WorldWideScience

Sample records for monocular images based

  1. Neural correlates of monocular and binocular depth cues based on natural images: a LORETA analysis.

    Science.gov (United States)

    Fischmeister, Florian Ph S; Bauer, Herbert

    2006-10-01

    Functional imaging studies investigating perception of depth rely solely on one type of depth cue based on non-natural stimulus material. To overcome these limitations and to provide a more realistic and complete set of depth cues natural stereoscopic images were used in this study. Using slow cortical potentials and source localization we aimed to identify the neural correlates of monocular and binocular depth cues. This study confirms and extends functional imaging studies, showing that natural images provide a good, reliable, and more realistic alternative to artificial stimuli, and demonstrates the possibility to separate the processing of different depth cues.

  2. 3D Reconstruction from a Single Still Image Based on Monocular Vision of an Uncalibrated Camera

    Directory of Open Access Journals (Sweden)

    Yu Tao

    2017-01-01

    Full Text Available we propose a framework of combining Machine Learning with Dynamic Optimization for reconstructing scene in 3D automatically from a single still image of unstructured outdoor environment based on monocular vision of an uncalibrated camera. After segmenting image first time, a kind of searching tree strategy based on Bayes rule is used to identify the hierarchy of all areas on occlusion. After superpixel segmenting image second time, the AdaBoost algorithm is applied in the integration detection to the depth of lighting, texture and material. Finally, all the factors above are optimized with constrained conditions, acquiring the whole depthmap of an image. Integrate the source image with its depthmap in point-cloud or bilinear interpolation styles, realizing 3D reconstruction. Experiment in comparisons with typical methods in associated database demonstrates our method improves the reasonability of estimation to the overall 3D architecture of image’s scene to a certain extent. And it does not need any manual assist and any camera model information.

  3. Bayesian depth estimation from monocular natural images.

    Science.gov (United States)

    Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C

    2017-05-01

    Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.

  4. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    Directory of Open Access Journals (Sweden)

    Wenjuan Gong

    2016-11-01

    Full Text Available Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing. Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.

  5. Deformable Surface 3D Reconstruction from Monocular Images

    CERN Document Server

    Salzmann, Matthieu

    2010-01-01

    Being able to recover the shape of 3D deformable surfaces from a single video stream would make it possible to field reconstruction systems that run on widely available hardware without requiring specialized devices. However, because many different 3D shapes can have virtually the same projection, such monocular shape recovery is inherently ambiguous. In this survey, we will review the two main classes of techniques that have proved most effective so far: The template-based methods that rely on establishing correspondences with a reference image in which the shape is already known, and non-rig

  6. Automatic gear sorting system based on monocular vision

    Directory of Open Access Journals (Sweden)

    Wenqi Wu

    2015-11-01

    Full Text Available An automatic gear sorting system based on monocular vision is proposed in this paper. A CCD camera fixed on the top of the sorting system is used to obtain the images of the gears on the conveyor belt. The gears׳ features including number of holes, number of teeth and color are extracted, which is used to categorize the gears. Photoelectric sensors are used to locate the gears׳ position and produce the trigger signals for pneumatic cylinders. The automatic gear sorting is achieved by using pneumatic actuators to push different gears into their corresponding storage boxes. The experimental results verify the validity and reliability of the proposed method and system.

  7. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    Science.gov (United States)

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-07-03

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  8. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Science.gov (United States)

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  9. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Directory of Open Access Journals (Sweden)

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  10. Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis

    Directory of Open Access Journals (Sweden)

    Chen Shih-Wei

    2011-11-01

    Full Text Available Abstract Background The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD. In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA. Method Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence. Results and Discussion The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD. Conclusion This KPCA-based method requires only a digital camera and a decorated corridor setup

  11. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    Science.gov (United States)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  12. Monocular 3D display unit using soft actuator for parallax image shift

    Science.gov (United States)

    Sakamoto, Kunio; Kodama, Yuuki

    2010-11-01

    The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth. This vision unit needs an image shift optics for generating monocular parallax images. But conventional image shift mechanism is heavy because of its linear actuator system. To improve this problem, we developed a light-weight 3D vision unit for presenting monocular stereoscopic images using a soft linear actuator made of a polypyrrole film.

  13. Indoor monocular mobile robot navigation based on color landmarks

    Institute of Scientific and Technical Information of China (English)

    LUO Yuan; ZHANG Bai-sheng; ZHANG Yi; LI Ling

    2009-01-01

    A robot landmark navigation system based on monocular camera was researched theoretically and experimentally. First the landmark setting and its data structure in programming was given; then the coordinates of them getting by robot and global localization of the robot was described; finally experiments based on Pioneer III mobile robot show that this system can work well at different topographic situation without lose of signposts.

  14. Building a 3D scanner system based on monocular vision.

    Science.gov (United States)

    Zhang, Zhiyi; Yuan, Lin

    2012-04-10

    This paper proposes a three-dimensional scanner system, which is built by using an ingenious geometric construction method based on monocular vision. The system is simple, low cost, and easy to use, and the measurement results are very precise. To build it, one web camera, one handheld linear laser, and one background calibration board are required. The experimental results show that the system is robust and effective, and the scanning precision can be satisfied for normal users.

  15. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Liu, Fayao; Shen, Chunhua; Lin, Guosheng; Reid, Ian

    2016-10-01

    In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches.

  16. Measuring perceived depth in natural images and study of its relation with monocular and binocular depth cues

    Science.gov (United States)

    Lebreton, Pierre; Raake, Alexander; Barkowsky, Marcus; Le Callet, Patrick

    2014-03-01

    The perception of depth in images and video sequences is based on different depth cues. Studies have considered depth perception threshold as a function of viewing distance (Cutting and Vishton, 1995), the combination of different monocular depth cues and their quantitative relation with binocular depth cues and their different possible type of interactions (Landy, l995). But these studies only consider artificial stimuli and none of them attempts to provide a quantitative contribution of monocular and binocular depth cues compared to each other in the specific context of natural images. This study targets this particular application case. The evaluation of the strength of different depth cues compared to each other using a carefully designed image database to cover as much as possible different combinations of monocular (linear perspective, texture gradient, relative size and defocus blur) and binocular depth cues. The 200 images were evaluated in two distinct subjective experiments to evaluate separately perceived depth and different monocular depth cues. The methodology and the description of the definition of the different scales will be detailed. The image database (DC3Dimg) is also released for the scientific community.

  17. Eyegaze Detection from Monocular Camera Image for Eyegaze Communication System

    Science.gov (United States)

    Ohtera, Ryo; Horiuchi, Takahiko; Kotera, Hiroaki

    An eyegaze interface is one of the key technologies as an input device in the ubiquitous-computing society. In particular, an eyegaze communication system is very important and useful for severely handicapped users such as quadriplegic patients. Most of the conventional eyegaze tracking algorithms require specific light sources, equipment and devices. In this study, a simple eyegaze detection algorithm is proposed using a single monocular video camera. The proposed algorithm works under the condition of fixed head pose, but slight movement of the face is accepted. In our system, we assume that all users have the same eyeball size based on physiological eyeball models. However, we succeed to calibrate the physiologic movement of the eyeball center depending on the gazing direction by approximating it as a change in the eyeball radius. In the gaze detection stage, the iris is extracted from a captured face frame by using the Hough transform. Then, the eyegaze angle is derived by calculating the Euclidean distance of the iris centers between the extracted frame and a reference frame captured in the calibration process. We apply our system to an eyegaze communication interface, and verified the performance through key typing experiments with a visual keyboard on display.

  18. A Monocular Vision Based Approach to Flocking

    Science.gov (United States)

    2006-03-01

    The bird represented with the green triangle desires to move away from its neighbors to avoid overcrowding . The bird reacts the most strongly to the... brightness gradients [35], neural networks [18, 19], and other vision-based methods [6, 26, 33]. For the purposes of this thesis effort, it is assumed that...Once started, however, maneuver waves spread through the flock at a mean speed of less than 15 milliseconds [43]. 2.5.3 Too Perfect. In nature, a bird

  19. Extracting hand articulations from monocular depth images using curvature scale space descriptors

    Institute of Scientific and Technical Information of China (English)

    Shao-fan WANG[1; Chun LI[1; De-hui KONG[1; Bao-cai YIN[2,1,3

    2016-01-01

    We propose a framework of hand articulation detection from a monocular depth image using curvature scale space (CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.

  20. Extracting hand articulations from monocular depth images using curvature scale space descriptors

    Institute of Scientific and Technical Information of China (English)

    Shao-fan WANG; Chun LI; De-hui KONG; Bao-cai YIN

    2016-01-01

    We propose a framework of hand articulation detection from a monocular depth image using curvature scale space (CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data;moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.

  1. Stochastically optimized monocular vision-based navigation and guidance

    Science.gov (United States)

    Watanabe, Yoko

    The objective of this thesis is to design a relative navigation and guidance law for unmanned aerial vehicles, or UAVs, for vision-based control applications. The autonomous operation of UAVs has progressively developed in recent years. In particular, vision-based navigation, guidance and control has been one of the most focused on research topics for the automation of UAVs. This is because in nature, birds and insects use vision as the exclusive sensor for object detection and navigation. Furthermore, it is efficient to use a vision sensor since it is compact, light-weight and low cost. Therefore, this thesis studies the monocular vision-based navigation and guidance of UAVs. Since 2-D vision-based measurements are nonlinear with respect to the 3-D relative states, an extended Kalman filter (EKF) is applied in the navigation system design. The EKF-based navigation system is integrated with a real-time image processing algorithm and is tested in simulations and flight tests. The first closed-loop vision-based formation flight between two UAVs has been achieved, and the results are shown in this thesis to verify the estimation performance of the EKF. In addition, vision-based 3-D terrain recovery was performed in simulations to present a navigation design which has the capability of estimating states of multiple objects. In this problem, the statistical z-test is applied to solve the correspondence problem of relating measurements and estimation states. As a practical example of vision-based control applications for UAVs, a vision-based obstacle avoidance problem is specially addressed in this thesis. A navigation and guidance system is designed for a UAV to achieve a mission of waypoint tracking while avoiding unforeseen stationary obstacles by using vision information. An EKF is applied to estimate each obstacles' position from the vision-based information. A collision criteria is established by using a collision-cone approach and a time-to-go criterion. A minimum

  2. Measuring method for the object pose based on monocular vision technology

    Science.gov (United States)

    Sun, Changku; Zhang, Zimiao; Wang, Peng

    2010-11-01

    Position and orientation estimation of the object, which can be widely applied in the fields as robot navigation, surgery, electro-optic aiming system, etc, has an important value. The monocular vision positioning algorithm which is based on the point characteristics is studied and new measurement method is proposed in this paper. First, calculate the approximate coordinates of the five reference points which can be used as the initial value of iteration in the camera coordinate system according to weakp3p; Second, get the exact coordinates of the reference points in the camera coordinate system through iterative calculation with the constraints relationship of the reference points; Finally, get the position and orientation of the object. So the measurement model of monocular vision is constructed. In order to verify the accuracy of measurement model, a plane target using infrared LED as reference points is designed to finish the verification of the measurement method and the corresponding image processing algorithm is studied. And then The monocular vision experimental system is established. Experimental results show that the translational positioning accuracy reaches +/-0.05mm and rotary positioning accuracy reaches +/-0.2o .

  3. A low cost PSD-based monocular motion capture system

    Science.gov (United States)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  4. Mobile Target Tracking Based on Hybrid Open-Loop Monocular Vision Motion Control Strategy

    Directory of Open Access Journals (Sweden)

    Cao Yuan

    2015-01-01

    Full Text Available This paper proposes a new real-time target tracking method based on the open-loop monocular vision motion control. It uses the particle filter technique to predict the moving target’s position in an image. Due to the properties of the particle filter, the method can effectively master the motion behaviors of the linear and nonlinear. In addition, the method uses the simple mathematical operation to transfer the image information in the mobile target to its real coordinate information. Therefore, it requires few operating resources. Moreover, the method adopts the monocular vision approach, which is a single camera, to achieve its objective by using few hardware resources. Firstly, the method evaluates the next time’s position and size of the target in an image. Later, the real position of the objective corresponding to the obtained information is predicted. At last, the mobile robot should be controlled in the center of the camera’s vision. The paper conducts the tracking test to the L-type and the S-type and compares with the Kalman filtering method. The experimental results show that the method achieves a better tracking effect in the L-shape experiment, and its effect is superior to the Kalman filter technique in the L-type or S-type tracking experiment.

  5. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Science.gov (United States)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  6. Indoor Mobile Robot Navigation by Central Following Based on Monocular Vision

    Science.gov (United States)

    Saitoh, Takeshi; Tada, Naoya; Konishi, Ryosuke

    This paper develops the indoor mobile robot navigation by center following based on monocular vision. In our method, based on the frontal image, two boundary lines between the wall and baseboard are detected. Then, the appearance based obstacle detection is applied. When the obstacle exists, the avoidance or stop movement is worked according to the size and position of the obstacle, and when the obstacle does not exist, the robot moves at the center of the corridor. We developed the wheelchair based mobile robot. We estimated the accuracy of the boundary line detection, and obtained fast processing speed and high detection accuracy. We demonstrate the effectiveness of our mobile robot by the stopping experiments with various obstacles and moving experiments.

  7. Joint optic disc and cup boundary extraction from monocular fundus images.

    Science.gov (United States)

    Chakravarty, Arunava; Sivaswamy, Jayanthi

    2017-08-01

    Accurate segmentation of optic disc and cup from monocular color fundus images plays a significant role in the screening and diagnosis of glaucoma. Though optic cup is characterized by the drop in depth from the disc boundary, most existing methods segment the two structures separately and rely only on color and vessel kink based cues due to the lack of explicit depth information in color fundus images. We propose a novel boundary-based Conditional Random Field formulation that extracts both the optic disc and cup boundaries in a single optimization step. In addition to the color gradients, the proposed method explicitly models the depth which is estimated from the fundus image itself using a coupled, sparse dictionary trained on a set of image-depth map (derived from Optical Coherence Tomography) pairs. The estimated depth achieved a correlation coefficient of 0.80 with respect to the ground truth. The proposed segmentation method outperformed several state-of-the-art methods on five public datasets. The average dice coefficient was in the range of 0.87-0.97 for disc segmentation across three datasets and 0.83 for cup segmentation on the DRISHTI-GS1 test set. The method achieved a good glaucoma classification performance with an average AUC of 0.85 for five fold cross-validation on RIM-ONE v2. We propose a method to jointly segment the optic disc and cup boundaries by modeling the drop in depth between the two structures. Since our method requires a single fundus image per eye during testing it can be employed in the large-scale screening of glaucoma where expensive 3D imaging is unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    Science.gov (United States)

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  9. Detection and Tracking Strategies for Autonomous Aerial Refuelling Tasks Based on Monocular Vision

    Directory of Open Access Journals (Sweden)

    Yingjie Yin

    2014-07-01

    Full Text Available Detection and tracking strategies based on monocular vision are proposed for autonomous aerial refuelling tasks. The drogue attached to the fuel tanker aircraft has two important features. The grey values of the drogue's inner part are different from the external umbrella ribs, as shown in the image. The shape of the drogue's inner dark part is nearly circular. According to crucial prior knowledge, the rough and fine positioning algorithms are designed to detect the drogue. Particle filter based on the drogue's shape is proposed to track the drogue. A strategy to switch between detection and tracking is proposed to improve the robustness of the algorithms. The inner dark part of the drogue is segmented precisely in the detecting and tracking process and the segmented circular part can be used to measure its spatial position. The experimental results show that the proposed method has good performance in real-time and satisfied robustness and positioning accuracy.

  10. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    Directory of Open Access Journals (Sweden)

    Ki-Yeong Park

    2014-01-01

    Full Text Available We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  11. A Robust Approach for a Filter-Based Monocular Simultaneous Localization and Mapping (SLAM System

    Directory of Open Access Journals (Sweden)

    Antoni Grau

    2013-07-01

    Full Text Available Simultaneous localization and mapping (SLAM is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes.

  12. A robust approach for a filter-based monocular simultaneous localization and mapping (SLAM) system.

    Science.gov (United States)

    Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni

    2013-07-03

    Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes.

  13. Monocular depth perception using image processing and machine learning

    Science.gov (United States)

    Hombali, Apoorv; Gorde, Vaibhav; Deshpande, Abhishek

    2011-10-01

    This paper primarily exploits some of the more obscure, but inherent properties of camera and image to propose a simpler and more efficient way of perceiving depth. The proposed method involves the use of a single stationary camera at an unknown perspective and an unknown height to determine depth of an object on unknown terrain. In achieving so a direct correlation between a pixel in an image and the corresponding location in real space has to be formulated. First, a calibration step is undertaken whereby the equation of the plane visible in the field of view is calculated along with the relative distance between camera and plane by using a set of derived spatial geometrical relations coupled with a few intrinsic properties of the system. The depth of an unknown object is then perceived by first extracting the object under observation using a series of image processing steps followed by exploiting the aforementioned mapping of pixel and real space coordinate. The performance of the algorithm is greatly enhanced by the introduction of reinforced learning making the system independent of hardware and environment. Furthermore the depth calculation function is modified with a supervised learning algorithm giving consistent improvement in results. Thus, the system uses the experience in past and optimizes the current run successively. Using the above procedure a series of experiments and trials are carried out to prove the concept and its efficacy.

  14. Monocular vision based navigation method of mobile robot

    Institute of Scientific and Technical Information of China (English)

    DONG Ji-wen; YANG Sen; LU Shou-yin

    2009-01-01

    A trajectory tracking method is presented for the visual navigation of the monocular mobile robot. The robot move along line trajectory drawn beforehand, recognized and stop on the stop-sign to finish special task. The robot uses a forward looking colorful digital camera to capture information in front of the robot, and by the use of HSI model partition the trajectory and the stop-sign out. Then the "sampling estimate" method was used to calculate the navigation parameters. The stop-sign is easily recognized and can identify 256 different signs. Tests indicate that the method can fit large-scale intensity of brightness and has more robustness and better real-time character.

  15. RBF-Based Monocular Vision Navigation for Small Vehicles in Narrow Space below Maize Canopy

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-06-01

    Full Text Available Maize is one of the major food crops in China. Traditionally, field operations are done by manual labor, where the farmers are threatened by the harsh environment and pesticides. On the other hand, it is difficult for large machinery to maneuver in the field due to limited space, particularly in the middle and late growth stage of maize. Unmanned, compact agricultural machines, therefore, are ideal for such field work. This paper describes a method of monocular visual recognition to navigate small vehicles between narrow crop rows. Edge detection and noise elimination were used for image segmentation to extract the stalks in the image. The stalk coordinates define passable boundaries, and a simplified radial basis function (RBF-based algorithm was adapted for path planning to improve the fault tolerance of stalk coordinate extraction. The average image processing time, including network latency, is 220 ms. The average time consumption for path planning is 30 ms. The fast processing ensures a top speed of 2 m/s for our prototype vehicle. When operating at the normal speed (0.7 m/s, the rate of collision with stalks is under 6.4%. Additional simulations and field tests further proved the feasibility and fault tolerance of our method.

  16. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots

    Science.gov (United States)

    Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”

    2016-01-01

    This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540

  17. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Tae-Jae Lee

    2016-03-01

    Full Text Available This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.

  18. A monocular vision system based on cooperative targets detection for aircraft pose measurement

    Science.gov (United States)

    Wang, Zhenyu; Wang, Yanyun; Cheng, Wei; Chen, Tao; Zhou, Hui

    2017-08-01

    In this paper, a monocular vision measurement system based on cooperative targets detection is proposed, which can capture the three-dimensional information of objects by recognizing the checkerboard target and calculating of the feature points. The aircraft pose measurement is an important problem for aircraft’s monitoring and control. Monocular vision system has a good performance in the range of meter. This paper proposes an algorithm based on coplanar rectangular feature to determine the unique solution of distance and angle. A continuous frame detection method is presented to solve the problem of corners’ transition caused by symmetry of the targets. Besides, a displacement table test system based on three-dimensional precision and measurement system human-computer interaction software has been built. Experiment result shows that it has a precision of 2mm in the range of 300mm to 1000mm, which can meet the requirement of the position measurement in the aircraft cabin.

  19. A Novel Ship-Bridge Collision Avoidance System Based on Monocular Computer Vision

    Directory of Open Access Journals (Sweden)

    Yuanzhou Zheng

    2013-06-01

    Full Text Available The study aims to investigate the ship-bridge collision avoidance. A novel system for ship-bridge collision avoidance based on monocular computer vision is proposed in this study. In the new system, the moving ships are firstly captured by the video sequences. Then the detection and tracking of the moving objects have been done to identify the regions in the scene that correspond to the video sequences. Secondly, the quantity description of the dynamic states of the moving objects in the geographical coordinate system, including the location, velocity, orientation, etc, has been calculated based on the monocular vision geometry. Finally, the collision risk is evaluated and consequently the ship manipulation commands are suggested, aiming to avoid the potential collision. Both computer simulation and field experiments have been implemented to validate the proposed system. The analysis results have shown the effectiveness of the proposed system.

  20. Monocular Vision-Based Robot Localization and Target Tracking

    Directory of Open Access Journals (Sweden)

    Bing-Fei Wu

    2011-01-01

    Full Text Available This paper presents a vision-based technology for localizing targets in 3D environment. It is achieved by the combination of different types of sensors including optical wheel encoders, an electrical compass, and visual observations with a single camera. Based on the robot motion model and image sequences, extended Kalman filter is applied to estimate target locations and the robot pose simultaneously. The proposed localization system is applicable in practice because it is not necessary to have the initializing setting regarding starting the system from artificial landmarks of known size. The technique is especially suitable for navigation and target tracing for an indoor robot and has a high potential extension to surveillance and monitoring for Unmanned Aerial Vehicles with aerial odometry sensors. The experimental results present “cm” level accuracy of the localization of the targets in indoor environment under a high-speed robot movement.

  1. Why is binocular rivalry uncommon? Discrepant monocular images in the real world

    Directory of Open Access Journals (Sweden)

    Derek Henry Arnold

    2011-10-01

    Full Text Available When different images project to corresponding points in the two eyes they can instigate a phenomenon called binocular rivalry (BR, wherein each image seems to intermittently disappear such that only one of the two images is seen at a time. Cautious readers may have noted an important caveat in the opening sentence – this situation can instigate BR, but usually it doesn’t. Unmatched monocular images are frequently encountered in daily life due to either differential occlusions of the two eyes or because of selective obstructions of just one eye, but this does not tend to induce BR. Here I will explore the reasons for this and discuss implications for BR in general. It will be argued that BR is resolved in favour of the instantaneously stronger neural signal, and that this process is driven by an adaptation that enhances the visibility of distant fixated objects over that of more proximate obstructions of an eye. Accordingly, BR would reflect the dynamics of an inherently visual operation that usually deals with real-world constraints.

  2. Exploiting Depth From Single Monocular Images for Object Detection and Semantic Segmentation

    Science.gov (United States)

    Cao, Yuanzhouhan; Shen, Chunhua; Shen, Heng Tao

    2017-02-01

    Augmenting RGB data with measured depth has been shown to improve the performance of a range of tasks in computer vision including object detection and semantic segmentation. Although depth sensors such as the Microsoft Kinect have facilitated easy acquisition of such depth information, the vast majority of images used in vision tasks do not contain depth information. In this paper, we show that augmenting RGB images with estimated depth can also improve the accuracy of both object detection and semantic segmentation. Specifically, we first exploit the recent success of depth estimation from monocular images and learn a deep depth estimation model. Then we learn deep depth features from the estimated depth and combine with RGB features for object detection and semantic segmentation. Additionally, we propose an RGB-D semantic segmentation method which applies a multi-task training scheme: semantic label prediction and depth value regression. We test our methods on several datasets and demonstrate that incorporating information from estimated depth improves the performance of object detection and semantic segmentation remarkably.

  3. Obstacle Detection and Avoidance System Based on Monocular Camera and Size Expansion Algorithm for UAVs

    Science.gov (United States)

    Al-Kaff, Abdulla; García, Fernando; Martín, David; De La Escalera, Arturo; Armingol, José María

    2017-01-01

    One of the most challenging problems in the domain of autonomous aerial vehicles is the designing of a robust real-time obstacle detection and avoidance system. This problem is complex, especially for the micro and small aerial vehicles, that is due to the Size, Weight and Power (SWaP) constraints. Therefore, using lightweight sensors (i.e., Digital camera) can be the best choice comparing with other sensors; such as laser or radar.For real-time applications, different works are based on stereo cameras in order to obtain a 3D model of the obstacles, or to estimate their depth. Instead, in this paper, a method that mimics the human behavior of detecting the collision state of the approaching obstacles using monocular camera is proposed. The key of the proposed algorithm is to analyze the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. During the Aerial Vehicle (UAV) motion, the detection algorithm estimates the changes in the size of the area of the approaching obstacles. First, the method detects the feature points of the obstacles, then extracts the obstacles that have the probability of getting close toward the UAV. Secondly, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, by estimating the obstacle 2D position in the image and combining with the tracked waypoints, the UAV performs the avoidance maneuver. The proposed algorithm was evaluated by performing real indoor and outdoor flights, and the obtained results show the accuracy of the proposed algorithm compared with other related works. PMID:28481277

  4. Obstacle Detection and Avoidance System Based on Monocular Camera and Size Expansion Algorithm for UAVs.

    Science.gov (United States)

    Al-Kaff, Abdulla; García, Fernando; Martín, David; De La Escalera, Arturo; Armingol, José María

    2017-05-07

    One of the most challenging problems in the domain of autonomous aerial vehicles is the designing of a robust real-time obstacle detection and avoidance system. This problem is complex, especially for the micro and small aerial vehicles, that is due to the Size, Weight and Power (SWaP) constraints. Therefore, using lightweight sensors (i.e., Digital camera) can be the best choice comparing with other sensors; such as laser or radar.For real-time applications, different works are based on stereo cameras in order to obtain a 3D model of the obstacles, or to estimate their depth. Instead, in this paper, a method that mimics the human behavior of detecting the collision state of the approaching obstacles using monocular camera is proposed. The key of the proposed algorithm is to analyze the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. During the Aerial Vehicle (UAV) motion, the detection algorithm estimates the changes in the size of the area of the approaching obstacles. First, the method detects the feature points of the obstacles, then extracts the obstacles that have the probability of getting close toward the UAV. Secondly, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, by estimating the obstacle 2D position in the image and combining with the tracked waypoints, the UAV performs the avoidance maneuver. The proposed algorithm was evaluated by performing real indoor and outdoor flights, and the obtained results show the accuracy of the proposed algorithm compared with other related works.

  5. Mobile Robot Simultaneous Localization and Mapping Based on a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2016-01-01

    Full Text Available This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping algorithm for mobile robot. In this proposed method, the tracking and mapping procedures are split into two separate tasks and performed in parallel threads. In the tracking thread, a ground feature-based pose estimation method is employed to initialize the algorithm for the constraint moving of the mobile robot. And an initial map is built by triangulating the matched features for further tracking procedure. In the mapping thread, an epipolar searching procedure is utilized for finding the matching features. A homography-based outlier rejection method is adopted for rejecting the mismatched features. The indoor experimental results demonstrate that the proposed algorithm has a great performance on map building and verify the feasibility and effectiveness of the proposed algorithm.

  6. Monocular Vision SLAM for Indoor Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Koray Çelik

    2013-01-01

    Full Text Available This paper presents a novel indoor navigation and ranging strategy via monocular camera. By exploiting the architectural orthogonality of the indoor environments, we introduce a new method to estimate range and vehicle states from a monocular camera for vision-based SLAM. The navigation strategy assumes an indoor or indoor-like manmade environment whose layout is previously unknown, GPS-denied, representable via energy based feature points, and straight architectural lines. We experimentally validate the proposed algorithms on a fully self-contained microaerial vehicle (MAV with sophisticated on-board image processing and SLAM capabilities. Building and enabling such a small aerial vehicle to fly in tight corridors is a significant technological challenge, especially in the absence of GPS signals and with limited sensing options. Experimental results show that the system is only limited by the capabilities of the camera and environmental entropy.

  7. SHAPE AND ALBEDO FROM SHADING (SAfS FOR PIXEL-LEVEL DEM GENERATION FROM MONOCULAR IMAGES CONSTRAINED BY LOW-RESOLUTION DEM

    Directory of Open Access Journals (Sweden)

    B. Wu

    2016-06-01

    Full Text Available Lunar topographic information, e.g., lunar DEM (Digital Elevation Model, is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading, extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance

  8. Shape and Albedo from Shading (SAfS) for Pixel-Level dem Generation from Monocular Images Constrained by Low-Resolution dem

    Science.gov (United States)

    Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian

    2016-06-01

    Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO

  9. A Two-Stage Bayesian Network Method for 3D Human Pose Estimation from Monocular Image Sequences

    Directory of Open Access Journals (Sweden)

    Wang Yuan-Kai

    2010-01-01

    Full Text Available Abstract This paper proposes a novel human motion capture method that locates human body joint position and reconstructs the human pose in 3D space from monocular images. We propose a two-stage framework including 2D and 3D probabilistic graphical models which can solve the occlusion problem for the estimation of human joint positions. The 2D and 3D models adopt directed acyclic structure to avoid error propagation of inference. Image observations corresponding to shape and appearance features of humans are considered as evidence for the inference of 2D joint positions in the 2D model. Both the 2D and 3D models utilize the Expectation Maximization algorithm to learn prior distributions of the models. An annealed Gibbs sampling method is proposed for the two-stage method to inference the maximum posteriori distributions of joint positions. The annealing process can efficiently explore the mode of distributions and find solutions in high-dimensional space. Experiments are conducted on the HumanEva dataset with image sequences of walking motion, which has challenges of occlusion and loss of image observations. Experimental results show that the proposed two-stage approach can efficiently estimate more accurate human poses.

  10. Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy.

