inhibitor of endothelial NO synthase, and improved by the antioxidant Tempol, suggesting reduced NO bioavailability and increased oxidative stress. Dimer:monomer ratio of endothelial NO synthase was decreased in NZO mice compared with New Zealand black mice, suggesting endothelial NO synthase uncoupling. Furthermore, vascular superoxide and peroxynitrite production was increased, as well as adhesion molecule expression. Perivascular adipose tissue of NZO mice showed increased superoxide production and NADPH oxidase activity, as well as adipocyte hypertrophy, associated with inflammatory Mac-3-positive cell infiltration. Vasoconstriction to norepinephrine decreased in the presence of perivascular adipose tissue in New Zealand black mice but was unaffected by perivascular adipose tissue in NZO mice, suggesting loss of perivascular adipose tissue anticontractile properties. Our data suggest that this rodent model of metabolic syndrome is associated with perivascular adipose inflammation and oxidative stress, hypertrophic resistance artery remodeling, and endothelial dysfunction, the latter a result of decreased NO

  10. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity.

    Science.gov (United States)

    Cantó, Carles; Houtkooper, Riekelt H; Pirinen, Eija; Youn, Dou Y; Oosterveer, Maaike H; Cen, Yana; Fernandez-Marcos, Pablo J; Yamamoto, Hiroyasu; Andreux, Pénélope A; Cettour-Rose, Philippe; Gademann, Karl; Rinsch, Chris; Schoonjans, Kristina; Sauve, Anthony A; Auwerx, Johan

    2012-06-06

    As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.

  11. Oxidative stress disturbs energy metabolism of mitochondria in ethanol-induced gastric mucosa injury

    Institute of Scientific and Technical Information of China (English)

    Jin-Shui Pan; Shao-Zhen He; Hong-Zhi Xu; Xiao-Juan Zhan; Xiao-Ning Yang; Hong-Min Xiao; Hua-Xiu Shi; Jian-Lin Ren

    2008-01-01

    AIM: To study the role of mitochondrial energy disorder in the pathogenesis of ethanol-induced gastric mucosa injury.METHODS: Wistar rats were used in this study. A gastric mucosal injury model was established by giving the rats alcohol. Gross and microscopic appearance of gastric mucosa and ultrastructure of mitochondria were evaluated. Malondiadehyde (MDA) in gastric mucosa was measured with thiobarbituric acid. Expression of ATP synthase (ATPase) subunits 6 and 8 in mitochondrial DNA (mtDNA) was determined by reverse transcription polymerase chain reaction (RT-PCR).RESULTS: The gastric mucosal lesion index was correlated with the MDA content in gastric mucosa. As the concentration of ethanol was elevated and the exposure time to ethanol was extended, the content of MDA in gastric mucosa increased and the extent of damage aggravated. The ultrastructure of mitochondria was positively related to the ethanol concentration and exposure time. The expression of mtDNA ATPase subunits 6 and 8 mRNA declined with the increasing MDA content in gastric mucosa after gavage with ethanol.CONCLUSION: Ethanol-induced gastric mucosa injury is related to oxidative stress, which disturbs energy metabolism of mitochondria and plays a critical role in the pathogenesis of ethanol-induced gastric mucosa injury.

  12. Manganese is required for oxidative metabolism in unstressed Bradyrhizobium japonicum cells

    Science.gov (United States)

    Hohle, Thomas H.; O’Brian, Mark R.

    2012-01-01

    Recent studies of Mn2+ transport mutants indicate that manganese is essential for unstressed growth in some bacterial species, but is required primarily for induced stress responses in others. A Bradyrhizobium japonicum mutant defective in the high affinity Mn2+ transporter gene mntH has a severe growth phenotype under manganese limitation, suggesting a requirement for the metal under unstressed growth. Here, we found that activities of superoxide dismutase and the glycolytic enzyme pyruvate kinase were deficient in an mntH strain grown under manganese limitation. We identified pykM as the only pyruvate kinase-encoding gene based on deficiency in activity of a pykM mutant, rescue of the growth phenotype with pyruvate, and pyruvate kinase activity of purified recombinant PykM. PykM is unusual in that it required Mn2+ rather than Mg2+ for high activity, and that neither fructose 1,6-bisphosphate nor AMP was a positive allosteric effector. The mntH-dependent superoxide dismutase is encoded by sodM, the only expressed superoxide dismutase-encoding gene under unstressed growth conditions. An mntH mutant grew more slowly on pyruvate under manganese-limited conditions than did a pykM sodM double mutant, implying additional manganese-dependent processes. The findings implicate roles for manganese in key steps in unstressed oxidative metabolism in B. japonicum. PMID:22463793

  13. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis.

    Science.gov (United States)

    Cassano, Paolo; Petrie, Samuel R; Hamblin, Michael R; Henderson, Theodore A; Iosifescu, Dan V

    2016-07-01

    We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD.

  14. TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase.

    Directory of Open Access Journals (Sweden)

    Yunwei Lou

    Full Text Available TIPE2, the tumor necrosis factor (TNF-alpha-induced protein 8-like 2 (TNFAIP8L2, plays an essential role in maintaining immune homeostasis. It is highly expressed in macrophages and negatively regulates inflammation through inhibiting Toll-like receptor signaling. In this paper, we utilized RAW264.7 cells stably transfected with a TIPE2 expression plasmid, as well as TIPE2-deficient macrophages to study the roles of TIPE2 in LPS-induced nitric oxide (NO and urea production. The results showed that TIPE2-deficiency significantly upregulated the levels of iNOS expression and NO production in LPS-stimulated macrophages, but decreased mRNA levels of arginase I and urea production. However, TIPE2 overexpression in macrophages was capable of downregulating protein levels of LPS-induced iNOS and NO, but generated greater levels of arginase I and urea production. Furthermore, TIPE2-/- mice had higher iNOS protein levels in lung and liver and higher plasma NO concentrations, but lower levels of liver arginase I compared to LPS-treated WT controls. Interestingly, significant increases in IκB degradation and phosphorylation of JNK, p38, and IκB were observed in TIPE2-deficient macrophages following LPS challenge. These results strongly suggest that TIPE2 plays an important role in shifting L-arginase metabolism from production of NO to urea, during host inflammatory response.

  15. Lipid Peroxidation, Nitric Oxide Metabolites, and Their Ratio in a Group of Subjects with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gregorio Caimi

    2014-01-01

    Full Text Available Our aim was to evaluate lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS, nitric oxide metabolites (nitrite + nitrate expressed as NOx, and TBARS/NOx ratio in a group of subjects with metabolic syndrome (MS. In this regard we enrolled 106 subjects with MS defined according to the IDF criteria, subsequently subdivided into diabetic (DMS and nondiabetic (NDMS and also into subjects with a low triglycerides/HDL-cholesterol (TG/HDL-C index or with a high TG/HDL-C index. In the entire group and in the four subgroups of MS subjects we found an increase in TBARS and NOx levels and a decrease in TBARS/NOx ratio in comparison with normal controls. Regarding all these parameters no statistical difference between DMS and NDMS was evident, but a significant increase in NOx was present in subjects with a high TG/HDL-C index in comparison with those with a low index. In MS subjects we also found a negative correlation between TBARS/NOx ratio and TG/HDL-C index. Considering the hyperactivity of the inducible NO synthase in MS, these data confirm the altered redox and inflammatory status that characterizes the MS and suggest a link between lipid peroxidation, inflammation, and insulin resistance, evaluated as TG/HDL-C index.

  16. Effects of Hormone Therapy on Oxidative Stress in Postmenopausal Women with Metabolic Syndrome

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A.; Zacarías-Flores, Mariano; Castrejón-Delgado, Lizett; Ruiz-Rodríguez, Ana Karen; Mendoza-Núñez, Víctor Manuel

    2016-01-01

    The aim of this study was to determine the effect of oral hormone therapy (HT) on oxidative stress (OS) in postmenopausal women with metabolic syndrome (MetS). A randomized, double blind, placebo-controlled trial was carried out. We formed four groups of 25 women each; healthy (HW) and MetS women (MSW) were assigned to HT (1 mg/day of estradiol valerate plus 5 mg/10 day of medroxiprogesterone) or placebo. We measured plasma lipoperoxides, erythrocyte superoxide dismutase and glutathione peroxidase, total plasma antioxidant status and uric acid, as OS markers. Alternative cut-off values of each parameter were defined and a stress score (SS) ranging from 0 to 7 was used as total OS. MetS was defined according to National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII) criteria. Participants were seen at baseline, 3 and 6 months. After 6 months, MetS decreased in MSW-HT (48%), their triglycerides and high-density lipoprotein cholesterol (HDL-c) improved; in the other groups no difference was found. SS in MSW-HT decreased (3.8 ± 0.3 to 1.7 ± 0.3, p < 0.05) and OS was also reduced (44%), this effect was evident since 3 mo. HW-HT with high OS also decreased (40%). In placebo groups there was no change. Our findings suggest that HT improve lipids and OS associated to MetS in postmenopausal women. PMID:27563883

  17. Effects of Hormone Therapy on Oxidative Stress in Postmenopausal Women with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Martha A. Sánchez-Rodríguez

    2016-08-01

    Full Text Available The aim of this study was to determine the effect of oral hormone therapy (HT on oxidative stress (OS in postmenopausal women with metabolic syndrome (MetS. A randomized, double blind, placebo-controlled trial was carried out. We formed four groups of 25 women each; healthy (HW and MetS women (MSW were assigned to HT (1 mg/day of estradiol valerate plus 5 mg/10 day of medroxiprogesterone or placebo. We measured plasma lipoperoxides, erythrocyte superoxide dismutase and glutathione peroxidase, total plasma antioxidant status and uric acid, as OS markers. Alternative cut-off values of each parameter were defined and a stress score (SS ranging from 0 to 7 was used as total OS. MetS was defined according to National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII criteria. Participants were seen at baseline, 3 and 6 months. After 6 months, MetS decreased in MSW-HT (48%, their triglycerides and high-density lipoprotein cholesterol (HDL-c improved; in the other groups no difference was found. SS in MSW-HT decreased (3.8 ± 0.3 to 1.7 ± 0.3, p < 0.05 and OS was also reduced (44%, this effect was evident since 3 mo. HW-HT with high OS also decreased (40%. In placebo groups there was no change. Our findings suggest that HT improve lipids and OS associated to MetS in postmenopausal women.

  18. Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach.

    Science.gov (United States)

    Zhang, Chen; Wang, Wei; Lu, Ruili; Jin, Song; Chen, Yihui; Fan, Meizhen; Huang, Bo; Li, Zengzhi; Hu, Fenglin

    2016-06-01

    The entomopathogenic fungus, Beauveria bassiana, is commonly used as a biological agent for pest control. Environmental and biological factors expose the fungus to oxidative stress; as a result, B. bassiana has adopted a number of anti-oxidant mechanisms. In this study, we investigated metabolites of B. bassiana that are formed in response to oxidative stress from hydrogen peroxide (H2O2) by using a liquid chromatography mass spectrometry (LC-MS) approach. Partial least-squares discriminant analysis (PLS-DA) revealed differences between the control and the H2O2-treated groups. Hierarchical cluster analysis (HCA) showed 18 up-regulated metabolites and 25 down-regulated metabolites in the H2O2-treated fungus. Pathway analysis indicated that B. bassiana may be able to alleviate oxidative stress by enhancing lipid catabolism and glycometabolism, thus decreasing membrane polarity and preventing polar H2O2 or ROS from permeating into fungal cells and protecting cells against oxidative injury. Meanwhile, most of the unsaturated fatty acids that are derived from glycerophospholipids hydrolysis can convert into oxylipins through autoxidation, which can prevent the reactive oxygen of H2O2 from attacking important macromolecules of the fungus. Results showed also that H2O2 treatment can enhance mycotoxins production which implies that oxidative stress may be able to increase the virulence of the fungus. In comparison to the control group, citric acid and UDP-N-acetylglucosamine were down-regulated, which suggested that metabolic flux was occurring to the TCA cycle and enhancing carbohydrate metabolism. The findings from this study will contribute to the understanding of how the molecular mechanisms of fungus respond to environmental and biological stress factors as well as how the manipulation of such metabolisms may lead to selection of more effective fungal strains for pest control.

  19. Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans.

    Science.gov (United States)

    Pivovarova, Olga; Hornemann, Silke; Weimer, Sandra; Lu, Ye; Murahovschi, Veronica; Zhuk, Sergei; Seltmann, Anne-Cathrin; Malashicheva, Anna; Kostareva, Anna; Kruse, Michael; Busjahn, Andreas; Rudovich, Natalia; Pfeiffer, Andreas F H

    2015-03-01

    Obesity, type 2 diabetes and associated metabolic diseases are characterized by low-grade systemic inflammation which involves interplay of nutrition and monocyte/macrophage functions. We suggested that some factors such as nutrient components, neuropeptides involved in the control of gastrointestinal functions, and gastrointestinal hormones might influence immune cell functions and in this way contribute to the disease pathogenesis. The aim of this study was to investigate the mRNA expression of twelve nutrition-associated receptors in peripheral blood mononuclear cells (PBMC), isolated monocytes and monocyte-derived macrophages and their regulation under the switching from the high-carbohydrate low-fat diet to the low-carbohydrate high-fat (LC/HFD) isocaloric diet in healthy humans. The mRNA expression of receptors for short chain fatty acids (GPR41, GPR43), bile acids (TGR5), incretins (GIPR, GLP1R), cholecystokinin (CCKAR), neuropeptides VIP and PACAP (VIPR1, VIPR2), and neurotensin (NTSR1) was detected in PBMC and monocytes, while GPR41, GPR43, GIPR, TGR5, and VIPR1 were found in macrophages. Correlations of the receptor expression in monocytes with a range of metabolic and inflammatory markers were found. In non-obese subjects, the dietary switch to LC/HFD induced the increase of GPR43 and VIPR1 expression in monocytes. No significant differences of receptor expression between normal weight and moderately obese subjects were found. Our study characterized for the first time the expression pattern of nutrition-associated receptors in human blood monocytes and its dietary-induced changes linking metabolic responses to nutrition with immune functions in health and metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work characterizes the mitochondrial proteomic profile in the failing heart and elucidates the molecular basis of mitochondria in heart failure. Heart failure was induced in rats by myocardial infarction, and mitochondria were isolated from hearts by differential centrifugation. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a system biology approach was employed to investigate differences in mitochondrial proteins between normal and failing hearts. Mass spectrometry identified 27 proteins differentially expressed that involved in energy metabolism. Among those, the up-regulated proteins included tricarboxylic acid cycle enzymes and pyruvate dehydrogenase complex subunits while the down-regulated proteins were involved in fatty acid oxidation and the OXPHOS complex. These results suggest a substantial metabolic switch from free fatty acid oxidation to glycolysis in heart failure and provide molecular evidence for alterations in the structural and functional parameters of mitochondria that may contribute to cardiac dysfunction during ischemic injury.

  1. Session III: Mechanisms of age-related cognitive change and targets for intervention: inflammatory, oxidative, and metabolic processes.

