WorldWideScience

Sample records for monocyte chemotactic protein-3

  1. Acyclic nucleoside phosphonate antivirals activate gene expression of monocyte chemotactic protein 1 and 3.

    Czech Academy of Sciences Publication Activity Database

    Potměšil, Petr; Holý, Antonín; Kmoníčková, Eva; Křížková, Jana; Zídek, Zdeněk

    2007-01-01

    Roč. 14, č. 1 (2007), s. 59-66 ISSN 1021-7770 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : Acyclic nucleoside phosponate * HIV * Monocyte chemotactic protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.024, year: 2007

  2. Monocyte chemotactic protein-3: possible involvement in apical periodontitis chemotaxis.

    Science.gov (United States)

    Dezerega, A; Osorio, C; Mardones, J; Mundi, V; Dutzan, N; Franco, M; Gamonal, J; Oyarzún, A; Overall, C M; Hernández, M

    2010-10-01

    To study the expression of monocyte chemotactic protein-3 (MCP-3, also known as chemokine CCL-7) in tissue from apical lesions (AL) and to associate MCP-3 expression with symptomatic or asymptomatic apical periodontitis. To determine the expression of MCP-3 in AL, biopsies obtained during tooth extraction procedures were fixed, subjected to routine processing and diagnosed as apical granuloma (AG) (n = 7) or radicular cyst (RC) (n = 5). As controls, apical periodontal ligament (PDL) specimens from healthy premolars extracted for orthodontics reasons were included (n = 7). All specimens were immunostained for MCP-3 and examined under a light microscope. In addition, homogenates from AL (n = 14) and healthy PDL samples (n = 7) were studied through immunowestern blot. Finally, periapical exudates samples were collected from root canals of teeth having diagnosis of symptomatic (n = 14) and asymptomatic apical periodontitis (n = 14) during routine endodontic treatments and analysed by immunowestern blot and densitometry.   MCP-3 was detected in AG and RC and localized mainly to inflammatory leucocytes, whereas no expression was observed in healthy PDLs. MCP-3 was also detected in periapical exudate, and its levels were significantly higher in symptomatic than in asymptomatic apical periodontitis. MCP-3 was expressed in AL and its levels associated with clinical symptoms. MCP-3 might play a role in disease pathogenesis, possibly by stimulating mononuclear chemotaxis. © 2010 International Endodontic Journal.

  3. Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques

    International Nuclear Information System (INIS)

    Jang, Moon Kyoo; Kim, Ji Young; Jeoung, Nam Ho; Kang, Mi Ae; Choi, Myung-Sook; Oh, Goo Taeg; Nam, Kyung Tak; Lee, Won-Ha; Park, Yong Bok

    2004-01-01

    Genes induced or suppressed by oxidized low-density lipoproteins (oxLDL) in human monocytic THP-1 cells were searched using the differential display reverse transcriptase polymerase chain reaction. One of the differentially expressed (up-regulated) cDNA fragments was found to contain sequences corresponding to monocyte chemotactic protein-3 (MCP-3). The stimulatory effect of the oxLDL on the expression of MCP-3 mRNA was both time- and dose-dependent. Treatment with GF109203X and genistein, inhibitors of protein kinase C and tyrosine kinase, respectively, had no effect on the induction of MCP-3 mRNA by oxLDL, while treatment with cycloheximide inhibited the induction. The induction was reproduced by the lipid components in oxLDL such as 9-HODE and 13-HODE, which are known to activate the peroxisome proliferator-activated receptor γ (PPARγ). Introduction of an endogenous PPARγ ligand, 15d-PGJ2, in the culture of THP-1 cells resulted in the induction of MCP-3 gene expression. Furthermore, analyses of human atherosclerotic plaques revealed that the expressional pattern of MCP-3 in the regions of neointimal and necrotic core overlapped with that of PPARγ. These results suggest that oxLDL delivers its signal for MCP-3 expression via PPARγ, which may be further related to the atherogenesis

  4. Localization of monocyte chemotactic and activating factor (MCAF/MCP-1) in psoriasis

    DEFF Research Database (Denmark)

    Deleuran, M; Buhl, L; Ellingsen, T

    1996-01-01

    in the epidermal pustules in pustular psoriasis. In normals positive staining was observed in all the layers of the epidermis and in a few perivascular cells and blood vessels in the dermis. Where present in normal and diseased skin, eccrine ducts of sweat glands and sebaceous glands stained positive for MCAF......The monocyte chemotactic protein-1 (MCAF) also termed MCP-1, a strong chemotactic factor towards monocytes, is produced by several cell types present in the skin. The in situ presence of MCAF/MCP-1 protein in the skin has, however, not yet been established. Using immunohistochemical techniques we...... have investigated the distribution of MCAF in skin from patients with different types of psoriasis and normal healthy volunteers. We report the novel finding that psoriasis has strong positive immunostaining for MCAF located to all the layers of the epidermis, except the stratum granulosum, in pustular...

  5. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients.

    Science.gov (United States)

    Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Na, Young-Jin; Kwak, Jong-Young; Lee, Kyu-Sup

    2012-03-01

    Hormones and inflammation have been implicated in the pathological process of endometriosis; therefore, we investigated the combined effects of 17β-estradiol (E2) and peritoneal fluid obtained from patients with endometriosis (ePF) or a control peritoneal fluid (cPF) obtained from patients without endometriosis on the release of monocyte chemotactic protein-1 (MCP-1) by monocytes and the role of signaling pathways. Monocytes were cultured with ePF and cPF in the presence of E2; the MCP-1 levels in the supernatants were then measured by ELISA. In addition, mitogen activated protein kinase (MAPK) activation was measured by Western blotting of phosphorylated proteins. E2 down-regulated MCP-1 release by lipopolysaccharide- or cPF-treated monocytes, but failed to suppress its release by ePF-treated monocytes. The release of MCP-1 by ePF- and cPF-treated monocytes was efficiently abrogated by p38 mitogen activated protein kinase (MAPK) inhibitors; however, the MCP-1 release by cPF-treated monocytes, but not by ePF-treated monocytes, was blocked by a MAPK kinase inhibitor. In addition, ePF and cPF induced the phosphorylation of extracellular stress regulated kinase (ERK)1/2, p38 MAPK and c-Jun N-terminal kinase (JNK). E2 decreased the phosphorylation of p38 MAPK, but not ERK1/2 in ePF-treated monocytes; however, E2 decreased the phosphorylation of p38 MAPK, ERK1/2 and JNK in cPF-treated monocytes. The ability of E2 to modulate MCP-1 production is impaired in ePF-treated monocytes, which may be related to regulation of MAPK activity. These findings suggest that the failure of E2 to suppress ePF-treated production of MCP-1 may be involved in the pathogenesis of endometriosis. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  6. Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.

    Science.gov (United States)

    Tuohy, J L; Lascelles, B D X; Griffith, E H; Fogle, J E

    2016-07-01

    Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA. Copyright © 2016 The Authors. Journal of

  7. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  8. Temporal cascade of inflammatory cytokines and cell-type populations in monocyte chemotactic protein-1 (MCP-1)-mediated aneurysm healing.

    Science.gov (United States)

    Hoh, Brian L; Fazal, Hanain Z; Hourani, Siham; Li, Mengchen; Lin, Li; Hosaka, Koji

    2018-03-01

    We have previously shown that monocyte chemotactic protein-1 (MCP-1) promotes aneurysm healing. To determine the temporal cascade and durability of aneurysm healing. Murine carotid aneurysms were treated with MCP-1-releasing or poly(lactic-co-glycolic) acid (PLGA)-only coils. Aneurysm healing was assessed by quantitative measurements of intraluminal tissue ingrowth on 5 μm sections by blinded observers. Aneurysm healing occurred in stages characteristic of normal wound healing. The 1st stage (day 3) was characterized by a spike in neutrophils and T cells. The 2nd stage (week 1) was characterized by an influx of macrophages and CD45+ cells significantly greater with MCP-1 than with PLGA (p<0.05). The third stage (week 2-3) was characterized by proliferation of smooth muscle cells and fibroblasts (greater with MCP-1 than with PLGA, p<0.05). The fourth stage (3-6 months) was characterized by leveling off of smooth muscle cells and fibroblasts. M1 macrophages were greater at week 1, whereas M2 macrophages were greater at weeks 2 and 3 with MCP-1 than with PLGA. Interleukin 6 was present early and increased through week 2 (p<0.05 compared with PLGA) then decreased and leveled off through 6 months. Tumour necrosis factor α was present early and remained constant through 6 months. MCP-1 and PLGA treatment had similar rates of tissue ingrowth at early time points, but MCP-1 had a significantly greater tissue ingrowth at week 3 (p<0.05), which persisted for 6 months. The sequential cascade is consistent with an inflammatory model of injury, repair, and remodeling. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing.

    Science.gov (United States)

    Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L

    2018-01-01

    Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  10. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Ana V. Ibarra-Meneses

    2017-09-01

    Full Text Available New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1 was examined in plasma from soluble Leishmania antigen (SLA-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL, unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools.

  11. Lipopolysaccharide regulated protein expression is only partly impaired in monocytes from patients with type I diabetes

    Directory of Open Access Journals (Sweden)

    Abke Sabine

    2006-03-01

    Full Text Available Abstract Background Monocytes play an important role in innate immunity and atherosclerosis. A disturbed secretion of cytokines in lipopolysaccharide (LPS activated monocytes from type 1 diabetes (T1D patients has been described and may contribute to the impaired inflammatory response in these individuals. In the present study the influence of LPS on five different proteins with a function in immunity and atherosclerosis was analyzed in monocytes from controls and T1D patients. Methods Monocytes were isolated from controls and T1D patients and the LPS-stimulated increase of IL-6, CXCL8, monocyte chemotactic protein 1 (CCL2, MCP-1 and superoxide dismutase (SOD 2, as well as the LPS-mediated decrease of apolipoprotein E (Apo E in primary human monocytes from controls and T1D patients was determined. Results CCL2 and IL-6 secretion in response to LPS was found significantly reduced in monocytes from T1D patients when compared to controls whereas basal CCL2 release was similar in control and T1D cells. In contrast, CXCL8 and apolipoprotein E secretion and SOD 2 expression upon LPS stimulation is similar from T1D and control monocytes. Conclusion These data indicate that LPS-mediated protein expression is only partly disturbed in monocytes from T1D patients. Reduced secretion of IL-6 and CCL2 in activated monocytes of these patients may contribute to an impaired inflammatory response and vascular disease.

  12. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  13. Clinical value of detection on ser um monocyte chemotactant protein-1 and vascular endothelial cadher in levels in patients with acute cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2016-11-01

    Full Text Available Objective: To study the correlation of serum monocyte chemotactant protein-1 (MCP-1 and vascular endothelia cadherin (VE-cadherin levels in patients with acute cerebral infarction, and nerve injury molecules, interleukins and matrix metalloproteinases. Methods: A total of 86 patients with acute cerebral infarction treated in our hospital from April 2012 to October 2015 were selected as the observation group and 50 healthy subjects in the same period treated in our hospital were selected as the control group. The serums were collected and the contents of MCP-1, VE-cadherin, heart-type fatty acid binding protein (H-FABP, S100 calcium binding protein B (S100B, neuron-specific enolase (NSE, interleukin-lb (IL-1b, IL-6, IL-17, IL-18, matrix metalloproteinase-2 (MMP2, MMP3 and MMP9 were measured. Results: The serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL- 6, IL-17, IL-18, MMP2, MMP3 and MMP9 in observation group were significantly higher than those of control group. Carotid artery plaque formation and unstable plaque properties will increase the serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 in patients with cerebral infarction. The serum levels of MCP-1, VE-cadherin and the contents of H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 were positively correlated. Conclusions: The serum levels of VE-cadherin and MCP-1 were significantly increased in patients with acute cerebral infarction. MCP-1 and VE-cadherin can increase the secretion of interleukins and matrix metalloproteinases, which can result in the carotid artery plaque formation, unstable plaque properties and the injury of nerve function.

  14. Monocyte chemotactic protein-1, RANTES and macrophage migration inhibitory factor levels in gingival crevicular fluid of metabolic syndrome patients with gingivitis.

    Science.gov (United States)

    Gürkan, Ali; Eren, Gülnihal; Çetinkalp, Şevki; Akçay, Yasemin Delen; Emingil, Gülnur; Atilla, Gül

    2016-09-01

    The aim of the present study was to determine gingival crevicular fluid (GCF) levels of monocyte chemotactic protein-1 (MCP-1), regulated on activation, normal T-cell expressed and secreted protein (RANTES) and macrophage migration inhibitory factor (MIF) in metabolic syndrome patients with gingivitis. Twenty metabolic syndrome patients with gingivitis (MSG), 20 MetS patients with clinically healthy periodontium (MSH), 20 systemically healthy subjects with gingivitis and 20 subjects who were both systemically and periodontally healthy were included. Periodontal and systemical parameters were recorded. GCF MCP-1, RANTES and MIF levels were assayed by enzyme-linked immunosorbent assay method. MSG and MSH groups had elevated blood pressure, triglyceride, waist circumference and fasting glucose values in comparison to gingivitis and healthy groups (Pgingivitis groups when compared to those of the MSH and healthy groups (Pgingivitis group had higher MCP-1, RANTES and MIF levels compared to the healthy group (P=0.011, P=0.0001, P=0.011 respectively). The RANTES level of MSG group was significantly higher than those of the gingivitis group (P=0.01), but MCP-1 and MIF levels were similar in the MSG and gingivitis groups (P>0.05). Elevated levels of GCF RANTES in MetS patients with gingivitis might associate with the presence of increased gingival inflammation by MetS. Low-grade systemic inflammation associated with MetS and adipose tissue-derived RANTES might lead to altered GCF RANTES levels in the presence of gingival inflammation. Copyright © 2016. Published by Elsevier Ltd.

  15. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    Science.gov (United States)

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (pUreaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  16. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  17. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...... were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response....... Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti...

  18. Blood monocyte oxidative burst activity in acute P. falciparum malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Theander, T G

    1989-01-01

    The release of superoxide anion from blood monocytes was studied in eight patients with acute primary attack P. falciparum malaria. Before treatment a significant enhancement of the oxidative burst prevailed, which contrasts with previous findings of a depressed monocyte chemotactic responsiveness...

  19. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    International Nuclear Information System (INIS)

    Meier, K.; Klein, C.

    1988-01-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[ 32 P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO 4 /PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca 2+ /calmodulin, Ca 2+ /phospholipid, or EGTA. Similarities with the β-adrenergic receptor protein kinase are discussed

  20. Characterization of recombinant human HBP/CAP37/azurocidin, a pleiotropic mediator of inflammation-enhancing LPS-induced cytokine release from monocytes.

    Science.gov (United States)

    Rasmussen, P B; Bjørn, S; Hastrup, S; Nielsen, P F; Norris, K; Thim, L; Wiberg, F C; Flodgaard, H

    1996-07-15

    Neutrophil-derived heparin-binding protein (HBP) is a strong chemoattractant for monocytes. We report here for the first time the expression of recombinant HBP. A baculovirus containing the human HBP cDNA mediated in insect cells the secretion of a 7-residue N-terminally extended HBP form (pro-HBP). Deletion of the pro-peptide-encoding cDNA sequence resulted in correctly processed HBP at the N-terminus. Electrospray mass spectrum analysis of recombinant HBP yielded a molecular weight of 27.237 +/- 3 amu. Consistent with this mass is a HBP form of 225 amino acids (mature part +3 amino acid C-terminal extension). The biological activity of recombinant HBP was confirmed by its chemotactic action towards monocytes. Furthermore, we have shown that recombinant HBP stimulates in a dose-dependent manner the lipopolysaccharide (LPS)-induced cytokine release from human monocytes.

  1. Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin

    DEFF Research Database (Denmark)

    Vorum, H; Madsen, Peder; Rasmussen, H H

    1996-01-01

    Psoriasin is a novel chemotactic inflammatory protein that possesses weak similarity to the S100 family members of Ca(2+)-binding proteins, and that is highly up-regulated in hyperproliferative psoriatic keratinocytes. Here we have used the psoriasin cDNA to express recombinant human (rh) psorias...

  2. Curcumin as a natural regulator of monocyte chemoattractant protein-1.

    Science.gov (United States)

    Karimian, Maryam Saberi; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-02-01

    Monocyte chemoattractant/chemotactic protein-1 (MCP-1), a member of the CC chemokine family, is one of the key chemokines that regulate migration and tissue infiltration of monocytes/macrophages. Its role in the pathophysiology of several inflammatory diseases has been widely recognized, thus making MCP-1 a possible target for anti-inflammatory treatments. Curcumin (diferuloylmethane) is a natural polyphenol derived from the rhizomes of Curcuma Longa L. (turmeric). Anti-inflammatory action underlies numerous pharmacological effects of curcumin in the control and prevention of several diseases. The purpose of this review is to evaluate the effects of curcumin on the regulation of MCP-1 as a key mediator of chemotaxis and inflammation, and the biological consequences thereof. In vitro studies have shown that curcumin can decrease MCP-1 production in various cell lines. Animal studies have also revealed that curcumin can attenuate MCP-1 expression and improve a range of inflammatory diseases through multiple molecular targets and mechanisms of action. There is limited data from human clinical trials showing the decreasing effect of curcumin on MCP-1 concentrations and improvement of the course of inflammatory diseases. Most of the in vitro and animal studies confirm that curcumin exert its MCP-1-lowering and anti-inflammatory effects by down-regulating the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathway. As yet, there is limited data from human clinical trials showing the effect of curcumin on MCP-1 levels and improvement of the course of inflammatory diseases. More evidence, especially from human studies, is needed to better assess the effects of curcumin on circulating MCP-1 in different human diseases and the role of this modulatory effect in the putative anti-inflammatory properties of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Prion protein induced signaling cascades in monocytes

    International Nuclear Information System (INIS)

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A.

    2006-01-01

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP C ), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP C fusion proteins synthesized with a human Fc-tag. PrP C fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK 1,2 and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP C in monocytes and macrophages

  4. Direct and indirect radioiodination of protein: comparative study of chemotactic peptide labeling

    International Nuclear Information System (INIS)

    Lavinas, Tatiana

    2004-01-01

    The development of simple methods for protein radioiodination have stimulated the use of radioiodinated peptides in vivo. There are two basic methods for labeling proteins with radioiodine: direct labeling, reaction of an electrophilic radioiodine with functional activated groups on protein, like the phenol ring in the tyrosine residue, and the conjugation of a previously radioiodinated molecule to the protein, referred as indirect method. The great problem related to the direct radioiodination of proteins is the in vivo dehalogenation. This problem can be minimized if a non-phenolic prosthetic group is used in the indirect radioiodination of the peptide. The ATE prosthetic group, N-succinimidyl 3-(tri-n-butylstannyl) benzoate, when radioiodinated by electrophilic iododestannilation produces N-succinimidyl 3-[ 123 l/ 131 l] iodine benzoate (SIB) that is subsequently conjugated to the protein by the acylation of the lysine group. There are many radiopharmaceuticals employed in scintigraphic images of infection and inflammation used with some limitations. These limitations stimulated the improvement of a new class of radiopharmaceuticals, the receptor-specific related labeled peptides, as the mediators of the inflammatory response, that presents high affinity by receptors expressed in the inflammation process, and fast clearance from blood and non-target tissues. One of these molecules is the synthetic chemotactic peptide fNleLFNIeYK that presents potent chemotaxis for leukocytes, with high affinity by the receptors presented in polymorphonuclear leukocytes and mononuclear phagocytes. The objective of this work included the synthesis of ATE prosthetic group and comparative radioiodination of the chemotactic peptide fNleLFNIeYK by direct and indirect methods, with radiochemical purity determination and evaluation of in vivo and in vitro stability of the compounds. This work presented an original contribution in the comparative biological distribution studies of the

  5. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    Science.gov (United States)

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  6. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2011-01-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  7. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomas P

    2012-02-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  8. Fish-oil-derived n-3 PUFAs reduce inflammatory and chemotactic adipokine-mediated cross-talk between co-cultured murine splenic CD8+ T cells and adipocytes.

    Science.gov (United States)

    Monk, Jennifer M; Liddle, Danyelle M; De Boer, Anna A; Brown, Morgan J; Power, Krista A; Ma, David Wl; Robinson, Lindsay E

    2015-04-01

    Obese adipose tissue (AT) inflammation is characterized by dysregulated adipokine production and immune cell accumulation. Cluster of differentiation (CD) 8+ T cell AT infiltration represents a critical step that precedes macrophage infiltration. n-3 (ω-3) Polyunsaturated fatty acids (PUFAs) exert anti-inflammatory effects in obese AT, thereby disrupting AT inflammatory paracrine signaling. We assessed the effect of n-3 PUFAs on paracrine interactions between adipocytes and primary CD8+ T cells co-cultured at the cellular ratio observed in obese AT. C57BL/6 mice were fed either a 3% menhaden fish-oil + 7% safflower oil (FO) diet (wt:wt) or an isocaloric 10% safflower oil (wt:wt) control (CON) for 3 wk, and splenic CD8+ T cells were isolated by positive selection (via magnetic microbeads) and co-cultured with 3T3-L1 adipocytes. Co-cultures were unstimulated (cells alone), T cell receptor stimulated, or lipopolysaccharide (LPS) stimulated for 24 h. In LPS-stimulated co-cultures, FO reduced secreted protein concentrations of interleukin (IL)-6 (-42.6%), tumor necrosis factor α (-67%), macrophage inflammatory protein (MIP) 1α (-52%), MIP-1β (-62%), monocyte chemotactic protein (MCP) 1 (-23%), and MCP-3 (-19%) vs. CON, which coincided with a 74% reduction in macrophage chemotaxis toward secreted chemotaxins in LPS-stimulated FO-enriched co-culture-conditioned media. FO increased mRNA expression of the inflammatory signaling negative regulators monocyte chemoattractant 1-induced protein (Mcpip; +9.3-fold) and suppressor of cytokine signaling 3 (Socs3; +1.7-fold), whereas FO reduced activation of inflammatory transcription factors nuclear transcription factor κB (NF-κB) p65 and signal transducer and activator of transcription 3 (STAT3) by 27% and 33%, respectively. Finally, mRNA expression of the inflammasome components Caspase1 (-36.4%), Nod-like receptor family pyrin domain containing 3 (Nlrp3; -99%), and Il1b (-68.8%) were decreased by FO compared with CON (P

  9. Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte Chemoattractant Protein-1 From Cancer Cells

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Li Ge; Song, Kyoung-Sub; Kim, Jin-Man; Kim, Jun-Sang; Kim, Jong-Seok; Yun, Eun-Jin; Park, Jong-Il; Park, Hae-Duck; Hwang, Byung-Doo; Lim, Kyu; Yoon, Wan-Hee

    2009-01-01

    Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TP was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues

  10. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  11. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  12. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Desmarets, Lowiese M; Olyslaegers, Dominique A J; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-03-23

    The ability to productively infect monocytes/macrophages is the most important difference between the low virulent feline enteric coronavirus (FECV) and the lethal feline infectious peritonitis virus (FIPV). In vitro, the replication of FECV in peripheral blood monocytes always drops after 12h post inoculation, while FIPV sustains its replication in the monocytes from 45% of the cats. The accessory proteins of feline coronaviruses have been speculated to play a prominent role in virulence as deletions were found to be associated with attenuated viruses. Still, no functions have been ascribed to them. In order to investigate if the accessory proteins of FIPV are important for sustaining its replication in monocytes, replication kinetics were determined for FIPV 79-1146 and its deletion mutants, lacking either accessory protein open reading frame 3abc (FIPV-Δ3), 7ab (FIPV-Δ7) or both (FIPV-Δ3Δ7). Results showed that the deletion mutants FIPV-Δ7 and FIPV-Δ3Δ7 could not maintain their replication, which was in sharp contrast to wt-FIPV. FIPV-Δ3 could still sustain its replication, but the percentage of infected monocytes was always lower compared to wt-FIPV. In conclusion, this study showed that ORF7 is crucial for FIPV replication in monocytes/macrophages, giving an explanation for its importance in vivo, its role in the development of FIP and its conservation in field strains. The effect of an ORF3 deletion was less pronounced, indicating only a supportive role of ORF3 encoded proteins during the infection of the in vivo target cell by FIPVs. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Dyslipidemic Diet-Induced Monocyte “Priming” and Dysfunction in Non-Human Primates Is Triggered by Elevated Plasma Cholesterol and Accompanied by Altered Histone Acetylation

    Directory of Open Access Journals (Sweden)

    John D. Short

    2017-08-01

    Full Text Available Monocytes and the recruitment of monocyte-derived macrophages into sites of inflammation play a key role in atherogenesis and other chronic inflammatory diseases linked to cardiometabolic syndrome and obesity. Previous studies from our group have shown that metabolic stress promotes monocyte priming, i.e., enhanced adhesion and accelerated chemotaxis of monocytes in response to chemokines, both in vitro and in dyslipidemic LDLR−/− mice. We also showed that metabolic stress-induced monocyte dysfunction is, at least to a large extent caused by the S-glutathionylation, inactivation, and subsequent degradation of mitogen-activated protein kinase phosphatase 1. Here, we analyzed the effects of a Western-style, dyslipidemic diet (DD, which was composed of high levels of saturated fat, cholesterol, and simple sugars, on monocyte (dysfunction in non-human primates (NHPs. We found that similar to mice, a DD enhances monocyte chemotaxis in NHP within 4 weeks, occurring concordantly with the onset of hypercholesterolemia but prior to changes in triglycerides, blood glucose, monocytosis, or changes in monocyte subset composition. In addition, we identified transitory decreases in the acetylation of histone H3 at the lysine residues 18 and 23 in metabolically primed monocytes, and we found that monocyte priming was correlated with the acetylation of histone H3 at lysine 27 after an 8-week DD regimen. Our data show that metabolic stress promotes monocyte priming and hyper-chemotactic responses in NHP. The histone modifications accompanying monocyte priming in primates suggest a reprogramming of the epigenetic landscape, which may lead to dysregulated responses and functionalities in macrophages derived from primed monocytes that are recruited to sites of inflammation.

  14. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Hsin-I Tong

    Full Text Available The ability of monocytes and monocyte-derived macrophages (MDM to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB. This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported

  15. Maternal circulating leukocytes display early chemotactic responsiveness during late gestation

    Directory of Open Access Journals (Sweden)

    Gomez-Lopez Nardhy

    2013-01-01

    Full Text Available Abstract Background Parturition has been widely described as an immunological response; however, it is unknown how this is triggered. We hypothesized that an early event in parturition is an increased responsiveness of peripheral leukocytes to chemotactic stimuli expressed by reproductive tissues, and this precedes expression of tissue chemotactic activity, uterine activation and the systemic progesterone/estradiol shift. Methods Tissues and blood were collected from pregnant Long-Evans rats on gestational days (GD 17, 20 and 22 (term gestation. We employed a validated Boyden chamber assay, flow cytometry, quantitative real time-polymerase chain reaction, and enzyme-linked immunosorbent assays. Results We found that GD20 maternal peripheral leukocytes migrated more than those from GD17 when these were tested with GD22 uterus and cervix extracts. Leukocytes on GD20 also displayed a significant increase in chemokine (C-C motif ligand 2 (Ccl2 gene expression and this correlated with an increase in peripheral granulocyte proportions and a decrease in B cell and monocyte proportions. Tissue chemotactic activity and specific chemokines (CCL2, chemokine (C-X-C motif ligand 1/CXCL1, and CXCL10 were mostly unchanged from GD17 to GD20 and increased only on GD22. CXCL10 peaked on GD20 in cervical tissues. As expected, prostaglandin F2α receptor and oxytocin receptor gene expression increased dramatically between GD20 and 22. Progesterone concentrations fell and estradiol-17β concentrations increased in peripheral serum, cervical and uterine tissue extracts between GD20 and 22. Conclusion Maternal circulating leukocytes display early chemotactic responsiveness, which leads to their infiltration into the uterus where they may participate in the process of parturition.

  16. Effects of peritoneal fluid from endometriosis patients on the release of monocyte-specific chemokines by leukocytes.

    Science.gov (United States)

    Na, Yong-Jin; Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Wang, Ji-Won; Jin, Jun-O; Kwak, Jong-Young; Lee, Kyu-Sup

    2011-06-01

    Chemokines have been implicated in the pathological process of endometriosis. We compared the effects of peritoneal fluid obtained from patients with endometriosis (ePF) and controls without endometriosis (cPF) on the release of monocyte-specific CC chemokines such as monocyte chemotactic protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) by neutrophils, monocytes, and T cells. Moreover, we evaluated the correlation between the levels of chemokines in ePF and their release by these cells. Cells were obtained from healthy young volunteers and cultured with ePF (n = 12) or cPF (n = 8). The chemokine levels in the ePF and the supernatants of cultured cells with ePF were then measured by ELISA. There was a positive correlation between the levels of MCP-1 and MIP-1α in ePF. The addition of ePF to the cell cultures failed to increase the release of MCP-1, RANTES, and MIP-1α when compared to cPF, but the levels of RANTES in ePF were positively correlated with the release of RANTES by ePF-treated monocytes and T cells. Moreover, there was a positive correlation between the levels of RANTES and MIP-1α released by neutrophils and between the levels of MCP-1 and MIP-1α released by T cells. Finally, the levels of RANTES released by monocyte-derived macrophages and monocytes cultured with ePF were positively correlated. These findings suggest that monocytes, neutrophils, and T cells release differential levels of MCP-1, RANTES, and MIP-1α in response to stimulation with ePF.

  17. Protein energy malnutrition increases arginase activity in monocytes and macrophages.

    Science.gov (United States)

    Corware, Karina; Yardley, Vanessa; Mack, Christopher; Schuster, Steffen; Al-Hassi, Hafid; Herath, Shanthi; Bergin, Philip; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Kropf, Pascale

    2014-01-01

    Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

  18. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

    Science.gov (United States)

    Wang, Daren; Zhang, Hui; Li, Min; Frid, Maria G; Flockton, Amanda R; McKeon, B Alexandre; Yeager, Michael E; Fini, Mehdi A; Morrell, Nicholas W; Pullamsetti, Soni S; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A; Sucharov, Carmen C; Stenmark, Kurt R

    2014-01-03

    Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly

  19. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population.

    Science.gov (United States)

    Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E

    2010-12-01

    Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Chondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?

    Directory of Open Access Journals (Sweden)

    Thomas V Stabler

    2017-08-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1 overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS to induce inflammation and thus MCP-1 release. At the same time, varying concentrations of chondroitin sulfate (CS were added in a physiologically relevant range (10-200 µg/mL to determine its impact on MCP-1 release. Chondroitin sulfate, a natural glycosaminoglycan of connective tissue including the cartilage extracellular matrix, was chosen on the basis of our previous studies demonstrating its anti-inflammatory effect on macrophages. Because the main action of MCP-1 is to induce monocyte migration, cultured THP-1 monocytes were used to test whether CS at the highest physiologically relevant concentration could inhibit cell migration induced by human recombinant MCP-1. Chondroitin sulfate (100-200 µg/mL inhibited MCP-1 release from inflamed adipocytes in a dose-dependent manner ( P  < .01, 95% confidence interval [CI]: −5.89 to −3.858 at 100 µg/mL and P  < .001, 95% CI: −6.028 to −3.996 at 200 µg/mL but had no effect on MCP-1–driven chemotaxis of THP-1 monocytes. In summary, CS could be expected to reduce macrophage infiltration into adipose tissue by reduction in adipocyte expression and release of MCP-1 and as such might reduce adipose tissue inflammation in response to pro-inflammatory stimuli such as LPS, now increasingly recognized to be relevant in vivo.

  1. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Science.gov (United States)

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  2. Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein-1 deficient mice

    NARCIS (Netherlands)

    Voskuil, Michiel; Hoefer, Imo E.; van Royen, Niels; Hua, Jing; de Graaf, Stijn; Bode, Christoph; Buschmann, Ivo R.; Piek, Jan J.

    2004-01-01

    Monocyte chemoattractant protein 1 (MCP-1) has been shown to be effective for the stimulation of collateral artery formation in small and large animal models. The availability of a genetic knockout mouse enables evaluation of the importance of the role of MCP-1 in the natural course of collateral

  3. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  4. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  5. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Kharazmi, A; Theander, T G

    1986-01-01

    tested monocyte chemotactic responsiveness in 19 patients with acute primary attack malaria. In addition, the neutrophil chemotaxis was measured in 12 patients. Before the initiation of antimalarial treatment a significant depression of monocyte chemotaxis was observed in approximately half...... of the patients when compared with healthy control subjects. The depression was found in Plasmodium falciparum malaria as well as in P. vivax or P. ovale malaria patients. The defective responsiveness was not receptor specific, since the responses towards casein and zymosan activated serum proved to be equally...... of treatment, and nearly normalized after 7 days (87% of controls). Furthermore, monocyte phagocytic and candidacidal activities were assessed in the same patients on admission and during the follow-up. In contrast to chemotaxis, these functions were normal in all of the patients whenever measured...

  6. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2010-04-15

    The hereditary disorder alpha-1 antitrypsin (AAT) deficiency results from mutations in the SERPINA1 gene and presents with emphysema in young adults and liver disease in childhood. The most common form of AAT deficiency occurs because of the Z mutation, causing the protein to fold aberrantly and accumulate in the endoplasmic reticulum (ER). This leads to ER stress and contributes significantly to the liver disease associated with the condition. In addition to hepatocytes, AAT is also synthesized by monocytes, neutrophils, and epithelial cells. In this study we show for the first time that the unfolded protein response (UPR) is activated in quiescent monocytes from ZZ individuals. Activating transcription factor 4, X-box binding protein 1, and a subset of genes involved in the UPR are increased in monocytes from ZZ compared with MM individuals. This contributes to an inflammatory phenotype with ZZ monocytes exhibiting enhanced cytokine production and activation of the NF-kappaB pathway when compared with MM monocytes. In addition, we demonstrate intracellular accumulation of AAT within the ER of ZZ monocytes. These are the first data showing that Z AAT protein accumulation induces UPR activation in peripheral blood monocytes. These findings change the current paradigm regarding lung inflammation in AAT deficiency, which up until now was derived from the protease-anti-protease hypothesis, but which now must include the exaggerated inflammatory response generated by accumulated aberrantly folded AAT in circulating blood cells.

  7. The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.

    Science.gov (United States)

    Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling

    2018-05-21

    Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults

    Directory of Open Access Journals (Sweden)

    Trautwein Christian

    2010-06-01

    Full Text Available Abstract Background Recent experimental approaches have unraveled essential migratory and functional differences of monocyte subpopulations in mice. In order to possibly translate these findings into human physiology and pathophysiology, human monocyte subsets need to be carefully revisited in health and disease. In analogy to murine studies, we hypothesized that human monocyte subsets dynamically change during ageing, potentially influencing their functionality and contributing to immunosenescence. Results Circulating monocyte subsets, surface marker and chemokine receptor expression were analyzed in 181 healthy volunteers (median age 42, range 18-88. Unlike the unaffected total leukocyte or total monocyte counts, non-classical CD14+CD16+ monocytes significantly increased with age, but displayed reduced HLA-DR and CX3CR1 surface expression in the elderly. Classical CD14++CD16- monocyte counts did not vary dependent on age. Serum MCP-1 (CCL2, but not MIP1α (CCL3, MIP1β (CCL4 or fractalkine (CX3CL1 concentrations increased with age. Monocyte-derived macrophages from old or young individuals did not differ with respect to cytokine release in vitro at steady state or upon LPS stimulation. Conclusions Our study demonstrates dynamic changes of circulating monocytes during ageing in humans. The expansion of the non-classical CD14+CD16+ subtype, alterations of surface protein and chemokine receptor expression as well as circulating monocyte-related chemokines possibly contribute to the preserved functionality of the monocyte pool throughout adulthood.

  9. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    Science.gov (United States)

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.

  10. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mytych, Jennifer, E-mail: jennifermytych@gmail.com [Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Wos, Izabela; Solek, Przemyslaw; Koziorowski, Marek [Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland)

    2017-01-15

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we show that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.

  11. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    International Nuclear Information System (INIS)

    Mytych, Jennifer; Wos, Izabela; Solek, Przemyslaw; Koziorowski, Marek

    2017-01-01

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we show that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.

  12. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  13. Modulation of neutrophil and monocyte function by recombinant human granulocyte macrophage colony-stimulating factor in patients with lymphoma

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H; Hovgaard, D

    1991-01-01

    by up to 43-fold. rhGM-CSF treatment did not affect degranulation of the neutrophils as measured by release of vitamin B12 binding protein. Degree of modulation of neutrophil and monocyte function by rhGM-CSF was independent of rhGM-CSF dosages administered. These data suggest that phagocytic defence...... and chemiluminescence responses to f-Met-Leu-Phe, zymosan activated serum (ZAS) and opsonized zymosan (OZ) were determined. It was observed that chemotactic response of neutrophils to f-Met-Leu-Phe and ZAS was reduced, whereas the chemiluminescence response of both cell types to f-Met-Leu-Phe and zymosan was enhanced...

  14. Human Monocytes Accelerate Proliferation and Blunt Differentiation of Preadipocytes in Association With Suppression of C/Ebpα mRNA

    Science.gov (United States)

    Couturier, Jacob; Patel, Sanjeet G.; Iyer, Dinakar; Balasubramanyam, Ashok; Lewis, Dorothy E.

    2015-01-01

    Obesity, type 2 diabetes, and HIV-associated lipodystrophy are associated with abnormalities in adipocyte growth and differentiation. In persons with these conditions, adipose depots contain increased numbers of macrophages, but the origins of these cells and their specific effects are uncertain. Peripheral blood mononuclear cells (PBMC)-derived monocytes, but not T cells, cocultured via transwells with primary subcutaneous preadipocytes, increased proliferation (approximately twofold) and reduced differentiation (~50%) of preadipocytes. Gene expression analyses in proliferating preadipocytes (i.e., prior to hormonal induction of terminal differentiation) revealed that monocytes down-regulated mRNA levels of CCAAT/enhancer binding protein, alpha (C/EBPα) and up-regulated mRNA levels of G0/G1 switch 2 (G0S2) message, genes important for the regulation of adipogenesis and the cell cycle. These data indicate that circulating peripheral blood monocytes can disrupt adipogenesis by interfering with a critical step in C/EBPα and G0S2 transcription required for preadipocytes to make the transition from proliferation to differentiation. Interactions between preadipocytes and monocytes also increased the inflammatory cytokines IL-6 and IL-8, as well as a novel chemotactic cytokine, CXCL1. Additionally, the levels of both IL-6 and CXCL1 were highest when preadipocytes and monocytes were cultured together, compared to each cell in culture alone. Such cross-talk amplifies the production of mediators of tissue inflammation. PMID:21869759

  15. Characterization of two types of osteoclasts from human peripheral blood monocytes

    International Nuclear Information System (INIS)

    Yuasa, Kimitaka; Mori, Kouki; Ishikawa, Hitoshi; Sudo, Akihiro; Uchida, Atsumasa; Ito, Yasuhiko

    2007-01-01

    The two osteoclastogenesis pathways, receptor activator nuclear factor (NF)-κB ligand (RANKL)-mediated and fusion regulatory protein-1 (FRP-1)-mediated osteoclastogenesis, have recently been reported. There were significant differences in differentiation and activation mechanisms between the two pathways. When monocytes were cultured with FRP-1 without adding M-CSF, essential for the RANKL system, TRAP-positive polykaryocyte formation occurred. FRP-1-mediated osteoclasts formed larger pits on mineralized calcium phosphate plates than RANKL+M-CSF-mediated osteoclasts did. Lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were inclined to be single and isolated. However, osteoclasts induced by RANKL+M-CSF made many connected pits on dentin surfaces as if they crawled on there. Interestingly, FRP-1 osteoclastogenesis was enhanced by M-CSF/IL-1α, while chemotactic behavior to the dentin slices was not effected. There were differences in pH and concentration of HCO3- at culture endpoint and in adherent feature to dentin surfaces. Our findings indicate there are two types of osteoclasts with distinct properties

  16. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    International Nuclear Information System (INIS)

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J.

    2006-01-01

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1β intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38 + cells. DON-induced p38 activation occurred exclusively in the CD14 + monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response

  17. Leishmania major surface protease Gp63 interferes with the function of human monocytes and neutrophils in vitro

    DEFF Research Database (Denmark)

    Sørensen, A L; Hey, A S; Kharazmi, A

    1994-01-01

    In the present study the effect of Leishmania major surface protease Gp63 on the chemotaxis and oxidative burst response of human peripheral blood monocytes and neutrophils was investigated. It was shown that prior incubation of cells with Gp63 inhibited chemotaxis of neutrophils but not monocytes...... towards the chemotactic peptide f-met-leu-phe. On the other hand, chemotaxis of both neutrophils and monocytes towards zymosan-activated serum containing C5a was inhibited by Gp63. Monocyte and neutrophil chemiluminescence response to opsonized zymosan was reduced by preincubation of the cells with Gp63...... in a concentration-dependent manner. Notably, monocytes were inhibited to a much greater degree than neutrophils by a given concentration of Gp63, and they were also inhibited at much lower concentrations of the protease. The inhibitory effect of Gp63 on chemotaxis and chemiluminescence was completely abolished...

  18. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  19. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  20. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    Directory of Open Access Journals (Sweden)

    Dana Ditgen

    2016-01-01

    Full Text Available The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx and Trx-like protein (Trx-lp were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite’s mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa.

  1. Optimal methylation noise for best chemotactic performance of E. coli

    Science.gov (United States)

    Dev, Subrata; Chatterjee, Sakuntala

    2018-03-01

    In response to a concentration gradient of chemoattractant, E. coli bacterium modulates the rotational bias of flagellar motors which control its run-and-tumble motion, to migrate towards regions of high chemoattractant concentration. Presence of stochastic noise in the biochemical pathway of the cell has important consequences on the switching mechanism of motor bias, which in turn affects the runs and tumbles of the cell in a significant way. We model the intracellular reaction network in terms of coupled time evolution of three stochastic variables—kinase activity, methylation level, and CheY-P protein level—and study the effect of methylation noise on the chemotactic performance of the cell. In presence of a spatially varying nutrient concentration profile, a good chemotactic performance allows the cell to climb up the concentration gradient quickly and localize in the nutrient-rich regions in the long time limit. Our simulations show that the best performance is obtained at an optimal noise strength. While it is expected that chemotaxis will be weaker for very large noise, it is counterintuitive that the performance worsens even when noise level falls below a certain value. We explain this striking result by detailed analysis of CheY-P protein level statistics for different noise strengths. We show that when the CheY-P level falls below a certain (noise-dependent) threshold the cell tends to move down the concentration gradient of the nutrient, which has a detrimental effect on its chemotactic response. This threshold value decreases as noise is increased, and this effect is responsible for noise-induced enhancement of chemotactic performance. In a harsh chemical environment, when the nutrient degrades with time, the amount of nutrient intercepted by the cell trajectory is an effective performance criterion. In this case also, depending on the nutrient lifetime, we find an optimum noise strength when the performance is at its best.

  2. Amplification of the spleen macrophage population in malaria: possible role of a factor chemotactic for blood mononuclear cells

    International Nuclear Information System (INIS)

    Wyler, D.J.; Gallin, J.I.