    Science.gov (United States)

    de Croon, Guido C H E

    2016-01-07

    The visual cue of optical flow plays an important role in the navigation of flying insects, and is increasingly studied for use by small flying robots as well. A major problem is that successful optical flow control seems to require distance estimates, while optical flow is known to provide only the ratio of velocity to distance. In this article, a novel, stability-based strategy is proposed for monocular distance estimation, relying on optical flow maneuvers and knowledge of the control inputs (efference copies). It is shown analytically that given a fixed control gain, the stability of a constant divergence control loop only depends on the distance to the approached surface. At close distances, the control loop starts to exhibit self-induced oscillations. The robot can detect these oscillations and hence be aware of the distance to the surface. The proposed stability-based strategy for estimating distances has two main attractive characteristics. First, self-induced oscillations can be detected robustly by the robot and are hardly influenced by wind. Second, the distance can be estimated during a zero divergence maneuver, i.e., around hover. The stability-based strategy is implemented and tested both in simulation and on board a Parrot AR drone 2.0. It is shown that the strategy can be used to: (1) trigger a final approach response during a constant divergence landing with fixed gain, (2) estimate the distance in hover, and (3) estimate distances during an entire landing if the robot uses adaptive gain control to continuously stay on the 'edge of oscillation.'

  11. Dynamic object recognition and tracking of mobile robot by monocular vision

    Science.gov (United States)

    Liu, Lei; Wang, Yongji

    2007-11-01

    Monocular Vision is widely used in mobile robot's motion control for its simple structure and easy using. An integrated description to distinguish and tracking the specified color targets dynamically and precisely by the Monocular Vision based on the imaging principle is the major topic of the paper. The mainline is accordance with the mechanisms of visual processing strictly, including the pretreatment and recognition processes. Specially, the color models are utilized to decrease the influence of the illumination in the paper. Some applied algorithms based on the practical application are used for image segmentation and clustering. After recognizing the target, however the monocular camera can't get depth information directly, 3D Reconstruction Principle is used to calculate the distance and direction from robot to target. To emend monocular camera reading, the laser is used after vision measuring. At last, a vision servo system is designed to realize the robot's dynamic tracking to the moving target.

  12. Sensor Fusion of Monocular Cameras and Laser Rangefinders for Line-Based Simultaneous Localization and Mapping (SLAM Tasks in Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2012-01-01

    Full Text Available This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM in dynamic environments. The designed approach consists of two features: (i the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM that incorporates two individual Extended Kalman Filter (EKF based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.

  13. Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.

    Science.gov (United States)

    Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong

    2012-01-01

    This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.

  14. Real-time drogue recognition and 3D locating for UAV autonomous aerial refueling based on monocular machine vision

    Institute of Scientific and Technical Information of China (English)

    Wang Xufeng; Kong Xingwei; Zhi Jianhui; Chen Yong; Dong Xinmin

    2015-01-01

    Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental condi-tions, without using a set of infrared light emitting diodes (LEDs) on the parachute part of the dro-gue. Secondly, considering camera lens distortion, a monocular vision measurement algorithm for drogue 3D locating is designed to ensure the accuracy and real-time performance of the system, with the drogue attitude provided. Finally, experiments are conducted to demonstrate the effective-ness of the proposed method. Experimental results show the performances of the entire system in contrast with other methods, which validates that the proposed method can recognize and locate the drogue three dimensionally, rapidly and precisely.

  15. A smart telerobotic system driven by monocular vision

    Science.gov (United States)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  16. A trajectory and orientation reconstruction method for moving objects based on a moving monocular camera.

    Science.gov (United States)

    Zhou, Jian; Shang, Yang; Zhang, Xiaohu; Yu, Wenxian

    2015-03-09

    We propose a monocular trajectory intersection method to solve the problem that a monocular moving camera cannot be used for three-dimensional reconstruction of a moving object point. The necessary and sufficient condition of when this method has the unique solution is provided. An extended application of the method is to not only achieve the reconstruction of the 3D trajectory, but also to capture the orientation of the moving object, which would not be obtained by PnP problem methods due to lack of features. It is a breakthrough improvement that develops the intersection measurement from the traditional "point intersection" to "trajectory intersection" in videometrics. The trajectory of the object point can be obtained by using only linear equations without any initial value or iteration; the orientation of the object with poor conditions can also be calculated. The required condition for the existence of definite solution of this method is derived from equivalence relations of the orders of the moving trajectory equations of the object, which specifies the applicable conditions of the method. Simulation and experimental results show that it not only applies to objects moving along a straight line, or a conic and another simple trajectory, but also provides good result for more complicated trajectories, making it widely applicable.

  17. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Hyungjin Kim

    2015-08-01

    Full Text Available Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments

  18. Robust 3D Object Tracking from Monocular Images using Stable Parts.

    Science.gov (United States)

    Crivellaro, Alberto; Rad, Mahdi; Verdie, Yannick; Yi, Kwang Moo; Fua, Pascal; Lepetit, Vincent

    2017-05-26

    We present an algorithm for estimating the pose of a rigid object in real-time under challenging conditions. Our method effectively handles poorly textured objects in cluttered, changing environments, even when their appearance is corrupted by large occlusions, and it relies on grayscale images to handle metallic environments on which depth cameras would fail. As a result, our method is suitable for practical Augmented Reality applications including industrial environments. At the core of our approach is a novel representation for the 3D pose of object parts: We predict the 3D pose of each part in the form of the 2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the object even when only one part is visible; when several parts are visible, we can easily combine them to compute a better pose of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible. We show how to use this representation in a robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we demonstrate our method on a practical Augmented Reality application for maintenance assistance in the ATLAS particle detector at CERN.

  19. Automatic Human Facial Expression Recognition Based on Integrated Classifier From Monocular Video with Uncalibrated Camera

    Directory of Open Access Journals (Sweden)

    Yu Tao

    2017-01-01

    Full Text Available An automatic recognition framework for human facial expressions from a monocular video with an uncalibrated camera is proposed. The expression characteristics are first acquired from a kind of deformable template, similar to a facial muscle distribution. After associated regularization, the time sequences from the trait changes in space-time under complete expressional production are then arranged line by line in a matrix. Next, the matrix dimensionality is reduced by a method of manifold learning of neighborhood-preserving embedding. Finally, the refined matrix containing the expression trait information is recognized by a classifier that integrates the hidden conditional random field (HCRF and support vector machine (SVM. In an experiment using the Cohn–Kanade database, the proposed method showed a comparatively higher recognition rate than the individual HCRF or SVM methods in direct recognition from two-dimensional human face traits. Moreover, the proposed method was shown to be more robust than the typical Kotsia method because the former contains more structural characteristics of the data to be classified in space-time

  20. Cross-Covariance Estimation for Ekf-Based Inertial Aided Monocular Slam

    Science.gov (United States)

    Kleinert, M.; Stilla, U.

    2011-04-01

    Repeated observation of several characteristically textured surface elements allows the reconstruction of the camera trajectory and a sparse point cloud which is often referred to as "map". The extended Kalman filter (EKF) is a popular method to address this problem, especially if real-time constraints have to be met. Inertial measurements as well as a parameterization of the state vector that conforms better to the linearity assumptions made by the EKF may be employed to reduce the impact of linearization errors. Therefore, we adopt an inertial-aided monocular SLAM approach where landmarks are parameterized in inverse depth w.r.t. the coordinate system in which they were observed for the first time. In this work we present a method to estimate the cross-covariances between landmarks which are introduced in the EKF state vector for the first time and the old filter state that can be applied in the special case at hand where each landmark is parameterized w.r.t. an individual coordinate system.

  1. Monocular visual ranging

    Science.gov (United States)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  2. Validation of Data Association for Monocular SLAM

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2013-01-01

    Full Text Available Simultaneous Mapping and Localization (SLAM is a multidisciplinary problem with ramifications within several fields. One of the key aspects for its popularity and success is the data fusion produced by SLAM techniques, providing strong and robust sensory systems even with simple devices, such as webcams in Monocular SLAM. This work studies a novel batch validation algorithm, the highest order hypothesis compatibility test (HOHCT, against one of the most popular approaches, the JCCB. The HOHCT approach has been developed as a way to improve performance of the delayed inverse-depth initialization monocular SLAM, a previously developed monocular SLAM algorithm based on parallax estimation. Both HOHCT and JCCB are extensively tested and compared within a delayed inverse-depth initialization monocular SLAM framework, showing the strengths and costs of this proposal.

  3. Design of the Surgical Navigation Based on Monocular Vision%单目视觉手术导航的系统设计

    Institute of Scientific and Technical Information of China (English)

    刘大鹏; 张巍; 徐子昂

    2016-01-01

    Objective: Existing orthopedic surgical navigation system makes surgery accurate and intraoperative X-ray exposure reduce to the traditional surgery, but the apparatus body is large and operation complicate, difficult to effectively shorten the operation time. This paper introduces a monocular vision navigation system to solve this problem. Methods: Monocular vision navigation using visible light image processing system, and set the overall hardware platform based on validated algorithms and designs used for knee replacement surgery procedures. Result & Conclusion: Relative to the previous method of non-contact dimensional localization, our system can keep the accuracy while reducing the hardware volume and simplifying the navigation process, also has features such as iterative development, low cost, particularly suitable for medium and small orthopaedics surgery.%目的:现有的骨科手术导航系统在提高手术精度和减少术中X线暴露方面具有传统手术无法比拟的优势,但设备体较大,操作繁琐,难以有效缩短手术时间。因此,介绍一种利用可见光的单目视觉导航系统解决此问题。方法:采用可见光的单目视觉作为手术导航的图像处理系统,并在此基础上设定整体硬件平台,验证相关算法,并设计了针对膝关节置换手术的使用操作流程。结果及结论:相对以往的非接触式立体定位方法,本系统在保证精度的同时减小设备体积,简化导航流程,兼具可重复开发、成本低廉等特性,适用于中小型骨科手术。

  4. A 3D Human Skeletonization Algorithm for a Single Monocular Camera Based on Spatial–Temporal Discrete Shadow Integration

    Directory of Open Access Journals (Sweden)

    Jie Hou

    2017-07-01

    Full Text Available Three-dimensional (3D human skeleton extraction is a powerful tool for activity acquirement and analyses, spawning a variety of applications on somatosensory control, virtual reality and many prospering fields. However, the 3D human skeletonization relies heavily on RGB-Depth (RGB-D cameras, expensive wearable sensors and specific lightening conditions, resulting in great limitation of its outdoor applications. This paper presents a novel 3D human skeleton extraction method designed for the monocular camera large scale outdoor scenarios. The proposed algorithm aggregates spatial–temporal discrete joint positions extracted from human shadow on the ground. Firstly, the projected silhouette information is recovered from human shadow on the ground for each frame, followed by the extraction of two-dimensional (2D joint projected positions. Then extracted 2D joint positions are categorized into different sets according to activity silhouette categories. Finally, spatial–temporal integration of same-category 2D joint positions is carried out to generate 3D human skeletons. The proposed method proves accurate and efficient in outdoor human skeletonization application based on several comparisons with the traditional RGB-D method. Finally, the application of the proposed method to RGB-D skeletonization enhancement is discussed.

  5. 基于单目视觉的纵向车间距检测研究%Research on Detection of Longitudinal Vehicle Spacing Based on Monocular Vision

    Institute of Scientific and Technical Information of China (English)

    杨炜; 魏朗; 巩建强; 张倩

    2012-01-01

    提出了一种在结构化公路上基于单目视觉的纵向车间距的检测方法;利用Hough变换识别两侧车道标识线,确定前方车辆识别区域,检测并跟踪本车道内的前方车辆,在传统的静态单帧图像测距模型的基础上,建立了一种改进的静态单帧图像测距模型,并实现了纵向车间距的测量;实验结果表明,该方法能够实时识别跟踪前方车辆,准确检测纵向车间距,其测量值与真实测量值相比较,误差比较小,测量精度较为准确,完全能够满足实际测距要求,是一种非常有效的纵向车间距检测方法,具有较强的通用性.%A new detection method of longitudinal vehicle spacing based on monocular vision is proposed. Using Hough transform recognition on both sides of driveway logo lane, determine leading vehicle identification area, detection and tracking the front vehicle in the lane, on the basis of traditional static single frame image ranging model, establishing a modified static single frame image ranging model ?finished the detection of longitudinal vehicle spacing. The experimental results show that this method could real-time identification leading vehicle, accurately detection of longitudinal vehicle spacing, the measured value compared with the real value measurement, the error are small, measurement accuracy is more accurate, could meet the practical needs, is a kind of effective longitudinal vehicle spacing detection method, has strong generality.

  6. Monocular transparency generates quantitative depth.

    Science.gov (United States)

    Howard, Ian P; Duke, Philip A

    2003-11-01

    Monocular zones adjacent to depth steps can create an impression of depth in the absence of binocular disparity. However, the magnitude of depth is not specified. We designed a stereogram that provides information about depth magnitude but which has no disparity. The effect depends on transparency rather than occlusion. For most subjects, depth magnitude produced by monocular transparency was similar to that created by a disparity-defined depth probe. Addition of disparity to monocular transparency did not improve the accuracy of depth settings. The magnitude of depth created by monocular occlusion fell short of that created by monocular transparency.

  7. A novel monocular visual navigation method for cotton-picking robot based on horizontal spline segmentation

    Science.gov (United States)

    Xu, ShengYong; Wu, JuanJuan; Zhu, Li; Li, WeiHao; Wang, YiTian; Wang, Na

    2015-12-01

    Visual navigation is a fundamental technique of intelligent cotton-picking robot. There are many components and cover in the cotton field, which make difficulties of furrow recognition and trajectory extraction. In this paper, a new field navigation path extraction method is presented. Firstly, the color image in RGB color space is pre-processed by the OTSU threshold algorithm and noise filtering. Secondly, the binary image is divided into numerous horizontally spline areas. In each area connected regions of neighboring images' vertical center line are calculated by the Two-Pass algorithm. The center points of the connected regions are candidate points for navigation path. Thirdly, a series of navigation points are determined iteratively on the principle of the nearest distance between two candidate points in neighboring splines. Finally, the navigation path equation is fitted by the navigation points using the least squares method. Experiments prove that this method is accurate and effective. It is suitable for visual navigation in the complex environment of cotton field in different phases.

  8. Fiducial-based monocular 3D displacement measurement of breakwater armour unit models.

    CSIR Research Space (South Africa)

    Vieira, R

    2008-11-01

    Full Text Available This paper presents a fiducial-based approach to monitoring the movement of breakwater armour units in a model hall environment. Target symbols with known dimensions are attached to the physical models, allowing the recovery of three...

  9. Differential processing of binocular and monocular gloss cues in human visual cortex

    Science.gov (United States)

    Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.

    2016-01-01

    The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  10. Differential processing of binocular and monocular gloss cues in human visual cortex.

    Science.gov (United States)

    Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E

    2016-06-01

    The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.

  11. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  12. Monocular vision for intelligent wheelchair indoor navigation based on natural landmark matching

    Science.gov (United States)

    Xu, Xiaodong; Luo, Yuan; Kong, Weixi

    2010-08-01

    This paper presents a real-time navigation system in a behavior-based manner. We show that autonomous navigation is possible in different rooms with the use of a single camera and natural landmarks. Firstly the intelligent wheelchair is manually guided on a path passing through different rooms and a video sequence is recorded with a front-facing camera. A 3D structure map is then gotten from this learning sequence by calculating the natural landmarks. Finally, the intelligent wheelchair uses this map to compute its localization and it follows the learning path or a slightly different path to achieve the real-time navigation. Experimental results indicate that this method is effective even when the viewpoint and scale is changed.

  13. Inexpensive Monocular Pico-Projector-based Augmented Reality Display for Surgical Microscope.

    Science.gov (United States)

    Shi, Chen; Becker, Brian C; Riviere, Cameron N

    2012-01-01

    This paper describes an inexpensive pico-projector-based augmented reality (AR) display for a surgical microscope. The system is designed for use with Micron, an active handheld surgical tool that cancels hand tremor of surgeons to improve microsurgical accuracy. Using the AR display, virtual cues can be injected into the microscope view to track the movement of the tip of Micron, show the desired position, and indicate the position error. Cues can be used to maintain high performance by helping the surgeon to avoid drifting out of the workspace of the instrument. Also, boundary information such as the view range of the cameras that record surgical procedures can be displayed to tell surgeons the operation area. Furthermore, numerical, textual, or graphical information can be displayed, showing such things as tool tip depth in the work space and on/off status of the canceling function of Micron.

  14. Disparity biasing in depth from monocular occlusions.

    Science.gov (United States)

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2011-07-15

    Monocular occlusions have been shown to play an important role in stereopsis. Among other contributions to binocular depth perception, monocular occlusions can create percepts of illusory occluding surfaces. It has been argued that the precise location in depth of these illusory occluders is based on the constraints imposed by occlusion geometry. Tsirlin et al. (2010) proposed that when these constraints are weak, the depth of the illusory occluder can be biased by a neighboring disparity-defined feature. In the present work we test this hypothesis using a variety of stimuli. We show that when monocular occlusions provide only partial constraints on the magnitude of depth of the illusory occluders, the perceived depth of the occluders can be biased by disparity-defined features in the direction unrestricted by the occlusion geometry. Using this disparity bias phenomenon we also show that in illusory occluder stimuli where disparity information is present, but weak, most observers rely on disparity while some use occlusion information instead to specify the depth of the illusory occluder. Taken together our experiments demonstrate that in binocular depth perception disparity and monocular occlusion cues interact in complex ways to resolve perceptual ambiguity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Visual SLAM for Handheld Monocular Endoscope.

    Science.gov (United States)

    Grasa, Óscar G; Bernal, Ernesto; Casado, Santiago; Gil, Ismael; Montiel, J M M

    2014-01-01

    Simultaneous localization and mapping (SLAM) methods provide real-time estimation of 3-D models from the sole input of a handheld camera, routinely in mobile robotics scenarios. Medical endoscopic sequences mimic a robotic scenario in which a handheld camera (monocular endoscope) moves along an unknown trajectory while observing an unknown cavity. However, the feasibility and accuracy of SLAM methods have not been extensively validated with human in vivo image sequences. In this work, we propose a monocular visual SLAM algorithm tailored to deal with medical image sequences in order to provide an up-to-scale 3-D map of the observed cavity and the endoscope trajectory at frame rate. The algorithm is validated over synthetic data and human in vivo sequences corresponding to 15 laparoscopic hernioplasties where accurate ground-truth distances are available. It can be concluded that the proposed procedure is: 1) noninvasive, because only a standard monocular endoscope and a surgical tool are used; 2) convenient, because only a hand-controlled exploratory motion is needed; 3) fast, because the algorithm provides the 3-D map and the trajectory in real time; 4) accurate, because it has been validated with respect to ground-truth; and 5) robust to inter-patient variability, because it has performed successfully over the validation sequences.

  16. Zero Calibration of Delta Robot Based on Monocular Vision%基于单目视觉的 Delta 机器人零点标定方法

    Institute of Scientific and Technical Information of China (English)

    孙月海; 王兰; 梅江平; 张文昌; 刘艺

    2013-01-01

    For the precision of high-speed pick-and-place parallel robot with lower-mobility in practical engineering, a fast calibration approach was proposed based on vision metrology in this paper. To specify this method,by means of system analysis and reasonable mechanism simplification of Delta robot,a zero error model was established. A zero error identification model using monocular vision was constructed in plane measurement. The zero error could be identified only measuring the positional error of end-effector in x axis and y axis by monocular vision,when the mo-bile platform was in horizontal motion. The error compensation was realized by modifying the ideal zero point position of the system. Calibration experiment results show that the method is simple,effective and strongly practical.%  针对实际工程应用中少自由度高速抓放并联机器人的精度问题,提出了一种基于视觉测量的快速标定方法。以 Delta 机器人为例,通过系统分析和机构合理简化,建立了零点误差模型。构造出基于单目视觉平面测量的零点误差辨识模型,借助单目视觉仅检测机器人动平台沿水平面运动时末端 x 、 y 向的位置误差,识别出零点误差,进而修改零点位置实现末端位置误差补偿。标定实验结果表明该方法简单、有效、实用性强。

  17. Light-weight monocular display unit for 3D display using polypyrrole film actuator

    Science.gov (United States)

    Sakamoto, Kunio; Ohmori, Koji

    2010-10-01

    The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth. This vision unit needs an image shift optics for generating monocular parallax images. But conventional image shift mechanism is heavy because of its linear actuator system. To improve this problem, we developed a light-weight 3D vision unit for presenting monocular stereoscopic images using a polypyrrole linear actuator.

  18. Amodal completion with background determines depth from monocular gap stereopsis.

    Science.gov (United States)

    Grove, Philip M; Ben Sachtler, W L; Gillam, Barbara J

    2006-10-01

    Grove, Gillam, and Ono [Grove, P. M., Gillam, B. J., & Ono, H. (2002). Content and context of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms. Vision Research, 42, 1859-1870] reported that perceived depth in monocular gap stereograms [Gillam, B. J., Blackburn, S., & Nakayama, K. (1999). Stereopsis based on monocular gaps: Metrical encoding of depth and slant without matching contours. Vision Research, 39, 493-502] was attenuated when the color/texture in the monocular gap did not match the background. It appears that continuation of the gap with the background constitutes an important component of the stimulus conditions that allow a monocular gap in an otherwise binocular surface to be responded to as a depth step. In this report we tested this view using the conventional monocular gap stimulus of two identical grey rectangles separated by a gap in one eye but abutting to form a solid grey rectangle in the other. We compared depth seen at the gap for this stimulus with stimuli that were identical except for two additional small black squares placed at the ends of the gap. If the squares were placed stereoscopically behind the rectangle/gap configuration (appearing on the background) they interfered with the perceived depth at the gap. However when they were placed in front of the configuration this attenuation disappeared. The gap and the background were able under these conditions to complete amodally.

  19. An appearance-based monocular vision approach for gaze estimation%基于表观特征的单目视觉算法实现的注视方向估计

    Institute of Scientific and Technical Information of China (English)

    张海秀; 葛宏志; 张晶

    2011-01-01

    As an important modality in Human - computer Interaction ( HCI),eye gaze provides rich information in communications.A Monocular Vision Approach (MVA) was proposed for gaze tracking under allowable head movement based on an appearance -based feature and Support Vector Regression (SVR).In MVA,only one commercial camera is used to capture a monocular face image as input,and the outputs are the head pose and gaze direction in sequence with respect to the camera coordinate system.This appearance -based feature employs a novel Directional Binary Pattern (DBP) to calculate the texture change relative to the pupil movement within the eye socket.In this method,the cropped two eye images are encoded into the high -dimensional DBP feature,which is fed into Support Vector Regression (SVR) to approximate the gaze mapping function.The 23 676 regression samples of 11 persons are clustered related to five head poses.Experimenta1 results show that this method can achieve the accuracy less than.%视线跟踪作为一种重要的人机接口模式,能够提供丰富的人机交互信息.提出了基于单目视觉的视线跟踪方法( Monocular Vision Approach,MVA).从眼部图像提取的表观特征,再经过支持向量回归( Support Vector Regression,SVR)计算实现可头部动作的注视方向估计.本方法仅用一个摄像机采集一副人脸图像作为输入数据,输出的计算结果是人的头部姿态和注视方向,以摄像机坐标系为参照系.采用的表观特征是基于方向二值模式( Directional Binary Pattern,DBP)算法,解析瞳孔在眼窝中运动引起的图像纹理变化.视线跟踪方法首先将双眼分割出来,并编码成高维的方向二值模式特征,最终通过支持向量回归作为匹配函数计算注视视角.共有11个人共23 676回归样本,按照姿态分成5个聚类集合.实验结果显示,基于本方法进行注视方向估计可以获得3°的测试误差.

  20. Monocular Road Detection Using Structured Random Forest

    Directory of Open Access Journals (Sweden)

    Liang Xiao

    2016-05-01

    Full Text Available Road detection is a key task for autonomous land vehicles. Monocular vision-based road detection algorithms are mostly based on machine learning approaches and are usually cast as classification problems. However, the pixel-wise classifiers are faced with the ambiguity caused by changes in road appearance, illumination and weather. An effective way to reduce the ambiguity is to model the contextual information with structured learning and prediction. Currently, the widely used structured prediction model in road detection is the Markov random field or conditional random field. However, the random field-based methods require additional complex optimization after pixel-wise classification, making them unsuitable for real-time applications. In this paper, we present a structured random forest-based road-detection algorithm which is capable of modelling the contextual information efficiently. By mapping the structured label space to a discrete label space, the test function of each split node can be trained in a similar way to that of the classical random forests. Structured random forests make use of the contextual information of image patches as well as the structural information of the labels to get more consistent results. Besides this benefit, by predicting a batch of pixels in a single classification, the structured random forest-based road detection can be much more efficient than the conventional pixel-wise random forest. Experimental results tested on the KITTI-ROAD dataset and data collected in typical unstructured environments show that structured random forest-based road detection outperforms the classical pixel-wise random forest both in accuracy and efficiency.

  1. Saccade amplitude disconjugacy induced by aniseikonia: role of monocular depth cues.

    Science.gov (United States)

    Pia Bucci, M; Kapoula, Z; Eggert, T

    1999-09-01

    The conjugacy of saccades is rapidly modified if the images are made unequal for the two eyes. Disconjugacy persists even in the absence of disparity which indicates learning. Binocular visual disparity is a major cue to depth and is believed to drive the disconjugacy of saccades to aniseikonic images. The goal of the present study was to test whether monocular depth cues can also influence the disconjugacy of saccades. Three experiments were performed in which subjects were exposed for 15-20 min to a 10% image size inequality. Three different images were used: a grid that contained a single monocular depth cue strongly indicating a frontoparallel plane; a random-dot pattern that contained a less prominent monocular depth cue (absence of texture gradient) which also indicates the frontoparallel plane; and a complex image with several overlapping geometric forms that contained a variety of monocular depth cues. Saccades became disconjugate in all three experiments. The disconjugacy was larger and more persistent for the experiment using the random-dot pattern that had the least prominent monocular depth cues. The complex image which had a large variety of monocular depth cues produced the most variable and less persistent disconjugacy. We conclude that the monocular depth cues modulate the disconjugacy of saccades stimulated by the disparity of aniseikonic images.

  2. Monocular Obstacle Detection for Real-World Environments

    Science.gov (United States)

    Einhorn, Erik; Schroeter, Christof; Gross, Horst-Michael

    In this paper, we present a feature based approach for monocular scene reconstruction based on extended Kaiman filters (EKF). Our method processes a sequence of images taken by a single camera mounted in front of a mobile robot. Using various techniques we are able to produce a precise reconstruction that is almost free from outliers and therefore can be used for reliable obstacle detection and avoidance. In real-world field tests we show that the presented approach is able to detect obstacles that can not be seen by other sensors, such as laser range finders. Furthermore, we show that visual obstacle detection combined with a laser range finder can increase the detection rate of obstacles considerably, allowing the autonomous use of mobile robots in complex public and home environments.

  3. Monocular Video Guided Garment Simulation

    Institute of Scientific and Technical Information of China (English)

    Fa-Ming Li; Xiao-Wu Chen∗; Bin Zhou; Fei-Xiang Lu; Kan Guo; Qiang Fu

    2015-01-01

    We present a prototype to generate a garment-shape sequence guided by a monocular video sequence. It is a combination of a physically-based simulation and a boundary-based modification. Given a garment in the video worn on a mannequin, the simulation generates a garment initial shape by exploiting the mannequin shapes estimated from the video. The modification then deforms the simulated 3D shape into such a shape that matches the garment 2D boundary extracted from the video. According to the matching correspondences between the vertices on the shape and the points on the boundary, the modification is implemented by attracting the matched vertices and their neighboring vertices. For best-matching correspondences and efficient performance, three criteria are introduced to select the candidate vertices for matching. Since modifying each garment shape independently may cause inter-frame oscillations, changes by the modification are also propagated from one frame to the next frame. As a result, the generated garment 3D shape sequence is stable and similar to the garment video sequence. We demonstrate the effectiveness of our prototype with a number of examples.

  4. Monocular 3D display system for presenting correct depth

    Science.gov (United States)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-10-01

    The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  5. Monocular 3D scene reconstruction at absolute scale

    Science.gov (United States)

    Wöhler, Christian; d'Angelo, Pablo; Krüger, Lars; Kuhl, Annika; Groß, Horst-Michael

    In this article we propose a method for combining geometric and real-aperture methods for monocular three-dimensional (3D) reconstruction of static scenes at absolute scale. Our algorithm relies on a sequence of images of the object acquired by a monocular camera of fixed focal setting from different viewpoints. Object features are tracked over a range of distances from the camera with a small depth of field, leading to a varying degree of defocus for each feature. Information on absolute depth is obtained based on a Depth-from-Defocus approach. The parameters of the point spread functions estimated by Depth-from-Defocus are used as a regularisation term for Structure-from-Motion. The reprojection error obtained from bundle adjustment and the absolute depth error obtained from Depth-from-Defocus are simultaneously minimised for all tracked object features. The proposed method yields absolutely scaled 3D coordinates of the scene points without any prior knowledge about scene structure and camera motion. We describe the implementation of the proposed method both as an offline and as an online algorithm. Evaluating the algorithm on real-world data, we demonstrate that it yields typical relative scale errors of a few per cent. We examine the influence of random effects, i.e. the noise of the pixel grey values, and systematic effects, caused by thermal expansion of the optical system or by inclusion of strongly blurred images, on the accuracy of the 3D reconstruction result. Possible applications of our approach are in the field of industrial quality inspection; in particular, it is preferable to stereo cameras in industrial vision systems with space limitations or where strong vibrations occur.