    Science.gov (United States)

    Craft, Suzanne; Foster, Thomas C; Landfield, Philip W; Maier, Steven F; Resnick, Susan M; Yaffe, Kristine

    2012-06-01

    There is increasing evidence from basic science and human epidemiological studies that inflammation, oxidative stress, and metabolic abnormalities are associated with age-related cognitive decline and impairment. This article summarizes selected research on these topics presented at the Cognitive Aging Summit II. Speakers in this session presented evidence highlighting the roles of these processes and pathways on age-related cognitive decline, pointing to possible targets for intervention in nondemented older adults. Specific areas discussed included age differences in the production of cytokines following injury or infection, mechanisms underlying oxidative stress-induced changes in memory consolidation, insulin effects on brain signaling and memory, and the association between metabolic syndrome and cognitive decline in older adults. These presentations emphasize advances in our understanding of mechanisms and modifiers of age-related cognitive decline and provide insights into potential targets to promote cognitive health in older adults.

  2. Metabolic control of resting hemispheric cerebral blood flow is oxidative, not glycolytic

    OpenAIRE

    Powers, William. J.; Videen, Tom O.; Markham, Joanne; Walter, Vonn; Perlmutter, Joel S.

    2011-01-01

    Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO2) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO2, CMRglc, and other covariates as predictors of resting ...

  3. The effect of right ventricular pacing on myocardial oxidative metabolism and efficiency: relation with left ventricular dyssynchrony

    Energy Technology Data Exchange (ETDEWEB)

    Ukkonen, Heikki; Saraste, Antti; Koistinen, Juhani [Turku University Hospital, Department of Medicine, P.O. Box 52, Turku (Finland); Tops, Laurens; Bax, Jeroen [Leiden University Medical Center, Leiden (Netherlands); Naum, Alexander [University of Turku, Turku PET Centre, Turku (Finland); Knuuti, Juhani [University of Turku, Turku PET Centre, Turku (Finland); Turku University Hospital, Turku PET Centre, P.O. Box 52, Turku (Finland)

    2009-12-15

    Right ventricular (RV) apical pacing induces dyssynchrony by a left bundle branch block type electrical activation sequence in the heart and may impair left ventricular (LV) function. Whether these functional changes are accompanied by changes in myocardial perfusion, oxidative metabolism and efficiency, and the relation with the induction of LV dyssynchrony are unknown. Our study was designed to investigate the acute effects of RV pacing on these parameters. Ten patients with normal LV ejection fraction and VVI/DDD pacemaker were studied during AAI pacing/sinus rhythm without RV pacing (pacing-OFF) and with RV pacing (pacing-ON) at the same heart rate. Dynamic [{sup 15}O]water and [{sup 11}C]acetate positron emission tomography was used to measure perfusion and oxidative metabolism (k{sub mono}) of the LV. An echocardiographic examination was used to assess LV stroke volume (SV) and LV dyssynchrony. Myocardial efficiency of forward work was calculated as systolic blood pressure x cardiac output/LV mass/k{sub mono}. RV pacing decreased SV in all subjects (mean decrease 13%, from 76 {+-} 7 to 66 {+-} 7 ml, p = 0.004), but global perfusion and k{sub mono} were unchanged. The efficiency tended to be lower with pacing-ON (70 {+-} 20 vs 81 {+-} 21 mmHg l/g, p = 0.066). In patients with dyssynchrony during pacing (n = 6) efficiency decreased by 23% (from 78 {+-} 25 to 60 {+-} 14 mmHg l/g, p = 0.02), but in patients without dyssynchrony no change in efficiency was detected. Accordingly, heterogeneity in myocardial perfusion and oxidative metabolism was detected during pacing in patients with dyssynchrony but not in those without dyssynchrony. RV pacing resulted in a significant decrease in SV. However, deleterious effects on LV oxidative metabolism and efficiency were observed only in patients with dyssynchrony during RV pacing. (orig.)

  4. Caveolin-1 is necessary for hepatic oxidative lipid metabolism: evidence for crosstalk between caveolin-1 and bile acid signaling.

    Science.gov (United States)

    Fernández-Rojo, Manuel A; Gongora, Milena; Fitzsimmons, Rebecca L; Martel, Nick; Martin, Sheree D; Nixon, Susan J; Brooks, Andrew J; Ikonomopoulou, Maria P; Martin, Sally; Lo, Harriet P; Myers, Stephen A; Restall, Christina; Ferguson, Charles; Pilch, Paul F; McGee, Sean L; Anderson, Robin L; Waters, Michael J; Hancock, John F; Grimmond, Sean M; Muscat, George E O; Parton, Robert G

    2013-07-25

    Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.

  5. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling

    Directory of Open Access Journals (Sweden)

    Manuel A. Fernández-Rojo

    2013-07-01

    Full Text Available Caveolae and caveolin-1 (CAV1 have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1 hepatic lipid homeostasis and (2 nuclear hormone receptor (PPARα, FXRα, and SHP and bile acid signaling.

  6. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  7. Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Bhat, Supriya V; Booth, Sean C; Vantomme, Erik A N; Afroj, Shirin; Yost, Christopher K; Dahms, Tanya E S

    2015-09-01

    The chlorophenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used extensively worldwide despite its known toxicity and our limited understanding of how it affects non-target organisms. Escherichia coli is a suitable model organism to investigate toxicity and adaptation mechanisms in bacteria exposed to xenobiotic chemicals. We developed a methodical platform that uses atomic force microscopy, metabolomics and biochemical assays to quantify the response of E. coli exposed to sublethal levels of 2,4-D. This herbicide induced a filamentous phenotype in E. coli BL21 and a similar phenotype was observed in a selection of genotypically diverse E. coli strains (A0, A1, B1, and D) isolated from the environment. The filamentous phenotype was observed at concentrations 1000 times below field levels and was reversible upon supplementation with polyamines. Cells treated with 2,4-D had more compliant envelopes, significantly remodeled surfaces that were rougher and altered vital metabolic pathways including oxidative phosphorylation, the ABC transport system, peptidoglycan biosynthesis, amino acid, nucleotide and sugar metabolism. Most of the observed effects could be attributed to oxidative stress, consistent with increases in reactive oxygen species as a function of 2,4-D exposure. This study provides direct evidence that 2,4-D at sublethal levels induces oxidative stress and identifies the associated metabolic changes in E. coli.

  8. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals.

    Science.gov (United States)

    Salah, Myriam Ben; Abdelmelek, Hafedh; Abderraba, Manef

    2013-11-01

    We investigated the effect of olive leaves extract administration on glucose metabolism and oxidative response in liver and kidneys of rats exposed to radio frequency (RF). The exposure of rats to RF (2.45 GHz, 1h/day during 21 consecutive days) induced a diabetes-like status. Moreover, RF decreased the activities of glutathione peroxidase (GPx, -33.33% and -49.40%) catalase (CAT, -43.39% and -39.62%) and the superoxide dismutase (SOD, -59.29% and -68.53%) and groups thiol amount (-62.68% and -34.85%), respectively in liver and kidneys. Indeed, exposure to RF increased the malondialdehyde (MDA, 29.69% and 51.35%) concentration respectively in liver and kidneys. Olive leaves extract administration (100 mg/kg, ip) in RF-exposed rats prevented glucose metabolism disruption and restored the activities of GPx, CAT and SOD and thiol group amount in liver and kidneys. Moreover, olive leave extract administration was able to bring down the elevated levels of MDA in liver but not in kidneys. Our investigations suggested that RF exposure induced a diabetes-like status through alteration of oxidative response. Olive leaves extract was able to correct glucose metabolism disorder by minimizing oxidative stress induced by RF in rat tissues.

  9. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-10-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.

  10. Myocardial sympathetic innervation, function, and oxidative metabolism in non-infarcted myocardium in patients with prior myocardial infarction.

    Science.gov (United States)

    Aoki, Hirofumi; Matsunari, Ichiro; Nomura, Yusuke; Fujita, Wataru; Komatsu, Ryoko; Miyazaki, Yoshiharu; Nekolla, Stephan G; Kajinami, Kouji

    2013-07-01

    The purpose of this study was to investigate the relationship between sympathetic innervation, contractile function, and the oxidative metabolism of the non-infarcted myocardium in patients with prior myocardial infarction. In 19 patients (14 men, 5 women, 65 ± 9 years) after prior myocardial infarction, sympathetic innervation was assessed by (11)C-hydroxyephedrine (HED) positron emission tomography (PET). Oxidative metabolism was quantified using (11)C-acetate PET. Left ventricular systolic function was measured by echocardiography with speckle tracking technique. The (11)C-HED retention was positively correlated with left ventricular ejection fraction (LVEF) (r = 0.566, P infarcted myocardium (r = -0.561, P infarcted myocardium. When the patients were divided into two groups based on the median value of left ventricular end-systolic volume index (LVESVI) (41 mL), there were no significant differences in age, sex, and rate pressure product between the groups. However, the large LVESVI group (>41 mL) was associated with reduced (11)C-HED retention and peak longitudinal strain in systole, whereas Kmono was similar between the groups. This study indicates that remodeled LV after myocardial infarction is associated with impaired sympathetic innervation and function even in the non-infarcted myocardial tissue. Furthermore, oxidative metabolism in the non-infarcted myocardium seems to be operated by normal regulatory mechanisms rather than pre-synaptic sympathetic neuronal function.

  11. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-01-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution. PMID:27767182

  12. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress.

    Science.gov (United States)

    Maya-Mendoza, Apolinar; Ostrakova, Jitka; Kosar, Martin; Hall, Arnaldur; Duskova, Pavlina; Mistrik, Martin; Merchut-Maya, Joanna Maria; Hodny, Zdenek; Bartkova, Jirina; Christensen, Claus; Bartek, Jiri

    2015-03-01

    Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel

  13. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Rosa Castellano

    Full Text Available Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight were restrictively-fed diets providing either an adequate (CTRL or a deficient methionine supply (MD during 10 days (n=6 per group. At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently

  14. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs.

    Science.gov (United States)

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  15. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow.

    Science.gov (United States)

    Sabat, Pablo; Narváez, Cristóbal; Peña-Villalobos, Isaac; Contreras, Carolina; Maldonado, Karin; Sanchez-Hernandez, Juan C; Newsome, Seth D; Nespolo, Roberto; Bozinovic, Francisco

    2017-01-01

    Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis) could generate differences in basal (BMR) and maximum metabolic rates (Msum), as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW) or tap (fresh) water (TW) and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase) in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC) and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA). The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA) to whole organism traits (e.g., metabolic rates). We propose that the physiological changes observed in Z

  16. The role of fatty acid oxidation in the metabolic reprogramming of activated T cells

    Directory of Open Access Journals (Sweden)

    Craig Alan Byersdorfer

    2014-12-01

    Full Text Available Activation represents a significant bioenergetic challenge for T cells, which must undergo metabolic reprogramming to keep pace with increased energetic demands. This review focuses on the role of fatty acid metabolism, both in vitro and in vivo, following T cell activation. Based upon previous studies in the literature, as well as accumulating evidence in allogeneic cells, I propose a multi-step model of in vivo metabolic reprogramming. In this model, a primary determinant of metabolic phenotype is the ubiquity and duration of antigen exposure. The implications of this model, as well as the future challenges and opportunities in studying T cell metabolism, will be discussed.

  17. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome.

    Science.gov (United States)

    Reverri, Elizabeth J; Randolph, Jody M; Steinberg, Francene M; Kappagoda, C Tissa; Edirisinghe, Indika; Burton-Freeman, Britt M

    2015-07-27

    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity.

  18. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Reverri

    2015-07-01

    Full Text Available Beans (Phaseolus vulgaris contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS consumed one of three meals (black bean (BB, fiber matched (FM, and antioxidant capacity matched (AM on three occasions that included blood collection before (fasting and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p < 0.0001. A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002 revealing differences over time: AM > BB > FM. Oxidized LDL (oxLDL was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6 increased in response to meals (p < 0.0001. Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity.

  19. [Oxidative metabolism of main and accessory olfactory bulbs, limpic system and hypothalamus during the estral cycle of the rat (author's transl)].

    Science.gov (United States)

    Sánchez-Criado, J E

    1979-06-01

    The in vitro oxidative metabolism of hypothalamus, olfactory and limbic systems from female rats in the estrous cycle have been measured. The accessory olfactory bulb becomes most active during diestrous when the hypothalamus reaches its lowest values.

  20. Effects of L-arginine pretreatment on nitric oxide metabolism and hepatosplanchnic perfusion during porcine endotoxemia.

    Science.gov (United States)

    Poeze, Martijn; Bruins, Maaike J; Kessels, Fons; Luiking, Yvette C; Lamers, Wouter H; Deutz, Nicolaas E P

    2011-06-01

    Sepsis is accompanied by an increased need for and a decreased supply of arginine, reflecting a condition of arginine deficiency. The objective was to evaluate the effects of l-arginine pretreatment on arginine-nitric oxide (NO) production and hepatosplanchnic perfusion during subsequent endotoxemia. In a randomized controlled trial, pigs (20-25 kg) received 3 μg . kg(-1) . min(-1) lipopolysaccharide (LPS; 5 endotoxin units/ng) intravenously and saline resuscitation. l-Arginine (n = 8; 5.3 μmol . kg(-1) . min(-1)) or saline (n = 8) was infused starting 12 h before LPS infusion and continued for 24 h after the endotoxin infusion ended. Whole-body appearance rates, portal-drained viscera (PDV), and liver fluxes of arginine, citrulline, NO, and arginine de novo synthesis were measured by using stable-isotope infusion of [(15)N(2)]arginine and [(13)C-(2)H(2)]citrulline. Hepatosplanchnic perfusion was assessed by using a primed continuous infusion of para-aminohippuric acid and jejunal intramucosal partial pressure of carbon dioxide and was related to systemic hemodynamics. Arginine supplementation before LPS increased whole-body NO production in the PDV but not in the liver. Furthermore, it increased blood flow in the portal vein but not in the aorta and hepatic artery. During endotoxin infusion, arginine pretreatment was associated with an increased whole-body arginine appearance and NO production in the gut. Additional effects included a preserved mean arterial pressure, the prevention of an increase in pulmonary arterial pressure, an attenuated metabolic acidosis, and an attenuated increase in the intramucosal partial pressure of carbon dioxide. Arginine treatment starting before endotoxemia appears to be beneficial because it improves hepatosplanchnic perfusion and oxygenation during prolonged endotoxemia, probably through an enhancement in NO synthesis, without causing deleterious systemic side effects.

  1. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism.

    Science.gov (United States)

    Ye, Fang; Lemieux, Hélène; Hoppel, Charles L; Hanson, Richard W; Hakimi, Parvin; Croniger, Colleen M; Puchowicz, Michelle; Anderson, Vernon E; Fujioka, Hisashi; Stavnezer, Ed

    2011-11-18

    Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.