    1976-01-01

    The mechanism of amplification of the splenic macrophages' population was investigated using mice infected with malaria as a model of an obligate intravascular infection. It was observed that these macrophages derived from blood monocytes rather than by local proliferation in the spleen. A factor, chemotactic for blood mononuclear cells, was present in spleen cells shortly after infection and preceded detectable increases in spleen macrophage number by 48 hours. This factor, in concert with spleen derived macrophage migration inhibition factor, may be important in the amplification of splenic macrophage population in intravascular infections

  3. Correlation of urinary monocyte chemo-attractant protein-1 with other parameters of renal injury in type-II diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ibrahim Salwa

    2008-01-01

    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease in the western world. Increased number of interstitial macrophages has been observed in biopsies from patients with DN. Monocyte chemo-attractant protein-1 (MCP-1 is the strongest known chemo-tactic factor for monocytes and is upregulated in DN. We examined urinary levels of MCP-1 in patients with type-2 diabetes mellitus (DM to assess its possible correlation with other para-meters of renal injury. The urinary MCP-1 level was assessed in 75 patients with type-2 DM (25 patients each with no microalbuminuria, with macroalbuminuria and, with renal impairment and compared them with matched healthy control subjects. The HbA1c and estimated glomerular fil-tration rate (eGFR derived from the abbreviated Modification of Diet in Renal Disease (MDRD equation were examined in the study groups in relation to the urinary MCP-1. The urinary MCP-1 level was significantly higher in patients with micro and macroalbuminuria (167.41 ± 50.23 and 630.87 ± 318.10 ng/gm creatinine respectively as compared with normoalbuminuric patients and healthy controls (63.85 ± 21.15 and 61.50 ± 24.81 ng/gm creatinine, p< 0.001. MCP-1 correlated positively with urine albumin/creatinine ratio (ACR (r= 0.75, p< 0.001, HbA1c (r= 0.55, p< 0.001 and inversely with eGFR (r=-0.60, p< 0.001. Our findings suggest that hyperglycemia is associated with increased urinary levels of MCP-1 that is closely linked to renal damage as reflected by proteinuria and eGFR levels. Collectively, these findings suggest that MCP-1 is in-volved in the pathogenesis of diabetic nephropathy through its various stages.

  4. Stimulated monocyte IL-6 secretion predicts survival of patients with head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Olofsson Jan

    2008-01-01

    Full Text Available Abstract Background This study was performed in order to determine whether monocyte in vitro function is associated with presence, stage and prognosis of head and neck squamous cell carcinoma (HNSCC disease. Methods Prospective study describing outcome, after at least five years observation, of patients treated for HNSCC disease in relation to their monocyte function. Sixty-five patients with newly diagnosed HNSCC and eighteen control patients were studied. Monocyte responsiveness was assessed by measuring levels of monocyte in vitro interleukin (IL-6 and monocyte chemotactic peptide (MCP-1 secretion after 24 hours of endotoxin stimulation in cultures supplied either with 20% autologous serum (AS or serum free medium (SFM. Survival, and if relevant, cause of death, was determined at least 5 years following primary diagnosis. Results All patients, as a group, had higher in vitro monocyte responsiveness in terms of IL-6 (AS (t = 2.03; p t = 2.49; p in vitro monocyte IL-6 endotoxin responsiveness under the SFM condition was associated with decreased survival rate (Hazard ratio (HR = 2.27; Confidence interval (CI = 1.05–4.88; p p p Conclusion In HNSCC patients, changed monocyte in vitro response to endotoxin, as measured by increased IL-6 (SFM and decreased MCP-1 (AS responsiveness, are negative prognostic factors.

  5. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    Directory of Open Access Journals (Sweden)

    Hussain S

    2012-03-01

    Full Text Available Salik Hussain1,*, Faris Al-Nsour1,*, Annette B Rice1, Jamie Marshburn1, Zhaoxia Ji2, Jeffery I Zink2, Brenda Yingling1, Nigel J Walker3, Stavros Garantziotis11Clinical Research Unit, National Institute of Environmental Health Sciences/National Institute of Health, Research Triangle Park, NC, 2UC Center for Environmental Implications of Nanotechnology University of California, Los Angeles, CA, 3Division of National Toxicology Program, National Institute of Environmental Health Sciences/National Institute of Health, Research Triangle Park, NC, USA*Both are principal authorsBackground: Cerium dioxide (CeO2 nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes.Methods: CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 µg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10.Results: CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter, zeta potential analysis (-14 mV, and transmission electron microscopy (irregular-shaped particles. Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and

  6. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    International Nuclear Information System (INIS)

    Vlaicu, Philip; Mertins, Philipp; Mayr, Thomas; Widschwendter, Peter; Ataseven, Beyhan; Högel, Bernhard; Eiermann, Wolfgang; Knyazev, Pjotr; Ullrich, Axel

    2013-01-01

    Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy

  7. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  8. Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation.

    Science.gov (United States)

    Bommakanti, R K; Bokoch, G M; Tolley, J O; Schreiber, R E; Siemsen, D W; Klotz, K N; Jesaitis, A J

    1992-04-15

    Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.

  9. Radiation effects on cultured human monocytes and on monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Buescher, E.S.; Gallin, J.I.

    1984-01-01

    Prior to administration, leukocyte transfusions are commonly irradiated with up to 5,000 R to eliminate lymphocytes and thereby prevent graft-versus-host disease in the recipient. It has been widely believed that phagocytes are resistant to this irradiation. In a recent report, it was noted that phagocyte oxidative metabolism was compromised during preparation of white cells for transfusion. As part of the effort to examine the basis for this inhibition of phagocyte function during white cell preparation, an assessment was made of the effects of irradiation on the long-lived monocytes that have been shown to persist at inflammatory foci posttransfusion. Human monocytes were irradiated for up to 3 min, receiving 2,500-5,000 R. This irradiation damaged human monocytes, significantly decreasing their in vitro survival for the first 3 wk of culture, and growth as assessed by two-dimensional cell size measurements during the first 2 wk of culture. Despite smaller cell size, total cell protein was significantly increased over time in irradiated cultures. Extracellular release of lysozyme and beta-glucuronidase per cell was not affected by irradiation, but extracellular lactate dehydrogenase (LDH) release was significantly increased after irradiation. Irradiated monocytes killed Listeria monocytogenes at a slower rate than the nonirradiated controls. Thus, the data indicate that irradiation in doses used to prevent graft-versus-host disease in leukocyte transfusion recipients has a deleterious effect on in vitro human monocyte survival and function

  10. The Histone Deacetylase Inhibitors MS-275 and SAHA Suppress the p38 Mitogen-Activated Protein Kinase Signaling Pathway and Chemotaxis in Rheumatoid Arthritic Synovial Fibroblastic E11 Cells

    Directory of Open Access Journals (Sweden)

    Hai-Shu Lin

    2013-11-01

    Full Text Available MS-275 (entinostat and SAHA (vorinostat, two histone deacetylase (HDAC inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA. To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α  MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1, an endogenous suppressor of p38α  in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation of p38α  was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2, monocyte chemotactic protein-2 (MCP-2 and macrophage migration inhibitory factor (MIF in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.

  11. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  12. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, F.G. [Div. of Pediatric Radiology, Stanford, CA (United States); Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A. [Division of Cardiovascular Medicine, Department of Medicine, Stanford, California (United States); Tait, J.F. [Dept. of Laboratory Medicine, Univ. of Washington, Seattle (United States); Post, A.M.; Strauss, H.W. [Div. of Nuclear Medicine, Stanford Univ., CA (United States)

    2001-12-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  13. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    International Nuclear Information System (INIS)

    Blankenberg, F.G.; Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A.; Tait, J.F.; Post, A.M.; Strauss, H.W.

    2001-01-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  14. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.

    Science.gov (United States)

    Wang, Ying; Wang, Gary Z; Rabinovitch, Peter S; Tabas, Ira

    2014-01-31

    Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell type-specific causation studies in vivo are lacking, and the molecular mechanisms of potential proatherogenic effects remain to be determined. Our aims were to assess the importance of macrophage mitoOS in atherogenesis and to explore the underlying molecular mechanisms. We first validated Western diet-fed Ldlr(-/-) mice as a model of human mitoOS-atherosclerosis association by showing that non-nuclear oxidative DNA damage, a marker of mitoOS in lesional macrophages, correlates with aortic root lesion development. To investigate the importance of macrophage mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c(hi) monocyte infiltration into lesions, and lower levels of monocyte chemotactic protein-1. The decrease in lesional monocyte chemotactic protein-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the proinflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed monocyte chemotactic protein-1 expression by decreasing the activation of the IκB-kinase β-RelA NF-κB pathway. MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.

  15. Monocytic leukemias.

    Science.gov (United States)

    Shaw, M T

    1980-05-01

    The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.

  16. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment.

    Science.gov (United States)

    Nakamura, H; Yoshiyama, H; Takeuchi, H; Mizote, T; Okita, K; Nakazawa, T

    1998-10-01

    Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the mutant strain did not show swarming in motility agar regardless of having flagella. Incubation of the wild-type strain with flurofamide resulted in partial inhibition of the chemotactic activities in the viscous solution. In addition, incubation with acetohydroxamic acid, a low-molecular-weight, diffusible urease inhibitor, resulted in complete loss of chemotactic activity in the viscous solution. The inhibition of the chemotactic activity by urease inhibitors paralleled the inhibition of urease. The chemotactic activity of H. pylori was also inhibited by the proton carrier carbonyl cyanide m-chlorophenylhydrazone, showing that H. pylori utilizes proton motive force for motility. These results indicate that cytoplasmic urease plays an important role in the chemotactic motility of H. pylori under a condition that mimics the ecological niche of the bacterium, the gastric mucous layer.

  17. Urease Plays an Important Role in the Chemotactic Motility of Helicobacter pylori in a Viscous Environment

    OpenAIRE

    Nakamura, Hiroki; Yoshiyama, Hironori; Takeuchi, Hiroaki; Mizote, Tomoko; Okita, Kiwamu; Nakazawa, Teruko

    1998-01-01

    Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the ...

  18. Stimulated monocyte IL-6 secretion predicts survival of patients with head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Heimdal, John-Helge; Kross, Kenneth; Klementsen, Beate; Olofsson, Jan; Aarstad, Hans Jørgen

    2008-01-01

    This study was performed in order to determine whether monocyte in vitro function is associated with presence, stage and prognosis of head and neck squamous cell carcinoma (HNSCC) disease. Prospective study describing outcome, after at least five years observation, of patients treated for HNSCC disease in relation to their monocyte function. Sixty-five patients with newly diagnosed HNSCC and eighteen control patients were studied. Monocyte responsiveness was assessed by measuring levels of monocyte in vitro interleukin (IL)-6 and monocyte chemotactic peptide (MCP)-1 secretion after 24 hours of endotoxin stimulation in cultures supplied either with 20% autologous serum (AS) or serum free medium (SFM). Survival, and if relevant, cause of death, was determined at least 5 years following primary diagnosis. All patients, as a group, had higher in vitro monocyte responsiveness in terms of IL-6 (AS) (t = 2.03; p < 0.05) and MCP-1 (SFM) (t = 2.49; p < 0.05) compared to controls. Increased in vitro monocyte IL-6 endotoxin responsiveness under the SFM condition was associated with decreased survival rate (Hazard ratio (HR) = 2.27; Confidence interval (CI) = 1.05–4.88; p < 0.05). The predictive value of monocyte responsiveness, as measured by IL-6, was also retained when adjusted for age, gender and disease stage of patients (HR = 2.67; CI = 1.03–6.92; p < 0.05). With respect to MCP-1, low endotoxin-stimulated responsiveness (AS), analysed by Kaplan-Meier method, predicted decreased survival (χ = 4.0; p < 0.05). In HNSCC patients, changed monocyte in vitro response to endotoxin, as measured by increased IL-6 (SFM) and decreased MCP-1 (AS) responsiveness, are negative prognostic factors

  19. Transcript and protein analysis reveals better survival skills of monocyte-derived dendritic cells compared to monocytes during oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ilse Van Brussel

    Full Text Available BACKGROUND: Dendritic cells (DCs, professional antigen-presenting cells with the unique ability to initiate primary T-cell responses, are present in atherosclerotic lesions where they are exposed to oxidative stress that generates cytotoxic reactive oxygen species (ROS. A large body of evidence indicates that cell death is a major modulating factor of atherogenesis. We examined antioxidant defence systems of human monocyte-derived (moDCs and monocytes in response to oxidative stress. METHODS: Oxidative stress was induced by addition of tertiary-butylhydroperoxide (tert-BHP, 30 min. Cellular responses were evaluated using flow cytometry and confocal live cell imaging (both using 5-(and-6-chloromethyl-2,7-dichlorodihydrofluorescein diacetate, CM-H(2DCFDA. Viability was assessed by the neutral red assay. Total RNA was extracted for a PCR profiler array. Five genes were selected for confirmation by Taqman gene expression assays, and by immunoblotting or immunohistochemistry for protein levels. RESULTS: Tert-BHP increased CM-H(2DCFDA fluorescence and caused cell death. Interestingly, all processes occurred more slowly in moDCs than in monocytes. The mRNA profiler array showed more than 2-fold differential expression of 32 oxidative stress-related genes in unstimulated moDCs, including peroxiredoxin-2 (PRDX2, an enzyme reducing hydrogen peroxide and lipid peroxides. PRDX2 upregulation was confirmed by Taqman assays, immunoblotting and immunohistochemistry. Silencing PRDX2 in moDCs by means of siRNA significantly increased CM-DCF fluorescence and cell death upon tert-BHP-stimulation. CONCLUSIONS: Our results indicate that moDCs exhibit higher intracellular antioxidant capacities, making them better equipped to resist oxidative stress than monocytes. Upregulation of PRDX2 is involved in the neutralization of ROS in moDCs. Taken together, this points to better survival skills of DCs in oxidative stress environments, such as atherosclerotic plaques.

  20. [Role of phosphoinositide 3 kinase/protein kinase B signal pathway in monocyte-endothelial adhesion induced by serum of rats with electrical burn].

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Zhang, Weidong; Xie, Qionghui; Xie, Weiguo

    2014-06-01

    To observe the change in phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signal pathway in monocytes as induced by serum of rats with electrical burn, and to explore the effects of PI3K/Akt pathway on monocyte-endothelial cell adhesion. Sixty-four SD rats of clean grade were inflicted with electrical burn for the collection of serum of rats with electrical burn; another group of twenty-four SD rats were used to obtain normal serum without treatment. (1) Human monocyte line THP-1 was routinely cultured. The THP-1 cells in logarithmic phase were divided into normal serum group (resuspended in RPMI 1640 medium with 20% normal rat serum) and burn serum group (resuspended with RPMI 1640 medium with 20% serum of rats with electrical burn) according to the random number table, with 6 wells in each group. Morphology of THP-1 cells in normal serum group was observed at post culture hour (PCH) 24, and that in burn serum group at PCH 3, 6, 24. The contents of TNF-α in culture supernatant were determined by double-antibody sandwich ELISA at the corresponding time point in each group. The state of Akt activation was determined by Western blotting at PCH 3, 6, 24. (2) Another portion of THP-1 cells were divided into 4 groups according to the random number table, with 6 wells in each group. Cells in normal serum group and burn serum group were given with the same culture condition as above; cells in normal serum+inhibitor group and burn serum+inhibitor group were cultured with the same culture conditions as in the former two groups correspondingly with addition of 100 nmol/L wortmannin in the nutrient solution. At PCH 3 and 6, THP-1 cells were added into the well with a monolayer of endothelial cell line EA.hy926 to observe the monocyte-endothelial cell adhesion. Data were processed with one-way analysis of variance and LSD- t test. (1) In normal serum group, THP-1 cells showed growth in suspension, with uniform shape at PCH 24. In burn serum group, the cell shape became

  1. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  2. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    International Nuclear Information System (INIS)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-01-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4"+ T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  3. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor, E-mail: leonorhh@biomedicas.unam.mx

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  4. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    Science.gov (United States)

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  5. Human β-Defensin 3 Reduces TNF-α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tianying Bian

    2017-01-01

    Full Text Available The aim of this study was to investigate the role of human β-defensin 3 (hBD3 in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs triggered by tumor necrosis factor- (TNF- α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1, and macrophage migration inhibitory factor (MIF in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK in the mitogen-activated protein kinase (MAPK pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.

  6. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2011-01-01

    by Amino acids in Cell culture (SILAC) method for quantitative analysis resulted in the identification and generation of quantitative profiles of 59 growth factors and cytokines, including 9 classical chemokines. The members of the CC chemokine family of proteins such as monocyte chemotactic proteins 1, 2...

  7. The kampo medicine Daikenchuto inhibits peritoneal fibrosis in mice.

    Science.gov (United States)

    Kitamura, Mineaki; Nishino, Tomoya; Obata, Yoko; Oka, Satoru; Abe, Shinichi; Muta, Kumiko; Ozono, Yoshiyuki; Koji, Takehiko; Kohno, Shigeru

    2015-01-01

    Long-term peritoneal dialysis therapy causes inflammation and histological changes in the peritoneal membrane. Inflammation generally activates fibroblasts and results in fibroblast-myofibroblast differentiation. Heat-shock protein 47 (HSP 47), a collagen-specific molecular chaperone, is localized in myofibroblasts and is involved in the progression of peritoneal fibrosis. Daikenchuto (DKT), a Kampo medicine, is used to prevent postoperative colon adhesion. It inhibits inflammation and HSP 47 expression in the gastrointestinal tract. We examined the effect of DKT on chlorhexidine gluconate (CG)-induced peritoneal fibrosis in mice injected with 0.1% CG dissolved in 15% ethanol. DKT was dissolved in the drinking water. Histological changes were assessed using Masson trichrome staining. Cells expressing α-smooth muscle actin (α-SMA), HSP 47, phospho-Smad 2/3, F4/80, and monocyte chemotactic protein-1 were examined immunohistochemically. Compared with the control group, the peritoneal tissues of the CG group were markedly thickened, and the number of cells expressing α-SMA, HSP 47, phospho-Smad 2/3, F4/80, and monocyte chemotactic protein-1 was significantly increased. However, these changes were inhibited in the DKT-treated group. These results indicate that DKT can prevent peritoneal fibrosis by inhibiting inflammation and HSP 47 expression.

  8. Direct and indirect radioiodination of protein: comparative study of chemotactic peptide labeling; Radioiodacao de proteina por via direta e indireta: estudo comparativo da marcacao de peptideo quimiotatico

    Energy Technology Data Exchange (ETDEWEB)

    Lavinas, Tatiana

    2004-07-01

    The development of simple methods for protein radioiodination have stimulated the use of radioiodinated peptides in vivo. There are two basic methods for labeling proteins with radioiodine: direct labeling, reaction of an electrophilic radioiodine with functional activated groups on protein, like the phenol ring in the tyrosine residue, and the conjugation of a previously radioiodinated molecule to the protein, referred as indirect method. The great problem related to the direct radioiodination of proteins is the in vivo dehalogenation. This problem can be minimized if a non-phenolic prosthetic group is used in the indirect radioiodination of the peptide. The ATE prosthetic group, N-succinimidyl 3-(tri-n-butylstannyl) benzoate, when radioiodinated by electrophilic iododestannilation produces N-succinimidyl 3-[{sup 123}l/{sup 131}l] iodine benzoate (SIB) that is subsequently conjugated to the protein by the acylation of the lysine group. There are many radiopharmaceuticals employed in scintigraphic images of infection and inflammation used with some limitations. These limitations stimulated the improvement of a new class of radiopharmaceuticals, the receptor-specific related labeled peptides, as the mediators of the inflammatory response, that presents high affinity by receptors expressed in the inflammation process, and fast clearance from blood and non-target tissues. One of these molecules is the synthetic chemotactic peptide fNleLFNIeYK that presents potent chemotaxis for leukocytes, with high affinity by the receptors presented in polymorphonuclear leukocytes and mononuclear phagocytes. The objective of this work included the synthesis of ATE prosthetic group and comparative radioiodination of the chemotactic peptide fNleLFNIeYK by direct and indirect methods, with radiochemical purity determination and evaluation of in vivo and in vitro stability of the compounds. This work presented an original contribution in the comparative biological distribution studies

  9. Monocyte chemotactic protein-4 (MCP-4/CCL-13) and CC ...

    African Journals Online (AJOL)

    EL-HAKIM

    chronic inflammation and local tissue eosinophilia. Atopic asthma is characterized by a 50-fold increase in the number of eosinophils relative to neutrophils in the bronchial mucosa. This is the result of the cumulative and sequential effects of variable increases in selective eosinophil versus neutrophil migration occurring at ...

  10. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages.

    Directory of Open Access Journals (Sweden)

    Min-Gu Song

    Full Text Available Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS are known to be an important contributor to monocytes' differentiation and macrophages' function. NF-E2-related factor 2 (NRF2, a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA. In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNFα were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1 was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB p50 and extracellular signal-regulated kinase (ERK-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937

  11. The chemotactic activity of sputum from patients with bronchiectasis.

    Science.gov (United States)

    Mikami, M; Llewellyn-Jones, C G; Bayley, D; Hill, S L; Stockley, R A

    1998-03-01

    Persistent polymorphonuclear neutrophil (PMN) recruitment to airway is thought to be an important component of continuing inflammation and progression of chronic destructive lung diseases. Although chemoattractants are required for the PMN to migrate, the nature of the chemoattractants in the airways has not yet been clarified. We therefore investigated the contribution of interleukin-8 (IL-8) and leukotriene-B4 (LTB4) to the chemotactic activity of lung secretions by inhibiting their activity using a monoclonal antibody to IL-8 and an LTB4 receptor antagonist (LY293111 sodium). Fifty-nine sputum samples obtained from 19 patients with bronchiectasis were studied. In preliminary studies the chemotactic responses to IL-8 and LTB4 were found to be additive, and we were able to remove their contribution independently with the appropriate antibody and antagonist. The chemotactic activity of the secretions was related to the macroscopic appearance (mucoid, mucopurulent, and purulent), and this appeared to be related to an increase in IL-8 contribution. Chemotactic activity was reduced by antibiotic therapy and again that seemed to relate to a reduction in the IL-8 contribution. The contributions of LTB4 were similar among the three types of sputum in varying clinical states. These data suggest that LTB4 and IL-8 are important chemotactic factors in lung secretions from such patients, although IL-8 appears to play a more important role during acute exacerbations. These results may be useful in determining therapeutic strategies for chronic destructive lung diseases in the future.

  12. The cysteine-rich core domain of REIC/Dkk-3 is critical for its effect on monocyte differentiation and tumor regression.

    Science.gov (United States)

    Kinoshita, Rie; Watanabe, Masami; Huang, Peng; Li, Shun-Ai; Sakaguchi, Masakiyo; Kumon, Hiromi; Futami, Junichiro

    2015-06-01

    Reduced expression in immortalized cells (REIC)/Dickkopf (Dkk)-3 is a tumor-suppressor gene and has been studied as a promising therapeutic gene for cancer gene therapy. Intratumoral injection of an adenovirus vector carrying the human REIC/Dkk-3 gene (Ad-REIC) elicits cancer cell-specific apoptosis and anticancer immune responses. The cytokine-like effect of secretory REIC/Dkk-3 on the induction of dendritic cell (DC)-like cell differentiation from monocytes plays a role in systemic anticancer immunity. In the present study, we generated recombinant full-length and N-terminally truncated REIC/Dkk-3 to characterize the biological activity of the protein. During the purification procedure, we identified a 17 kDa cysteine-rich stable product (C17-REIC) showing limited degradation. Further analysis showed that the C17-REIC domain was sufficient for the induction of DC-like cell differentiation from monocytes. Concomitant with the differentiation of DCs, the REIC/Dkk-3 protein induced the phosphorylation of glycogen synthase kinase 3β (GSK-3β) and signal transducers and activators of transcription (STAT) at a level comparable to that of granulocyte/macrophage colony-stimulating factor. In a mouse model of subcutaneous renal adenocarcinoma, intraperitoneal injection of full-length and C17-REIC proteins exerted anticancer effects in parallel with the activation of immunocompetent cells such as DCs and cytotoxic T lymphocytes in peripheral blood. Taken together, our results indicate that the stable cysteine-rich core region of REIC/Dkk-3 is responsible for the induction of anticancer immune responses. Because REIC/Dkk-3 is a naturally circulating serum protein, the upregulation REIC/Dkk-3 protein expression could be a promising option for cancer therapy.

  13. The Toll-like receptor 1/2 agonists Pam(3) CSK(4) and human β-defensin-3 differentially induce interleukin-10 and nuclear factor-κB signalling patterns in human monocytes.

    Science.gov (United States)

    Funderburg, Nicholas T; Jadlowsky, Julie K; Lederman, Michael M; Feng, Zhimin; Weinberg, Aaron; Sieg, Scott F

    2011-10-01

    Human β-defensin 3 (hBD-3) activates antigen-presenting cells through Toll-like receptors (TLRs) 1/2. Several TLR1/2 agonists have been identified but little is known about how they might differentially affect cellular activation. We compared the effects of hBD-3 with those of another TLR1/2 agonist, Pam(3) CSK(4) , in human monocytes. Monocytes incubated with hBD-3 or Pam(3) CSK(4) produced interleukin-6 (IL-6), IL-8 and IL-1β, but only Pam(3) CSK(4) induced IL-10. The IL-10 induction by Pam(3) CSK(4) caused down-modulation of the co-stimulatory molecule, CD86, whereas CD86 expression was increased in monocytes exposed to hBD-3. Assessment of signalling pathways linked to IL-10 induction indicated that mitogen-activated protein kinases were activated similarly by hBD-3 or Pam(3) CSK(4) , whereas the non-canonical nuclear factor-κB pathway was only induced by Pam(3) CSK(4) . Our data suggest that the lack of non-canonical nuclear factor-κB signalling by hBD-3 could contribute to the failure of this TLR agonist to induce production of the anti-inflammatory cytokine, IL-10, in human monocytes. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  14. Magnetic Nanoparticles Conjugated with Peptides Derived from Monocyte Chemoattractant Protein-1 as a Tool for Targeting Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Chung-Wei Kao

    2018-05-01

    Full Text Available Atherosclerosis is a multifactorial inflammatory disease that may progress silently for long period, and it is also widely accepted as the main cause of cardiovascular diseases. To prevent atherosclerotic plaques from generating, imaging early molecular markers and quantifying the extent of disease progression are desired. During inflammation, circulating monocytes leave the bloodstream and migrate into incipient lipid accumulation in the artery wall, following conditioning by local growth factors and proinflammatory cytokines; therefore, monocyte accumulation in the arterial wall can be observed in fatty streaks, rupture-prone plaques, and experimental atherosclerosis. In this work, we synthesized monocyte-targeting iron oxide magnetic nanoparticles (MNPs, which were incorporated with the peptides derived from the chemokine receptor C-C chemokine receptor type 2 (CCR2-binding motif of monocytes chemoattractant protein-1 (MCP-1 as a diagnostic tool for potential atherosclerosis. MCP-1-motif MNPs co-localized with monocytes in in vitro fluorescence imaging. In addition, with MNPs injection in ApoE knockout mice (ApoE KO mice, the well-characterized animal model of atherosclerosis, MNPs were found in specific organs or regions which had monocytes accumulation, especially the aorta of atherosclerosis model mice, through in vivo imaging system (IVIS imaging and magnetic resonance imaging (MRI. We also performed Oil Red O staining and Prussian Blue staining to confirm the co-localization of MCP-1-motif MNPs and atherosclerosis. The results showed the promising potential of MCP-1-motif MNPs as a diagnostic agent of atherosclerosis.

  15. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    Science.gov (United States)

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  16. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    Science.gov (United States)

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  17. [Peptide fragments of chemokine domain of fractalkine: effect on human monocyte migration].

    Science.gov (United States)

    Kukhtina, N B; Aref'eva, T I; Ruleva, N Iu; Sidorova, M V; Az'muko, A A; Bespalova, Zh D; Krasnikova, T L

    2012-01-01

    Leukocyte chemotaxis to the area of tissue damage is mediated by chemokines. According to the primary structure, chemokines are divided into four families, fractalkine (CX3CL1) is the only one member of CX3C family and the only membrane-bound chemokine. Fractalkine molecule includes the extracellular N-terminal chemokine domain, mucin-like rod, the transmembrane and the intracellular domains. In membrane-bound state fractalkine has the properties of an adhesion molecule. Chemokine domain of fractalkine (CDF) is released from cell membrane by proteolysis, and this soluble form acts as a chemoattractant for leukocytes expressing fractalkine receptor CX3CR1. Fractalkine is involved in development of a number of pathological processes caused by inflammation, and therefore a search for fractalkine inhibitors is very important. For this purpose we identified several antigenic determinants--the fragments of CDF, and the following peptides were synthesized--P41-52 H-Leu-Glu-Thr-Arg-Gln-His-Arg-Leu-Phe-Cys-Ala-Asp-NH2, P53-60 H-Pro-Lys-Glu-Gln-Trp-Val-Lys-Asp-NH2 and P60-71 H-Asp-Ala-Met-Gln-His-Leu-Asp-Arg-Gln-Ala-Ala-Ala-NH2. The peptide effects on adhesion and migration of human peripheral blood monocytes expressing fractalkine receptors were investigated. In the presence of CDF and P41-52 we observed the increased adhesion and migration of monocytes compared with spontaneous values. Peptides P53-60 and P60-71 significantly inhibited monocyte adhesion and migration stimulated by CDF. Since the chemotactic activity of chemokines was shown to be dependent on their binding to glycosaminoglycans of the cell surface and extracellular matrix, the effect ofpeptides on the interaction of CDF with heparin was analyzed by ELISA. Peptide P41-52 competed with CDF for heparin binding, while peptides P53-60 and P60-71 had no significant activity.

  18. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration.

    Science.gov (United States)

    Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying

    2017-12-01

    Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.

  19. Dynamics of the Chemotactic Boycott Effect

    Science.gov (United States)

    Cisneros, Luis; Wolgemuth, Charles; Tuval, Idan

    2005-03-01

    Aerobic bacteria often live in thin fluid layers on irregular surfaces, near solid-air-water contact lines where the interplay between fluid interface geometry, nutrient transport, and chemotaxis is central to the micro-ecology. To elucidate these processes, we use the simplified geometry of a sessile drop and provide direct experimental evidence for the ``chemotactic Boycott effect" in suspensions of B. subtilis: upward oxygentaxis toward the drop surface leads to accumulation of cells in a thin layer, which flows down to the contact line and produces there a persistent vortex which traps cells near the meniscus. These phenomena are explained quantitatively with a mathematical model consisting of coupled oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics; they are shown to be associated with a singularity in the chemotactic dynamics at the contact line.

  20. The effect of metformin on monocyte secretory function in simvastatin-treated patients with impaired fasting glucose.

    Science.gov (United States)

    Krysiak, Robert; Okopien, Bogusław

    2013-01-01

    This study was designed to investigate whether metformin affects monocyte secretory function in patients with impaired fasting glucose receiving chronic statin therapy. The study included 48 patients with impaired fasting glucose treated for at least three months with simvastatin (40 mg daily). These patients were randomized to either metformin (3 g daily) or placebo, which was administered together with simvastatin for 90 days. Plasma lipids, glucose homeostasis markers, monocyte cytokine release and plasma C-reactive protein levels were determined before randomization and at the end of the treatment. Compared to placebo, metformin reduced monocyte release of tumor necrosis factor-α, interleukin-1β, interleukin-6, monocyte chemoattractant protein-1 and interleukin-8, as well as decreased plasma C-reactive protein levels, which were accompanied by an improvement in insulin sensitivity. The obtained results suggest that metformin may inhibit monocyte secretory function and reduce systemic inflammation in statin-treated patients with prediabetes. Impaired fasting glucose patients with high cardiovascular risk may receive the greatest benefits from concomitant treatment with a statin and metformin. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Science.gov (United States)

    Forget, Mary A; Voorhees, Jeffrey L; Cole, Sara L; Dakhlallah, Duaa; Patterson, Ivory L; Gross, Amy C; Moldovan, Leni; Mo, Xiaokui; Evans, Randall; Marsh, Clay B; Eubank, Tim D

    2014-01-01

    Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression.

  2. Palmitate and insulin synergistically induce IL-6 expression in human monocytes

    Directory of Open Access Journals (Sweden)

    Lumpkin Charles K

    2010-11-01

    Full Text Available Abstract Background Insulin resistance is associated with a proinflammatory state that promotes the development of complications such as type 2 diabetes mellitus (T2DM and atherosclerosis. The metabolic stimuli that initiate and propagate proinflammatory cytokine production and the cellular origin of proinflammatory cytokines in insulin resistance have not been fully elucidated. Circulating proinflammatory monocytes show signs of enhanced inflammation in obese, insulin resistant subjects and are thus a potential source of proinflammatory cytokine production. The specific, circulating metabolic factors that might stimulate monocyte inflammation in insulin resistant subjects are poorly characterized. We have examined whether saturated nonesterified fatty acids (NEFA and insulin, which increase in concentration with developing insulin resistance, can trigger the production of interleukin (IL-6 and tumor necrosis factor (TNF-α in human monocytes. Methods Messenger RNA and protein levels of the proinflammatory cytokines IL-6 and TNF-α were measured by quantitative real-time PCR (qRT-PCR and Luminex bioassays. Student's t-test was used with a significance level of p Results Esterification of palmitate with coenzyme A (CoA was necessary, while β-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and TNF-α in THP-1 monocytes. Monocytes incubated with insulin and palmitate together produced more IL-6 mRNA and protein, and more TNF-α protein, compared to monocytes incubated with palmitate alone. Incubation of monocytes with insulin alone did not affect the production of IL-6 or TNF-α. Both PI3K-Akt and MEK/ERK signalling pathways are important for cytokine induction by palmitate. MEK/ERK signalling is necessary for synergistic induction of IL-6 by palmitate and insulin. Conclusions High levels of saturated NEFA, such as palmitate, when combined with hyperinsulinemia, may activate human monocytes to produce

  3. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  4. Superoxide dismutase type 1 in monocytes of chronic kidney disease patients

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Krueger, Katharina; Diedrich, Madeleine

    2011-01-01

    chronic hemodialysis (HD) and 211 CKD patients, and 34 control subjects. Furthermore, we showed that different SOD1 protein species exist in human monocytes. SOD1 protein amount was significantly lower in HD (normalized SOD1 protein, 27.2 ± 2.8) compared to CKD patients (34.3 ± 2.8), or control subjects...

  5. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Seung Jin Lee

    Full Text Available Toll-like receptor 4 (TLR4 is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA, a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.

  6. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    International Nuclear Information System (INIS)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.; Komiyama, A.; Akabane, T.

    1987-01-01

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine ( 3 H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease of neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder

  7. Generation and partial characterization of an eosinophil chemotactic cytokine produced by sensitized equine mononuclear cells stimulated with Strongylus vulgaris antigen.

    Science.gov (United States)

    Dennis, V A; Klei, T R; Chapman, M R

    1993-07-01

    Supernatants generated by stimulation of peripheral blood mononuclear cells (PBMC) from Strongylus vulgaris sensitized or immunized ponies were assayed in vitro for eosinophil chemotactic activity (ECA) using the filter system in blind well chambers. The supernatants from these cultures were chemotactic for eosinophils, but not for neutrophils. Supernates from cultures of unsensitized PBMC stimulated with S. vulgaris antigen were not chemotactic for eosinophils. ECA was first detected in culture supernatants after 1.5 h of incubation and was dependent on both antigen and PBMC concentrations, but independent of serum concentrations. Both female and male S. vulgaris worm antigens stimulated ECA production from sensitized PBMC. ECA was not induced by in vitro stimulation of sensitized S. vulgaris PBMC by female Strongylus edentatus worm antigen. Partial characterization of the eosinophil chemotactic cytokine showed it to be nondialyzable, greater than 8000 molecular weight (MW), and sensitive to heating (56 and 95 degrees C), trypsin, and sodium metaperiodate treatments, suggesting that the cytokine is a protein containing some essential carbohydrate moieties. The cytokine described in this paper could partially contribute to the in vivo blood and tissue eosinophilia in experimental S. vulgaris infection.

  8. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  9. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Rogier M Thurlings

    2009-11-01

    Full Text Available Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA, a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man.We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT. We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO. Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3 (0.95-5.1 x 10(-3 % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

  10. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A monocyte chemotaxis inhibiting factor in serum of HIV infected men shares epitopes with the HIV transmembrane protein gp41

    NARCIS (Netherlands)

    Tas, M.; Drexhage, H. A.; Goudsmit, J.

    1988-01-01

    This report describes that gp41, the transmembranous envelope protein of HIV, is able to inhibit monocyte chemotaxis (measured as FMLP-induced polarization). To study the presence of such immunosuppressive HIV env proteins in the circulation of HIV-infected men, fractions were prepared from serum

  12. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Science.gov (United States)

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Enhanced neutrophil chemotactic activity after bronchial challenge in subjects with grain dust-induced asthma.

    Science.gov (United States)

    Park, H S; Jung, K S

    1998-03-01

    There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.

  14. Radioassay of granulocyte chemotaxis. Studies of human granulocytes and chemotactic factors. [/sup 51/Cr tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Gallin, J I

    1974-01-01

    The above studies demonstrate that the /sup 51/Cr radiolabel chemotactic assay is a relatively simple and objective means for studying leukocyte chemotaxis in both normal and pathological conditions. Application of this method to studies of normal human chemotaxis revealed a relatively narrow range of normal and little day-to-day variability. Analysis of this variability revealed that there is more variability among the response of different granulocytes to a constant chemotactic stimulus than among the chemotactic activity of different sera to a single cell source. Utilizing the /sup 51/Cr radioassay, the abnormal granulocyte chemotactic behavior reported in Chediak-Higashi syndrome and a patient with recurrent pyogenic infections and mucocutaneous candidiasis has been confirmed. The /sup 51/Cr chemotactic assay has also been used to assess the generation of chemotactic activity from human serum and plasma. The in vitro generation of two distinct chemotactic factors were examined; the complement product (C5a) and kallikrein, an enzyme of the kinin-generating pathway. Kinetic analysis of complement-related chemotactic factor formation, utilizing immune complexes or endotoxin to activate normal sera in the presence or absence of EGTA as well as kinetic analysis of activation of C2-deficient human serum, provided an easy means of distinguishing the classical (antibody-mediated) complement pathway from the alternate pathway. Such kinetic analysis is necessary to detect clinically important abnormalities since, after 60 min of generation time, normal chemotactic activity may be present despite complete absence or inhibition of one complement pathway. The chemotactic factor generated by either pathway of complement activation appears to be predominately attributable to C5a.

  15. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.

    Science.gov (United States)

    Lee, Joonsup; Wen, Beryl; Carter, Elizabeth A; Combes, Valery; Grau, Georges E R; Lay, Peter A

    2017-07-01

    Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. © FASEB.

  16. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis.

    Science.gov (United States)

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-03-13

    The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N 1 -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6C hi monocytes in the peripheral blood and CD11b + F4/80 lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b + cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V + cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo , whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels.

  17. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes

    DEFF Research Database (Denmark)

    Navarrete Santos, A; Roentsch, J; Danielsen, E M

    2000-01-01

    as in adhesion and cell-cell interactions. Here, we report for the first time that aminopeptidase N/CD13 in monocytes is partially localized in detergent-insoluble membrane microdomains enriched in cholesterol, glycolipids, and glycosylphosphoinositol-anchored proteins, referred to as "rafts." Raft fractions...... of monocytes were characterized by the presence of GM1 ganglioside as raft marker molecule and by the high level of tyrosine-phosphorylated proteins. Furthermore, similar to polarized cells, rafts in monocytic cells lack Na(+), K(+)-ATPase. Cholesterol depletion of monocytes by methyl-beta-cyclodextrin greatly...... reduces raft localization of aminopeptidase N/CD13 without affecting ala-p-nitroanilide cleaving activity of cells....

  18. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Science.gov (United States)

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  19. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    Science.gov (United States)

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  20. Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity

    Science.gov (United States)

    Ford, R. M.; Wang, M.; Liu, J.; Long, T.

    2008-12-01

    Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.

  1. Monocyte chemotactic protein-1 and other inflammatory parameters in Bernese Mountain dogs with disseminated histiocytic sarcoma

    DEFF Research Database (Denmark)

    Nielsen, Lise Nikolic; Kjelgaard-Hansen, Mads; Kristensen, Annemarie Thuri

    2013-01-01

    The interaction between cancer and the immune system, and the production of cytokines by the tumour itself have been associated with altered levels of cytokines in human cancer patients. Bernese Mountain dogs with disseminated histiocytic sarcoma (DHS) show vague and non-specific clinical signs....... Although histiocytes can secrete cytokines in response to inflammatory stimuli, serum cytokine concentrations in dogs with DHS have not previously been investigated. The aim of this study was to evaluate the immunological state of untreated Bernese Mountain dogs with DHS by assessing multiple serum...... cytokines and to correlate these with other inflammatory markers. As a prospective case control study, 17 Bernese Mountain dogs with DHS were included along with 18 healthy controls (12 Bernese Mountain dogs and 6 dogs of various breeds). Blood samples were examined for fibrinogen, C-reactive protein (CRP...

  2. M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Shoichi Fukui

    2018-01-01

    Full Text Available ObjectivesWe investigated the relationships among M1 monocytes, M2 monocytes, osteoclast (OC differentiation ability, and clinical characteristics in patients with rheumatoid arthritis (RA.MethodsPeripheral blood mononuclear cells (PBMCs were isolated from RA patients and healthy donors, and we then investigated the number of M1 monocytes or M2 monocytes by fluorescence-activated cell sorting. We also obtained and cultured CD14-positive cells from PBMCs from RA patients and healthy donors to investigate OC differentiation in vitro.ResultsForty RA patients and 20 healthy donors were included. Twenty-two patients (55% were anticitrullinated protein antibody (ACPA positive. The median M1/M2 ratio was 0.59 (0.31–1.11, interquartile range. There were no significant differences between the RA patients and healthy donors. There was a positive correlation between the M1/M2 ratio and the differentiated OC number in vitro in RA patients (ρ = 0.81, p < 0.001. The ACPA-positive patients had significantly higher M1/M2 ratios in vivo (p = 0.028 and significantly greater numbers of OCs in vitro (p = 0.005 than the ACPA-negative patients. Multivariable regression analysis revealed that the M1/M2 ratio was the sole significant contribution factor to in vitro osteoclastogenesis. RA patients with M1/M2 ratios >1 (having relatively more M1 monocytes had higher C-reactive protein and erythrocyte sedimentation rates than RA patients with M1/M2 ratios ≤1. M1-dominant monocytes in vitro produced higher concentrations of interleukin-6 upon stimulation with lipopolysaccharide than M2 monocytes.ConclusionM1/M2 monocytes imbalance strongly contributes to osteoclastogenesis of RA patients. Our findings cast M1 and M2 monocyte subsets in a new light as a new target of treatments for RA to prevent progression of osteoclastic bone destruction.

  3. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  4. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2.

    Science.gov (United States)

    Kim, Jin Kyung; Lee, Hye-Mi; Park, Ki-Sun; Shin, Dong-Min; Kim, Tae Sung; Kim, Yi Sak; Suh, Hyun-Woo; Kim, Soo Yeon; Kim, In Soo; Kim, Jin-Man; Son, Ji-Woong; Sohn, Kyung Mok; Jung, Sung Soo; Chung, Chaeuk; Han, Sang-Bae; Yang, Chul-Su; Jo, Eun-Kyeong

    2017-02-01

    Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.

  5. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Mary A Forget

    Full Text Available Reports demonstrate the role of M-CSF (CSF1 in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2, the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor

  6. Crevicular and serum levels of monocyte chemoattractant protein-4 and high-sensitivity C-reactive protein in periodontal health and disease.

    Science.gov (United States)

    Kumari, Minal; Pradeep, A R; Priyanka, N; Kalra, Nitish; Naik, Savitha B

    2014-06-01

    Chemokines are chemotactic cytokines that are involved in destruction of the periodontal structures. The aim of this study is to determine the presence of MCP-4 and high sensitivity C reactive protein (hsCRP) levels in gingival crevicular fluid (GCF) and serum in periodontal health and disease and to find a correlation between MCP-4 and hsCRP in GCF and serum. 40 subjects (20 males and 20 females) were selected and divided into three groups based on clinical parameters and radiologic parameters: Group 1 (10 healthy); Group 2 (15 gingivitis subjects) and Group 3 (15 chronic periodontitis subjects). The levels of serum and GCF MCP-4 were determined by ELISA and hsCRP levels were determined by immunoturbidimetry method. The mean GCF and serum concentration of MCP-4 were the highest for group 3 followed by group 2 and least in group 1. Similarly, the mean hsCRP concentrations were highest for group 3 and least in group 1. Moreover, a significant positive correlation was found between serum and GCF MCP-4 and hsCRP levels and periodontal parameters. The levels of MCP-4 and hsCRP increased from healthy to periodontitis. It can be proposed that MCP-4 and hsCRP are the potential biomarkers of inflammation in periodontal health and disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. T-bet-mediated Tim-3 expression dampens monocyte function during chronic hepatitis C virus infection.