  6. 基于单目视觉的移动机器人伺服镇定控制%Monocular camera-based mobile robot visual servo regulation control

    Institute of Scientific and Technical Information of China (English)

    刘阳; 王忠立; 蔡伯根; 闻映红

    2016-01-01

    To solve the monocular camera‐based mobile robot regulation problem ,the kinematic model in camera coordinate was proposed under the condition of unknown range information ,unknown translation parameter between robot and camera frames ,camera with certain dip angle .A robust and adaptive controller was proposed based on the assumptions above .The controller guaranteed exponen‐tial convergence of the system .The performance of the controller was validated by simulation and ex‐periment result ,showing that the controller could guarantees the robot rapidly and smoothly regulate to desired pose .T he controller is also robust to unknow n parameter .%针对轮式移动机器人的单目视觉伺服镇定问题,在深度信息、机器人坐标系与摄像机坐标系间平移参量未知、摄像头光轴具有固定倾角的情况下,建立了移动机器人在摄像机坐标系下的运动模型。针对该模型提出了一种基于平面单应矩阵分解的鲁棒自适应控制方法,保证了误差的全局指数收敛。仿真和实验结果表明:所设计的控制器可以保证移动机器人指数收敛到期望的位姿,同时所设计的鲁棒自适应控制器对参数不确定性具有一定的鲁棒性。

  7. A Research on Monocular Visual SLAM Based on SURF Feature%基于SURF特征的单目视觉SLAM方法研究∗

    Institute of Scientific and Technical Information of China (English)

    胡衡; 梁岚珍

    2015-01-01

    Because the visual information is easily affected by external environment factors, therefore the selected feature points of mobile robot based on visual simultaneous localization and map building requires high stability and good robustness. For the problem of monocular visual mobile robot SLAM(Simultaneous Localization and Mapping),a kind of mono-SLAM algorithm based on Extended kalman filter is proposed by using SURF(Speed Up Robust Features) feature points and the inverse depth method. The process of SLAM is completed by fusing the information of SURF features and robot information with EKF. The result of simulation experiment indicates that the proposed algorithm is feasible, and with high localization precision in indoor structured environment.%由于视觉信息很容易受到外界环境因素的影响,因此基于视觉的移动机器人同步定位与地图构建问题所选取的特征点要求具有较高的精确度和良好的鲁棒性。针对单目SLAM问题,提出一种基于扩展卡尔曼滤波器的单目视觉SLAM算法。该算法采用SURF特征点,结合反向深度估计法,应用扩展卡尔曼滤波器融合SURF特征信息与机器人位姿信息完成SLAM过程。仿真实验结果表明,在未知室内结构化环境下,该算法运行可靠,定位精度高。

  8. The design of a traffic environment prewarning system based on monocular vision%基于单目视觉的行车环境安全预警系统设计

    Institute of Scientific and Technical Information of China (English)

    邓筠; 沈文超; 徐建闽; 游峰

    2015-01-01

    This thesis aims to design a traffic environment prewarning system which is based on monocular vision and consists of three modules including CCD image acquisition module,driving environment detection module,and traffic environment danger alert module. The research focuses on new methods of traffic lane line extraction--preceding vehicle detection and traffic environment recognition,and also make description of the system hardware architecture and software process and algorithm,which can identify the highway traffic environment and warn drivers in case of dangerous situations. Experimental results show that the system can detect front lane and vehicles accurately to achieve the design effects.%文中设计了基于机器视觉的行车环境安全预警系统,采用包含视频图像采集、行车环境检测以及行车环境安全预警3个功能模块的系统结构,重点研究并提出了新的行车环境识别方法,包含车道线提取和前方车辆检测方法,并对系统硬件架构及软件流程和算法进行说明,实现高速公路行车环境的识别并进行危险警示。实验结果显示,系统能够准确地对前方车道线和车辆进行检测,实现设计效果。

  9. Parallax error in the monocular head-mounted eye trackers

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    2012-01-01

    This paper investigates the parallax error, which is a common problem of many video-based monocular mobile gaze trackers. The parallax error is defined and described using the epipolar geometry in a stereo camera setup. The main parameters that change the error are introduced and it is shown how...

  10. Monocular SLAM for Autonomous Robots with Enhanced Features Initialization

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2014-04-01

    Full Text Available This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM, a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  11. Monocular SLAM for autonomous robots with enhanced features initialization.

    Science.gov (United States)

    Guerra, Edmundo; Munguia, Rodrigo; Grau, Antoni

    2014-04-02

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  12. fMRI investigation of monocular pattern rivalry.

    Science.gov (United States)

    Mendola, Janine D; Buckthought, Athena

    2013-01-01

    In monocular pattern rivalry, a composite image is shown to both eyes. The patient experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. We used fMRI at 3T to image brain activity while participants perceived monocular rivalry passively or indicated their percepts with a task. The stimulus patterns were left/right oblique gratings, face/house composites, or a nonrivalrous control stimulus that did not support the perception of transparency or image segmentation. All stimuli were matched for luminance, contrast, and color. Compared with the control stimulus, the cortical activation for passive viewing of grating rivalry included dorsal and ventral extrastriate cortex, superior and inferior parietal regions, and multiple sites in frontal cortex. When the BOLD signal for the object rivalry task was compared with the grating rivalry task, a similar whole-brain network was engaged, but with significantly greater activity in extrastriate regions, including V3, V3A, fusiform face area (FFA), and parahippocampal place area (PPA). In addition, for the object rivalry task, FFA activity was significantly greater during face-dominant periods whereas parahippocampal place area activity was greater during house-dominant periods. Our results demonstrate that slight stimulus changes that trigger monocular rivalry recruit a large whole-brain network, as previously identified for other forms of bistability. Moreover, the results indicate that rivalry for complex object stimuli preferentially engages extrastriate cortex. We also establish that even with natural viewing conditions, endogenous attentional fluctuations in monocular pattern rivalry will differentially drive object-category-specific cortex, similar to binocular rivalry, but without complete suppression of the nondominant image.

  13. 基于单目视觉的微型空中机器人自主悬停控制%Autonomous hovering control based on monocular vision for micro aerial robot

    Institute of Scientific and Technical Information of China (English)

    张洪涛; 李隆球; 张广玉; 王武义

    2014-01-01

    针对微型空中机器人在室内环境下无法借助外部定位系统实现自主悬停的问题,提出一种基于单目视觉的自主悬停控制方法。采用一种四成分特征点描述符和一个多级筛选器进行特征点跟踪。根据单目视觉运动学估计机器人水平位置;根据低雷诺数下的空气阻力估计机器人飞行速度;结合位置和速度信息对机器人进行悬停控制。实验结果验证了该方法的有效性。%A hovering control method based on onboard monocular vision is proposed to hover a micro aerial robot autonomously, in which there is no external positioning system in indoor environments. A descriptor with four components and a multi-stage filter are used for feature tracking. Horizontal position is estimated according to monocular vision kinematics. Flight speed is estimated according to aerodynamic drag at low Reynolds number. Position and velocity informations are fused to hover the robot. Experimental results show the effectiveness of the proposed approach.

  14. 基于单目视觉的跟驰车辆车距测量方法%Method of vehicle distance measurement for following car based on monocular vision

    Institute of Scientific and Technical Information of China (English)

    余厚云; 张为公

    2012-01-01

    为了解决结构化道路上跟驰车辆的防追尾碰撞问题,首先在对车辆制动模型进行分析的基础上得到了车辆制动距离的计算公式,进而计算出跟驰车辆与前方车辆之间的安全距离.然后,从针孔模型摄像机成像的基本原理出发,推导出基于图像中车道线消失点的车距测量公式.车距测量结果只与图像中的近视场点到摄像机的实际距离有关,无需对所有的摄像机参数进行标定,从而解决了单目视觉车距测量问题.最后,完成了不同距离处前方车辆的车距测量试验.试验结果表明,该方法的车距测量相对误差小于3%,具备了较高的检测精度,能够满足跟驰车辆防追尾碰撞的应用要求.%To solve the problem of rear collision avoidance for the following car on structural road, the formula of braking distance is obtained based on the analysis of the vehicle braking model, and the safety distance is then calculated accordingly. Then, using the basic theory of imaging of a pin-hole model camera, the formula of vehicle distance measurement is deduced based on the vanishing point of lane lines. The formula is related only to the actual distance between the camera and the point of near field of view without calibrating all of the camera parameters, and the vehicle distance measurement can be realized with monocular vision. Finally, experiments for the measurement are performed with the preceding vehicle at different positions. Experimental results demonstrate that the relative error of vehicle distance measurement is less than 3% and the precision can meet the application of collision avoidance for the following car.

  15. A Case of Functional (Psychogenic Monocular Hemianopia Analyzed by Measurement of Hemifield Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yoneda

    2013-12-01

    Full Text Available Purpose: Functional monocular hemianopia is an extremely rare condition, for which measurement of hemifield visual evoked potentials (VEPs has not been previously described. Methods: A 14-year-old boy with functional monocular hemianopia was followed up with Goldmann perimetry and measurement of hemifield and full-field VEPs. Results: The patient had a history of monocular temporal hemianopia of the right eye following headache, nausea and ague. There was no relative afferent pupillary defect, and a color perception test was normal. Goldmann perimetry revealed a vertical monocular temporal hemianopia of the right eye; the hemianopia on the right was also detected with a binocular visual field test. Computed tomography, magnetic resonance imaging (MRI and MR angiography of the brain including the optic chiasm as well as orbital MRI revealed no abnormalities. On the basis of these results, we diagnosed the patient's condition as functional monocular hemianopia. Pattern VEPs according to the International Society for Clinical Electrophysiology of Vision (ISCEV standard were within the normal range. The hemifield pattern VEPs for the right eye showed a symmetrical latency and amplitude for nasal and temporal hemifield stimulation. One month later, the visual field defect of the patient spontaneously disappeared. Conclusions: The latency and amplitude of hemifield VEPs for a patient with functional monocular hemianopia were normal. Measurement of hemifield VEPs may thus provide an objective tool for distinguishing functional hemianopia from hemifield loss caused by an organic lesion.

  16. A new combination of monocular and stereo cues for dense disparity estimation

    Science.gov (United States)

    Mao, Miao; Qin, Kaihuai

    2013-07-01

    Disparity estimation is a popular and important topic in computer vision and robotics. Stereo vision is commonly done to complete the task, but most existing methods fail in textureless regions and utilize numerical methods to interpolate into these regions. Monocular features are usually ignored, which may contain helpful depth information. We proposed a novel method combining monocular and stereo cues to compute dense disparities from a pair of images. The whole image regions are categorized into reliable regions (textured and unoccluded) and unreliable regions (textureless or occluded). Stable and accurate disparities can be gained at reliable regions. Then for unreliable regions, we utilize k-means to find the most similar reliable regions in terms of monocular cues. Our method is simple and effective. Experiments show that our method can generate a more accurate disparity map than existing methods from images with large textureless regions, e.g. snow, icebergs.

  17. Global localization from monocular SLAM on a mobile phone.

    Science.gov (United States)

    Ventura, Jonathan; Arth, Clemens; Reitmayr, Gerhard; Schmalstieg, Dieter

    2014-04-01

    We propose the combination of a keyframe-based monocular SLAM system and a global localization method. The SLAM system runs locally on a camera-equipped mobile client and provides continuous, relative 6DoF pose estimation as well as keyframe images with computed camera locations. As the local map expands, a server process localizes the keyframes with a pre-made, globally-registered map and returns the global registration correction to the mobile client. The localization result is updated each time a keyframe is added, and observations of global anchor points are added to the client-side bundle adjustment process to further refine the SLAM map registration and limit drift. The end result is a 6DoF tracking and mapping system which provides globally registered tracking in real-time on a mobile device, overcomes the difficulties of localization with a narrow field-of-view mobile phone camera, and is not limited to tracking only in areas covered by the offline reconstruction.

  18. 3D environment capture from monocular video and inertial data

    Science.gov (United States)

    Clark, R. Robert; Lin, Michael H.; Taylor, Colin J.

    2006-02-01

    This paper presents experimental methods and results for 3D environment reconstruction from monocular video augmented with inertial data. One application targets sparsely furnished room interiors, using high quality handheld video with a normal field of view, and linear accelerations and angular velocities from an attached inertial measurement unit. A second application targets natural terrain with manmade structures, using heavily compressed aerial video with a narrow field of view, and position and orientation data from the aircraft navigation system. In both applications, the translational and rotational offsets between the camera and inertial reference frames are initially unknown, and only a small fraction of the scene is visible in any one video frame. We start by estimating sparse structure and motion from 2D feature tracks using a Kalman filter and/or repeated, partial bundle adjustments requiring bounded time per video frame. The first application additionally incorporates a weak assumption of bounding perpendicular planes to minimize a tendency of the motion estimation to drift, while the second application requires tight integration of the navigational data to alleviate the poor conditioning caused by the narrow field of view. This is followed by dense structure recovery via graph-cut-based multi-view stereo, meshing, and optional mesh simplification. Finally, input images are texture-mapped onto the 3D surface for rendering. We show sample results from multiple, novel viewpoints.

  19. Loop Closure Detection Algorithm Based on Monocular Vision Using Visual Dictionary%基于视觉词典的单目视觉闭环检测算法

    Institute of Scientific and Technical Information of China (English)

    梁志伟; 陈燕燕; 朱松豪; 高翔; 徐国政

    2013-01-01

    Aiming at the problem of loop closure detection in monocular simultaneous localization and mapping for mobile robots,a detection algorithm based on visual dictionary (VD) is presented.Firstly,feature extraction is performed for each required image using SURF methods.Subsequently,a fuzzy K-means algorithm is employed to cluster these visual feature vectors into visual words based on VD which is constructed online.To precisely represent the similarities between each visual word and corresponding local visual features,Gaussian mixture model is proposed to learn the probability model of every visual word in bags of visual words.Consequently,every image can be denoted as a probabilistic vector of VD,and thus the similarities between any two images can be computed based on vector inner product.To guarantee the continuity of the closed-loop detection,a Bayesian filter method is applied to fuse historical closed-loop detection information and the obtained similarities to calculate the posterior probability distribution of closed-loop hypothesis.Furthermore,two memory management mechanisms,shallow memory and deep memory,are introduced to improve the process speed of the proposed algorithm.The experimental results demonstrate the validity of the proposed approach.%针对移动机器人单目视觉同步定位与地图构建中的闭环检测问题,文中设计一种基于视觉词典的闭环检测算法.算法对采集的每帧图像通过SURF进行特征提取,应用模糊K均值算法对检测的视觉特征向量进行分类,在线构建表征图像的视觉词典.为精确表征局部视觉特征与视觉单词间的相似关联,利用混合高斯模型建立视觉词典中的每一视觉单词的概率模型,实现图像基于视觉词典的概率向量表示,通过向量的内积来计算图像间的相似度.为保证闭环检测的成功率,应用贝叶斯滤波融合历史闭环检测与相似度信息来计算闭环假设的后验概率分布.另外,引入浅层

  20. Monocular indoor localization techniques for smartphones

    Directory of Open Access Journals (Sweden)

    Hollósi Gergely

    2016-12-01

    Full Text Available In the last decade huge research work has been put to the indoor visual localization of personal smartphones. Considering the available sensor capabilities monocular odometry provides promising solution, even reecting requirements of augmented reality applications. This paper is aimed to give an overview of state-of-the-art results regarding monocular visual localization. For this purpose essential basics of computer vision are presented and the most promising solutions are reviewed.

  1. A Highest Order Hypothesis Compatibility Test for Monocular SLAM

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2013-08-01

    Full Text Available Simultaneous Location and Mapping (SLAM is a key problem to solve in order to build truly autonomous mobile robots. SLAM with a unique camera, or monocular SLAM, is probably one of the most complex SLAM variants, based entirely on a bearing-only sensor working over six DOF. The monocular SLAM method developed in this work is based on the Delayed Inverse-Depth (DI-D Feature Initialization, with the contribution of a new data association batch validation technique, the Highest Order Hypothesis Compatibility Test, HOHCT. The Delayed Inverse-Depth technique is used to initialize new features in the system and defines a single hypothesis for the initial depth of features with the use of a stochastic technique of triangulation. The introduced HOHCT method is based on the evaluation of statistically compatible hypotheses and a search algorithm designed to exploit the strengths of the Delayed Inverse- Depth technique to achieve good performance results. This work presents the HOHCT with a detailed formulation of the monocular DI-D SLAM problem. The performance of the proposed HOHCT is validated with experimental results, in both indoor and outdoor environments, while its costs are compared with other popular approaches.

  2. A Highest Order Hypothesis Compatibility Test for Monocular SLAM

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2013-08-01

    Full Text Available Simultaneous Location and Mapping (SLAM is a key problem to solve in order to build truly autonomous mobile robots. SLAM with a unique camera, or monocular SLAM, is probably one of the most complex SLAM variants, based entirely on a bearing-only sensor working over six DOF. The monocular SLAM method developed in this work is based on the Delayed Inverse-Depth (DI-D Feature Initialization, with the contribution of a new data association batch validation technique, the Highest Order Hypothesis Compatibility Test, HOHCT. The Delayed Inverse-Depth technique is used to initialize new features in the system and defines a single hypothesis for the initial depth of features with the use of a stochastic technique of triangulation. The introduced HOHCT method is based on the evaluation of statistically compatible hypotheses and a search algorithm designed to exploit the strengths of the Delayed Inverse-Depth technique to achieve good performance results. This work presents the HOHCT with a detailed formulation of the monocular DI-D SLAM problem. The performance of the proposed HOHCT is validated with experimental results, in both indoor and outdoor environments, while its costs are compared with other popular approaches.

  3. Stereo improves 3D shape discrimination even when rich monocular shape cues are available.

    Science.gov (United States)

    Lee, Young Lim; Saunders, Jeffrey A

    2011-08-17

    We measured the ability to discriminate 3D shapes across changes in viewpoint and illumination based on rich monocular 3D information and tested whether the addition of stereo information improves shape constancy. Stimuli were images of smoothly curved, random 3D objects. Objects were presented in three viewing conditions that provided different 3D information: shading-only, stereo-only, and combined shading and stereo. Observers performed shape discrimination judgments for sequentially presented objects that differed in orientation by rotation of 0°-60° in depth. We found that rotation in depth markedly impaired discrimination performance in all viewing conditions, as evidenced by reduced sensitivity (d') and increased bias toward judging same shapes as different. We also observed a consistent benefit from stereo, both in conditions with and without change in viewpoint. Results were similar for objects with purely Lambertian reflectance and shiny objects with a large specular component. Our results demonstrate that shape perception for random 3D objects is highly viewpoint-dependent and that stereo improves shape discrimination even when rich monocular shape cues are available.

  4. Stereoscopic 3D-scene synthesis from a monocular camera with an electrically tunable lens

    Science.gov (United States)

    Alonso, Julia R.

    2016-09-01

    3D-scene acquisition and representation is important in many areas ranging from medical imaging to visual entertainment application. In this regard, optical imaging acquisition combined with post-capture processing algorithms enable the synthesis of images with novel viewpoints of a scene. This work presents a new method to reconstruct a pair of stereoscopic images of a 3D-scene from a multi-focus image stack. A conventional monocular camera combined with an electrically tunable lens (ETL) is used for image acquisition. The captured visual information is reorganized considering a piecewise-planar image formation model with a depth-variant point spread function (PSF) along with the known focusing distances at which the images of the stack were acquired. The consideration of a depth-variant PSF allows the application of the method to strongly defocused multi-focus image stacks. Finally, post-capture perspective shifts, presenting each eye the corresponding viewpoint according to the disparity, are generated by simulating the displacement of a synthetic pinhole camera. The procedure is performed without estimation of the depth-map or segmentation of the in-focus regions. Experimental results for both real and synthetic data images are provided and presented as anaglyphs, but it could easily be implemented in 3D displays based in parallax barrier or polarized light.

  5. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    Science.gov (United States)

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  6. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  7. Enhanced monocular visual odometry integrated with laser distance meter for astronaut navigation.

    Science.gov (United States)

    Wu, Kai; Di, Kaichang; Sun, Xun; Wan, Wenhui; Liu, Zhaoqin

    2014-03-11

    Visual odometry provides astronauts with accurate knowledge of their position and orientation. Wearable astronaut navigation systems should be simple and compact. Therefore, monocular vision methods are preferred over stereo vision systems, commonly used in mobile robots. However, the projective nature of monocular visual odometry causes a scale ambiguity problem. In this paper, we focus on the integration of a monocular camera with a laser distance meter to solve this problem. The most remarkable advantage of the system is its ability to recover a global trajectory for monocular image sequences by incorporating direct distance measurements. First, we propose a robust and easy-to-use extrinsic calibration method between camera and laser distance meter. Second, we present a navigation scheme that fuses distance measurements with monocular sequences to correct the scale drift. In particular, we explain in detail how to match the projection of the invisible laser pointer on other frames. Our proposed integration architecture is examined using a live dataset collected in a simulated lunar surface environment. The experimental results demonstrate the feasibility and effectiveness of the proposed method.

  8. The precision of binocular and monocular depth judgments in natural settings.

    Science.gov (United States)

    McKee, Suzanne P; Taylor, Douglas G

    2010-08-01

    We measured binocular and monocular depth thresholds for objects presented in a real environment. Observers judged the depth separating a pair of metal rods presented either in relative isolation, or surrounded by other objects, including a textured surface. In the isolated setting, binocular thresholds were greatly superior to the monocular thresholds by as much as a factor of 18. The presence of adjacent objects and textures improved the monocular thresholds somewhat, but the superiority of binocular viewing remained substantial (roughly a factor of 10). To determine whether motion parallax would improve monocular sensitivity for the textured setting, we asked observers to move their heads laterally, so that the viewing eye was displaced by 8-10 cm; this motion produced little improvement in the monocular thresholds. We also compared disparity thresholds measured with the real rods to thresholds measured with virtual images in a standard mirror stereoscope. Surprisingly, for the two naive observers, the stereoscope thresholds were far worse than the thresholds for the real rods-a finding that indicates that stereoscope measurements for unpracticed observers should be treated with caution. With practice, the stereoscope thresholds for one observer improved to almost the precision of the thresholds for the real rods.

  9. 基于单目视觉的室内微型飞行器位姿估计与环境构建%Monocular Vision Based Motion Estimation of Indoor Micro Air Vehicles and Structure Recovery

    Institute of Scientific and Technical Information of China (English)

    郭力; 昂海松; 郑祥明

    2012-01-01

    Micro air vehicles (MAVs) need reliable attitude and position information in indoor environment. The measurements of onboard inertial measurement unit (IMU) sensors such as gyros and acce-larometers are corrupted by large accumulated errors, and GPS signal is unavailable in such situation. Therefore, a monocular vision based indoor MAV motion estimation and structure recovery method is presented. Firstly, the features are tracked by biological vision based matching algorithm through the image sequence, and the motion of camra is estimated by the five-point algorithm. In the indoor enviro-ment, the planar relationship is used to reduce the feature point dimentions from three to two. Then, these parameters are optimized by an local strategy to improve the motion estimation and structure recovery accuracy. The measurements of IMU sensors and vision module are fused with extended Kalman fileter. The attitude and position information of MAVs is estimated. The experiment shows that the method can reliably estimate the indoor motion of MAV in real-time, and the recovered enviroment information can be used for navigation of MAVs.%针对微型飞行嚣(Micro air vehicle,MAV)在室内飞行过程中无法获得GPS信号,而微型惯性单元(Inertial measurement unit,IMU)的陀螺仪和加速度计随机漂移误差较大,提出一种利用单目视觉估计微型飞行嚣位姿并构建室内环境的方法.在机载单目摄像机拍摄的序列图像中引入一种基于生物视觉的方法获得匹配特征点,并由五点算法获得帧间摄像机运动参数和特征点位置参数的初始解;利用平面关系将特征点的位置信息由三维降低到二维,给出一种局部优化方法求解摄像机运动参数和特征点位置参数的最大似然估计,提高位姿估计和环境构建的精度.最后通过扩展卡尔曼滤波方法融合IMU传感器和单目视觉测量信息解算出微型飞行器的位姿.实验结果表明,该方法能够实时可

  10. Induction of Monocular Stereopsis by Altering Focus Distance: A Test of Ames's Hypothesis.

    Science.gov (United States)

    Vishwanath, Dhanraj

    2016-03-01

    Viewing a real three-dimensional scene or a stereoscopic image with both eyes generates a vivid phenomenal impression of depth known as stereopsis. Numerous reports have highlighted the fact that an impression of stereopsis can be induced in the absence of binocular disparity. A method claimed by Ames (1925) involved altering accommodative (focus) distance while monocularly viewing a picture. This claim was tested on naïve observers using a method inspired by the observations of Gogel and Ogle on the equidistance tendency. Consistent with Ames's claim, most observers reported that the focus manipulation induced an impression of stereopsis comparable to that obtained by monocular-aperture viewing.

  11. Accurate and Robust Attitude Estimation Using MEMS Gyroscopes and a Monocular Camera

    Science.gov (United States)

    Kobori, Norimasa; Deguchi, Daisuke; Takahashi, Tomokazu; Ide, Ichiro; Murase, Hiroshi

    In order to estimate accurate rotations of mobile robots and vehicle, we propose a hybrid system which combines a low-cost monocular camera with gyro sensors. Gyro sensors have drift errors that accumulate over time. On the other hand, a camera cannot obtain the rotation continuously in the case where feature points cannot be extracted from images, although the accuracy is better than gyro sensors. To solve these problems we propose a method for combining these sensors based on Extended Kalman Filter. The errors of the gyro sensors are corrected by referring to the rotations obtained from the camera. In addition, by using the reliability judgment of camera rotations and devising the state value of the Extended Kalman Filter, even when the rotation is not continuously observable from the camera, the proposed method shows a good performance. Experimental results showed the effectiveness of the proposed method.

  12. Monocular camera and IMU integration for indoor position estimation.

    Science.gov (United States)

    Zhang, Yinlong; Tan, Jindong; Zeng, Ziming; Liang, Wei; Xia, Ye

    2014-01-01

    This paper presents a monocular camera (MC) and inertial measurement unit (IMU) integrated approach for indoor position estimation. Unlike the traditional estimation methods, we fix the monocular camera downward to the floor and collect successive frames where textures are orderly distributed and feature points robustly detected, rather than using forward oriented camera in sampling unknown and disordered scenes with pre-determined frame rate and auto-focus metric scale. Meanwhile, camera adopts the constant metric scale and adaptive frame rate determined by IMU data. Furthermore, the corresponding distinctive image feature point matching approaches are employed for visual localizing, i.e., optical flow for fast motion mode; Canny Edge Detector & Harris Feature Point Detector & Sift Descriptor for slow motion mode. For superfast motion and abrupt rotation where images from camera are blurred and unusable, the Extended Kalman Filter is exploited to estimate IMU outputs and to derive the corresponding trajectory. Experimental results validate that our proposed method is effective and accurate in indoor positioning. Since our system is computationally efficient and in compact size, it's well suited for visually impaired people indoor navigation and wheelchaired people indoor localization.

  13. Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement

    Science.gov (United States)

    Hu, Bo; Knill, David C.

    2012-01-01

    Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567

  14. Binocular and monocular depth cues in online feedback control of 3D pointing movement.

    Science.gov (United States)

    Hu, Bo; Knill, David C

    2011-06-30

    Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and, thus, were available in an observer's retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size, and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions.

  15. Monocular Blindness: Is It a Handicap?

    Science.gov (United States)

    Knoth, Sharon

    1995-01-01

    Students with monocular vision may be in need of special assistance and should be evaluated by a multidisciplinary team to determine whether the visual loss is affecting educational performance. This article discusses the student's eligibility for special services, difficulty in performing depth perception tasks, difficulties in specific classroom…

  16. Does monocular visual space contain planes?

    NARCIS (Netherlands)

    Koenderink, J.J.; Albertazzi, L.; Doorn, A.J. van; Ee, R. van; Grind, W.A. van de; Kappers, A.M.L.; Lappin, J.S.; Norman, J.F.; Oomes, A.H.J.; Pas, S.F. te; Phillips, F.; Pont, S.C.; Richards, W.A.; Todd, J.T.; Verstraten, F.A.J.; Vries, S.C. de

    2010-01-01

    The issue of the existence of planes—understood as the carriers of a nexus of straight lines—in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be

  17. Object-based connectedness facilitates matching

    NARCIS (Netherlands)

    Koning, A.R.; Lier, R.J. van

    2003-01-01

    In two matching tasks, participants had to match two images of object pairs. Image-based (113) connectedness refers to connectedness between the objects in an image. Object-based (OB) connectedness refers to connectedness between the interpreted objects. In Experiment 1, a monocular depth cue

  18. Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination.

    Science.gov (United States)

    Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min

    2017-06-03

    Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Visibility of monocular symbology in transparent head-mounted display applications

    Science.gov (United States)

    Winterbottom, M.; Patterson, R.; Pierce, B.; Gaska, J.; Hadley, S.

    2015-05-01

    With increased reliance on head-mounted displays (HMDs), such as the Joint Helmet Mounted Cueing System and F-35 Helmet Mounted Display System, research concerning visual performance has also increased in importance. Although monocular HMDs have been used successfully for many years, a number of authors have reported significant problems with their use. Certain problems have been attributed to binocular rivalry when differing imagery is presented to the two eyes. With binocular rivalry, the visibility of the images in the two eyes fluctuates, with one eye's view becoming dominant, and thus visible, while the other eye's view is suppressed, which alternates over time. Rivalry is almost certainly created when viewing an occluding monocular HMD. For semi-transparent monocular HMDs, however, much of the scene is binocularly fused, with additional imagery superimposed in one eye. Binocular fusion is thought to prevent rivalry. The present study was designed to investigate differences in visibility between monocularly and binocularly presented symbology at varying levels of contrast and while viewing simulated flight over terrain at various speeds. Visibility was estimated by measuring the presentation time required to identify a test probe (tumbling E) embedded within other static symbology. Results indicated that there were large individual differences, but that performance decreased with decreased test probe contrast under monocular viewing relative to binocular viewing conditions. Rivalry suppression may reduce visibility of semi-transparent monocular HMD imagery. However, factors, such as contrast sensitivity, masking, and conditions such as monofixation, will be important to examine in future research concerning visibility of HMD imagery.