  2. Effect of Tiaoxin Recipe (调心方) on Spatial Memory and Energy Metabolism of Oxidation Injured Alzheimer's Disease Rats

    Institute of Scientific and Technical Information of China (English)

    邱宏; 金国琴; 赵伟康; 张学礼

    2003-01-01

    Objective: To observe the effect of Tiaoxin Recipe (TXR) on the spatial memory, brain mitochondrial energy metabolism of oxidation injured Alzheimer's disease (AD) rats, and to explore the mechanism of TXR in treating AD. Methods: Eighty-eight SD rats were randomly divided into five groups (normal group, operative group, "AD" model group,TXR group and Aricept group). An oxygen free radical generation system (dihydroxy fumaric acid-trichloroferric-adenosine diphosphate, DHF-FeCl3-ADP) was used to create oxidation injured rat models mimic to AD; spatial learning and memory impairment (Morris water maze method), the activity of Succinate-oxidase, NADH-oxidase, CytC-oxidase (Clark oxygen electrode method) and the expression of cytochrome oxidase (CO)ⅡmRNA (in situ hybridization method) were observed. Results: Compared with the normal group, the spatial memory, activity of CytC-oxidase and COⅡmRNA expression of oxidation injured "AD" rats were obviously decreased; TXR, however, could improve these functions in "AD" rat models obviously. Conclusion: The mechanism of the action of TXR in treating AD was partly related to its effect on anti-oxidation which could improve brain mitochondrial energy metabolism.

  3. Butyl hydroxytoluene (BHT)-induced oxidative stress: effects on serum lipids and cardiac energy metabolism in rats.

    Science.gov (United States)

    Faine, L A; Rodrigues, H G; Galhardi, C M; Ebaid, G M X; Diniz, Y S; Fernandes, A A H; Novelli, E L B

    2006-01-01

    Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, which received BHT i.p. twice a week (1500 mg/kg body weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research.

  4. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update.

    Science.gov (United States)

    Wu, Qing-Hua; Wang, Xu; Yang, Wei; Nüssler, Andreas K; Xiong, Ling-Yun; Kuča, Kamil; Dohnal, Vlastimil; Zhang, Xiu-Juan; Yuan, Zong-Hui

    2014-07-01

    Trichothecenes are a large family of structurally related toxins mainly produced by Fusarium genus. Among the trichothecenes, T-2 toxin and deoxynivalenol (DON) cause the most concern due to their wide distribution and highly toxic nature. Trichothecenes are known for their inhibitory effect on eukaryotic protein synthesis, and oxidative stress is one of their most important underlying toxic mechanisms. They are able to generate free radicals, including reactive oxygen species, which induce lipid peroxidation leading to changes in membrane integrity, cellular redox signaling, and in the antioxidant status of the cells. The mitogen-activated protein kinases signaling pathway is induced by oxidative stress, which also induces caspase-mediated cellular apoptosis pathways. Several new metabolites and novel metabolic pathways of T-2 toxin have been discovered very recently. In human cell lines, HT-2 and neosolaniol (NEO) are the major metabolites of T-2 toxin. Hydroxylation on C-7 and C-9 are two novel metabolic pathways of T-2 toxin in rats. The metabolizing enzymes CYP3A22, CYP3A29, and CYP3A46 in pigs, as well as the enzymes CYP1A5 and CYP3A37 in chickens, are able to catalyze T-2 toxin and HT-2 toxin to form the C-3'-OH metabolites. Similarly to carboxylesterase, CYP3A29 possesses the hydrolytic ability in pigs to convert T-2 toxin to NEO. T-2 toxin is able to down- or upregulate cytochrome P-450 enzymes in different species. The metabolism of DON in humans is region-dependent. Free DON and DON-glucuronide are considered to be the biomarkers for humans. The masked mycotoxin DON-3-β-D-glucoside can be hydrolyzed to free DON in the body. This review will provide useful information on the progress of oxidative stress as well as on the metabolism and the metabolizing enzymes of T-2 toxin and DON. Moreover, the literature will throw light on the blind spots of metabolism and toxicological studies in trichothecenes that have to be explored in the future.

  5. Paraoxonase-1 inhibits oxidized low-density lipoprotein-induced metabolic alterations and apoptosis in endothelial cells: a nondirected metabolomic study.

    Science.gov (United States)

    García-Heredia, Anabel; Marsillach, Judit; Rull, Anna; Triguero, Iris; Fort, Isabel; Mackness, Bharti; Mackness, Michael; Shih, Diana M; Joven, Jorge; Camps, Jordi

    2013-01-01

    We studied the influence of PON1 on metabolic alterations induced by oxidized LDL when incubated with endothelial cells. HUVEC cells were incubated with native LDL, oxidized LDL, oxidized LDL plus HDL from wild type mice, and oxidized LDL plus HDL from PON1-deficient mice. Results showed alterations in carbohydrate and phospholipid metabolism and increased apoptosis in cells incubated with oxidized LDL. These changes were partially prevented by wild type mouse HDL, but the effects were less effective with HDL from PON1-deficient mice. Our results suggest that PON1 may play a significant role in endothelial cell survival by protecting cells from alterations in the respiratory chain induced by oxidized LDL. These results extend current knowledge on the protective role of HDL and PON1 against oxidation and apoptosis in endothelial cells.

  6. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK.

  7. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria.

    Science.gov (United States)

    Filipović, Dragana; Costina, Victor; Perić, Ivana; Stanisavljević, Andrijana; Findeisen, Peter

    2017-03-15

    Fluoxetine (Flx) is the principal treatment for depression; however, the precise mechanisms of its actions remain elusive. Our aim was to identify protein expression changes within rat hippocampus regulated by chronic Flx treatment versus vehicle-controls using proteomics. Fluoxetine-hydrohloride (15mg/kg) was administered daily to adult male Wistar rats for 3weeks, and cytosolic and nonsynaptic mitochondrial hippocampal proteomes were analyzed. All differentially expressed proteins were functionally annotated according to biological process and molecular function using Uniprot and Blast2GO. Our comparative study revealed that in cytosolic and nonsynaptic mitochondrial fractions, 60 and 3 proteins respectively, were down-regulated, and 23 and 60 proteins, respectively, were up-regulated. Proteins differentially regulated in cytosolic and nonsynaptic mitochondrial fractions were primarily related to cellular and metabolic processes. Of the identified proteins, the expressions of calretinin and parvalbumine were confirmed. The predominant molecular functions of differentially expressed proteins in both cell hippocampal fractions were binding and catalytic activity. Most differentially expressed proteins in nonsynaptic mitochondria were catalytic enzymes involved in the pyruvate metabolism, citric acid cycle, oxidative phosphorylation, ATP synthesis, ATP transduction and glutamate metabolism. Results indicate that chronic Flx treatment may influence proteins involved in calcium signaling, cytoskeletal structure, chaperone system and stimulates energy metabolism via the upregulation of GAPDH expression in cytoplasm, as well as directing energy metabolism toward the citric acid cycle and oxidative phosphorylation in nonsynaptic mitochondria. This approach provides new insight into the chronic effects of Flx treatment on protein expression in a key brain region associated with stress response and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of Feeding Oxidized Soybean Oil against Antioxidant role of Pomegranate Seed on Physiology and Metabolism of Periparturient Saanen Goats

    Directory of Open Access Journals (Sweden)

    Seyyed Ehsan Ghiasi

    2016-08-01

    Full Text Available Introduction Oxidative stress is metabolic and physiologic status caused by imbalance between free radical production and antioxidant defense of body. In some physiological status such as rapid growth, parturition, disease and high production rate that imbalance would occur. High producing dairy animals are suspected to oxidative stress and require to antioxidant supplementation. Negative energy balance in early lactation force the nutrition specialist to apply oil and high NFC diet to exceed the requirement of high producing dairy animals such as Holstein cows and Saanen goats. In recent years, the attention to the use of herbal or organic antioxidant in animal nutrition has increased. This study was carried out to investigate the effects of feeding oxidized soybean oil (OSO plus pomegranate seed (PS as a natural antioxidant, on metabolism and physiology of Preparturient Saanen Goats. Materials and Methods Eighteen Saanen dairy goats with initial body weight of 47 ± 9 kg were assigned to three dietary treatments in a completely randomized design with repeated measurements for 21 days before anticipated parturition. Experimental treatments including: 1 base diet and 4% fresh soybean oil (FSO, 2 base diet and 4% oxidized soybean oil (DM basis respectively, and 3 base diet plus 4% OSO and 8% Pomegranate seed (OSO-PS. After 2 weeks of feeding trial diets, goats were sampled for blood, rumen liquor, faeces and urine for measuring parameters of blood glucose, BHBA, lipid and nitrogen profile, rumen liquor ammonia nitrogen, urine pH and volume, faeces qualitative and quantitative variables and other responses such as nutrients digestibility. The GLM procedure of SAS software v.9.2 were used for statistical analysis. Initial body weight and metabolic variables were used as covariate in the model. Results and discussion All nutrients digestibility, Ruminal ammonia nitrogen and voluntary feed intake were decreased by OSO (p

  9. Effect of grape seed extract on postprandial oxidative status and metabolic responses in men and women with the metabolic syndrome - randomized, cross-over, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Indika Edirisinghe

    2012-12-01

    Full Text Available Objective: This investigation was undertaken to determine whether a grape seed extract (GSE that is rich in mono-, oligo- and poly- meric polyphenols would modify postprandial oxidative stress and inflammation in individuals with the metabolic syndrome (MetS.Background: MetS is known to be associated with impaired glucose tolerance and poor glycemic control. Consumption of a meal high in readily available carbohydrates and fat causes postprandial increases in glycemia and lipidemia and markers of oxidative stress, inflammation and insulin resistance. Materials/methods: After an overnight fast, twelve subjects with MetS (5 men and 7 women consumed a breakfast meal high in fat and carbohydrate in a cross-over design. A GSE (300 mg or placebo capsule was administrated 1 hr before the meal (-1 hr. Changes in plasma insulin, glucose, oxidative stress and inflammatory markers were measured hourly for 6 hr. Results: Plasma hydrophilic oxygen radical absorbance capacity (ORAC measured as the positive incremental area under the curve (-1 to 5 hr was significantly increased when the meal was preceded by GSE compared with placebo (P0.05. No changes in inflammatory markers were evident. Conclusion: These data suggest that GSE enhances postprandial plasma antioxidant status and reduces the glycemic response to a meal, high in fat and carbohydrate in subjects with the MetS.

  10. Monocyte-Derived Suppressor Cells in Transplantation.

    Science.gov (United States)

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  11. Energy metabolism and nutrient oxidation in young pigs and rats during feeding, starvation and re-feeding

    DEFF Research Database (Denmark)

    Chwalibog, A; Jakobsen, Kirsten; Tauson, A -H

    2005-01-01

    -4 days of starvation and 4 days of re-feeding. O2 consumption and CO2 production were measured by open-air-circuit respiration units. In the feeding period, protein retention in relation to metabolic live mass (kg(0.75)) was identical for pigs and rats, while there was a tendency of a higher fat......The investigation included individual measurements of energy metabolism and oxidation of nutrients in 12 castrated male pigs (Sus scrofa) (20-40 kg) and 12 male rats (Rattus norvegicus) (65-105 g). Measurements were carried out in 5-6 days balance periods with ad libitum feeding, followed by 3...... retention in pigs than in rats. A substantial part of digested carbohydrate was not oxidized, but transferred to fat metabolism without significant differences (P > 0.05) between pigs and rats (18% vs. 22%). During starvation, nitrogen excretion in urine decreased to 226 mg/kg(0.75) in pigs and to 429 mg...

  12. Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes.

    Science.gov (United States)

    Gancheva, Sofiya; Bierwagen, Alessandra; Kaul, Kirti; Herder, Christian; Nowotny, Peter; Kahl, Sabine; Giani, Guido; Klueppelholz, Birgit; Knebel, Birgit; Begovatz, Paul; Strassburger, Klaus; Al-Hasani, Hadi; Lundbom, Jesper; Szendroedi, Julia; Roden, Michael

    2016-07-01

    Type 1 diabetes has been recently linked to nonalcoholic fatty liver disease (NAFLD), which is known to associate with insulin resistance, obesity, and type 2 diabetes. However, the role of insulin resistance and hyperglycemia for hepatic energy metabolism is yet unclear. To analyze early abnormalities in hepatic energy metabolism, we examined 55 patients with recently diagnosed type 1 diabetes. They underwent hyperinsulinemic-normoglycemic clamps with [6,6-(2)H2]glucose to assess whole-body and hepatic insulin sensitivity. Hepatic γATP, inorganic phosphate (Pi), and triglyceride concentrations (hepatocellular lipid content [HCL]) were measured with multinuclei magnetic resonance spectroscopy ((31)P/(1)H-MRS). Glucose-tolerant humans served as control (CON) (n = 57). Whole-body insulin sensitivity was 44% lower in patients than in age- and BMI-matched CON. Hepatic γATP was 15% reduced (2.3 ± 0.6 vs. 2.7 ± 0.6 mmol/L, P < 0.001), whereas hepatic Pi and HCL were similar in patients when compared with CON. Across all participants, hepatic γATP correlated negatively with glycemia and oxidized LDL. Carriers of the PPARG G allele (rs1801282) and noncarriers of PPARGC1A A allele (rs8192678) had 21 and 13% lower hepatic ATP concentrations. Variations in genes controlling oxidative metabolism contribute to a reduction in hepatic ATP in the absence of NAFLD, suggesting that alterations in hepatic mitochondrial function may precede diabetes-related liver diseases.

  13. Effect of Green Light on Nitric Oxide Metabolism in Chick Embryos. A Possible Physiological Role.

    Science.gov (United States)

    Titov, V Yu; Kosenko, O V; Starkova, E S; Kondratov, G V; Borkhunova, E N; Ivanova, A V

    2015-10-01

    The exposure to green light, which serves as a well-known activating factor for myogenesis during incubation of chicken eggs, contributes to intensification of embryonic metabolism of NO. A metabolic product, nitrate, is mainly accumulated in the muscles. These data suggest that light induces a NO-dependent activation of the factor, which intensifies muscle tissue development.

  14. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  15. Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes.

    Science.gov (United States)

    Schmelzer, Constance; Döring, Frank

    2010-01-01

    Coenzyme Q(10) (CoQ(10)) is an obligatory element in the respiratory chain and functions as a potent antioxidant of lipid membranes. More recently, anti-inflammatory effects as well as an impact of CoQ(10) on gene expression have been observed. To reveal putative effects of Q(10) on LPS-induced gene expression, whole genome expression analysis was performed in the monocytic cell line THP-1. Thousand one hundred twenty-nine and 710 probe sets have been identified to be significantly (P metabolism (e.g., HERC1 and EPS15), cell proliferation (e.g., CCDC100 and SMURF1), and transcriptional processes (e.g., CNOT4 and STK4). Three genes were either related to NFkappaB transcription factor activity (ERC1), cytokinesis (DIAPH2), or modulation of oxidative stress (MSRA). In conclusion, our data provide evidence that Q(10) downregulates LPS-inducible genes in the monocytic cell line THP-1. Thus, the previously described effects of Q(10) on the reduction of proinflammatory mediators might be due to its antioxidant impact on gene expression.

  16. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Skov, Vibe; Petersson, Stine Juhl;

    2014-01-01

    Insulin resistance in obesity and type 2 diabetes is related to abnormalities in mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. We tested the hypothesis that mitochondrial oxidative metabolism is impaired in muscle of patients with inherited insulin resistance and defective...... insulin signalling....

  17. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome.