    Science.gov (United States)

    Yi, Wenjing; Zhang, Peixin; Liang, Yan; Zhou, Yun; Shen, Huanjun; Fan, Chao; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhansheng; Zhang, Ying

    2017-03-01

    Hepatitis C virus (HCV) induces a high rate of chronic infection via dysregulation of host immunity. We have previously shown that T-cell immunoglobulin and mucin domain protein-3 (Tim-3) is up-regulated on monocyte/macrophages (M/Mφ) during chronic HCV infection; little is known, however, about the transcription factor that controls its expression in these cells. In this study, we investigated the role of transcription factor, T-box expressed in T cells (T-bet), in Tim-3 expression in M/Mφ in the setting of HCV infection. We demonstrate that T-bet is constitutively expressed in resting CD14 + M/Mφ in the peripheral blood. M/Mφ from chronically HCV-infected individuals exhibit a significant increase in T-bet expression that positively correlates with an increased level of Tim-3 expression. Up-regulation of T-bet is also observed in CD14 + M/Mφ incubated with HCV + Huh7.5 cells, as well as in primary M/Mφ or monocytic THP-1 cells exposed to HCV core protein in vitro, which is reversible by blocking HCV core/gC1qR interactions. Moreover, the HCV core-induced up-regulation of T-bet and Tim-3 expression in M/Mφ can be abrogated by incubating the cells with SP600125 - an inhibitor for the c-Jun N-terminal kinase (JNK) signalling pathway. Importantly, silencing T-bet gene expression decreases Tim-3 expression and enhances interleukin-12 secretion as well as signal transducer and activator of transcription 1 phosphorylation. These data suggest that T-bet, induced by the HCV core/gC1qR interaction, enhances Tim-3 expression via the JNK pathway, leading to dampened M/Mφ function during HCV infection. These findings reveal a novel mechanism for Tim-3 regulation via T-bet during HCV infection, providing new targets to combat this global epidemic viral disease. © 2016 John Wiley & Sons Ltd.

  8. Lymphotoxin-α3 mediates monocyte-endothelial interaction by TNFR I/NF-κB signaling

    International Nuclear Information System (INIS)

    Suna, Shinichiro; Sakata, Yasuhiko; Shimizu, Masahiko; Nakatani, Daisaku; Usami, Masaya; Matsumoto, Sen; Mizuno, Hiroya; Ozaki, Kouichi; Takashima, Seiji; Takeda, Hiroshi; Tanaka, Toshihiro; Hori, Masatsugu; Sato, Hiroshi

    2009-01-01

    We recently reported that the single nucleotide polymorphisms of the lymphotoxin-(LT)α gene, a member of the tumor necrosis factor (TNF) family, are closely related to acute myocardial infarction; however, the precise mechanism of LTα signaling in atherogenesis remains unclear. We investigated the role of LTα3, a secreted homotrimer of LTα, in monocyte-endothelial cell adhesion using cultured human umbilical vein endothelial cells (HUVEC). We found that LTα3 induced cell adhesion molecules and activated NF-κB p50 and p65. LTα3 also induced phosphorylation of Akt, phosphorylation and degradation of IκB, nuclear translocation of p65, and increased adhesion of THP1 monocytes to HUVEC. These effects were mediated by TNF receptor (TNFR) I and attenuated by the phosphatidylinositol triphosphate-kinase (PI3K) inhibitors LY294002 and Wortmannin. Thus, LTα3 mediates the monocyte-endothelial interaction via the classical NF-κB pathway following TNFR I/PI3K activation, indicating it may play a role in the development of coronary artery disease.

  9. Binding of recombinant HIV coat protein gp120 to human monocytes

    International Nuclear Information System (INIS)

    Finbloom, D.S.; Hoover, D.L.; Meltzer, M.S.

    1991-01-01

    Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication

  10. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    Science.gov (United States)

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  11. The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway

    Directory of Open Access Journals (Sweden)

    Kiefer Dorothee

    2010-11-01

    Full Text Available Abstract Background Rhodocista centenaria is a phototrophic α-proteobacterium exhibiting a phototactic behaviour visible as colony movement on agar plates directed to red light. As many phototrophic purple bacteria R. centenaria possesses a soluble photoactive yellow protein (Pyp. It exists as a long fusion protein, designated Ppr, consisting of three domains, the Pyp domain, a putative bilin binding domain (Bbd and a histidine kinase domain (Pph. The Ppr protein is involved in the regulation of polyketide synthesis but it is still unclear, how this is connected to phototaxis and chemotaxis. Results To elucidate the possible role of Ppr and Pph in the chemotactic network we studied the interaction with chemotactic proteins in vitro as well as in vivo. Matrix-assisted coelution experiments were performed to study the possible communication of the different putative binding partners. The kinase domain of the Ppr protein was found to interact with the chemotactic linker protein CheW. The formation of this complex was clearly ATP-dependent. Further results indicated that the Pph histidine kinase domain and CheW may form a complex with the chemotactic kinase CheAY suggesting a role of Ppr in the chemotaxis signalling pathway. In addition, when Ppr or Pph were expressed in Escherichia coli, the chemotactic response of the cells was dramatically affected. Conclusions The Ppr protein of Rhodocista centenaria directly interacts with the chemotactic protein CheW. This suggests a role of the Ppr protein in the regulation of the chemotactic response in addition to its role in chalcone synthesis.

  12. Lactic acid delays the inflammatory response of human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Katrin, E-mail: katrin.peter@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Rehli, Michael, E-mail: michael.rehli@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Singer, Katrin, E-mail: katrin.singer@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Renner-Sattler, Kathrin, E-mail: kathrin.renner-sattler@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Kreutz, Marina, E-mail: marina.kreutz@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany)

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.

  13. Lactic acid delays the inflammatory response of human monocytes

    International Nuclear Information System (INIS)

    Peter, Katrin; Rehli, Michael; Singer, Katrin; Renner-Sattler, Kathrin; Kreutz, Marina

    2015-01-01

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors

  14. A novel dioxygenation product of arachidonic acid possesses potent chemotactic activity for human polymorphonuclear leukocytes.

    Science.gov (United States)

    Shak, S; Perez, H D; Goldstein, I M

    1983-12-25

    We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.

  15. Increased MCP-1 gene expression in monocytes of severe OSA patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Yuling; Ko, Wen-Shan; Pang, Jong-Hwei S

    2016-03-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. Monocyte chemoattractant protein-1 (MCP-1), as a critical factor for monocyte infiltration, is known to play a role in the development of atherosclerosis. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the MCP-1 expression of monocytes. Peripheral blood was sampled from 61 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of MCP-1. The effect of in vitro intermittent hypoxia on the regulation and function of MCP-1 was investigated on THP-1 monocytic cells and human monocytes. The mRNA and secreted protein levels were investigated by RT/real-time PCR and enzyme-linked immunosorbent assay, respectively. Monocytic MCP-1 gene expression was found to be increased significantly in severe OSA patients. In vitro intermittent hypoxia was demonstrated to increase the mRNA and protein expression levels of MCP-1 dose- and time-dependently in THP-1 monocytic cells. The MCP-1 mRNA expression in monocytes isolated from OSA patient was induced to a much higher level compared to that from normal control. Pre-treatment with inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of MCP-1 expression by intermittent hypoxia. This is the first study to demonstrate the increase of MCP-1 gene expression in monocytes of severe OSA patients. In addition, monocytic MCP-1 gene expression can be induced under intermittent hypoxia.

  16. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    Science.gov (United States)

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  17. Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration.

    Science.gov (United States)

    Schauer, Dominic; Starlinger, Patrick; Zajc, Philipp; Alidzanovic, Lejla; Maier, Thomas; Buchberger, Elisabeth; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine

    2014-10-30

    Monocytes reportedly contribute to liver regeneration. Three subsets have been identified to date: classical, intermediate, non-classical monocytes. The intermediate population and a subtype expressing TIE2 (TEMs) were suggested to promote angiogenesis. In a clinical setting, we investigated which monocyte subsets are regulated after liver resection and correlate with postoperative liver function. In 38 patients monocyte subsets were evaluated in blood and subhepatic wound fluid by flow cytometry before and 1-3 days after resection of colorectal liver metastases. The monocyte-regulating cytokines macrophage colony stimulating factor (M-CSF), transforming growth factor beta 1 (TGFβ1), and angiopoietin 2 (ANG-2) were measured in patient plasma by ELISA. C-reactive protein (CRP) and liver function parameters were retrieved from routine hospital analyses. On post-operative day (POD) 1 blood monocytes shifted to significantly elevated levels of intermediate monocytes. In wound fluid, a delayed surge in intermediate monocytes was detected by POD 3. Furthermore, TEMs were highly enriched in wound fluid as compared to circulation. CRP and M-CSF levels were substantially increased in patient blood after surgery and correlated significantly with the frequency of intermediate monocytes. In addition, liver function parameters showed a significant association with intermediate monocyte levels on POD 3. The reportedly pro-angiogenic subsets of monocytes are selectively increased upon liver resection and accumulate next to the site of liver regeneration. As previously proposed by in vitro experiments, the release of CRP and M-CSF may trigger the induction of intermediate monocytes. The correlation with liver parameters points to a functional involvement of these monocyte populations in liver regeneration which warrants further investigation.

  18. Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wu-Yang Huang

    2014-08-01

    Full Text Available Blueberry fruits have a wide range of health benefits because of their abundant anthocyanins, which are natural antioxidants. The purpose of this study was to investigate the inhibitory effect of blueberry’s two main anthocyanins (malvidin-3-glucoside and malvidin-3-galactoside on inflammatory response in endothelial cells. These two malvidin glycosides could inhibit tumor necrosis factor-alpha (TNF-α induced increases of monocyte chemotactic protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1 production both in the protein and mRNA levels in a concentration-dependent manner. Mv-3-glc at the concentration of 1 μM could inhibit 35.9% increased MCP-1, 54.4% ICAM-1, and 44.7% VCAM-1 protein in supernatant, as well as 9.88% MCP-1 and 48.6% ICAM-1 mRNA expression (p < 0.05. In addition, they could decrease IκBα degradation (Mv-3-glc, Mv-3-gal, and their mixture at the concentration of 50 μM had the inhibition rate of 84.8%, 75.3%, and 43.2%, respectively, p < 0.01 and block the nuclear translocation of p65, which suggested their anti-inflammation mechanism was mediated by the nuclear factor-kappa B (NF-κB pathway. In general malvidin-3-glucoside had better anti-inflammatory effect than malvidin-3-galactoside. These results indicated that blueberry is good resource of anti-inflammatory anthocyanins, which can be promising molecules for the development of nutraceuticals to prevent chronic inflammation in many diseases.

  19. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Directory of Open Access Journals (Sweden)

    Marian Kacerovsky

    Full Text Available OBJECTIVE: This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS: A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS: The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS: The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  20. Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Ni, Yinxing; Chen, Jing

    2012-01-01

    Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performe...

  1. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients.

    Science.gov (United States)

    Wonner, Ralph; Wallner, Stefan; Orsó, Evelyn; Schmitz, Gerd

    2016-06-10

    Acute exercise induces numerous changes in peripheral blood, e.g. counts of leukocytes. CD16 pos monocytes, which play a role in the pathogenesis of arteriosclerosis and the metabolic syndrome (MetS), are among the blood cells with the highest fold increase through exercise. So far no studies have investigated the effect of exercise on the blood cell composition of patients with MetS. Blood cell counts, a wide panel of laboratory tests, as well as lipid and protein content of monocytes and granulocytes were determined in healthy subjects, persons with metabolic risk and MetS patients before and after one minute of exercise at 400 W. Leukocyte counts increased significantly in all groups with CD14 pos CD16 pos monocytes showing the highest fold-change. In MetS patients the fold increase was smaller. They had a higher resting level of CD14 pos CD16 pos monocytes and a lower basal ratio of CD16 neg /CD16 pos monocytes. A similar ratio of these cells was induced in control and risk subjects after exercise. However, absolute counts of mobilized pro-inflammatory monocytes did not differ significantly. Furthermore, we detected a decrease in protein content of monocytes in controls, but not in MetS patients. As strenuous exercise is able to mobilize the same amount of pro-inflammatory monocytes in MetS patients as in healthy persons, the elevated basal level of these cells in MetS patients is likely to be caused by enhanced maturation rather than chronic mobilization. The removal of these monocytes from the endothelium might be part of the beneficial effect of exercise on vascular disease. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  2. Monocyte Proteomics Reveals Involvement of Phosphorylated HSP27 in the Pathogenesis of Osteoporosis

    Directory of Open Access Journals (Sweden)

    Bhavna Daswani

    2015-01-01

    Full Text Available Peripheral monocytes, precursors of osteoclasts, have emerged as important candidates for identifying proteins relevant to osteoporosis, a condition characterized by low Bone Mineral Density (BMD and increased susceptibility for fractures. We employed 4-plex iTRAQ (isobaric tags for relative and absolute quantification coupled with LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry to identify differentially expressed monocyte proteins from premenopausal and postmenopausal women with low versus high BMD. Of 1801 proteins identified, 45 were differentially abundant in low versus high BMD, with heat shock protein 27 (HSP27 distinctly upregulated in low BMD condition in both premenopausal and postmenopausal categories. Validation in individual samples (n=80 using intracellular ELISA confirmed that total HSP27 (tHSP27 as well as phosphorylated HSP27 (pHSP27 was elevated in low BMD condition in both categories (P<0.05. Further, using transwell assays, pHSP27, when placed in the upper chamber, could increase monocyte migration (P<0.0001 and this was additive in combination with RANKL (receptor activator of NFkB ligand placed in the lower chamber (P=0.05. Effect of pHSP27 in monocyte migration towards bone milieu can result in increased osteoclast formation and thus contribute to pathogenesis of osteoporosis. Overall, this study reveals for the first time a novel link between monocyte HSP27 and BMD.

  3. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  4. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    Science.gov (United States)

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  5. Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R; Srinivasula, S M

    1995-11-01

    A serum glycoprotein, vitamin D3-binding protein (Gc protein), can be converted by beta-galactosidase of stimulated B lymphocytes and sialidase of T lymphocytes to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is a precursor for MAF. Treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high-titered MAF (GcMAF). When peripheral blood monocytes/macrophages of 46 HIV-infected patients were treated with GcMAF (100 pg/ml), the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of plasma Gc protein was low in 16 (35%) of of these patients. Loss of the MAF precursor activity appeared to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase found in the patient blood stream. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Thus, precursor activity of Gc protein and alpha-N-acetylgalactosaminidase activity in patient blood can serve as diagnostic and prognostic indices.

  6. Increased Expression of T Cell Immunoglobulin and Mucin Domain 3 on CD14+ Monocytes Is Associated with Systemic Inflammatory Reaction and Brain Injury in Patients with Spontaneous Intracerebral Hemorrhage.

    Science.gov (United States)

    Xu, ChangJun; Ge, HaiTao; Wang, Tao; Qin, JianBing; Liu, De; Liu, YuGuang

    2018-05-01

    To study the expression of T cell immunoglobulin and mucin domain 3 (Tim-3) on peripheral blood immunocytes, and the relationship between Tim-3 and the systemic inflammatory response or brain injury in patients with intracerebral hemorrhage (ICH). According to the volume of hematoma at 12 hours after onset of ICH, 60 newly diagnosed patients with ICH were divided into the small (volume of hematoma <30 mL, 30 cases) and large (volume of hematoma ≥30 mL, 30 cases) ICH groups. The expression of Tim-3 on peripheral blood immunocytes was analyzed by flow cytometry. Real-time reverse transcriptase polymerase chain reaction was used to detect Tim-3 mRNA on peripheral blood mononuclear cells (PBMCs). Meanwhile, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and S-100B protein were measured by enzyme-linked immunosorbent assay. Glasgow outcome scale (GOS) score at Day 30 was used to estimate prognosis of patients. The leukocyte count, neutrophil count, monocyte count, TNF-α, IL-1β, and S-100B protein increased remarkably after ICH. However, all of them in the large ICH group increased more obviously, and there were significant differences when compared with those in the small ICH group (P < .01). The expression of Tim-3 mRNA on PBMCs in the large ICH group increased remarkably, peaked at Day 3, and was positively associated with the concentrations of TNF-α, IL-1β, and S-100B protein (P < .01). Tim-3 was predominantly expressed itself on CD14 + monocytes. There was a negative correlation between GOS score and Tim-3 mRNA, TNF-α, IL-1β, or S-100B protein. The expression of Tim-3 on CD14 + monocytes involves in systemic inflammatory reaction after ICH and may be a novel treatment target. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Expression profiling feline peripheral blood monocytes identifies a transcriptional signature associated with type two diabetes mellitus.

    Science.gov (United States)

    O'Leary, Caroline A; Sedhom, Mamdouh; Reeve-Johnson, Mia; Mallyon, John; Irvine, Katharine M

    2017-04-01

    Diabetes mellitus is a common disease of cats and is similar to type 2 diabetes (T2D) in humans, especially with respect to the role of obesity-induced insulin resistance, glucose toxicity, decreased number of pancreatic β-cells and pancreatic amyloid deposition. Cats have thus been proposed as a valuable translational model of T2D. In humans, inflammation associated with adipose tissue is believed to be central to T2D development, and peripheral blood monocytes (PBM) are important in the inflammatory cascade which leads to insulin resistance and β-cell failure. PBM may thus provide a useful window to study the pathogenesis of diabetes mellitus in cats, however feline monocytes are poorly characterised. In this study, we used the Affymetrix Feline 1.0ST array to profile peripheral blood monocytes from 3 domestic cats with T2D and 3 cats with normal glucose tolerance. Feline monocytes were enriched for genes expressed in human monocytes, and, despite heterogeneous gene expression, we identified a T2D-associated expression signature associated with cell cycle perturbations, DNA repair and the unfolded protein response, oxidative phosphorylation and inflammatory responses. Our data provide novel insights into the feline monocyte transcriptome, and support the hypothesis that inflammatory monocytes contribute to T2D pathogenesis in cats as well as in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon-Electrodes

    Directory of Open Access Journals (Sweden)

    Yagmur Yildizhan

    2017-11-01

    Full Text Available Blood has been the most reliable body fluid commonly used for the diagnosis of diseases. Although there have been promising investigations for the development of novel lab-on-a-chip devices to utilize other body fluids such as urine and sweat samples in diagnosis, their stability remains a problem that limits the reliability and accuracy of readouts. Hence, accurate and quantitative separation and characterization of blood cells are still crucial. The first step in achieving high-resolution characteristics for specific cell subpopulations from the whole blood is the isolation of pure cell populations from a mixture of cell suspensions. Second, live cells need to be purified from dead cells; otherwise, dead cells might introduce biases in the measurements. In addition, the separation and characterization methods being used must preserve the genetic and phenotypic properties of the cells. Among the characterization and separation approaches, dielectrophoresis (DEP is one of the oldest and most efficient label-free quantification methods, which directly purifies and characterizes cells using their intrinsic, physical properties. In this study, we present the dielectrophoretic separation and characterization of live and dead monocytes using 3D carbon-electrodes. Our approach successfully removed the dead monocytes while preserving the viability of the live monocytes. Therefore, when blood analyses and disease diagnosis are performed with enriched, live monocyte populations, this approach will reduce the dead-cell contamination risk and achieve more reliable and accurate test results.

  9. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  10. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  11. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  12. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  13. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    Science.gov (United States)

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  14. Endometriosis Leads to an Increased Trefoil Factor 3 Concentration in the Peritoneal Cavity but Does Not Alter Systemic Levels.

    Science.gov (United States)

    Henze, Diana; Doecke, Wolf-Dietrich; Hornung, Daniela; Agueusop, Inoncent; von Ahsen, Oliver; Machens, Kathrin; Schmitz, Arndt A; Gashaw, Isabella

    2017-02-01

    This study analyzed whether trefoil factor 3 (TFF3) is locally elevated and correlated with common biomarkers and inflammatory processes in endometriosis. Peritoneal fluid (PF) was obtained from 50 women and serum from 124 women with or without endometriosis. Experimental endometriosis was induced in female C57BL/6 mice by syngeneic transplantation of uterine tissue to the abdominal wall. Levels of TFF3 in PF of women with endometriosis were significantly increased ( P endometriosis: cancer antigen (CA) 125, CA-19-9, interleukin 8, monocyte chemotactic protein 1, and matrix metalloproteinase 7. Serum levels of TFF3 in women were significantly influenced by the menstrual cycle but were independent from disease state. In mice, local TFF3 levels were significantly elevated in early endometriosis (up to 4 weeks after transplantation, P peritoneal cavity in endometriosis and might play a role in disease pathogenesis and its associated inflammatory processes. Furthermore, the results show that TFF3 is regulated through the menstrual cycle. With respect to animal models, syngeneic mouse model does reflect local TFF3 upregulation in the peritoneal cavity affected by endometriosis.

  15. Identification of Therapeutic Targets of Inflammatory Monocyte Recruitment to Modulate the Allogeneic Injury to Donor Cornea

    OpenAIRE

    Lapp, T.; Zaher, S. S.; Haas, C. T.; Becker, D. L.; Thrasivoulou, C.; Chain, B. M.; Larkin, D. F. P.; Noursadeghi, M.

    2015-01-01

    Purpose: We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal allograft rejection and identify therapeutic targets to inhibit monocyte recruitment. Methods: Monocytes and proinflammatory mediators within anterior chamber samples during corneal graft rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide or IFN-γ stimulation of monocyte-derived macrophages (MDMs) was used to generate inflammatory conditioned me...

  16. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome

    Science.gov (United States)

    Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu

    2016-01-01

    Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945

  17. Olopatadine Suppresses the Migration of THP-1 Monocytes Induced by S100A12 Protein

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Olopatadine hydrochloride (olopatadine is an antiallergic drug with histamine H 1 receptor antagonistic activity. Recently, olopatadine has been shown to bind to S100A12 which is a member of the S100 family of calcium-binding proteins, and exerts multiple proinflammatory activities including chemotaxis for monocytes and neutrophils. In this study, we examined the possibility that the interaction of olopatadine with S100A12 inhibits the proinflammatory effects of S100A12. Pretreatment of olopatadine with S100A12 reduced migration of THP-1, a monocyte cell line, induced by S100A12 alone, but did not affect recombinant human regulated upon activation, normal T cell expressed and secreted (RANTES-induced migration. Amlexanox, which also binds to S100A12, inhibited the THP-1 migration induced by S100A12. However, ketotifen, another histamine H 1 receptor antagonist, had little effect on the activity of S100A12. These results suggest that olopatadine has a new mechanism of action, that is, suppression of the function of S100A12, in addition to histamine H 1 receptor antagonistic activity.

  18. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  19. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    Science.gov (United States)

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Scavenger receptor-mediated recognition of maleyl bovine plasma albumin and the demaleylated protein in human monocyte macrophages

    International Nuclear Information System (INIS)

    Haberland, M.E.; Fogelman, A.M.

    1985-01-01

    Maleyl bovine plasma albumin competed on an equimolar basis with malondialdehyde low density lipoprotein (LDL) in suppressing the lysosomal hydrolysis of 125 I-labeled malondialdehyde LDL mediated by the scavenger receptor of human monocyte macrophages. Maleyl bovine plasma albumin, in which 94% of the amino groups were modified, exhibited an anodic mobility in agarose electrophoresis 1.7 times that of the native protein. Incubation of maleyl bovine plasma albumin at pH 3.5 regenerated the free amino groups and restored the protein to the same electrophoretic mobility as native albumin. Although ligands recognized by the scavenger receptor typically are anionic, the authors propose that addition of new negative charge achieved by maleylation, rather than directly forming the receptor binding site(s), induces conformational changes in albumin as a prerequisite to expression of the recognition domain(s). They conclude that the primary sequence of albumin, rather than addition of new negative charge, provides the recognition determinant(s) essential for interaction of maleyl bovine plasma albumin with the scavenger receptor

  1. Functional Defects in Type 3 Innate Lymphoid Cells and Classical Monocytes in a Patient with Hyper-IgE Syndrome.

    Science.gov (United States)

    Chang, Yuna; Kang, Sung-Yoon; Kim, Jihyun; Kang, Hye-Ryun; Kim, Hye Young

    2017-10-01

    Hyper-IgE syndrome (HIES) is a very rare primary immune deficiency characterized by elevated serum IgE levels, recurrent bacterial infections, chronic dermatitis, and connective tissue abnormalities. Autosomal dominant (AD) HIES involves a mutation in signal transducer and activator of transcription 3 (STAT3) that leads to an impaired T H 17 response. STAT3 signaling is also involved in the function of RORγt + type 3 innate lymphoid cells (ILC3s) and RORγt + T H 17 cells. The aim of this study was to investigate the role of innate immune cells such as innate lymphoid cells (ILCs), granulocytes, and monocytes in a patient with HIES. Peripheral blood mononuclear cells (PBMCs) from a patient with HIES and three age-matched healthy controls were obtained for the analysis of the innate and adaptive immune cells. The frequencies of ILCs in PBMCs were lower in the patient with HIES than in the controls. Moreover, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A produced by ILC3s in PBMCs were lower in the patient with HIES than the controls. Compared with the controls, classical monocytes (CD14 + CD16 low ), which have a high antimicrobial capability, were also lower in the patient with HIES, while non-classical monocytes (CD14 low CD16 + ) as well as intermediate monocytes (CD14 + CD16 intermediate ) were higher. Taken together, these results indicate that the impaired immune defense against pathogenic microbes in the patient with HIES might be partially explained by functional defects in ILC3s and inflammatory monocytes.

  2. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2002-01-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ( 18 F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes

  3. Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation

    Science.gov (United States)

    Glaser, Kirsten; Silwedel, Christine; Fehrholz, Markus; Waaga-Gasser, Ana M.; Henrich, Birgit; Claus, Heike; Speer, Christian P.

    2017-01-01

    Background: Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of

  4. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  5. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  6. Peripheral blood monocyte subsets predict antiviral response in chronic hepatitis C.

    Science.gov (United States)

    Rodríguez-Muñoz, Y; Martín-Vílchez, S; López-Rodríguez, R; Hernández-Bartolomé, A; Trapero-Marugán, M; Borque, M J; Moreno-Otero, R; Sanz-Cameno, P

    2011-10-01

    Hepatitis C virus infection evolves into chronic progressive liver disease in a significant percentage of patients. Monocytes constitute a diverse group of myeloid cells that mediate innate and adaptive immune response. In addition to proinflammatory CD16+ monocytes, a Tie-2+ subgroup - Tie-2 expressing monocytes (TEMs) - that has robust proangiogenic potential has been recently defined. To study the heterogeneity of peripheral blood monocytes in chronic hepatitis C (CHC) patients and to examine their proposed pathophysiological roles on disease progression and response to antiviral therapy. We studied CD16+ and Tie-2+ peripheral monocyte subpopulations in 21 healthy subjects and 39 CHC patients in various stages of disease and responses to antiviral treatment using flow cytometry. Expression profiles of proangiogenic and tissue remodelling factors in monocyte supernatants were measured using ELISA and protein arrays. Intrahepatic expression of CD14, CD31 and Tie-2 was analysed using immunofluorescence. Increases of certain peripheral monocyte subsets were observed in the blood of CHC patients, wherein those cells with proinflammatory (CD16+) or proangiogenic (TEMs) potential expanded (P TEMs were significantly increased in nonresponders, particularly those with lower CD16 expression. In addition, many angiogenic factors were differentially expressed by peripheral monocytes from control or CHC patients, such as angiopoietin-1 and angiogenin (P TEMs were distinguished within portal infiltrates of CHC patients. These findings suggest for the first time the relevance of peripheral monocytes phenotypes for the achievement of response to treatment. Hence, the study of monocyte subset regulation might effect improved CHC prognoses and adjuvant therapies. © 2011 Blackwell Publishing Ltd.

  7. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  8. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation.

    Directory of Open Access Journals (Sweden)

    René Huber

    Full Text Available The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (premonocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (posttranslational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.

  9. ADMA induces monocyte adhesion via activation of chemokine receptors in cultured THP-1 cells.

    Science.gov (United States)

    Chen, Meifang; Li, Yuanjian; Yang, Tianlun; Wang, Yongjin; Bai, Yongping; Xie, Xiumei

    2008-08-01

    Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10(-6)M) or exogenous ADMA (30 microM) for 4 or 24h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10(-6)M) for 24h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha and upregulated CCR(2) and CXCR(2) mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-kappaB. Pretreatment with losartan (10 microM) or PDTC (10 microM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR(2) mRNA, which was attenuated by losartan (10 microM), however, ADMA had no effect on surface protein expression of CCR(2). The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-kappaB pathway.

  10. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells.

    Directory of Open Access Journals (Sweden)

    Kazuko Ino

    Full Text Available Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP(+CD45(- cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4. Because the vast majority of EGFP(+CD45(- cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs. EGFP(+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1 and angiotensin II (Ang II increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2 and Ang II type 1 receptor (AT1R, were expressed on Ly6C(high monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP(+F4/80(+CCR2(+ monocytic cells and EGFP(+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP(+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP(+ PaSCs in injured mice. We propose that CCR2(+ monocytes migrate into the pancreas possibly via the

  11. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  12. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  13. Monocyte enrichment from leukapheresis products by using the Elutra cell separator.

    Science.gov (United States)

    Kim, Sinyoung; Kim, Hyun Ok; Baek, Eun-Jung; Choi, Youjeong; Kim, Han-Soo; Lee, Min-Geul

    2007-12-01

    Dendritic cells (DCs), used in clinical trials for cancer immunotherapy, require processing on an expanded scale to conform to current good manufacturing practice guidelines. This study evaluated a large-scale monocyte enrichment procedure with a commercially available cell separator (Elutra, Gambro BCT) and analyzed the capacity of enriched monocytes to differentiate into DCs. Mononuclear cells were collected in two patients with malignant melanoma and seven healthy donors by leukapheresis. Continuous-counterflow elutriation with the Elutra was performed to enrich and purify monocytes from leukapheresis products. Purity and recovery of enriched monocytes were analyzed by flow cytometry. DCs were generated from the elutriated monocytes and characterized by phenotypic surface marker and stimulatory capacity in an allogeneic mixed lymphocyte reaction. In the leukapheresis products, the total MNC count was 7.3 x 10(9) +/- 0.7 x 10(9) and the mean percentage of CD14+ monocytes was 16.5 +/- 3.8 percent, which increased to 68.9 +/- 7.4 percent after elutriation with the Elutra. The mean monocyte recovery was 94.3 percent. Elutriated monocytes were successfully cultured into phenotypically and functionally mature DCs. These results indicate that the Elutra cell separator allows for fast and easy enrichment of monocytes within a closed system. Furthermore, these monocytes can be differentiated into functionally mature DCs. Compared to plastic adherence and immunomagnetic selection methods, the elutriation procedure is inexpensive, efficient, and very effective.

  14. Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.

    Science.gov (United States)

    Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao

    2016-01-01

    Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.

  15. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  16. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming

    2010-07-02

    Human monocytes\\' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  17. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming; Zhao, Changqing; Li, Xin; Zhu, Yi; Gan, Chee Sian; Wang, Yong; Ravasi, Timothy; Qian, Pei-Yuan; Wong, Siew Cheng; Sze, Siu Kwan

    2010-01-01

    Human monocytes' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  18. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Soufi Muhidien

    2008-11-01

    Full Text Available Abstract Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.

  19. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R; Asbell, S O

    1996-06-15

    Serum vitamin D3-binding protein (Gc protein) can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor of the macrophage activating factor (MAF). Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high titered MAF, Gc-MAF. When peripheral blood monocytes/macrophages of 52 patients bearing various types of cancer were incubated with 100 pg/ml of GcMAF, the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of patient plasma Gc protein was found to be severely reduced in about 25% of this patient population. About 45% of the patients had moderately reduced MAF precursor activities. Loss of the precursor activity was found to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase detected in the patient's bloodstream. The source of the enzyme appeared to be cancerous cells. Radiation therapy decreased plasma alpha-N-acetylgalactosaminidase activity with concomitant increase of precursor activity. This implies that radiation therapy decreases the number of cancerous cells capable of secreting alpha-N-acetylgalactosaminidase. Both alpha-N-acetylgalactosaminidase activity and MAF precursor activity of Gc protein in patient bloodstream can serve as diagnostic and prognostic indices.

  20. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  1. Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes

    International Nuclear Information System (INIS)

    Uhlin-Hansen, L.; Eskeland, T.; Kolset, S.O.

    1989-01-01

    Proteoglycan biosynthesis was studied in human monocytes and monocyte-derived macrophages (MDM) after exposure to typical activators of the monocyte/macrophage system: interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA). By morphological examination, both monocytes and MDM were stimulated by these activators. Treatment with IFN-gamma resulted in a slight decrease in the expression of [35S]chondroitin sulfate proteoglycan (CSPG) in both monocytes and MDM, whereas LPS treatment increased the [35S]CSPG expression 1.8 and 2.2 times, respectively. PMA, in contrast, decreased the CSPG expression 0.4 times in monocytes, whereas MDM were stimulated to increase the biosynthesis 1.9 times. An increase in the sulfate density of the chondroitin sulfate chains was evident following differentiation of monocytes into MDM due to the expression of disulfated disaccharide units of the chondroitin sulfate E type (CS-E). However, monocytes exposed to PMA did also express disaccharides of the chondroitin sulfate E type. Furthermore, the expression of CS-E in MDM was increased 2 times following PMA treatment. An inactive phorbol ester, phorbol 12,13-diacetate, did not affect the expression of CS-E in either monocytes or MDM when compared with control cultures, suggesting that protein kinase C-dependent signal pathways may be involved in the regulation of sulfation of CSPG. Exposure to LPS or IFN-gamma did not lead to any changes in the sulfation of the chondroitin sulfate chains

  2. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  3. In vivo imaging of monocyte trafficking with 18F-fluorodeoxyglucose labeled monocytes

    International Nuclear Information System (INIS)

    Paik, Jin Young; Lee, Kyung Han; Han, Yu Mi; Choe, Yearn Seong; Kim, Byung Tae

    2000-01-01

    Since the ability to monitor in vivo monocyte trafficking would contribute to our understanding of the pathophysiology of various inflammatory disorders, we investigated the feasibility of labeling human monocytes with 18 F-FDG. Human monocytes were separated by Ficoll/Hypaque gradient and purity was assessed by flow cytometry. The influence of insulin and/or glucose on labeling efficiency was evaluated. Cell viability and activation was measured with trypan blue exclusion and hydrogen peroxide assays, respectively. Label stability was measured for up to 18 hr, and the effect of insulin pre-incubation on FDG washout was investigated. PET images were acquired in SD rats at various time points after injection of FDG labeled monocytes. Monocytes were >85% pure, and labeling efficiency was 35% for 1x106 cells after 40 min incubation with 2 mCi 18 F-FDG without insulin. Pre-incubation with 10∼100 nM insulin significantly increased FDG uptake which reached 400% of baseline levels, whereas presence of glucose or serum decreased FDG uptake. Labeled cells were >90% viable for up to 22 hr, and the labeling process did appear to significantly activate cells, Washout studies however, demonstrated gradual washout of the FDG from monocytes after initial uptake PET images of FDG labeled monocytes in SD rats showed consistent findings. Utilizing insulin effects on cellular glucose metabolism may be a feasible way of labeling monocytes with 18 F-FDG for PET imaging. However, gradual washout of FDG after initial uptake poses as a potential problem which needs to be addressed before practical application

  4. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  5. GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity.

    Science.gov (United States)

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2016-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14 + monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.

  6. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  7. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    International Nuclear Information System (INIS)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-01-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  8. [Expression of ICAT and Wnt signaling-related proteins in the monocytic differentiation of HL-60 cells induced by a new steroidal drug NSC67657].

    Science.gov (United States)

    Wang, J S; Wang, W J; Wang, T; Zhang, Y

    2016-04-01

    To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (Pcells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (Pprotein, and down-regulated the expression of β-catenin mRNA and protin (Pprotein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (Pcells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.

  9. Glomerular cell death and inflammation with high-protein diet and diabetes.

    Science.gov (United States)

    Meek, Rick L; LeBoeuf, Renee C; Saha, Sandeep A; Alpers, Charles E; Hudkins, Kelly L; Cooney, Sheryl K; Anderberg, Robert J; Tuttle, Katherine R

    2013-07-01

    Overfeeding amino acids (AAs) increases cellular exposure to advanced glycation end-products (AGEs), a mechanism for protein intake to worsen diabetic kidney disease (DKD). This study assessed receptor for AGE (RAGE)-mediated apoptosis and inflammation in glomerular cells exposed to metabolic stressors characteristic of high-protein diets and/or diabetes in vitro with proof-of-concept appraisal in vivo. Mouse podocytes and mesangial cells were cultured under control and metabolic stressor conditions: (i) no addition; (ii) increased AAs (4-6-fold>control); (iii) high glucose (HG, 30.5 mM); (iv) AA/HG combination; (v) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL); (vi) BSA (300 µg/mL). RAGE was inhibited by blocking antibody. Diabetic (streptozotocin) and nondiabetic mice (C57BL/6J) consumed diets with protein calories of 20 or 40% (high) for 20 weeks. People with DKD and controls provided 24-h urine samples. In podocytes and mesangial cells, apoptosis (caspase 3/7 activity and TUNEL) increased in all metabolic stressor conditions. Both inflammatory mediator expression (real-time reverse transcriptase-polymerase chain reaction: serum amyloid A, caspase-4, inducible nitric oxide synthase, and monocyte chemotactic protein-1) and RAGE (immunostaining) also increased. RAGE inhibition prevented apoptosis and inflammation in podocytes. Among mice fed high protein, podocyte number (WT-1 immunostaining) decreased in the diabetic group, and only these diabetic mice developed albuminuria. Protein intake (urea nitrogen) correlated with AGE excretion (carboxymethyllysine) in people with DKD and controls. High-protein diet and/or diabetes-like conditions increased glomerular cell death and inflammation, responses mediated by RAGEs in podocytes. The concept that high-protein diets exacerbate early indicators of DKD is supported by data from mice and people.

  10. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity.

    Science.gov (United States)

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F David; Smith, Roger; Watanabe, Coran M H

    2015-10-09

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.

  11. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    OpenAIRE

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol re...

  12. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    Directory of Open Access Journals (Sweden)

    Shogo Mori

    2015-10-01

    Full Text Available A new bioactive macrolactone, nuiapolide (1 was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.

  13. Expression of EMAP-II in the rat dental follicle and its potential role in tooth eruption

    Science.gov (United States)

    Liu, Dawen; Wise, Gary E.

    2008-01-01

    Endothelial monocyte-activating polypeptide II (EMAP-II) is an inflammatory cytokine with chemotactic activity. Because the dental follicle (DF) recruits mononuclear cells (osteoclast precursors) to promote the osteoclastogenesis needed for tooth eruption, it was the aim of this study to determine if EMAP-II may contribute to this recruitment. Using a DNA microarray, EMAP-II was found to be highly expressed in vivo in the DFs of day 1 to day 11 postnatal rats, with its expression elevated at days 1 and 3. Using a siRNA to knock down EMAP-II expression also resulted in a reduction in expression of CSF-1 and MCP-1 in the DF cells. Addition of EMAP-II protein to the DF cells partially restored the expression of CSF-1 and MCP-1. In chemotaxis assays using either conditioned medium of the DF cells with anti-EMAP-II antibody added or conditioned medium of DF cells with EMAP-II knocked down by siRNA, migration indexes of bone marrow mononuclear cells were significantly reduced. These results suggest that EMAP-II is another chemotactic molecule in the dental follicle involved in recruitment of mononuclear cells, and that EMAP-II may exert its chemotactic function directly by recruiting mononuclear cells and indirectly by enhancing the expression of other chemotactic molecules (CSF-1 and MCP-1). PMID:18705801

  14. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yonghae Son

    2016-01-01

    Full Text Available Oxysterol like 27-hydroxycholesterol (27OHChol has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  15. Heterogeneity of Bovine Peripheral Blood Monocytes

    Directory of Open Access Journals (Sweden)

    Jamal Hussen

    2017-12-01

    Full Text Available Peripheral blood monocytes of several species can be divided into different subpopulations with distinct phenotypic and functional properties. Herein, we aim at reviewing published work regarding the heterogeneity of the recently characterized bovine monocyte subsets. As the heterogeneity of human blood monocytes was widely studied and reviewed, this work focuses on comparing bovine monocyte subsets with their human counterparts regarding their phenotype, adhesion and migration properties, inflammatory and antimicrobial functions, and their ability to interact with neutrophilic granulocytes. In addition, the differentiation of monocyte subsets into functionally polarized macrophages is discussed. Regarding phenotype and distribution in blood, bovine monocyte subsets share similarities with their human counterparts. However, many functional differences exist between monocyte subsets from the two species. In contrast to their pro-inflammatory functions in human, bovine non-classical monocytes show the lowest phagocytosis and reactive oxygen species generation capacity, an absent ability to produce the pro-inflammatory cytokine IL-1β after inflammasome activation, and do not have a role in the early recruitment of neutrophils into inflamed tissues. Classical and intermediate monocytes of both species also differ in their response toward major monocyte-attracting chemokines (CCL2 and CCL5 and neutrophil degranulation products (DGP in vitro. Such differences between homologous monocyte subsets also extend to the development of monocyte-derived macrophages under the influence of chemokines like CCL5 and neutrophil DGP. Whereas the latter induce the differentiation of M1-polarized macrophages in human, bovine monocyte-derived macrophages develop a mixed M1/M2 macrophage phenotype. Although only a few bovine clinical trials analyzed the correlation between changes in monocyte composition and disease, they suggest that functional differences between

  16. Intermediate Monocytes but Not TIE2-Expressing Monocytes Are a Sensitive Diagnostic Indicator for Colorectal Cancer

    Science.gov (United States)

    Schauer, Dominic; Starlinger, Patrick; Reiter, Christian; Jahn, Nikolaus; Zajc, Philipp; Buchberger, Elisabeth; Bachleitner-Hofmann, Thomas; Bergmann, Michael; Stift, Anton; Gruenberger, Thomas; Brostjan, Christine

    2012-01-01

    We have conducted the first study to determine the diagnostic potential of the CD14++CD16+ intermediate monocytes as compared to the pro-angiogenic subset of CD14++CD16+TIE2+ TIE2-expressing monocytes (TEMs) in cancer. These monocyte populations were investigated by flow cytometry in healthy volunteers (N = 32) and in colorectal carcinoma patients with localized (N = 24) or metastatic (N = 37) disease. We further determined blood levels of cytokines associated with monocyte regulation. The results revealed the intermediate monocyte subset to be significantly elevated in colorectal cancer patients and to show the highest frequencies in localized disease. Multivariate regression analysis identified intermediate monocytes as a significant independent variable in cancer prediction. With a cut-off value at 0.37% (intermediate monocytes of total leukocytes) the diagnostic sensitivity and specificity ranged at 69% and 81%, respectively. In contrast, TEM levels were elevated in localized cancer but did not differ significantly between groups and none of the cytokines correlated with monocyte subpopulations. Of interest, in vitro analyses supported the observation that intermediate monocytes were more potently induced by primary as opposed to metastatic cancer cells which may relate to the immunosuppressive milieu established in the advanced stage of metastatic disease. In conclusion, intermediate monocytes as compared to TIE2-expressing monocytes are a more sensitive diagnostic indicator of colorectal cancer. PMID:22973451

  17. Intermediate monocytes but not TIE2-expressing monocytes are a sensitive diagnostic indicator for colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Dominic Schauer

    Full Text Available We have conducted the first study to determine the diagnostic potential of the CD14++CD16+ intermediate monocytes as compared to the pro-angiogenic subset of CD14++CD16+TIE2+ TIE2-expressing monocytes (TEMs in cancer. These monocyte populations were investigated by flow cytometry in healthy volunteers (N = 32 and in colorectal carcinoma patients with localized (N = 24 or metastatic (N = 37 disease. We further determined blood levels of cytokines associated with monocyte regulation. The results revealed the intermediate monocyte subset to be significantly elevated in colorectal cancer patients and to show the highest frequencies in localized disease. Multivariate regression analysis identified intermediate monocytes as a significant independent variable in cancer prediction. With a cut-off value at 0.37% (intermediate monocytes of total leukocytes the diagnostic sensitivity and specificity ranged at 69% and 81%, respectively. In contrast, TEM levels were elevated in localized cancer but did not differ significantly between groups and none of the cytokines correlated with monocyte subpopulations. Of interest, in vitro analyses supported the observation that intermediate monocytes were more potently induced by primary as opposed to metastatic cancer cells which may relate to the immunosuppressive milieu established in the advanced stage of metastatic disease. In conclusion, intermediate monocytes as compared to TIE2-expressing monocytes are a more sensitive diagnostic indicator of colorectal cancer.