  20. Recovery of neurofilament following early monocular deprivation

    Directory of Open Access Journals (Sweden)

    Timothy P O'Leary

    2012-04-01

    Full Text Available A brief period of monocular deprivation in early postnatal life can alter the structure of neurons within deprived-eye-receiving layers of the dorsal lateral geniculate nucleus. The modification of structure is accompanied by a marked reduction in labeling for neurofilament, a protein that composes the stable cytoskeleton and that supports neuron structure. This study examined the extent of neurofilament recovery in monocularly deprived cats that either had their deprived eye opened (binocular recovery, or had the deprivation reversed to the fellow eye (reverse occlusion. The degree to which recovery was dependent on visually-driven activity was examined by placing monocularly deprived animals in complete darkness (dark rearing. The loss of neurofilament and the reduction of soma size caused by monocular deprivation were both ameliorated equally following either binocular recovery or reverse occlusion for 8 days. Though monocularly deprived animals placed in complete darkness showed recovery of soma size, there was a generalized loss of neurofilament labeling that extended to originally non-deprived layers. Overall, these results indicate that recovery of soma size is achieved by removal of the competitive disadvantage of the deprived eye, and occurred even in the absence of visually-driven activity. Recovery of neurofilament occurred when the competitive disadvantage of the deprived eye was removed, but unlike the recovery of soma size, was dependent upon visually-driven activity. The role of neurofilament in providing stable neural structure raises the intriguing possibility that dark rearing, which reduced overall neurofilament levels, could be used to reset the deprived visual system so as to make it more ameliorable with treatment by experiential manipulations.

  1. Spatial Testing of Dynamic Process and Analysis Technique of Intelligent AC Contactors Based on the Monocular Vision Technology%基于单目视觉技术的智能交流接触器三维动态测试与分析技术

    Institute of Scientific and Technical Information of China (English)

    陈德为; 庄煜祺; 张培铭; 严俊奇

    2014-01-01

    Based on the intelligent AC contactor control system and the auxiliary plane mirror imaging system, a special dynamic process of intelligent AC contactor testing method is proposed by collecting sequence images of the dynamic process of AC contactors with a monocular high-speed camera. By detecting and identifying feature points on moving targets of AC contactors from the image sequence, and dynamically tracking feature point position changes, the action mechanism with dynamic process of intelligent AC contactors is comprehensively tested and analyzed. The measuring technique and the analysis method have far-reaching significance for intelligent control and prototypeoptimization design of AC contactors.%在智能交流接触器智能控制系统和平面镜辅助成像技术的基础上,提出了基于单目高速摄像机采集智能交流接触器动态过程的序列图像,进行智能交流接触器三维动态特性测试的方法。从图像序列中检测识别智能交流接触器运动部件的特征标记点,动态跟踪特征标记点的位姿,从而对智能交流接触器动作机构动态过程进行全方位的测试与分析。该测试技术与分析方法对智能交流接触器运动的智能控制、样机优化设计的研究意义重大。

  2. An effective algorithm for monocular video to stereoscopic video transformation based on three-way Iuminance correction%一种基于三阶亮度校正的平面视频转立体视频快速算法

    Institute of Scientific and Technical Information of China (English)

    郑越; 杨淑莹

    2012-01-01

    This paper presents a new effective algorithm for monocular video stereoscopically transformation. With this algo-rithm, the monocular video can be transformed into stereoscopic format in nearly real time, and the output stream can be shown with lifelike three - dimensional effect on any supported display device. The core idea of this algorithm is to extract images from original monocular video, transform the images into stereoscopic ones according to Gaussian distribution, then build a three - level weighted average brightness map from the generated stereoscopic image sequences, correct the image regions respectively in all three level, and finally compose the complete three-dimensional video. After replacing the traditional time - consuming depth image generation algorithm with this one, the transformation performance obtains significantly improvement. Now the images with three - dimensional stereoscopic effect can be shown in real time during the original monocular video live broadcasts.%本文提出了一种新的平面视频转立体视频的快速算法.这种算法能够实时的将平面视频转换成立体视频,并能在三维显示设备上呈现出逼真的立体效果.首先将原始平面视频中的图像按照高斯分布进行立体变换,然后将视频中的图像序列生成加权平均亮度图,并将亮度分为3个等级,分别对这3个等级区域中的图像进行立体校正,最终得到完整的立体视频.我们的方法替代了传统方法中,生成深度图像的步骤,从而大大的提升了运算的速度,能够在原始平面视频的实时播放过程中,直接输出带有立体效果的画面.

  3. Surface formation and depth in monocular scene perception.

    Science.gov (United States)

    Albert, M K

    1999-01-01

    The visual perception of monocular stimuli perceived as 3-D objects has received considerable attention from researchers in human and machine vision. However, most previous research has focused on how individual 3-D objects are perceived. Here this is extended to a study of how the structure of 3-D scenes containing multiple, possibly disconnected objects and features is perceived. Da Vinci stereopsis, stereo capture, and other surface formation and interpolation phenomena in stereopsis and structure-from-motion suggest that small features having ambiguous depth may be assigned depth by interpolation with features having unambiguous depth. I investigated whether vision may use similar mechanisms to assign relative depth to multiple objects and features in sparse monocular images, such as line drawings, especially when other depth cues are absent. I propose that vision tends to organize disconnected objects and features into common surfaces to construct 3-D-scene interpretations. Interpolations that are too weak to generate a visible surface percept may still be strong enough to assign relative depth to objects within a scene. When there exists more than one possible surface interpolation in a scene, the visual system's preference for one interpolation over another seems to be influenced by a number of factors, including: (i) proximity, (ii) smoothness, (iii) a preference for roughly frontoparallel surfaces and 'ground' surfaces, (iv) attention and fixation, and (v) higher-level factors. I present a variety of demonstrations and an experiment to support this surface-formation hypothesis.

  4. 基于单目视觉的障碍物定位和测量%Obstacle Detection and Measurement Based on Monocular Vision

    Institute of Scientific and Technical Information of China (English)

    王振; 王化明

    2015-01-01

    障碍物定位与测量是智能移动机器人自主运动的核心问题之一。研究了一种结合障碍物色彩属性和接触边缘属性的算法,通过单个视觉传感器实现平坦路面中障碍物的定位和测量。该算法以图像中已知路面范围的外观属性为基准对图像进行初步处理,依据障碍物和地面接触边缘属性对障碍物进行初步定位,在障碍物上选择区域,以该区域外观属性为基准对图像进行二次处理,得到障碍物在图像中占据范围,结合视觉传感器成像原理,对障碍物位置和尺寸进行标定和测量。以轮式移动机器人为实验平台,验证所提算法的可行性和精度,最终测得其定位误差为1.6%,测量误差为1.5%。%Obstacle detection and measurement is one of the key problems for the autonomous movement of intel igent mobile robot. This paper presents an algorithm based on the combination of the appearance and the contact edge which is used to detect and measure the obstacle on the flat surface using single visual sensor. In the algorithm the image is primary handled according to the ap ̄pearance property of known ground surface and the obstacle position defected according to the edge property of the contact area be ̄tween obstacle and ground, then the reference area on the obstacle is seleted and the image is handled again according to the ap ̄pearance property of the obstacle to get the position of the obstacle in the image,final y the obstacle detection and measurement are finished according to the principle of visual sensor. The effectiveness and accuracy of the algorithm is tested and verified on a wheeled mobile robot,the error of detection algorithm is about 5 %,while the error of measurement algorithm is about 1.89 %.

  5. END-TO-END DEPTH FROM MOTION WITH STABILIZED MONOCULAR VIDEOS

    Directory of Open Access Journals (Sweden)

    C. Pinard

    2017-08-01

    Full Text Available We propose a depth map inference system from monocular videos based on a novel dataset for navigation that mimics aerial footage from gimbal stabilized monocular camera in rigid scenes. Unlike most navigation datasets, the lack of rotation implies an easier structure from motion problem which can be leveraged for different kinds of tasks such as depth inference and obstacle avoidance. We also propose an architecture for end-to-end depth inference with a fully convolutional network. Results show that although tied to camera inner parameters, the problem is locally solvable and leads to good quality depth prediction.

  6. Monocular and binocular depth discrimination thresholds.

    Science.gov (United States)

    Kaye, S B; Siddiqui, A; Ward, A; Noonan, C; Fisher, A C; Green, J R; Brown, M C; Wareing, P A; Watt, P

    1999-11-01

    Measurement of stereoacuity at varying distances, by real or simulated depth stereoacuity tests, is helpful in the evaluation of patients with binocular imbalance or strabismus. Although the cue of binocular disparity underpins stereoacuity tests, there may be variable amounts of other binocular and monocular cues inherent in a stereoacuity test. In such circumstances, a combined monocular and binocular threshold of depth discrimination may be measured--stereoacuity conventionally referring to the situation where binocular disparity giving rise to retinal disparity is the only cue present. A child-friendly variable distance stereoacuity test (VDS) was developed, with a method for determining the binocular depth threshold from the combined monocular and binocular threshold of depth of discrimination (CT). Subjects with normal binocular function, reduced binocular function, and apparently absent binocularity were included. To measure the threshold of depth discrimination, subjects were required by means of a hand control to align two electronically controlled spheres at viewing distances of 1, 3, and 6m. Stereoacuity was also measured using the TNO, Frisby, and Titmus stereoacuity tests. BTs were calculated according to the function BT= arctan (1/tan alphaC - 1/tan alphaM)(-1), where alphaC and alphaM are the angles subtended at the nodal points by objects situated at the monocular threshold (alphaM) and the combined monocular-binocular threshold (alphaC) of discrimination. In subjects with good binocularity, BTs were similar to their combined thresholds, whereas subjects with reduced and apparently absent binocularity had binocular thresholds 4 and 10 times higher than their combined thresholds (CT). The VDS binocular thresholds showed significantly higher correlation and agreement with the TNO test and the binocular thresholds of the Frisby and Titmus tests, than the corresponding combined thresholds (p = 0.0019). The VDS was found to be an easy to use real depth

  7. Novel approach for mobile robot localization using monocular vision

    Science.gov (United States)

    Zhong, Zhiguang; Yi, Jianqiang; Zhao, Dongbin; Hong, Yiping

    2003-09-01

    This paper presents a novel approach for mobile robot localization using monocular vision. The proposed approach locates a robot relative to the target to which the robot moves. Two points are selected from the target as two feature points. Once the coordinates in an image of the two feature points are detected, the position and motion direction of the robot can be determined according to the detected coordinates. Unlike those reported geometry pose estimation or landmarks matching methods, this approach requires neither artificial landmarks nor an accurate map of indoor environment. It needs less computation and can simplify greatly the localization problem. The validity and flexibility of the proposed approach is demonstrated by experiments performed on real images. The results show that this new approach is not only simple and flexible but also has high localization precision.

  8. Markerless monocular tracking system for guided external eye surgery.

    Science.gov (United States)

    Monserrat, C; Rupérez, M J; Alcañiz, M; Mataix, J

    2014-12-01

    This paper presents a novel markerless monocular tracking system aimed at guiding ophthalmologists during external eye surgery. This new tracking system performs a very accurate tracking of the eye by detecting invariant points using only textures that are present in the sclera, i.e., without using traditional features like the pupil and/or cornea reflections, which remain partially or totally occluded in most surgeries. Two known algorithms that compute invariant points and correspondences between pairs of images were implemented in our system: Scalable Invariant Feature Transforms (SIFT) and Speed Up Robust Features (SURF). The results of experiments performed on phantom eyes show that, with either algorithm, the developed system tracks a sphere at a 360° rotation angle with an error that is lower than 0.5%. Some experiments have also been carried out on images of real eyes showing promising behavior of the system in the presence of blood or surgical instruments during real eye surgery.

  9. Quantitative perceived depth from sequential monocular decamouflage.

    Science.gov (United States)

    Brooks, K R; Gillam, B J

    2006-03-01

    We present a novel binocular stimulus without conventional disparity cues whose presence and depth are revealed by sequential monocular stimulation (delay > or = 80 ms). Vertical white lines were occluded as they passed behind an otherwise camouflaged black rectangular target. The location (and instant) of the occlusion event, decamouflaging the target's edges, differed in the two eyes. Probe settings to match the depth of the black rectangular target showed a monotonic increase with simulated depth. Control tests discounted the possibility of subjects integrating retinal disparities over an extended temporal window or using temporal disparity. Sequential monocular decamouflage was found to be as precise and accurate as conventional simultaneous stereopsis with equivalent depths and exposure durations.

  10. Monocular depth effects on perceptual fading.

    Science.gov (United States)

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-06

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Outdoor autonomous navigation using monocular vision

    OpenAIRE

    Royer, Eric; Bom, Jonathan; Dhome, Michel; Thuilot, Benoît; Lhuillier, Maxime; Marmoiton, Francois

    2005-01-01

    International audience; In this paper, a complete system for outdoor robot navigation is presented. It uses only monocular vision. The robot is first guided on a path by a human. During this learning step, the robot records a video sequence. From this sequence, a three dimensional map of the trajectory and the environment is built. When this map has been computed, the robot is able to follow the same trajectory by itself. Experimental results carried out with an urban electric vehicle are sho...

  12. Monocular alignment in different depth planes.

    Science.gov (United States)

    Shimono, Koichi; Wade, Nicholas J

    2002-04-01

    We examined (a) whether vertical lines at different physical horizontal positions in the same eye can appear to be aligned, and (b), if so, whether the difference between the horizontal positions of the aligned vertical lines can vary with the perceived depth between them. In two experiments, each of two vertical monocular lines was presented (in its respective rectangular area) in one field of a random-dot stereopair with binocular disparity. In Experiment 1, 15 observers were asked to align a line in an upper area with a line in a lower area. The results indicated that when the lines appeared aligned, their horizontal physical positions could differ and the direction of the difference coincided with the type of disparity of the rectangular areas; this is not consistent with the law of the visual direction of monocular stimuli. In Experiment 2, 11 observers were asked to report relative depth between the two lines and to align them. The results indicated that the difference of the horizontal position did not covary with their perceived relative depth, suggesting that the visual direction and perceived depth of the monocular line are mediated via different mechanisms.

  13. Depth of Monocular Elements in a Binocular Scene: The Conditions for da Vinci Stereopsis

    Science.gov (United States)

    Cook, Michael; Gillam, Barbara

    2004-01-01

    Quantitative depth based on binocular resolution of visibility constraints is demonstrated in a novel stereogram representing an object, visible to 1 eye only, and seen through an aperture or camouflaged against a background. The monocular region in the display is attached to the binocular region, so that the stereogram represents an object which…

  14. Depth of Monocular Elements in a Binocular Scene: The Conditions for da Vinci Stereopsis

    Science.gov (United States)

    Cook, Michael; Gillam, Barbara

    2004-01-01

    Quantitative depth based on binocular resolution of visibility constraints is demonstrated in a novel stereogram representing an object, visible to 1 eye only, and seen through an aperture or camouflaged against a background. The monocular region in the display is attached to the binocular region, so that the stereogram represents an object which…

  15. A Novel Metric Online Monocular SLAM Approach for Indoor Applications

    Directory of Open Access Journals (Sweden)

    Yongfei Li

    2016-01-01

    Full Text Available Monocular SLAM has attracted more attention recently due to its flexibility and being economic. In this paper, a novel metric online direct monocular SLAM approach is proposed, which can obtain the metric reconstruction of the scene. In the proposed approach, a chessboard is utilized to provide initial depth map and scale correction information during the SLAM process. The involved chessboard provides the absolute scale of scene, and it is seen as a bridge between the camera visual coordinate and the world coordinate. The scene is reconstructed as a series of key frames with their poses and correlative semidense depth maps, using a highly accurate pose estimation achieved by direct grid point-based alignment. The estimated pose is coupled with depth map estimation calculated by filtering over a large number of pixelwise small-baseline stereo comparisons. In addition, this paper formulates the scale-drift model among key frames and the calibration chessboard is used to correct the accumulated pose error. At the end of this paper, several indoor experiments are conducted. The results suggest that the proposed approach is able to achieve higher reconstruction accuracy when compared with the traditional LSD-SLAM approach. And the approach can also run in real time on a commonly used computer.

  16. Maximum Likelihood Estimation of Monocular Optical Flow Field for Mobile Robot Ego-motion

    Directory of Open Access Journals (Sweden)

    Huajun Liu

    2016-01-01

    Full Text Available This paper presents an optimized scheme of monocular ego-motion estimation to provide location and pose information for mobile robots with one fixed camera. First, a multi-scale hyper-complex wavelet phase-derived optical flow is applied to estimate micro motion of image blocks. Optical flow computation overcomes the difficulties of unreliable feature selection and feature matching of outdoor scenes; at the same time, the multi-scale strategy overcomes the problem of road surface self-similarity and local occlusions. Secondly, a support probability of flow vector is defined to evaluate the validity of the candidate image motions, and a Maximum Likelihood Estimation (MLE optical flow model is constructed based not only on image motion residuals but also their distribution of inliers and outliers, together with their support probabilities, to evaluate a given transform. This yields an optimized estimation of inlier parts of optical flow. Thirdly, a sampling and consensus strategy is designed to estimate the ego-motion parameters. Our model and algorithms are tested on real datasets collected from an intelligent vehicle. The experimental results demonstrate the estimated ego-motion parameters closely follow the GPS/INS ground truth in complex outdoor road scenarios.

  17. Depth measurement using monocular stereo vision system: aspect of spatial discretization

    Science.gov (United States)

    Xu, Zheng; Li, Chengjin; Zhao, Xunjie; Chen, Jiabo

    2010-11-01

    The monocular stereo vision system, consisting of single camera with controllable focal length, can be used in 3D reconstruction. Applying the system for 3D reconstruction, must consider effects caused by digital camera. There are two possible methods to make the monocular stereo vision system. First one the distance between the target object and the camera image plane is constant and lens moves. The second method assumes that the lens position is constant and the image plane moves in respect to the target. In this paper mathematical modeling of two approaches is presented. We focus on iso-disparity surfaces to define the discretization effect on the reconstructed space. These models are implemented and simulated on Matlab. The analysis is used to define application constrains and limitations of these methods. The results can be also used to enhance the accuracy of depth measurement.

  18. Depth scaling in phantom and monocular gap stereograms using absolute distance information.

    Science.gov (United States)

    Kuroki, Daiichiro; Nakamizo, Sachio

    2006-11-01

    The present study aimed to investigate whether the visual system scales apparent depth from binocularly unmatched features by using absolute distance information. In Experiment 1 we examined the effect of convergence on perceived depth in phantom stereograms [Gillam, B., & Nakayama, K. (1999). Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone. Vision Research, 39, 109-112.], monocular gap stereograms [Pianta, M. J., & Gillam, B. J. (2003a). Monocular gap stereopsis: manipulation of the outer edge disparity and the shape of the gap. Vision Research, 43, 1937-1950.] and random dot stereograms. In Experiments 2 and 3 we examined the effective range of viewing distances for scaling the apparent depths in these stereograms. The results showed that: (a) the magnitudes of perceived depths increased in all stereograms as the estimate of the viewing distance increased while keeping proximal and/or distal sizes of the stimuli constant, and (b) the effective range of viewing distances was significantly shorter in monocular gap stereograms. The first result indicates that the visual system scales apparent depth from unmatched features as well as that from horizontal disparity, while the second suggests that, at far distances, the strength of the depth signal from an unmatched feature in monocular gap stereograms is relatively weaker than that from horizontal disparity.

  19. Optical image encryption based on diffractive imaging.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2010-11-15

    In this Letter, we propose a method for optical image encryption based on diffractive imaging. An optical multiple random phase mask encoding system is applied, and one of the phase-only masks is selected and laterally translated along a preset direction during the encryption process. For image decryption, a phase retrieval algorithm is proposed to extract a high-quality plaintext. The feasibility and effectiveness of the proposed method are demonstrated by numerical results. The proposed method can provide a new strategy instead of conventional interference methods, and it may open up a new research perspective for optical image encryption.

  20. Human skeleton proportions from monocular data

    Institute of Scientific and Technical Information of China (English)

    PENG En; LI Ling

    2006-01-01

    This paper introduces a novel method for estimating the skeleton proportions ofa human figure from monocular data.The proposed system will first automatically extract the key frames and recover the perspective camera model from the 2D data.The human skeleton proportions are then estimated from the key frames using the recovered camera model without posture reconstruction. The proposed method is tested to be simple, fast and produce satisfactory results for the input data. The human model with estimated proportions can be used in future research involving human body modeling or human motion reconstruction.

  1. Rapid license plate location algorithm based on monocular vision%基于单目视觉的车牌快速定位方法

    Institute of Scientific and Technical Information of China (English)

    杨先勇; 王会岩; 周晓莉; 刘东基; 宋盼盼

    2012-01-01

    This paper presents a combination of theory and morphology of the color space. Firstly, image color space is conversed, and the required features of the color region detection to is extracted, Then, the color characteristics of the regional are tested, the gray level statistics on the edge is done, and is filtered by a certain percentage. By using characteristics of the changes of the vehicle location on the front, the coarse positioning of the possible license plate region for the next time is finished, which is benefit of a more rapid positioning for the next time. 100 license plate image are used, for positioning in this which is benefit of algorithm, the positioning accuracy rate is 90%, the speed is in 0.1 s.%提出了一种基于颜色空间理论和形态学结合的方法。首先对图像进行颜色空间转换,按要求提取出需要的特征颜色区域,再对颜色特征区域进行检测,对边缘进行灰度统计,按一定的比例进行筛选,并利用前方车辆位置变化的特点,对下一次车牌可能出现的区域进行粗定位,利于下一次更快速的定位。应用该算法对100幅车牌图像进行定位,定位准确率达90%,速度均在0.1s内。

  2. Image based performance analysis of thermal imagers

    Science.gov (United States)

    Wegner, D.; Repasi, E.

    2016-05-01

    Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.

  3. Induction of Monocular Stereopsis by Altering Focus Distance: A Test of Ames’s Hypothesis

    Directory of Open Access Journals (Sweden)

    Dhanraj Vishwanath

    2016-04-01

    Full Text Available Viewing a real three-dimensional scene or a stereoscopic image with both eyes generates a vivid phenomenal impression of depth known as stereopsis. Numerous reports have highlighted the fact that an impression of stereopsis can be induced in the absence of binocular disparity. A method claimed by Ames (1925 involved altering accommodative (focus distance while monocularly viewing a picture. This claim was tested on naïve observers using a method inspired by the observations of Gogel and Ogle on the equidistance tendency. Consistent with Ames’s claim, most observers reported that the focus manipulation induced an impression of stereopsis comparable to that obtained by monocular-aperture viewing.

  4. 3D-MAD: A Full Reference Stereoscopic Image Quality Estimator Based on Binocular Lightness and Contrast Perception.

    Science.gov (United States)

    Zhang, Yi; Chandler, Damon M

    2015-11-01

    Algorithms for a stereoscopic image quality assessment (IQA) aim to estimate the qualities of 3D images in a manner that agrees with human judgments. The modern stereoscopic IQA algorithms often apply 2D IQA algorithms on stereoscopic views, disparity maps, and/or cyclopean images, to yield an overall quality estimate based on the properties of the human visual system. This paper presents an extension of our previous 2D most apparent distortion (MAD) algorithm to a 3D version (3D-MAD) to evaluate 3D image quality. The 3D-MAD operates via two main stages, which estimate perceived quality degradation due to 1) distortion of the monocular views and 2) distortion of the cyclopean view. In the first stage, the conventional MAD algorithm is applied on the two monocular views, and then the combined binocular quality is estimated via a weighted sum of the two estimates, where the weights are determined based on a block-based contrast measure. In the second stage, intermediate maps corresponding to the lightness distance and the pixel-based contrast are generated based on a multipathway contrast gain-control model. Then, the cyclopean view quality is estimated by measuring the statistical-difference-based features obtained from the reference stereopair and the distorted stereopair, respectively. Finally, the estimates obtained from the two stages are combined to yield an overall quality score of the stereoscopic image. Tests on various 3D image quality databases demonstrate that our algorithm significantly improves upon many other state-of-the-art 2D/3D IQA algorithms.

  5. Large-scale monocular FastSLAM2.0 acceleration on an embedded heterogeneous architecture

    Science.gov (United States)

    Abouzahir, Mohamed; Elouardi, Abdelhafid; Bouaziz, Samir; Latif, Rachid; Tajer, Abdelouahed

    2016-12-01

    Simultaneous localization and mapping (SLAM) is widely used in many robotic applications and autonomous navigation. This paper presents a study of FastSLAM2.0 computational complexity based on a monocular vision system. The algorithm is intended to operate with many particles in a large-scale environment. FastSLAM2.0 was partitioned into functional blocks allowing a hardware software matching on a CPU-GPGPU-based SoC architecture. Performances in terms of processing time and localization accuracy were evaluated using a real indoor dataset. Results demonstrate that an optimized and efficient CPU-GPGPU partitioning allows performing accurate localization results and high-speed execution of a monocular FastSLAM2.0-based embedded system operating under real-time constraints.

  6. Reversible monocular cataract simulating amaurosis fugax.

    Science.gov (United States)

    Paylor, R R; Selhorst, J B; Weinberg, R S

    1985-07-01

    In a patient having brittle, juvenile-onset diabetes, transient monocular visual loss occurred repeatedly whenever there were wide fluctuations in serum glucose. Amaurosis fugax was suspected. The visual loss differed, however, in that it persisted over a period of hours to several days. Direct observation eventually revealed that the relatively sudden change in vision of one eye was associated with opacification of the lens and was not accompanied by an afferent pupillary defect. Presumably, a hyperosmotic gradient had developed with the accumulation of glucose and sorbitol within the lens. Water was drawn inward, altering the composition of the lens fibers and thereby lowering the refractive index, forming a reversible cataract. Hypoglycemia is also hypothesized to have played a role in the formation of a higher osmotic gradient. The unilaterality of the cataract is attributed to variation in the permeability of asymmetric posterior subcapsular cataracts.

  7. Effect of monocular deprivation on rabbit neural retinal cell densities

    Directory of Open Access Journals (Sweden)

    Philip Maseghe Mwachaka

    2015-01-01

    Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  8. Development of an indoor positioning and navigation system using monocular SLAM and IMU

    Science.gov (United States)

    Mai, Yu-Ching; Lai, Ying-Chih

    2016-07-01

    The positioning and navigation systems based on Global Positioning System (GPS) have been developed over past decades and have been widely used for outdoor environment. However, high-rise buildings or indoor environments can block the satellite signal. Therefore, many indoor positioning methods have been developed to respond to this issue. In addition to the distance measurements using sonar and laser sensors, this study aims to develop a method by integrating a monocular simultaneous localization and mapping (MonoSLAM) algorithm with an inertial measurement unit (IMU) to build an indoor positioning system. The MonoSLAM algorithm measures the distance (depth) between the image features and the camera. With the help of Extend Kalman Filter (EKF), MonoSLAM can provide real-time position, velocity and camera attitude in world frame. Since the feature points will not always appear and can't be trusted at any time, a wrong estimation of the features will cause the estimated position diverge. To overcome this problem, a multisensor fusion algorithm was applied in this study by using the multi-rate Kalman Filter. Finally, from the experiment results, the proposed system was verified to be able to improve the reliability and accuracy of the MonoSLAM by integrating the IMU measurements.

  9. Evidence-Based Cancer Imaging

    Science.gov (United States)

    Khorasani, Ramin

    2017-01-01

    With the advances in the field of oncology, imaging is increasingly used in the follow-up of cancer patients, leading to concerns about over-utilization. Therefore, it has become imperative to make imaging more evidence-based, efficient, cost-effective and equitable. This review explores the strategies and tools to make diagnostic imaging more evidence-based, mainly in the context of follow-up of cancer patients.

  10. Localization of monocular stimuli in different depth planes.

    Science.gov (United States)

    Shimono, Koichi; Tam, Wa James; Asakura, Nobuhiko; Ohmi, Masao

    2005-09-01

    We examined the phenomenon in which two physically aligned monocular stimuli appear to be non-collinear when each of them is located in binocular regions that are at different depth planes. Using monocular bars embedded in binocular random-dot areas that are at different depths, we manipulated properties of the binocular areas and examined their effect on the perceived direction and depth of the monocular stimuli. Results showed that (1) the relative visual direction and perceived depth of the monocular bars depended on the binocular disparity and the dot density of the binocular areas, and (2) the visual direction, but not the depth, depended on the width of the binocular regions. These results are consistent with the hypothesis that monocular stimuli are treated by the visual system as binocular stimuli that have acquired the properties of their binocular surrounds. Moreover, partial correlation analysis suggests that the visual system utilizes both the disparity information of the binocular areas and the perceived depth of the monocular bars in determining the relative visual direction of the bars.

  11. Moving target geolocation for micro air vehicles based on monocular vision%基于单目视觉的微型飞行器移动目标定位方法

    Institute of Scientific and Technical Information of China (English)

    郭力; 昂海松; 郑祥明

    2012-01-01

    针对目标在地形高度未知环境中移动的情况,给出一种利用微型飞行器机载单目摄像机进行目标定位的方法.首先,借助光流直方图从当前图像帧中提取出移动目标局部区域内的背景特征点;然后,结合机载微机电系统(micro electro mechanical system,MEMS)/全球定位系统(global positioning system,GPS)传感器测量的飞行器位姿和空间平面点成像的单应变换关系,在期望值最大化算法中将背景特征点分类为辅助平面点和非辅助平面点,并估计辅助平面到摄像机光心的距离参数和法矢量参数,从而确定移动目标所处辅助平面的空间平面方程;最后,联立求解目标视线方程和辅助平面方程获得交点坐标,转换到惯性系下完成移动目标的地理定位.实验结果表明,当微型飞行器飞行高度为100 m时,操作人员单次点击移动目标的定位误差在15 m以内.%Aiming at the movement of the targets in unknown altitude terrain, a monocular camera based target geolocation method for micro air vehicles (MAV) is presented. Firstly, the optical flow histgram algorithm extracts background features in the target's local region. Secondly, these features are clustered into two possible classes including aided plane features and non-aided plane features by the expectation maximization algorithm, in which the homography relationship between MAV's flight status measured by onboard micro electro mechanical systems (MEMS)/ global positioning system (GPS) sensors and planar is used. Meanwile, the normal vector of aided plane and the distance between the camera and the plane are estimated. Then the aided plane equation can be establised. Finally, the moving taregt can be geolocated by calculating the intersection of target's sight line and aided plane in inertial frame. Experimental results show that this method can instantaneously geolocate the moving target by operator's single click and the error can reach less than

  12. The perceived visual direction of monocular objects in random-dot stereograms is influenced by perceived depth and allelotropia.