    Science.gov (United States)

    Wu, Kay L H; Chao, Yung-Mei; Tsay, Shiow-Jen; Chen, Chen Hsiu; Chan, Samuel H H; Dovinova, Ima; Chan, Julie Y H

    2014-10-01

    Metabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS. Adult normotensive rats subjected to a high-fructose diet for 8 weeks developed metabolic traits of MetS, alongside increases in sympathetic vasomotor activity and blood pressure. In RVLM of these MetS rats, the tissue level of reactive oxygen species was increased, nitric oxide (NO) was decreased, and mitochondrial electron transport capacity was reduced. Whereas the protein expression of neuronal NO synthase (nNOS) or protein inhibitor of nNOS was increased, the ratio of nNOS dimer/monomer was significantly decreased. Oral intake of pioglitazone or intracisternal infusion of tempol or coenzyme Q10 significantly abrogated all those molecular events in high-fructose diet-fed rats and ameliorated sympathoexcitation and hypertension. Gene silencing of protein inhibitor of nNOS mRNA in RVLM using lentivirus carrying small hairpin RNA inhibited protein inhibitor of nNOS expression, increased the ratio of nNOS dimer/monomer, restored NO content, and alleviated oxidative stress in RVLM of high-fructose diet-fed rats, alongside significantly reduced sympathoexcitation and hypertension. These results suggest that redox-sensitive and protein inhibitor of nNOS-mediated nNOS uncoupling is engaged in a vicious cycle that sustains the production of reactive oxygen species in RVLM, resulting in sympathoexcitation and hypertension associated with MetS.

  18. Suppression of nitric oxide production from nasal fibroblasts by metabolized clarithromycin in vitro

    Directory of Open Access Journals (Sweden)

    Hirano Kojiro

    2010-11-01

    Full Text Available Abstract Background Low-dose and long-term administration of 14-membered macrolide antibiotics, so called macrolide therapy, has been reported to favorably modify the clinical conditions of chronic airway diseases. Since there is growing evidence that macrolide antibiotic-resistant bacteria's spreaders in the populations received macrolide therapy, it is strongly desired to develop macrolide antibiotics, which showed only anti-inflammatory action. The present study was designed to examine the influence of clarithromycin (CAM and its metabolized materials, M-1, M-4 and M-5, on free radical generation from nasal polyp fibroblasts (NPFs through the choice of nitric oxide (NO, which is one of important effector molecule in the development of airway inflammatory disease in vitro. Methods NPFs (5 × 105 cells/ml were stimulated with 1.0 μg/ml lipopolysaccharide (LPS in the presence of agents for 24 hours. NO levels in culture supernatants were examined by the Griess method. We also examined the influence of agents on the phosphorylation of MAPKs, NF-κB activation, iNOS mRNA expression and iNOS production in NPFs cultured for 2, 4, 8, and 12 hours, respectively. Results The addition of CAM (> 0.4 μg/ml and M-4 (> 0.04 μg/ml could suppress NO production from NPFs after LPS stimulation through the suppression of iNOS mRNA expression and NF-κB activation. CAM and M-4 also suppressed phosphorylation of MAPKs, ERK and p38 MAPK, but not JNK, which are increased LPS stimulation. On the other hand, M-1 and M-5 could not inhibit the NO generation, even when 0.1 μg/ml of the agent was added to cell cultures. Conclusion The present results may suggest that M-4 will be a good candidate for the agent in the treatment of chronic airway inflammatory diseases, since M-4 did not have antimicribiological effects on gram positive and negative bacteria.

  19. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome.

    Science.gov (United States)

    Venturini, Danielle; Simão, Andréa Name Colado; Urbano, Mariana Ragassi; Dichi, Isaias

    2015-06-01

    The aim of this study was to verify if extra virgin olive oil and fish oil have a synergistic effect on lipid and oxidative stress parameters in patients with metabolic syndrome (MetS). This intervention study included 102 patients (81 women and 21 men) with MetS (mean age 51.45 ± 8.27 y) from the ambulatory center of the University Hospital of Londrina, Paraná, Brazil. Patients were randomly assigned to one of four groups: Patients in the control group (CG) were instructed to maintain their usual diet; the second group (fish oil group [FO]) received 3 g/d of fish oil ω-3 fatty acids (10 capsules); the third group (extra virgin olive oil group [OO]) received 10 mL/d of extra virgin olive oil at lunch and dinner; and the fourth group (fish oil and extra virgin olive oil group [FOO]) received 3 g/d of fish oil ω-3 fatty acids and 10 mL/d of extra virgin olive oil. MetS related markers and oxidative stress were measured at baseline and after 90 d. Differences across treatment groups showed a statistically significant decrease (P olive oil have beneficial synergistic effects on lipid metabolism and oxidative stress in patients with MetS. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications

    Directory of Open Access Journals (Sweden)

    Oluwafeyisetan O. Adebiyi

    2015-12-01

    Full Text Available Nucleoside Reverse Transcriptase Inhibitors (NRTIs have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7 were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT (groups I, II III, 50 mg/kg stavudine (d4T (groups IV, V, VI and 3 mL/kg of distilled water (group VII. Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy.

  1. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    Science.gov (United States)

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  2. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju [Georgia Inst. of Technology, Atlanta, GA (United States); Handley, Kim M. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Gilbert, Jack A. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Marine Biological Lab., Woods Hole, MA (United States); Zhejiang Univ., Hangzhou (China); Kostka, Joel E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  3. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  4. K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis

    Institute of Scientific and Technical Information of China (English)

    Yumin Hu; Helene Pelicano; Paul J Chiao; Michael J Keating; Guillermo Garcia-Manero; Peng Huang; Weiqin Lu; Gang Chen; Peng Wang; Zhao Chen; Yan Zhou; Marcia Ogasawara; Dunyaporn Trachootham; Li Feng

    2012-01-01

    Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism,but the underlying biochemical and molecular mechanisms remain elusive.Using a tetracycline inducible model,we show that activation of K-rasG12V causes mitochondrial dysfunction,leading to decreased respiration,elevated glycolysis,and increased generation of reactive oxygen species.The K-RAS protein is associated with mitochondria,and induces a rapid suppression of respiratory chain complex-I and a decrease in mitochondrial transmembrane potential by affecting the cyclosporin-sensitive permeability transition pore.Furthermore,pre-induction of K-rasG12V expression in vitro to allow metabolic adaptation to high glycolytic metabolism enhances the ability of the transformed cells to form tumor in vivo.Our study suggests that induction of mitochondrial dysfunction is an important mechanism by which K-rasG12V causes metabolic changes and ROS stress in cancer cells,and promotes tumor development.

  5. Metagenomic and biochemical characterizations of sulfur oxidation metabolism in uncultured large sausage-shaped bacterium in hot spring microbial mats.

    Directory of Open Access Journals (Sweden)

    Satoshi Tamazawa

    Full Text Available So-called "sulfur-turf" microbial mats in sulfide containing hot springs (55-70°C, pH 7.3-8.3 in Japan were dominated by a large sausage-shaped bacterium (LSSB that is closely related to the genus Sulfurihydrogenibium. Several previous reports proposed that the LSSB would be involved in sulfide oxidation in hot spring. However, the LSSB has not been isolated yet, thus there has been no clear evidence showing whether it possesses any genes and enzymes responsible for sulfide oxidation. To verify this, we investigated sulfide oxidation potential in the LSSB using a metagenomic approach and subsequent biochemical analysis. Genome fragments of the LSSB (a total of 3.7 Mb sequence including overlapping fragments were obtained from the metagenomic fosmid library constructed from genomic DNA of the sulfur-turf mats. The sequence annotation clearly revealed that the LSSB possesses sulfur oxidation-related genes coding sulfide dehydrogenase (SD, sulfide-quinone reductase and sulfite dehydrogenase. The gene encoding SD, the key enzyme for sulfide oxidation, was successfully cloned and heterologously expressed in Escherichia coli. The purified recombinant enzyme clearly showed SD activity with optimum temperature and pH of 60°C and 8.0, respectively, which were consistent with the environmental conditions in the hot spring where the sulfur-turf thrives. Furthermore, the affinity of SD to sulfide was relatively high, which also reflected the environment where the sulfide could be continuously supplied. This is the first report showing that the LSSB harbors sulfide oxidizing metabolism adapted to the hot spring environment and can be involved in sulfide oxidation in the sulfur-turf microbial mats.

  6. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats.

    Science.gov (United States)

    Cahova, Monika; Chrastina, Petr; Hansikova, Hana; Drahota, Zdenek; Trnovska, Jaroslava; Skop, Vojtech; Spacilova, Jana; Malinska, Hana; Oliyarnyk, Olena; Papackova, Zuzana; Palenickova, Eliska; Kazdova, Ludmila

    2015-03-01

    The aim of this study was to estimate the effect of carnitine supplementation on lipid disorders and peripheral tissue insulin sensitivity in a non-obese animal model of insulin resistance, the hereditary hypertriglyceridemic (HHTg) rat. Male HHTg rats were fed a standard diet, and half of them received daily doses of carnitine (500 mg·kg(-1) body weight) for 8 weeks. Rats of the original Wistar strain were used for comparison. HHTg rats exhibited increased urinary excretion of free carnitine and reduced carnitine content in the liver and blood. Carnitine supplementation compensated for this shortage and promoted urinary excretion of acetylcarnitine without any signs of (acyl)carnitine accumulation in skeletal muscle. Compared with their untreated littermates, carnitine-treated HHTg rats exhibited lower weight gain, reduced liver steatosis, lower fasting triglyceridemia, and greater reduction of serum free fatty acid content after glucose load. Carnitine treatment was associated with increased mitochondrial biogenesis and oxidative capacity for fatty acids, amelioration of oxidative stress, and restored substrate switching in the liver. In skeletal muscle (diaphragm), carnitine supplementation was associated with significantly higher palmitate oxidation and a more favorable complete to incomplete oxidation products ratio. Carnitine supplementation further enhanced insulin sensitivity ex vivo. No effects on whole-body glucose tolerance were observed. Our data suggest that some metabolic syndrome-related disorders, particularly fatty acid oxidation, steatosis, and oxidative stress in the liver, could be attenuated by carnitine supplementation. The effect of carnitine could be explained, at least partly, by enhanced substrate oxidation and increased fatty acid transport from tissues in the form of short-chain acylcarnitines.

  7. Effects of long-term football training on the expression profile of genes involved in muscle oxidative metabolism.

    Science.gov (United States)

    Alfieri, A; Martone, D; Randers, M B; Labruna, G; Mancini, A; Nielsen, J J; Bangsbo, J; Krustrup, P; Buono, P

    2015-02-01

    We investigated whether long-term recreational football training affects the expression of health-related biochemical and molecular markers in healthy untrained subjects. Five untrained healthy men trained for 1 h 2.4 times/week for 12 weeks and 1.3 times/week for another 52 weeks. Blood samples and a muscle biopsy from the vastus lateralis were collected at T0 (pre intervention) and at T1 (post intervention). Gene expression was measured by RTqPCR on RNA extracted from muscle biopsies. The expression levels of the genes principally involved in energy metabolism (PPARγ, adiponectin, AMPKα1/α2, TFAM, NAMPT, PGC1α and SIRT1) were measured at T0 and T1. Up-regulation of PPARγ (p football training could be a useful tool to improve the expression of muscle molecular biomarkers that are correlated to oxidative metabolism in healthy males.

  8. Effects of long-term football training on the expression profile of genes involved in muscle oxidative metabolism

    DEFF Research Database (Denmark)

    Alfieri, A; Martone, D; Randers, Morten Bredsgaard

    2015-01-01

    and a muscle biopsy from the vastus lateralis were collected at T0 (pre intervention) and at T1 (post intervention). Gene expression was measured by RTqPCR on RNA extracted from muscle biopsies. The expression levels of the genes principally involved in energy metabolism (PPARγ, adiponectin, AMPKα1/α2, TFAM......, NAMPT, PGC1α and SIRT1) were measured at T0 and T1. Up-regulation of PPARγ (p ... are directly or indirectly involved in the glucose and lipid oxidative metabolism. Multiple linear regression analysis revealed that fat percentage was independently associated with NAMPT, PPARγ and adiponectin expression. In conclusion, long-term recreational football training could be a useful tool...

  9. Metabolic control of resting hemispheric cerebral blood flow is oxidative, not glycolytic.

    Science.gov (United States)

    Powers, William J; Videen, Tom O; Markham, Joanne; Walter, Vonn; Perlmutter, Joel S

    2011-05-01

    Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO(2)) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO(2), CMRglc, and other covariates as predictors of resting CBF among 23 normal humans. The univariate analysis showed that only CMRO(2) was a significant predictor of CBF. The final multivariate model contained two additional terms in addition to CMRO(2): arterial oxygen content and oxygen extraction fraction. Notably, arterial plasma glucose concentration and CMRglc were not included in the final model. Our data demonstrate that the metabolic factor controlling hemispheric CBF in the normal resting brain is CMRO(2) and that CMRglc does not make a contribution. Our findings provide evidence for compartmentalization of brain metabolism into a basal component in which CBF is coupled to oxygen metabolism and an activation component in which CBF is controlled by another mechanism.

  10. Pharm GKB: Leukemia, Monocytic, Acute [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available Overview Alternate Names: Synonym Acute Monoblastic Leukemia; Acute Monoblastic Leukemias; Acute... Monocytic Leukemia; Acute Monocytic Leukemias; Acute monoblastic leukaemia; Acute monoblastic leukemia; Acute... monocytic leukaemia; Acute monocytic leukemia, morphology; Acute monocytoid leukemia; Leukemia, Acute... Monoblastic; Leukemia, Acute Monocytic; Leukemia, Monoblastic, Acute; Leukemia, Myeloid, Acute... Schilling-Type Myeloid; Leukemias, Acute Monoblastic; Leukemias, Acute Monocytic; M5a - Acute monoblastic leukaemia; M5a - Acute

  11. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  12. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults

    Directory of Open Access Journals (Sweden)

    Trautwein Christian

    2010-06-01

    Full Text Available Abstract Background Recent experimental approaches have unraveled essential migratory and functional differences of monocyte subpopulations in mice. In order to possibly translate these findings into human physiology and pathophysiology, human monocyte subsets need to be carefully revisited in health and disease. In analogy to murine studies, we hypothesized that human monocyte subsets dynamically change during ageing, potentially influencing their functionality and contributing to immunosenescence. Results Circulating monocyte subsets, surface marker and chemokine receptor expression were analyzed in 181 healthy volunteers (median age 42, range 18-88. Unlike the unaffected total leukocyte or total monocyte counts, non-classical CD14+CD16+ monocytes significantly increased with age, but displayed reduced HLA-DR and CX3CR1 surface expression in the elderly. Classical CD14++CD16- monocyte counts did not vary dependent on age. Serum MCP-1 (CCL2, but not MIP1α (CCL3, MIP1β (CCL4 or fractalkine (CX3CL1 concentrations increased with age. Monocyte-derived macrophages from old or young individuals did not differ with respect to cytokine release in vitro at steady state or upon LPS stimulation. Conclusions Our study demonstrates dynamic changes of circulating monocytes during ageing in humans. The expansion of the non-classical CD14+CD16+ subtype, alterations of surface protein and chemokine receptor expression as well as circulating monocyte-related chemokines possibly contribute to the preserved functionality of the monocyte pool throughout adulthood.

  13. Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice.