  18. Transcellular lipoxygenase metabolism between monocytes and platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bigby, T.D.; Meslier, N. (Univ. of California, San Francisco (USA))

    1989-09-15

    We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.

  19. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    Science.gov (United States)

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  20. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin.

    Directory of Open Access Journals (Sweden)

    Maarten Hulsmans

    Full Text Available BACKGROUND: Low adiponectin, a well-recognized antidiabetic adipokine, has been associated with obesity-related inflammation, oxidative stress and insulin resistance. Globular adiponectin is an important regulator of the interleukin-1 receptor-associated kinase (IRAK/NFκB pathway in monocytes of obese subjects. It protects against inflammation and oxidative stress by inducing IRAK3. microRNA (miR-146b-5p inhibits NFκB-mediated inflammation by targeted repression of IRAK1 and TNF receptor-associated factor-6 (TRAF6. Therefore, we measured the expression of miR-146b-5p in monocytes of obese subjects. Because it was low we determined the involvement of this miR in the anti-inflammatory, antioxidative and insulin signaling action of globular adiponectin. METHODS: miR-146b-5p expression in monocytes of obese subjects was determined by qRT-PCR. The effect of miR-146b-5p silencing on molecular markers of inflammation, oxidative stress and insulin signaling and the association with globular adiponectin was assessed in human THP-1 monocytes. RESULTS: miR-146b-5p was downregulated in monocytes of obese persons. Low globular adiponectin decreased miR-146b-5p and IRAK3 in THP-1 monocytes, associated with increased mitochondrial reactive oxygen species (ROS. Intracellular ROS and insulin receptor substrate-1 (IRS1 protein were unchanged. Silencing of miR-146b-5p with an antisense inhibitor resulted in increased expression of IRAK1 and TRAF6 leading to more NFκB p65 DNA binding activity and TNFα. As a response IRAK3 and IRS1 protein increased. Mitochondrial and intracellular ROS production did not increase despite more inflammation. In addition, exposure of miR-146b-5p-depleted THP-1 monocytes to high levels of globular adiponectin resulted in an increased production of TNFα and intracellular ROS. Still, they did not lose their potential to increase IRAK3 and IRS1 protein and to decrease mitochondrial ROS. CONCLUSION: miR-146b-5p, decreased in monocytes

  1. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-07-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the (/sup 3/H)thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced (/sup 3/H)thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% (SD)) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition.

  2. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    International Nuclear Information System (INIS)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-01-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the [ 3 H]thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced [ 3 H]thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% [SD]) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition

  3. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-01-01

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R -/- mice (control) or caveolin-1 -/- /LDL-R -/- mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1 -/- /LDL-R -/- mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor α-naphthoflavone (α-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  4. The alpha hemolisina of Escherichia Coli induces increases in the calcium citoplasmico of neutrofilos and monocytes human beings

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) and the calcium ionophores ionomycin and 4 Br A23187 caused increases in cell fluorescence, indicative of elevations in cytoplasmic calcium, in fura 2-loaded human polymorphonuclear leukocytes(PMN) and monocytes (MN). The increase in fluorescence caused by AH was dose dependent. Quelation of extracellular calcium with EGTA prevented fluorescence increases in PMN exposed to 2 HU50/ml AH, but did not prevent a small increase in 4 μM, ionomycin-treated PMN, indicating that ionomycin treatment under conditions of calcium quelation can mobilize calcium from internal stores, and that entry of external calcium accounts for most of the increases in cell fluorescence in cells treated with both AH and calcium ionophores. AH, as well as calcium ionophores and the chemotactic peptide FMLP caused rease of myeloperoxidase (MPO) from PMM suggesting that increments in intracellular calcium cause degramulation with release of granule contents (Author) [es

  5. Neutrophil chemotactic activity in bronchoalveolar lavage fluid of patients with AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Kharazmi, A; Larsen, C G

    1997-01-01

    been shown to confer a poor prognosis in PCP. We therefore investigated the potential of BAL fluid from 17 patients with PCP to induce neutrophil chemotaxis. BAL fluid from patients induced considerable neutrophil chemotactic activity compared to normal controls. Elevated levels of IL-8 were detected...... in patient samples as compared to controls. A specific anti-IL-8 antibody significantly reduced chemotactic activity of patient samples by more than 50%. In conclusion, IL-8 appears to be a significant participant of neutrophil chemotaxis in AIDS-associated PCP, and may participate in the recruitment...

  6. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  7. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally?

    Science.gov (United States)

    Yoshimura, Teizo

    2018-01-29

    Macrophages are one of the most abundant leukocyte populations infiltrating tumor tissues and can exhibit both tumoricidal and tumor-promoting activities. In 1989, we reported the purification of monocyte chemoattractant protein-1 (MCP-1) from culture supernatants of mitogen-activated peripheral blood mononuclear cells and tumor cells. MCP-1 is a potent monocyte-attracting chemokine, identical to the previously described lymphocyte-derived chemotactic factor or tumor-derived chemotactic factor, and greatly contributes to the recruitment of blood monocytes into sites of inflammatory responses and tumors. Because in vitro-cultured tumor cells often produce significant amounts of MCP-1, tumor cells are considered to be the main source of MCP-1. However, various non-tumor cells in the tumor stroma also produce MCP-1 in response to stimuli. Studies performed in vitro and in vivo have provided evidence that MCP-1 production in tumors is a consequence of complex interactions between tumor cells and non-tumor cells and that both tumor cells and non-tumor cells contribute to the production of MCP-1. Although MCP-1 production was once considered to be a part of host defense against tumors, it is now believed to regulate the vicious cycle between tumor cells and macrophages that promotes the progression of tumors.Cellular and Molecular Immunology advance online publication, 29 January 2018; doi:10.1038/cmi.2017.135.

  8. Studies on the mechanism of endogenous pyrogen production. III. Human blood monocytes.

    Science.gov (United States)

    Bodel, P

    1974-10-01

    The characteristics of pyrogen production and release by human blood monocytes were investigated. A dose-response assay of monocyte pyrogen in rabbits indicated a linear relationship of temperature elevation to dose of pyrogen at lower doses. Monocytes did not contain pyrogen when first obtained, nor did they release it spontaneously even after 5 days of incubation in vitro. Pyrogen production was apparent 4 h after stimulation by endotoxin or phagocytosis, and continued for 24 h or more. Puromycin, an inhibitor of protein synthesis, prevented both initiation and continuation of pyrogen production and release. Pyrogen-containing supernates retained most pyrogenic activity during overnight incubation even in the presence of activated cells. Lymphocytes appeared to play no role in either initiation or continuation of pyrogen production in these studies.

  9. Altered monocyte activation markers in Tourette’s syndrome: a case–control study

    Directory of Open Access Journals (Sweden)

    Matz Judith

    2012-05-01

    Full Text Available Abstract Background Infections and immunological processes are likely to be involved in the pathogenesis of Tourette’s syndrome (TS. To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha, interleukin 6 (IL-6, soluble CD14 (sCD14, IL1-receptor antagonist (IL1-ra, and serum neopterin were detected by immunoassays. Results We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions.

  10. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  11. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall.

    Science.gov (United States)

    Schulz, C; von Brühl, M-L; Barocke, V; Cullen, P; Mayer, K; Okrojek, R; Steinhart, A; Ahmad, Z; Kremmer, E; Nieswandt, B; Frampton, J; Massberg, S; Schmidt, R

    2011-05-01

    Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet-monocyte aggregate formation in vivo. EMMPRIN supports platelet-monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development. © 2011 International Society on Thrombosis and Haemostasis.

  12. Monocyte functions in diabetes mellitus

    DEFF Research Database (Denmark)

    Geisler, C; Almdal, T; Bennedsen, J

    1982-01-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from...... for the elucidation of concomitant infections in diabetic patients are discussed....

  13. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  14. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-01-01

    Full Text Available Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing.

  15. The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells.

    Science.gov (United States)

    Lee, Ji-Sook; Yang, Eun Ju; Kim, In Sik

    2009-12-01

    Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-alpha (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKC delta in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a G(i)/G(o) protein, phospholipase C (PLC), PKC delta, p38 MAPK and NF-kappaB. MCP-1 activates p38 MAPK via G(i)/G(o) protein, PLC and PKC delta cascade. MCP-1 also induces NF-kappaB translocation and the activation is inhibited by PKC delta activation. The increase in the basal expression and activity of PKC delta in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKC delta is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKC delta functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.

  16. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mary Anna Venneri

    Full Text Available Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs, which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1 normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01; 2 prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice; 3 reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1 promoting tissue protection; 4 lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like to alternative (M2-like/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent

  17. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  18. Comparison of Growth and the Cytokines Induced by Pathogenic Yersinia enterocolitica Bio-Serotypes 3/O: 3 and 2/O: 9.

    Science.gov (United States)

    Yang, Haoshu; Gu, Wenpeng; Qiu, Haiyan; Sun, Guixiang; Liang, Junrong; Li, Kewei; Xiao, Yuchun; Duan, Ran; Jing, Huaiqi; Wang, Xin

    2017-01-01

    Pathogenic Yersinia enterocolitica is widely distributed in China where the primary bio-serotypes are 3/O: 3 and 2/O: 9. Recently, the distribution of 2/O: 9 strains are being gradually replaced by 3/O: 3 strains where presently 3/O: 3 strains are the major pathogenic Y. enterocolitica in China. To identify the growth conditions and cytokines induced by Y. enterocolitica and providing some clues for this shift, we performed competitive growth in vitro and in vivo for these two bio-serotype strains; and we also compared the cytokines induced by them in infected BALB/C mice. We found 2/O: 9 strains grew more in vitro , while 3/O: 3 strains grew more in vivo regardless of using single cultures or mixed cultures. The cytokines induced by the two strains were similar: interleukin-6 (IL-6), IL-9, IL-13, granulocyte colony-stimulating factor (G-CSF), chemokines (KC), monocyte chemotactic protein 1 (MCP-1), macrophage inflammation protein-1α (MIP-1α), tumor necrosis factor-α (TNF-α), and RANTES were statistically up-regulated upon activation of normal T cells compared to the control. The cytokine values were higher in mixed infections than in single infections except for IL-6, G-CSF, and KC. The data illustrated the different growth of pathogenic Y. enterocolitica bio-serotype 3/O: 3 and 2/O: 9 in vitro and in vivo , and the cytokine changes induced by the two strains in infected BALB/C mice. The growth comparisons of two strains maybe reflect the higher pathogenic ability or resistance to host immune response for Y. enterocolitica bio-serotype 3/O: 3 and maybe it as one of the reason for bacteria shift.

  19. Comparison of Growth and the Cytokines Induced by Pathogenic Yersinia enterocolitica Bio-Serotypes 3/O: 3 and 2/O: 9

    Directory of Open Access Journals (Sweden)

    Haoshu Yang

    2017-05-01

    Full Text Available Pathogenic Yersinia enterocolitica is widely distributed in China where the primary bio-serotypes are 3/O: 3 and 2/O: 9. Recently, the distribution of 2/O: 9 strains are being gradually replaced by 3/O: 3 strains where presently 3/O: 3 strains are the major pathogenic Y. enterocolitica in China. To identify the growth conditions and cytokines induced by Y. enterocolitica and providing some clues for this shift, we performed competitive growth in vitro and in vivo for these two bio-serotype strains; and we also compared the cytokines induced by them in infected BALB/C mice. We found 2/O: 9 strains grew more in vitro, while 3/O: 3 strains grew more in vivo regardless of using single cultures or mixed cultures. The cytokines induced by the two strains were similar: interleukin-6 (IL-6, IL-9, IL-13, granulocyte colony-stimulating factor (G-CSF, chemokines (KC, monocyte chemotactic protein 1 (MCP-1, macrophage inflammation protein-1α (MIP-1α, tumor necrosis factor-α (TNF-α, and RANTES were statistically up-regulated upon activation of normal T cells compared to the control. The cytokine values were higher in mixed infections than in single infections except for IL-6, G-CSF, and KC. The data illustrated the different growth of pathogenic Y. enterocolitica bio-serotype 3/O: 3 and 2/O: 9 in vitro and in vivo, and the cytokine changes induced by the two strains in infected BALB/C mice. The growth comparisons of two strains maybe reflect the higher pathogenic ability or resistance to host immune response for Y. enterocolitica bio-serotype 3/O: 3 and maybe it as one of the reason for bacteria shift.

  20. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  1. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection.

    Directory of Open Access Journals (Sweden)

    Cintia Ferreira Marinho

    Full Text Available In dengue virus (DENV infection, complement system (CS activation appears to have protective and pathogenic effects. In severe dengue fever (DF, the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b, CR4 (CD11c and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b or CR3 (CD11b/CD18 reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b or CR3 (CD11b/CD18 blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.

  2. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways.

    Science.gov (United States)

    Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J

    2014-12-18

    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    Full Text Available Abstract Background During HIV infection and/or antiretroviral therapy (ART, monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusive. We therefore applied a parallel approach of genome-wide microarray analysis and focused gene expression profiling on monocytes from patients in different stages of HIV infection and/or ART to further characterise these dysfunctions. Results Processes involved in apoptosis, cell cycle, lipid metabolism, proteasome function, protein trafficking and transcriptional regulation were identified as areas of monocyte dysfunction during HIV infection. Individual genes potentially contributing to these monocyte dysfunctions included several novel factors. One of these is the adipocytokine NAMPT/visfatin, which we show to be capable of inhibiting HIV at an early step in its life cycle. Roughly half of all genes identified were restored to control levels under ART, while the others represented a persistent dysregulation. Additionally, several candidate biomarkers (in particular CCL1 and CYP2C19 for the development of the abacavir hypersensitivity reaction were suggested. Conclusions Previously described areas of monocyte dysfunction during HIV infection were confirmed, and novel themes were identified. Furthermore, individual genes associated with these dysfunctions and with ART-associated disorders were pinpointed. These genes form a useful basis for further functional studies concerning the contribution of monocytes/macrophages to HIV pathogenesis. One such gene, NAMPT/visfatin, represents a possible novel restriction factor for HIV. Background Both macrophages and T lymphocyte subsets express the CD4 receptor and either the CXCR4 and/or the CCR5 coreceptor which confer susceptibility to infection with the Human Immunodeficiency Virus

  4. Distinct functional programming of human fetal and adult monocytes.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  5. Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity

    Directory of Open Access Journals (Sweden)

    Lim JP

    2015-03-01

    Full Text Available Jun Pei Lim,1,2 Bernard P Leung,3 Yew Yoong Ding,1,2 Laura Tay,1,2 Noor Hafizah Ismail,2,4 Audrey Yeo,2 Suzanne Yew,2 Mei Sian Chong1,2 1Department of Geriatric Medicine, 2Institute of Geriatrics and Active Ageing, 3Department of Rheumatology, Allergy and Immunology, 4Department of Community and Continuing Care, Tan Tock Seng Hospital, Singapore Objective: Sarcopenic obesity (SO is associated with poorer physical outcomes and functional status in the older adult. A proinflammatory milieu associated with central obesity is postulated to enhance muscle catabolism. We set out to examine associations of the chemokine monocyte chemoattractant protein-1 (MCP-1 in groups of older adults, with sarcopenia, obesity, and the SO phenotypes.Methods: A total of 143 community dwelling, well, older adults were recruited. Cross-sectional clinical data, physical performance, and muscle mass measurements were collected. Obesity and sarcopenia were defined using revised National Cholesterol Education Program (NCEP obesity guidelines and those of the Asian Working Group for Sarcopenia. Serum levels of MCP-1 were measured by enzyme-linked immunosorbent assay (ELISA.Results: In all, 25.2% of subjects were normal, 15.4% sarcopenic, 48.3% obese, and 11.2% were SO. The SO groups had the lowest appendicular lean mass, highest percentage body fat, and lowest performance scores on the Short Physical Performance Battery and grip strength. The MCP-1 levels were significantly different, with the highest levels found in SO participants (P<0.05.Conclusion: Significantly raised MCP-1 levels in obese and SO subjects support the theory of chronic inflammation due to excess adiposity. Longitudinal studies will reveal whether SO represents a continuum of obesity causing accelerated sarcopenia and cardiovascular events, or the coexistence of two separate conditions with synergistic effects affecting functional performance. Keywords: chemokine C-C motif ligand 2 (CCL-2, elderly

  6. Consequences of gamma-irradiation on inflammatory cytokine regulation in human monocytes/macrophages; Consequences de l`irradiation gamma sur la regulation des cytokines de l`inflammation dans les monocytes/macrophages humains

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D.

    1995-12-31

    Inflammation is a frequent radiation-induced damage, especially after therapeutic irradiation. In this study, we have investigated, the inflammatory cytokine regulation after ionizing irradiation of monocytes/macrophages from four donors. Semi-quantitative RT-PCR revealed, after in vitro 24 h-differentiated monocytes irradiation between 5 to 40 Gy, no induction of interleukin-I{beta} (IL I{beta}), interleukin-6 (IL-6) and tumor necrosis factor-{alpha} (TNF-{alpha} mRNA) expression. Moreover, protein quantitation shows no significant increase of post-irradiation secretion. (author). 6 refs.

  7. Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    Science.gov (United States)

    Westendorf, Christian; Negrete, Jose; Bae, Albert J.; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-01-01

    The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments. PMID:23431176

  8. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

    Science.gov (United States)

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W

    2017-08-18

    Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Early Dynamics of P-selectin and Interleukin 6 Predicts Outcomes in Ischemic Stroke

    DEFF Research Database (Denmark)

    Pusch, Gabriella; Debrabant, Birgit; Molnar, Tihamer

    2015-01-01

    with acute ischemic stroke (6, 24, and 72 hours after onset); (2) compared with 44 patients with asymptomatic severe (≥70%) carotid stenosis and 66 patients with Parkinson disease; and (3) we applied multiple regression methods, relating biological biomarkers combined with demographic data and comorbidities......BACKGROUND: Thromboinflammatory molecules connect the prothrombotic state, endothelial dysfunction, and systemic/local inflammation in the acute phase of ischemic stroke. METHODS: We prospectively investigated (1) serial changes in the levels of thromboinflammatory biomarkers in 76 patients...... hours were higher in patients with large-artery versus lacunar stroke. High concentration of IL-6, monocyte chemotactic protein 1, and S100B at 6 hours were associated with poststroke infections; high concentration of IL-6, S100B, and high-sensitivity C-reactive protein (hsCRP) correlated with death...

  10. Expression of the calcium-binding proteins MRP8 and MRP14 in monocytes is regulated by a calcium-induced suppressor mechanism.

    OpenAIRE

    Roth, J; Goebeler, M; Wrocklage, V; van den Bos, C; Sorg, C

    1994-01-01

    MRP8 and MRP14 are two calcium-binding proteins of the S-100 family the expression of which is restricted to distinct stages of monocytic differentiation. Heteromeric MRP8/MRP14 complexes have been shown to represent their biologically active forms. However, it is not as yet clear whether biochemical modification of complexes, or regulation on the transcriptional level, are responsible for the control of MRP8/MRP14 expression. Employing Western-blot analysis and metabolic labelling we have de...

  11. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant.

    Directory of Open Access Journals (Sweden)

    Martina Bauer

    Full Text Available Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs. In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs. Furthermore, monocytes accumulated DNA double-strand breaks (DSBs following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective

  12. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production.

    Science.gov (United States)

    Eger, M; Hussen, J; Koy, M; Dänicke, S; Schuberth, H-J; Breves, G

    2016-03-01

    The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which

  13. Platelet density per monocyte predicts adverse events in patients after percutaneous coronary intervention.

    Science.gov (United States)

    Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E

    2016-01-01

    Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.

  14. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients.

    Directory of Open Access Journals (Sweden)

    Petronela Ancuta

    2008-06-01

    Full Text Available Elevated plasma lipopolysaccharide (LPS, an indicator of microbial translocation from the gut, is a likely cause of systemic immune activation in chronic HIV infection. LPS induces monocyte activation and trafficking into brain, which are key mechanisms in the pathogenesis of HIV-associated dementia (HAD. To determine whether high LPS levels are associated with increased monocyte activation and HAD, we obtained peripheral blood samples from AIDS patients and examined plasma LPS by Limulus amebocyte lysate (LAL assay, peripheral blood monocytes by FACS, and soluble markers of monocyte activation by ELISA. Purified monocytes were isolated by FACS sorting, and HIV DNA and RNA levels were quantified by real time PCR. Circulating monocytes expressed high levels of the activation markers CD69 and HLA-DR, and harbored low levels of HIV compared to CD4(+ T-cells. High plasma LPS levels were associated with increased plasma sCD14 and LPS-binding protein (LBP levels, and low endotoxin core antibody levels. LPS levels were higher in HAD patients compared to control groups, and were associated with HAD independently of plasma viral load and CD4 counts. LPS levels were higher in AIDS patients using intravenous heroin and/or ethanol, or with Hepatitis C virus (HCV co-infection, compared to control groups. These results suggest a role for elevated LPS levels in driving monocyte activation in AIDS, thereby contributing to the pathogenesis of HAD, and provide evidence that cofactors linked to substance abuse and HCV co-infection influence these processes.

  15. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene.

    Directory of Open Access Journals (Sweden)

    Tiansuo Zhao

    Full Text Available CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF-1α expression was knocked down in vitro and in vivo, the expression of CX3CR1 was significantly decreased. Chromatin immunoprecipitation assay demonstrated that HIF-1α bound to the hypoxia-response element (HRE; 5'-A/GCGTG-3' of CX3CR1 promoter under normoxia, and this binding was significantly enhanced under hypoxia. Overexpression of HIF-1α significantly upregulated the expression of luciferase reporter gene under the control of the CX3CR1 promoter in pancreatic cancer cells. Importantly, we demonstrated that HIF-1α may regulate cancer cell migration through CX3CR1. The HIF-1α/CX3CR1 pathway might represent a valuable therapeutic target to prevent invasion and distant metastasis in PDAC.

  16. The role of monocytes and T cells in 1,25-dihydroxyvitamin D3 mediated inhibition of B cell function in vitro

    DEFF Research Database (Denmark)

    Müller, K; Heilmann, C; Poulsen, L K

    1991-01-01

    1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) inhibits immunoglobulin production by human mononuclear cells (MNC) in vitro. The present study was undertaken to evaluate the role of T cells and monocytes in 1,25-(OH)2D3 induced suppression of B cell functions. The synthetic vitamin D3 analogue MC 903...... was examined in parallel. 1,25-(OH)2D3 and MC 903 showed a dose-related inhibition of IgM, IgG and IgA plaque-forming cells in poke-weed mitogen (PWM) activated cultures of MNC. This effect was most likely mediated through impairment of T cell and monocyte functions. First, the inhibitory effect was seen after...

  17. CD14(hi)CD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so.

    Science.gov (United States)

    Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony

    2015-07-07

    With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits

  18. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain

    Directory of Open Access Journals (Sweden)

    Kushchayev SV

    2012-09-01

    Full Text Available Sergiy V Kushchayev,1 Tejas Sankar,1 Laura L Eggink,4,5 Yevgeniya S Kushchayeva,5 Philip C Wiener,1,5 J Kenneth Hoober,5,6 Jennifer Eschbacher,3 Ruolan Liu,2 Fu-Dong Shi,2 Mohammed G Abdelwahab,4 Adrienne C Scheck,4 Mark C Preul11Neurosurgery Research Laboratory, 2Neuroimmunology Laboratory, 3Department of Pathology, 4Neurooncology Research, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, 5School of Life Sciences, Arizona State University, Tempe, 6Susavion Biosciences, Inc, Tempe, AZ, USAObjectives: Immunotherapy with immunostimulants is an attractive therapy against gliomas. C-type lectin receptors specific for galactose/N-acetylgalactosamine (GCLR regulate cellular differentiation, recognition, and trafficking of monocyte-derived cells. A peptide mimetic of GCLR ligands (GCLRP was used to activate blood monocytes and populations of myeloid-derived cells against a murine glioblastoma.Methods: The ability of GCLRP to stimulate phagocytosis by human microglia and monocyte-derived cells of the brain (MDCB isolated from a human glioblastoma was initially assessed in vitro. Induction of activation markers on blood monocytes was assayed by flow cytometry after administration of GCLRP to naive mice. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells and were randomized for tumor size by magnetic resonance imaging, which was also used to assess increase in tumor size. Brain tumor tissues were analyzed using flow cytometry, histology, and enzyme-linked immunosorbent assay with respect to tumor, peritumoral area, and contralateral hemisphere regions.Results: GCLRP exhibited strong stimulatory effect on MDCBs and blood monocytes in vitro and in vivo. GCLRP was associated with an increased percentage of precursors of dendritic cells in the blood (P = 0.003, which differentiated into patrolling macrophages in tumoral (P = 0.001 and peritumoral areas (P = 0.04, rather than into dendritic cells

  19. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Kok Loon Wong

    Full Text Available Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16(- and CD16(+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16(- and CD16(+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC, and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16(+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16(+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease.

  20. The monocyte counts to HDL cholesterol ratio in obese and lean patients with polycystic ovary syndrome.

    Science.gov (United States)

    Usta, Akin; Avci, Eyup; Bulbul, Cagla Bahar; Kadi, Hasan; Adali, Ertan

    2018-04-10

    Women with polycystic ovary syndrome are more likely to suffer from obesity, insulin resistance, and chronic low-grade inflammation. In fact, the excessive activation of monocytes exacerbates oxidative stress and inflammation. However, high-density lipoprotein cholesterol neutralizes the pro-inflammatory and pro-oxidant effects of monocytes. The aim of this study is to investigate whether monocyte counts to high-density lipoprotein cholesterol ratio can predict the inflammatory condition in patients with polycystic ovary syndrome. In this cross-sectional study, a total of 124 women (61 of them with polycystic ovary syndrome and 63 age-matched healthy volunteers) were included in the study population. Obese polycystic ovary syndrome patients (n = 30) with a body mass index of ≥25 kg/m 2 and lean polycystic ovary syndrome patients (n = 31) with a body mass index of polycystic ovary syndrome were significantly higher than in control subjects (p = 0.0018). Moreover, a regression analysis revealed that body mass index, the homeostasis model assessment of insulin resistance and the high sensitivity C-reactive protein levels were confounding factors that affected the monocyte counts to high density lipoprotein cholesterol values. Additionally, a univariate and multivariate logistic regression analysis demonstrated that the increased monocyte counts to high density lipoprotein cholesterol values were more sensitive than the other known risk factors (such as increased body mass index, homeostasis model assessment of insulin resistance and high sensitive C-reactive protein levels) in the prediction of the inflammation in patients with polycystic ovary syndrome. The present study demonstrated that the monocyte count to high density lipoprotein cholesterol may be a novel and useful predictor of the presence of polycystic ovary syndrome.

  1. Fatty Acid Oxidation Compensates for Lipopolysaccharide-Induced Warburg Effect in Glucose-Deprived Monocytes

    Directory of Open Access Journals (Sweden)

    Nora Raulien

    2017-05-01

    Full Text Available Monocytes enter sites of microbial or sterile inflammation as the first line of defense of the immune system and initiate pro-inflammatory effector mechanisms. We show that activation with bacterial lipopolysaccharide (LPS induces them to undergo a metabolic shift toward aerobic glycolysis, similar to the Warburg effect observed in cancer cells. At sites of inflammation, however, glucose concentrations are often drastically decreased, which prompted us to study monocyte function under conditions of glucose deprivation and abrogated Warburg effect. Experiments using the Seahorse Extracellular Flux Analyzer revealed that limited glucose supply shifts monocyte metabolism toward oxidative phosphorylation, fueled largely by fatty acid oxidation at the expense of lipid droplets. While this metabolic state appears to provide sufficient energy to sustain functional properties like cytokine secretion, migration, and phagocytosis, it cannot prevent a rise in the AMP/ATP ratio and a decreased respiratory burst. The molecular trigger mediating the metabolic shift and the functional consequences is activation of AMP-activated protein kinase (AMPK. Taken together, our results indicate that monocytes are sufficiently metabolically flexible to perform pro-inflammatory functions at sites of inflammation despite glucose deprivation and inhibition of the LPS-induced Warburg effect. AMPK seems to play a pivotal role in orchestrating these processes during glucose deprivation in monocytes.

  2. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    Science.gov (United States)

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  3. Amelioration of Glucolipotoxicity-Induced Endoplasmic Reticulum Stress by a “Chemical Chaperone” in Human THP-1 Monocytes

    Directory of Open Access Journals (Sweden)

    Raji Lenin

    2012-01-01

    Full Text Available Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b to investigate whether 4-Phenyl butyric acid (PBA, a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.

  4. Effects of Garlic Oil on the Migration of Neutrophil-Like Cell Studied by Using a Chemotactic Gradient Labchip

    Directory of Open Access Journals (Sweden)

    Po-Chen Shih

    2010-01-01

    Full Text Available We have designed and fabricated a novel chemotactic gradient Labchip for studying cell migration quantitatively. Owing to the great potential of garlic and its preparations in developing antiinflammatory drugs, the aim of the present study is to investigate the effect of garlic oil on the locomotion of a neutrophil-like cell by measuring the dynamic features of cell migration including migration direction, average migration speed, chemotactic index (CI, and motility index (MI with the newly designed Labchip. We found that garlic oil treatment lowered the values of CI and MI and reduced the average speed of cell migration from 13 to 8 μm/min. The results indicate that garlic oil is a potential inhibitor for neutrophil-like cell migration and chemotactic responsiveness. By comparing with the effects of nocodazole and cytochalasin B, we also suggest that the antiinflammatory activity exhibited by garlic oil was mainly through inhibiting the assembly-disassembly processes of the cytoskeleton.

  5. Monocyte transferrin-iron uptake in hereditary hemochromatosis

    International Nuclear Information System (INIS)

    Sizemore, D.J.; Bassett, M.L.

    1984-01-01

    Transferrin-iron uptake by peripheral blood monocytes was studied in vitro to test the hypothesis that the relative paucity of mononuclear phagocyte iron loading in hereditary hemochromatosis results from a defect in uptake of iron from transferrin. Monocytes from nine control subjects and 17 patients with hemochromatosis were cultured in the presence of 59Fe-labelled human transferrin. There was no difference in 59Fe uptake between monocytes from control subjects and monocytes from patients with hemochromatosis who had been treated by phlebotomy and who had normal body iron stores. However, 59Fe uptake by monocytes from iron-loaded patients with hemochromatosis was significantly reduced compared with either control subjects or treated hemochromatosis patients. It is likely that this was a secondary effect of iron loading since iron uptake by monocytes from treated hemochromatosis patients was normal. Assuming that monocytes in culture reflect mononuclear phagocyte iron metabolism in vivo, this study suggests that the relative paucity of mononuclear phagocyte iron loading in hemochromatosis is not related to an abnormality in transferrin-iron uptake by these cells

  6. Ginkgolide B Suppresses TLR4-Mediated Inflammatory Response by Inhibiting the Phosphorylation of JAK2/STAT3 and p38 MAPK in High Glucose-Treated HUVECs

    Directory of Open Access Journals (Sweden)

    Kun Chen

    2017-01-01

    Full Text Available Aim. Ginkgolide B is a Ginkgo biloba leaf extract that has been identified as a natural platelet-activating factor receptor (PAFR antagonist. We investigated the effect of ginkgolide B on high glucose-induced TLR4 activation in human umbilical vein endothelial cells (HUVECs. Methods. Protein expression was analyzed by immunoblotting. Small-interfering RNA (siRNA was used to knock down PAFR and TLR4 expression. Results. Ginkgolide B suppressed the expression of TLR4 and MyD88 that was induced by high glucose. Ginkgolide B also reduced the levels of platelet endothelial cell adhesion molecule-1, interleukin-6, and monocyte chemotactic protein 1. Further, we examined the association between PAFR and TLR4 by coimmunoprecipitation. The result showed that high glucose treatment caused the binding of PAFR and TLR4, whereas ginkgolide B abolished this binding. The functional analysis indicated that PAFR siRNA treatment reduced TLR4 expression, and TLR4 siRNA treatment decreased PAFR expression in high glucose-treated HUVECs, further supporting the coimmunoprecipitation data. Ginkgolide B inhibited the phosphorylation of Janus kinase 2 (JAK2/signal transducer and activator of transcription 3 (STAT3 and p38 mitogen-activated protein kinase (MAPK. Conclusion. Ginkgolide B exerted protective effects by inhibiting the TLR4-mediated inflammatory response in high glucose-treated endothelial cells. The mechanism of action of ginkgolide B might be associated with inhibition of the JAK2/STAT3 and p38 MAPK phosphorylation.

  7. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes.

    Science.gov (United States)

    Bacchetta, Justine; Sea, Jessica L; Chun, Rene F; Lisse, Thomas S; Wesseling-Perry, Katherine; Gales, Barbara; Adams, John S; Salusky, Isidro B; Hewison, Martin

    2013-01-01

    Vitamin D is a potent stimulator of monocyte innate immunity, and this effect is mediated via intracrine conversion of 25-hydroxyvitamin D (25OHD) to 1,25-dihydroxyvitamin D (1,25(OH)(2) D). In the kidney, synthesis of 1,25(OH)(2) D is suppressed by fibroblast growth factor 23 (FGF23), via transcriptional suppression of the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1). We hypothesized that FGF23 also suppresses CYP27B1 in monocytes, with concomitant effects on intracrine responses to 1,25(OH)(2) D. Healthy donor peripheral blood mononuclear cell monocytes (PBMCm) and peritoneal dialysate monocyte (PDm) effluent from kidney disease patients were assessed at baseline to confirm the presence of mRNA for FGF23 receptors (FGFRs), with Klotho and FGFR1 being more strongly expressed than FGFR2/3/4 in both cell types. Immunohistochemistry showed coexpression of Klotho and FGFR1 in PBMCm and PDm, with this effect being enhanced following treatment with FGF23 in PBMCm but not PDm. Treatment with FGF23 activated mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) pathways in PBMCm, demonstrating functional FGFR signaling in these cells. FGF23 treatment of PBMCm and PDm decreased expression of mRNA for CYP27B1. In PBMCm this was associated with downregulation of 25OHD to 1,25(OH)(2) D metabolism, and concomitant suppression of intracrine induced 24-hydroxylase (CYP24A1) and antibacterial cathelicidin (LL37). FGF23 suppression of CYP27B1 was particularly pronounced in PBMCm treated with interleukin-15 to stimulate synthesis of 1,25(OH)(2) D. These data indicate that FGF23 can inhibit extra-renal expression of CYP27B1 and subsequent intracrine responses to 1,25(OH)(2) D in two different human monocyte models. Elevated expression of FGF23 may therefore play a crucial role in defining immune responses to vitamin D and this, in turn, may be a key determinant of infection in patients with chronic kidney disease (CKD). Copyright © 2013 American Society for

  8. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro.

    Science.gov (United States)

    Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias

    2013-02-28

    Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.

  9. The proliferative human monocyte subpopulation contains osteoclast precursors

    Science.gov (United States)

    Lari, Roya; Kitchener, Peter D; Hamilton, John A

    2009-01-01

    Introduction Immediate precursors of bone-resorbing osteoclasts are cells of the monocyte/macrophage lineage. Particularly during clinical conditions showing bone loss, it would appear that osteoclast precursors are mobilized from bone marrow into the circulation prior to entering tissues undergoing such loss. The observed heterogeneity of peripheral blood monocytes has led to the notion that different monocyte subpopulations may have special or restricted functions, including as osteoclast precursors. Methods Human peripheral blood monocytes were sorted based upon their degree of proliferation and cultured in macrophage colony-stimulating factor (M-CSF or CSF-1) and receptor activator of nuclear factor-kappa-B ligand (RANKL). Results The monocyte subpopulation that is capable of proliferation gave rise to significantly more multinucleated, bone-resorbing osteoclasts than the bulk of the monocytes. Conclusions Human peripheral blood osteoclast precursors reside in the proliferative monocyte subpopulation. PMID:19222861

  10. Consumption of a high-fat meal containing cheese compared with a vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomised controlled cross-over study.

    Science.gov (United States)

    Demmer, Elieke; Van Loan, Marta D; Rivera, Nancy; Rogers, Tara S; Gertz, Erik R; German, J Bruce; Zivkovic, Angela M; Smilowitz, Jennifer T

    2016-01-01

    Dietary recommendations suggest decreased consumption of SFA to minimise CVD risk; however, not all foods rich in SFA are equivalent. To evaluate the effects of SFA in a dairy food matrix, as Cheddar cheese, v. SFA from a vegan-alternative test meal on postprandial inflammatory markers, a randomised controlled cross-over trial was conducted in twenty overweight or obese adults with metabolic abnormalities. Individuals consumed two isoenergetic high-fat mixed meals separated by a 1- to 2-week washout period. Serum was collected at baseline, and at 1, 3 and 6 h postprandially and analysed for inflammatory markers (IL-6, IL-8, IL-10, IL-17, IL-18, TNFα, monocyte chemotactic protein-1 (MCP-1)), acute-phase proteins C-reactive protein (CRP) and serum amyloid-A (SAA), cellular adhesion molecules and blood lipids, glucose and insulin. Following both high-fat test meals, postprandial TAG concentrations rose steadily (P vegan-alternative test meal. A treatment effect was not observed for any other inflammatory markers; however, for both test meals, multiple markers significantly changed from baseline over the 6 h postprandial period (IL-6, IL-8, IL-18, TNFα, MCP-1, SAA). Saturated fat in the form of a cheese matrix reduced the iAUC for CRP compared with a vegan-alternative test meal during the postprandial 6 h period. The study is registered at clinicaltrials.gov under NCT01803633.

  11. Oxidative Mechanisms of Monocyte-Mediated Cytotoxicity

    Science.gov (United States)

    Weiss, Stephen J.; Lobuglio, Albert F.; Kessler, Howard B.

    1980-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to rapidly destroy autologous erythrocyte targets. Monocyte-mediated cytotoxicity was related to phorbol myristate acetate concentration and monocyte number. Purified preparations of lymphocytes were incapable of mediating erythrocyte lysis in this system. The ability of phorbol myristate acetate-stimulated monocytes to lyse erythrocyte targets was markedly impaired by catalase or superoxide dismutase but not by heat-inactivated enzymes or albumin. Despite a simultaneous requirement for superoxide anion and hydrogen peroxide in the cytotoxic event, a variety of hydroxyl radical and singlet oxygen scavengers did not effect cytolysis. However, tryptophan significantly inhibited cytotoxicity. The myeloperoxidase inhibitor cyanide enhanced erythrocyte destruction, whereas azide reduced it modestly. The inability of cyanide to reduce cytotoxicity coupled with the protective effect of superoxide dismutase suggests that cytotoxicity is independent of the classic myeloperoxidase system. We conclude that monocytes, stimulated with phorbol myristate acetate, generate superoxide anion and hydrogen peroxide, which together play an integral role in this cytotoxic mechanism.

  12. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    Science.gov (United States)

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation

  13. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  14. The Macrophage Inflammatory Proteins MIP1α (CCL3 and MIP2α (CXCL2 in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation

    Directory of Open Access Journals (Sweden)

    Ulrike Dapunt

    2014-01-01

    Full Text Available Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3 and MIP2α (CXCL2 was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.

  15. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  16. Properties of human blood monocytes. I. CD91 expression and log orthogonal light scatter provide a robust method to identify monocytes that is more accurate than CD14 expression.

    Science.gov (United States)

    Hudig, Dorothy; Hunter, Kenneth W; Diamond, W John; Redelman, Doug

    2014-03-01

    This study was designed to improve identification of human blood monocytes by using antibodies to molecules that occur consistently on all stages of monocyte development and differentiation. We examined blood samples from 200 healthy adults without clinically diagnosed immunological abnormalities by flow cytometry (FCM) with multiple combinations of antibodies and with a hematology analyzer (Beckman LH750). CD91 (α2 -macroglobulin receptor) was expressed only by monocytes and to a consistent level among subjects [mean median fluorescence intensity (MFI) = 16.2 ± 3.2]. Notably, only 85.7 ± 5.82% of the CD91(+) monocytes expressed high levels of the classical monocyte marker CD14, with some CD91(+) CD16(+) cells having negligible CD14, indicating that substantial FCM under-counts will occur when monocytes are identified by high CD14. CD33 (receptor for sialyl conjugates) was co-expressed with CD91 on monocytes but CD33 expression varied by nearly ten-fold among subjects (mean MFI = 17.4 ± 7.7). In comparison to FCM analyses, the hematology analyzer systematically over-counted monocytes and eosinophils while lymphocyte and neutrophil differential values generally agreed with FCM methods. CD91 is a better marker to identify monocytes than CD14 or CD33. Furthermore, FCM (with anti-CD91) identifies monocytes better than a currently used clinical CBC instrument. Use of anti-CD91 together with anti-CD14 and anti-CD16 supports the identification of the diagnostically significant monocyte populations with variable expression of CD14 and CD16. Copyright © 2013 Clinical Cytometry Society.

  17. Whole blood flow cytometric analysis of Ureaplasma-stimulated monocytes from pregnant women.

    Science.gov (United States)

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2015-06-01

    We hypothesised that circulating monocytes of women with vaginal colonisation with Ureaplasma spp., genital microorganisms known to cause inflammation-driven preterm birth, would elicit a tolerised cytokine response to subsequent in vitro Ureaplasma parvum serovar 3 (UpSV3) stimulation. Using multi-parameter flow cytometry, we found no differences with regard to maternal colonisation status in the frequency of TNF-α-, IL-6-, IL-8- and IL-1β-expressing monocytes in response to subsequent UpSV3 stimulation (P > 0.10 for all cytokines). We conclude that vaginal Ureaplasma spp. colonisation does not specifically tolerise monocytes of pregnant women towards decreased responses to subsequent stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Increased C-C chemokine receptor 2 gene expression in monocytes of severe obstructive sleep apnea patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Shih-Wei; Chang, Ying-Ling; Liao, Hsiang-Ruei; Lin, Yu-Sheng; Chao, I-Ju; Lin, Yuling; Pang, Jong-Hwei S

    2014-01-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. The chemotaxis and adhesion of monocytes to the endothelium in the early atherosclerosis is important. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the chemotaxis and adhesion of monocytes. Peripheral blood was sampled from 54 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of C-C chemokine receptor 2 (CCR2). The effect of intermittent hypoxia on the regulation and function of CCR2 was investigated on THP-1 monocytic cells and monocytes. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. Transwell filter migration assay and cell adhesion assay were performed to study the chemotaxis and adhesion of monocytes. Monocytic CCR2 gene expression was found to be increased in severe OSA patients and higher levels were detected after sleep. Intermittent hypoxia increased the CCR2 expression in THP-1 monocytic cells even in the presence of TNF-α and CRP. Intermittent hypoxia also promoted the MCP-1-mediated chemotaxis and adhesion of monocytes to endothelial cells. Furthermore, inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of monocytic CCR2 expression by intermittent hypoxia. This is the first study to demonstrate the increase of CCR2 gene expression in monocytes of severe OSA patients. Monocytic CCR2 gene expression can be induced under intermittent hypoxia which contributes to the chemotaxis and adhesion of monocytes.