    Science.gov (United States)

    Hariharan-Vilupuru, Srividhya; Bedell, Harold E

    2009-01-01

    The proposed influence of objects that are visible to both eyes on the perceived direction of an object that is seen by only one eye is known as the "capture of binocular visual direction". The purpose of this study was to evaluate whether stereoscopic depth perception is necessary for the "capture of binocular visual direction" to occur. In one pair of experiments, perceived alignment between two nearby monocular lines changed systematically with the magnitude and direction of horizontal but not vertical disparity. In four of the five observers, the effect of horizontal disparity on perceived alignment depended on which eye viewed the monocular lines. In additional experiments, the perceived alignment between the monocular lines changed systematically with the magnitude and direction of both horizontal and vertical disparities when the monocular line separation was increased from 1.1 degrees to 3.3 degrees . These results indicate that binocular capture depends on the perceived depth that results from horizontal retinal image disparity as well as allelotropia, or the averaging of local-sign information. Our data suggest that, during averaging, different weights are afforded to the local-sign information in the two eyes, depending on whether the separation between binocularly viewed targets is horizontal or vertical.

  13. Monocular blur alters the tuning characteristics of stereopsis for spatial frequency and size.

    Science.gov (United States)

    Li, Roger W; So, Kayee; Wu, Thomas H; Craven, Ashley P; Tran, Truyet T; Gustafson, Kevin M; Levi, Dennis M

    2016-09-01

    Our sense of depth perception is mediated by spatial filters at different scales in the visual brain; low spatial frequency channels provide the basis for coarse stereopsis, whereas high spatial frequency channels provide for fine stereopsis. It is well established that monocular blurring of vision results in decreased stereoacuity. However, previous studies have used tests that are broadband in their spatial frequency content. It is not yet entirely clear how the processing of stereopsis in different spatial frequency channels is altered in response to binocular input imbalance. Here, we applied a new stereoacuity test based on narrow-band Gabor stimuli. By manipulating the carrier spatial frequency, we were able to reveal the spatial frequency tuning of stereopsis, spanning from coarse to fine, under blurred conditions. Our findings show that increasing monocular blur elevates stereoacuity thresholds 'selectively' at high spatial frequencies, gradually shifting the optimum frequency to lower spatial frequencies. Surprisingly, stereopsis for low frequency targets was only mildly affected even with an acuity difference of eight lines on a standard letter chart. Furthermore, we examined the effect of monocular blur on the size tuning function of stereopsis. The clinical implications of these findings are discussed.

  14. Monocular SLAM for Visual Odometry: A Full Approach to the Delayed Inverse-Depth Feature Initialization Method

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2012-01-01

    Full Text Available This paper describes in a detailed manner a method to implement a simultaneous localization and mapping (SLAM system based on monocular vision for applications of visual odometry, appearance-based sensing, and emulation of range-bearing measurements. SLAM techniques are required to operate mobile robots in a priori unknown environments using only on-board sensors to simultaneously build a map of their surroundings; this map will be needed for the robot to track its position. In this context, the 6-DOF (degree of freedom monocular camera case (monocular SLAM possibly represents the harder variant of SLAM. In monocular SLAM, a single camera, which is freely moving through its environment, represents the sole sensory input to the system. The method proposed in this paper is based on a technique called delayed inverse-depth feature initialization, which is intended to initialize new visual features on the system. In this work, detailed formulation, extended discussions, and experiments with real data are presented in order to validate and to show the performance of the proposal.

  15. Surgical outcome in monocular elevation deficit: A retrospective interventional study

    Directory of Open Access Journals (Sweden)

    Bandyopadhyay Rakhi

    2008-01-01

    Full Text Available Background and Aim: Monocular elevation deficiency (MED is characterized by a unilateral defect in elevation, caused by paretic, restrictive or combined etiology. Treatment of this multifactorial entity is therefore varied. In this study, we performed different surgical procedures in patients of MED and evaluated their outcome, based on ocular alignment, improvement in elevation and binocular functions. Study Design: Retrospective interventional study. Materials and Methods: Twenty-eight patients were included in this study, from June 2003 to August 2006. Five patients underwent Knapp procedure, with or without horizontal squint surgery, 17 patients had inferior rectus recession, with or without horizontal squint surgery, three patients had combined inferior rectus recession and Knapp procedure and three patients had inferior rectus recession combined with contralateral superior rectus or inferior oblique surgery. The choice of procedure was based on the results of forced duction test (FDT. Results: Forced duction test was positive in 23 cases (82%. Twenty-four of 28 patients (86% were aligned to within 10 prism diopters. Elevation improved in 10 patients (36% from no elevation above primary position (-4 to only slight limitation of elevation (-1. Five patients had preoperative binocular vision and none gained it postoperatively. No significant postoperative complications or duction abnormalities were observed during the follow-up period. Conclusion: Management of MED depends upon selection of the correct surgical technique based on employing the results of FDT, for a satisfactory outcome.

  16. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  17. Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.

    Science.gov (United States)

    D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K

    2014-04-17

    When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).

  18. The effect of contrast on monocular versus binocular reading performance.

    Science.gov (United States)

    Johansson, Jan; Pansell, Tony; Ygge, Jan; Seimyr, Gustaf Öqvist

    2014-05-14

    The binocular advantage in reading performance is typically small. On the other hand research shows binocular reading to be remarkably robust to degraded stimulus properties. We hypothesized that this robustness may stem from an increasing binocular contribution. The main objective was to compare monocular and binocular performance at different stimulus contrasts and assess the level of binocular superiority. A secondary objective was to assess any asymmetry in performance related to ocular dominance. In a balanced repeated measures experiment 18 subjects read texts at three levels of contrast monocularly and binocularly while their eye movements were recorded. The binocular advantage increased with reduced contrast producing a 7% slower monocular reading at 40% contrast, 9% slower at 20% contrast, and 21% slower at 10% contrast. A statistically significant interaction effect was found in fixation duration displaying a more adverse effect in the monocular condition at lowest contrast. No significant effects of ocular dominance were observed. The outcome suggests that binocularity contributes increasingly to reading performance as stimulus contrast decreases. The strongest difference between monocular and binocular performance was due to fixation duration. The findings may pose a clinical point that it may be necessary to consider tests at different contrast levels when estimating reading performance. © 2014 ARVO.

  19. Monocular feature tracker for low-cost stereo vision control of an autonomous guided vehicle (AGV)

    Science.gov (United States)

    Pearson, Chris M.; Probert, Penelope J.

    1994-02-01

    We describe a monocular feature tracker (MFT), the first stage of a low cost stereoscopic vision system for use on an autonomous guided vehicle (AGV) in an indoor environment. The system does not require artificial markings or other beacons, but relies upon accurate knowledge of the AGV motion. Linear array cameras (LAC) are used to reduce the data and processing bandwidths. The limited information given by LAC require modelling of the expected features. We model an obstacle as a vertical line segment touching the floor, and can distinguish between these obstacles and most other clutter in an image sequence. Detection of these obstacles is sufficient information for local AGV navigation.

  20. Hazard detection with a monocular bioptic telescope.

    Science.gov (United States)

    Doherty, Amy L; Peli, Eli; Luo, Gang

    2015-09-01

    The safety of bioptic telescopes for driving remains controversial. The ring scotoma, an area to the telescope eye due to the telescope magnification, has been the main cause of concern. This study evaluates whether bioptic users can use the fellow eye to detect in hazards driving videos that fall in the ring scotoma area. Twelve visually impaired bioptic users watched a series of driving hazard perception training videos and responded as soon as they detected a hazard while reading aloud letters presented on the screen. The letters were placed such that when reading them through the telescope the hazard fell in the ring scotoma area. Four conditions were tested: no bioptic and no reading, reading without bioptic, reading with a bioptic that did not occlude the fellow eye (non-occluding bioptic), and reading with a bioptic that partially-occluded the fellow eye. Eight normally sighted subjects performed the same task with the partially occluding bioptic detecting lateral hazards (blocked by the device scotoma) and vertical hazards (outside the scotoma) to further determine the cause-and-effect relationship between hazard detection and the fellow eye. There were significant differences in performance between conditions: 83% of hazards were detected with no reading task, dropping to 67% in the reading task with no bioptic, to 50% while reading with the non-occluding bioptic, and 34% while reading with the partially occluding bioptic. For normally sighted, detection of vertical hazards (53%) was significantly higher than lateral hazards (38%) with the partially occluding bioptic. Detection of driving hazards is impaired by the addition of a secondary reading like task. Detection is further impaired when reading through a monocular telescope. The effect of the partially-occluding bioptic supports the role of the non-occluded fellow eye in compensating for the ring scotoma. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.

  1. CONTENT BASED BATIK IMAGE RETRIEVAL

    Directory of Open Access Journals (Sweden)

    A. Haris Rangkuti

    2014-01-01

    Full Text Available Content Based Batik Image Retrieval (CBBIR is an area of research that focuses on image processing based on characteristic motifs of batik. Basically the image has a unique batik motif compared with other images. Its uniqueness lies in the characteristics possessed texture and shape, which has a unique and distinct characteristics compared with other image characteristics. To study this batik image must start from a preprocessing stage, in which all its color images must be removed with a grayscale process. Proceed with the feature extraction process taking motifs characteristic of every kind of batik using the method of edge detection. After getting the characteristic motifs seen visually, it will be calculated by using 4 texture characteristic function is the mean, energy, entropy and stadard deviation. Characteristic function will be added as needed. The results of the calculation of characteristic functions will be made more specific using the method of wavelet transform Daubechies type 2 and invariant moment. The result will be the index value of every type of batik. Because each motif there are the same but have different sizes, so any kind of motive would be divided into three sizes: Small, medium and large. The perfomance of Batik Image similarity using this method about 90-92%.

  2. Image Based Indoor Navigation

    OpenAIRE

    Noreikis, Marius

    2014-01-01

    Over the last years researchers proposed numerous indoor localisation and navigation systems. However, solutions that use WiFi or Radio Frequency Identification require infrastructure to be deployed in the navigation area and infrastructureless techniques, e.g. the ones based on mobile cell ID or dead reckoning suffer from large accuracy errors. In this Thesis, we present a novel approach of infrastructure-less indoor navigation system based on computer vision Structure from Motion techniques...

  3. Metadata for Content-Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Adrian Sterca

    2010-12-01

    Full Text Available This paper presents an image retrieval technique that combines content based image retrieval with pre-computed metadata-based image retrieval. The resulting system will have the advantages of both approaches: the speed/efficiency of metadata-based image retrieval and the accuracy/power of content-based image retrieval.

  4. Ernst Mach and the episode of the monocular depth sensations.

    Science.gov (United States)

    Banks, E C

    2001-01-01

    Although Ernst Mach is widely recognized in psychology for his discovery of the effects of lateral inhibition in the retina ("Mach Bands"), his contributions to the theory of depth perception are not as well known. Mach proposed that steady luminance gradients triggered sensations of depth. He also expanded on Ewald Hering's hypothesis of "monocular depth sensations," arguing that they were subject to the same principle of lateral inhibition as light sensations were. Even after Hermann von Helmholtz's attack on Hering in 1866, Mach continued to develop theories involving the monocular depth sensations, proposing an explanation of perspective drawings in which the mutually inhibiting depth sensations scaled to a mean depth. Mach also contemplated a theory of stereopsis in which monocular depth perception played the primary role. Copyright 2001 John Wiley & Sons, Inc.

  5. A Comparison of Monocular and Binocular Depth Perception in 5- and 7-Month-Old Infants.

    Science.gov (United States)

    Granrud, Carl E.; And Others

    1984-01-01

    Compares monocular depth perception with binocular depth perception in five- to seven-month-old infants. Reaching preferences (dependent measure) observed in the monocular condition indicated sensitivity to monocular depth information. Binocular viewing resulted in a far more consistent tendency to reach for the nearer object. (Author)

  6. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  7. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  8. Aerial vehicles collision avoidance using monocular vision

    Science.gov (United States)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  9. Medical image retrieval based on plaque appearance and image registration.

    Science.gov (United States)

    Amores, Jaume; Radeva, Petia

    2005-01-01

    The increasing amount of medical images produced and stored daily in hospitals needs a datrabase management system that organizes them in a meaningful way, without the necessity of time-consuming textual annotations for each image. One of the basic ways to organize medical images in taxonomies consists of clustering them depending of plaque appearance (for example, intravascular ultrasound images). Although lately, there has been a lot of research in the field of Content-Based Image Retrieval systems, mostly these systems are designed for dealing a wide range of images but not medical images. Medical image retrieval by content is still an emerging field, and few works are presented in spite of the obvious applications and the complexity of the images demanding research studies. In this chapter, we overview the work on medical image retrieval and present a general framework of medical image retrieval based on plaque appearance. We stress on two basic features of medical image retrieval based on plaque appearance: plaque medical images contain complex information requiring not only local and global descriptors but also context determined by image features and their spatial relations. Additionally, given that most objects in medical images usually have high intra- and inter-patient shape variance, retrieval based on plaque should be invariant to a family of transformations predetermined by the application domain. To illustrate the medical image retrieval based on plaque appearance, we consider a specific image modality: intravascular ultrasound images and present extensive results on the retrieval performance.

  10. The Influence of Monocular Spatial Cues on Vergence Eye Movements in Monocular and Binocular Viewing of 3-D and 2-D Stimuli.

    Science.gov (United States)

    Batvinionak, Anton A; Gracheva, Maria A; Bolshakov, Andrey S; Rozhkova, Galina I

    2015-01-01

    The influence of monocular spatial cues on the vergence eye movements was studied in two series of experiments: (I) the subjects were viewing a 3-D video and also its 2-D version-binocularly and monocularly; and (II) in binocular and monocular viewing conditions, the subjects were presented with stationary 2-D stimuli containing or not containing some monocular indications of spatial arrangement. The results of the series (I) showed that, in binocular viewing conditions, the vergence eye movements were only present in the case of 3-D but not 2-D video, while in the course of monocular viewing of 2-D video, some regular vergence eye movements could be revealed, suggesting that the occluded eye position could be influenced by the spatial organization of the scene reconstructed on the basis of the monocular depth information provided by the viewing eye. The data obtained in series (II), in general, seem to support this hypothesis. © The Author(s) 2015.

  11. Region-Based Image-Fusion Framework for Compressive Imaging

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2014-01-01

    Full Text Available A novel region-based image-fusion framework for compressive imaging (CI and its implementation scheme are proposed. Unlike previous works on conventional image fusion, we consider both compression capability on sensor side and intelligent understanding of the image contents in the image fusion. Firstly, the compressed sensing theory and normalized cut theory are introduced. Then region-based image-fusion framework for compressive imaging is proposed and its corresponding fusion scheme is constructed. Experiment results demonstrate that the proposed scheme delivers superior performance over traditional compressive image-fusion schemes in terms of both object metrics and visual quality.

  12. Estimating 3D positions and velocities of projectiles from monocular views.

    Science.gov (United States)

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P

    2009-05-01

    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  13. More clinical observations on migraine associated with monocular visual symptoms in an Indian population

    Directory of Open Access Journals (Sweden)

    Vishal Jogi

    2016-01-01

    Full Text Available Context: Retinal migraine (RM is considered as one of the rare causes of transient monocular visual loss (TMVL and has not been studied in Indian population. Objectives: The study aims to analyze the clinical and investigational profile of patients with RM. Materials and Methods: This is an observational prospective analysis of 12 cases of TMVL fulfilling the International Classification of Headache Disorders-2nd edition (ICHD-II criteria of RM examined in Neurology and Ophthalmology Outpatient Department (OPD of Postgraduate Institute of Medical Education and Research (PGIMER, Chandigarh from July 2011 to October 2012. Results: Most patients presented in 3 rd and 4 th decade with equal sex distribution. Seventy-five percent had antecedent migraine without aura (MoA and 25% had migraine with Aura (MA. Headache was ipsilateral to visual symptoms in 67% and bilateral in 33%. TMVL preceded headache onset in 58% and occurred during headache episode in 42%. Visual symptoms were predominantly negative except in one patient who had positive followed by negative symptoms. Duration of visual symptoms was variable ranging from 30 s to 45 min. None of the patient had permanent monocular vision loss. Three patients had episodes of TMVL without headache in addition to the symptom constellation defining RM. Most of the tests done to rule out alternative causes were normal. Magnetic resonance imaging (MRI brain showed nonspecific white matter changes in one patient. Visual-evoked potential (VEP showed prolonged P100 latencies in two cases. Patent foramen ovale was detected in one patient. Conclusions: RM is a definite subtype of migraine and should remain in the ICHD classification. It should be kept as one of the differential diagnosis of transient monocular vision loss. We propose existence of "acephalgic RM" which may respond to migraine prophylaxis.

  14. Monocular 3D Reconstruction and Augmentation of Elastic Surfaces with Self-Occlusion Handling.

    Science.gov (United States)

    Haouchine, Nazim; Dequidt, Jeremie; Berger, Marie-Odile; Cotin, Stephane

    2015-12-01

    This paper focuses on the 3D shape recovery and augmented reality on elastic objects with self-occlusions handling, using only single view images. Shape recovery from a monocular video sequence is an underconstrained problem and many approaches have been proposed to enforce constraints and resolve the ambiguities. State-of-the art solutions enforce smoothness or geometric constraints, consider specific deformation properties such as inextensibility or resort to shading constraints. However, few of them can handle properly large elastic deformations. We propose in this paper a real-time method that uses a mechanical model and able to handle highly elastic objects. The problem is formulated as an energy minimization problem accounting for a non-linear elastic model constrained by external image points acquired from a monocular camera. This method prevents us from formulating restrictive assumptions and specific constraint terms in the minimization. In addition, we propose to handle self-occluded regions thanks to the ability of mechanical models to provide appropriate predictions of the shape. Our method is compared to existing techniques with experiments conducted on computer-generated and real data that show the effectiveness of recovering and augmenting 3D elastic objects. Additionally, experiments in the context of minimally invasive liver surgery are also provided and results on deformations with the presence of self-occlusions are exposed.

  15. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  16. Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations.

    Science.gov (United States)

    Binda, Paola; Lunghi, Claudia

    2017-01-01

    Short-term monocular deprivation alters visual perception in adult humans, increasing the dominance of the deprived eye, for example, as measured with binocular rivalry. This form of plasticity may depend upon the inhibition/excitation balance in the visual cortex. Recent work suggests that cortical excitability is reliably tracked by dilations and constrictions of the pupils of the eyes. Here, we ask whether monocular deprivation produces a systematic change of pupil behavior, as measured at rest, that is independent of the change of visual perception. During periods of minimal sensory stimulation (in the dark) and task requirements (minimizing body and gaze movements), slow pupil oscillations, "hippus," spontaneously appear. We find that hippus amplitude increases after monocular deprivation, with larger hippus changes in participants showing larger ocular dominance changes (measured by binocular rivalry). This tight correlation suggests that a single latent variable explains both the change of ocular dominance and hippus. We speculate that the neurotransmitter norepinephrine may be implicated in this phenomenon, given its important role in both plasticity and pupil control. On the practical side, our results indicate that measuring the pupil hippus (a simple and short procedure) provides a sensitive index of the change of ocular dominance induced by short-term monocular deprivation, hence a proxy for plasticity.

  17. Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations

    Directory of Open Access Journals (Sweden)

    Paola Binda

    2017-01-01

    Full Text Available Short-term monocular deprivation alters visual perception in adult humans, increasing the dominance of the deprived eye, for example, as measured with binocular rivalry. This form of plasticity may depend upon the inhibition/excitation balance in the visual cortex. Recent work suggests that cortical excitability is reliably tracked by dilations and constrictions of the pupils of the eyes. Here, we ask whether monocular deprivation produces a systematic change of pupil behavior, as measured at rest, that is independent of the change of visual perception. During periods of minimal sensory stimulation (in the dark and task requirements (minimizing body and gaze movements, slow pupil oscillations, “hippus,” spontaneously appear. We find that hippus amplitude increases after monocular deprivation, with larger hippus changes in participants showing larger ocular dominance changes (measured by binocular rivalry. This tight correlation suggests that a single latent variable explains both the change of ocular dominance and hippus. We speculate that the neurotransmitter norepinephrine may be implicated in this phenomenon, given its important role in both plasticity and pupil control. On the practical side, our results indicate that measuring the pupil hippus (a simple and short procedure provides a sensitive index of the change of ocular dominance induced by short-term monocular deprivation, hence a proxy for plasticity.

  18. The Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by the Telescope Array FADC Fluorescence Detectors in Monocular Mode

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Murano, Y; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2013-01-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector (Abu-Zayyad {\\it et al.}, {Astropart. Phys.} 39 (2012), 109). This combined spectrum corroborates the recently published Telescope Array surface detector spectrum (Abu-Zayyad {\\it et al.}, ...

  19. Multiscale Image Based Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Strzodka, Robert

    2006-01-01

    We present MIBFV, a method to produce real-time, multiscale animations of flow datasets. MIBFV extends the attractive features of the Image-Based Flow Visualization (IBFV) method, i.e. dense flow domain coverage with flow-aligned noise, real-time animation, implementation simplicity, and few (or no)

  20. Image-based BRDF Representation

    Directory of Open Access Journals (Sweden)

    Mihálik A.

    2015-12-01

    Full Text Available To acquire a certain level of photorealism in computer graphics, it is necessary to analyze, how the materials scatter the incident light. In this work, we propose the method to direct rendering of isotropic bidirectional reflectance function (BRDF from the small set of images. The image-based rendering is focused to synthesize as accurately as possible scenes composed of natural and artificial objects. The realistic image synthesis of BRDF data requires evaluation of radiance over the multiple directions of incident and scattered light from the surface. In our approach the images depict only the material reflectance, the shape is represented as the object geometry. We store the BRDF representation, acquired from the sample material, in a number of two-dimensional textures that contain images of spheres lit from the multiple directions. In order to render particular material, we interpolate between textures in the similar way the image morphing works. Our method allows the real-time rendering of tabulated BRDF data on low memory devices such as mobile phones.

  1. Monocular and binocular edges enhance the perception of stereoscopic slant.

    Science.gov (United States)

    Wardle, Susan G; Palmisano, Stephen; Gillam, Barbara J

    2014-07-01

    Gradients of absolute binocular disparity across a slanted surface are often considered the basis for stereoscopic slant perception. However, perceived stereo slant around a vertical axis is usually slow and significantly under-estimated for isolated surfaces. Perceived slant is enhanced when surrounding surfaces provide a relative disparity gradient or depth step at the edges of the slanted surface, and also in the presence of monocular occlusion regions (sidebands). Here we investigate how different kinds of depth information at surface edges enhance stereo slant about a vertical axis. In Experiment 1, perceived slant decreased with increasing surface width, suggesting that the relative disparity between the left and right edges was used to judge slant. Adding monocular sidebands increased perceived slant for all surface widths. In Experiment 2, observers matched the slant of surfaces that were isolated or had a context of either monocular or binocular sidebands in the frontal plane. Both types of sidebands significantly increased perceived slant, but the effect was greater with binocular sidebands. These results were replicated in a second paradigm in which observers matched the depth of two probe dots positioned in front of slanted surfaces (Experiment 3). A large bias occurred for the surface without sidebands, yet this bias was reduced when monocular sidebands were present, and was nearly eliminated with binocular sidebands. Our results provide evidence for the importance of edges in stereo slant perception, and show that depth from monocular occlusion geometry and binocular disparity may interact to resolve complex 3D scenes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A Novel Abandoned Object Detection System Based on Three-Dimensional Image Information

    Directory of Open Access Journals (Sweden)

    Yiliang Zeng

    2015-03-01

    Full Text Available A new idea of an abandoned object detection system for road traffic surveillance systems based on three-dimensional image information is proposed in this paper to prevent traffic accidents. A novel Binocular Information Reconstruction and Recognition (BIRR algorithm is presented to implement the new idea. As initial detection, suspected abandoned objects are detected by the proposed static foreground region segmentation algorithm based on surveillance video from a monocular camera. After detection of suspected abandoned objects, three-dimensional (3D information of the suspected abandoned object is reconstructed by the proposed theory about 3D object information reconstruction with images from a binocular camera. To determine whether the detected object is hazardous to normal road traffic, road plane equation and height of suspected-abandoned object are calculated based on the three-dimensional information. Experimental results show that this system implements fast detection of abandoned objects and this abandoned object system can be used for road traffic monitoring and public area surveillance.

  3. 3D Image Acquisition System Based on Shape from Focus Technique

    Directory of Open Access Journals (Sweden)

    Pierre Gouton

    2013-04-01

    Full Text Available This paper describes the design of a 3D image acquisition system dedicated to natural complex scenes composed of randomly distributed objects with spatial discontinuities. In agronomic sciences, the 3D acquisition of natural scene is difficult due to the complex nature of the scenes. Our system is based on the Shape from Focus technique initially used in the microscopic domain. We propose to adapt this technique to the macroscopic domain and we detail the system as well as the image processing used to perform such technique. The Shape from Focus technique is a monocular and passive 3D acquisition method that resolves the occlusion problem affecting the multi-cameras systems. Indeed, this problem occurs frequently in natural complex scenes like agronomic scenes. The depth information is obtained by acting on optical parameters and mainly the depth of field. A focus measure is applied on a 2D image stack previously acquired by the system. When this focus measure is performed, we can create the depth map of the scene.

  4. Content based Image Retrieval from Forensic Image Databases

    Directory of Open Access Journals (Sweden)

    Swati A. Gulhane

    2015-03-01

    Full Text Available Due to the proliferation of video and image data in digital form, Content based Image Retrieval has become a prominent research topic. In forensic sciences, digital data have been widely used such as criminal images, fingerprints, scene images and so on. Therefore, the arrangement of such large image data becomes a big issue such as how to get an interested image fast. There is a great need for developing an efficient technique for finding the images. In order to find an image, image has to be represented with certain features. Color, texture and shape are three important visual features of an image. Searching for images using color, texture and shape features has attracted much attention. There are many content based image retrieval techniques in the literature. This paper gives the overview of different existing methods used for content based image retrieval and also suggests an efficient image retrieval method for digital image database of criminal photos, using dynamic dominant color, texture and shape features of an image which will give an effective retrieval result.

  5. Higher resolution stimulus facilitates depth perception: MT+ plays a significant role in monocular depth perception.

    Science.gov (United States)

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Hiruma, Nobuyuki

    2014-10-20

    Today, we human beings are facing with high-quality virtual world of a completely new nature. For example, we have a digital display consisting of a high enough resolution that we cannot distinguish from the real world. However, little is known how such high-quality representation contributes to the sense of realness, especially to depth perception. What is the neural mechanism of processing such fine but virtual representation? Here, we psychophysically and physiologically examined the relationship between stimulus resolution and depth perception, with using luminance-contrast (shading) as a monocular depth cue. As a result, we found that a higher resolution stimulus facilitates depth perception even when the stimulus resolution difference is undetectable. This finding is against the traditional cognitive hierarchy of visual information processing that visual input is processed continuously in a bottom-up cascade of cortical regions that analyze increasingly complex information such as depth information. In addition, functional magnetic resonance imaging (fMRI) results reveal that the human middle temporal (MT+) plays a significant role in monocular depth perception. These results might provide us with not only the new insight of our neural mechanism of depth perception but also the future progress of our neural system accompanied by state-of- the-art technologies.

  6. Image Signature Based Mean Square Error for Image Quality Assessment

    Institute of Scientific and Technical Information of China (English)

    CUI Ziguan; GAN Zongliang; TANG Guijin; LIU Feng; ZHU Xiuchang

    2015-01-01

    Motivated by the importance of Human visual system (HVS) in image processing, we propose a novel Image signature based mean square error (ISMSE) metric for full reference Image quality assessment (IQA). Efficient image signature based describer is used to predict visual saliency map of the reference image. The saliency map is incorporated into luminance diff erence between the reference and distorted images to obtain image quality score. The eff ect of luminance diff erence on visual quality with larger saliency value which is usually corresponding to foreground objects is highlighted. Experimental results on LIVE database release 2 show that by integrating the eff ects of image signature based saliency on luminance dif-ference, the proposed ISMSE metric outperforms several state-of-the-art HVS-based IQA metrics but with lower complexity.

  7. Wavelet transform based watermark for digital images.

    Science.gov (United States)

    Xia, X G; Boncelet, C; Arce, G

    1998-12-07

    In this paper, we introduce a new multiresolution watermarking method for digital images. The method is based on the discrete wavelet transform (DWT). Pseudo-random codes are added to the large coefficients at the high and middle frequency bands of the DWT of an image. It is shown that this method is more robust to proposed methods to some common image distortions, such as the wavelet transform based image compression, image rescaling/stretching and image halftoning. Moreover, the method is hierarchical.

  8. Single image super-resolution based on image patch classification

    Science.gov (United States)

    Xia, Ping; Yan, Hua; Li, Jing; Sun, Jiande

    2017-06-01

    This paper proposed a single image super-resolution algorithm based on image patch classification and sparse representation where gradient information is used to classify image patches into three different classes in order to reflect the difference between the different types of image patches. Compared with other classification algorithms, gradient information based algorithm is simpler and more effective. In this paper, each class is learned to get a corresponding sub-dictionary. High-resolution image patch can be reconstructed by the dictionary and sparse representation coefficients of corresponding class of image patches. The result of the experiments demonstrated that the proposed algorithm has a better effect compared with the other algorithms.

  9. The effect of monocular depth cues on the detection of moving objects by moving observers.

    Science.gov (United States)

    Royden, Constance S; Parsons, Daniel; Travatello, Joshua

    2016-07-01

    An observer moving through the world must be able to identify and locate moving objects in the scene. In principle, one could accomplish this task by detecting object images moving at a different angle or speed than the images of other items in the optic flow field. While angle of motion provides an unambiguous cue that an object is moving relative to other items in the scene, a difference in speed could be due to a difference in the depth of the objects and thus is an ambiguous cue. We tested whether the addition of information about the distance of objects from the observer, in the form of monocular depth cues, aided detection of moving objects. We found that thresholds for detection of object motion decreased as we increased the number of depth cues available to the observer.