    Science.gov (United States)

    Huang, Madelyn C; Douillet, Christelle C; Stýblo, Miroslav

    2016-12-01

    Arsenic (+3 oxidation state) methyltransferase is the key enzyme in the methylation pathway for inorganic arsenic. We have recently shown that As3mt knockout (KO) has a profound effect on metabolomic profiles in mice. Phosphatidylcholine species (PCs) were the largest group of metabolites altered in both plasma and urine. The present study used targeted analysis to investigate the KO-associated changes in PC profiles in the liver, the site of PC synthesis. Results show that As3mt KO has a systemic effect on PC metabolism and that this effect is sex dependent.

  14. Expression of the cytochrome P450 epoxygenase CYP2J2 in human monocytic leukocytes.

    Science.gov (United States)

    Nakayama, Kaeko; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-08-29

    CYP2J2 is one of the cytochrome P450 epoxygenases involved in the metabolism of arachidonic acid. CYP2J2 has been identified in several tissues, especially cardiovascular tissues. CYP2J2 has cardiovascular effects, as epoxyeicosatrienoic acid, one of its metabolites, has anti-inflammatory and vasodilative activities. We investigated the expression of CYP2J2 in human leukocytes using reverse transcription-polymerase chain reaction, immunoblotting and immunostaining. Human monocytic cells, but not human neutrophils, exhibited constitutive expression of CYP2J2. Furthermore, the expression of CYP2J2 mRNA increased when the human monocytic cell line THP-1 cells and human monocytes were stimulated with phorbol 12-myristate 13-acetate and macrophage-colony stimulating factor in combination with granulocyte/macrophage-colony stimulating factor, respectively. These results suggest that expression of CYP2J2 was up-regulated when human monocytes differentiated into macrophages and that human monocytic cells and macrophages have a pathway to metabolize arachidonic acid using CYP epoxygenases.

  15. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  16. [The role of oxidative metabolism disturbance in the development of NO-related endothelial dysfunction during chronic hearth failure].

    Science.gov (United States)

    Goishvili, N; Kakauridze, N; Sanikidze, T

    2005-05-01

    The aim of the work was to establish the oxidative metabolism changes and NO data in Chronic Hearth Failure (HF). 52 patients were included in the investigation, among them 37 patients with CHD and chronic HF (II-IV functional class by NIHA) and 17 without it (control group). For revealing of organism redox-status (ceruloplasmine, Fe3+-transfferine, Mn2+, methemoglobine) the blood paramagnetic centers was studied by electron paramagnetic resonance method. For revealing of blood free NO, the diethyldithiocarbamat (SIGMA) was used. In chronic HF the oxidative process intensification and organism compensate reaction reduction with low Fe3+-transferine levels, increased Mn2++, methaemoglobin and inactivation of erythrocytes membranes adrenergic receptors were revealed. In chronic HF the accumulation of reactive oxygen levels provoke NO transformation in peroxynitrote with following decreases of blood free NO and develop the endothelial dysfunction.

  17. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    Science.gov (United States)

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  18. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    Directory of Open Access Journals (Sweden)

    Danuta Kowalczyk-Pachel

    Full Text Available The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days cocaine (10 mg/kg i.p. administration on the total cysteine (Cys metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS and malondialdehyde (MDA as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH, ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked

  19. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    Science.gov (United States)

    Kowalczyk-Pachel, Danuta; Iciek, Małgorzata; Wydra, Karolina; Nowak, Ewa; Górny, Magdalena; Filip, Małgorzata; Włodek, Lidia; Lorenc-Koci, Elżbieta

    2016-01-01

    The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase

  20. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    Science.gov (United States)

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  1. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow

    Directory of Open Access Journals (Sweden)

    Pablo Sabat

    2017-09-01

    Full Text Available Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis could generate differences in basal (BMR and maximum metabolic rates (Msum, as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW or tap (fresh water (TW and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA. The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA to whole organism traits (e.g., metabolic rates. We propose that the physiological changes observed

  2. Monocyte matrix metalloproteinase production in Type 2 diabetes and controls – a cross sectional study

    Directory of Open Access Journals (Sweden)

    Davies Isabel R

    2003-03-01

    Full Text Available Abstract Background Coronary plaque rupture may result from localised over expression of matrix metalloproteinases (MMPs within the plaque by infiltrating monocyte – macrophages. As MMP expression can be promoted by the modified lipoproteins, oxidative stress and hyperglycaemia that characterises Type 2 diabetes, we hypothesised that peripheral monocytes in these patients, exposed to these factors in vivo, would demonstrate increased MMP production compared to controls. Methods We examined peripheral venous monocyte expression of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1 in 18 controls and 22 subjects with Type 2 diabetes and no previous cardiovascular complications. Results No significant difference in MMP-1, 3 or 9 or TIMP-1 production was observed between control and diabetes groups. Conclusions Monocyte MMP-1, 3, and 9, and TIMP-1, production are not abnormal in Type 2 diabetes. This data cannot be extrapolated to monocyte – macrophage behaviour in the vessel wall, but it does suggest MMP and TIMP-1 expression prior to monocyte infiltration and transformation are not abnormal in Type 2 diabetes.

  3. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development

    Science.gov (United States)

    Popat, Reena J.; Hakki, Seran; Coughlan, Alice M.; Watson, Julie; Little, Mark A.; Spickett, Corinne M.; Lavender, Paul; Afzali, Behdad; Kemper, Claudia; Robson, Michael G.

    2017-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-β and further promoted the development of IL-10– and TGF-β–secreting CD4+ T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis. PMID:28138552

  4. Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis.

    Science.gov (United States)

    Kobayashi, Yosuke; Iwata, Hisashi; Yoshida, Junjiro; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2015-10-01

    Moniliella megachiliensis, the osmo-tolerant basidiomycetous yeast was found to accumulate intracellularly energy-storing carbohydrates (trehalose and glycogen) along with polyols (glycerol and erythritol) up to stationary growth phase. In trehalose-loaded cell, osmotic-stress resulted in the rapid generation of glycerol, and oxidative stress with menadione resulted in the rapid generation of erythritol. Under either of these conditions, the levels of the energy-storing carbohydrates were depleted, while little glucose uptake was observed. These results suggested that the intracellular pools of trehalose and glycogen were rapidly converted to glycerol in response to osmotic stress, and to erythritol in response to oxidative stress and altered redox balance. Expression of tps1 encoding trehalose synthetic enzymes paralleled trehalose accumulation in the cell during the culture in 2% glucose, in contrast, expression of tpp1 or tpp2 encoding trehalose-6-phosphate phosphatase was little increased under the same condition. Expression of tre (tre1/tre2) encoding trehalose hydrolase (trehalase) increased with time associated with depletion of trehalose during oxidative stress. From these results, we concluded that glycerol and erythritol, the compatible solutes in M. megachiliensis were metabolically interrelated to energy-storing carbohydrates such as trehalose or glycogen during conditions of osmotic or oxidative stress. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium.

    Science.gov (United States)

    Yahya, Adibah; Hallberg, Kevin B; Johnson, D Barrie

    2008-04-01

    A novel iron-oxidizing, moderately thermophilic, acidophilic bacterium (strain "GSM") was isolated from mineral spoil taken from a gold mine in Montana. Biomolecular analysis showed that it was most closely related to Alicyclobacillus tolerans, although the two bacteria differed in some key respects, including the absence (in strain GSM) of varpi-alicyclic fatty acids and in their chromosomal base compositions. Isolate GSM was able to grow in oxygen-free media using ferric iron as terminal electron acceptor confirming that it was a facultative anaerobe, a trait not previously described in Alicyclobacillus spp.. The acidophile used both organic and inorganic sources of energy and carbon, although growth and iron oxidation by isolate GSM was uncoupled in media that contained both fructose and ferrous iron. Fructose utilization suppressed iron oxidation, and oxidation of ferrous iron occurred only when fructose was depleted. In contrast, fructose catabolism was suppressed when bacteria were harvested while actively oxidizing iron, suggesting that both ferrous iron- and fructose-oxidation are inducible in this acidophile. Isolate GSM accelerated the oxidative dissolution of pyrite in liquid media either free of, or amended with, organic carbon, although redox potentials were significantly different in these media. The potential of this isolate for commercial mineral processing is discussed.

  6. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Science.gov (United States)

    Jaspers, Richard T.; Testerink, Janwillem; Della Gaspera, Bruno; Chanoine, Christophe; Bagowski, Christophe P.; van der Laarse, Willem J.

    2014-01-01

    ABSTRACT Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus. PMID:25063194

  7. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia.

    Science.gov (United States)

    Jaspers, Richard T; Testerink, Janwillem; Della Gaspera, Bruno; Chanoine, Christophe; Bagowski, Christophe P; van der Laarse, Willem J

    2014-07-25

    Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  8. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Richard T. Jaspers

    2014-07-01

    Full Text Available Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH (10% air/90%N2 saturated water. We analyzed cross-sectional area (CSA, succinate dehydrogenase (SDH activity, capillarization, myonuclear density, myoglobin (Mb concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001. Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001. In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  9. Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

    Directory of Open Access Journals (Sweden)

    Ghulam Hussain

    Full Text Available The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS. Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

  10. A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats.

    Science.gov (United States)

    Treviño, Samuel; Aguilar-Alonso, Patrícia; Flores Hernandez, Jose Angel; Brambila, Eduardo; Guevara, Jorge; Flores, Gonzalo; Lopez-Lopez, Gustavo; Muñoz-Arenas, Guadalupe; Morales-Medina, Julio Cesar; Toxqui, Veronica; Venegas, Berenice; Diaz, Alfonso

    2015-09-01

    A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-β as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.

  11. Effects of stress upon the oxidative metabolism and its correlation with gastric ulcer formation: the role of sex.

    Science.gov (United States)

    Menéndez-Patterson, A; Florez-Lozano, J A; Marin, B

    1976-01-01

    The metabolic-oxidative activity of different nervous and glandular structures (amygdala, hypothalamus, lateral-frontal cerebral cortex, adrenal glands) in male and female rats under acute stress caused by physical immobilization, was determined. The sexual cycle of the female rat was controlled by examination of their vaginal frotis. One experimental group during estrus and another one during diestrus were selected. At the same time ovariectomy was performed on an experimental group in order to eliminate the hormonal influences of the ovary. Results show there are no significant differerneces in the oxidative metabolism. Nor in the numbers of ulcers. Hypothalamus-hypophyseal-adrenocortical activation was made manifest on obtaining significant differences in the weight of the adrenal glands, a fact long ago reported in a number of studies. Necropsy showed severe gastric hemorrhages and ulcer in the stomach. Nevertheless, no significant differences between the distinc experimental groups were obtained. The likely participation of sexual hormones in female rats is discussed in the light of our results.

  12. Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG TingZhong; LIU Ping; FAN FenLing; GUAN YouFei; MA AiQun; BAI Ling; LI Jing; SUN ChaoFeng; ZHAO Jin; CUI ChangCong; HAN Ke; LIU Yu; ZHUO XiaoZhen

    2009-01-01

    This work characterizes the mitochondrial proteomic profile in the failing heart and elucidates the molecular basis of mitochondria in heart failure.Heart failure was induced in rats by myocardial infarction,and mitochondria were isolated from hearts by differential centrifugation.Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry,a system biology approach was employed to investigate differences in mitochondrial proteins between normal and failing hearts.Mass spectrometry identified 27 proteins differentially expressed that involved in energy metabolism.Among those,the up-regulated proteins included tricarboxylic acid cycle enzymes and pyruvate dehydrogenase complex subunita while the down-regulated proteins were involved in fatty acid oxidation and the OXPHOS complex.These results suggest a substantial metabolic switch from free fatty acid oxidation to glycolysis in heart failure and provide molecular evidence for alterations in the structural and functional parameters of mitochondria that may contribute to cardiac dysfunction during ischemic injury.

  13. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.

    Science.gov (United States)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.

  14. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure.

    Science.gov (United States)

    Díaz-Flores, Margarita; Cruz, Miguel; Duran-Reyes, Genoveva; Munguia-Miranda, Catarina; Loza-Rodríguez, Hilda; Pulido-Casas, Evelyn; Torres-Ramírez, Nayeli; Gaja-Rodriguez, Olga; Kumate, Jesus; Baiza-Gutman, Luis Arturo; Hernández-Saavedra, Daniel

    2013-10-01

    Reactive oxygen species derived from abdominal fat and uncontrolled glucose metabolism are contributing factors to both oxidative stress and the development of metabolic syndrome (MetS). This study was designed to evaluate the effects of daily administration of an oral glycine supplement on antioxidant enzymes and lipid peroxidation in MetS patients. The study included 60 volunteers: 30 individuals that were supplemented with glycine (15 g/day) and 30 that were given a placebo for 3 months. We analysed thiobarbituric acid reactive substances (TBARS) and S-nitrosohemoglobin (SNO-Hb) in plasma; the enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in erythrocytes; and the expression of CAT, GPX, and SOD2 in leukocytes. Individuals treated with glycine showed a 25% decrease in TBARS compared with the placebo-treated group. Furthermore, there was a 20% reduction in SOD-specific activity in the glycine-treated group, which correlated with SOD2 expression. G6PD activity and SNO-Hb levels increased in the glycine-treated male group. Systolic blood pressure (SBP) also showed a significant decrease in the glycine-treated men (p = 0.043). Glycine plays an important role in balancing the redox reactions in the human body, thus protecting against oxidative damage in MetS patients.

  15. Monocyte subsets in myocardial infarction: A review.

    Science.gov (United States)

    Arfvidsson, John; Ahlin, Fredrik; Vargas, Kris G; Thaler, Barbara; Wojta, Johann; Huber, Kurt

    2017-03-15

    Monocytes form an important part of the human innate immune system by taking part in inflammatory reactions. With time, monocytes have gained interest in the role they may play during the event of myocardial infarction (MI). The current paradigm suggests that monocytes consist of three subdivisions which differ in phenotypic and dynamic patterns after an MI. In the inflammation that ensues, the different subsets have been shown to have an impact on reparative processes and patient recovery. We searched Medline and Embase until April 5, 2016, for observational studies or clinical trials regarding monocyte functions and dynamics in MI. Apart from studies in humans, extensive work has been done in mice in an effort to understand the complex nature of monocyte dynamics. Animal models might add useful information on mapping these processes. The question still remains whether animal data can, to a certain degree, be extrapolated to monocyte functions during human MI. This review aims to summarize current available evidence on both mice and men with particular focus on the understanding of monocyte subsets dynamics and effects in human MI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging...

  17. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    DEFF Research Database (Denmark)

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads

    2015-01-01

    Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II...

  18. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  19. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Hsin-I Tong

    Full Text Available The ability of monocytes and monocyte-derived macrophages (MDM to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB. This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported

  20. 7-Hydroxycoumarin modulates the oxidative metabolism, degranulation and microbial killing of human neutrophils.