  19. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    Science.gov (United States)

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  20. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  1. Defect of netrophil chemotactic function is one of the etiology of aggressive periodontitis.

    Directory of Open Access Journals (Sweden)

    Yanti Rusyanti

    2016-06-01

    Full Text Available Characteristic of progressive destructive periodontal tissue in Aggressive Periodontitis is a features of disruption of the host-homeostasis as the results of imbalance between host response and specific bacterial pathogenic which presents at gingival sulcus. The objective of this study was to evaluate netrophil function of  Aggressive periodontitis molecularly by means of gen polimorphism of Formyl Peptide Receptor (FPR1 at the surface of netrophil cell, the level of IL-8 and netrophil chemotactic. The results of  the study  can be used as an early detection, prevention or to arrest tissue destruction and to restore a health-associated homeostasis in order to get better prognosis of Aggressive Periodontitis. The study was conducted during 20 months in Periodontic Clinic Dental Hospital, Faculty of Dentistry, Padjadjaran University, Genetica Moleculer Medical Laboratory of Research Institution Padjadjaran University Bandung. Research design used case control methode and sample selection is done in concecutive sampling of 32 aggressive periodontitis patients and 29 non aggressive periodontitis patients who were included in the inclusion criteria. Research materials were venous blood and gingival crevicular fluid. PCR-Sequensing methode was used to asses of gene FPR1 Polimorphism. ELISA methode was used to measure IL-8 level in gingival crevicular fluid, and Human CD66abce Microbead Kit by MACS Separation methode was used to asses netrophil chemotactic. Chi-square test, Fisher’s exact, unpaired t tests were employed to analyse the differences of  characteristic, allele frequencies and genotypic, bivariate analysis to analyse of risk factors and biserial point correlation to analyse correlation between risk factors. The results showed the existence of c576T>C>G gene FPR1 polymorphism 5.040 time-fold (p=0.006; OR=5.040 while the down regulation of IL-8( ≤0.064 pg/µl is 34.5 times-fold of having aggressive periodontitis (OR=34, and c576T

  2. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  3. Enhanced basophil histamine release and neutrophil chemotactic activity predispose grain dust-induced airway obstruction.

    Science.gov (United States)

    Park, H; Jung, K; Kang, K; Nahm, D; Cho, S; Kim, Y

    1999-04-01

    The pathogenic mechanism of grain dust (GD)-induced occupational asthma (OA) remains unclear. To understand further the mechanism of GD-induced OA. Fifteen employees working in a same GD industry, complaining of work-related respiratory symptoms, were enrolled and were divided into two groups according to the GD-bronchoprovocation test (BPT) result: six positive responders were grouped as group III, nine negative responders as group II and five healthy controls as group I. Serum GD-specific immunoglobulin (Ig)E (sIgE), specific IgG (sIgG) and specific IgG4 (sIgG4) antibodies were detected by enzyme-linked immunosorbent assay. Basophil histamine release was measured by the autofluorometric method, and changes of serum neutrophil chemotactic activity were observed by the Boyden chamber method. For clinical parameters such as degree of airway hyperresponsiveness to methacholine, duration of respiratory symptoms, exposure duration, and prevalences of serum sIgE, sIgG and sIgG4 antibodies, there were no significant differences between group II and III (P > 0.05, respectively). Serum neutrophil chemotactic activity increased significantly at 30 min and decreased at 240 min after the GD-BPT in group III subjects (P 0.05). Basophil histamine release induced by GD was significantly higher in group III than those of group I or group II (P < 0.05, respectively), while minimal release of anti-IgG4 antibodies was noted in all three groups. These results suggest that enhanced basophil histamine release and serum neutrophil chemotactic activity might contribute to the development of GD-induced occupational asthma.

  4. LEGO bricks used as chemotactic chambers: evaluation by a computer-assisted image analysis technique.

    Science.gov (United States)

    Azzarà, A; Chimenti, M

    2004-01-01

    One of the main techniques used to explore neutrophil motility, employs micropore filters in chemotactic chambers. Many new models have been proposed, in order to perform multiple microassays in a rapid, inexpensive and reproducible way. In this work, LEGO bricks have been used as chemotactic chambers in the evaluation of neutrophil random motility and chemotaxis and compared with conventional Boyden chambers in a "time-response" experiment. Neutrophil motility throughout the filters was evaluated by means of an image-processing workstation, in which a dedicated algorithm recognizes and counts the cells in several fields and focal planes throughout the whole filter; correlates counts and depth values; performs a statistical analysis of data; calculates the true value of neutrophil migration; determines the distribution of cells; and displays the migration pattern. By this method, we found that the distances travelled by the cells in conventional chambers and in LEGO bricks were perfectly identical, both in random migration and under chemotactic conditions. Moreover, no interference with the physiological behaviour of neutrophils was detectable. In fact, the kinetics of migration was identical both in random migration (characterized by a gaussian pattern) and in chemotaxis (characterized by a typical stimulation peak, previously identified by our workstation). In conclusion, LEGO bricks are extremely precise devices. They are simple to use and allow the use of small amounts of chemoattractant solution and cell suspension, supplying by itself a triplicate test. LEGO bricks are inexpensive, fast and suitable for current diagnostic activity or for research investigations in every laboratory.

  5. Antioxidants from diet or supplements do not alter inflammatory markers in adults with cardiovascular disease risk. A pilot randomized controlled trial.

    Science.gov (United States)

    Dewell, Antonella; Tsao, Philip; Rigdon, Joseph; Gardner, Christopher D

    2018-02-01

    Antioxidants have been reported to have anti-inflammatory effects, but there is a lack of research comparing food to supplement antioxidant sources. The aim of this study was to determine if increases in intake of foods naturally rich in antioxidants would lower blood levels of inflammatory markers more than consuming antioxidant supplements among adults with cardiovascular disease risk factors. Eighty-eight generally healthy adults with ≥1 elevated risk factor for cardiovascular disease were randomized in a single-blind (diets)/double-blind (supplements), parallel-group study for 8 weeks. Participants consumed (1) usual diet and placebo pills (n = 29), (2) usual diet and antioxidant supplements (n = 29), or (3) antioxidant-rich foods closely matched to antioxidant content of supplements and placebo (n = 30). Usual diet combined with antioxidant supplements or increased antioxidant-rich food intake was designed to approximately double daily habitual antioxidant intake. Antioxidant pills included carotenoids, mixed tocopherols, vitamin C, and selenium. Fasting blood samples were analyzed for inflammatory marker concentrations of interleukin-6, monocyte chemotactic protein-1, and soluble intercellular adhesion molecule-1. Participants in the intervention groups successfully doubled most antioxidants as verified by diet records and elevated blood concentrations in treatment groups. Baseline levels of inflammatory markers for the entire study group were 110 ± 65 pg/mL for monocyte chemotactic protein-1, 0.9 ± 0.7 pg/mL for interleukin-6, and 217 ± 56 ng/mL for soluble intercellular adhesion molecule-1 (means ± standard deviation) and did not differ by treatment arm. After 8 weeks, there were no significant within-group changes or between-group 8-week change differences in inflammatory marker concentrations. In conclusion, no beneficial effects were detected on the inflammatory markers investigated in response to antioxidants from foods or supplements. Copyright

  6. Induction of autophagy is essential for monocyte-macrophage differentiation

    OpenAIRE

    Zhang, Yan; Morgan, Michael J.; Chen, Kun; Choksi, Swati; Liu, Zheng-gang

    2012-01-01

    Monocytes are programmed to undergo apoptosis in the absence of stimulation. Stimuli that promote monocyte-macrophage differentiation not only cause cellular changes, but also prevent the default apoptosis of monocytes. In the present study, we demonstrate that autophagy is induced when monocytes are triggered to differentiate and that the induction of autophagy is pivotal for the survival and differentiation of monocytes. We also show that inhibition of autophagy results in apoptosis of cell...

  7. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    Science.gov (United States)

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  8. PU.1 is essential for CD11c expression in CD8(+/CD8(- lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    Directory of Open Access Journals (Sweden)

    Xue-Jun Zhu

    Full Text Available Dendritic cells (DCs regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+ lymphoid-derived DCs or B220(+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+ lymphoid-derived DCs, but not in B220(+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required

  9. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1.

    Science.gov (United States)

    Liu, Yanhua; Jiang, Jing; Wang, Xinjing; Zhai, Fei; Cheng, Xiaoxing

    2013-01-01

    Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (pmicroRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (pmicroRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3'UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3'UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.

  10. Transcriptional profiling of human monocytes identifies the inhibitory receptor CD300a as regulator of transendothelial migration.

    Directory of Open Access Journals (Sweden)

    Sharang Ghavampour

    Full Text Available Local inflammatory responses are characterized by the recruitment of circulating leukocytes from the blood to sites of inflammation, a process requiring the directed migration of leukocytes across the vessel wall and hence a penetration of the endothelial lining. To identify underlying signalling events and novel factors involved in these processes we screened for genes differentially expressed in human monocytes following their adhesion to and passage through an endothelial monolayer. Functional annotation clustering of the genes identified revealed an overrepresentation of those associated with inflammation/immune response, in particular early monocyte to macrophage differentiation. Among the gene products so far not implicated in monocyte transendothelial migration was the inhibitory immune receptor CD300a. CD300a mRNA and protein levels were upregulated following transmigration and engagement of the receptor by anti-CD300a antibodies markedly reduced monocyte transendothelial migration. In contrast, siRNA mediated downregulation of CD300a in human monocytes increased their rate of migration. CD300a colocalized and cosedimented with actin filaments and, when activated, caused F-actin cytoskeleton alterations. Thus, monocyte transendothelial migration is accompanied by an elevation of CD300a which serves an inhibitory function possibly required for termination of the actual transmigration.

  11. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    Science.gov (United States)

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Anti-inflammatory and anti-chemotactic effects of dietary flaxseed oil on CD8(+) T cell/adipocyte-mediated cross-talk.

    Science.gov (United States)

    Monk, Jennifer M; Liddle, Danyelle M; Brown, Morgan J; Zarepoor, Leila; De Boer, Anna A; Ma, David W L; Power, Krista A; Robinson, Lindsay E

    2016-03-01

    CD8(+) T cell/adipocyte paracrine interactions represent a critical step in the development of the obese inflammatory phenotype that is disrupted by long-chain n-3 PUFA. Our objective was to determine the effect of flaxseed-derived n-3 PUFA (α-linolenic acid) on these paracrine interactions. C57BL/6 mice were fed 3.5% flaxseed oil (FX) + 3.5% corn oil diet w/w or an isocaloric 7% corn oil w/w control diet (CON) for 3 wk. 3T3-L1 adipocytes and purified primary splenic CD8(+) T cells were cocultured at an obese cellular ratio (10% CD8(+) T cells) and LPS-stimulated (10 ng/mL mimicking obese circulating endotoxin levels) for 24 h. FX cocultures reduced (i) secreted IL-6, tumor necrosis factor α (TNF-α), macrophage chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), and RANTES (regulated on activation, normal T cell expressed and secreted) levels; (ii) activation of inflammatory transcription factors NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) p65 and signal transducer and activator of transcription-3 (STAT3); and (iii) RAW264.7 macrophage chemotaxis versus CON (p ≤ 0.05). Coculture of pre-inflamed adipocytes (10 ng/mL LPS, 24 h prior to CD8(+) T-cell addition) resulted in reduced secretion of IL-6, IL-1β, MCP-1, MCP-3, MIP-1β, and RANTES in FX cocultures versus CON (p ≤ 0.05). FX exerts an anti-chemotactic and anti-inflammatory effect on CD8(+) T cell/adipocyte paracrine interactions (cross-talk), which has the potential to mitigate macrophage chemotaxis which drives components of the obese phenotype. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis

    Science.gov (United States)

    Dawar, Farman Ullah; Tu, Jiagang; Xiong, Yang; Lan, Jiangfeng; Dong, Xing Xing; Liu, Xiaoling; Khattak, Muhammad Nasir Khan; Mei, Jie; Lin, Li

    2016-01-01

    Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA), a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase) activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS). The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals) at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics. PMID:27589721

  14. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco and Its Active Site for Chemotaxis

    Directory of Open Access Journals (Sweden)

    Farman Ullah Dawar

    2016-08-01

    Full Text Available Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA, a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS. The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics.

  15. Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response

    Science.gov (United States)

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Background Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues. PMID:25313845

  16. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  17. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism.

    Science.gov (United States)

    Umhau, John C; Schwandt, Melanie; Solomon, Matthew G; Yuan, Peixiong; Nugent, Allison; Zarate, Carlos A; Drevets, Wayne C; Hall, Samuel D; George, David T; Heilig, Markus

    2014-05-01

    Liver inflammation in alcoholism has been hypothesized to influence the development of a neuroinflammatory process in the brain characterized by neurodegeneration and altered cognitive function. Monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) elevations have been noted in the alcoholic brain at autopsy and may have a role in this process. We studied cerebrospinal fluid (CSF) levels of MCP-1 as well as interleukin-1β and tumor necrosis factor-α in 13 healthy volunteers and 28 alcoholics during weeks 1 and 4 following detoxification. Serum liver enzymes were obtained as markers of alcohol-related liver inflammation. Compared to healthy volunteers, MCP-1 levels were significantly higher in alcoholics both on day 4 and day 25 (p alcohol-induced liver inflammation, as defined by peripheral concentrations of GGT and AST/GOT. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. Monocyte Subsets in Schistosomiasis Patients with Periportal Fibrosis

    Directory of Open Access Journals (Sweden)

    Jamille Souza Fernandes

    2014-01-01

    Full Text Available A major issue with Schistosoma mansoni infection is the development of periportal fibrosis, which is predominantly caused by the host immune response to egg antigens. Experimental studies have pointed to the participation of monocytes in the pathogenesis of liver fibrosis. The aim of this study was to characterize the subsets of monocytes in individuals with different degrees of periportal fibrosis secondary to schistosomiasis. Monocytes were classified into classical (CD14++CD16−, intermediate (CD14++CD16+, and nonclassical (CD14+CD16++. The expressions of monocyte markers and cytokines were assessed using flow cytometry. The frequency of classical monocytes was higher than the other subsets. The expression of HLA-DR, IL-6, TNF-α, and TGF-β was higher in monocytes from individuals with moderate to severe fibrosis as compared to other groups. Although no differences were observed in receptors expression (IL-4R and IL-10R between groups of patients, the expression of IL-12 was lower in monocytes from individuals with moderate to severe fibrosis, suggesting a protective role of this cytokine in the development of fibrosis. Our data support the hypothesis that the three different monocyte populations participate in the immunopathogenesis of periportal fibrosis, since they express high levels of proinflammatory and profibrotic cytokines and low levels of regulatory markers.

  19. Monocyte activation, brain-derived neurotrophic factor (BDNF), and S100B in bipolar offspring: a follow-up study from adolescence into adulthood.

    Science.gov (United States)

    Mesman, Esther; Hillegers, Manon Hj; Ambree, Oliver; Arolt, Volker; Nolen, Willem A; Drexhage, Hemmo A

    2015-02-01

    There is increasing evidence that both immune and neurochemical alterations are involved in the pathogenesis of bipolar disorder; however, their precise role remains unclear. In this study, we aimed to evaluate neuro-immune changes in a prospective study on children of patients with bipolar disorder. Bipolar offspring, from the prospective Dutch bipolar offspring study (n = 140), were evaluated cross-sectionally within a longitudinal context at adolescence, young adulthood, and adulthood. We examined the expression of 44 inflammation-related genes in monocytes, the cytokines pentraxin 3 (PTX3), chemokine ligand 2 (CCL2), and interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) in the serum of bipolar offspring and healthy controls. During adolescence, bipolar offspring showed increased inflammatory gene expression in monocytes, high serum PTX3 levels, but normal CCL2 levels. BDNF levels were decreased, while S100B levels were normal. During young adulthood, monocyte activation remained, although to a lesser degree. Serum PTX3 levels remained high, and signs of monocyte migration became apparent through increased CCL2 levels. BDNF and S100B levels were not measured. At adulthood, circulating monocytes had lost their activation state, but CCL2 levels remained increased. Both BDNF and S100B were now increased. Abnormalities were independent of psychopathology state at all stages. This study suggests an aberrant neuro-immune state in bipolar offspring, which followed a dynamic course from adolescence into adulthood and was present irrespective of lifetime or future mood disorders. We therefore assumed that the aberrant neuro-immune state reflects a general state of vulnerability for mood disorders rather than being of direct predictive value. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Monocyte matrix metalloproteinase production in Type 2 diabetes and controls – a cross sectional study

    Directory of Open Access Journals (Sweden)

    Davies Isabel R

    2003-03-01

    Full Text Available Abstract Background Coronary plaque rupture may result from localised over expression of matrix metalloproteinases (MMPs within the plaque by infiltrating monocyte – macrophages. As MMP expression can be promoted by the modified lipoproteins, oxidative stress and hyperglycaemia that characterises Type 2 diabetes, we hypothesised that peripheral monocytes in these patients, exposed to these factors in vivo, would demonstrate increased MMP production compared to controls. Methods We examined peripheral venous monocyte expression of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1 in 18 controls and 22 subjects with Type 2 diabetes and no previous cardiovascular complications. Results No significant difference in MMP-1, 3 or 9 or TIMP-1 production was observed between control and diabetes groups. Conclusions Monocyte MMP-1, 3, and 9, and TIMP-1, production are not abnormal in Type 2 diabetes. This data cannot be extrapolated to monocyte – macrophage behaviour in the vessel wall, but it does suggest MMP and TIMP-1 expression prior to monocyte infiltration and transformation are not abnormal in Type 2 diabetes.

  1. HIV/SIV infection primes monocytes and dendritic cells for apoptosis.

    Directory of Open Access Journals (Sweden)

    Mireille Laforge

    2011-06-01

    Full Text Available Subversion or exacerbation of antigen-presenting cells (APC death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs. We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14(+ from SIV(+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV(+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV(+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection.

  2. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1.

    Directory of Open Access Journals (Sweden)

    Yanhua Liu

    Full Text Available Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB. In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (p<0.001. To understand whether microRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (p<0.001, suggesting that miR-582-5p could inhibit apoptosis of monocytes. To our knowledge, the role of miR-582-5p in regulating apoptosis of monocytes has not been reported so far. Systematic bioinformatics analysis indicated that FOXO1 might be a target gene for miR-582-5p and its 3'UTR contains potential binding sites for miR-582-5p. To determine whether miR-582-5p could influence FOXO1 expression, miR-582-5p mimics or negative control of microRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3'UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3'UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.

  3. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis.

    Science.gov (United States)

    Yamaguchi, Yukie; Kuwana, Masataka

    2013-02-01

    New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.

  4. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    Science.gov (United States)

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  5. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Lee, Dong Kun; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-01-01

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  6. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  7. Anti-Inflammatory Effect of Myristicin on RAW 264.7 Macrophages Stimulated with Polyinosinic-Polycytidylic Acid

    Directory of Open Access Journals (Sweden)

    Wansu Park

    2011-08-01

    Full Text Available Myristicin (1-allyl-5-methoxy-3,4-methylenedioxybenzene is an active aromatic compound found in nutmeg (the seed of Myristica fragrans, carrot, basil, cinnamon, and parsley. Myristicin has been known to have anti-cholinergic, antibacterial, and hepatoprotective effects, however, the effects of myristicin on virus-stimulated macrophages are not fully reported. In this study, the anti-inflammatory effect of myristicin on double-stranded RNA (dsRNA-stimulated macrophages was examined. Myristicin did not reduce the cell viability of RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Myristicin significantly inhibited the production of calcium, nitric oxide (NO, interleukin (IL-6, IL-10, interferon inducible protein-10, monocyte chemotactic protein (MCP-1, MCP-3, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP-1α, MIP-1β, and leukemia inhibitory factor in dsRNA [polyinosinic-polycytidylic acid]-induced RAW 264.7 cells (P < 0.05. In conclusion, myristicin has anti-inflammatory properties related with its inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-stimulated macrophages via the calcium pathway.

  8. The radioactive labeling of monocytes

    International Nuclear Information System (INIS)

    Ensing, G.J.

    1985-01-01

    With the aim of studying a possible relationship between circulating monocytes and Sternberg-Reed cells investigations were started on the specific labeling of monocytes. In this thesis the literature on the pertinent data has been reviewed and a series of experiments on the monocyte labeling procedure has been described. The principles of cell labeling with radioactive compounds were discussed. 1. Total separation of the particular cell population to be labeled and subsequent labeling with a non-specific radiopharmaceutical. 2. Specific cell labeling in a mixture of cell types based on a well defined affinity of the cell under study for the radiopharmaceutical used. Next the radionuclides that can be used for cell labeling purposes were discussed with special attention for 111 In and its chelates. The principles of radiodosimetry were also discussed shortly. This section was focussed on the radiation dose the labeled cells receive because of the intracellular localized radioactivity. The radiation burden is high in comparison to amounts of radiation known to affect cell viability. A newly developed method for labeling monocytes specifically by phagocytosis of 111 In-Fe-colloid without apparent loss of cells was described in detail. (Auth.)

  9. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    Science.gov (United States)

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  10. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    Science.gov (United States)

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  11. CXCR3-dependent CD4⁺ T cells are required to activate inflammatory monocytes for defense against intestinal infection.

    Directory of Open Access Journals (Sweden)

    Sara B Cohen

    Full Text Available Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4⁺ and CD8⁺ T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3⁻/⁻ mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4⁺ T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b⁺Ly6C/G⁺ inflammatory monocytes, recently reported to be major anti-Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3⁻/⁻ mice. Strikingly, adoptive transfer of wild-type but not Ifnγ⁻/⁻ CD4⁺ T lymphocytes into Cxcr3⁻/⁻ animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes.

  12. Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages.

    Directory of Open Access Journals (Sweden)

    Chiara Barisione

    Full Text Available The uremic toxin Indoxyl-3-sulphate (IS, a ligand of Aryl hydrocarbon Receptor (AhR, raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2 and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1, via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.

  13. [Changes of monocyte and monocyte-platelet aggregates in different subgroups of thrombotic events in patients with acute myocardial infarction during PCI].

    Science.gov (United States)

    Wang, Sheng; Sun, Cuifang; Liao, Wang; Wu, Zhongwei; Wang, Yudai; Huang, Xiuxian; Lu, Sijia; Dong, Xiaoli; Shuai, Fujie; Li, Bin

    2017-07-01

    Objective To investigate the impact of thrombotic events on the alterations of monocyte and monocyte-platelet aggregates (MPAs) in patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI). Methods Blood was collected before PCI for flow cytometry. Monocyte subsets and MPAs were detected by four-color platform (CDl4-APC, CDl6-PE-Cy7, CD86-PE and CD41-Alexa Fluor R 488). According to the expression of the platelet surface marker CD41, the number of monocyte subsets and MPAs was analyzed using the fluorescent microspheres of absolute counting tube. The Wilcoxon rank sum test and receiver operating characteristic (ROC) curve analysis were performed. Results CD14 + CD16 ++ monocytes in intraprocedural thrombotic events (IPTE) group were significantly fewer than those in non-IPTE group, and the percentage in total mononuclear cells decreased. Compared with non-IPTE group, MPA binding ratio and monocyte subset MPA binding ratio were significantly higher in IPTE group. ROC analysis showed that MPA binding ratio and subgroup MPA binding ratio had a better predictive value for IPTE in patients with AMI. Conclusion The CD14 + CD16 ++ monocytes in IPTE group were significantly fewer than those in the non-IPTE group. MPA binding ratio and MPA binding ratio of monocyte subsets were significantly higher in the IPTE group than in the non-IPTE group, so they have a good predictive value for IPTE in patients with AMI.

  14. Electroacupuncture decreases the progression of ovarian hyperstimulation syndrome in a rat model.

    Science.gov (United States)

    Chen, Li; Sun, Hai-Xiang; Xia, You-Bing; Sui, Liu-Cai; Zhou, Ji; Huang, Xuan; Zhou, Jing-Wei; Shao, Yi-Dan; Shen, Tao; Sun, Qin; Liang, Yuan-Jiao; Yao, Bing

    2016-05-01

    This study aimed to elucidate the effect of electroacupuncture treatment on preventing early ovarian hyperstimulation syndrome (OHSS) and the potential mechanisms involved using an induced rat model. The ovarian response was examined by measuring ovary weight, vascular permeability, levels of inflammation (interleukin-6), tumour necrosis factor alpha, chemokine ligand 2 (also known as monocyte chemoactic protein 1), vascular endothelial growth factor and hormone concentrations (oestradiol, progesterone, testosterone and prolactin). Sprague-Dawley female rats underwent ovarian stimulation to induce OHSS. Hyperstimulated rats received consecutive electroacupuncture treatment from 3 days before the beginning of pregnant mare serum gonadotrophin treatment or the time point of pregnant mare serum gonadotrophin treatment respectively, and last until 3 days after HCG administration. Electroacupuncture treatment reduced ovary weight and vascular permeability in hyperstimulated rats. Electroacupuncture treatment also reduced the levels of serum steroid hormones (progesterone and testosterone), inflammatory cytokines (interleukin-6, tumour necrosis factor alpha and monocyte chemotactic protein 1 and vascular endothelial growth factor in hyperstimulated rats. The results indicate that electroacupuncture can modulate endocrine hormone secretion and affect the secretion of inflammatory cytokines and vascular endothelial growth factor, and thus prevent the progress of OHSS. Electroacupuncture may provide a simple and effective method for the prevention and treatment of OHSS. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    Science.gov (United States)

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  16. Plasma Monocyte Chemoattractant Protein-1 Level as a Predictor of the Severity of Community-Acquired Pneumonia

    Directory of Open Access Journals (Sweden)

    Kok-Khun Yong

    2016-01-01

    Full Text Available Monocyte chemoattractant protein (MCP-1 increases in the serum of immunocompetent patients with community-acquired pneumonia (CAP. However, the correlation between the circulating level of MCP-1 and severity of CAP remains unclear. This study investigated differential changes in the plasma MCP-1 levels of patients with CAP before and after an antibiotic treatment and further analyzes the association between the CAP severity and MCP-1 levels. We measured the plasma MCP-1 levels of 137 patients with CAP and 74 healthy controls by using a commercial enzyme-linked immunosorbent assay. Upon initial hospitalization, Acute Physiology and Chronic Health Evaluation II (APACHE II; confusion, urea level, respiratory rate, blood pressure, and age of >64 years (CURB-65; and pneumonia severity index (PSI scores were determined for assessing the CAP severity in these patients. The antibiotic treatment reduced the number of white blood cells (WBCs and neutrophils as well as the level of C-reactive protein (CRP and MCP-1. The plasma MCP-1 level, but not the CRP level or WBC count, correlated with the CAP severity according to the PSI (r = 0.509, p < 0.001, CURB-65 (r = 0.468, p < 0.001, and APACHE II (r = 0.360, p < 0.001 scores. We concluded that MCP-1 levels act in the development of CAP and are involved in the severity of CAP.

  17. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro

    Science.gov (United States)

    Grün, Johanna L.; Manjarrez-Reyna, Aaron N.; Gómez-Arauz, Angélica Y.; Leon-Cabrera, Sonia; Bueno-Hernández, Nallely; Islas-Andrade, Sergio

    2018-01-01

    The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome. PMID:29850624

  18. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Johanna L. Grün

    2018-01-01

    Full Text Available The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL- 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL and stimulated with lipopolysaccharide (LPS. The nonclassical monocyte (NCM percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome.

  19. Strenuous physical exercise adversely affects monocyte chemotaxis

    DEFF Research Database (Denmark)

    Czepluch, Frauke S; Barres, Romain; Caidahl, Kenneth

    2011-01-01

    Physical exercise is important for proper cardiovascular function and disease prevention, but it may influence the immune system. We evaluated the effect of strenuous exercise on monocyte chemotaxis. Monocytes were isolated from blood of 13 young, healthy, sedentary individuals participating...... in a three-week training program which consisted of repeated exercise bouts. Monocyte chemotaxis and serological biomarkers were investigated at baseline, after three weeks training and after four weeks recovery. Chemotaxis towards vascular endothelial growth factor-A (VEGF-A) and transforming growth factor...

  20. Uric acid priming in human monocytes is driven by the AKT–PRAS40 autophagy pathway

    Science.gov (United States)

    Crişan, Tania O.; Cleophas, Maartje C. P.; Novakovic, Boris; Erler, Kathrin; van de Veerdonk, Frank L.; Stunnenberg, Hendrik G.; Netea, Mihai G.; Dinarello, Charles A.; Joosten, Leo A. B.

    2017-01-01

    Metabolic triggers are important inducers of the inflammatory processes in gout. Whereas the high serum urate levels observed in patients with gout predispose them to the formation of monosodium urate (MSU) crystals, soluble urate also primes for inflammatory signals in cells responding to gout-related stimuli, but also in other common metabolic diseases. In this study, we investigated the mechanisms through which uric acid selectively lowers human blood monocyte production of the natural inhibitor IL-1 receptor antagonist (IL-1Ra) and shifts production toward the highly inflammatory IL-1β. Monocytes from healthy volunteers were first primed with uric acid for 24 h and then subjected to stimulation with lipopolysaccharide (LPS) in the presence or absence of MSU. Transcriptomic analysis revealed broad inflammatory pathways associated with uric acid priming, with NF-κB and mammalian target of rapamycin (mTOR) signaling strongly increased. Functional validation did not identify NF-κB or AMP-activated protein kinase phosphorylation, but uric acid priming induced phosphorylation of AKT and proline-rich AKT substrate 40 kDa (PRAS 40), which in turn activated mTOR. Subsequently, Western blot for the autophagic structure LC3-I and LC3-II (microtubule-associated protein 1A/1B-light chain 3) fractions, as well as fluorescence microscopy of LC3-GFP–overexpressing HeLa cells, revealed lower autophagic activity in cells exposed to uric acid compared with control conditions. Interestingly, reactive oxygen species production was diminished by uric acid priming. Thus, the Akt–PRAS40 pathway is activated by uric acid, which inhibits autophagy and recapitulates the uric acid-induced proinflammatory cytokine phenotype. PMID:28484006

  1. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway.

    Science.gov (United States)

    Crişan, Tania O; Cleophas, Maartje C P; Novakovic, Boris; Erler, Kathrin; van de Veerdonk, Frank L; Stunnenberg, Hendrik G; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B

    2017-05-23

    Metabolic triggers are important inducers of the inflammatory processes in gout. Whereas the high serum urate levels observed in patients with gout predispose them to the formation of monosodium urate (MSU) crystals, soluble urate also primes for inflammatory signals in cells responding to gout-related stimuli, but also in other common metabolic diseases. In this study, we investigated the mechanisms through which uric acid selectively lowers human blood monocyte production of the natural inhibitor IL-1 receptor antagonist (IL-1Ra) and shifts production toward the highly inflammatory IL-1β. Monocytes from healthy volunteers were first primed with uric acid for 24 h and then subjected to stimulation with lipopolysaccharide (LPS) in the presence or absence of MSU. Transcriptomic analysis revealed broad inflammatory pathways associated with uric acid priming, with NF-κB and mammalian target of rapamycin (mTOR) signaling strongly increased. Functional validation did not identify NF-κB or AMP-activated protein kinase phosphorylation, but uric acid priming induced phosphorylation of AKT and proline-rich AKT substrate 40 kDa (PRAS 40), which in turn activated mTOR. Subsequently, Western blot for the autophagic structure LC3-I and LC3-II (microtubule-associated protein 1A/1B-light chain 3) fractions, as well as fluorescence microscopy of LC3-GFP-overexpressing HeLa cells, revealed lower autophagic activity in cells exposed to uric acid compared with control conditions. Interestingly, reactive oxygen species production was diminished by uric acid priming. Thus, the Akt-PRAS40 pathway is activated by uric acid, which inhibits autophagy and recapitulates the uric acid-induced proinflammatory cytokine phenotype.

  2. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  3. P2X7 Receptor Expression in Peripheral Blood Monocytes Is Correlated With Plasma C-Reactive Protein and Cytokine Levels in Patients With Type 2 Diabetes Mellitus: a Preliminary Report.

    Science.gov (United States)

    Wu, Hong; Nie, Yijun; Xiong, Huangui; Liu, Shuangmei; Li, Guilin; Huang, An; Guo, Lili; Wang, Shouyu; Xue, Yun; Wu, Bing; Peng, Lichao; Song, Miaomiao; Li, Guodong; Liang, Shangdong

    2015-12-01

    Chronic inflammation plays a major role in development of type 2 diabetes mellitus (T2DM). C-reactive protein (CRP) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) are directly involved in the occurrence of insulin resistance. Increased extracellular ATP levels can amplify the inflammatory response in vivo via the P2X7 receptor. The present study aimed to assess the relationship between P2X7 receptor expression in human peripheral blood monocytes and plasma levels of TNF-α, IL-1β, and CRP in T2DM patients. The results showed the association of increased P2X7 receptor expression of monocytes with high serum CRP, TNF-α, and IL-1β levels. TNF-α and IL-1β levels were lowest in healthy subjects; in T2DM patients, these inflammatory markers were less abundant in individuals with normal CRP levels compared to those with high CRP contents. In contrast, IL-10 levels in T2DM patients with high CRP levels were dramatically decreased. P2X7 receptor expression in monocytes from T2DM patients with high CRP levels was significantly increased in comparison with healthy individuals and T2DM patients with normal CRP levels. These findings indicated that P2X7 receptor in peripheral blood monocytes may be involved in the pathological changes of T2DM, particularly affecting patients with high CRP levels.

  4. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    2010-10-01

    Full Text Available Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  5. Effects of Porphyromonas gingivalis LipopolysaccharideTolerized Monocytes on Inflammatory Responses in Neutrophils.

    Directory of Open Access Journals (Sweden)

    Xiang-Qing Zhu

    Full Text Available Periodontitis is a chronic inflammatory disease induced by bacteria. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, which is termed endotoxin tolerance. The role and mechanism of lipopolysaccharide (LPS-tolerized monocytes in inflammatory responses in neutrophils are currently unclear. Here, conditioned supernatants were collected from THP-1 cells treated with or without repeated 1 μg/ml Porphyromonas gingivalis (P.gingivalis LPS. The chemotactic response of freshly isolated neutrophils recruited by supernatants was determined by a transwell migration assay, which demonstrated a reduced migration of neutrophils stimulated with supernatants from tolerized THP-1 cells in comparison to non-tolerized THP-1 cells. In addition, there was a marked increase in reactive oxygen species (ROS generation and a significant decrease in Caspase 3 activities in neutrophils treated with supernatants from THP-1 cells that were treated repeatedly with P.gingivalis LPS in comparison to single treatment. A cytokine antibody array was then used to assess cytokine expression patterns in THP-1 cells. In tolerized THP-1 cells, 43 cytokine (43/170 expression levels were decreased, including chemokine ligand 23 (CCL23 and IFN-γ, while 11 cytokine (11/170 expression levels were increased, such as death receptor 6 (DR6. Furthermore, there was decreased production of IFN-γ and epithelial neutrophil activating peptide-78 (ENA-78 in THP-1 cells after stimulation with repeated P. gingivalis LPS in comparison to single challenge, which was confirmed by ELISA. Therefore, P.gingivalis LPS- tolerized THP-1 cells were able to depress neutrophil chemotaxis and apoptosis, and contribute to respiratory burst, which might be related to the changes in cytokine expression patterns in THP-1 cells.

  6. Monocyte function is severely impaired by the fluorochrome calcein acetomethylester

    International Nuclear Information System (INIS)

    Czepluch, Frauke S.; Olieslagers, Serve J.F.; Waltenberger, Johannes

    2007-01-01

    For rapid chemotaxis quantification, cell prelabelling is often performed with the fluorochrome calcein acetomethylester (calcein AM). We investigated whether calcein AM-prelabelling is reliable for monocyte migration analysis. Human monocytes were either preexposed to calcein AM or unlabelled. Monocyte migration towards the potent chemoattractants transforming growth factor-β1 (TGF-β1) and N-formyl-Methionin-Leucin-Phenylalanin (fMLP) was assessed using a 48-well micro-chemotaxis chamber. For quantification, cells were visualized by light microscopy and counted. Surprisingly, random migration of calcein AM-prelabelled cells was significantly impaired compared to the unlabelled control. Accordingly, monocyte chemotaxis towards either TGF-β1 or fMLP dramatically declined. Adherence of calcein AM-labelled monocytes on plastic was also significantly decreased compared to control cells. As adhesion is regarded as an essential component of monocyte migration, the reduced migration observed in calcein AM-labelled monocytes might be explained by a fluorochrome-induced adhesion defect. Therefore, use of the fluorochrome calcein AM cannot be recommended for functional testing of monocytes

  7. Phenotypic heterogeneity of peripheral monocytes in healthy dogs.

    Science.gov (United States)

    Gibbons, Natalie; Goulart, Michelle R; Chang, Yu-Mei; Efstathiou, Konstantinos; Purcell, Robert; Wu, Ying; Peters, Laureen M; Turmaine, Mark; Szladovits, Balazs; Garden, Oliver A

    2017-08-01

    Monocytes are key cells of the innate immune system. Their phenotypic and functional roles have been investigated in humans, mice and other animals, such as the rat, pig and cow. To date, detailed phenotypic analysis of monocytes has not been undertaken in dogs. Two important surface markers in human monocytes are CD14 and MHC class II (MHC II). By flow cytometry, we demonstrated that canine monocytes can be subdivided into three separate populations: CD14 pos MHC II neg , CD14 pos MHC II pos and CD14 neg MHC II pos . Both light and transmission electron microscopy confirmed the monocytic identity of all three populations. The CD14 pos MHC II neg population could be distinguished on an ultrastructural level by their smaller size, the presence of more numerous, larger granules, and more pseudopodia than both of the other populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    Science.gov (United States)

    Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-03-01

    We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).

  9. Atherogenic ω-6 Lipids Modulate PPAR- EGR-1 Crosstalk in Vascular Cells

    Directory of Open Access Journals (Sweden)

    Jia Fei

    2011-01-01

    Full Text Available Atherogenic ω-6 lipids are physiological ligands of peroxisome proliferator-activated receptors (PPARs and elicit pro- and antiatherogenic responses in vascular cells. The objective of this study was to investigate if ω-6 lipids modulated the early growth response-1 (Egr-1/PPAR crosstalk thereby altering vascular function. Rat aortic smooth muscle cells (RASMCs were exposed to ω-6 lipids, linoleic acid (LA, or its oxidized form, 13-HPODE (OxLA in the presence or absence of a PPARα antagonist (MK886 or PPARγ antagonist (GW9662 or PPAR-specific siRNA. Our results demonstrate that ω-6 lipids, induced Egr-1 and monocyte chemotactic protein-1 (MCP-1 mRNA and protein levels at the acute phase (1–4 hrs when PPARα was downregulated and at subacute phase (4–12 hrs by modulating PPARγ, thus resulting in altered monocyte adhesion to RASMCs. We provide novel insights into the mechanism of action of ω-6 lipids on Egr-1/PPAR interactions in vascular cells and their potential in altering vascular function.

  10. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  11. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study.

    Science.gov (United States)

    Floris, S; Blezer, E L A; Schreibelt, G; Döpp, E; van der Pol, S M A; Schadee-Eestermans, I L; Nicolay, K; Dijkstra, C D; de Vries, H E

    2004-03-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive cellular infiltration in the development of acute experimental allergic encephalomyelitis (EAE), the animal correlate of multiple sclerosis. Cerebrovascular leakage and monocytes infiltrates were separately monitored by quantitative in vivo MRI during the course of the disease. Magnetic resonance enhancement of the contrast agent gadolinium diethylenetriaminepentaacetate (Gd-DTPA), reflecting vascular leakage, occurred concomitantly with the onset of neurological signs and was already at a maximal level at this stage of the disease. Immunohistochemical analysis also confirmed the presence of the serum-derived proteins such as fibrinogen around the brain vessels early in the disease, whereas no cellular infiltrates could be detected. MRI further demonstrated that Gd-DTPA leakage clearly preceded monocyte infiltration as imaged by the contrast agent based on ultra small particles of iron oxide (USPIO), which was maximal only during full-blown EAE. Ultrastructural and immunohistochemical investigation revealed that USPIOs were present in newly infiltrated macrophages within the inflammatory lesions. To validate the use of USPIOs as a non-invasive tool to evaluate therapeutic strategies, EAE animals were treated with the immunomodulator 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitor, lovastatin, which ameliorated clinical scores. MRI showed that the USPIO load in the brain was significantly diminished in lovastatin-treated animals. Data indicate that cerebrovascular leakage and monocytic trafficking into the brain are two distinct processes in the development of inflammatory lesions during multiple sclerosis, which can

  12. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  13. Effects of transforming growth factor-beta on long-term human cord blood monocyte cultures

    International Nuclear Information System (INIS)

    Orcel, P.; Bielakoff, J.; De Vernejoul, M.C.

    1990-01-01

    Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes

  14. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  15. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Science.gov (United States)

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite. PMID:29472914

  16. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Directory of Open Access Journals (Sweden)

    Helena Messlinger

    2018-01-01

    reduced the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite.

  17. Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1β secretion in response to anti-MPO antibodies.

    LENUS (Irish Health Repository)

    O'Brien, Eóin C

    2015-01-01

    ANCA vasculitis encompasses several autoimmune conditions characterised by destruction of small vessels, inflammation of the respiratory tract and glomerulonephritis. Most patients harbour autoantibodies to myeloperoxidase (MPO) or proteinase 3 (PR3). Clinical and experimental data suggest that pathogenesis is driven by ANCA-mediated activation of neutrophils and monocytes. We investigated a potential role for distinct monocyte subsets. We found that the relative proportion of intermediate monocytes is increased in patients versus control individuals, and both MPO and PR3 are preferentially expressed on these cells. We demonstrate that MPO and PR3 are expressed independently of each other on monocytes and that PR3 is not associated with CD177. MPO expression correlates with that of Fc receptor CD16 on intermediate monocytes. Monocyte subsets respond differently to antibodies directed against MPO and PR3, with anti-MPO but not anti-PR3 leading to increased IL-1β, IL-6 and IL-8 production. In concordance with the observed higher surface expression of MPO on intermediate monocytes, this subset produces the highest quantity of IL-1β in response to anti-MPO stimulation. These data suggest that monocytes, specifically, the intermediate subset, may play a role in ANCA vasculitis, and also indicate that substantial differences exist between the effect of anti-MPO and anti-PR3 antibodies on these cells.

  18. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  19. Regulation of EMMPRIN (CD147) on monocyte subsets in patients with symptomatic coronary artery disease.