  10. TTC Calculation and Characteristic Parameters Study Based on Monocular Vision%基于单目视觉的车间TTC计算及追尾危险工况特征参数研究

    Institute of Scientific and Technical Information of China (English)

    许宇能; 朱西产; 李霖; 马志雄

    2014-01-01

    In order to study the characteristic parameters of the cases of near -crash, this paper focus on data extraction and evaluation of rear -end near-crash cases which were collected in the last five years .First, Time to Collistion(TTC) during the cases was calculated using merely information from monocular vision .Then, statistical analysis was conducted for the parameters including TTC of normal state of following vehicles , TTC and velocity of emergency braking , TTC of the most dangerous moment .Experiment results show that 95 percent of rear-end near-crashes happen below 45 km/h, and the average of braking deceleration is 0.51g, the TTC of normal following, start-braking moment and most dangerous moment are 2.9s, 2.0s, 1.0s respectively.%为了研究车辆追尾危险工况的特征参数,本文针对最近五年来采集到的追尾危险工况数据进行特征参数提取和分析.首先利用单目图像信息,计算危险发生过程中车辆间的碰撞时间( TTC),然后对车辆正常跟车状态下TTC值、开始紧急制动时的速度、TTC值、制动减速度和最危险时刻TTC值等参数进行统计分析.实验结果显示,有95%的追尾危险发生在45 km/h以下,驾驶员制动时产生的制动减速度均值为0.51g,驾驶员正常跟车时、开始制动时、最危险时的TTC值分别为2.9s,2.0s,1.0s.

  11. Disseminated neurocysticercosis presenting as isolated acute monocular painless vision loss

    Directory of Open Access Journals (Sweden)

    Gaurav M Kasundra

    2014-01-01

    Full Text Available Neurocysticercosis, the most common parasitic infection of the nervous system, is known to affect the brain, eyes, muscular tissues and subcutaneous tissues. However, it is very rare for patients with ocular cysts to have concomitant cerebral cysts. Also, the dominant clinical manifestation of patients with cerebral cysts is either seizures or headache. We report a patient who presented with acute monocular painless vision loss due to intraocular submacular cysticercosis, who on investigation had multiple cerebral parenchymal cysticercal cysts, but never had any seizures. Although such a vision loss after initiation of antiparasitic treatment has been mentioned previously, acute monocular vision loss as the presenting feature of ocular cysticercosis is rare. We present a brief review of literature along with this case report.

  12. The effect of induced monocular blur on measures of stereoacuity.

    Science.gov (United States)

    Odell, Naomi V; Hatt, Sarah R; Leske, David A; Adams, Wendy E; Holmes, Jonathan M

    2009-04-01

    To determine the effect of induced monocular blur on stereoacuity measured with real depth and random dot tests. Monocular visual acuity deficits (range, 20/15 to 20/1600) were induced with 7 different Bangerter filters (depth tests and Preschool Randot (PSR) and Distance Randot (DR) random dot tests. Stereoacuity results were grouped as either "fine" (60 and 200 arcsec to nil) stereo. Across visual acuity deficits, stereoacuity was more severely degraded with random dot (PSR, DR) than with real depth (Frisby, FD2) tests. Degradation to worse-than-fine stereoacuity consistently occurred at 0.7 logMAR (20/100) or worse for Frisby, 0.1 logMAR (20/25) or worse for PSR, and 0.1 logMAR (20/25) or worse for FD2. There was no meaningful threshold for the DR because worse-than-fine stereoacuity was associated with -0.1 logMAR (20/15). Course/nil stereoacuity was consistently associated with 1.2 logMAR (20/320) or worse for Frisby, 0.8 logMAR (20/125) or worse for PSR, 1.1 logMAR (20/250) or worse for FD2, and 0.5 logMAR (20/63) or worse for DR. Stereoacuity thresholds are more easily degraded by reduced monocular visual acuity with the use of random dot tests (PSR and DR) than real depth tests (Frisby and FD2). We have defined levels of monocular visual acuity degradation associated with fine and nil stereoacuity. These findings have important implications for testing stereoacuity in clinical populations.

  13. Monocular nasal hemianopia from atypical sphenoid wing meningioma.

    Science.gov (United States)

    Stacy, Rebecca C; Jakobiec, Frederick A; Lessell, Simmons; Cestari, Dean M

    2010-06-01

    Neurogenic monocular nasal field defects respecting the vertical midline are quite uncommon. We report a case of a unilateral nasal hemianopia that was caused by compression of the left optic nerve by a sphenoid wing meningioma. Histological examination revealed that the pathology of the meningioma was consistent with that of an atypical meningioma, which carries a guarded prognosis with increased chance of recurrence. The tumor was debulked surgically, and the patient's visual field defect improved.

  14. Altered anterior visual system development following early monocular enucleation

    Directory of Open Access Journals (Sweden)

    Krista R. Kelly

    2014-01-01

    Conclusions: The novel finding of an asymmetry in morphology of the anterior visual system following long-term survival from early monocular enucleation indicates altered postnatal visual development. Possible mechanisms behind this altered development include recruitment of deafferented cells by crossing nasal fibres and/or geniculate cell retention via feedback from primary visual cortex. These data highlight the importance of balanced binocular input during postnatal maturation for typical anterior visual system morphology.

  15. Content-based vessel image retrieval

    Science.gov (United States)

    Mukherjee, Satabdi; Cohen, Samuel; Gertner, Izidor

    2016-05-01

    This paper describes an approach to vessel classification from satellite images using content based image retrieval methodology. Content-based image retrieval is an important problem in both medical imaging and surveillance applications. In many cases the archived reference database is not fully structured, thus making content-based image retrieval a challenging problem. In addition, in surveillance applications, the query image may be affected by weather or/and geometric distortions. Our approach of content-based vessel image retrieval consists of two phases. First, we create a structured reference database, then for each new query image of a vessel we find the closest cluster of images in the structured reference database, thus identifying and classifying the vessel. Then we update the closest cluster with new query image.

  16. A new method of 3D scene recognition from still images

    Science.gov (United States)

    Zheng, Li-ming; Wang, Xing-song

    2014-04-01

    Most methods of monocular visual three dimensional (3D) scene recognition involve supervised machine learning. However, these methods often rely on prior knowledge. Specifically, they learn the image scene as part of a training dataset. For this reason, when the sampling equipment or scene is changed, monocular visual 3D scene recognition may fail. To cope with this problem, a new method of unsupervised learning for monocular visual 3D scene recognition is here proposed. First, the image is made using superpixel segmentation based on the CIELAB color space values L, a, and b and on the coordinate values x and y of pixels, forming a superpixel image with a specific density. Second, a spectral clustering algorithm based on the superpixels' color characteristics and neighboring relationships was used to reduce the dimensions of the superpixel image. Third, the fuzzy distribution density functions representing sky, ground, and façade are multiplied with the segment pixels, where the expectations of these segments are obtained. A preliminary classification of sky, ground, and façade is generated in this way. Fourth, the most accurate classification images of sky, ground, and façade were extracted through the tier-1 wavelet sampling and Manhattan direction feature. Finally, a depth perception map is generated based on the pinhole imaging model and the linear perspective information of ground surface. Here, 400 images of Make3D Image data from the Cornell University website were used to test the algorithm. The experimental results showed that this unsupervised learning method provides a more effective monocular visual 3D scene recognition model than other methods.

  17. Image Based Camera Localization: an Overview

    OpenAIRE

    Wu, Yihong

    2016-01-01

    Recently, virtual reality, augmented reality, robotics, self-driving cars et al attractive much attention of industrial community, in which image based camera localization is a key task. It is urgent to give an overview of image based camera localization. In this paper, an overview of image based camera localization is presented. It will be useful to not only researchers but also engineers.

  18. Image matching navigation based on fuzzy information

    Institute of Scientific and Technical Information of China (English)

    田玉龙; 吴伟仁; 田金文; 柳健

    2003-01-01

    In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.

  19. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  20. A Miniature-Based Image Retrieval System

    CERN Document Server

    Islam, Md Saiful

    2010-01-01

    Due to the rapid development of World Wide Web (WWW) and imaging technology, more and more images are available in the Internet and stored in databases. Searching the related images by the querying image is becoming tedious and difficult. Most of the images on the web are compressed by methods based on discrete cosine transform (DCT) including Joint Photographic Experts Group(JPEG) and H.261. This paper presents an efficient content-based image indexing technique for searching similar images using discrete cosine transform features. Experimental results demonstrate its superiority with the existing techniques.

  1. Real Time 3D Facial Movement Tracking Using a Monocular Camera.

    Science.gov (United States)

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-07-25

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  2. Comparative evaluation of monocular augmented-reality display for surgical microscopes.

    Science.gov (United States)

    Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N

    2012-01-01

    Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.

  3. Optical secure image verification system based on ghost imaging

    Science.gov (United States)

    Wu, Jingjing; Haobogedewude, Buyinggaridi; Liu, Zhengjun; Liu, Shutian

    2017-09-01

    The ghost imaging can perform Fourier-space filtering by tailoring the configuration. We proposed a novel optical secure image verification system based on this theory with the help of phase matched filtering. In the verification process, the system key and the ID card which contain the information of the correct image and the information to be verified are put in the reference and the test paths, respectively. We demonstrate that the ghost imaging configuration can perform an incoherent correlation between the system key and the ID card. The correct verification manifests itself with a correlation peak in the ghost image. The primary image and the image to be verified are encrypted and encoded into pure phase masks beforehand for security. Multi-image secure verifications can also be implemented in the proposed system.

  4. Multispectral image filtering method based on image fusion

    Science.gov (United States)

    Zhang, Wei; Chen, Wei

    2015-12-01

    This paper proposed a novel filter scheme by image fusion based on Nonsubsampled ContourletTransform(NSCT) for multispectral image. Firstly, an adaptive median filter is proposed which shows great advantage in speed and weak edge preserving. Secondly, the algorithm put bilateral filter and adaptive median filter on image respectively and gets two denoised images. Then perform NSCT multi-scale decomposition on the de-noised images and get detail sub-band and approximate sub-band. Thirdly, the detail sub-band and approximate sub-band are fused respectively. Finally, the object image is obtained by inverse NSCT. Simulation results show that the method has strong adaptability to deal with the textural images. And it can suppress noise effectively and preserve the image details. This algorithm has better filter performance than the Bilateral filter standard and median filter and theirs improved algorithms for different noise ratio.

  5. PERFORMANCE EVALUATION OF CONTENT BASED IMAGE RETRIEVAL FOR MEDICAL IMAGES

    Directory of Open Access Journals (Sweden)

    SASI KUMAR. M

    2013-04-01

    Full Text Available Content-based image retrieval (CBIR technology benefits not only large image collections management, but also helps clinical care, biomedical research, and education. Digital images are found in X-Rays, MRI, CT which are used for diagnosing and planning treatment schedules. Thus, visual information management is challenging as the data quantity available is huge. Currently, available medical databases utilization is limited image retrieval issues. Archived digital medical images retrieval is always challenging and this is being researched more as images are of great importance in patient diagnosis, therapy, medical reference, and medical training. In this paper, an image matching scheme using Discrete Sine Transform for relevant feature extraction is presented. The efficiency of different algorithm for classifying the features to retrieve medical images is investigated.

  6. Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations

    Science.gov (United States)

    Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run

    2016-07-01

    A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.

  7. Classification based polynomial image interpolation

    Science.gov (United States)

    Lenke, Sebastian; Schröder, Hartmut

    2008-02-01

    Due to the fast migration of high resolution displays for home and office environments there is a strong demand for high quality picture scaling. This is caused on the one hand by large picture sizes and on the other hand due to an enhanced visibility of picture artifacts on these displays [1]. There are many proposals for an enhanced spatial interpolation adaptively matched to picture contents like e.g. edges. The drawback of these approaches is the normally integer and often limited interpolation factor. In order to achieve rational factors there exist combinations of adaptive and non adaptive linear filters, but due to the non adaptive step the overall quality is notably limited. We present in this paper a content adaptive polyphase interpolation method which uses "offline" trained filter coefficients and an "online" linear filtering depending on a simple classification of the input situation. Furthermore we present a new approach to a content adaptive interpolation polynomial, which allows arbitrary polyphase interpolation factors at runtime and further improves the overall interpolation quality. The main goal of our new approach is to optimize interpolation quality by adapting higher order polynomials directly to the image content. In addition we derive filter constraints for enhanced picture quality. Furthermore we extend the classification based filtering to the temporal dimension in order to use it for an intermediate image interpolation.

  8. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

    Science.gov (United States)

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-07-13

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  9. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Huang

    2015-07-01

    Full Text Available The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  10. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  11. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  12. Content Based Image Retrieval through Clustering

    Directory of Open Access Journals (Sweden)

    Sandhya

    2012-06-01

    Full Text Available Content-based image retrieval (CBIR is a technique usedfor extracting similar images from an image database.CBIR system is required to access images effectively andefficiently using information contained in image databases.Here, K-Means is to be used for Image retrieval. The Kmeansmethod can be applied only in those cases when themean of a cluster is defined. The K-means method is notsuitable for discovering clusters with non-convex shapes orclusters of very different size. In this paper, CBIR,clustering and K-Means are defined. With the help of these,the data consisting images can be grouped and retrieved.

  13. A SVD Based Image Complexity Measure

    DEFF Research Database (Denmark)

    Gustafsson, David Karl John; Pedersen, Kim Steenstrup; Nielsen, Mads

    2009-01-01

    Images are composed of geometric structures and texture, and different image processing tools - such as denoising, segmentation and registration - are suitable for different types of image contents. Characterization of the image content in terms of geometric structure and texture is an important...... problem that one is often faced with. We propose a patch based complexity measure, based on how well the patch can be approximated using singular value decomposition. As such the image complexity is determined by the complexity of the patches. The concept is demonstrated on sequences from the newly...... collected DIKU Multi-Scale image database....

  14. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF). Th......). The MAF projection exploits the fact that interesting phenomena in images typically exhibit spatial autocorrelation. The analysis is based on nearinfrared hyperspectral images of maize grains demonstrating the superiority of the kernelbased MAF method....

  15. Optical image hiding based on computational ghost imaging

    Science.gov (United States)

    Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu

    2016-05-01

    Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.

  16. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    P Manipoonchelvi; K Muneeswaran

    2014-04-01

    Multimedia information retrieval systems continue to be an active research area in the world of huge and voluminous data. The paramount challenge is to translate or convert a visual query from a human and find similar images or videos in large digital collection. In this paper, a technique of region based image retrieval, a branch of Content Based Image Retrieval, is proposed. The proposed model does not need prior knowledge or full semantic understanding of image content. It identifies significant regions in an image based on feature-based attention model which mimic viewer’s attention. The Curvelet Transform in combination with colour descriptors are used to represent each significant region in an image. Experimental results are analysed and compared with the state-of-the-art Region Based Image Retrieval Technique.

  17. Close Clustering Based Automated Color Image Annotation

    CERN Document Server

    Garg, Ankit; Asawa, Krishna

    2010-01-01

    Most image-search approaches today are based on the text based tags associated with the images which are mostly human generated and are subject to various kinds of errors. The results of a query to the image database thus can often be misleading and may not satisfy the requirements of the user. In this work we propose our approach to automate this tagging process of images, where image results generated can be fine filtered based on a probabilistic tagging mechanism. We implement a tool which helps to automate the tagging process by maintaining a training database, wherein the system is trained to identify certain set of input images, the results generated from which are used to create a probabilistic tagging mechanism. Given a certain set of segments in an image it calculates the probability of presence of particular keywords. This probability table is further used to generate the candidate tags for input images.

  18. One Channel Image Texture Based Interpretation

    Science.gov (United States)

    Rodinova, N. V.

    2011-03-01

    In single band and single polarized synthetic aperture radar (SAR) images, in individual channels of polarimetric SAR and multispectral images, in panchromatic images, magnetic resonance imaging, etc., the information is limited to the intensity and texture, and it is very difficult to interpret such images without any a priori information.This paper proposes to use the textural features (contrast, entropy and inverse moment), obtained from grey level co-occurrence matrix (GLCM), to segment one channel images. The interpretation of received texture merged color images are performed based on calculated texture feature values for various surface objects (forest, town, water, and so on) in initial image.SIR-C/X-SAR SLC L-band images, SPOT 4 multispectral and panchromatic images are used for illustration.

  19. Decrease in monocular sleep after sleep deprivation in the domestic chicken

    NARCIS (Netherlands)

    Boerema, AS; Riedstra, B; Strijkstra, AM

    2003-01-01

    We investigated the trade-off between sleep need and alertness, by challenging chickens to modify their monocular sleep. We sleep deprived domestic chickens (Gallus domesticus) to increase their sleep need. We found that in response to sleep deprivation the fraction of monocular sleep within sleep

  20. Decrease in monocular sleep after sleep deprivation in the domestic chicken

    NARCIS (Netherlands)

    Boerema, AS; Riedstra, B; Strijkstra, AM

    2003-01-01

    We investigated the trade-off between sleep need and alertness, by challenging chickens to modify their monocular sleep. We sleep deprived domestic chickens (Gallus domesticus) to increase their sleep need. We found that in response to sleep deprivation the fraction of monocular sleep within sleep d

  1. Real-time Image-based 6-DOF Localization in Large-Scale Environments

    CERN Document Server

    Lim, Hyon; Cohen, Michael; Uyttendaele, Matt

    2012-01-01

    We present a real-time approach for image-based localization within large scenes that have been reconstructed offline using structure from motion (Sfm). From monocular video, our method continuously computes a precise 6-DOF camera pose, by efficiently tracking natural features and matching them to 3D points in the Sfm point cloud. Our main contribution lies in efficiently interleaving a fast keypoint tracker that uses inexpensive binary feature descriptors with a new approach for direct 2D-to-3D matching. The 2D-to-3D matching avoids the need for online extraction of scale-invariant features. Instead, offline we construct an indexed database containing multiple DAISY descriptors per 3D point extracted at multiple scales. The key to the efficiency of our method lies in invoking DAISY descriptor extraction and matching sparingly during localization, and in distributing this computation over a window of successive frames. This enables the algorithm to run in real-time, without fluctuations in the latency over lo...

  2. Monocular occlusions determine the perceived shape and depth of occluding surfaces.

    Science.gov (United States)

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2010-06-01

    Recent experiments have established that monocular areas arising due to occlusion of one object by another contribute to stereoscopic depth perception. It has been suggested that the primary role of monocular occlusions is to define depth discontinuities and object boundaries in depth. Here we use a carefully designed stimulus to demonstrate empirically that monocular occlusions play an important role in localizing depth edges and defining the shape of the occluding surfaces in depth. We show that the depth perceived via occlusion in our stimuli is not due to the presence of binocular disparity at the boundary and discuss the quantitative nature of depth perception in our stimuli. Our data suggest that the visual system can use monocular information to estimate not only the sign of the depth of the occluding surface but also its magnitude. We also provide preliminary evidence that perceived depth of illusory occluders derived from monocular information can be biased by binocular features.

  3. Monocular accommodation condition in 3D display types through geometrical optics

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Dong-Wook; Park, Min-Chul; Son, Jung-Young

    2007-09-01

    Eye fatigue or strain phenomenon in 3D display environment is a significant problem for 3D display commercialization. The 3D display systems like eyeglasses type stereoscopic or auto-stereoscopic multiview, Super Multi-View (SMV), and Multi-Focus (MF) displays are considered for detail calculation about satisfaction level of monocular accommodation by geometrical optics calculation means. A lens with fixed focal length is used for experimental verification about numerical calculation of monocular defocus effect caused by accommodation at three different depths. And the simulation and experiment results consistently show relatively high level satisfaction about monocular accommodation at MF display condition. Additionally, possibility of monocular depth perception, 3D effect, at monocular MF display is discussed.

  4. Feature-based Image Sequence Compression Coding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel compressing method for video teleconference applications is presented. Semantic-based coding based on human image feature is realized, where human features are adopted as parameters. Model-based coding and the concept of vector coding are combined with the work on image feature extraction to obtain the result.

  5. Magnetic resonance imaging based functional imaging in paediatric oncology.

    Science.gov (United States)

    Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C

    2017-02-01

    Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 基于单目视觉的并联机器人末端位姿检测%Position and Orientation Measurement of Parallel Robot Based on Monocular Vision

    Institute of Scientific and Technical Information of China (English)

    丁雅斌; 梅江平; 张文昌; 刘晓利

    2014-01-01

    高效、准确地检测机器人末端位姿误差是实现运动学标定的关键环节。提出一种基于单目摄像机拍摄立体靶标序列图像信息的末端执行器6维位姿误差辨识方法,构造具有平行四边形几何约束的四个空间特征点,并以平行四边形的两个消隐点为约束,建立空间刚体位姿与其二维图像映射关系模型,实现末端位姿的精确定位,然后以Delta高速并联机器人为对象,进行了运动学标定试验,验证该方法的有效性,为这类机器人低成本、快速、在线运动学标定提供重要的理论与技术基础。%The robot pose errors detection is a key step to realize the kinematic calibration. The six-dimensional geometrical errors detection using a single CCD camera and elaborately designed targets is proposed. A model of rigid body displacement and its 2D image mapping, which is constructed based on 4 spatial features and 2 vanishing points of a parallelogram geometric constraint, can be used to achieve precise positioning of the position and pose of the end-effector. By taking a Delta robot as a demonstrator, experiments of kinematic calibration will be carried out to verify the validity and effectiveness of the proposed approach. The outcomes will lay a solid theoretical foundation for the low-cost and fast kinematic calibration of the robot.

  7. Texture Image Classification Based on Gabor Wavelet

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-bing; LI Hai-fei; SHI Ya-li; YANG Xiao-hui

    2014-01-01

    For a texture image, by recognizining the class of every pixel of the image, it can be partitioned into disjoint regions of uniform texture. This paper proposed a texture image classification algorithm based on Gabor wavelet. In this algorithm, characteristic of every image is obtained through every pixel and its neighborhood of this image. And this algorithm can achieve the information transform between different sizes of neighborhood. Experiments on standard Brodatz texture image dataset show that our proposed algorithm can achieve good classification rates.

  8. Developing stereo image based robot control system

    Science.gov (United States)

    Suprijadi, Pambudi, I. R.; Woran, M.; Naa, C. F.; Srigutomo, W.

    2015-04-01

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  9. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  10. Comparative Study of Triangulation based and Feature based Image Morphing

    Directory of Open Access Journals (Sweden)

    Ms. Bhumika G. Bhatt

    2012-01-01

    Full Text Available Image Morphing is one of the most powerful Digital Image processing technique, which is used to enhancemany multimedia projects, presentations, education and computer based training. It is also used inmedical imaging field to recover features not visible in images by establishing correspondence of featuresamong successive pair of scanned images. This paper discuss what morphing is and implementation ofTriangulation based morphing Technique and Feature based Image Morphing. IT analyze both morphingtechniques in terms of different attributes such as computational complexity, Visual quality of morphobtained and complexity involved in selection of features.

  11. Detail Enhancement for Infrared Images Based on Propagated Image Filter

    Directory of Open Access Journals (Sweden)

    Yishu Peng

    2016-01-01

    Full Text Available For displaying high-dynamic-range images acquired by thermal camera systems, 14-bit raw infrared data should map into 8-bit gray values. This paper presents a new method for detail enhancement of infrared images to display the image with a relatively satisfied contrast and brightness, rich detail information, and no artifacts caused by the image processing. We first adopt a propagated image filter to smooth the input image and separate the image into the base layer and the detail layer. Then, we refine the base layer by using modified histogram projection for compressing. Meanwhile, the adaptive weights derived from the layer decomposition processing are used as the strict gain control for the detail layer. The final display result is obtained by recombining the two modified layers. Experimental results on both cooled and uncooled infrared data verify that the proposed method outperforms the method based on log-power histogram modification and bilateral filter-based detail enhancement in both detail enhancement and visual effect.

  12. Optically-induced-potential-based image encryption.

    Science.gov (United States)

    Chen, Bing-Chu; Wang, He-Zhou

    2011-11-07

    We present a technique of nonlinear image encryption by use of virtual optics. The image to be encrypted is superposed on a random intensity image. And this superposed image propagates through a nonlinear medium and a 4-f system with single phase key. The image is encrypted to a stationary white noise. The decryption process is sensitive to the parameters of the encryption system and the phase key in 4-f system. This sensitivity makes attackers hard to access the phase key. In nonlinear medium, optically-induced potentials, which depend on intensity of optical wave, make the superposition principle frustrated. This nonlinearity based on optically induced potentials highly improves the secrecy level of image encryption. Resistance against attacks based on the phase retrieval technique proves that it has the high secrecy level. This nonlinear image encryption based on optically induced potentials is proposed and demonstrated for the first time.

  13. Content Based Image Retrieval by Multi Features using Image Blocks

    Directory of Open Access Journals (Sweden)

    Arpita Mathur

    2013-12-01

    Full Text Available Content based image retrieval (CBIR is an effective method of retrieving images from large image resources. CBIR is a technique in which images are indexed by extracting their low level features like, color, texture, shape, and spatial location, etc. Effective and efficient feature extraction mechanisms are required to improve existing CBIR performance. This paper presents a novel approach of CBIR system in which higher retrieval efficiency is achieved by combining the information of image features color, shape and texture. The color feature is extracted using color histogram for image blocks, for shape feature Canny edge detection algorithm is used and the HSB extraction in blocks is used for texture feature extraction. The feature set of the query image are compared with the feature set of each image in the database. The experiments show that the fusion of multiple features retrieval gives better retrieval results than another approach used by Rao et al. This paper presents comparative study of performance of the two different approaches of CBIR system in which the image features color, shape and texture are used.

  14. Navigation system for a small size lunar exploration rover with a monocular omnidirectional camera

    Science.gov (United States)

    Laîné, Mickaël.; Cruciani, Silvia; Palazzolo, Emanuele; Britton, Nathan J.; Cavarelli, Xavier; Yoshida, Kazuya

    2016-07-01

    A lunar rover requires an accurate localisation system in order to operate in an uninhabited environment. However, every additional piece of equipment mounted on it drastically increases the overall cost of the mission. This paper reports a possible solution for a micro-rover using a sole monocular omnidirectional camera. Our approach relies on a combination of feature tracking and template matching for Visual Odometry. The results are afterwards refined using a Graph-Based SLAM algorithm, which also provides a sparse reconstruction of the terrain. We tested the algorithm on a lunar rover prototype in a lunar analogue environment and the experiments show that the estimated trajectory is accurate and the combination with the template matching algorithm allows an otherwise poor detection of spot turns.

  15. MAP-based infrared image expansion

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Weiqi Jin; Binghua Su; Yangyang Liu; Hua Chen

    2005-01-01

    @@ Image expansion plays a very important role in image analysis. Common methods of image expansion, such as the zero-order hold method, may generate a visual mosaic to the expanded image, linear and cubic spline interpolation may blur the image data at peripheral regions. Since infrared images have the characteristics of low contrast and low signal-to-noise ratio (SNR), the expanded images derived from common methods are not satisfactory. As shown in the analysis of the course from images with low resolution to those with high resolution, the expansion of image is found to be an ill-posed inverse problem. An image interpolation algorithm based on MAP estimation under Bayesian framework is proposed in this paper,which can effectively preserve the discontinuities in the original image. Experimental results demonstrate that the expanded images by this method are visually and quantitatively (analyzed by using the criteria of mean squared error (MSE) and mean absolute error (MAE)) superior to the images expanded by common methods of linear interpolation. Even in expansion of infrared images, this method can also give good results. An analysis about choosing regularization parameter α in this algorithm is given.

  16. Image edge detection based on beamlet transform

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Huang Peikang; Wang Xiaohu; Pan Xudong

    2009-01-01

    Combining beamlet transform with steerable filters, a new edge detection method based on line gra-dient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators are also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.

  17. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  18. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  19. Multi Feature Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Rajshree S. Dubey,

    2010-09-01

    Full Text Available There are numbers of methods prevailing for Image Mining Techniques. This Paper includes the features of four techniques I,e Color Histogram, Color moment, Texture, and Edge Histogram Descriptor. The nature of the Image is basically based on the Human Perception of the Image. The Machine interpretation of the Image is based on the Contours and surfaces of the Images. The study of the Image Mining is a very challenging task because it involves the Pattern Recognition which is a very important tool for the Machine Vision system. A combination of four feature extraction methods namely color istogram, Color Moment, texture, and Edge Histogram Descriptor. There is a provision to add new features in future for better retrievalefficiency. In this paper the combination of the four techniques are used and the Euclidian distances are calculated of the every features are added and the averages are made .The user interface is provided by the Mat lab. The image properties analyzed in this work are by using computer vision and image processing algorithms. For colorthe histogram of images are computed, for texture co occurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD that is found. For retrieval of images, the averages of the four techniques are made and the resultant Image is retrieved.

  20. Monocular display unit for 3D display with correct depth perception

    Science.gov (United States)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-11-01

    A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  1. Iris image segmentation based on phase congruency

    Science.gov (United States)

    Gao, Chao; Jiang, Da-Qin; Guo, Yong-Cai

    2006-09-01

    Iris image segmentation is very important for an iris recognition system. There are always iris noises as eyelash, eyelid, reflection and pupil in iris images. The paper proposes a virtual method of segmentation. By locating and normalizing iris images with Gabor filter, we can acquire information of image texture in a series of frequencies and orientations. Iris noise regions are determined based on phase congruency by a group of Gabor filters whose kernels are suitable for edge detection. These regions are filled according to the characteristics of iris noise. The experimental results show that the proposed method can segment iris images effectively.

  2. Scalable still image coding based on wavelet

    Science.gov (United States)

    Yan, Yang; Zhang, Zhengbing

    2005-02-01

    The scalable image coding is an important objective of the future image coding technologies. In this paper, we present a kind of scalable image coding scheme based on wavelet transform. This method uses the famous EZW (Embedded Zero tree Wavelet) algorithm; we give a high-quality encoding to the ROI (region of interest) of the original image and a rough encoding to the rest. This method is applied well in limited memory space condition, and we encode the region of background according to the memory capacity. In this way, we can store the encoded image in limited memory space easily without losing its main information. Simulation results show it is effective.

  3. Position sensor based on slit imaging

    Institute of Scientific and Technical Information of China (English)

    Aijun Zeng(曾爱军); Xiangzhao Wang(王向朝); Yang Bu(步扬); Dailin Li(李代林)

    2004-01-01

    A position sensor based on slit imaging is proposed and its measurement principle is described.An imaging slit is illuminated by a collimated laser beam with square-wave modulation and imaged on a detection double slit through a 4f system.A magnified image of the detection double slit is formed on a bi-cell detector.The position of the imaging slit is obtained by detecting light intensity on two parts of the bi-cell detector.In experiments,the feasibility of the sensor was verified.The repeatability was less than 40 nm.