    Science.gov (United States)

    Kabeya, Luciana M; Fuzissaki, Carolina N; Taleb-Contini, Silvia H; da C Ferreira, Ana Maria; Naal, Zeki; Santos, Everton O L; Figueiredo-Rinhel, Andréa S G; Azzolini, Ana Elisa C S; Vermelho, Roberta B; Malvezzi, Alberto; Amaral, Antonia T-do; Lopes, João Luis C; Lucisano-Valim, Yara Maria

    2013-10-25

    In the present study, we assessed whether 7-hydroxycoumarin (umbelliferone), 7-hydroxy-4-methylcoumarin, and their acetylated analogs modulate some of the effector functions of human neutrophils and display antioxidant activity. These compounds decreased the ability of neutrophils to generate superoxide anion, release primary granule enzymes, and kill Candida albicans. Cytotoxicity did not mediate their inhibitory effect, at least under the assessed conditions. These coumarins scavenged hypochlorous acid and protected ascorbic acid from electrochemical oxidation in cell-free systems. On the other hand, the four coumarins increased the luminol-enhanced chemiluminescence of human neutrophils stimulated with phorbol-12-myristate-13-acetate and serum-opsonized zymosan. Oxidation of the hydroxylated coumarins by the neutrophil myeloperoxidase produced highly reactive coumarin radical intermediates, which mediated the prooxidant effect observed in the luminol-enhanced chemiluminescence assay. These species also oxidized ascorbic acid and the spin traps α-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 5-dimethyl-1-pyrroline-N-oxide. Therefore, 7-hydroxycoumarin and the derivatives investigated here were able to modulate the effector functions of human neutrophils and scavenge reactive oxidizing species; they also generated reactive coumarin derivatives in the presence of myeloperoxidase. Acetylation of the free hydroxyl group, but not addition of the 4-methyl group, suppressed the biological effects of 7-hydroxycoumarin. These findings help clarify how 7-hydroxycoumarin acts on neutrophils to produce relevant anti-inflammatory effects.

  1. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose. PMID:28178319

  2. Strenuous physical exercise adversely affects monocyte chemotaxis

    DEFF Research Database (Denmark)

    Czepluch, Frauke S; Barres, Romain; Caidahl, Kenneth

    2011-01-01

    Physical exercise is important for proper cardiovascular function and disease prevention, but it may influence the immune system. We evaluated the effect of strenuous exercise on monocyte chemotaxis. Monocytes were isolated from blood of 13 young, healthy, sedentary individuals participating...... in a three-week training program which consisted of repeated exercise bouts. Monocyte chemotaxis and serological biomarkers were investigated at baseline, after three weeks training and after four weeks recovery. Chemotaxis towards vascular endothelial growth factor-A (VEGF-A) and transforming growth factor...

  3. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes.

    Directory of Open Access Journals (Sweden)

    Yonchu Jenkins

    Full Text Available Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK. Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively. R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13C-palmitate and (13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.

  4. Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Alejandro A. Murillo

    2014-07-01

    Full Text Available Sulfur-oxidizing Gamma-proteobacteria are abundant in marine oxygen-deficient waters, and appear to play a key role in a previously unrecognized cryptic sulfur cycle. Metagenomic analyses of members of the uncultured SUP05 lineage in the Canadian seasonally anoxic fjord Saanich Inlet (SI, hydrothermal plumes in the Guaymas Basin (GB and single cell genomics analysis of two ARCTIC96BD-19 representatives from the South Atlantic Sub-Tropical Gyre (SASG have shown them to be metabolically versatile. However, SI and GB SUP05 bacteria seem to be obligate chemolithoautotrophs, whereas ARCTIC96BD-19 has the genetic potential for aerobic respiration. Here, we present results of a metagenomic analysis of sulfur-oxidizing Gamma-proteobacteria (GSO, closely related to the SUP05/ARCTIC96BD-19 clade, from a coastal ecosystem in the eastern South Pacific (ESP. This ecosystem experiences seasonal anoxia and accumulation of nitrite and ammonium at depth, with a corresponding increase in the abundance of GSO representatives. The ESP-GSOs appear to have a significantly different gene complement than those from Saanich Inlet, Guaymas Basin and SASG. Genomic analyses of de novo assembled contigs indicate the presence of a complete aerobic respiratory complex based on the cytochrome bc1 oxidase. Furthermore, they appear to encode a complete TCA cycle and several transporters for dissolved organic carbon species, suggesting a mixotrophic lifestyle. Thus, the success of sulfur-oxidizing Gamma-proteobacteria in oxygen-deficient marine ecosystems appears due not only to their previously recognized anaerobic metabolic versatility, but also to their capacity to function under aerobic conditions using different carbon sources. Finally, members of ESP-GSO cluster also have the genetic potential for reducing nitrate to ammonium based on the nirBD genes, and may therefore facilitate a tighter coupling of the nitrogen and sulfur cycles in oxygen-deficient waters.

  5. Oxidative stress parameters in urine from patients with disorders of propionate metabolism: a beneficial effect of L:-carnitine supplementation.

    Science.gov (United States)

    Ribas, Graziela S; Biancini, Giovana B; Mescka, Caroline; Wayhs, Carlos Y; Sitta, Angela; Wajner, Moacir; Vargas, Carmen R

    2012-01-01

    Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and L: -carnitine supplementation. L: -Carnitine is widely used in the therapy of these diseases to prevent secondary L: -carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with L: -carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free L: -carnitine. In conclusion, the present results indicate that treatment with low protein diet and L: -carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that L: -carnitine supplementation may be specially involved in this protection.

  6. HIV-1 infection is associated with changes in nuclear receptor transcriptome, pro-inflammatory and lipid profile of monocytes

    Directory of Open Access Journals (Sweden)

    Renga Barbara

    2012-10-01

    Full Text Available Abstract Background Persistent residual immune activation and lipid dysmetabolism are characteristics of HIV positive patients receiving an highly active antiretroviral therapy (HAART. Nuclear Receptors are transcription factors involved in the regulation of immune and metabolic functions through the modulation of gene transcription. The objective of the present study was to investigate for the relative abundance of members of the nuclear receptor family in monocytic cells isolated from HIV positive patients treated or not treated with HAART. Methods Monocytes isolated from peripheral blood mononuclear cells (PBMC were used for analysis of the relative mRNA expressions of FXR, PXR, LXR, VDR, RARα, RXR, PPARα, PPARβ, PPARγ and GR by Real-Time polymerase chain reaction (PCR. The expression of a selected subset of inflammatory and metabolic genes MCP-1, ICAM-1, CD36 and ABCA1 was also measured. Results Monocytes isolated from HIV infected patients expressed an altered pattern of nuclear receptors characterized by a profound reduction in the expressions of FXR, PXR, PPARα, GR, RARα and RXR. Of interest, the deregulated expression of nuclear receptors was not restored under HAART and was linked to an altered expression of genes which supports both an immune activation and altered lipid metabolism in monocytes. Conclusions Altered expression of genes mediating reciprocal regulation of lipid metabolism and immune function in monocytes occurs in HIV. The present findings provide a mechanistic explanation for immune activation and lipid dysmetabolism occurring in HIV infected patients and could lead to the identification of novel potential therapeutic targets.

  7. HIV-1 infection is associated with changes in nuclear receptor transcriptome, pro-inflammatory and lipid profile of monocytes.

    Science.gov (United States)

    Renga, Barbara; Francisci, Daniela; D'Amore, Claudio; Schiaroli, Elisabetta; Carino, Adriana; Baldelli, Franco; Fiorucci, Stefano

    2012-10-29

    Persistent residual immune activation and lipid dysmetabolism are characteristics of HIV positive patients receiving an highly active antiretroviral therapy (HAART). Nuclear Receptors are transcription factors involved in the regulation of immune and metabolic functions through the modulation of gene transcription. The objective of the present study was to investigate for the relative abundance of members of the nuclear receptor family in monocytic cells isolated from HIV positive patients treated or not treated with HAART. Monocytes isolated from peripheral blood mononuclear cells (PBMC) were used for analysis of the relative mRNA expressions of FXR, PXR, LXR, VDR, RARα, RXR, PPARα, PPARβ, PPARγ and GR by Real-Time polymerase chain reaction (PCR). The expression of a selected subset of inflammatory and metabolic genes MCP-1, ICAM-1, CD36 and ABCA1 was also measured. Monocytes isolated from HIV infected patients expressed an altered pattern of nuclear receptors characterized by a profound reduction in the expressions of FXR, PXR, PPARα, GR, RARα and RXR. Of interest, the deregulated expression of nuclear receptors was not restored under HAART and was linked to an altered expression of genes which supports both an immune activation and altered lipid metabolism in monocytes. Altered expression of genes mediating reciprocal regulation of lipid metabolism and immune function in monocytes occurs in HIV. The present findings provide a mechanistic explanation for immune activation and lipid dysmetabolism occurring in HIV infected patients and could lead to the identification of novel potential therapeutic targets.

  8. Metabolic evidence of diminished lipid oxidation in women with polycystic ovary syndrome

    Science.gov (United States)

    Complex diseases, such as polycystic ovary syndrome (PCOS), are not limited to specific genes, pathogens, toxicoses, or identifiable environmental influences. PCOS still remains a diagnosis of exclusion despite being the most common female endocrinopathy and the leading cause of metabolic syndrome, ...

  9. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    , cholesterol and glycosylated hemoglobin (HbA1c). In the group of men, there were significant positive associations between alcohol intake, HbA1c and FPG-sensitive sites in multivariate analysis. The levels of metabolic risk factors were positively associated with age, yet only few subjects fulfilled all...

  10. Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes.

    Science.gov (United States)

    Azarias, Guillaume; Perreten, Hélène; Lengacher, Sylvain; Poburko, Damon; Demaurex, Nicolas; Magistretti, Pierre J; Chatton, Jean-Yves

    2011-03-09

    During synaptic activity, the clearance of neuronally released glutamate leads to an intracellular sodium concentration increase in astrocytes that is associated with significant metabolic cost. The proximity of mitochondria at glutamate uptake sites in astrocytes raises the question of the ability of mitochondria to respond to these energy demands. We used dynamic fluorescence imaging to investigate the impact of glutamatergic transmission on mitochondria in intact astrocytes. Neuronal release of glutamate induced an intracellular acidification in astrocytes, via glutamate transporters, that spread over the mitochondrial matrix. The glutamate-induced mitochondrial matrix acidification exceeded cytosolic acidification and abrogated cytosol-to-mitochondrial matrix pH gradient. By decoupling glutamate uptake from cellular acidification, we found that glutamate induced a pH-mediated decrease in mitochondrial metabolism that surpasses the Ca(2+)-mediated stimulatory effects. These findings suggest a model in which excitatory neurotransmission dynamically regulates astrocyte energy metabolism by limiting the contribution of mitochondria to the metabolic response, thereby increasing the local oxygen availability and preventing excessive mitochondrial reactive oxygen species production.

  11. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2014-01-01

    leading to increased mobilization of non-carbohydrate substrates as branched chain amino acids or long chain fatty acids was observed in senescent cells. In addition, phospho-and glycerolipids metabolism was altered. Increased levels of acyl-carnitines indicated augmented turnover of storage and membrane...

  12. Association between Endothelial Nitric Oxide Synthase Polymorphisms and Risk of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Chiu-Shong Liu

    2013-01-01

    Full Text Available BACKGROUND: Previous studies inferring that the NOS3 gene was associated with the pathogenesis of metabolic syndrome (MetS had inconsistent findings. We investigated the role of three NOS3 polymorphisms (T-786C, intron 4b/a, and G894T in the risk of MetS using a hospital-based case-control study.

  13. Oxidative and glicolytic metabolism of the frontal cortex (latero-frontal) and of the posterior cortex (latero-occipital) in relation with the sexual activity of the rat.

    Science.gov (United States)

    Menéndez-Patterson, A; Florez-Lozano, J A; Marin, B

    1976-01-01

    The authors of this paper have ascertained the glycolytic metabolism and the oxidative metabolism (intake of QO2), of the frontal and posterior cortex in female rats at different stages of the sexual cycle, as also in ovariectomized animals, by the intake of glucose and the production of lactates. The results indicate a statistically significant increase of the oxidative metabolism of the posterior cortex (latero-occipital) in the estrual and proestrual phases, in comparisons with the diestral phase. The frontal cortex (latero-frontal) did not show any significant difference; moreover, the glycolitic metabolism did not alter in any of the tissues under observation. These findings, seem to suggest possible participation of the posterior cortex (latero-occipital) on the regulation of sexual cycle of the rat. The activation of this cortex occurs through the preponderant imbricantion of the tri-carboxylic acid cycle.

  14. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.

    Science.gov (United States)

    Koskenkorva-Frank, Taija S; Weiss, Günter; Koppenol, Willem H; Burckhardt, Susanna

    2013-12-01

    Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us

  15. Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation.

    Science.gov (United States)

    Pereira, João H O S; Reis, Ana C; Homem, Vera; Silva, José A; Alves, Arminda; Borges, Maria T; Boaventura, Rui A R; Vilar, Vítor J P; Nunes, Olga C

    2014-11-15

    The contamination of the aquatic environment by non-metabolized and metabolized antibiotic residues has brought the necessity of alternative treatment steps to current water decontamination technologies. This work assessed the feasibility of using a multistage treatment system for amoxicillin (AMX) spiked solutions combining: i) a biological treatment process using an enriched culture to metabolize AMX, with ii) a solar photocatalytic system to achieve the removal of the metabolized transformation products (TPs) identified via LC-MS, recalcitrant to further biological degradation. Firstly, a mixed culture (MC) was obtained through the enrichment of an activated sludge sample collected in an urban wastewater treatment plant (WWTP). Secondly, different aqueous matrices spiked with AMX were treated with the MC and the metabolic transformation products were identified. Thirdly, the efficiency of two solar assisted photocatalytic processes (TiO2/UV or Fe(3+)/Oxalate/H2O2/UV-Vis) was assessed in the degradation of the obtained TPs using a lab-scale prototype photoreactor equipped with a compound parabolic collector (CPC). Highest AMX specific biodegradation rates were obtained in buffer and urban wastewater (WW) media (0.10 ± 0.01 and 0.13 ± 0.07 g(AMX) g(biomass)(-1) h(-1), respectively). The resulting TPs, which no longer presented antibacterial activity, were identified as amoxicilloic acid (m/z = 384). The performance of the Fe(3+)/Oxalate/H2O2/UV-Vis system in the removal of the TPs from WW medium was superior to the TiO2/UV process (TPs no longer detected after 40 min (QUV = 2.6 kJ L(-1)), against incomplete TPs removal after 240 min (QUV = 14.9 kJ L(-1)), respectively).

  16. Macrophage Interaction with Paracoccidioides brasiliensis Yeast Cells Modulates Fungal Metabolism and Generates a Response to Oxidative Stress

    Science.gov (United States)

    Parente-Rocha, Juliana Alves; Parente, Ana Flávia Alves; Baeza, Lilian Cristiane; Bonfim, Sheyla Maria Rondon Caixeta; Hernandez, Orville; McEwen, Juan G.; Bailão, Alexandre Melo; Taborda, Carlos Pelleschi; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2015-01-01

    Macrophages are key players during Paracoccidioides brasiliensis infection. However, the relative contribution of the fungal response to counteracting macrophage activity remains poorly understood. In this work, we evaluated the P. brasiliensis proteomic response to macrophage internalization. A total of 308 differentially expressed proteins were detected in P. brasiliensis during infection. The positively regulated proteins included those involved in alternative carbon metabolism, such as enzymes involved in gluconeogenesis, beta-oxidation of fatty acids and amino acids catabolism. The down-regulated proteins during P. brasiliensis internalization in macrophages included those related to glycolysis and protein synthesis. Proteins involved in the oxidative stress response in P. brasiliensis yeast cells were also up-regulated during macrophage infection, including superoxide dismutases (SOD), thioredoxins (THX) and cytochrome c peroxidase (CCP). Antisense knockdown mutants evaluated the importance of CCP during macrophage infection. The results suggested that CCP is involved in a complex system of protection against oxidative stress and that gene silencing of this component of the antioxidant system diminished the survival of P. brasiliensis in macrophages and in a murine model of infection. PMID:26360774

  17. Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients.