    Science.gov (United States)

    Sturhan, Henrik; Ungern-Sternberg, Saskia N I v; Langer, Harald; Gawaz, Meinrad; Geisler, Tobias; May, Andreas E; Seizer, Peter

    2015-06-01

    The role of individual monocyte subsets in inflammatory cardiovascular diseases is insufficiently understood. Although the Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) regulates important processes for inflammation such as MMP-release, its expression and regulation on monocyte subsets has not been characterized. In this clinical study, blood was obtained from 80 patients with stable coronary artery disease (CAD), 49 with acute myocardial infarction (AMI) and 34 healthy controls. Monocytes were divided into 3 subsets: CD14(++)CD16(-) (low), CD14(++)CD16(+) (intermediate), CD14(+)CD16(++) (high) according to phenotypic markers analyzed by flow cytometry. Surface expression of EMMPRIN was evaluated and compared with CD36 and CD47 expression. In all patients, EMMPRIN expression was significantly different among monocyte subsets with the highest expression on "classical" CD14(++)CD16(-) monocytes. EMMPRIN was upregulated on all monocyte subsets in patients with AMI as compared to patients with stable CAD. Notably, neither CD47 nor CD36 revealed a significant difference in patients with AMI compared to patients with stable CAD. EMMPRIN could serve as a marker for classical monocytes, which is upregulated in patients with acute myocardial infarction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats

    DEFF Research Database (Denmark)

    Schmal, H; Shanley, T P; Jones, M L

    1996-01-01

    Macrophage inflammatory protein-2 (MIP-2) is a C-X-C chemokine that possesses chemotactic activity for neutrophils. Rat MIP-2 was cloned and expressed as a 7.9-kDa peptide that exhibited dose-dependent neutrophil chemotactic activity at concentrations from 10 to 250 nM. Rabbit polyclonal Ab to th...... instillation of LPS was found to be MIP-2-dependent. These data indicate that MIP-2 plays a significant role in LPS-induced inflammatory response in rat lungs and is required for the full recruitment of neutrophils....

  1. The effects of exogenous fatty acids and niacin on human monocyte-macrophage plasticity.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Rodriguez, Dolores; Cardelo, Magdalena P; Naranjo, Maria C; Bermudez, Beatriz; Abia, Rocio; Muriana, Francisco J G; Lopez, Sergio

    2017-08-01

    Macrophage plasticity allows adapting to different environments, having a dual activity in inflammatory-related diseases. Our hypothesis is that the type of dietary fatty acids into human postprandial triglyceride-rich lipoproteins (TRLs), alone or in combination with niacin (vitamin B3), could modulate the plasticity of monocytes-macrophages. We isolated TRLs at the postprandial peak from blood samples of healthy volunteers after the ingestion of a meal rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). Autologous monocytes isolated at fasting were first induced to differentiate into naïve macrophages. We observed that postprandial TRL-MUFAs, particularly in combination with niacin, enhance competence to monocytes to differentiate and polarise into M2 macrophages. Postprandial TRL-SFAs made polarised macrophages prone to an M1 phenotype. In contrast to dietary SFAs, dietary MUFAs in the meals plus immediate-release niacin primed circulating monocytes for a reduced postprandial pro-inflammatory profile. Our study underlines a role of postprandial TRLs as a metabolic entity in regulating the plasticity of the monocyte-macrophage lineage and also brings an understanding of the mechanisms by which dietary fatty acids are environmental factors fostering the innate immune responsiveness in humans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Vascular endothelial growth factor (VEGF and monocyte chemoattractant protein (MCP-1 levels unaltered in symptomatic atherosclerotic carotid plaque patients from North India

    Directory of Open Access Journals (Sweden)

    Dheeraj eKhurana

    2013-04-01

    Full Text Available We aimed to identify the role of vascular endothelial growth factor(VEGF and monocyte chemoattractant protein(MCP-1 as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay(ELISA. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of monocyte chemoattractant protein-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis(p<0.05. Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountaineer region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at plain region. We conclude that the pathogenesis of carotid plaques may progress independent of these inflammatory molecules. In parallel, risk factor analysis indicates hypertension, diabetes and sedentary lifestyle as the most

  3. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models

    Science.gov (United States)

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-01-01

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA. PMID:28225075

  4. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials.

    Science.gov (United States)

    Bhattacharjee, Maumita; Schultz-Thater, Elke; Trella, Emanuele; Miot, Sylvie; Das, Sanskrita; Loparic, Marko; Ray, Alok R; Martin, Ivan; Spagnoli, Giulio C; Ghosh, Sourabh

    2013-11-01

    We have investigated monocyte and T cell responsiveness to silk based biomaterials of different physico-chemical characteristics. Here we report that untransformed CD14+ human monocytes respond to overnight exposure to silk fibroin-based biomaterials in tridimensional form by IL-1β and IL-6, but not IL-10 gene expression and protein production. In contrast, fibroin based materials in bidimensional form are unable to stimulate monocyte responsiveness. The elicitation of these effects critically requires contact between biomaterials and responding cells, is not sustained and becomes undetectable in longer term cultures. We also observed that NF-κβ and p38 MAP kinase play key roles in monocyte activation by silk-based biomaterials. On the other hand, fibroin based materials, irrespective of their physico-chemical characteristics appeared to be unable to induce the activation of peripheral blood T cells from healthy donors, as evaluated by the expression of activation markers and IFN-γ gene. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  6. Molecular mechanisms that underlie the dynamic adaptation of innate monocyte memory to varying stimulant strength of TLR ligands

    Directory of Open Access Journals (Sweden)

    Ruoxi Yuan

    2016-11-01

    Full Text Available In adaptation to rising stimulant strength, innate monocytes can be dynamically programmed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programming may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS, the model stimulant of Toll-Like-Receptor 4 (TLR4, we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor IRF5 and reduced levels of transcriptional modulator BLIMP-1. Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  7. Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals.

    Directory of Open Access Journals (Sweden)

    Nereida Valero

    Full Text Available Changes in immune response during lifespan of man are well known. These changes involve decreased neonatal and elderly immune response. In addition, it has been shown a relationship between immune and oxidative mechanisms, suggesting that altered immune response could be associated to altered oxidative response. Increased expression of nitric oxide (NO has been documented in dengue and in monocyte cultures infected with different types of dengue virus. However, there is no information about the age-dependent NO oxidative response in humans infected by dengue virus. In this study, monocyte cultures from neonatal, elderly and adult individuals (n = 10 each group were infected with different dengue virus types (DENV- 1 to 4 and oxidative/antioxidative responses and apoptosis were measured at days 1 and 3 of culture. Increased production of NO, lipid peroxidation and enzymatic and nonenzymatic anti-oxidative responses in dengue infected monocyte cultures were observed. However, neonatal and elderly monocytes had lower values of studied parameters when compared to those in adult-derived cultures. Apoptosis was present in infected monocytes with higher values at day 3 of culture. This reduced oxidant/antioxidant response of neonatal and elderly monocytes could be relevant in the pathogenesis of dengue disease.

  8. MONOCYTES AND MACROPHAGES IN PREGNANCY AND PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    2014-06-01

    Full Text Available Preeclampsia is an important complication in pregnancy, characterized byhypertension and proteinuria in the second half of pregnancy. Generalizedactivation of the inflammatory response is thought to play a role in thepathogenesis of preeclampsia. Monocytes may play a central role in thisinflammatory response. Monocytes are short lived cells, that mature in thecirculation and invade into tissues upon an inflammatory stimulus anddevelop into macrophages. Macrophages are abundantly present in theendometrium and play a role in implantation and placentation in normalpregnancy. In preeclampsia, these macrophages appear to be present in largernumbers and are also activated. In the present review we focused on the roleof monocytes and macrophages in the pathophysiology of preeclampsia.

  9. Treatment of platelets with riboflavin and ultraviolet light mediates complement activation and suppresses monocyte interleukin-12 production in whole blood.

    Science.gov (United States)

    Loh, Y S; Dean, M M; Johnson, L; Marks, D C

    2015-11-01

    Pathogen inactivation (PI) and storage may alter the immunomodulatory capacity of platelets (PLTs). The aim of this study was to examine the effect of PI (Riboflavin and ultraviolet light treatment) and storage on the capacity of PLTs to induce cytokine responses in recipient inflammatory cells. A pool and split design was used to prepare untreated and PI-treated buffy coat-derived platelet concentrates (PCs). Samples were taken on days 2 and 7 postcollection and incubated with ABO/RhD-matched fresh whole blood for 6 h with or without lipopolysaccharide (LPS). The intracellular production of IP-10, MCP-1, MIP-1α, IL-8, IL-6, IL-10, IL-12, TNF-α and MIP-1β in monocytes and neutrophils was assessed using flow cytometry. Complement proteins in PLT supernatants were measured using a cytometric bead array. PLTs and PLT supernatant (both untreated and PI-treated) resulted in modulation of intracellular MIP-1β and IL-12 production in monocytes. Compared to untreated PLTs, PI-treated PLTs resulted in significantly lower LPS-induced monocyte IL-12 production (day 7). The concentration of C3a and C5a (and their desArg forms) was significantly increased in PLT supernatants following PI. PI results in decreased LPS-induced monocyte IL-12 production and increased complement activation. The association between platelet-induced complement activation and IL-12 production warrants further investigation. © 2015 International Society of Blood Transfusion.

  10. CD14CD16 Monocyte Subset Levels in Heart Failure Patients

    Directory of Open Access Journals (Sweden)

    Chiara Barisione

    2010-01-01

    Full Text Available Our aim was to define the distribution of monocyte subsets in a cohort of congestive heart failure (CHF patients, to verify whether increased severity of CHF is linked to the expansion of specific monocyte subsets, and finally to investigate the relationship between monocyte subset relative frequencies, laboratory parameters of inflammation, and monocyte ACE expression.

  11. Increased Expression of CD200 on Circulating CD11b+ Monocytes in Patients with Neovascular Age-related Macular Degeneration

    DEFF Research Database (Denmark)

    Singh, Amardeep; Falk, Mads K; Hviid, Thomas V F

    2013-01-01

    OBJECTIVE: Dysregulation of retinal microglial activity has been implicated in the pathogenesis of neovascular age-related macular degeneration. Microglia activity can be regulated through the membrane protein CD200 and its corresponding receptor, the CD200 receptor (CD200R). Because both...... with neovascular age-related macular degeneration (AMD) and 44 age-matched controls without AMD. METHODS: The participants were aged 60 years or older, had no history of immune dysfunction or cancer, and were not receiving immune-modulating therapy. All participants were subjected to a structured interview......: Patients with neovascular AMD had a higher percentage of CD11b+CD200+ monocytes and CD200+ monocytes compared with controls. Multiple regression analysis revealed that the intergroup differences observed were independent of age. Moreover, an age-related increment in CD200 expression on monocytes...

  12. Human platelet lysate is a successful alternative serum supplement for propagation of monocyte-derived dendritic cells.

    Science.gov (United States)

    Švajger, Urban

    2017-04-01

    Clinical protocols for dendritic cell (DC) generation from monocytes require the use of animal serum-free supplements. Serum-free media can also require up to 1% of serum supplementation. In addition, recommendations based on the 3Rs (Refinement, Reduction, Replacement) principle also recommend the use of non-animal sera in in vitro studies. The aim of this study was to explore the potential use of platelet lysate (PL) for generation of optimally differentiated DCs from monocytes. Cells were isolated from buffy coats from healthy volunteers using immunomagnetic selection. DCs were differentiated in RPMI1640 supplemented with either 10% fetal bovine serum (FBS), 10% AB serum or 10% PL with the addition of granulocyte monocyte colony stimulating factor and interleukin-4. Generated DCs were assessed for their morphology, viability, endocytotic capacity, surface phenotype (immature, mature and tolerogenic DCs) and activation of important signaling pathways. DC function was evaluated on the basis of their allostimulatory capacity, cytokine profile and ability to induce different T-helper subsets. DCs generated with PL displayed normal viability, morphology and endocytotic capacity. Their differentiation and maturation phenotype was comparable to FBS-cultured DCs. They showed functional plasticity and up-regulated tolerogenic markers in response to their environment. PL-cultured mature DCs displayed unhindered allostimulatory potential and the capacity to induce Th1 responses. The use of PL allowed for activation of crucial signaling proteins associated with DC differentiation and maturation. This study demonstrates for the first time that human PL represents a successful alternative to FBS in differentiation of DCs from monocytes. DCs display the major phenotypic and functional characteristics compared with existing culture protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Differential induction from X-irradiated human peripheral blood monocytes to dendritic cells

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Takahashi, Kenji; Monzen, Satoru; Kashiwakura, Ikuo

    2008-01-01

    Dendritic cells (DCs) are a type of antigen-presenting cell which plays an essential role in the immune system. To clarify the influences of ionizing radiation on the differentiation to DCs, we focused on human peripheral blood monocytes and investigated whether X-irradiated monocytes can differentiate into DCs. The non-irradiated monocytes and 5 Gy-irradiated monocytes were induced into immature DCs (iDCs) and mature DCs (mDCs) with appropriate cytokine stimulation, and the induced cells from each monocyte expressed each DC-expressing surface antigen such as CD40, CD86 and HLA-DR. However, the expression levels of CD40 and CD86 on the iDCs derived from the 5 Gy-irradiated monocytes were higher than those of iDCs derived from non-irradiated monocytes. Furthermore, the mDCs derived from 5 Gy-irradiated monocytes had significantly less ability to stimulate allogeneic T cells in comparison to the mDCs derived from non-irradiated monocytes. There were no significant differences in the phagocytotic activity of the iDCs and cytokines detected in the supernatants conditioned by the DCs from the non-irradiated and irradiated monocytes. These results suggest that human monocytes which are exposed to ionizing radiation can thus differentiate into DCs, but there is a tendency that X-irradiation leads to an impairment of the function of DCs. (author)

  14. Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols

    Directory of Open Access Journals (Sweden)

    Yuji Naito

    2004-01-01

    Full Text Available Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols

  15. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    Science.gov (United States)

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  16. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  17. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  18. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  19. Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis.

    Directory of Open Access Journals (Sweden)

    Rafik Menasria

    Full Text Available The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1 encephalitis (HSE. To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2 x 10(6 plaque forming units. Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P < 0.05 and "Ly6C hi" inflammatory monocytes (P < 0.001 significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P < 0.05 for inflammatory monocytes compared to non-infected controls to reach baseline levels on day 10 following infection. The percentage of "Ly6C low" patrolling monocytes significantly increased (P < 0.01 at a later time point (day 8, which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus

  20. Characterization of a proteolytically stable multifunctional host defense peptidomimetic

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Haney, Evan F; Franzyk, Henrik

    2013-01-01

    The in vitro activity of a host defense peptidomimetic (HDM-4) was investigated. The compound exhibited an antimicrobial activity profile against a range of Gram-negative bacteria. HDM-4 permeabilized the outer membrane and partly depolarized the inner membrane at its minimal inhibitory...... concentration (MIC). Moreover, it was demonstrated that HDM-4 was distributed widely in the bacterial cell at lethal concentrations, and that it could bind to DNA. It was confirmed that the multimodal action of HDM-4 resulted in it being less likely to lead to resistance development as compared to single......-target antibiotics. HDM-4 exhibited multispecies anti-biofilm activity at sub-MIC levels. Furthermore, HDM-4 modulated the immune response by inducing the release of the chemoattractants interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), and MCP-3 from human peripheral blood mononuclear cells. In addition...

  1. A fragment of alpha-actinin promotes monocyte/macrophage maturation in vitro.

    Science.gov (United States)

    Luikart, S; Wahl, D; Hinkel, T; Masri, M; Oegema, T

    1999-02-01

    Conditioned media (CM) from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix contains a factor that induces macrophage-like maturation of HL-60 cells. This factor was purified from the CM of HL-60 cells grown on bone marrow stroma by ammonium sulfate precipitation, then sequential chromatography on DEAE, affi-gel blue affinity, gel exclusion, and wheat germ affinity columns, followed by C-4 reverse phase HPLC, and SDS-PAGE. The maturation promoting activity of the CM was identified in a single 31 kD protein. Amino acid sequence analysis of four internal tryptic peptides of this protein confirmed significant homology with amino acid residues 48-60, 138-147, 215-220, and 221-236 of human cytoskeletal alpha-actinin. An immunoaffinity purified rabbit polyclonal anti-chicken alpha-actinin inhibited the activity of HL-60 conditioned media. A 27 kD amino-terminal fragment of alpha-actinin produced by thermolysin digestion of chicken gizzard alpha-actinin, but not intact alpha-actinin, had maturation promoting activity on several cell types, including blood monocytes, as measured by lysozyme secretion and tartrate-resistant acid phosphatase staining. We conclude that an extracellular alpha-actinin fragment can promote monocyte/macrophage maturation. This represents the first example of a fragment of a cytoskeletal component, which may be released during tissue remodeling and repair, playing a role in phagocyte maturation.

  2. Wound healing activity and mechanisms of action of an antibacterial protein from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus.

    Directory of Open Access Journals (Sweden)

    Ramar Perumal Samy

    Full Text Available Basic phospholipase A2 was identified from the venom of the eastern diamondback rattlesnake. The Crotalus adamanteus toxin-II (CaTx-II induced bactericidal effects (7.8 µg/ml on Staphylococcus aureus, while on Burkholderia pseudomallei (KHW, and Enterobacter aerogenes were killed at 15.6 µg/ml. CaTx-II caused pore formation and membrane damaging effects on the bacterial cell wall. CaTx-II was not cytotoxic on lung (MRC-5, skin fibroblast (HEPK cells and in mice. CaTx-II-treated mice showed significant wound closure and complete healing by 16 days as compared to untreated controls (**P<0.01. Histological examination revealed enhanced collagen synthesis and neovascularization after treatment with CaTx-II versus 2% Fusidic Acid ointment (FAO treated controls. Measurement of tissue cytokines revealed that interleukin-1 beta (IL-1β expression in CaTx-II treated mice was significantly suppressed versus untreated controls. In contrast, cytokines involved in wound healing and cell migration i.e., monocyte chemotactic protein-1 (MCP-1, fibroblast growth factor-basic (FGF-b, chemokine (KC, granulocyte-macrophage colony-stimulating factor (GM-CSF were significantly enhanced in CaTx-II treated mice, but not in the controls. CaTx-II also modulated nuclear factor-kappa B (NF-κB activation during skin wound healing. The CaTx-II protein highlights distinct snake proteins as a potential source of novel antimicrobial agents with significant therapeutic application for bacterial skin infections.

  3. Osteopontin Prevents Monocyte Recirculation and Apoptosis

    OpenAIRE

    Burdo, Tricia H.; Wood, Malcolm R.; Fox, Howard S.

    2007-01-01

    Cells of the monocyte/macrophage lineage have been shown to be the principal targets for productive HIV-1 replication within the central nervous system. In addition, HIV-1-associated dementia (HAD) has been shown to correlate with macrophage abundance in the brain. While increased entry of monocytes into the brain is thought to initiate this process, mechanisms that prevent macrophage egress from the brain and means that prevent macrophage death may also contribute to cell accumulation. We hy...

  4. Comprehensive exploration of the effects of miRNA SNPs on monocyte gene expression.

    Directory of Open Access Journals (Sweden)

    Nicolas Greliche

    Full Text Available We aimed to assess whether pri-miRNA SNPs (miSNPs could influence monocyte gene expression, either through marginal association or by interacting with polymorphisms located in 3'UTR regions (3utrSNPs. We then conducted a genome-wide search for marginal miSNPs effects and pairwise miSNPs × 3utrSNPs interactions in a sample of 1,467 individuals for which genome-wide monocyte expression and genotype data were available. Statistical associations that survived multiple testing correction were tested for replication in an independent sample of 758 individuals with both monocyte gene expression and genotype data. In both studies, the hsa-mir-1279 rs1463335 was found to modulate in cis the expression of LYZ and in trans the expression of CNTN6, CTRC, COPZ2, KRT9, LRRFIP1, NOD1, PCDHA6, ST5 and TRAF3IP2 genes, supporting the role of hsa-mir-1279 as a regulator of several genes in monocytes. In addition, we identified two robust miSNPs × 3utrSNPs interactions, one involving HLA-DPB1 rs1042448 and hsa-mir-219-1 rs107822, the second the H1F0 rs1894644 and hsa-mir-659 rs5750504, modulating the expression of the associated genes.As some of the aforementioned genes have previously been reported to reside at disease-associated loci, our findings provide novel arguments supporting the hypothesis that the genetic variability of miRNAs could also contribute to the susceptibility to human diseases.

  5. Niacin results in reduced monocyte adhesion in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Tavintharan, S; Woon, K; Pek, L T; Jauhar, N; Dong, X; Lim, S C; Sum, C F

    2011-03-01

    Patients with type 2 diabetes have increased expression of cell adhesion molecules (CAMs). CAMs and monocyte adhesion mediate essential processes in atherogenesis. It remains unclear if monocytes from patients on niacin have reduced adhesion function. We studied the variation of monocyte adhesion in patients with type 2 diabetes and low HDL-cholesterol, taking either extended release niacin (Niaspan®, Abbott Laboratories) or controls not on niacin. Biochemical parameters including adiponectin, CAMs and fresh monocytes from whole blood for adhesion assays, were studied at baseline and 12-weeks. Niacin 1500 mg daily raised HDL-cholesterol from 0.8 mmol/l (95% CI: 0.7-0.9) to 0.9 mmol/l (95% CI: 0.8-1.1), p=0.10, and significantly reduced PECAM-1 by 24.9% (95% CI: 10.9-39.0; p<0.05), increased adiponectin by 30.5% (95% CI: 14.1-47.0; p<0.05), with monocyte adhesion reduced by 9.2% (95%CI: 0.7-17.7; p<0.05) in endothelial cells treated in basal conditions, and 7.8% (95% CI: 3.1-12.5; p<0.05) after TNF-α stimulation. Monocytes isolated from patients on niacin had reduced adhesion to endothelial cells. Our findings suggest niacin has broad range of effects apart from lipid-modification, and these could be important in cardiovascular risk reduction. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia

    Science.gov (United States)

    Monocyte activation and migration into the arterial wall are key events in atherogenesis associated with hypercholesterolemia. CD11c/CD18, a beta2 integrin expressed on human monocytes and a subset of mouse monocytes, has been shown to play a distinct role in human monocyte adhesion on endothelial c...

  7. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes.

    Science.gov (United States)

    Evani, Shankar J; Dallo, Shatha F; Murthy, Ashlesh K; Ramasubramanian, Anand K

    2013-09-01

    Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae -infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae -infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm 2 for 1 h on C. pneumoniae -infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.

  8. Alterations in calcium metabolism during human monocyte activation

    International Nuclear Information System (INIS)

    Scully, S.P.

    1984-01-01

    Human peripheral blood monocytes have been prepared from plateletpheresis residues by counterflow centrifugal elutriation in sufficient quantities to enable quantitative studies of cell calcium. Kinetic analysis of 45 Ca exchange data in resting monocytes was compatible with a model of cellular calcium containing three exchangeable calcium pools. These pools are thought to represent a putative ectocellular pool, a putative cytoplasmic chelated pool, and a putative organelle sequestered pool. Exposure of monocytes to the plant lectin Con A at a concentration that maximally simulated superoxide production caused an increase in the size and a doubling in the exchange rate of the putative cytoplasmic pool without a change in the other cellular pools. The cytoplasmic ionized calcium, [Ca]/sub i/, measured with the fluorescent probe, Quin 2 rose from a resting level of 83 nM to 165 mN within 30 sec of exposure to Con A. This increase in cytoplasmic calcium preceded the release of superoxide radicals. Calcium transport and calcium ATPase activities were identified and characterized in plasma membrane vesicles prepared from monocytes. Both activities were strictly dependent on ATP and Mg, had a Km/sub Ca/ in the submicromolar range and were stimulated by calmodulin. Thus, it seems that monocyte calcium is in a dynamic steady state that is a balance between efflux and influx rates, and that the activation of these cells results in the transition to a new steady state. The alteration in [Ca]/sub i/ that accompany the new steady state are essential for superoxide production by human monocytes

  9. HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon

    Directory of Open Access Journals (Sweden)

    Emily V. Stevenson

    2014-02-01

    Full Text Available The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host.

  10. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    Directory of Open Access Journals (Sweden)

    Katrin Paulsen

    2015-01-01

    Full Text Available Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  11. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  12. Maturation and demise of human primary monocytes by carbon nanotubes

    Science.gov (United States)

    De Nicola, Milena; Mirabile Gattia, Daniele; Traversa, Enrico; Ghibelli, Lina

    2013-06-01

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  13. Maturation and demise of human primary monocytes by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Nicola, Milena, E-mail: milena.de.nicola@uniroma2.it [University of Rome ' Tor Vergata' , Department of Biology (Italy); Mirabile Gattia, Daniele, E-mail: daniele.mirabile@enea.it [UTTMAT, ENEA-C.R. Casaccia (Italy); Traversa, Enrico, E-mail: Enrico.Traversa@kaust.edu.sa [King Abdullah University of Science and Technology (KAUST), Division of Physical Science and Engineering (Saudi Arabia); Ghibelli, Lina, E-mail: ghibelli@uniroma2.it [University of Rome ' Tor Vergata' , Department of Biology (Italy)

    2013-06-15

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 {mu}m) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  14. Maturation and demise of human primary monocytes by carbon nanotubes

    International Nuclear Information System (INIS)

    De Nicola, Milena; Mirabile Gattia, Daniele; Traversa, Enrico; Ghibelli, Lina

    2013-01-01

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10–50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  15. Maturation and demise of human primary monocytes by carbon nanotubes

    KAUST Repository

    De Nicola, Milena D.

    2013-05-17

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses. © 2013 Springer Science+Business Media Dordrecht.

  16. Phagocytosis of haemozoin (malarial pigment enhances metalloproteinase-9 activity in human adherent monocytes: Role of IL-1beta and 15-HETE

    Directory of Open Access Journals (Sweden)

    Giribaldi Giuliana

    2008-08-01

    Full Text Available Abstract Background It has been shown previously that human monocytes fed with haemozoin (HZ or trophozoite-parasitized RBCs displayed increased matrix metalloproteinase-9 (MMP-9 enzyme activity and protein/mRNA expression and increased TNF production, and showed higher matrix invasion ability. The present study utilized the same experimental model to analyse the effect of phagocytosis of: HZ, delipidized HZ, beta-haematin (lipid-free synthetic HZ and trophozoites on production of IL-1beta and MMP-9 activity and expression. The second aim was to find out which component of HZ was responsible for the effects. Methods Native HZ freshly isolated from Plasmodium falciparum (Palo Alto strain, Mycoplasma-free, delipidized HZ, beta-haematin (lipid-free synthetic HZ, trophozoites and control meals such as opsonized non-parasitized RBCs and inert latex particles, were fed to human monocytes. The production of IL-1beta by differently fed monocytes, in presence or absence of specific MMP-9 inhibitor or anti-hIL-1beta antibodies, was quantified in supernatants by ELISA. Expression of IL-1beta was analysed by quantitative real-time RT-PCR. MMP-9 activity and protein expression were quantified by gelatin zymography and Western blotting. Results Monocytes fed with HZ or trophozoite-parasitized RBCs generated increased amounts of IL-1beta and enhanced enzyme activity (in cell supernatants and protein/mRNA expression (in cell lysates of monocyte MMP-9. The latter appears to be causally related to enhanced IL-1beta production, as enhancement of both expression and enzyme activity were abrogated by anti-hIL-1beta Abs. Upregulation of IL-1beta and MMP-9 were absent in monocytes fed with beta-haematin or delipidized HZ, indicating a role for HZ-attached or HZ-generated lipid components. 15-HETE (15(S,R-hydroxy-6,8,11,13-eicosatetraenoic acid a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem-catalysis was identified as one mediator

  17. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  18. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk.

    Science.gov (United States)

    Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo

    2018-03-30

    The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.

  19. Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14

    Directory of Open Access Journals (Sweden)

    Alexander Witte

    2017-03-01

    Full Text Available Objective: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of platelet-derived CXCL14 on monocyte and endothelial migration. Methods: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. Results: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP, collagen-related peptide (CRP, or thrombin-receptor activating peptide (TRAP, increased CXCL14 surface expression (flow cytometry and release into the supernatant (immunoblotting, ELISA. Since CXCL14 is known to be chemotactic for CD14+ monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs, platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. Conclusions: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the

  20. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3.

    Science.gov (United States)

    Huang, Jian; Jiao, Junhua; Xu, Weihua; Zhao, Huayang; Zhang, Chunxiao; Shi, Yan; Xiao, Zhijian

    2015-11-01

    The aim of the present study was to investigate the association between microRNA (miR)-155 and apoptosis of monocytes infected by Mycobacterium tuberculosis, to examine the effect of forkhead box O3 (FOXO3) on miR‑155. The present study analysed the apoptosis of CD14+ in the peripheral blood of patients with active tuberculosis, disposed the THP‑1 human monocytic cell line by BCG and examined the expression of miR‑155. Furthermore, the expression of FOXO3 in THP‑1 cells was determined, and wild- and mutant-type luciferase reporter plasmids containing FOXO3 3'‑untranslated regions (UTRs) were constructed to analyse the expression of luciferase. Finally, an over‑expression plasmid was constructed, and THP-1 cells were transfected with control miRNA, miR‑155 and the plasmid, which revealed that miR‑155 inhibited the apoptosis of THP‑1 cells. miR‑155 in the THP‑1 cells infected by BCG was upregulated and apoptosis also increased. However, the apoptosis declined when the cells were transfected with the control miRNA and miR‑155. Folllowing transfection with miR‑155, the expression of FOXO3 decreased. Transfection with miR‑155 and the FOXO3 3'-UTRs significantly reduced luciferase, and overexpression of FOXO3 reversed the inhibitory role of miR‑155. From these results, it was concluded that mycobacteria can improve the level of miR‑155, while BCG can induce apoptosis in THP‑1 cells. The results suggested FOXO3 is a downstream target gene of miR‑155, which combines 3'-UTRs to inhibit the expression of FOXO3.

  1. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    International Nuclear Information System (INIS)

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-01-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an 125 I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes

  2. Death of Monocytes through Oxidative Burst of Macrophages and Neutrophils: Killing in Trans.

    Directory of Open Access Journals (Sweden)

    Viviane Ponath

    Full Text Available Monocytes and their descendants, macrophages, play a key role in the defence against pathogens. They also contribute to the pathogenesis of inflammatory diseases. Therefore, a mechanism maintaining a balance in the monocyte/macrophage population must be postulated. Our previous studies have shown that monocytes are impaired in DNA repair, rendering them vulnerable to genotoxic stress while monocyte-derived macrophages are DNA repair competent and genotoxic stress-resistant. Based on these findings, we hypothesized that monocytes can be selectively killed by reactive oxygen species (ROS produced by activated macrophages. We also wished to know whether monocytes and macrophages are protected against their own ROS produced following activation. To this end, we studied the effect of the ROS burst on DNA integrity, cell death and differentiation potential of monocytes. We show that monocytes, but not macrophages, stimulated for ROS production by phorbol-12-myristate-13-acetate (PMA undergo apoptosis, despite similar levels of initial DNA damage. Following co-cultivation with ROS producing macrophages, monocytes displayed oxidative DNA damage, accumulating DNA single-strand breaks and a high incidence of apoptosis, reducing their ability to give rise to new macrophages. Killing of monocytes by activated macrophages, termed killing in trans, was abolished by ROS scavenging and was also observed in monocytes co-cultivated with ROS producing activated granulocytes. The data revealed that monocytes, which are impaired in the repair of oxidised DNA lesions, are vulnerable to their own ROS and ROS produced by macrophages and granulocytes and support the hypothesis that this is a mechanism regulating the amount of monocytes and macrophages in a ROS-enriched inflammatory environment.

  3. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Japanese encephalitis virus (JEV) induces human peripheral blood monocytes to secrete a chemotactic cytokine [human macrophage-derived factor (hMDF)] which causes chemotaxis of neutrophils. The only known assay for hMDF cannot quantify its level in samples, so an enzyme immunoassay has been standardized for ...

  4. Monocytes isolated by positive and negative magnetic sorting techniques show different molecular characteristics and immunophenotypic behaviour [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jashdeep Bhattacharjee

    2018-03-01

    Full Text Available Background: Magnetic sorting of cells, based on  microbead conjugated antibodies (Abs, employs positive as well as negative immunomagnetic separation methods, for isolation of a specific cell population. These microbeads are suggested to be nontoxic, biodegradable carriers conjugated to various antibodies. Isolation of cells through positive selection involves the attachment of antibody conjugated microbeads to the cells of interest, followed by their isolation in the presence of a strong magnetic field to obtain higher purity. Negative selection involves attachment of microbead conjugated antibodies to all other cell populations except the cells of interest, which remain untagged. In the present study, we compared the two methods for their effect on functional and immunophenotypic behavior of isolated CD14+ monocytes. Methods: Peripheral blood mononuclear cells (PBMCs were isolated from blood collected from healthy volunteers by density gradient centrifugation. Human blood derived monocytes were isolated through positive selection and negative selection, making use of the appropriate monocyte isolation kit. Monocytes were then stimulated with lipopolysaccharide (LPS and their activation and proliferation capacity were examined. The degradation or dissociation of cell-bound microbeads was also investigated. Results: We observed an impaired LPS sensitivity as well as poor activation and proliferation capacity upon stimulation by LPS in positively sorted CD14+ monocytes as compared to negatively sorted CD14+ monocytes. The attached microbeads did not degrade and remained attached to the cells even after 6 days of culture. Conclusions: Our results suggest that positively sorted CD14+ cells exhibit hampered functionality and may result in inaccurate analysis and observations in downstream applications. However, these cells can be used for immediate analytical procedures.

  5. DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB

    International Nuclear Information System (INIS)

    Morris, R.H.K.; Tonks, A.J.; Jones, K.P.; Ahluwalia, M.K.; Thomas, A.W.; Tonks, A.; Jackson, S.K.

    2008-01-01

    The major phospholipid in pulmonary surfactant dipalmitoyl phosphatidylcholine (DPPC) has been shown to modulate inflammatory responses. Using human monocytes, this study demonstrates that DPPC significantly increased PGE 2 (P < 0.05) production by 2.5-fold when compared to untreated monocyte controls. Mechanistically, this effect was concomitant with an increase in COX-2 expression which was abrogated in the presence of a COX-2 inhibitor. The regulation of COX-2 expression was independent of NF-κB activity. Further, DPPC increased the phosphorylation of the cyclic AMP response element binding protein (CREB; an important nuclear transcription factor important in regulating COX-2 expression). In addition, we also show that changing the fatty acid groups of PC (e.g. using L-α-phosphatidylcholine β-arachidonoyl-γ-palmitoyl (PAPC)) has a profound effect on the regulation of COX-2 expression and CREB activation. This study provides new evidence for the anti-inflammatory activity of DPPC and that this activity is at least in part mediated via CREB activation of COX-2

  6. ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18.

    Science.gov (United States)

    Dai, Manman; Feng, Min; Xie, Tingting; Li, Yuanfang; Ruan, Zhuohao; Shi, Meiqing; Liao, Ming; Zhang, Xiquan

    2017-11-21

    Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression.

  7. Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes.

    Science.gov (United States)

    Jin, Xia; Xu, Hua; McGrath, Michael S

    2018-01-01

    Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.

  8. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo.

    Directory of Open Access Journals (Sweden)

    Shuwang Ge

    Full Text Available Interleukin (IL-17A signaling via Interleukin 17 receptor A (Il17ra contributes to the inflammatory host response by inducing recruitment of innate immune cells, but also plays a role in homeostatic neutrophilic granulocyte regulation. Monocytes, the other main innate immune cell, have a longer life span and can pursue multiple differentiation pathways towards tissue macrophages. Monocytes are divided into two subpopulations by expression of the Ly6C/Gr1 surface marker in mice. We here investigated the role of Il17ra in monocyte homeostasis and macrophage generation. In Il17ra(-/- and in mixed bone marrow chimeric wt/Il17ra(-/- mice, the concentrations of circulating Il17ra(-/- Gr1(low monocytes were significantly decreased compared to wt cells. Pulmonary, splenic and resident peritoneal Il17ra(-/- macrophages were significantly fewer than of wt origin. Bone marrow progenitor and monocyte numbers were equal, but the proportion of Il17ra(-/- Gr1(low monocytes was already decreased at bone marrow level. After monocyte depletion, initial Gr1(high and Gr1(low monocyte regeneration of Il17ra(-/- and wt cells was very similar. However, Il17ra(-/- Gr1(low counts were not sustained. After labeling with either fluorescent beads or BrdU, Il17ra(-/- Gr1(high monocyte transition to Gr1(low cells was not detectable unlike wt cells. Monocyte recruitment in acute peritonitis, which is known to be largely due to Gr1(high cell migration, was unaffected in an identical environment. Unilateral ureteral obstruction induces a less acute inflammatory and fibrotic kidney injury. Compared to wt cells in the same environment, Il17ra(-/- macrophage accumulation in the kidney was decreased. In the absence of Il17ra on all myeloid cells, renal fibrosis was significantly attenuated. Our data show that Il17ra modulates Gr1(low monocyte counts and suggest defective Gr1(high to Gr1(low monocyte transition as an underlying mechanism. Lack of Il17ra altered homeostatic tissue

  9. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions.

    Directory of Open Access Journals (Sweden)

    Masakatsu D Yanagimachi

    Full Text Available Monocytic lineage cells (monocytes, macrophages and dendritic cells play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3 × 10(6 ± 0.3 × 10(6 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5-6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.

  10. The acute monocytic leukemias: multidisciplinary studies in 45 patients.

    Science.gov (United States)

    Straus, D J; Mertelsmann, R; Koziner, B; McKenzie, S; de Harven, E; Arlin, Z A; Kempin, S; Broxmeyer, H; Moore, M A; Menendez-Botet, C J; Gee, T S; Clarkson, B D

    1980-11-01

    The clinical and laboratory features of 37 patients with variants of acute monocytic leukemia are described. Three of these 37 patients who had extensive extramedullary leukemic tissue infiltration are examples of true histiocytic "lymphomas." Three additional patients with undifferentiated leukemias, one patient with refractory anemia with excess of blasts, one patient with chronic myelomonocytic leukemia, one patient with B-lymphocyte diffuse "histiocytic" lymphoma and one patient with "null" cell, terminal deoxynucleotidyl transferase-positive lymphoblastic lymphoma had bone marrow cells with monocytic features. Another patient had dual populations of lymphoid and monocytoid leukemic cells. The true monocytic leukemias, acute monocytic leukemia (AMOL) and acute myelomonocytic leukemia (AMMOL), are closely related to acute myelocytic leukemia (AML) morphologically and by their response to chemotherapy. like AML, the leukemic cells from the AMMOL and AMOL patients form leukemic clusters in semisolid media. Cytochemical staining of leukemic cells for nonspecific esterases, presence of Fc receptor on the cell surface, phagocytic ability, low TdT activity, presence of surface "ruffles" and "ridges" on scanning EM, elevations of serum lysozyme, and clinical manifestations of leukemic tissue infiltration are features which accompanied monocytic differentiation in these cases.

  11. Binding of α2-macroglobulin-thrombin complexes and methylamine-treated α2-macroglobulin to human blood monocytes

    International Nuclear Information System (INIS)

    Straight, D.L.; Jakoi, L.; McKee, P.A.; Snyderman, R.

    1988-01-01

    The binding of α 2 -macroglobulin (α 2 M) to human peripheral blood monocytes was investigated. Monocytes, the precursors of tissue macrophages, were isolated from fresh blood by centrifugal elutriation or density gradient centrifugation. Binding studies were performed using 125 I-labeled α 2 M. Cells and bound ligand were separated from free ligand by rapid vacuum filtration. Nonlinear least-squares analysis of data obtained in direct binding studies at 0 0 C showed that monocytes bound the α 2 M-thrombin complex with a K/sub d/ 3.0 +- .09 nM and the monocyte had 1545 +- 153 sitescell. Thrombin alone did not compete for the site. Binding was divalent cation dependent. Direct binding studies also demonstrated that monocytes bound methylamine-treated α 2 M in a manner similar to α 2 M-thrombin. Competitive binding studies showed that α 2 M-thrombin and methylamine-treated α 2 M bound to the same sites on the monocyte. In contrast, native α 2 M did not compete with α 2 M-thrombin for the site. Studies done at 37 0 C suggested that after binding, the monocyte internalized and degraded α 2 M-thrombin and excreted the degradation products. Receptor turnover and degradation of α 2 M-thrombin complexes were blocked in monocytes treated with chloroquine, an inhibitor of lysosomal function. The results indicate that human monocytes have a divalent cation dependent, high-affinity binding site for α 2 M-thrombin and methylamine-treated α 2 M which may function to clear α 2 M-proteinase complexes from the circulation

  12. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian; MacPherson, Cameron R; Essack, Magbubah; Kaur, Mandeep; Schaefer, Ulf; Suzuki, Harukazu; Hayashizaki, Yoshihide; Bajic, Vladimir B.

    2009-01-01

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  13. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  14. Innate immune responses of equine monocytes cultured in equine platelet lysate.

    Science.gov (United States)

    Naskou, Maria C; Norton, Natalie A; Copland, Ian B; Galipeau, Jacques; Peroni, John F

    2018-01-01

    Platelet lysate (PL) has been extensively used for the laboratory expansion of human mesenchymal stem cells (MSC) in order to avoid fetal bovine serum (FBS) which has been associated with immune-mediated host reactions and transmission of bovine-origin microbial contaminants. Before suggesting the routine use of PL for MSC culture, we wanted to further investigate whether PL alone might trigger inflammatory responses when exposed to reactive white blood cells such as monocytes. Our objectives were to evaluate the inflammatory profile of equine monocytes cultured with equine PL (ePL) and to determine if ePL can modulate the expression of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated monocytes. In a first experiment, equine monocytes were isolated and incubated with donor horse serum (DHS), FBS, six individual donors ePL or pooled ePL from all horses. In a second experiment, monocytes were stimulated with E. coli LPS in the presence of 1, 5 or 10% DHS and/or pooled ePL. After 6h of incubation, cell culture supernatants were assayed via ELISA for production of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and Interleukin 1β (IL-1β) as well as for the anti-inflammatory Interleukin 10 (IL-10). Equine monocytes incubated with pooled ePL produced significantly less TNF-α and significantly more IL-10 than monocytes incubated in FBS. A statistically significant difference was not identified for the production of IL-1β. The second experiment showed that pooled ePL added to LPS-stimulated equine monocytes resulted in a significant reduction in TNF-α and IL-1β production. IL-10 production was not significantly upregulated by the addition of ePL to LPS-stimulated monocytes. Finally, the addition of ePL to LPS-stimulated monocytes in the presence of various concentrations of DHS resulted to statistically significant decrease of TNF-α and IL-1β compared to the control groups. This is the first study to demonstrate that ePL suppresses

  15. SIMULTANEOUS EXPRESSION AND REGULATION OF G-CSF AND IL-6 MESSENGER-RNA IN ADHERENT HUMAN MONOCYTES AND FIBROBLASTS

    NARCIS (Netherlands)

    VELLENGA, E; VANDERVINNE, B; DEWOLF, JTM; HALIE, MR

    The regulation of granulocyte-colony stimulating factor (G-CSF) and interleukin-6 (IL-6) mRNA was studied in human adherent monocytes in response to the protein kinase C activator, oleolyl-acetylglycerol (OAG), the calcium-ionophore A23187 and the cyclic AMP elevating agents, dibutyryl c-AMP

  16. Neutrophilic nodules in the intestinal walls of Japanese monkeys associated with the neutrophil chemotactic activity of larval extracts and secretions of Oesophagostomum aculeatum.

    Science.gov (United States)

    Horii, Y; Ishii, A; Owhashi, M; Miyoshi, M; Usui, M

    1985-01-01

    High neutrophil chemotactic activity was detected in the culture medium from Oesophagostomum aculeatum larvae in vitro using blind-well chambers with Millipore filters, and guinea pig leucocytes as indicator cells. Neutrophil chemotactic activity was also detected in the extract from larval worms in a dose dependent fashion. This activity was detected in the low molecular weight fractions adjacent to a sodium chloride marker by gel filtration on Sephadex G200. These results were further confirmed with monkey neutrophils. The possible role of this activity in the formation of granulomatous lesions rich in neutrophils found in O aculeatum infections in the Japanese monkey is discussed.

  17. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships.