  4. Iris image Segmentation Based on Phase Congruency

    Institute of Scientific and Technical Information of China (English)

    GAO Chao; JIANG Da-qin; Guo Yong-cai

    2006-01-01

    @@ Iris image segmentation is very important for an iris recognition system.There are always iris noises as eyelash,eyelid,reflection and pupil in iris images.The paper proposes a virtual method of segmentation.By locating and normalizing iris images with Gabor filter,we can acquire information of image texture in a series of frequencies and orientations.Iris noise regions are determined based on phase congruency by a group of Gabor filters whose kernels are suitable for edge detection.These regions are filled according to the characteristics of iris noise.The experimental results show that the proposed method can segment iris images effectively.

  5. Novel image encryption based on quantum walks.

    Science.gov (United States)

    Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng

    2015-01-14

    Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing.

  6. Content-Based Image Retrial Based on Hadoop

    Directory of Open Access Journals (Sweden)

    DongSheng Yin

    2013-01-01

    Full Text Available Generally, time complexity of algorithms for content-based image retrial is extremely high. In order to retrieve images on large-scale databases efficiently, a new way for retrieving based on Hadoop distributed framework is proposed. Firstly, a database of images features is built by using Speeded Up Robust Features algorithm and Locality-Sensitive Hashing and then perform the search on Hadoop platform in a parallel way specially designed. Considerable experimental results show that it is able to retrieve images based on content on large-scale cluster and image sets effectively.

  7. Image Based Rendering under Varying Illumination

    Institute of Scientific and Technical Information of China (English)

    Wang Chengfeng (王城峰); Hu Zhanyi

    2003-01-01

    A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.

  8. Content Based Image Retrieval Based on Color: A Survey

    Directory of Open Access Journals (Sweden)

    Mussarat Yasmin

    2015-11-01

    Full Text Available Information sharing, interpretation and meaningful expression have used digital images in the past couple of decades very usefully and extensively. This extensive use not only evolved the digital communication world with ease and usability but also produced unwanted difficulties around the use of digital images. Because of their extensive usage it sometimes becomes harder to filter images based on their visual contents. To overcome these problems, Content Based Image Retrieval (CBIR was introduced as one of the recent ways to find specific images in massive databases of digital images for efficiency or in other words for continuing the use of digital images in information sharing. In the past years, many systems of CBIR have been anticipated, developed and brought into usage as an outcome of huge research done in CBIR domain. Based on the contents of images, different approaches of CBIR have different implementations for searching images resulting in different measures of performance and accuracy. Some of them are in fact very effective approaches for fast and efficient content based image retrieval. This research highlights the hard work done by researchers to develop the image retrieval techniques based on the color of images. These techniques along with their pros and cons as well as their application in relevant fields are discussed in the survey paper. Moreover, the techniques are also categorized on the basis of common approach used.

  9. Thermal light ghost imaging based on morphology

    Science.gov (United States)

    Chen, Zhipeng; Shi, Jianhong; Zeng, Guihua

    2016-12-01

    The quality of thermal light ghost imaging could be degraded by undersampling noise. This kind of noise is generated because of finite sampling, which could reduce the signal-to-noise ratio (SNR) of ghost imaging and submerge object information. In order to reduce the undersampling noise, we propose a thermal light ghost imaging scheme based on the morphology (GIM). In this scheme, the average size of the undersampling noise can be obtained by computing the second-order correlation function of the ghost imaging system. According to the average size of the undersampling noise, the corresponding structure element can be designed and used in the morphological filter; then, the GIM reconstructed image can be obtained. The experiment results show that the peak signal-to-noise ratio of the GIM reconstructed image can increased by 80% than that of conventional ghost imaging for the same number of measurements.

  10. Global Descriptor Attributes Based Content Based Image Retrieval of Query Images

    Directory of Open Access Journals (Sweden)

    Jaykrishna Joshi

    2015-02-01

    Full Text Available The need for efficient content-based image retrieval system has increased hugely. Efficient and effective retrieval techniques of images are desired because of the explosive growth of digital images. Content based image retrieval (CBIR is a promising approach because of its automatic indexing retrieval based on their semantic features and visual appearance. In this proposed system we investigate method for describing the contents of images which characterizes images by global descriptor attributes, where global features are extracted to make system more efficient by using color features which are color expectancy, color variance, skewness and texture feature correlation.

  11. ROV Based Underwater Blurred Image Restoration

    Institute of Scientific and Technical Information of China (English)

    LIU Zhishen; DING Tianfu; WANG Gang

    2003-01-01

    In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV's detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.

  12. Automatic Image-Based Pencil Sketch Rendering

    Institute of Scientific and Technical Information of China (English)

    王进; 鲍虎军; 周伟华; 彭群生; 徐迎庆

    2002-01-01

    This paper presents an automatic image-based approach for converting greyscale images to pencil sketches, in which strokes follow the image features. The algorithm first extracts a dense direction field automatically using Logical/Linear operators which embody the drawing mechanism. Next, a reconstruction approach based on a sampling-and-interpolation scheme is introduced to generate stroke paths from the direction field. Finally, pencil strokes are rendered along the specified paths with consideration of image tone and artificial illumination.As an important application, the technique is applied to render portraits from images with little user interaction. The experimental results demonstrate that the approach can automatically achieve compelling pencil sketches from reference images.

  13. Robust Image Watermarking Based on Psychovisual Threshold

    Directory of Open Access Journals (Sweden)

    Ferda Ernawan

    2016-12-01

    Full Text Available Because of the facility of accessing and sharing digital images through the internet, digital images are often copied, edited and reused. Digital image watermarking is an approach to protect and manage digital images as intellectual property. The embedding of a natural watermark based on the properties of the human eye can be utilized to effectively hide a watermark image. This paper proposes a watermark embedding scheme based on the psychovisual threshold and edge entropy. The sensitivity of minor changes in DCT coefficients against JPEG quantization tables was investigated. A watermark embedding scheme was designed that offers good resistance against JPEG image compression. The proposed scheme was tested under different types of attacks. The experimental results indicated that the proposed scheme can achieve high imperceptibility and robustness against attacks. The watermark recovery process is also robust against attacks.

  14. Segmentation-based CT image compression

    Science.gov (United States)

    Thammineni, Arunoday; Mukhopadhyay, Sudipta; Kamath, Vidya

    2004-04-01

    The existing image compression standards like JPEG and JPEG 2000, compress the whole image as a single frame. This makes the system simple but inefficient. The problem is acute for applications where lossless compression is mandatory viz. medical image compression. If the spatial characteristics of the image are considered, it can give rise to a more efficient coding scheme. For example, CT reconstructed images have uniform background outside the field of view (FOV). Even the portion within the FOV can be divided as anatomically relevant and irrelevant parts. They have distinctly different statistics. Hence coding them separately will result in more efficient compression. Segmentation is done based on thresholding and shape information is stored using 8-connected differential chain code. Simple 1-D DPCM is used as the prediction scheme. The experiments show that the 1st order entropies of images fall by more than 11% when each segment is coded separately. For simplicity and speed of decoding Huffman code is chosen for entropy coding. Segment based coding will have an overhead of one table per segment but the overhead is minimal. Lossless compression of image based on segmentation resulted in reduction of bit rate by 7%-9% compared to lossless compression of whole image as a single frame by the same prediction coder. Segmentation based scheme also has the advantage of natural ROI based progressive decoding. If it is allowed to delete the diagnostically irrelevant portions, the bit budget can go down as much as 40%. This concept can be extended to other modalities.

  15. Embedded Zero -Tree Wavelet Based Image Steganography

    OpenAIRE

    Vijendra Rai; Jaishree Jain; Ajay Kr. Yadav; Sheshmani Yadav

    2012-01-01

    Image steganography using Discrete Wavelet Transform can attain very good results as compared to traditional methods, in this paper we discuss a method to embed digital watermark based on modifying frequency coefficient in discrete wavelet transform (DWT) domain. This method uses the embedded zero-tree (EZW) algorithm to insert a watermark in discrete wavelet transform domain. EZW is an effective image compression algorithm, having property that image in the bit stream are generated in order...

  16. Monocular Visual Deprivation Suppresses Excitability in Adult Human Visual Cortex

    DEFF Research Database (Denmark)

    Lou, Astrid Rosenstand; Madsen, Kristoffer Hougaard; Paulson, Olaf Bjarne

    2011-01-01

    The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex....... Stimulus–response curves were constructed by recording the intensity of the reported phosphenes evoked in the contralateral visual field at range of TMS intensities. Phosphene measurements revealed that MD produced a rapid and robust decrease in cortical excitability relative to a control condition without...

  17. Tensor scale-based image registration

    Science.gov (United States)

    Saha, Punam K.; Zhang, Hui; Udupa, Jayaram K.; Gee, James C.

    2003-05-01

    Tangible solutions to image registration are paramount in longitudinal as well as multi-modal medical imaging studies. In this paper, we introduce tensor scale - a recently developed local morphometric parameter - in rigid image registration. A tensor scale-based registration method incorporates local structure size, orientation and anisotropy into the matching criterion, and therefore, allows efficient multi-modal image registration and holds potential to overcome the effects of intensity inhomogeneity in MRI. Two classes of two-dimensional image registration methods are proposed - (1) that computes angular shift between two images by correlating their tensor scale orientation histogram, and (2) that registers two images by maximizing the similarity of tensor scale features. Results of applications of the proposed methods on proton density and T2-weighted MR brain images of (1) the same slice of the same subject, and (2) different slices of the same subject are presented. The basic superiority of tensor scale-based registration over intensity-based registration is that it may allow the use of local Gestalts formed by the intensity patterns over the image instead of simply considering intensities as isolated events at the pixel level. This would be helpful in dealing with the effects of intensity inhomogeneity and noise in MRI.

  18. 基于单目视觉的近景摄影测量在振动台试验中的应用%Application of close-range photogrammetry based on monocular vision in shaking table test

    Institute of Scientific and Technical Information of China (English)

    薛彪; 张松飞; 赵莉

    2015-01-01

    在结构实验中,结构物的变形或位移是一个很重要的实验数据。该文利用普通数码相机记录试验过程,采用霍夫变换( HT)识别标志点圆心,应用数字图像处理技术得到标志点的变形位移量。与传统的位移传感器测量相比,摄影测量是非接触、操作简单,精度可以达到试验要求。通过分析相关的测量数据,证明这种方法是可行的。%Structure distortion or displacement is a very important experiment data in the structure experiments. Using common digital camera records test process and Hough transform ( HT) to identify the center of the landmark can get the landmark deformation and displacement by digital image processing technology. Compared with the traditional displacement sensor, photogrammetry is non-contact, simple operation and automation, precision can meet the test requirements. Experiments prove that this method is feasible.

  19. Dynamic Pattern Based Image Steganography

    OpenAIRE

    Thiyagarajan, P.; G. Aghila; Venkatesan, V. Prasanna

    2012-01-01

    Steganography is the art of hiding secret information in media such as image, audio and video. The purpose of steganography is to conceal the existence of the secret information in any given medium. This work aims at strengthening the security in steganography algorithm by generating dynamic pattern in selection of indicator sequence. In addition to this dynamicity is also encompassed in number of bits embedded in data channel. This technique has been implemented and the results have been com...

  20. Material Recognition for Content Based Image Retrieval

    NARCIS (Netherlands)

    Geusebroek, J.M.

    2002-01-01

    One of the open problems in content-based Image Retrieval is the recognition of material present in an image. Knowledge about the set of materials present gives important semantic information about the scene under consideration. For example, detecting sand, sky, and water certainly classifies the im

  1. Material Recognition for Content Based Image Retrieval

    NARCIS (Netherlands)

    Geusebroek, J.M.

    2002-01-01

    One of the open problems in content-based Image Retrieval is the recognition of material present in an image. Knowledge about the set of materials present gives important semantic information about the scene under consideration. For example, detecting sand, sky, and water certainly classifies the

  2. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF...

  3. Phase Correlation Based Iris Image Registration Model

    Institute of Scientific and Technical Information of China (English)

    Jun-Zhou Huang; Tie-Niu Tan; Li Ma; Yun-Hong Wang

    2005-01-01

    Iris recognition is one of the most reliable personal identification methods. In iris recognition systems, image registration is an important component. Accurately registering iris images leads to higher recognition rate for an iris recognition system. This paper proposes a phase correlation based method for iris image registration with sub-pixel accuracy.Compared with existing methods, it is insensitive to image intensity and can compensate to a certain extent the non-linear iris deformation caused by pupil movement. Experimental results show that the proposed algorithm has an encouraging performance.

  4. Comic image understanding based on polygon detection

    Science.gov (United States)

    Li, Luyuan; Wang, Yongtao; Tang, Zhi; Liu, Dong

    2013-01-01

    Comic image understanding aims to automatically decompose scanned comic page images into storyboards and then identify the reading order of them, which is the key technique to produce digital comic documents that are suitable for reading on mobile devices. In this paper, we propose a novel comic image understanding method based on polygon detection. First, we segment a comic page images into storyboards by finding the polygonal enclosing box of each storyboard. Then, each storyboard can be represented by a polygon, and the reading order of them is determined by analyzing the relative geometric relationship between each pair of polygons. The proposed method is tested on 2000 comic images from ten printed comic series, and the experimental results demonstrate that it works well on different types of comic images.

  5. IMAGE ENCRYPTION BASED ON SINGULAR VALUE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Nidhal K. El Abbadi

    2014-01-01

    Full Text Available Image encryption is one of the most methods of information hiding. A novel secure encryption method for image encryption is presented in this study. The proposed algorithm based on using singular value decomposition SVD. In this study we start to scramble the image data according to suggested keys (two sequence scrambling process with two different keys to finally create two different matrices. The diagonal matrix from the SVD will be interchanged with the resulted matrices. Another scrambling and diagonal matrices interchange will apply to increase the complexity. The resulted two matrices combine to one matrix according to predefined procedure. The encrypted image is a meaningfull image. The suggested method tested with many images encryption and gives promised results.

  6. Spatial chaos-based image encryption design

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, permutation and sub- stitution methods are incorporated to present a stronger image encryption algorithm. Spatial chaotic maps are used to realize the position permutation, and to confuse the relationship between the ci- pher-image and the plain-image. The experimental results demonstrate that the suggested encryption scheme of image has the advantages of large key space and high security; moreover, the distribution of grey values of the encrypted image has a random-like behavior.

  7. Spatial chaos-based image encryption design

    Institute of Scientific and Technical Information of China (English)

    LIU ShuTang; SUN FuYan

    2009-01-01

    In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, permutation and sub-stitution methods are incorporated to present a stronger image encryption algorithm. Spatial chaotic maps are used to realize the position permutation, and to confuse the relationship between the ci-pher-image and the plain-image. The experimental results demonstrate that the suggested encryption scheme of image has the advantages of large key space and high security; moreover, the distribution of grey values of the encrypted image has a random-like behavior.

  8. Visual Secret Sharing Based Digital Image Watermarking

    Directory of Open Access Journals (Sweden)

    B. Surekha

    2012-05-01

    Full Text Available In this paper, a spatial domain image watermarking technique based on Visual Secret Sharing (VSS and unique statistical properties is proposed. A random looking image is generated during watermark hiding process and is secretly registered with an arbitrator for verification during conflicts. Another random looking image is generated during watermark revelation stage and is combined with the existing one, to recover the watermark. This whole process is done without altering the image to be protected and hence the quality of the cover image is high. When compared with similar existing techniques, the proposed technique has three main advantages: Provides greater convenience in carrying and storing the intermediate images called shares; Provides high security; Reduce tradeoff between spatial and frequency domain techniques in terms of robustness

  9. Effect of field of view and monocular viewing on angular size judgements in an outdoor scene

    Science.gov (United States)

    Denz, E. A.; Palmer, E. A.; Ellis, S. R.

    1980-01-01

    Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators.

  10. Reactivation of thalamocortical plasticity by dark exposure during recovery from chronic monocular deprivation

    Science.gov (United States)

    Montey, Karen L.; Quinlan, Elizabeth M.

    2015-01-01

    Chronic monocular deprivation induces severe amblyopia that is resistant to spontaneous reversal in adulthood. However, dark exposure initiated in adulthood reactivates synaptic plasticity in the visual cortex and promotes recovery from chronic monocular deprivation. Here we show that chronic monocular deprivation significantly decreases the strength of feedforward excitation and significantly decreases the density of dendritic spines throughout the deprived binocular visual cortex. Dark exposure followed by reverse deprivation significantly enhances the strength of thalamocortical synaptic transmission and the density of dendritic spines on principle neurons throughout the depth of the visual cortex. Thus dark exposure reactivates widespread synaptic plasticity in the adult visual cortex, including at thalamocortical synapses, during the recovery from chronic monocular deprivation. PMID:21587234

  11. Apparent motion of monocular stimuli in different depth planes with lateral head movements.

    Science.gov (United States)

    Shimono, K; Tam, W J; Ono, H

    2007-04-01

    A stationary monocular stimulus appears to move concomitantly with lateral head movements when it is embedded in a stereogram representing two front-facing rectangular areas, one above the other at two different distances. In Experiment 1, we found that the extent of perceived motion of the monocular stimulus covaried with the amplitude of head movement and the disparity between the two rectangular areas (composed of random dots). In Experiment 2, we found that the extent of perceived motion of the monocular stimulus was reduced compared to that in Experiment 1 when the rectangular areas were defined only by an outline rather than by random dots. These results are discussed using the hypothesis that a monocular stimulus takes on features of the binocular surface area in which it is embedded and is perceived as though it were treated as a binocular stimulus with regards to its visual direction and visual depth.

  12. The effect of monocular depth cues on the detection of moving objects by moving observers

    National Research Council Canada - National Science Library

    Royden, Constance S; Parsons, Daniel; Travatello, Joshua

    2016-01-01

    ... and thus is an ambiguous cue. We tested whether the addition of information about the distance of objects from the observer, in the form of monocular depth cues, aided detection of moving objects...

  13. Layered Textures for Image-Based Rendering

    Institute of Scientific and Technical Information of China (English)

    en-Cheng Wang; ui-Yu Li; in Zheng; n-Hua Wu

    2004-01-01

    An extension to texture mapping is given in this paper for improving the efficiency of image-based rendering. For a depth image with an orthogonal displacement at each pixel, it is decomposed by the displacement into a series of layered textures (LTs) with each one having the same displacement for all its texels. Meanwhile,some texels of the layered textures are interpolated for obtaining a continuous 3D approximation of the model represented in the depth image. Thus, the plane-to-plane texture mapping can be used to map these layered textures to produce novel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task of hole-filling in the rendering stage. Experimental results show the new method can produce high-quality images and run faster than many famous image-based rendering techniques.

  14. Location-based Services using Image Search

    DEFF Research Database (Denmark)

    Vertongen, Pieter-Paulus; Hansen, Dan Witzner

    2008-01-01

    situations, for example in urban environments. We propose a system to provide location-based services using image searches without requiring GPS. The goal of this system is to assist tourists in cities with additional information using their mobile phones and built-in cameras. Based upon the result......Recent developments in image search has made them sufficiently efficient to be used in real-time applications. GPS has become a popular navigation tool. While GPS information provide reasonably good accuracy, they are not always present in all hand held devices nor are they accurate in all...... of the image search engine and database image location knowledge, the location is determined of the query image and associated data can be presented to the user....

  15. Information Audit Based on Image Content Filtering

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    At present, network information audit system is almost based on text information filtering, but badness information is embedded into image or image file directly by badness information provider, in order to avoid monitored by. The paper realizes an information audit system based on image content filtering. Taking the pornographic program identification for an example, the system can monitor the video including any abnormal human body information by matching the texture characters with those defined in advance, which consist of contrast, energy, correlation measure and entropy character measure and so on.

  16. The role of monocularly visible regions in depth and surface perception.

    Science.gov (United States)

    Harris, Julie M; Wilcox, Laurie M

    2009-11-01

    The mainstream of binocular vision research has long been focused on understanding how binocular disparity is used for depth perception. In recent years, researchers have begun to explore how monocular regions in binocularly viewed scenes contribute to our perception of the three-dimensional world. Here we review the field as it currently stands, with a focus on understanding the extent to which the role of monocular regions in depth perception can be understood using extant theories of binocular vision.

  17. Gradient-based compressive image fusion

    Institute of Scientific and Technical Information of China (English)

    Yang CHEN‡; Zheng QIN

    2015-01-01

    We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sam-pling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By com-positing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best per-formance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.

  18. Image-based petrophysical parameters

    DEFF Research Database (Denmark)

    Noe-Nygaard, Jakob; Engstrøm, Finn; Sølling, Theis Ivan

    2017-01-01

    In the present study, the focus is on two 2- to 3-mm cuttings-scale reservoir chalk samples chosen such that the resolution of the pore space is challenging the state of the art and the permeability differs by a factor of four. We compare the petrophysical parameters that are derived from nano......-computed-tomography (nano-CT) images of trim sections and cuttings. Moreover, the trim-section results are upscaled to trim size to form the basis of an additional comparison. The results are also benchmarked against conventional core analysis (CCAL) results on trim-size samples. The comparison shows that petrophysical......, the differences are significant for the low-permeability plug. For the two-phase-flow data, the predicted relative permeability endpoints differ significantly. The root cause of this again is attributed to the more-complex structure of the pore network in the low-permeability carbonate. The experiment was also...

  19. Image based Monument Recognition using Graph based Visual Saliency

    DEFF Research Database (Denmark)

    Kalliatakis, Grigorios; Triantafyllidis, Georgios

    2013-01-01

    This article presents an image-based application aiming at simple image classification of well-known monuments in the area of Heraklion, Crete, Greece. This classification takes place by utilizing Graph Based Visual Saliency (GBVS) and employing Scale Invariant Feature Transform (SIFT) or Speeded...... Up Robust Features (SURF). For this purpose, images taken at various places of interest are being compared to an existing database containing images of these places at different angles and zoom. The time required for the matching progress in such application is an important element. To this goal......, the images have been previously processed according to the Graph Based Visual Saliency model in order to keep either SIFT or SURF features corresponding to the actual monuments while the background “noise” is minimized. The application is then able to classify these images, helping the user to better...

  20. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects.

    Science.gov (United States)

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-07-28

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R(2) = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions.

  1. Graph Based Segmentation in Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    P. S. Suhasini

    2008-01-01

    Full Text Available Problem statement: Traditional image retrieval systems are content based image retrieval systems which rely on low-level features for indexing and retrieval of images. CBIR systems fail to meet user expectations because of the gap between the low level features used by such systems and the high level perception of images by humans. To meet the requirement as a preprocessing step Graph based segmentation is used in Content Based Image Retrieval (CBIR. Approach: Graph based segmentation is has the ability to preserve detail in low-variability image regions while ignoring detail in high-variability regions. After segmentation the features are extracted for the segmented images, texture features using wavelet transform and color features using histogram model and the segmented query image features are compared with the features of segmented data base images. The similarity measure used for texture features is Euclidean distance measure and for color features Quadratic distance approach. Results: The experimental results demonstrate about 12% improvement in the performance for color feature with segmentation. Conclusions/Recommendations: Along with this improvement Neural network learning can be embedded in this system to reduce the semantic gap.

  2. An Efficient Content Based Image Retrieval Scheme

    Directory of Open Access Journals (Sweden)

    Zukuan WEI

    2013-11-01

    Full Text Available Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible. Consequently efficient means to retrieve images matching a user’s query are needed. In this paper, we propose a framework based on a bipartite graph model (BGM for semantic image retrieval. BGM is a scalable data structure that aids semantic indexing in an efficient manner, and it can also be incrementally updated. Firstly, all the images are segmented into several regions with image segmentation algorithm, pre-trained SVMs are used to annotate each region, and final label is obtained by merging all the region labels. Then we use the set of images and the set of region labels to build a bipartite graph. When a query is given, a query node, initially containing a fixed number of labels, is created to attach to the bipartite graph. The node then distributes the labels based on the edge weight between the node and its neighbors. Image nodes receiving the most labels represent the most relevant images. Experimental results demonstrate that our proposed technique is promising.

  3. Pose Self-Measurement of Noncooperative Spacecraft Based on Solar Panel Triangle Structure

    OpenAIRE

    Jingzhou Song; Caixiu Cao

    2015-01-01

    Aiming at the recognition and location of noncooperative spacecraft, this paper presents a monocular vision pose measurement method based on solar triangle structure. First of all, an autonomous recognition algorithm of feature structure based on sliding window Hough transformation (SWHT) and inscribed circle of a triangle is proposed, and the image coordinates of feature points on the triangle can be obtained relying on this algorithm, combined with the P4P algorithm and the structure of spa...

  4. Chaos-Based Multipurpose Image Watermarking Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Congxu; LIAO Xuefeng; LI Zhihua

    2006-01-01

    To achieve the goal of image content authentication and copyright protection simultaneously, this paper presents a novel image dual watermarking method based on chaotic map. Firstly, the host image was split into many nonoverlapping small blocks, and the block-wise discrete cosine transform (DCT) is computed. Secondly, the robust watermarks, shuffled by the chaotic sequences, are embedded in the DC coefficients of blocks to achieve the goal of copyright protection. The semi-fragile watermarks, generated by chaotic map, are embedded in the AC coefficients of blocks to obtain the aim of image authentication. Both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.

  5. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  6. EEG based image encryption via quantum walks.

    Science.gov (United States)

    Rawat, N; Shin, Y; Balasingham, I

    2016-08-01

    An electroencephalogram (EEG) based image encryption combined with Quantum walks (QW) is encoded in Fresnel domain. The computational version of EEG randomizes the original plaintext whereas QW can serve as an excellent key generator due to its inherent nonlinear chaotic dynamic behavior. First, a spatially coherent monochromatic laser beam passes through an SLM, which introduces an arbitrary EEG phase-only mask. The modified beam is collected by a CCD. Further, the intensity is multiply with the QW digitally. EEG shows high sensitivity to system parameters and capable of encrypting and transmitting the data whereas QW has unpredictability, stability and non-periodicity. Only applying the correct keys, the original image can be retrieved successfully. Simulations and comparisons show the proposed method to be secure enough for image encryption and outperforms prior works. The proposed method opens the door towards introducing EEG and quantum computation into image encryption and promotes the convergence between our approach and image processing.

  7. Content and context of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms.

    Science.gov (United States)

    Grove, Philip M; Gillam, Barbara; Ono, Hiroshi

    2002-07-01

    Perceived depth was measured for three-types of stereograms with the colour/texture of half-occluded (monocular) regions either similar to or dissimilar to that of binocular regions or background. In a two-panel random dot stereogram the monocular region was filled with texture either similar or different to the far panel or left blank. In unpaired background stereograms the monocular region either matched the background or was different in colour or texture and in phantom stereograms the monocular region matched the partially occluded object or was a different colour or texture. In all three cases depth was considerably impaired when the monocular texture did not match either the background or the more distant surface. The content and context of monocular regions as well as their position are important in determining their role as occlusion cues and thus in three-dimensional layout. We compare coincidence and accidental view accounts of these effects.

  8. Space-based optical image encryption.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  9. Hiding Information into Palette-Based Image

    Institute of Scientific and Technical Information of China (English)

    WU Hong-tao; ZHU Bo-cheng; YANG Yi-xian

    2005-01-01

    After pointing out the weakness of the known palette-based image information hiding by palette matrix,a new spacial effective robust information hiding algorithm is proposed,which can resist the operation of ‘select all’,‘copy’,‘paste’ from cover to original,and can resist gently modification the palette matrix,and can resist the image format changed between true color image and palette-based image.The hiding capacity can reach 25% of the number of pixel index matrix.Due to the advisement of information hiding security an update algorithm is proposed at the end of the paper,with the capacity reduced and vision effect increased.

  10. Location-based Services using Image Search

    DEFF Research Database (Denmark)

    Vertongen, Pieter-Paulus; Hansen, Dan Witzner

    2008-01-01

    situations, for example in urban environments. We propose a system to provide location-based services using image searches without requiring GPS. The goal of this system is to assist tourists in cities with additional information using their mobile phones and built-in cameras. Based upon the result...

  11. Intelligent image retrieval based on radiology reports

    Energy Technology Data Exchange (ETDEWEB)

    Gerstmair, Axel; Langer, Mathias; Kotter, Elmar [University Medical Center Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Daumke, Philipp; Simon, Kai [Averbis GmbH, Freiburg (Germany)

    2012-12-15

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. (orig.)

  12. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  13. Region-based multisensor image fusion method

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Image fusion should consider the priori knowledge of the source images to be fused, such as the characteristics of the images and the goal of image fusion, that is to say, the knowledge about the input data and the application plays a crucial role. This paper is concerned on multiresolution (MR) image fusion. Considering the characteristics of the multisensor (SAR and FLIR etc) and the goal of fusion, which is to achieve one image in possession of the contours feature and the target region feature. It seems more meaningful to combine features rather than pixels. A multisensor image fusion scheme based on K-means cluster and steerable pyramid is presented. K-means cluster is used to segment out objects in FLIR images. The steerable pyramid is a multiresolution analysis method, which has a good property to extract contours information at different scales. Comparisons are made with the relevant existing techniques in the literature. The paper concludes with some examples to illustrate the efficiency of the proposed scheme.

  14. Fractal image encoding based on adaptive search

    Institute of Scientific and Technical Information of China (English)

    Kya Berthe; Yang Yang; Huifang Bi

    2003-01-01

    Finding the optimal algorithm between an efficient encoding process and the rate distortion is the main research in fractal image compression theory. A new method has been proposed based on the optimization of the Least-Square Error and the orthogonal projection. A large number of domain blocks can be eliminated in order to speed-up fractal image compression. Moreover, since the rate-distortion performance of most fractal image coders is not satisfactory, an efficient bit allocation algorithm to improve the rate distortion is also proposed. The implementation and comparison have been done with the feature extraction method to prove the efficiency of the proposed method.

  15. Image Edge Detection Based on Oscillation

    Institute of Scientific and Technical Information of China (English)

    FAN Hong; WANG Zhi-jie

    2005-01-01

    A new method for image edge detection based on a pulse neural network is proposed in this paper. The network is locally connected. The external input of each neuron of the network is gray value of the corresponding pixel. The synchrony of the neuron and its neighbors is detected by detection neurons. The edge of the image can be read off at minima of the total activity of the detection neurons.