    Science.gov (United States)

    Simão, Andrea Name Colado; Lehmann, Marcio Francisco; Alfieri, Daniela Frizon; Meloni, Milena Zardetto; Flauzino, Tamires; Scavuzzi, Bruna Miglioranza; de Oliveira, Sayonara Rangel; Lozovoy, Marcell Alysson Batisti; Dichi, Isaias; Reiche, Edna Maria Vissoci

    2015-12-01

    Oxidative stress has been implicated in the pathophysiology of cardiovascular disease and MetS and it may be one of molecular mechanisms involved in stroke. The aims of the present study were to verify differences in oxidative stress markers in acute ischemic stroke patients with and without MetS and to verify whether MetS influences disability and short time outcome of the patients. 148 patients with acute ischemic stroke were divided in two groups: with MetS (n = 92) and without MetS (n = 56). The modified Rankin Scale (mRS) was used for measuring the functional disability after 3-month follow-up. The study assessed the metabolic profile and oxidative stress markers. Stroke patients with MetS had higher levels of lipid hydroperoxides (p acute ischemic stroke patients with MetS and this elevation seems to be involved mainly with changes in lipid profile, but the presence of MetS did not influence short-time disability and survival of the acute ischemic stroke patients.

  18. Effect of commercially available green and black tea beverages on drug-metabolizing enzymes and oxidative stress in Wistar rats.

    Science.gov (United States)

    Yao, Hsien-Tsung; Hsu, Ya-Ru; Lii, Chong-Kuei; Lin, Ai-Hsuan; Chang, Keng-Hao; Yang, Hui-Ting

    2014-08-01

    The effect of commercially available green tea (GT) and black tea (BT) drinks on drug metabolizing enzymes (DME) and oxidative stress in rats was investigated. Male Wistar rats were fed a laboratory chow diet and GT or BT drink for 5 weeks. Control rats received de-ionized water instead of the tea drinks. Rats received the GT and BT drinks treatment for 5 weeks showed a significant increase in hepatic microsomal cytochrome P450 (CYP) 1A1 and CYP1A2, and a significant decrease in CYP2C, CYP2E1 and CYP3A enzyme activities. Results of immunoblot analyses of enzyme protein contents showed the same trend with enzyme activity. Significant increase in UDP-glucuronosyltransferase activity and reduced glutathione content in liver and lungs were observed in rats treated with both tea drinks. A lower lipid peroxide level in lungs was observed in rats treated with GT drink. Electrophoretic mobility shift assay revealed that both tea drinks decreased pregnane X receptor binding to DNA and increased nuclear factor-erythroid 2 p45-related factor 2 binding to DNA. These results suggest that feeding of both tea drinks to rats modulated DME activities and reduced oxidative stress in liver and lungs. GT drink is more effective on reducing oxidative stress than BT drink.

  19. Monocyte-Platelet Interaction Induces a Pro-Inflammatory Phenotype in Circulating Monocytes

    OpenAIRE

    2011-01-01

    BACKGROUND: Activated platelets exert a pro-inflammatory action that can be largely ascribed to their ability to interact with leukocytes and modulate their activity. We hypothesized that platelet activation and consequent formation of monocyte-platelet aggregates (MPA) induces a pro-inflammatory phenotype in circulating monocytes. METHODOLOGY/PRINCIPAL FINDINGS: CD62P(+) platelets and MPA were measured, and monocytes characterized, by whole blood flow cytometry in healthy subjects, before an...

  20. Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages.

    Science.gov (United States)

    Zhu, Xiaochun; Tu, Zheng J; Coussens, Paul M; Kapur, Vivek; Janagama, Harish; Naser, Saleh; Sreevatsan, Srinand

    2008-10-01

    In this study we analyzed the macrophage-induced gene expression of three diverse genotypes of Mycobacterium avium subsp. paratuberculosis (MAP). Using selective capture of transcribed sequences (SCOTS) on three genotypically diverse MAP isolates from cattle, human, and sheep exposed to primary bovine monocyte derived macrophages for 48 h and 120 h we created and sequenced six cDNA libraries. Sequence annotations revealed that the cattle isolate up-regulated 27 and 241 genes; the human isolate up-regulated 22 and 53 genes, and the sheep isolate up-regulated 35 and 358 genes, at the two time points respectively. Thirteen to thirty-three percent of the genes identified did not have any annotated function. Despite variations in the genes identified, the patterns of expression fell into overlapping cellular functions as inferred by pathway analysis. For example, 10-12% of the genes expressed by all three strains at each time point were associated with cell-wall biosynthesis. All three strains of MAP studied up-regulated genes in pathways that combat oxidative stress, metabolic and nutritional starvation, and cell survival. Taken together, this comparative transcriptional analysis suggests that diverse MAP genotypes respond with similar modus operandi for survival in the host.

  1. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Rogier M Thurlings

    Full Text Available BACKGROUND: Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA, a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man. METHODS/PRINCIPAL FINDINGS: We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT. We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO. Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3 (0.95-5.1 x 10(-3 % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion. CONCLUSIONS/SIGNIFICANCE: The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

  2. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2016-01-01

    including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused...... a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic...

  3. Oxidative damage in muscular dystrophy correlates with the severity of the pathology: role of glutathione metabolism.

    Science.gov (United States)

    Renjini, R; Gayathri, N; Nalini, A; Srinivas Bharath, M M

    2012-04-01

    Muscular dystrophies (MDs) such as Duchenne muscular dystrophy (DMD), sarcoglycanopathy (Sgpy) and dysferlinopathy (Dysfy) are recessive genetic neuromuscular diseases that display muscle degeneration. Although these MDs have comparable endpoints of muscle pathology, the onset, severity and the course of these diseases are diverse. Different mechanisms downstream of genetic mutations might underlie the disparity in these pathologies. We surmised that oxidative damage and altered antioxidant function might contribute to these differences. The oxidant and antioxidant markers in the muscle biopsies from patients with DMD (n = 15), Sgpy (n = 15) and Dysfy (n = 15) were compared to controls (n = 10). Protein oxidation and lipid peroxidation was evident in all MDs and correlated with the severity of pathology, with DMD, the most severe dystrophic condition showing maximum damage, followed by Sgpy and Dysfy. Oxidative damage in DMD and Sgpy was attributed to the depletion of glutathione (GSH) and lowered antioxidant activities while loss of GSH peroxidase and GSH-S-transferase activities was observed in Dysfy. Lower GSH level in DMD was due to lowered activity of gamma-glutamyl cysteine ligase, the rate limiting enzyme in GSH synthesis. Similar analysis in cardiotoxin (CTX) mouse model of MD showed that the dystrophic muscle pathology correlated with GSH depletion and lipid peroxidation. Depletion of GSH prior to CTX exposure in C2C12 myoblasts exacerbated oxidative damage and myotoxicity. We deduce that the pro and anti-oxidant mechanisms could be correlated to the severity of MD and might influence the dystrophic pathology to a different extent in various MDs. On a therapeutic note, this could help in evolving novel therapies that offer myoprotection in MD.

  4. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  5. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... (CMR) of oxygen (O(2)), glucose (glu), and lactate (lac), in patients with ABM and compare the results to those obtained in healthy volunteers. METHODS: We studied 19 patients (17 of whom were sedated) with ABM and eight healthy volunteers (controls). CBF was measured during baseline ventilation...... to baseline ventilation, whereas CMR(glu) increased. CONCLUSION: In patients with acute bacterial meningitis, we found variable levels of CBF and cerebrovascular CO(2) reactivity, a low a-v DO(2), low cerebral metabolic rates of oxygen and glucose, and a cerebral lactate efflux. In these patients...

  6. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism.

    Science.gov (United States)

    Chrysovergis, K; Wang, X; Kosak, J; Lee, S-H; Kim, J S; Foley, J F; Travlos, G; Singh, S; Baek, S J; Eling, T E

    2014-12-01

    Obesity is a major health problem associated with high morbidity and mortality. NSAID-activated gene (NAG-1) is a TGF-β superfamily member reported to alter adipose tissue levels in mice. We investigated whether hNAG-1 acts as a regulator of adiposity and energy metabolism. hNAG-1 mice, ubiquitously expressing hNAG-1, were placed on a control or high-fat diet for 12 weeks. hNAG-1-expressing B16/F10 melanoma cells were used in a xenograft model to deliver hNAG-1 to obese C57BL/6 mice. As compared with wild-type littermates, transgenic hNAG-1 mice have less white fat and brown fat despite equivalent food intake, improved glucose tolerance, lower insulin levels and are resistant to dietary- and genetic-induced obesity. hNAG-1 mice are more metabolically active with higher energy expenditure. Obese C57BL/6 mice treated with hNAG-1-expressing xenografts show decreases in adipose tissue and serum insulin levels. hNAG-1 mice and obese mice treated with hNAG-1-expressing xenografts show increased thermogenic gene expression (UCP1, PGC1α, ECH1, Cox8b, Dio2, Cyc1, PGC1β, PPARα, Elvol3) in brown adipose tissue (BAT) and increased expression of lipolytic genes (Adrb3, ATGL, HSL) in both white adipose tissue (WAT) and BAT, consistent with higher energy metabolism. hNAG-1 modulates metabolic activity by increasing the expression of key thermogenic and lipolytic genes in BAT and WAT. hNAG-1 appears to be a novel therapeutic target in preventing and treating obesity and insulin resistance.

  7. Unveiling the oxidative metabolism of Rhipicephalus microplus (Acari: Ixodidae) experimentally exposed to entomopathogenic fungi.

    Science.gov (United States)

    Tunholi-Alves, Vinícius Menezes; Tunholi Alves, Victor Menezes; da Silva, Jairo Pinheiro; Nora Castro, Rosane; Salgueiro, Fernanda Barbosa; Perinotto, Wendell Marcelo de Souza; Gôlo, Patrícia Silva; Camargo, Mariana Guedes; Angelo, Isabele da Costa; Bittencourt, Vânia Rita Elias Pinheiro

    2016-10-01

    Rhipicephalus microplus is an important tick in tropical regions due to the high economic losses caused by its parasitism. Metarhizium anisopliae and Beauveria bassiana are well-known entomopathogenic fungi that can afflict R. microplus ticks. The development of new targets and strategies to control this parasite can be driven by studies of this tick's physiology. Recently, it was reported that when exposed to adverse physiological conditions, ticks can activate fermentative pathways, indicating transition from aerobic to anaerobic metabolism. Nevertheless, the precise mechanism by which entomopathogenic fungi influence R. microplus metabolism has not been clarified, limiting understanding of the tick-fungus association. Thus, the present study aimed to evaluate the effect of infection of ticks by M. anisopliae and B. bassiana on the amount of selected carboxylic acids present in the hemolymph, enabling increased understanding of changes previously reported. The results showed preservation in the concentrations of oxalic, lactic, and pyruvic acids in the hemolymph 24 and 48 h after dropping from cattle; while there were variations in the concentration of these carboxylic acids after infection of female ticks to M. anisopliae and B. bassiana. Significant increases were observed in the concentration of oxalic and lactic acids and significant reduction of pyruvic acid for both observation times (24 and 48 h) after infection by entomopathogenic fungi. These results indicate that B. bassiana and M. anisopliae infection alters the basal metabolism of R. microplus females, resulting in the activation of fermentative pathways.

  8. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  9. Metabolic Signatures of Oxidative Stress and Their Relationship with Erythrocyte Membrane Surface Roughness Among Workers of Manual Materials Handling (MMH).

    Science.gov (United States)

    Ghosh, Subrata; Acharyya, Muktish; Majumder, Titlee; Bagchi, Anandi

    2015-12-01

    Brickfield workers in India perform manual materials handling (MMH) and as a result, are at a high risk of developing oxidative stress. This results in an alteration of the various markers of metabolic oxidative stress at the cellular level. Since red blood cell (RBC) is the central point where oxygen, glucose-6-phosphate dehydrogenase (G-6-PD), and glutathione (GSH) are involved, the surface roughness and its alteration and modeling with respect to workers exposed to MMH may be considered as helpful determinants in predicting early damage to the cell and restoring better health to the exposed population, that is, the worker exposed to stress. Hence, nanometric analysis of the surface roughness of the RBC may serve as an early indicator of the stress-related damage in these individuals. The purpose of the study was to identify early red blood corpuscular surface damage profile in terms of linear modeling correlating various biochemical parameters. Linear modeling has been aimed to be developed in order to demonstrate how individual oxidative stress markers such as malondialdehyde (MDA), G-6-PD, and reduced GSH are related to the RBC surface roughness [root mean square (RMS)]. Conventional analysis of these biochemical responses were evaluated in MMH laborers (age varying between 18 years and 21 years) and a comparable control group of the same age group (with sedentary lifestyles). Peak expiratory flow rate (PEFR) and RBC surface analysis by atomic-force microscopy (AFM) and correlated scanning probe microscopy (SPM-analytical software) with corresponding image analysis were performed immediately after completion of standardized exercise (MMH) at the brickfield. A number of correlated significances and regressive linear models were developed among MDA, G-6-PD, GSH, and RBC surface roughness. It appears that these linear models might be instrumental in predicting early oxidative damages related to specific occupational hazards.

  10. Expression of cytosolic 5' nucleotidase does not correlate with expression of oxidative metabolism marker: myoglobine in human skeletal muscles

    Institute of Scientific and Technical Information of China (English)

    Katarzyna Lechward; Kinga Tkacz-Stachowska

    2009-01-01

    Our previous studies had shown that eytosolic 5'nucleotidase-I (eN-I) is expressed in several tissues in pigeons, including brain and several different skeletal muscles. We observed that cN-I mRNA levels varied among different pigeon muscles. Initial quantification of the differences revealed that ~5-10 times more of cN-I transcript was present in red, oxidative muscles (breast muscle and gastrocnemius) than in white ones,composed of glycolytic fibers (biceps brachii). We had found this observation very intriguing and decided to compare human skeletal muscles distribution of cN-I with the type of oxygen metabolism. Our screen involved 60 samples of several human muscles and we assayed the correlation between the amount of tran-scripts of cN-I and myoglobine, which we took as a measure of oxidative-slow twitch fibers. Our question was whether in humans, cN-I presence in skeletal muscles was related to their fiber composition. If that was the case, then cN-I expression could serve as a tool to assess the percentage of oxidative fibers in any given human muscle sample, where myogiobine expression could not be readily measured. After quantification of expression of both genes, we concluded that there was no correlation between expression of cN-I and fiber type. Therefore, contrary to the pigeon muscles, cN-Idid not reflect the ratio of oxidative fibers to the total mass of the muscle sample in humans. That difference indicated that there were certain mechanisms that dif-ferentially regulated the expression of cN-I in muscle tissues of mammals and lower vertebrates.