    Science.gov (United States)

    Pucci, Ferdinando; Venneri, Mary Anna; Biziato, Daniela; Nonis, Alessandro; Moi, Davide; Sica, Antonio; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele

    2009-07-23

    We previously showed that Tie2-expressing monocytes (TEMs) have nonredundant proangiogenic activity in tumors. Here, we compared the gene expression profile of tumor-infiltrating TEMs with that of tumor-associated macrophages (TAMs), spleen-derived Gr1(+)Cd11b(+) neutrophils/myeloid-derived suppressor cells, circulating "inflammatory" and "resident" monocytes, and tumor-derived endothelial cells (ECs) by quantitative polymerase chain reaction-based gene arrays. TEMs sharply differed from ECs and Gr1(+)Cd11b(+) cells but were highly related to TAMs. Nevertheless, several genes were differentially expressed between TEMs and TAMs, highlighting a TEM signature consistent with enhanced proangiogenic/tissue-remodeling activity and lower proinflammatory activity. We validated these findings in models of oncogenesis and transgenic mice expressing a microRNA-regulated Tie2-GFP reporter. Remarkably, resident monocytes and TEMs on one hand, and inflammatory monocytes and TAMs on the other hand, expressed coordinated gene expression profiles, suggesting that the 2 blood monocyte subsets are committed to distinct extravascular fates in the tumor microenvironment. We further showed that a prominent proportion of embryonic/fetal macrophages, which participate in tissue morphogenesis, expressed distinguishing TEM genes. It is tempting to speculate that Tie2(+) embryonic/fetal macrophages, resident blood monocytes, and tumor-infiltrating TEMs represent distinct developmental stages of a TEM lineage committed to execute physiologic proangiogenic and tissue-remodeling programs, which can be co-opted by tumors.

  18. The effect of cytosolic extract of Alternaria aternata fungus on Monocyte-derived dendritic cell maturation and T-lymphocyte polarization in the presence of myelin basic protein

    Directory of Open Access Journals (Sweden)

    Loghmanni A

    2013-03-01

    Full Text Available Background: Multiple Sclerosis (MS is an autoimmune disease with impairment in function of central nervous system. Macrophages and dendritic cells play important roles in alleviating or progression of the disease. These cells can cause inflammation and damage to the myelin of nerve cells by realizing of harmful substances when these cells get matured. We studied the effect of Alternaria alternata extract on maturation of monocyte- derived dendritic cell (modc and T-cell responses in the presence of Myelin Basic Protein (MBP as a laboratory model of multiple sclerosis (MS. The purpose of this study is suitable dendritic cells production for usage in MS immunotherapy.Methods: For this study plastic adherent monocytes were cultured with granulocyte/ macrophage- colony stimulating factor (GM-CSF and interleukin -4 for converting these cells to modc and pulsed with MBP and matured in the presence of monocyte-conditioned medium (MCM in control group and MCM + Alternaria alternata extract in treatment groups. Anti-CD14, anti-CD83, anti-human leukocyte antigen-DR (anti HLA-DR monoclonal antibody were carried out for phenotyping. Autologos T cell responses and cytokine production were evaluated.Results: The results showed that the expression of CD14 decreased and CD83, HLA-DR increased in treatment groups in comparison with control groups. The production amount of IL-10 overcame IL-12 and in T cell the production of cytokines, IL-17 and Interferon-γ (IFN-γ decreased and IL-4 was increased (P<0.05. These effects escalated with increasing of dosage from 50 to 100 (mg/ml (P<0.001.Conclusion: Alternaria alternata extract can cause maturation of MBP-pulsed modc and skewing of T- lymphocyte toward Th2 and thereby can evolve into a new strategy in immunotherapy of MS.

  19. HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 "Aging" study.

    Directory of Open Access Journals (Sweden)

    Sophie Perrin

    Full Text Available The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The data reported focus on mitochondria, organelles known to be involved in cell senescence.49 HIV-1 infected patients untreated with antiretroviral therapy, together with 49 seronegative age- and sex-matched control subjects and 81 HIV-1 infected and treated patients, were recruited by 3 AIDS centres (Marseille, Montpellier, Nice; France; http://clinicaltrials.gov/, NCT01038999. In more than 88% of treated patients, the viral load was 500/mm(3. ROS (reactive oxygen species production and ΔΨm (inner membrane potential were measured by flow cytometry in blood lymphocytes and monocytes (functional parameters. Three mitochondrial network quantitative morphological parameters were computed using confocal microscopy and image analysis. Three PBMC mitochondrial proteins (porin and subunits 2 and 4 of cytochrome C oxidase encoded by mtDNA or nuclear DNA, respectively were analysed by western blotting.Quantitative changes in PBMC mitochondrial proteins were not induced by either HIV-1 infection or ART. Discriminant analysis integrating functional (ROS production and ΔΨm or morphological (network volume density, fragmentation and branching parameters revealed HIV-1 infection and ART differential effects according to cell type. First line ART tended to rescue lymphocyte mitochondrial parameters altered by viral infection, but induced slight changes in monocytes. No statistical difference was found between the effects of three ART regimens on mitochondrial parameters. Correlations between functional parameters and viral load confirmed the damaging effects of HIV-1 in lymphocyte mitochondria.In patients considered to be clinically stable, mitochondria exhibited functional and morphological modifications in PBMCs resulting from either direct or indirect effects of HIV-1 infection (lymphocytes, or from first line ART

  20. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  1. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  2. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair.

    Directory of Open Access Journals (Sweden)

    Ravid Shechter

    Full Text Available The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL-10 producing monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG, in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13, a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This

  3. Captopril increases the intensity of monocyte infection by Trypanosoma cruzi and induces human T helper type 17 cells.

    Science.gov (United States)

    Coelho dos Santos, J S; Menezes, C A S; Villani, F N A; Magalhães, L M D; Scharfstein, J; Gollob, K J; Dutra, W O

    2010-12-01

    The anti-hypertensive drug captopril is used commonly to reduce blood pressure of patients with severe forms of Chagas disease, a cardiomyopathy caused by chronic infection with the intracellular protozoan Trypanosoma cruzi. Captopril acts by inhibiting angiotensin-converting enzyme (ACE), the vasopressor metallopeptidase that generates angiotensin II and promotes the degradation of bradykinin (BK). Recent studies in mice models of Chagas disease indicated that captopril can potentiate the T helper type 1 (Th1)-directing natural adjuvant property of BK. Equipped with kinin-releasing cysteine proteases, T. cruzi trypomastigotes were shown previously to invade non-professional phagocytic cells, such as human endothelial cells and murine cardiomyocytes, through the signalling of G protein-coupled bradykinin receptors (B(2) KR). Monocytes are also parasitized by T. cruzi and these cells are known to be important for the host immune response during infection. Here we showed that captopril increases the intensity of T. cruzi infection of human monocytes in vitro. The increased parasitism was accompanied by up-regulated expression of ACE in human monocytes. While T. cruzi infection increased the expression of interleukin (IL)-10 by monocytes significantly, compared to uninfected cells, T. cruzi infection in association with captopril down-modulated IL-10 expression by the monocytes. Surprisingly, studies with peripheral blood mononuclear cells revealed that addition of the ACE inhibitor in association with T. cruzi increased expression of IL-17 by CD4(+) T cells in a B(2) KR-dependent manner. Collectively, our results suggest that captopril might interfere with host-parasite equilibrium by enhancing infection of monocytes, decreasing the expression of the modulatory cytokine IL-10, while guiding development of the proinflammatory Th17 subset. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  4. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    Energy Technology Data Exchange (ETDEWEB)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P. (Univ. of California-Los Angeles School of Medicine (USA))

    1991-05-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.

  5. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    International Nuclear Information System (INIS)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P.

    1991-01-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of [ 3 H]thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of [ 3 H]thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of [ 3 H]thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke

  6. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  7. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response.

    Directory of Open Access Journals (Sweden)

    Emily C Moorefield

    Full Text Available Amniotic fluid stem (AFS cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1β, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO and monocyte chemotactic protein (MCP family members as well as interleukin-6 (IL-6. AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α, MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1β activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and

  8. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    Science.gov (United States)

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased

  9. Cytokine and nitric oxide levels in patients with sepsis--temporal evolvement and relation to platelet mitochondrial respiratory function

    DEFF Research Database (Denmark)

    Sjövall, Fredrik; Morota, Saori; Frostner, Eleonor Åsander

    2014-01-01

    the correlation between observed changes in platelet mitochondrial respiration and a set of pro- and anti-inflammatory cytokines as well as NO plasma levels in patients with sepsis. METHODS AND RESULTS: Platelet mitochondrial respiration and levels of TNFα, MCP-1 (monocyte chemotactic protein-1), INFγ (interferon......-γ), IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10 and IL-17 and NO were analyzed in 38 patients with severe sepsis or septic shock at three time points during one week following admission to the ICU. Citrate synthase, mitochondrial DNA and cytochrome c were measured as markers of cellular mitochondrial content....... All mitochondrial respiratory states increased over the week analyzed (prespiration on day 6-7 (p = 0.02, r2 = 0.22) and was also higher in non-survivors compared to survivors on day 3-4 and day 6-7 (p = 0.03 respectively). Neither NO nor any...

  10. The effects of weekly augmentation therapy in patients with PiZZ α1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Schmid ST

    2012-09-01

    Full Text Available ST Schmid,1 J Koepke,1 M Dresel,1 A Hattesohl,1 E Frenzel,2 J Perez,3 DA Lomas,4 E Miranda,5 T Greulich,1 S Noeske,1 M Wencker,6 H Teschler,6 C Vogelmeier,1 S Janciauskiene,2,* AR Koczulla1,*1Department of Internal Medicine, Division for Pulmonary Diseases, University Hospital Marburg, Marburg, Germany; 2Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; 3Department of Cellular Biology, University of Malaga, Malaga, Spain; 4Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom; 5Department of Biology and Biotechnology, Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy; 6Department of Pneumology, West German Lung Clinic, Essen University Hospital, Essen, Germany*These authors contributed equally to this workBackground: The major concept behind augmentation therapy with human α1-antitrypsin (AAT is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema.Objective: To evaluate the short-term effects of augmentation therapy (Prolastin® on plasma levels of AAT, C-reactive protein, and chemokines/cytokines.Materials and methods: Serum and exhaled breath condensate were collected from individuals with protease inhibitor phenotype ZZ AAT deficiency-related emphysema (n = 12 on the first, third, and seventh day after the infusion of intravenous Prolastin. Concentrations of total and polymeric AAT, interleukin-8 (IL-8, monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, vascular endothelial growth factor, and C-reactive protein were determined. Blood neutrophils and primary epithelial cells were also exposed to Prolastin (1 mg/mL.Results: There were significant fluctuations in serum (but not in exhaled breath condensate levels of AAT polymers, IL-8, monocyte chemotactic protein-1, IL

  11. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach.

    Science.gov (United States)

    Berndt, Rouven; Hummitzsch, Lars; Heß, Katharina; Albrecht, Martin; Zitta, Karina; Rusch, Rene; Sarras, Beke; Bayer, Andreas; Cremer, Jochen; Faendrich, Fred; Groß, Justus

    2018-04-27

    Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO 2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. In summary, PCMO improve angiogenesis and tissue recovery in chronic

  12. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    Science.gov (United States)

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  13. Investigations into the design principles in the chemotactic behavior of Escherichia coli.

    Science.gov (United States)

    Kim, Tae-Hwan; Jung, Sung Hoon; Cho, Kwang-Hyun

    2008-01-01

    Inspired by the recent studies on the analysis of biased random walk behavior of Escherichia coli[Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22 (3), 52-67; Passino, K.M., 2005. Biomimicry for Optimization, Control and Automation. Springer-Verlag, pp. 768-798; Liu, Y., Passino, K.M., 2002. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115 (3), 603-628], we have developed a model describing the motile behavior of E. coli by specifying some simple rules on the chemotaxis. Based on this model, we have analyzed the role of some key parameters involved in the chemotactic behavior to unravel the underlying design principles. By investigating the target tracking capability of E. coli in a maze through computer simulations, we found that E. coli clusters can be controlled as target trackers in a complex micro-scale-environment. In addition, we have explored the dynamical characteristics of this target tracking mechanism through perturbation of parameters under noisy environments. It turns out that the E. coli chemotaxis mechanism might be designed such that it is sensitive enough to efficiently track the target and also robust enough to overcome environmental noises.

  14. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    International Nuclear Information System (INIS)

    Prach, Morag; Stone, Vicki; Proudfoot, Lorna

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form ( 2+ ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.

  15. The Role of Monocyte Percentage in Osteoporosis in Male Rheumatic Diseases.

    Science.gov (United States)

    Su, Yu-Jih; Chen, Chao Tung; Tsai, Nai-Wen; Huang, Chih-Cheng; Wang, Hung-Chen; Kung, Chia-Te; Lin, Wei-Che; Cheng, Ben-Chung; Su, Chih-Min; Hsiao, Sheng-Yuan; Lu, Cheng-Hsien

    2017-11-01

    Osteoporosis is easily overlooked in male patients, especially in the field of rheumatic diseases mostly prevalent with female patients, and its link to pathogenesis is still lacking. Attenuated monocyte apoptosis from a transcriptome-wide expression study illustrates the role of monocytes in osteoporosis. This study tested the hypothesis that the monocyte percentage among leukocytes could be a biomarker of osteoporosis in rheumatic diseases. Eighty-seven males with rheumatic diseases were evaluated in rheumatology outpatient clinics for bone mineral density (BMD) and surrogate markers, such as routine peripheral blood parameters and autoantibodies. From the total number of 87 patients included in this study, only 15 met the criteria for diagnosis of osteoporosis. Both age and monocyte percentage remained independently associated with the presence of osteoporosis. Steroid dose (equivalent prednisolone dose) was negatively associated with BMD of the hip area and platelet counts were negatively associated with BMD and T score of the spine area. Besides age, monocyte percentage meets the major requirements for osteoporosis in male rheumatic diseases. A higher monocyte percentage in male rheumatic disease patients, aged over 50 years in this study, and BMD study should be considered in order to reduce the risk of osteoporosis-related fractures.

  16. A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Darawan Rinchai

    2016-04-01

    Full Text Available Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB. This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at http://monocyte.gxbsidra.org/dm3/landing.gsp.

  17. Maturation and demise of human primary monocytes by carbon nanotubes

    KAUST Repository

    De Nicola, Milena D.; Mirabile Gattia, Daniele; Traversa, Enrico; Ghibelli, Lina

    2013-01-01

    -competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes

  18. Efficacy and safety of granulocyte, monocyte/macrophage adsorptive in pediatric ulcerative colitis

    DEFF Research Database (Denmark)

    Ruuska, Tarja; Küster, Peter; Grahnquist, Lena

    2016-01-01

    AIM: To investigate efficacy and safety for granulocyte, monocyte apheresis in a population of pediatric patients with ulcerative colitis. METHODS: The ADAPT study was a prospective, open-label, multicenter study in pediatric patients with moderate, active ulcerative colitis with pediatric...... ulcerative colitis activity index (PUCAI) of 35-64. Patients received one weekly apheresis with Adacolumn(®) granulocyte, monocyte/macrophage adsorptive (GMA) apheresis over 5 consecutive weeks, optionally followed by up to 3 additional apheresis treatments over 3 consecutive weeks. The primary endpoint...... mg daily on average from Baseline to week 12. CONCLUSION: Adacolumn(®) GMA apheresis treatment was effective in pediatric patients with moderate active Ulcerative Colitis. No new safety signals were reported. The present data contribute to considering GMA apheresis as a therapeutic option...

  19. Leishmania infection modulates beta-1 integrin activation and alters the kinetics of monocyte spreading over fibronectin

    Science.gov (United States)

    Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d’ El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington LC

    2015-01-01

    Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis. PMID:26249106

  20. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    Science.gov (United States)

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  1. Mycobacterium leprae alters classical activation of human monocytes in vitro.

    Science.gov (United States)

    Fallows, Dorothy; Peixoto, Blas; Kaplan, Gilla; Manca, Claudia

    2016-01-01

    Macrophages play a central role in the pathogenesis of leprosy, caused by Mycobacterium leprae. The polarized clinical presentations in leprosy are associated with differential immune activation. In tuberculoid leprosy, macrophages show a classical activation phenotype (M1), while macrophages in lepromatous disease display characteristics of alternative activation (M2). Bacille Calmette-Guérin (BCG) vaccination, which protects against leprosy, can promote sustained changes in monocyte response to unrelated pathogens and may preferentially direct monocytes towards an M1 protective phenotype. We previously reported that M. leprae can dampen the response of naïve human monocytes to a strong inducer of pro-inflammatory cytokines, such as BCG. Here, we investigated the ability of the pathogen to alter the direction of macrophage polarization and the impact of BCG vaccination on the monocyte response to M. leprae. We show that in vitro exposure of monocytes from healthy donors to M. leprae interferes with subsequent M1 polarization, indicated by lower levels of M1-associated cytokine/chemokines released and reduced expression of M1 cell surface markers. Exposure to M. leprae phenolic glycolipid (PGL) 1, instead of whole bacteria, demonstrated a similar effect on M1 cytokine/chemokine release. In addition, we found that monocytes from 10-week old BCG-vaccinated infants released higher levels of the pro-inflammatory cytokines TNF-α and IL-1β in response to M. leprae compared to those from unvaccinated infants. Exposure to M. leprae has an inhibitory effect on M1 macrophage polarization, likely mediated through PGL-1. By directing monocyte/macrophages preferentially towards M1 activation, BCG vaccination may render the cells more refractory to the inhibitory effects of subsequent M. leprae infection.

  2. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Venneri, Mary Anna; Giannetta, Elisa; Panio, Giuseppe; De Gaetano, Rita; Gianfrilli, Daniele; Pofi, Riccardo; Masciarelli, Silvia; Fazi, Francesco; Pellegrini, Manuela; Lenzi, Andrea; Naro, Fabio; Isidori, Andrea M

    2015-01-01

    Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, PTEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end-organ diabetic complications.

  3. Chemical dampening of Ly6C(hi) monocytes in the periphery produces anti-depressant effects in mice.

    Science.gov (United States)

    Zheng, Xiao; Ma, Sijing; Kang, An; Wu, Mengqiu; Wang, Lin; Wang, Qiong; Wang, Guangji; Hao, Haiping

    2016-01-19

    The involvement of systemic immunity in depression pathogenesis promises a periphery-targeting paradigm in novel anti-depressant discovery. However, relatively little is known about druggable targets in the periphery for mental and behavioral control. Here we report that targeting Ly6C(hi) monocytes in blood can serve as a strategy for anti-depressant purpose. A natural compound, ginsenoside Rg1 (Rg1), was firstly validated as a periphery-restricted chemical probe. Rg1 selectively suppressed Ly6C(hi) monocytes recruitment to the inflamed mice brain. The proinflammatory potential of Ly6C(hi) monocytes to activate astrocytes was abrogated by Rg1, which led to a blunted feedback release of CCL2 to recruit the peripheral monocytes. In vitro study demonstrated that Rg1 pretreatment on activated THP-1 monocytes retarded their ability to trigger CCL2 secretion from co-cultured U251 MG astrocytes. CCL2-triggered p38/MAPK and PI3K/Akt activation were involved in the action of Rg1. Importantly, in mice models, we found that dampening Ly6C(hi) monocytes at the periphery ameliorated depression-like behavior induced by neuroinflammation or chronic social defeat stress. Together, our work unravels that blood Ly6C(hi) monocytes may serve as the target to enable remote intervention on the depressed brain, and identifies Rg1 as a lead compound for designing drugs targeting peripheral CCL2 signals.

  4. Intracellular insulin processing is altered in monocytes from patients with type II diabetes mellitus

    International Nuclear Information System (INIS)

    Trischitta, V.; Benzi, L.; Brunetti, A.; Cecchetti, P.; Marchetti, P.; Vigneri, R.; Navalesi, R.

    1987-01-01

    We studied total cell-associated A14-[ 125 I]insulin radioactivity (including surface-bound and internalized radioactivity), insulin internalization, and its intracellular degradation at 37 C in monocytes from nonobese type II untreated diabetic patients (n = 9) and normal subjects (n = 7). Total cell-associated radioactivity was decreased in diabetic patients [2.65 +/- 1.21% (+/- SD) vs. 4.47 +/- 1.04% of total radioactivity. Insulin internalization was also reduced in diabetic patients (34.0 +/- 6.8% vs. 59.0 +/- 11.3% of cell-associated radioactivity. Using high performance liquid chromatography six intracellular forms of radioactivity derived from A14-[ 125 I] insulin were identified; 10-20% of intracellular radioactivity had approximately 300,000 mol wt and was identified as radioactivity bound to the insulin receptor, and the remaining intracellular radioactivity included intact A14-[ 125 I]insulin, [ 125 I]iodide, or [ 125 I]tyrosine, and three intermediate compounds. A progressive reduction of intact insulin and a corresponding increase in iodine were found when the incubation time was prolonged. Intracellular insulin degradation was reduced in monocytes from diabetic patients; intracellular intact insulin was 65.6 +/- 18.1% vs. 37.4 +/- 18.0% of intracellular radioactivity after 2 min and 23.6 +/- 22.3% vs. 3.9 +/- 2.3% after 60 min in diabetic patients vs. normal subjects, respectively. In conclusion, 1) human monocytes internalize and degrade insulin in the intracellular compartment in a stepwise time-dependent manner; and 2) in monocytes from type II diabetic patients total cell-associated radioactivity, insulin internalization, and insulin degradation are significantly reduced. These defects may be related to the cellular insulin resistance present in these patients

  5. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  6. A simple method for human peripheral blood monocyte Isolation

    Directory of Open Access Journals (Sweden)

    Marcos C de Almeida

    2000-04-01

    Full Text Available We describe a simple method using percoll gradient for isolation of highly enriched human monocytes. High numbers of fully functional cells are obtained from whole blood or buffy coat cells. The use of simple laboratory equipment and a relatively cheap reagent makes the described method a convenient approach to obtaining human monocytes.

  7. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During Francisella tularensis Phagocytosis by Human Mononuclear Phagocytes

    Directory of Open Access Journals (Sweden)

    Ky V. Hoang

    2018-03-01

    Full Text Available Francisella tularensis is a remarkably infectious facultative intracellular bacterium of macrophages that causes tularemia. Early evasion of host immune responses contributes to the success of F. tularensis as a pathogen. F. tularensis entry into human monocytes and macrophages is mediated by the major phagocytic receptor, complement receptor 3 (CR3, CD11b/CD18. We recently determined that despite a significant increase in macrophage uptake following C3 opsonization of the virulent Type A F. tularensis spp. tularensis Schu S4, this phagocytic pathway results in limited pro-inflammatory cytokine production. Notably, MAP kinase/ERK activation is suppressed immediately during C3-opsonized Schu S4-CR3 phagocytosis. A mathematical model of CR3-TLR2 crosstalk predicted early involvement of Ras GTPase-activating protein (RasGAP in immune suppression by CR3. Here, we link CR3-mediated uptake of opsonized Schu S4 by human monocytes and macrophages with inhibition of early signal 1 inflammasome activation, evidenced by limited caspase-1 cleavage and IL-18 release. This inhibition is due to increased RasGAP activity, leading to a reduction in the Ras-ERK signaling cascade upstream of the early inflammasome activation event. Thus, our data uncover a novel signaling pathway mediated by CR3 following engagement of opsonized virulent F. tularensis to limit inflammasome activation in human phagocytic cells, thereby contributing to evasion of the host innate immune system.

  8. Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

    Science.gov (United States)

    Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.

    2011-01-01

    Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695

  9. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.

    Directory of Open Access Journals (Sweden)

    Ken Murakami

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5. Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1 or transforming growth factor β1 (TGF-β1 levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.

  10. Sweet’s Syndrome Successfully Treated with Granulocyte and Monocyte Adsorption Apheresis

    Directory of Open Access Journals (Sweden)

    Asami Fujii

    2017-05-01

    Full Text Available Sweet’s syndrome is a neutrophilic dermatosis characterized by an abrupt onset of painful erythematous lesions showing neutrophilic infiltrates in the dermis. Fever and an elevated neutrophil level are generally observed. Sweet’s syndrome may be idiopathic, malignancy-associated, or drug-induced (mainly involving granulocyte colony-stimulating factor (G-CSF administration. Although systemic corticosteroids are usually effective, the symptoms of Sweet’s syndrome recur in some refractory cases. Herein, we report a case of a 55-year-old Japanese woman with recurrent symptoms of fever (>39°C and painful erythematous lesions on her four extremities, trunk, and neck. Laboratory findings revealed leukocytosis and high levels of C-reactive protein (CRP and G-CSF. She was diagnosed with a recurrence of Sweet’s syndrome, and was exclusively treated with granulocyte and monocyte adsorption apheresis (GMA therapy once a week for 3 consecutive weeks. After the first session of GMA therapy, all symptoms including the erythematous lesions and fever were completely resolved, and serum G-CSF level was reduced. Leukocyte count, neutrophil count, serum amyloid A protein, and CRP levels were restored within normal ranges by 2 weeks. Thus, GMA therapy can successfully treat a patient with recurrent Sweet’s syndrome, potentially related to the restoration of elevated serum G-CSF levels.

  11. Tolerance of monocytes and macrophages in response to bacterial endotoxin

    Directory of Open Access Journals (Sweden)

    Ewelina Wiśnik

    2017-03-01

    Full Text Available Monocytes belong to myeloid effector cells, which constitute the first line of defense against pathogens, also called the nonspecific immune system and play an important role in the maintenance of tissue homeostasis. In response to stimulation, monocytes differentiate into macrophages capable of microorganism phagocytosis and secrete factors that play a key role in the regulation of immune responses. However excessive exposure of monocytes/macrophages to the lipopolysaccharide (LPS of Gram negative bacteria leads to the acquisition of immune tolerance by these cells. Such state results from disruption of different biological processes, for example intracellular signaling pathways and is accompanied by a number of disease states (immune, inflammatory or neoplastic conditions. Regulation of monocytes/macrophages activity is controlled by miRNAs, which are involved in the modulation of immune tolerance acquired by these cells. Moreover, the tolerance to endotoxin is conditioned by the posttranscriptional processes and posttranslational epigenetic modifications leading to the impairment of normal immune response for example by alterations in the expression of many genes encoding immune signaling mediators. The aim of this paper is to provide an overview existing knowledge on the modulation of activity of monocytes/macrophages in response to bacterial endotoxin and impaired immune responses.

  12. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes

    Directory of Open Access Journals (Sweden)

    Ceretto Monica

    2007-06-01

    Full Text Available Abstract Background Enhanced production of nitric oxide (NO following upmodulation of the inducible isoform of NO synthase (iNOS by haemozoin (HZ, inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. Methods Adherent immunopurified human monocytes (purity >85%, and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. Results Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. Conclusion Results indicate that human monocytes fed or not with HZ/sHZ were constantly

  13. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    International Nuclear Information System (INIS)

    Wang, Ding; Chen, Ke; Du, Wei Ting; Han, Zhi-Bo; Ren, He; Chi, Ying

    2010-01-01

    Here, the effect of CD14 + monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-γ (IFN-γ) secretion capacities of CD4 + and CD8 + T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E 2 (PGE 2 ) as an important soluble mediator. CD14 + monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1β, either exogenously added or produced by CD14 + monocytes in culture, could trigger expression of high levels of PGE 2 by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE 2 expression, but also reversed the promotional effect of CD14 + monocytes and partially restored CD4 + and CD8 + T cell proliferation and IFN-γ secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  14. Monocyte chemoattractant protein-1 promoter -2518 polymorphism and susceptibility to vasculitis, rheumatoid arthritis, and multiple sclerosis: A meta-analysis.

    Science.gov (United States)

    Lee, Y H; Bae, S-C

    2016-03-20

    The purpose of this study was to examine whether the monocyte chemoattractant protein-1 (MCP-1) promoter -2518 A/G polymorphism (rs1024611) is associated with susceptibility to vasculitis, rheumatoid arthritis (RA), or multiple sclerosis (MS). A meta-analysis was conducted on the association between the MCP-1 -2518 A/G polymorphism and vasculitis, RA, and MS. Fourteen studies from 13 articles, including six on vasculitis, five on RA, and three on MS, consisting of 3,038 patients and 3,545 controls were available for the meta-analysis. The meta-analysis revealed no association between the MCP-1 -2518 G allele and vasculitis (odds ratio [OR] = 0.990, 95% confidence interval [CI] = 0.749-1.309, p = 0.943). Stratification by ethnicity indicated no association between the G allele of the MCP-1 -2518 A/G polymorphism and vasculitis in Asians and Caucasians. Meta-analysis by vasculitis type revealed an association between the GG+GA genotype of the MCP-1 -2518 A/G polymorphism and Behçet's disease (BD; OR = 1.349, 95% CI = 1.013-1.796, p = 0.040). However, sensitivity analysis showed that the association was not statistically significant after removing a study that was conducted in China (OR = 1.030, 95% CI = 0.667-1.590, p = 0.895), which indicated that the association was not statistically robust. The meta-analysis revealed no association between the MCP-1 -2518 G allele and RA (OR = 0.986, 95% CI = 0.890-1.093, p = 0.793) or MS (OR = 1.281, 95% CI = 0.802-2.046, p = 0.301). Our meta-analysis demonstrates that the MCP-1 -2518 A/G polymorphism is not associated with susceptibility to vasculitis, RA, or MS.

  15. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis.

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    Full Text Available BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+CD16(- and non-classical CD14(+CD16(+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+CD16(+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+CD16(+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC in vitro. CD14(+CD16(+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+CD16(+, but not CD14(+CD16(- monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data

  16. Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat.

    Science.gov (United States)

    McKim, Daniel B; Patterson, Jenna M; Wohleb, Eric S; Jarrett, Brant L; Reader, Brenda F; Godbout, Jonathan P; Sheridan, John F

    2016-05-15

    Neuroinflammatory signaling may contribute to the pathophysiology of chronic anxiety disorders. Previous work showed that repeated social defeat (RSD) in mice promoted stress-sensitization that was characterized by the recurrence of anxiety following subthreshold stress 24 days after RSD. Furthermore, splenectomy following RSD prevented the recurrence of anxiety in stress-sensitized mice. We hypothesize that the spleen of RSD-exposed mice became a reservoir of primed monocytes that were released following neuroendocrine activation by subthreshold stress. Mice were subjected to subthreshold stress (i.e., single cycle of social defeat) 24 days after RSD, and immune and behavioral measures were taken. Subthreshold stress 24 days after RSD re-established anxiety-like behavior that was associated with egress of Ly6C(hi) monocytes from the spleen. Moreover, splenectomy before RSD blocked monocyte trafficking to the brain and prevented anxiety-like behavior following subthreshold stress. Splenectomy, however, had no effect on monocyte accumulation or anxiety when determined 14 hours after RSD. In addition, splenocytes cultured 24 days after RSD exhibited a primed inflammatory phenotype. Peripheral sympathetic inhibition before subthreshold stress blocked monocyte trafficking from the spleen to the brain and prevented the re-establishment of anxiety in RSD-sensitized mice. Last, β-adrenergic antagonism also prevented splenic monocyte egress after acute stress. The spleen served as a unique reservoir of primed monocytes that were readily released following sympathetic activation by subthreshold stress that promoted the re-establishment of anxiety. Collectively, the long-term storage of primed monocytes in the spleen may have a profound influence on recurring anxiety disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Ly, Lan H; McMurray, David N

    2013-06-01

    The Guinea pig (Cavia porcellus) is an excellent animal model for studying human tuberculosis (TB) and also for a number of other infectious and non-infectious diseases. One of the major roadblocks in effective utilization of this animal model is the lack of readily available immunological reagents. In order to address this issue, guinea pig interleukin 1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) were efficiently cloned and expressed in a prokaryotic expression vector, and the expressed proteins in soluble form from both the genes were confirmed by N-terminal sequencing. The biological activity of recombinant guinea pig IL-1β was demonstrated by its ability to drive proliferation in thymocytes, and the recombinant guinea pig MCP-1 exhibited chemotactic activity for guinea pig resident peritoneal macrophages. These biologically active recombinant guinea pig proteins will facilitate an in-depth understanding of the role they play in the immune responses of the guinea pig to TB and other diseases.

  18. Enhanced Apoptosis of Monocytes from Complication-Free Juvenile-Onset Diabetes Mellitus Type 1 May Be Ameliorated by TNF-α Inhibitors

    Directory of Open Access Journals (Sweden)

    Jolanta Myśliwska

    2014-01-01

    Full Text Available Diabetes mellitus type 1 is associated with an enhanced apoptosis of different cells and tissues, accelerating occurrence of diabetic microvascular complications. The aim of our study was to determine spontaneous apoptotic potential of the monocyte subsets in juvenile-onset complication-free diabetes mellitus type 1 and to compare them with the corresponding values of the healthy. Moreover, we wanted to assess effects of TNF-R1 blocking agents and those of general TNF-α blocker (Infliximab on spontaneous apoptosis of monocytes. Sixty randomly selected DM1 patients (14.5 ± 3.2 years and 30 healthy (13.5 ± 2.8 years volunteers were enrolled in the study. Our results indicate that three monocyte subsets are distinguishable in the groups of young diabetic patients and the healthy, similarly to in the blood of adults. DM1 patients were characterized by higher values of apoptotic monocytes than the healthy. The manipulation with drugs inhibiting TNF-R1 expression diminished the pool of CD16+ apoptotic monocytes. Infliximab reduced the apoptotic CD16− cells. In conclusion, diabetes mellitus type 1 is associated with greater apoptosis of three monocyte subsets which may contribute to the development of microvascular complications. TNF-α modifiers appear to ameliorate monocyte apoptosis. They may be useful for controlling excessive monocyte apoptosis in diabetic patients.

  19. Monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues

    Energy Technology Data Exchange (ETDEWEB)

    Zwadlo, G.; Schlegel, R.; Sorg, C.

    1986-07-15

    A monoclonal antibody is described that was generated by immunizing mice with cultured human blood monocytes. The antibody (27E10) belongs to the IgG1 subclass and detects a surface antigen at M/sub r/ 17,000 that is found on 20% of peripheral blood monocytes. The antigen is increasingly expressed upon culture of monocytes, reaching a maximum between days 2 and 3. Stimulation of monocytes with interferon-..gamma.. (IFN-..gamma..), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and lipopolysaccharide (LPS) Ylalanine (fMLP) increased the 27E10 antigen density. The amount of 27E10-positive cells is not or is only weakly affected. The antigen is absent from platelets, lymphotyces, and all tested human cell lines, yet it cross-reacts with 15% of freshly isolated granulocytes. By using the indirect immunoperoxidase technique, the antibody is found to be negative on cryostat sections of normal human tissue (skin, lung, and colon) and positive on only a few monocyte-like cells in liver and on part of the cells of the splenic red pulp. In inflammatory tissue, however, the antibody is positive on monocytes/macrophages and sometimes on endothelial cells and epidermal cells, depending on the stage and type of inflammation, e.g., BCG ranulomas are negative, whereas psoriasis vulgaris, atopic dermatitis, erythrodermia, pressure urticaria, and periodontitis contain positively staining cells. In contact eczemas at different times after elicitation (6 hr, 24 hr, and 72 hr), the 27E10 antigen is seen first after 24 hr on a few infiltrating monocytes/macrophages, which increase in numbers after 72 hr.

  20. Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis.

    Directory of Open Access Journals (Sweden)

    I-Chun Lin

    Full Text Available BACKGROUND: Kawasaki disease (KD of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE-induced coronary arteritis. METHODS: Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globulin (IVIG treatment at the Kaohsiung Chang Gung Memorial Hospital from 2001 to 2009. Blood samples from KD patients were collected before and after IVIG treatment, and cardiovascular abnormalities were examined by transthoracic echocardiography. Wild-type male BALB/c mice (4-week-old were intraperitoneally injected with LCWE (1 mg/mL to induce coronary arteritis. The induced immune response in mice was examined on days 1, 3, 7, and 14 post injections, and histopathology studies were performed on days 7 and 14. RESULTS: Both human KD patients and LCWE-treated mice developed coronary arteritis, myocarditis, valvulitis, and pericarditis, as well as elevated plasma levels of interleukin (IL-2, IL-6, IL-10, monocyte chemoattractant protein (MCP-1, and tumor necrosis factor (TNF-α in acute phase. Most of these proinflammatory cytokines declined to normal levels in mice, whereas normal levels were achieved in patients only after IVIG treatment, with a few exceptions. Toll-like receptor (TLR-2, but not TLR4 surface enhancement on circulating CD14+ monocytes, was augmented in KD patients before IVIG treatment and in LCWE-treated mice, which declined in patients after IVIG treatment. CONCLUSION: This result suggests that that not only TLR2 augmentation on CD14+ monocytes might be an inflammatory marker for both human KD patients and LCWE-induced CAL mouse model but also this model is feasible for studying therapeutic strategies of coronary arteritis in human KD by

  1. Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis.

    Science.gov (United States)

    Lin, I-Chun; Kuo, Ho-Chang; Lin, Ying-Jui; Wang, Feng-Shen; Wang, Lin; Huang, Shun-Chen; Chien, Shao-Ju; Huang, Chien-Fu; Wang, Chih-Lu; Yu, Hong-Ren; Chen, Rong-Fu; Yang, Kuender D

    2012-01-01

    Kawasaki disease (KD) of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE)-induced coronary arteritis. Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globulin (IVIG) treatment at the Kaohsiung Chang Gung Memorial Hospital from 2001 to 2009. Blood samples from KD patients were collected before and after IVIG treatment, and cardiovascular abnormalities were examined by transthoracic echocardiography. Wild-type male BALB/c mice (4-week-old) were intraperitoneally injected with LCWE (1 mg/mL) to induce coronary arteritis. The induced immune response in mice was examined on days 1, 3, 7, and 14 post injections, and histopathology studies were performed on days 7 and 14. Both human KD patients and LCWE-treated mice developed coronary arteritis, myocarditis, valvulitis, and pericarditis, as well as elevated plasma levels of interleukin (IL)-2, IL-6, IL-10, monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α in acute phase. Most of these proinflammatory cytokines declined to normal levels in mice, whereas normal levels were achieved in patients only after IVIG treatment, with a few exceptions. Toll-like receptor (TLR)-2, but not TLR4 surface enhancement on circulating CD14+ monocytes, was augmented in KD patients before IVIG treatment and in LCWE-treated mice, which declined in patients after IVIG treatment. This result suggests that that not only TLR2 augmentation on CD14+ monocytes might be an inflammatory marker for both human KD patients and LCWE-induced CAL mouse model but also this model is feasible for studying therapeutic strategies of coronary arteritis in human KD by modulating TLR2-mediated immune activation on CD14

  2. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  3. [EVALUATION OF THE HUMAN SENSITIVITY TO SMALLPOX VIRUS BY THE PRIMARY CULTURES OF THE MONOCYTE-MACROPHAGES].

    Science.gov (United States)

    Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.

  4. Allele-specific MMP-3 transcription under in vivo conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaoyong, Zhu [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Odeberg, Jacob [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm (Sweden); Hamsten, Anders [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Eriksson, Per [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden)

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  5. Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation.

    Science.gov (United States)

    Fridman, Jordan S; Scherle, Peggy A; Collins, Robert; Burn, Timothy; Neilan, Claire L; Hertel, Denise; Contel, Nancy; Haley, Patrick; Thomas, Beth; Shi, Jack; Collier, Paul; Rodgers, James D; Shepard, Stacey; Metcalf, Brian; Hollis, Gregory; Newton, Robert C; Yeleswaram, Swamy; Friedman, Steven M; Vaddi, Kris

    2011-09-01

    JAKs are required for signaling initiated by several cytokines (e.g., IL-4, IL-12, IL-23, thymic stromal lymphopoietin (TSLP), and IFNγ) implicated in the pathogenesis of inflammatory skin diseases such as psoriasis and atopic dermatitis (AD). Direct antagonism of cytokines, such as IL-12 and IL-23 using ustekinumab, has proven effective in randomized studies in psoriasis patients. We hypothesized that local inhibition of cytokine signaling using topical administration of INCB018424, a small molecule inhibitor of JAK1 and JAK2, would provide benefit similar to systemic cytokine neutralization. In cellular assays, INCB018424 inhibits cytokine-induced JAK/signal transducers and activators of transcription (STAT) signaling and the resultant production of inflammatory proteins (e.g., IL-17, monocyte chemotactic protein-1, and IL-22) in lymphocytes and monocytes, with half-maximal inhibitory concentration values keratinocyte proliferation in a murine contact hypersensitivity model and inhibited tissue inflammation induced by either intradermal IL-23 or TSLP. Topical INCB018424 was also well tolerated in a 28-day safety study in Gottingen minipigs. These results suggest that localized JAK1/JAK2 inhibition may be therapeutic in a range of inflammatory skin disorders such as psoriasis and AD. Clinical evaluation of topical INCB018424 is ongoing.

  6. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses

    DEFF Research Database (Denmark)

    Adams, John S; Ren, Songyang; Liu, Philip T

    2009-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)(2)D) enhances innate immunity by inducing the cathelicidin antimicrobial peptide (hCAP). In monocytes/macrophages, this occurs primarily in response to activation of TLR, that induce expression of the vitamin D receptor and localized...... synthesis of 1,25(OH)(2)D from precursor 25-hydroxyvitamin D(3) (25OHD). To clarify the relationship between vitamin D and innate immunity, we assessed changes in hCAP expression in vivo and ex vivo in human subjects attending a bone clinic (n = 50). Of these, 38% were vitamin D-insufficient (...) and received supplementation with vitamin D (50,000 IU vitamin D(2) twice weekly for 5 wk). Baseline 25OHD status or vitamin D supplementation had no effect on circulating levels of hCAP. Therefore, ex vivo changes in hCAP for each subject were assessed using peripheral blood monocytes cultured with 10...

  7. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  8. Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis

    Science.gov (United States)

    Ngo, Lisa Y.; Kasahara, Shinji; Kumasaka, Debra K.; Knoblaugh, Sue E.; Jhingran, Anupam; Hohl, Tobias M.

    2014-01-01

    Candida albicans is a commensal fungus that can cause systemic disease in patients with breaches in mucosal integrity, indwelling catheters, and defects in phagocyte function. Although circulating human and murine monocytes bind C. albicans and promote inflammation, it remains unclear whether C-C chemokine receptor 2 (CCR2)– and Ly6C-expressing inflammatory monocytes exert a protective or a deleterious function during systemic infection. During murine systemic candidiasis, interruption of CCR2-dependent inflammatory monocyte trafficking into infected kidneys impaired fungal clearance and decreased murine survival. Depletion of CCR2-expressing cells led to uncontrolled fungal growth in the kidneys and brain and demonstrated an essential antifungal role for inflammatory monocytes and their tissue-resident derivatives in the first 48 hours postinfection. Adoptive transfer of purified inflammatory monocytes in depleted hosts reversed the defect in fungal clearance to a substantial extent, indicating a compartmentally and temporally restricted protective function that can be transferred to enhance systemic innate antifungal immunity. PMID:23922372

  9. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    Science.gov (United States)

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the

  10. Circulating cytokines and cytokine receptors in infliximab treatment failure due to TNF-α independent Crohn disease

    DEFF Research Database (Denmark)

    Steenholdt, Casper; Coskun, Mehmet; Buhl, Sine

    2016-01-01

    -IFX antibodies. Circulating cytokines and cytokine receptors were assessed by enzyme-linked immunosorbent assay: granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin (IL)-1α, IL-1β, IL-1Ra, IL-6, IL-10, IL-12p70, soluble TNF receptor (sTNF-R) 1, sTNF-R2, IL-17A, and monocyte chemotactic...

  11. Recognition and uptake of free and nanoparticle‐bound betalactoglobulin – a food allergen – by human monocytes

    DEFF Research Database (Denmark)

    Marengo, Mauro; Bonomi, Francesco; Iametti, Stefania

    2011-01-01

    Scope: To improve our understanding of the interaction of food allergens with cells of the immune system, the endocytosis by human monocytes of bovine β‐lactoglobulin (BLG) and ovomucoid (OM) – two major food allergens – and human serum albumin (HSA) was studied. Methods and results: BLG......, and HSA were conjugated to MNPs also labeled with a fluorescent probe. The uptake of these materials by human monocytes was monitored through flow cytometry, and compared with fluorescent MNPs and the free fluorescently labeled proteins, confirming higher uptake of the BLG‐conjugated MNPs versus non......‐conjugated MNPs. OM but not HSA conjugation to particles enhanced uptake of the MNPs. Confocal microscopy provided direct evidence of the actual internalization of BLG–MNP conjugates into the cytoplasm. Conclusions: These results contribute to the current understanding of the interaction between food allergens...