  11. Monocytic HLA DR antigens in schizophrenic patients.

    Science.gov (United States)

    Krause, Daniela; Wagner, Jenny; Matz, Judith; Weidinger, Elif; Obermeier, Michael; Riedel, Michael; Gruber, Rudolf; Schwarz, Markus; Mueller, Norbert

    2012-01-01

    A genetic association of specific human leukocyte antigens (HLA) DR genes and schizophrenia has recently been shown. These HLA play a fundamental role in the control of immune responses. Furthermore infectious agents have been proposed to be involved in the pathogenesis of schizophrenia. In this study we investigated the rate of HLA DR positive monocytes in schizophrenic patients compared to controls with a special focus on the adaption to in vitro stimulation with toll-like receptor ligands. Patients with schizophrenia and matched controls were included. For each individual, we evaluated the rate of HLA DR positive monocytes (either incubated at 37 °C or after stimulation with lipopolysaccharide or Poly I:C). We found a significantly higher percentage of schizophrenic patients with elevated HLA DR positive cells (p=0.045) as compared to controls. The adjustment rate from baseline levels of monocytic HLA DR positive cells to stimulation with Poly I:C was significantly lower in schizophrenic patients (p=0.038). The increased monocytic HLA DR in schizophrenic patients and the maladjustment of their monocytic HLA DR levels to an infectious stimulus might be a sign for a disturbed monocytic immune balance in schizophrenic individuals.

  12. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  13. Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12

    NARCIS (Netherlands)

    Meijnen, J.P.; Winde, J.H.de; Ruijssenaars, H.J.

    2009-01-01

    The oxidative D-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on D-xylose as a sole carbon source with a biomass yield of 53% (based on g [d

  14. Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders.

    NARCIS (Netherlands)

    Smeitink, J.A.M.; Zeviani, M.; Turnbull, D.M.; Jacobs, H.T.

    2006-01-01

    The final steps in the production of adenosine triphosphate (ATP) in mitochondria are executed by a series of multisubunit complexes and electron carriers, which together constitute the oxidative phosphorylation (OXPHOS) system. OXPHOS is under dual genetic control, with communication between the nu

  15. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2004-01-01

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is hydrolys

  16. Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome

    NARCIS (Netherlands)

    Schreurs, M.; Kuipers, F.; van der Leij, F. R.

    2010-01-01

    P>Insulin sensitizers like metformin generally act through pathways triggered by adenosine monophosphate-activated protein kinase. Carnitine palmitoyltransferase 1 (CPT1) controls mitochondrial beta-oxidation and is inhibited by malonyl-CoA, the product of acetyl-CoA carboxylase (ACC). The adenosine

  17. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments

    NARCIS (Netherlands)

    Vasquez-Cardenas, Diana; van de Vossenberg, Jack; Polerecky, Lubos; Malkin, Sairah Y.; Schauer, Regina; Hidalgo-Martinez, Silvia; Confurius, Veronique; Middelburg, Jack J.; Meysman, Filip J R; Boschker, Henricus T S

    2015-01-01

    Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a hig

  18. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not...

  19. Weight loss is associated with improved endothelial dysfunction via NOX2-generated oxidative stress down-regulation in patients with the metabolic syndrome.

    Science.gov (United States)

    Angelico, Francesco; Loffredo, Lorenzo; Pignatelli, Pasquale; Augelletti, Teresa; Carnevale, Roberto; Pacella, Antonio; Albanese, Fabiana; Mancini, Ilaria; Di Santo, Serena; Del Ben, Maria; Violi, Francesco

    2012-06-01

    The aim of this study was to assess whether adherence to a restricted-calorie, Mediterranean-type diet improves endothelial dysfunction and markers of oxidative stress in patients with metabolic syndrome. A moderately low-calorie (600 calories/day negative energy balance), low-fat, high-carbohydrate diet (syndrome. Participants were divided into two groups according to body weight loss > or syndrome. The coexistent decrease of NOX2 activation suggests a role for oxidative stress in eliciting artery dysfunction.

  20. Nutrition and Oxidative Parameters in Pregnancy, Size at Birth and Metabolic Status of the Offspring at 4.5 Years : The MINIMat Trial in Rural Bangladesh

    OpenAIRE

    2012-01-01

    Undernutrition and oxidative stress in fetal life and infancy may lead to adverse health outcomes in the offspring. We studied nutrition and oxidative parameters in pregnancy and their associations with birth anthropometry and metabolic status in the children. In Matlab in rural Bangladesh, women were randomized to either early (Early) invitation to food supplementation or to start at their own liking (Usual). Women were also allocated to either; 1) 60 mg iron and 400 µg folic acid (Fe60F), 2...

  1. Free Radical Oxidation Induced by Iron Metabolism Disorder in Femoral and Pelvic Fractures and Potential for Its Correction

    Directory of Open Access Journals (Sweden)

    Y. P. Orlov

    2016-01-01

    Full Text Available Objective: To determine the pathogenic significance of iron ions in the activation of free radical oxidation in trau matic disease and valuate the efficacy of Desferal in the complex therapy of patients with femoral and pelvic fractions.Materials and methods. Iron metabolism and the intensity of free radical oxidation have been studed in 30 patients with traumas. The patients were randomized into two groups by gender, age and the severity of injury. Group I (n=15 included the injured patients who received the standard intensive therapy. Group II (n=15 included the patients who were treated with Desferal of 8 mg/kg twice daily in 12 hours along with the intensive therapy. The control group comprized of 10 healthy individuals of the same age. The concentration of total and free hemoglobine, serum iron, transferrin, total antioxidant activity of blood serum, the intensity of free radical oxida tion by the Fe2+induced chemiluminescence and hemostatic parameters were studied on admittance as well as on 3rd and 5th day of hospitalization. The parameters of sistemic hemodyamics were checked by integral rheovasog raphy. Statistical processing of data was carried out using Biostat and MS Excel software. The results were pre sented as a mean and standart deviation (M±δ. The Student’s (t and MannWhitney tests were used to prove the hypotheses. The critical level of significance was P=0.05.Results. It was determined that the disorders of iron metabolism in patients with traumatic disease were accompanied by intra and extravascular hemolysis, the excess off reduced iron ions catalizing the free radical oxidation, and failure of antioxidant system and disorders of hemostatic system and central hemodynamics. Desferal lowered the level of reduced iron in blood serum, diminished the intensity of free radical oxidation and eliminated the disorders in hemostasis and systemic hemodynamics.Conclusion. Data confirm the pathogenic role of iron ions in the

  2. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer

    Directory of Open Access Journals (Sweden)

    Sebastian eLuecker

    2013-02-01

    Full Text Available In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of Nitrospina gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.

  3. The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer.

    Science.gov (United States)

    Lücker, Sebastian; Nowka, Boris; Rattei, Thomas; Spieck, Eva; Daims, Holger

    2013-01-01

    In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.

  4. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, S.D.; Berliner, J.A.; Valente, A.J.; Territo, M.C.; Navab, M.; Parhami, F.; Gerrity, R.; Schwartz, C.J.; Fogelman, A.M.

    1990-07-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human glioma U-105MG cell line. Antibody that had been prepared against cultured baboon smooth muscle cell chemotactic factor (anti-SMCF) did not inhibit monocyte migration induced by the potent bacterial chemotactic factor f-Met-Leu-Phe. However, anti-SMCF completely inhibited the monocyte chemotactic activity found in the media of U-105MG cells, EC, and SMC before and after exposure to MM-LDL. Moreover, monocyte migration into the subendothelial space of a coculture of EC and SMC that had been exposed to MM-LDL was completely inhibited by anti-SMCF. Anti-SMCF specifically immunoprecipitated 10-kDa and 12.5-kDa proteins from EC. Incorporation of (35S)methionine into the immunoprecipitated proteins paralleled the monocyte chemotactic activity found in the medium of MM-LDL stimulated EC and the levels of MCP-1 mRNA found in the EC. We conclude that SMCF is in fact MCP-1 and MCP-1 is induced by MM-LDL.

  5. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports.

    Science.gov (United States)

    El Kihel, Laïla

    2012-01-01

    Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    Science.gov (United States)

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.

  7. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    L.B. Oliveros

    2004-03-01

    Full Text Available We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet, or the control diet containing soybean oil as fat source (10 mice per group. The fat content of each diet was 15% (w/w. Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL-cholesterol, thiobarbituric acid-reactive substances (TBARS and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.

  8. Metabolic Studies on Intermediates in the myo-Inositol Oxidation Pathway in Lilium longiflorum Pollen: I. Conversion to Hexoses.

    Science.gov (United States)

    Rosenfield, C L; Fann, C; Loewus, F A

    1978-01-01

    The myo-inositol oxidation pathway was investigated in regard to its role as a source of carbon for products of hexose monophosphate metabolism in germinated pollen of Lilium longiflorum Thunb., cv. Ace. myo-[2-(14)]Inositol and d-[1-(14)C]glucuronate had similar distributions of radioactivity, contributing about three times more label to polysaccharide-bound glucose than myo-[2-(3)H]inositol. In the course of glucogenesis label from the latter appeared as tritiated water in the medium. This exchange could be enhanced by supplying d-[5R,5S-(3)H]xylose instead of myo-[2-(3)H]inositol. When the former was administered, [(3)H]glucose was the only labeled sugar residue found in polysaccharide products. The soluble constituents of d-[5R,5S-(3)H]xylose-labeled pollen contained no traces of labeled xylose despite massive uptake and utilization.l-[1-(14)C]- and l-[5-(14)C]Arabinose produced similar labeling patterns in germinated pollen including incorporation of arabinosyl units into pollen tube polysaccharides and substantial glucogenesis which led to utilization of arabinose for respiration and further incorporation of labeled glucosyl units into pollen tube polysaccharides.d-[5-(3)H]Galacturonate was rapidly taken up by germinated pollen but slowly utilized, without conversion to other sugars, for incorporation into pollen tube polysaccharides. l-[6-(14)C]Gulonate was not taken up by pollen.Results strongly support a scheme of conversion from myo-inositol to hexose monophosphate and subsequent products of glucose metabolism that involves the myo-inositol oxidation pathway.

  9. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload.

    Science.gov (United States)

    Phillips, Darci; Covian, Raul; Aponte, Angel M; Glancy, Brian; Taylor, Joni F; Chess, David; Balaban, Robert S

    2012-05-01

    The concentration of mitochondrial oxidative phosphorylation complexes (MOPCs) is tuned to the maximum energy conversion requirements of a given tissue; however, whether the activity of MOPCs is altered in response to acute changes in energy conversion demand is unclear. We hypothesized that MOPCs activity is modulated by tissue metabolic stress to maintain the energy-metabolism homeostasis. Metabolic stress was defined as the observed energy conversion rate/maximum energy conversion rate. The maximum energy conversion rate was assumed to be proportional to the concentration of MOPCs, as determined with optical spectroscopy, gel electrophoresis, and mass spectrometry. The resting metabolic stress of the heart and liver across the range of resting metabolic rates within an allometric series (mouse, rabbit, and pig) was determined from MPOCs content and literature respiratory values. The metabolic stress of the liver was high and nearly constant across the allometric series due to the proportional increase in MOPCs content with resting metabolic rate. In contrast, the MOPCs content of the heart was essentially constant in the allometric series, resulting in an increasing metabolic stress with decreasing animal size. The MOPCs activity was determined in native gels, with an emphasis on Complex V. Extracted MOPCs enzyme activity was proportional to resting metabolic stress across tissues and species. Complex V activity was also shown to be acutely modulated by changes in metabolic stress in the heart, in vivo and in vitro. The modulation of extracted MOPCs activity suggests that persistent posttranslational modifications (PTMs) alter MOPCs activity both chronically and acutely, specifically in the heart. Protein phosphorylation of Complex V was correlated with activity inhibition under several conditions, suggesting that protein phosphorylation may contribute to activity modulation with energy metabolic stress. These data are consistent with the notion that metabolic

  10. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Science.gov (United States)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  11. Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats.

    Science.gov (United States)

    Prince, Paula D; Lanzi, Cecilia Rodríguez; Toblli, Jorge E; Elesgaray, Rosana; Oteiza, Patricia I; Fraga, César G; Galleano, Monica

    2016-01-01

    High fructose consumption has been associated to deleterious metabolic conditions. In the kidney, high fructose causes renal alterations that contribute to the development of chronic kidney disease. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate risk factors of chronic diseases. This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by high fructose consumption in rats. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without supplementation with (-)-epicatechin (20mg/kg body weight/d) in the rat chow diet. Results showed that, in the presence of mild proteinuria, the renal cortex from fructose-fed rats exhibited fibrosis and decreases in nephrin, synaptopodin, and WT1, all indicators of podocyte function in association with: (i) increased markers of oxidative stress; (ii) modifications in the determinants of NO bioavailability, i.e., NO synthase (NOS) activity and expression; and (iii) development of a pro-inflammatory condition, manifested as NF-κB activation, and associated with high expression of TNFα, iNOS, and IL-6. Dietary supplementation with (-)-epicatechin prevented or ameliorated the adverse effects of high fructose consumption. These results suggest that (-)-epicatechin ingestion would benefit when renal alterations occur associated with inflammation or metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China); Zhao Jing [China Institute of Atomic Energy (China); Hao Fuhua [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China); Chen Chang [Institute of Biophysics, The Chinese Academy of Sciences, National Laboratory of Biomacromolecules (China); Bhakoo, Kishore [Singapore Bioimaging Consortium Agency for Science, Technology and Research (A-STAR) (Singapore); Tang, Huiru, E-mail: huiru.tang@wipm.ac.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China)

    2011-05-15

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  13. Attenuation by creatine of myocardial metabolic stress in Brattleboro rats caused by chronic inhibition of nitric oxide synthase.

    Science.gov (United States)

    Constantin-Teodosiu, D; Greenhaff, P L; Gardiner, S M; Randall, M D; March, J E; Bennett, T

    1995-12-01

    1. The present experiment was undertaken to investigate: (a) the effect of nitric oxide synthase (NOS) inhibition, mediated by oral supplementation of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on measures of myocardial energy metabolism and function: (b) the effect of oral creatine supplementation on these variables, in the absence and presence of L-NAME. 2. In one series of experiments, 4 weeks oral administration of L-NAME (0.05 mg ml-1 day-1 in the drinking water) to Brattleboro rats caused significant reductions in myocardial ATP, creatine, and total creatine concentrations and an accumulation of tissue lactate when compared with control animals. Administration of creatine (0.63 mg ml-1 day-1 in the drinking water) for 4 weeks elevated myocardial creatine and total creatine concentrations and reduced lactate accumulation, but did not significantly affect ATP or phosphocreatine (PCr). Concurrent treatment with creatine and L-NAME prevented the reduction in creatine and total creatine concentrations, and significantly attenuated the accumulation of lactate and the reduction in ATP seen with L-NAME alone. 3. In a second series of experiments, 4 weeks treatment with L-NAME and creatine plus L-NAME increased mean arterial blood pressure in conscious Brattleboro rats. Hearts isolated from these animals showed decreased coronary flow and left ventricular developed pressure (LVDP), and total mechanical performance. Treatment with creatine alone had no measurable effect on either mean arterial blood pressure or coronary flow in isolated hearts. However, there was an increase in LVDP, but not in total mechanical performance, because there was a bradycardia. 4. These results indicate that creatine supplementation can attenuate the metabolic stress associated with L-NAME administration and that this effect occurs as a consequence of the action of creatine on myocardial energy metabolism.

  14. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress.

    Science.gov (United States)

    Dietz, Karl-Josef; Hell, Rüdiger

    2015-05-01

    In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts uti