  12. Effects of Platelets on Platelet Concentrate Product on the Activation of Human Peripheral Blood Monocyte Cells

    Directory of Open Access Journals (Sweden)

    N Sadat Razavi Hoseini

    2016-02-01

    Full Text Available Introduction: Monocytes can interact with platelets due to their surface molecules such as P-selectin glycoprotein ligand-1 (PSGL-1, and form monocyte-platelet complex. In the present study, the effects of platelets interaction of platelet concentrates (PCs and peripheral blood monocytes were investigated in vitro as a model to predict the probable interactions of these cells and consequently activation of monocytes. Methods: In this experimental study, units of whole blood and PCs were prepared from Tehran Blood Transfusion Center. After isolation of monocytes from the whole blood, these cells were treated with PC- derived platelets. The activation of monocytes was assessed before and after treatment by the analysis of the respiratory burst of monocytes using dihydrorhodamine 123 (DHR-123. The study data were analyzed using the non-parametric test of Wilcoxon. Results: The purity of monocytes was determined as 86.1±2 using NycoPrep method. The respiratory burst of monocytes was increased after exposure with platelets. In fact, the difference was significant when platelets were used on the 5th day of storage (P=0.001. Conclusions: The study findings revealed that platelets have an efficient capacity to stimulate and activate monocytes. The possible involvement of molecules in the interaction of platelet-monocyte demand to be further studied in future.

  13. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    Directory of Open Access Journals (Sweden)

    Patel Shonak

    2006-08-01

    Full Text Available Abstract Background Soluble fibrin (sFn is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1, which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2. We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of

  14. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    Science.gov (United States)

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.

  15. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...... rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  16. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    Science.gov (United States)

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  17. Adropin Contributes to Anti-Atherosclerosis by Suppressing Monocyte-Endothelial Cell Adhesion and Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Kengo Sato

    2018-04-01

    Full Text Available Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis. We assessed the effects of adropin on inflammatory molecule expression and human THP1 monocyte adhesion in human umbilical vein endothelial cells (HUVECs, foam cell formation in THP1 monocyte-derived macrophages, and the migration and proliferation of human aortic smooth muscle cells (HASMCs in vitro and atherogenesis in Apoe−/− mice in vivo. Adropin was expressed in THP1 monocytes, their derived macrophages, HASMCs, and HUVECs. Adropin suppressed tumor necrosis factor α-induced THP1 monocyte adhesion to HUVECs, which was associated with vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 downregulation in HUVECs. Adropin shifted the phenotype to anti-inflammatory M2 rather than pro-inflammatory M1 via peroxisome proliferator-activated receptor γ upregulation during monocyte differentiation into macrophages. Adropin had no significant effects on oxidized low-density lipoprotein-induced foam cell formation in macrophages. In HASMCs, adropin suppressed the migration and proliferation without inducing apoptosis via ERK1/2 and Bax downregulation and phosphoinositide 3-kinase/Akt/Bcl2 upregulation. Chronic administration of adropin to Apoe−/− mice attenuated the development of atherosclerotic lesions in the aorta, with reduced the intra-plaque monocyte/macrophage infiltration and smooth muscle cell content. Thus, adropin could serve as a novel therapeutic target in atherosclerosis and related diseases.

  18. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    Science.gov (United States)

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  20. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. OSCAR Is a Receptor for Surfactant Protein D That Activates TNF-α Release from Human CCR2+ Inflammatory Monocytes

    DEFF Research Database (Denmark)

    Barrow, Alexander D; Palarasah, Yaseelan; Bugatti, Mattia

    2015-01-01

    of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2(+) inflammatory monocytes, which secreted TNF-α when exposed...

  2. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding, E-mail: qqhewd@gmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Chen, Ke, E-mail: chenke_59@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Du, Wei Ting, E-mail: duwtpumc@yahoo.com.cn [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); Han, Zhi-Bo, E-mail: zhibohan@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Ren, He, E-mail: knifesharp2000@hotmail.com [National Engineering Research Center of Cell Products, AmCellGene Co. Ltd, TEDA, Tianjin (China); Chi, Ying, E-mail: caizhuying@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); and others

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  3. Development of pro-inflammatory phenotype in monocytes after engulfing Hb-activated platelets in hemolytic disorders.

    Science.gov (United States)

    Singhal, Rashi; Chawla, Sheetal; Rathore, Deepak K; Bhasym, Angika; Annarapu, Gowtham K; Sharma, Vandana; Seth, Tulika; Guchhait, Prasenjit

    2017-02-01

    Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14 + CD16 hi ) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14 + cells were transformed into the CD14 + CD16 hi subset after engulfing Hb-activated platelets. The CD14 + CD16 hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1β, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14 + CD16 hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14 + CD16 hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1

    Directory of Open Access Journals (Sweden)

    Simmons Zachary

    2009-02-01

    Full Text Available Abstract Background Polymorphisms in the MHC class 1-like gene known as HFE have been proposed as genetic modifiers of neurodegenerative diseases that include neuroinflammation as part of the disease process. Variants of HFE are relatively common in the general population and are most commonly associated with iron overload, but can promote subclinical cellular iron loading even in the absence of clinically identified disease. The effects of the variants as well as the resulting cellular iron dyshomeostasis potentially impact a number of disease-associated pathways. We tested the hypothesis that the two most common HFE variants, H63D and C282Y, would affect cellular secretion of cytokines and trophic factors. Methods We screened a panel of cytokines and trophic factors using a multiplexed immunoassay in human neuroblastoma SH-SY5Y cells expressing different variants of HFE. The influence of cellular iron secretion on the potent chemokine monocyte chemoattractant protein-1 (MCP-1 was assessed using ferric ammonium citrate and the iron chelator, desferroxamine. Additionally, an antioxidant, Trolox, and an anti-inflammatory, minocycline, were tested for their effects on MCP-1 secretion in the presence of HFE variants. Results Expression of the HFE variants altered the labile iron pool in SH-SY5Y cells. Of the panel of cytokines and trophic factors analyzed, only the release of MCP-1 was affected by the HFE variants. We further examined the relationship between iron and MCP-1 and found MCP-1 secretion tightly associated with intracellular iron status. A potential direct effect of HFE is considered because, despite having similar levels of intracellular iron, the association between HFE genotype and MCP-1 expression was different for the H63D and C282Y HFE variants. Moreover, HFE genotype was a factor in the effect of minocycline, a multifaceted antibiotic used in treating a number of neurologic conditions associated with inflammation, on MCP-1

  5. Prostaglandin E2 and thromboxane B2 release from human monocytes treated with bacterial lipopolysaccharide

    International Nuclear Information System (INIS)

    Nichols, F.C.; Garrison, S.W.; Davis, H.W.

    1988-01-01

    We investigated the capacity of counterflow-isolated human monocytes to independently synthesize thromboxane B2 (TxB2) and prostaglandin E2 (PGE2) when stimulated with bacterial lipopolysaccharide (LPS). Independent metabolism was confirmed by establishing different specific activities (dpm/ng) of TxB2 and PGE2 released from LPS-treated cells. For metabolites released during the initial 2-hr treatment period, the specific activity of PGE2 was approximately threefold higher than that of TxB2 regardless of labeling with [3H]arachidonic acid (AA) or [14C]AA. Cells that were pulse-labeled for 2 hr with [3H]AA demonstrated a decreasing PGE2 specific activity over 24 hr, whereas the TxB2 specific activity remained unchanged. In contrast, cells continuously exposed to [14C]AA demonstrated an increasing TxB2 specific activity that approached the level of PGE2 by 24 hr. These results suggest the presence of at least 2 cyclooxygenase metabolic compartments in counterflow-isolated monocytes. Although freshly isolated monocytes have been reported to contain variable numbers of adherent platelets, additional experiments demonstrated that counterflow-isolated platelets are not capable of releasing elevated levels of TxB2 or PGE2 when treated with LPS. It is proposed from these findings that at least two subsets of monocytes exist in peripheral blood that can be distinguished on the basis of independent conversion of AA to TxB2 and PGE2

  6. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  7. “Omics” Signatures in Peripheral Monocytes from Women with Low BMD Condition

    Directory of Open Access Journals (Sweden)

    Bhavna Daswani

    2018-01-01

    Full Text Available Postmenopausal osteoporosis (PMO is a result of increased bone resorption compared to formation. Osteoclasts are responsible for bone resorption, which are derived from circulating monocytes that undertake a journey from the blood to the bone for the process of osteoclastogenesis. In recent times, the use of high throughput technologies to explore monocytes from women with low versus high bone density has led to the identification of candidate molecules that may be deregulated in PMO. This review provides a list of molecules in monocytes relevant to bone density which have been identified by “omics” studies in the last decade or so. The molecules in monocytes that are deregulated in low BMD condition may contribute to processes such as monocyte survival, migration/chemotaxis, adhesion, transendothelial migration, and differentiation into the osteoclast lineage. Each of these processes may be crucial to the overall route of osteoclastogenesis and an increase in any/all of these processes can lead to increased bone resorption and subsequently low bone density. Whether these molecules are indeed the cause or effect is an arena currently unexplored.

  8. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    Science.gov (United States)

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.

  9. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    Science.gov (United States)

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  10. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways

    Directory of Open Access Journals (Sweden)

    Chae Eun Lee

    2012-01-01

    Full Text Available This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda H. Hara on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG, T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.

  11. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    Science.gov (United States)

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Angiopoietin-like protein 2 induces proinflammatory responses in peritoneal cells

    Energy Technology Data Exchange (ETDEWEB)

    Umikawa, Masato, E-mail: umikawa@med.u-ryukyu.ac.jp [Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa (Japan); Umikawa, Asako; Asato, Tsuyoshi; Takei, Kimiko [Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa (Japan); Matsuzaki, Goro [Department of Tropical Infectious Diseases, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Kariya, Ken-ichi [Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa (Japan); Zhang, Cheng Cheng, E-mail: alec.zhang@utsouthwestern.edu [Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX (United States)

    2015-11-13

    Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces a drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.

  13. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  14. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein.

    Directory of Open Access Journals (Sweden)

    Gao Guo

    Full Text Available Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62.

  15. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    Science.gov (United States)

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  16. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2015-01-01

    Full Text Available Lipoarabinomannan (LAM is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients. Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.

  17. Purification of monocytes from cryopreserved mobilized apheresis products by elutriation with the Elutra device.

    Science.gov (United States)

    Lemarie, Claude; Sugaye, Romina; Kaur, Indreshpaul; Taga, Tim; Chabannon, Christian; Schuyler, Robert; Mcmannis, John

    2007-01-10

    The Elutra biomedical device allows semi-automatic enrichment of monocytes by elutriation, using a single-use, closed and cGMP compliant tubing set, in a cost effective way. The procedure has been validated using fresh apheresis products from nonmobilized donors. We here evaluated the possibility of using Elutra to enrich monocytes from frozen/thawed apheresis products collected from mobilized healthy donors. Frozen apheresis products from 6 G CSF mobilized donors were thawed and used in 16 elutriation procedures. We compared the recovery and purity of enriched monocytes using different buffer compositions and elutriation profiles. Elutriated monocytes were cultured to generate mature dendritic cells (DCs). Depending in part of the initial granulocyte contamination in the apheresis product, the use of Desoxyribo Nuclease (DNAse) to avoid aggregation, was needed through only the initial steps or throughout the elutriation process. The average monocyte recovery was 85+/-31%. The average purity was 73+/-9%. The recovery of mature DC at d8 of culture was 20+/-6% of the input monocyte numbers. We conclude that Elutra allows the purification of monocytes from thawed mobilized apheresis. It requires no pre-processing of the cell product before elutriation, and allows the generation of phenotypically mature DC in quantities that are compatible with a clinical use.

  18. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Alvarez X, Williams K. J Leukoc Biol. 2003 Nov;74(5):650-6. Epub 2003 Aug 11. (.png) (.svg) (.html) (.csml) Show Monocyte/macrophage... traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage tr

  19. Mitochondrial Sirtuin 4 Resolves Immune Tolerance in Monocytes by Rebalancing Glycolysis and Glucose Oxidation Homeostasis

    Directory of Open Access Journals (Sweden)

    Jie Tao

    2018-03-01

    Full Text Available The goal of this investigation was to define the molecular mechanism underlying physiologic conversion of immune tolerance to resolution of the acute inflammatory response, which is unknown. An example of this knowledge gap and its clinical importance is the broad-based energy deficit and immunometabolic paralysis in blood monocytes from non-survivors of human and mouse sepsis that precludes sepsis resolution. This immunometabolic dysregulation is biomarked by ex vivo endotoxin tolerance to increased glycolysis and TNF-α expression. To investigate how tolerance switches to resolution, we adapted our previously documented models associated with acute inflammatory, immune, and metabolic reprogramming that induces endotoxin tolerance as a model of sepsis in human monocytes. We report here that mitochondrial sirtuin 4 (SIRT4 physiologically breaks tolerance and resolves acute inflammation in human monocytes by coordinately reprogramming of metabolism and bioenergetics. We find that increased SIRT4 mRNA and protein expression during immune tolerance counters the increase in pyruvate dehydrogenase kinase 1 (PDK1 and SIRT1 that promote tolerance by switching glucose-dependent support of immune resistance to fatty acid oxidation support of immune tolerance. By decreasing PDK1, pyruvate dehydrogenase complex reactivation rebalances mitochondrial respiration, and by decreasing SIRT1, SIRT4 represses fatty acid oxidation. The precise mechanism for the mitochondrial SIRT4 nuclear feedback is unclear. Our findings are consistent with a new concept in which mitochondrial SIRT4 directs the axis that controls anabolic and catabolic energy sources.

  20. Histamine type I (H1) receptor radioligand binding studies on normal T cell subsets, B cells, and monocytes

    International Nuclear Information System (INIS)

    Cameron, W.; Doyle, K.; Rocklin, R.E.

    1986-01-01

    A single, specific binding site for [ 3 H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes was documented. The binding of the radioligand to its receptor is reversible with cold H 1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), the authors calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity for [ 3 H]pyrilamine, followed by T helper cells, B cells and T suppressor cells (K/sub D/ = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H 1 receptors per cell followed by B cells, T helper cells, and monocytes. The binding affinity for [ 3 H]pyrilamine increased over a 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [ 3 H]pyrilamine decreased over the 48-hr period. Although the function of H 1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in the modulating the immune response

  1. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    Science.gov (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Statins attenuate polymethylmethacrylate-mediated monocyte activation.

    LENUS (Irish Health Repository)

    Laing, Alan J

    2012-02-03

    BACKGROUND: Periprosthetic osteolysis precipitates aseptic loosening of components, increases the risk of periprosthetic fracture and, through massive bone loss, complicates revision surgery and ultimately is the primary cause for failure of joint arthroplasty. The anti-inflammatory properties of HMG-CoA reductase inhibitors belonging to the statin family are well recognized. We investigated a possible role for status in initiating the first stage of the osteolytic cycle, namely monocytic activation. METHODS: We used an in vitro model of the human monocyte\\/macrophage inflammatory response to poly-methylmethacrylate (PMMA) particles after pretreat-ing cells with cerivastatin, a potent member of the statin family. Cell activation based upon production of TNF-alpha and MCP-1 cytokines was analyzed and the intracellular Raf-MEK-ERK signal transduction pathway was evaluated using western blot analysis, to identify its role in cell activation and in any cerivastatin effects observed. RESULTS: We found that pretreatment with cerivastatin significantly abrogates the production of inflammatory cytokines TNF-alpha and MCP-1 by human monocytes in response to polymethylmethacrylate particle activation. This inflammatory activation and attenuation appear to be mediated through the intracellular Raf-MEK-ERK pathway. INTERPRETATION: We propose that by intervening at the upstream activation stage, subsequent osteoclast activation and osteolysis can be suppressed. We believe that the anti-inflammatory properties of statins may potentially play a prophylactic role in the setting of aseptic loosening, and in so doing increase implant longevity.

  3. Sytemic inflammation in cachexia - is tumour cytokine expression profile the culprit?

    Directory of Open Access Journals (Sweden)

    Emidio Marques De Matos-Neto

    2015-12-01

    Full Text Available Cachexia affects about 80 percent of gastrointestinal cancer patients. This multifactorial syndrome resulting in involuntary and continuous weight loss is accompanied by systemic inflammation and immune cell infiltration in various tissues. Understanding the interactions between tumor, immune cells and peripheral tissues could help attenuating systemic inflammation. Therefore, we investigated inflammation in the subcutaneous adipose tissue and in the tumor, in weight stable and cachectic cancer patients with same diagnosis, in order to establish correlations between tumor microenvironment and secretory pattern with adipose tissue and systemic inflammation. Infiltrating monocyte phenotypes of subcutaneous and tumor vascular-stromal fraction were identified by flow cytometry. Gene and protein expression of inflammatory and chemotactic factors was measured with qRT-PCR and Multiplex Magpix® system, respectively. Subcutaneous vascular-stromal fraction exhibited no differences in regard to macrophage subtypes, while in the tumor, the percentage of M2 macrophages was decreased in the cachectic patients, in comparison to weight-stable counterparts. CCL3, CCL4 and IL-1β expression was higher in the adipose tissue and tumor tissue in cachectic group. In both tissues chemotactic factors were positively correlated with IL-1β. Furthermore, positive correlations were found for the content of chemoattractants and cytokines in the tumor and adipose tissue. The results strongly suggest that the crosstalk between the tumor and peripheral tissues is more pronounced in cachectic patients, compared to weight-stable patients with the same tumor diagnosis.

  4. Nonclassical Ly6C− Monocytes Drive the Development of Inflammatory Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Alexander V. Misharin

    2014-10-01

    Full Text Available Different subsets and/or polarized phenotypes of monocytes and macrophages may play distinct roles during the development and resolution of inflammation. Here, we demonstrate in a murine model of rheumatoid arthritis that nonclassical Ly6C− monocytes are required for the initiation and progression of sterile joint inflammation. Moreover, nonclassical Ly6C− monocytes differentiate into inflammatory macrophages (M1, which drive disease pathogenesis and display plasticity during the resolution phase. During the development of arthritis, these cells polarize toward an alternatively activated phenotype (M2, promoting the resolution of joint inflammation. The influx of Ly6C− monocytes and their subsequent classical and then alternative activation occurs without changes in synovial tissue-resident macrophages, which express markers of M2 polarization throughout the course of the arthritis and attenuate joint inflammation during the initiation phase. These data suggest that circulating Ly6C− monocytes recruited to the joint upon injury orchestrate the development and resolution of autoimmune joint inflammation.

  5. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  6. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.

    Science.gov (United States)

    Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe

    2009-02-01

    In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.

  7. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Anne Waschbisch

    Full Text Available Immunoglobulin-like transcript (ILT 3 and 4 are inhibitory receptors that modulate immune responses. Their expression has been reported to be affected by interferon, offering a possible mechanism by which this cytokine exerts its therapeutic effect in multiple sclerosis, a condition thought to involve excessive immune activity. To investigate this possibility, we measured expression of ILT3 and ILT4 on immune cells from multiple sclerosis patients, and in post-mortem brain tissue. We also studied the ability of interferon beta, alone or in combination with vitamin D, to induce upregulation of these receptors in vitro, and compared expression levels between interferon-treated and untreated multiple sclerosis patients. In vitro interferon beta treatment led to a robust upregulation of ILT3 and ILT4 on monocytes, and dihydroxyvitamin D3 increased expression of ILT3 but not ILT4. ILT3 was abundant in demyelinating lesions in postmortem brain, and expression on monocytes in the cerebrospinal fluid was higher than in peripheral blood, suggesting that the central nervous system milieu induces ILT3, or that ILT3 positive monocytes preferentially enter the brain. Our data are consistent with involvement of ILT3 and ILT4 in the modulation of immune responsiveness in multiple sclerosis by both interferon and vitamin D.

  8. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children

    International Nuclear Information System (INIS)

    Luna, Ana L.; Acosta-Saavedra, Leonor C.; Lopez-Carrillo, Lizbeth; Conde, Patricia; Vera, Eunice; De Vizcaya-Ruiz, Andrea; Bastida, Mariana; Cebrian, Mariano E.; Calderon-Aranda, Emma S.

    2010-01-01

    Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO ·- ) and superoxide anion (O 2 ·- ), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO ·- and O 2 ·- produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 μg/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO ·- in PBMC (β = 0.0048, p = 0.049) and monocytes (β = 0.0044, p = 0.044), while basal O 2 ·- had a significant positive association with DMA (β = 0.0025, p = 0.046). In activated monocytes, O 2 ·- showed a statistical and positive association with iAs (β = 0.0108, p = 0.023), MMA (β = 0.0066, p = 0.022), DMA (β = 0.0018, p = 0.015), and tAs (β = 0.0013, p = 0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO ·- and O 2 ·- in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O 2 ·- production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O 2 ·- activation pathway, are relevant targets

  9. Increased cerebrospinal fluid levels of cytokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Martínez, H R; Escamilla-Ocañas, C E; Camara-Lemarroy, C R; González-Garza, M T; Moreno-Cuevas, J; García Sarreón, M A

    2017-10-10

    Neuroinflammation has recently been described in amyotrophic lateral sclerosis (ALS). However, the precise role of such proinflammatory cytokines as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in ALS has not yet been determined. In this study, we determined cerebrospinal fluid (CSF) MCP-1 and MIP-1β levels and assessed their association with the duration and severity of ALS. Concentrations of MCP-1 and MIP-1β were determined in the CSF of 77 patients diagnosed with ALS and 13 controls. Cytokine levels were analysed in relation to ALS duration (12months) and severity (30points on the ALS Functional Rating Scale administered at hospital admission). Higher CSF MIP-1β (10.68pg/mL vs. 4.69pg/mL, P<.0001) and MCP-1 (234.89pg/mL vs. 160.95pg/mL, P=.011) levels were found in the 77 patients with ALS compared to controls. There were no differences in levels of either cytokine in relation to disease duration or severity. However, we did observe a significant positive correlation between MIP-1β and MCP-1 in patients with ALS. The increase in MIP-1β and MCP-1 levels suggests that these cytokines may have a synergistic effect on ALS pathogenesis. However, in our cohort, no association was found with either the duration or the clinical severity of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    Science.gov (United States)

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  11. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    Science.gov (United States)

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  12. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  13. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Science.gov (United States)

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  14. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity

    OpenAIRE

    1984-01-01

    In the present study we demonstrate that human monocytes can be induced by the model stimulus, lipopolysaccharide (LPS), to produce and assemble on their surface functional Factor VII/VIIa. This protease was not induced in relatively purified monocytes alone following exposure to LPS; but was induced in the presence of Leu-3a positive helper/inducer T cells. The Factor VII/VIIa protease activity represented 35-40% of the potential initiating activity for the extrinsic coagulation pathway and ...

  15. Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes

    Science.gov (United States)

    Hossain, Mohammad B.; Conrad, Charles A.; Aldape, Kenneth D.; Fuller, Gregory N.; Marini, Frank C.; Alonso, Marta M.; Idoate, Miguel Angel; Gilbert, Mark R.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2014-01-01

    The addition of anti-angiogenic therapy to the few treatments available to patients with malignant gliomas was based on the fact that these tumors are highly vascularized and on encouraging results from preclinical and clinical studies. However, tumors that initially respond to this therapy invariably recur with the acquisition of a highly aggressive and invasive phenotype. Although several myeloid populations have been associated to this pattern of recurrence, a specific targetable population has not been yet identified. Here, we present evidence for the accumulation of Tie2-expressing monocytes/macrophages (TEMs) at the tumor/normal brain interface of mice treated with anti-VEGF therapies in regions with heightened tumoral invasion. Furthermore, we describe the presence of TEMs in malignant glioma surgical specimens that recurred after bevacizumab treatment. Our studies showed that TEMs enhanced the invasive properties of glioma cells and secreted high levels of gelatinase enzymatic proteins. Accordingly, Tie2+MMP9+ monocytic cells were consistently detected in the invasive tumor edge upon anti-VEGF therapies. Our results suggest the presence of a specific myeloid/monocytic subpopulation that plays a pivotal role in the mechanism of escape of malignant gliomas from anti-VEGF therapies and therefore constitutes a new cellular target for combination therapies in patients selected for anti-angiogenesis treatment. PMID:24809734

  16. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Directory of Open Access Journals (Sweden)

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  17. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S

    2015-01-01

    BACKGROUND: Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD......163 expressing macrophages ex vivo, in vitro and in human AAA. METHODS AND RESULTS: CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent...

  18. Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells

    Science.gov (United States)

    Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer

    2018-01-01

    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096

  19. Prognostic significance of the lymphocyte-to-monocyte ratio in patients with metastatic colorectal cancer.

    Science.gov (United States)

    Shibutani, Masatsune; Maeda, Kiyoshi; Nagahara, Hisashi; Ohtani, Hiroshi; Sakurai, Katsunobu; Yamazoe, Sadaaki; Kimura, Kenjiro; Toyokawa, Takahiro; Amano, Ryosuke; Tanaka, Hiroaki; Muguruma, Kazuya; Hirakawa, Kosei

    2015-09-14

    To evaluate the prognostic significance of the lymphocyte to monocyte ratio (LMR) in patients with unresectable metastatic colorectal cancer who received palliative chemotherapy. A total of 104 patients with unresectable metastatic colorectal cancer who underwent palliative chemotherapy were enrolled. The LMR was calculated from blood samples by dividing the absolute lymphocyte count by the absolute monocyte count. Pre-treatment LMR values were measured within one week before the initiation of chemotherapy, while post-treatment LMR values were measured eight weeks after the initiation of chemotherapy. The median pre-treatment LMR was 4.16 (range: 0.58-14.06). We set 3.38 as the cut-off level based on the receiver operating characteristic curve. Based on the cut-off level of 3.38, 66 patients were classified into the high pre-treatment LMR group and 38 patients were classified into the low pre-treatment LMR group. The low pre-treatment LMR group had a significantly worse overall survival rate (P = 0.0011). Moreover, patients who demonstrated low pre-treatment LMR and normalization after treatment exhibited a better overall survival rate than the patients with low pre-treatment and post-treatment LMR values. The lymphocyte to monocyte ratio is a useful prognostic marker in patients with unresectable metastatic colorectal cancer who receive palliative chemotherapy.

  20. Sperm from sneaker male squids exhibit chemotactic swarming to CO₂.

    Science.gov (United States)

    Hirohashi, Noritaka; Alvarez, Luis; Shiba, Kogiku; Fujiwara, Eiji; Iwata, Yoko; Mohri, Tatsuma; Inaba, Kazuo; Chiba, Kazuyoshi; Ochi, Hiroe; Supuran, Claudiu T; Kotzur, Nico; Kakiuchi, Yasutaka; Kaupp, U Benjamin; Baba, Shoji A

    2013-05-06

    Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Monocyte and plasma expression of TAM ligand and receptor in renal failure: Links to unregulated immunity and chronic inflammation.

    Science.gov (United States)

    Lee, Iris J; Hilliard, Brendan A; Ulas, Mehriban; Yu, Daohai; Vangala, Chandan; Rao, Swati; Lee, Jean; Gadegbeku, Crystal A; Cohen, Philip L

    2015-06-01

    Chronic inflammation is increased in patients with chronic kidney disease (CKD) and contributes to cardiovascular morbidity and mortality. Specific immune mechanisms and pathways that drive and maintain chronic inflammation in CKD are not well described. The TAM ligands (Gas6 and protein S) and receptors (Axl and Mer) have been recently recognized as playing a prominent role in immune regulation. The receptors exist in both soluble and cell-bound forms; the soluble receptors (sAxl and sMer) are believed to compete with the bound receptors and thus inhibit their function. In this study, we determined the expression of cell-bound and soluble TAM proteins in patients with CKD. CKD patients had significantly lower expression of Mer in monocytes, yet increased expression of soluble TAM receptors sAxl and sMer in plasma compared to controls. The metalloproteinase ADAM 17, responsible for cleavage of Mer to its soluble form, was increased in patient monocytes. Elevated levels of soluble TAM receptors were more evident in patients with progressive renal failure. These observations suggest that functional deficiency of TAM receptor-mediated regulation of inflammation may contribute to chronic inflammation in patients with CKD. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration*

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-01-01

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. PMID:25739439

  3. Unsaturated long-chain fatty acids induce the respiratory burst of human neutrophils and monocytes in whole blood

    Directory of Open Access Journals (Sweden)

    Osthaus Wilhelm A

    2008-07-01

    Full Text Available Abstract Background It is increasingly recognized that infectious complications in patients treated with total parenteral nutrition (TPN may be caused by altered immune responses. Neutrophils and monocytes are the first line of defence against bacterial and fungal infection through superoxide anion production during the respiratory burst. To characterize the impact of three different types of lipid solutions that are applied as part of TPN formulations, we investigated the unstimulated respiratory burst activation of neutrophils and monocytes in whole blood. Methods Whole blood samples were incubated with LCT (Intralipid®, LCT/MCT (Lipofundin® and LCT-MUFA (ClinOleic® in three concentrations (0.06, 0.3 and 0.6 mg ml-1 for time periods up to one hour. Hydrogen peroxide production during the respiratory burst of neutrophils and monocytes was measured by flow cytometry. Results LCT and LCT-MUFA induced a hydrogen peroxide production in neutrophils and monocytes without presence of a physiological stimulus in contrast to LCT/MCT. Conclusion We concluded that parenteral nutrition containing unsaturated oleic (C18:1 and linoleic (C18:2 acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species. Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

  4. Novel ex vivo culture method for human monocytes uses shear flow to prevent total loss of transendothelial diapedesis function.

    Science.gov (United States)

    Tsubota, Yoshiaki; Frey, Jeremy M; Raines, Elaine W

    2014-01-01

    Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.

  5. The mAb against adipocyte fatty acid-binding protein 2E4 attenuates the inflammation in the mouse model of high-fat diet-induced obesity via toll-like receptor 4 pathway.

    Science.gov (United States)

    Miao, Xiaoliang; Wang, Ying; Wang, Wang; Lv, Xiaobo; Wang, Min; Yin, Hongping

    2015-03-05

    Adipocyte fatty acid-binding protein (A-FABP) plays an important role in fatty acid-mediated processes and related metabolic and inflammatory responses. In this study, we prepared a novel monoclonal antibody against A-FABP, designated 2E4. Our data showed that 2E4 specifically binded to the recombinant A-FABP and native A-FABP of mice adipose tissue. Furthermore, we investigated the effect of 2E4 on metabolic and inflammatory responses in C57BL/6J obese mice fed on a high fat diet. 2E4 administration improved glucose response in high-fat-diet induced obese mice. The 2E4 treated groups exhibited lower free fatty acids, cholesterol, and triglycerides in a concentration-dependent manner. These changes were accompanied by down-regulated expression of pro-inflammatory cytokines in adipose tissue, including tumor necrosis factor α, monocyte chemotactic protein-1, and interleukin-6. Meanwhile, our data demonstrated that 2E4 significantly decreased the mRNA and protein levels of A-FABP in adipose tissue of mice. Further experiments showed that 2E4 notably suppressed the phosphorylation of IκBα and jun-N-terminal kinase through toll-like receptor 4 signaling pathway. Taken together, 2E4 is an effective monoclonal antibody against A-FABP, which attenuated the inflammatory responses induced in the high-fat-diet mice. These findings may provide scientific insight into the treatment of chronic low-grade inflammation in obesity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Cholesterol crystals enhance TLR2-and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis

    DEFF Research Database (Denmark)

    Køllgaard, Tania Maria Simonsen; Enevold, Christian; Bendtzen, Klaus

    2017-01-01

    , including Porphyromonas gingivalis, have been found in atherosclerotic plaques in humans and mice. We aimed to determine whether cholesterol crystals (CHCs) and oral bacteria synergize in the stimulation of human monocytes. Incubation of human monocytes with CHCs induced secretion of interleukin (IL)-1β......β secretion induced by P. gingivalis LPS and IL-1β secretion induced by whole P. gingivalis bacteria. This enhancement was abrogated by the NLRP3 inflammasome inhibitors Z-YVAD-FMK and glibenclamide. CHCs had no effect on cytokine production induced by P. gingivalis gingipains. Taken together, our...... findings support that CHCs, via stimulation of NLRP3 inflammasomes, act in synergy with the periodontal pathogen P. gingivalis to promote monocyte secretion of pro-atherogenic cytokines....

  7. DYSFUNCTION OF MONOCYTES AND DENDRITIC CELLS IN PATIENTS WITH PREMATURE OVARIAN FAILURE

    NARCIS (Netherlands)

    HOEK, A; VAN KASTEREN, Y; DE HAAN-MEULMAN, M; SCHOEMAKER, J; DREXHAGE, HA

    1993-01-01

    PROBLEM: Due to the presence of ovarian antibodies it has been suggested that premature ovarian failure (POF) belongs to the autoimmune endocrinopathies. Monocytes and the monocyte-derived dendritic cells play a prominent role in the initial stages of endocrine autoimmune reactions: the accumulation

  8. Identification of patients with chronic obstructive pulmonary disease (COPD) by measurement of plasma biomarkers

    DEFF Research Database (Denmark)

    Shaker, S.B.; Wachenfeldt, K.A. von; Larsson, S.

    2008-01-01

    Introduction: Inflammation is an important constituent of the pathology of chronic obstructive pulmonary disease (COPD), leading to alveolar destruction and airway remodelling. Objective: The aim of this study was to assess the difference in plasma biomarkers of inflammation between asymptomatic...... smokers and patients with COPD. Methods: We used commercially available enzyme-linked immunosorbent assay kits to measure the plasma levels of tumour necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9), monocyte chemotactic protein-1 (MCP-1), tissue inhibitor...... of metalloproteinase-1 (TIMP-1) and tissue inhibitor of metalloproteinase-2 (TIMP-2) on two occasions with a 2-week interval in patients with COPD (n = 20), asymptomatic smokers (n = 10) and healthy life-long non-smokers (n = 10). The participants were characterised clinically, physiologically and by quantitative...

  9. Generation of dendritic cells for immunotherapy is minimally impaired by granulocytes in the monocyte preparation.

    Science.gov (United States)

    ten Brinke, Anja; Karsten, Miriam L; Dieker, Miranda C; Zwaginga, Jaap Jan; Vrielink, Hans; Marieke van Ham, S

    2006-01-01

    The growing number of clinical studies, using monocyte-derived DC therapy, requires protocols where a sufficient number of dendritic cell (DCs) are produced according to current Good Manufacturing Practice guidelines. Therefore, a closed culture system for the generation of DCs is inevitable. One cost-effective way to isolate monocytes directly from leukapheresis material in a closed system is by elutriation with the Elutra cell separation system. In the Elutra, granulocytes co-purify with the monocytes. Therefore, we studied if and to what extent the presence of granulocytes in a monocyte product affects the generation of mature DCs. The presence of up to 16% granulocytes in the monocyte product had no significant effects on the quality of the DCs formed. The presence of higher granulocyte percentages, however, gradually altered DC quality. In this respect, the presence of higher number of granulocytes induced significant lower migratory capacity of the DCs and lower expression levels of CD80, CD40 and CD86. No effects were observed on the DC yield, cytokine production or the stimulatory capacity of the DCs in MLR. In conclusion, the presence of 20-30% granulocytes in a monocyte product has no major influence on the quality of the DCs generated from monocytes. Therefore, the Elutra is a suitable closed system apparatus to separate monocytes from other blood components for the generation of DCs, even from leukapheresis material which contains a high number of granulocytes.

  10. Pharmacodynamic Monitoring of Tacrolimus-based Immunosuppression in CD14+ Monocytes after Kidney Transplantation

    NARCIS (Netherlands)

    N.M. Kannegieter (Nynke); D.A. Hesselink (Dennis); M. Dieterich (Marjolein); G.N. de Graav (Gretchen); R. Kraaijeveld (Rens); A.T. Rowshani (Ajda); P.J. Leenen (Pieter); C.C. Baan (Carla)

    2017-01-01

    markdownabstractBackground: Monocytes significantly contribute to ischemia-reperfusion injury and allograft rejection after kidney transplantation. However, the knowledge about the effects of immunosuppressive drugs on monocyte activation is limited. Conventional pharmacokinetic methods for

  11. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody-induced T cell proliferation.

    Science.gov (United States)

    Tax, W J; Hermes, F F; Willems, R W; Capel, P J; Koene, R A

    1984-09-01

    In previous studies, it was shown that there is polymorphism in the mitogenic effect of mouse IgG1 monoclonal antibodies against the T3 antigen of human T cells. This polymorphism implies that IgG1 anti-T3 antibodies are not mitogenic for T cells from 30% of healthy individuals. The present results demonstrate that this polymorphism is caused by polymorphism of an Fc receptor for mouse IgG1, present on human monocytes. The Fc receptor for murine IgG1 could be detected by a newly developed rosetting assay on monocytes from all individuals responsive to the mitogenic effect of IgG1 anti-T3 antibodies. This Fc receptor was not detectable on monocytes from those individuals exhibiting no mitogenic responses to IgG1 anti-T3 monoclonal antibodies. Cross-linking of T3 antigens appears to be essential for antibody-induced mitosis of T cells, because mononuclear cells that did not proliferate in response to WT 31 (an IgG1 antibody against T3 antigen) showed a proliferative response to Sepharose beads coated with WT 31. The Fc receptor--if functionally present--may be involved in the cross-linking of T3 antigens through anti-T3 antibodies. Further evidence for the involvement of this Fc receptor in antibody-induced T cell proliferation was provided by inhibition studies. Immune complexes containing IgG1 antibodies were able to inhibit the proliferative response to IgG1 anti-T3 antibodies. This inhibition by immune complexes appears to be mediated through the monocyte Fc receptor for mouse IgG1. These findings are important for the interpretation of previously described inhibitory effects of anti-T cell monoclonal antibodies on T cell proliferation, and show that such inhibitory effects may be monocyte-mediated (via immune complexes) rather than caused by a direct involvement of the respective T cell antigens in T cell mitosis. The Fc receptor for mouse IgG1 plays a role in antibody-induced T cell proliferation. Its polymorphism may have important implications for the

  12. Cinnamic Acid Is Partially Involved in Propolis Immunomodulatory Action on Human Monocytes

    Directory of Open Access Journals (Sweden)

    Bruno José Conti

    2013-01-01

    Full Text Available Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci. The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs, HLA-DR, and CD80. Cytokine production (TNF-α and IL-10 and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities.

  13. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes.

    Science.gov (United States)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-11-14

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.

  14. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2015-06-01

    Full Text Available A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD- 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h and/or microbiological (S. Typhi bacteremia endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-. Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD- were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h. Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  15. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer

    OpenAIRE

    Venneri, Mary Anna; De Palma, Michele; Ponzoni, Maurilio; Pucci, Ferdinando; Scielzo, Cristina; Zonari, Erika; Mazzieri, Roberta; Doglioni, Claudio; Naldini, Luigi

    2007-01-01

    Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes distinct from classical inflammatory monocytes and comprised within the less abundant "resident" popul...

  16. [The effect of isoflurane on the secretion of TNF-alpha and IL-1 beta from LPS-stimulated human peripheral blood monocytes].

    Science.gov (United States)

    Sato, W; Enzan, K; Masaki, Y; Kayaba, M; Suzuki, M

    1995-07-01

    The cytokines such as tumor necrosis factor and interleukin-1 secreted from macrophages/monocytes proved to play important roles in the pathogenesis of endotoxemia, severe pancreatitis and other surgical injuries. However, it is still unclear how inhalational anesthetic agents influence the secretion of these cytokines from macrophages/monocytes. We investigated the effects of isoflurane on TNF-alpha and IL-1 beta secretions from human peripheral blood monocytes stimulated by lipopolysaccharide. TNF-alpha and IL-1 beta secretions increased after LPS stimulation and this increase was inhibited by isoflurane in dose-dependent fashion. The inhibitory action of isoflurane disappeared between 1 and 3 hours after stopping isoflurane inhalation. We concluded that isoflurane could inhibit TNF-alpha and IL-1 beta secretions from peripheral blood monocytes stimulated by LPS in a dose-dependent fashion and that the inhibitory action of isoflurane was reversible.

  17. Phosphodiesterase III inhibition affects platelet-monocyte aggregate formation depending on the axis of stimulation.

    NARCIS (Netherlands)

    Horn, N.A.; Anastase, D.M.; Hecker, K.E.; Baumert, J.H.; Scheffer, G.J.; Rossaint, R.

    2006-01-01

    OBJECTIVE: The purpose of this study was to investigate the effect of the phosphodiesterase (PDE) type 3 inhibitor milrinone on the adhesion of platelets to monocytes in vitro. DESIGN: Prospective study. SETTING: University experimental laboratory. PARTICIPANTS: Ten healthy volunteers.

  18. Adiponectin, interleukin-6, monocyte chemoattractant protein-1, and regional fat mass during 12-month randomized treatment with metformin and/or oral contraceptives in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Mumm, Hanne; Altinok, Magda Lambaa

    2014-01-01

    CONTEXT: Central obesity in polycystic ovary syndrome (PCOS) is associated with increased inflammatory markers and increased risk for type 2 diabetes. OBJECTIVE: To evaluate if improved body composition during treatment with metformin (M) vs. oral contraceptive pills (OCP) was associated...... with changes in circulating adiponectin, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1. PATIENTS AND INTERVENTIONS: Ninety patients with PCOS were randomized to 12-month treatment with M (2 g/day), M + OCP (150 mg desogestrel + 30 microgram ethinylestradiol) or OCP. Adiponectin, IL-6, MCP-1...... during the three types of medical intervention. Treatment with M and M + OCP was superior to OCP regarding decreased regional fat mass. Baseline adiponectin and IL-6 were associated with BMI, waist, and trunk fat mass. Changes in trunk fat were significantly associated with changes in IL-6 and MCP-1...

  19. The Therapeutic Potential of Monocyte/Macrophage Manipulation in the Treatment of Chemotherapy-Induced Painful Neuropathy

    Directory of Open Access Journals (Sweden)

    Karli Montague

    2017-11-01

    Full Text Available In cancer treatments a dose-limiting side-effect of chemotherapeutic agents is the development of neuropathic pain, which is poorly managed by clinically available drugs at present. Chemotherapy-induced painful neuropathy (CIPN is a major cause of premature cessation of treatment and so a greater understanding of the underlying mechanisms and the development of novel, more effective therapies, is greatly needed. In some cases, only a weak correlation between chemotherapy-induced pain and neuronal damage is observed both clinically and preclinically. As such, a critical role for non-neuronal cells, such as immune cells, and their communication with neurons in CIPN has recently been appreciated. In this mini-review, we will discuss preclinical evidence for the role of monocytes/macrophages in the periphery in CIPN, with a focus on that which is associated with the chemotherapeutic agents vincristine and paclitaxel. In addition we will discuss the potential mechanisms that regulate monocyte/macrophage–neuron crosstalk in this context. Informed by preclinical data, we will also consider the value of monocytes/macrophages as therapeutic targets for the treatment of CIPN clinically. Approaches that manipulate the signaling pathways discussed in this review show both promise and potential pitfalls. Nonetheless, they are emerging as innovative therapeutic targets with CX3CL1/R1-regulation of monocyte/macrophage–neuron communication currently emerging as a promising front-runner.

  20. Improvement in the Function of rat Peripheral Blood Monocytes Following Oral Administration of Curcumin

    Directory of Open Access Journals (Sweden)

    H Zirak Marangalu

    2017-06-01

    Conclusions: Collectively, it seems that curcumin is a natural source to intervene the monocytes functions especially in autoimmune diseases so that monocytes hyperactivity causes immunopathological conditions.