  16. Cluster Ensemble-based Image Segmentation

    OpenAIRE

    Xiaoru Wang; Junping Du; Shuzhe Wu; Xu Li; Fu Li

    2013-01-01

    Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories ...

  17. Integration of monocular motion signals and the analysis of interocular velocity differences for the perception of motion-in-depth.

    Science.gov (United States)

    Shioiri, Satoshi; Kakehi, Daisuke; Tashiro, Tomoyoshi; Yaguchi, Hirohisa

    2009-12-09

    We investigated how the mechanism for perceiving motion-in-depth based on interocular velocity differences (IOVDs) integrates signals from the motion spatial frequency (SF) channels. We focused on the question whether this integration is implemented before or after the comparison of the velocity signals from the two eyes. We measured spatial frequency selectivity of the MAE of motion in depth (3D MAE). The 3D MAE showed little spatial frequency selectivity, whereas the 2D lateral MAE showed clear spatial frequency selectivity in the same condition. This indicates that the outputs of the monocular motion SF channels are combined before analyzing the IOVD. The presumption was confirmed by the disappearance of the 3D MAE after exposure to superimposed gratings with different spatial frequencies moving in opposite directions. The direction of the 2D MAE depended on the test spatial frequency in the same condition. These results suggest that the IOVD is calculated at a relatively later stage of the motion analysis, and that some monocular information is preserved even after the integration of the motion SF channel outputs.

  18. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  19. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  20. Development of a monocular vision system for robotic drilling

    Institute of Scientific and Technical Information of China (English)

    Wei-dong ZHU; Biao MEI; Guo-rui YAN; Ying-lin KE

    2014-01-01

    Robotic drilling for aerospace structures demands a high positioning accuracy of the robot, which is usually achieved through error measurement and compensation. In this paper, we report the development of a practical monocular vision system for measurement of the relative error between the drill tool center point (TCP) and the reference hole. First, the principle of relative error measurement with the vision system is explained, followed by a detailed discussion on the hardware components, software components, and system integration. The elliptical contour extraction algorithm is presented for accurate and robust reference hole detection. System calibration is of key importance to the measurement accuracy of a vision system. A new method is proposed for the simultaneous calibration of camera internal parameters and hand-eye relationship with a dedicated calibration board. Extensive measurement experiments have been performed on a robotic drilling system. Experimental results show that the measurement accuracy of the developed vision system is higher than 0.15 mm, which meets the requirement of robotic drilling for aircraft structures.

  1. Deep monocular 3D reconstruction for assisted navigation in bronchoscopy.

    Science.gov (United States)

    Visentini-Scarzanella, Marco; Sugiura, Takamasa; Kaneko, Toshimitsu; Koto, Shinichiro

    2017-07-01

    In bronchoschopy, computer vision systems for navigation assistance are an attractive low-cost solution to guide the endoscopist to target peripheral lesions for biopsy and histological analysis. We propose a decoupled deep learning architecture that projects input frames onto the domain of CT renderings, thus allowing offline training from patient-specific CT data. A fully convolutional network architecture is implemented on GPU and tested on a phantom dataset involving 32 video sequences and [Formula: see text]60k frames with aligned ground truth and renderings, which is made available as the first public dataset for bronchoscopy navigation. An average estimated depth accuracy of 1.5 mm was obtained, outperforming conventional direct depth estimation from input frames by 60%, and with a computational time of [Formula: see text]30 ms on modern GPUs. Qualitatively, the estimated depth and renderings closely resemble the ground truth. The proposed method shows a novel architecture to perform real-time monocular depth estimation without losing patient specificity in bronchoscopy. Future work will include integration within SLAM systems and collection of in vivo datasets.

  2. Monocular visual scene understanding: understanding multi-object traffic scenes.

    Science.gov (United States)

    Wojek, Christian; Walk, Stefan; Roth, Stefan; Schindler, Konrad; Schiele, Bernt

    2013-04-01

    Following recent advances in detection, context modeling, and tracking, scene understanding has been the focus of renewed interest in computer vision research. This paper presents a novel probabilistic 3D scene model that integrates state-of-the-art multiclass object detection, object tracking and scene labeling together with geometric 3D reasoning. Our model is able to represent complex object interactions such as inter-object occlusion, physical exclusion between objects, and geometric context. Inference in this model allows us to jointly recover the 3D scene context and perform 3D multi-object tracking from a mobile observer, for objects of multiple categories, using only monocular video as input. Contrary to many other approaches, our system performs explicit occlusion reasoning and is therefore capable of tracking objects that are partially occluded for extended periods of time, or objects that have never been observed to their full extent. In addition, we show that a joint scene tracklet model for the evidence collected over multiple frames substantially improves performance. The approach is evaluated for different types of challenging onboard sequences. We first show a substantial improvement to the state of the art in 3D multipeople tracking. Moreover, a similar performance gain is achieved for multiclass 3D tracking of cars and trucks on a challenging dataset.

  3. Mobile Robot Hierarchical Simultaneous Localization and Mapping Using Monocular Vision

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method.

  4. Jet-Based Local Image Descriptors

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Darkner, Sune; Dahl, Anders Lindbjerg;

    2012-01-01

    We present a general novel image descriptor based on higherorder differential geometry and investigate the effect of common descriptor choices. Our investigation is twofold in that we develop a jet-based descriptor and perform a comparative evaluation with current state-of-the-art descriptors on ....... We show that the proposed jet-based descriptor is superior to state-of-the-art for DoG interest points and show competitive performance for the other tested interest points....

  5. An attribute-based image segmentation method

    Directory of Open Access Journals (Sweden)

    M.C. de Andrade

    1999-07-01

    Full Text Available This work addresses a new image segmentation method founded on Digital Topology and Mathematical Morphology grounds. The ABA (attribute based absorptions transform can be viewed as a region-growing method by flooding simulation working at the scale of the main structures of the image. In this method, the gray level image is treated as a relief flooded from all its local minima, which are progressively detected and merged as the flooding takes place. Each local minimum is exclusively associated to one catchment basin (CB. The CBs merging process is guided by their geometric parameters as depth, area and/or volume. This solution enables the direct segmentation of the original image without the need of a preprocessing step or the explicit marker extraction step, often required by other flooding simulation methods. Some examples of image segmentation, employing the ABA transform, are illustrated for uranium oxide samples. It is shown that the ABA transform presents very good segmentation results even in presence of noisy images. Moreover, it's use is often easier and faster when compared to similar image segmentation methods.

  6. Cluster Ensemble-based Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new\tcluster ensemble-based image\tsegmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  7. Efficient Region-Based Image Querying

    CERN Document Server

    Sadek, S; Michaelis, B; Sayed, U

    2010-01-01

    Retrieving images from large and varied repositories using visual contents has been one of major research items, but a challenging task in the image management community. In this paper we present an efficient approach for region-based image classification and retrieval using a fast multi-level neural network model. The advantages of this neural model in image classification and retrieval domain will be highlighted. The proposed approach accomplishes its goal in three main steps. First, with the help of a mean-shift based segmentation algorithm, significant regions of the image are isolated. Secondly, color and texture features of each region are extracted by using color moments and 2D wavelets decomposition technique. Thirdly the multi-level neural classifier is trained in order to classify each region in a given image into one of five predefined categories, i.e., "Sky", "Building", "SandnRock", "Grass" and "Water". Simulation results show that the proposed method is promising in terms of classification and r...

  8. HBIR: Hypercube-Based Image Retrieval

    Institute of Scientific and Technical Information of China (English)

    Hossein Ajorloo; Abolfazl Lakdashti

    2012-01-01

    In this paper,we propose a mapping from low level feature space to the semantic space drawn by the users through relevance feedback to enhance the performance of current content based image retrieval (CBIR) systems.The proposed approach makes a rule base for its inference and configures it using the feedbacks gathered from users during the life cycle of the system.Each rule makes a hypercube (HC) in the feature space corresponding to a semantic concept in the semantic space.Both short and long term strategies are taken to improve the accuracy of the system in response to each feedback of the user and gradually bridge the semantic gap.A scoring paradigm is designed to determine the effective rules and suppress the inefficient ones.For improving the response time,an HC merging approach and,for reducing the conflicts,an HC splitting method is designed.Our experiments on a set of 11 000 images from the Corel database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to some existing approaches reported recently in the literature.Moreover,our approach can be better trained and is not saturated in long time,i.e.,any feedback improves the precision and recall of the system.Another strength of our method is its ability to address the dynamic nature of the image database such that it can follow the changes occurred instantaneously and permanently by adding and dropping images.

  9. Jet-Based Local Image Descriptors

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Darkner, Sune; Dahl, Anders Lindbjerg;

    2012-01-01

    We present a general novel image descriptor based on higherorder differential geometry and investigate the effect of common descriptor choices. Our investigation is twofold in that we develop a jet-based descriptor and perform a comparative evaluation with current state-of-the-art descriptors...... on the recently released DTU Robot dataset. We demonstrate how the use of higher-order image structures enables us to reduce the descriptor dimensionality while still achieving very good performance. The descriptors are tested in a variety of scenarios including large changes in scale, viewing angle and lighting...

  10. The IHS Transformations Based Image Fusion

    CERN Document Server

    Al-Wassai, Firouz Abdullah; Al-Zuky, Ali A

    2011-01-01

    The IHS sharpening technique is one of the most commonly used techniques for sharpening. Different transformations have been developed to transfer a color image from the RGB space to the IHS space. Through literature, it appears that, various scientists proposed alternative IHS transformations and many papers have reported good results whereas others show bad ones as will as not those obtained which the formula of IHS transformation were used. In addition to that, many papers show different formulas of transformation matrix such as IHS transformation. This leads to confusion what is the exact formula of the IHS transformation?. Therefore, the main purpose of this work is to explore different IHS transformation techniques and experiment it as IHS based image fusion. The image fusion performance was evaluated, in this study, using various methods to estimate the quality and degree of information improvement of a fused image quantitatively.

  11. Review: Image Encryption Using Chaos Based algorithms

    Directory of Open Access Journals (Sweden)

    Er. Ankita Gaur

    2014-03-01

    Full Text Available Due to the development in the field of network technology and multimedia applications, every minute thousands of messages which can be text, images, audios, videos are created and transmitted over wireless network. Improper delivery of the message may leads to the leakage of important information. So encryption is used to provide security. In last few years, variety of image encryption algorithms based on chaotic system has been proposed to protect image from unauthorized access. 1-D chaotic system using logistic maps has weak security, small key space and due to the floating of pixel values, some data lose occurs and proper decryption of image becomes impossible. In this paper different chaotic maps such as Arnold cat map, sine map, logistic map, tent map have been studied.

  12. Wave front distortion based fluid flow imaging

    Science.gov (United States)

    Iffa, Emishaw; Heidrich, Wolfgang

    2013-03-01

    In this paper, a transparent flow surface reconstruction based on wave front distortion is investigated. A camera lens is used to focus the image formed by the micro-lens array to the camera imaging plane. The irradiance of the captured image is transformed to frequency spectrum and then the x and y spatial components are separated. A rigid spatial translation followed by low pass filtering yields a single frequency component of the image intensity. Index of refraction is estimated from the inverse Fourier transform of the spatial frequency spectrum of the irradiance. The proposed method is evaluated with synthetic data of a randomly generated index of refraction value and used to visualize a fuel injection volumetric data.

  13. Image Enhancement Based on Brushlet Transform

    Institute of Scientific and Technical Information of China (English)

    HUXinwei; YANGXin

    2005-01-01

    In this paper, the method of image enhancement based on Brushlet transform is discussed. One favorable characteristic of brushlet is the good localization in both time and frequency domain so it allows treatment for a particular range of data. Furthermore, brushlet can be implemented with faster speed than wavelet transform while preserving the same quality thanks for folding technique and Fast Fourier transform (FFT). The innovation ofthis paper is that after first transforming the image from raw data into brushlet coefficients, we will apply a new nonlinear algorithm to the discrete coefficients. The algorithm is described by a curve which takes the main function of image enhancement. Compared to classical methods, the method presented in this paper not only improves the calculation speed but also provides a high-quality image.

  14. Watermarking Digital Images Based on a Content Based Image Retrieval Technique

    CERN Document Server

    Tsolis, Dimitrios K; Papatheodorou, Theodore S

    2008-01-01

    The current work is focusing on the implementation of a robust watermarking algorithm for digital images, which is based on an innovative spread spectrum analysis algorithm for watermark embedding and on a content-based image retrieval technique for watermark detection. The highly robust watermark algorithms are applying "detectable watermarks" for which a detection mechanism checks if the watermark exists or no (a Boolean decision) based on a watermarking key. The problem is that the detection of a watermark in a digital image library containing thousands of images means that the watermark detection algorithm is necessary to apply all the keys to the digital images. This application is non-efficient for very large image databases. On the other hand "readable" watermarks may prove weaker but easier to detect as only the detection mechanism is required. The proposed watermarking algorithm combine's the advantages of both "detectable" and "readable" watermarks. The result is a fast and robust watermarking algor...

  15. Intelligent image retrieval based on radiology reports.

    Science.gov (United States)

    Gerstmair, Axel; Daumke, Philipp; Simon, Kai; Langer, Mathias; Kotter, Elmar

    2012-12-01

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. Radiology reports can now be analysed using sophisticated natural language-processing techniques. Semantic text analysis is backed by terminology of a radiological lexicon. The search engine includes results for synonyms, abbreviations and compositions. Key images are automatically extracted from radiology reports and fetched from PACS. Such systems help to find diagnoses, improve report quality and save time.

  16. Intelligent Image Based Computer Aided Education (IICAE)

    Science.gov (United States)

    David, Amos A.; Thiery, Odile; Crehange, Marion

    1989-03-01

    Artificial Intelligence (AI) has found its way into Computer Aided Education (CAE), and there are several systems constructed to put in evidence its interesting advantages. We believe that images (graphic or real) play an important role in learning. However, the use of images, outside their use as illustration, makes it necessary to have applications such as AI. We shall develop the application of AI in an image based CAE and briefly present the system under construction to put in evidence our concept. We shall also elaborate a methodology for constructing such a system. Futhermore we shall briefly present the pedagogical and psychological activities in a learning process. Under the pedagogical and psychological aspect of learning, we shall develop areas such as the importance of image in learning both as pedagogical objects as well as means for obtaining psychological information about the learner. We shall develop the learner's model, its use, what to build into it and how. Under the application of AI in an image based CAE, we shall develop the importance of AI in exploiting the knowledge base in the learning environment and its application as a means of implementing pedagogical strategies.

  17. Multispectral image fusion based on fractal features

    Science.gov (United States)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the

  18. Text Indexing of Images Based on Graphical Image Content.

    Science.gov (United States)

    Patrick, Timothy B.; Sievert, MaryEllen C.; Popescu, Mihail

    1999-01-01

    Describes an alternative method for indexing images in an image database. The method consists of manually indexing a selected reference image, and then using retrieval by graphical content to automatically transfer the manually assigned index terms from the reference image to the images to be indexed. (AEF)

  19. Video-based noncooperative iris image segmentation.

    Science.gov (United States)

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  20. Hyperspectral image data compression based on DSP

    Science.gov (United States)

    Fan, Jiming; Zhou, Jiankang; Chen, Xinhua; Shen, Weimin

    2010-11-01

    The huge data volume of hyperspectral image challenges its transportation and store. It is necessary to find an effective method to compress the hyperspectral image. Through analysis and comparison of current various algorithms, a mixed compression algorithm based on prediction, integer wavelet transform and embedded zero-tree wavelet (EZW) is proposed in this paper. We adopt a high-powered Digital Signal Processor (DSP) of TMS320DM642 to realize the proposed algorithm. Through modifying the mixed algorithm and optimizing its algorithmic language, the processing efficiency of the program was significantly improved, compared the non-optimized one. Our experiment show that the mixed algorithm based on DSP runs much faster than the algorithm on personal computer. The proposed method can achieve the nearly real-time compression with excellent image quality and compression performance.

  1. LSB Based Quantum Image Steganography Algorithm

    Science.gov (United States)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  2. Discrete directional wavelet bases for image compression

    Science.gov (United States)

    Dragotti, Pier L.; Velisavljevic, Vladan; Vetterli, Martin; Beferull-Lozano, Baltasar

    2003-06-01

    The application of the wavelet transform in image processing is most frequently based on a separable construction. Lines and columns in an image are treated independently and the basis functions are simply products of the corresponding one dimensional functions. Such method keeps simplicity in design and computation, but is not capable of capturing properly all the properties of an image. In this paper, a new truly separable discrete multi-directional transform is proposed with a subsampling method based on lattice theory. Alternatively, the subsampling can be omitted and this leads to a multi-directional frame. This transform can be applied in many areas like denoising, non-linear approximation and compression. The results on non-linear approximation and denoising show very interesting gains compared to the standard two-dimensional analysis.

  3. Fast Fractal Image Encoding Based on Special Image Features

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; ZHOU Yiming; ZHANG Zengke

    2007-01-01

    The fractal image encoding method has received much attention for its many advantages over other methods,such as high decoding quality at high compression ratios. However, because every range block must be compared to all domain blocks in the codebook to find the best-matched one during the coding procedure, baseline fractal coding (BFC) is quite time consuming. To speed up fractal coding, a new fast fractal encoding algorithm is proposed. This algorithm aims at reducing the size of the search window during the domain-range matching process to minimize the computational cost. A new theorem presented in this paper shows that a special feature of the image can be used to do this work. Based on this theorem, the most inappropriate domain blocks, whose features are not similar to that of the given range block, are excluded before matching. Thus, the best-matched block can be captured much more quickly than in the BFC approachThe experimental results show that the runtime of the proposed method is reduced greatly compared to the BFC method. At the same time,the new algorithm also achieves high reconstructed image quality. In addition,the method can be incorporated with other fast algorithms to achieve better performance.Therefore, the proposed algorithm has a much better application potential than BFC.

  4. Dichoptic training in adults with amblyopia: Additional stereoacuity gains over monocular training.

    Science.gov (United States)

    Liu, Xiang-Yun; Zhang, Jun-Yun

    2017-08-04

    Dichoptic training is a recent focus of research on perceptual learning in adults with amblyopia, but whether and how dichoptic training is superior to traditional monocular training is unclear. Here we investigated whether dichoptic training could further boost visual acuity and stereoacuity in monocularly well-trained adult amblyopic participants. During dichoptic training the participants used the amblyopic eye to practice a contrast discrimination task, while a band-filtered noise masker was simultaneously presented in the non-amblyopic fellow eye. Dichoptic learning was indexed by the increase of maximal tolerable noise contrast for successful contrast discrimination in the amblyopic eye. The results showed that practice tripled maximal tolerable noise contrast in 13 monocularly well-trained amblyopic participants. Moreover, the training further improved stereoacuity by 27% beyond the 55% gain from previous monocular training, but unchanged visual acuity of the amblyopic eyes. Therefore our dichoptic training method may produce extra gains of stereoacuity, but not visual acuity, in adults with amblyopia after monocular training. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. MONOCULAR AND BINOCULAR VISION IN THE PERFORMANCE OF A COMPLEX SKILL

    Directory of Open Access Journals (Sweden)

    Thomas Heinen

    2011-09-01

    Full Text Available The goal of this study was to investigate the role of binocular and monocular vision in 16 gymnasts as they perform a handspring on vault. In particular we reasoned, if binocular visual information is eliminated while experts and apprentices perform a handspring on vault, and their performance level changes or is maintained, then such information must or must not be necessary for their best performance. If the elimination of binocular vision leads to differences in gaze behavior in either experts or apprentices, this would answer the question of an adaptive gaze behavior, and thus if this is a function of expertise level or not. Gaze behavior was measured using a portable and wireless eye-tracking system in combination with a movement-analysis system. Results revealed that gaze behavior differed between experts and apprentices in the binocular and monocular conditions. In particular, apprentices showed less fixations of longer duration in the monocular condition as compared to experts and the binocular condition. Apprentices showed longer blink duration than experts in both, the monocular and binocular conditions. Eliminating binocular vision led to a shorter repulsion phase and a longer second flight phase in apprentices. Experts exhibited no differences in phase durations between binocular and monocular conditions. Findings suggest, that experts may not rely on binocular vision when performing handsprings, and movement performance maybe influenced in apprentices when eliminating binocular vision. We conclude that knowledge about gaze-movement relationships may be beneficial for coaches when teaching the handspring on vault in gymnastics

  6. Avoiding monocular artifacts in clinical stereotests presented on column-interleaved digital stereoscopic displays.

    Science.gov (United States)

    Serrano-Pedraza, Ignacio; Vancleef, Kathleen; Read, Jenny C A

    2016-11-01

    New forms of stereoscopic 3-D technology offer vision scientists new opportunities for research, but also come with distinct problems. Here we consider autostereo displays where the two eyes' images are spatially interleaved in alternating columns of pixels and no glasses or special optics are required. Column-interleaved displays produce an excellent stereoscopic effect, but subtle changes in the angle of view can increase cross talk or even interchange the left and right eyes' images. This creates several challenges to the presentation of cyclopean stereograms (containing structure which is only detectable by binocular vision). We discuss the potential artifacts, including one that is unique to column-interleaved displays, whereby scene elements such as dots in a random-dot stereogram appear wider or narrower depending on the sign of their disparity. We derive an algorithm for creating stimuli which are free from this artifact. We show that this and other artifacts can be avoided by (a) using a task which is robust to disparity-sign inversion-for example, a disparity-detection rather than discrimination task-(b) using our proposed algorithm to ensure that parallax is applied symmetrically on the column-interleaved display, and (c) using a dynamic stimulus to avoid monocular artifacts from motion parallax. In order to test our recommendations, we performed two experiments using a stereoacuity task implemented with a parallax-barrier tablet. Our results confirm that these recommendations eliminate the artifacts. We believe that these recommendations will be useful to vision scientists interested in running stereo psychophysics experiments using parallax-barrier and other column-interleaved digital displays.

  7. Patterns of non-embolic transient monocular visual field loss.

    Science.gov (United States)

    Petzold, Axel; Islam, Niaz; Plant, G T

    2013-07-01

    The aim of this study was to systematically describe the semiology of non-embolic transient monocular visual field loss (neTMVL). We conducted a retrospective case note analysis of patients from Moorfields Eye Hospital (1995-2007). The variables analysed were age, age of onset, gender, past medical history or family history of migraine, eye affected, onset, duration and offset, perception (pattern, positive and negative symptoms), associated headache and autonomic symptoms, attack frequency, and treatment response to nifedipine. We identified 77 patients (28 male and 49 female). Mean age of onset was 37 years (range 14-77 years). The neTMVL was limited to the right eye in 36 % to the left in 47 % and occurred independently in either eye in 5 % of cases. A past medical history of migraine was present in 12 % and a family history in 8 %. Headache followed neTMVL in 14 % and was associated with autonomic features in 3 %. The neTMB was perceived as grey in 35 %, white in 21 %, black in 16 % and as phosphenes in 9 %. Most frequently neTMVL was patchy 20 %. Recovery of vision frequently resembled attack onset in reverse. In 3 patients without associated headache the loss of vision was permanent. Treatment with nifedipine was initiated in 13 patients with an attack frequency of more than one per week and reduced the attack frequency in all. In conclusion, this large series of patients with neTMVL permits classification into five types of reversible visual field loss (grey, white, black, phosphenes, patchy). Treatment response to nifidipine suggests some attacks to be caused by vasospasm.

  8. Robust SPIHT-based Image Compression

    Institute of Scientific and Technical Information of China (English)

    CHENHailin; YANGYuhang

    2003-01-01

    As a famous wavelet-based image coding technique, Set partitioning in hierarchical trees (SPIHT) provides excellent rate distortion performance and progressive display properties when images are transmitted over lossless networks. But due to its highly statedependent properties, it performs poorly over losing networks. In this paper, we propose an algorithm to reorganize the wavelet transform coefficients according to wavelet tree concept and code each wavelet tree independently. Then, each coded bit-plane of each wavelet tree is packetized and transmitted to networks independently with little header information. Experimental results show that the proposed algorithm improves the robustness of the bit steam greatly while preserving its progressive display properties.

  9. Substitution-diffusion based Image Cipher

    Directory of Open Access Journals (Sweden)

    Narendra K Pareek

    2011-03-01

    Full Text Available In this paper, a new image encryption scheme using a secret key of 128-bit size is proposed. In thealgorithm, image is partitioned into several key based dynamic blocks and further, each block passesthrough the eight rounds of diffusion as well as substitution process. In diffusion process, sequences ofblock pixels are rearranged within the block by a zigzag approach whereas block pixels are replaced withanother by using difference calculation of row and column in substitution process. Due to high order ofsubstitution and diffusion, common attacks like linear and differential cryptanalysis are infeasible. Theexperimental results show that the proposed technique is efficient and has high security features.

  10. Research progress of depth detection in vision measurement: a novel project of bifocal imaging system for 3D measurement

    Science.gov (United States)

    Li, Anhu; Ding, Ye; Wang, Wei; Zhu, Yongjian; Li, Zhizhong

    2013-09-01

    The paper reviews the recent research progresses of vision measurement. The general methods of the depth detection used in the monocular stereo vision are compared with each other. As a result, a novel bifocal imaging measurement system based on the zoom method is proposed to solve the problem of the online 3D measurement. This system consists of a primary lens and a secondary one with the different focal length matching to meet the large-range and high-resolution imaging requirements without time delay and imaging errors, which has an important significance for the industry application.

  11. Modeling Leaves Based on Real Image

    Institute of Scientific and Technical Information of China (English)

    CAO Yu-kun; LI Yun-feng; ZHU Qing-sheng; LIU Yin-bin

    2004-01-01

    Plants have complex structures. The shape of a plant component is vital for capturing the characteristics of a species. One of the challenges in computer graphics is to create geometry of objects in an intuitive and direct way while allowing interactive manipulation of the resulting shapes. In this paper,an interactive method for modeling leaves based on real image is proposed using biological data for individual plants. The modeling process begins with a one-dimensional analogue of implicit surfaces,from which a 2D silhouette of a leaf is generated based on image segmentation. The silhouette skeleton is thus obtained. Feature parameters of the leaf are extracted based on biologically experimental data, and the obtained leaf structure is then modified by comparing the synthetic result with the real leaf so as to make the leaf structure more realistic. Finally, the leaf mesh is constructed by sweeps.

  12. Steganographic Capacity of Images, based on Image Equivalence Classes

    DEFF Research Database (Denmark)

    Hansen, Klaus; Hammer, Christian; Andersen, Jens Damgaard

    2001-01-01

    The problem of hiding information imperceptibly can be formulated as the problem of determining if a given image is a member of a sufficiently large equivalence class of images which to the Human Visual System appears to be the same image. This makes it possible to replace the given image with a ...

  13. A Height Estimation Approach for Terrain Following Flights from Monocular Vision

    Directory of Open Access Journals (Sweden)

    Igor S. G. Campos

    2016-12-01

    Full Text Available In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80 % for positives and 90 % for negatives, while the height estimation algorithm presented good accuracy.

  14. A Height Estimation Approach for Terrain Following Flights from Monocular Vision.

    Science.gov (United States)

    Campos, Igor S G; Nascimento, Erickson R; Freitas, Gustavo M; Chaimowicz, Luiz

    2016-12-06

    In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80 % for positives and 90 % for negatives, while the height estimation algorithm presented good accuracy.

  15. A Height Estimation Approach for Terrain Following Flights from Monocular Vision

    Science.gov (United States)

    Campos, Igor S. G.; Nascimento, Erickson R.; Freitas, Gustavo M.; Chaimowicz, Luiz

    2016-01-01

    In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80% for positives and 90% for negatives, while the height estimation algorithm presented good accuracy. PMID:27929424

  16. Active-imaging-based underwater navigation

    Science.gov (United States)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  17. Performance of laser based optical imaging system

    Science.gov (United States)

    Shah, Dhrupesh S.; Banerjee, Arup; Vora, Anup; Biswas, Amiya; Patel, Naimesh; Kurulkar, Amit; Dutt, Ashutosh

    2016-05-01

    Day night imaging application requires high dynamic range optical imaging system to detect targets of interest covering mid-day (>32000 Lux)[1], and moonless night ( 1mLux)[1] under clear sky- (visibility of >10km, atmospheric loss of 500m, atmospheric loss of >15dB/Km) conditions. Major governing factors for development of such camera systems are (i) covert imaging with ability to identify the target, (ii) imaging irrespective to the scene background, (iii) reliable operation , (iv) imaging capabilities in inclement weather conditions, (v) resource requirement vs availability power & mass, (vi) real-time data processing, (vii) self-calibration, and (viii) cost. Identification of optimum spectral band of interest is most important to meet these requirements. Conventional detection systems sensing in MWIR and LWIR band has certain draw backs in terms of target detection capabilities, susceptibility to background and huge thermo-mechanical resource requirement. Alternatively, range gated imaging camera system sensing in NIR/SWIR spectrum has shown significant potential to detect wide dynamic range targets. ToF Camera configured in NIR band has certain advantages in terms of Focal Plane Assembly (FPA) development with large format detectors and thermo-mechanical resource requirement compared to SWIR band camera configuration. In past, ToF camera systems were successfully configured in NIR spectrum using silicon based Electron Multiplying CCD (EMCCD), Intensifier CCD (ICCD) along with Gating device and pulsed laser source having emission in between 800nm to 900nm. However, these systems have a very low dynamic range and not suitable for clear sky mid-day conditions. Recently silicon based scientific grade CMOS image sensors have shown significant improvement in terms of high NIR responsivity and available in bigger formats (5MP or more), adequate Full well capacity for day time imaging (>30Ke), very low readout noise (<2e) required for night imaging and higher frame

  18. The contribution of monocular depth cues to scene perception by pigeons.

    Science.gov (United States)

    Cavoto, Brian R; Cook, Robert G

    2006-07-01

    The contributions of different monocular depth cues to performance of a scene perception task were investigated in 4 pigeons. They discriminated the sequential depth ordering of three geometric objects in computer-rendered scenes. The orderings of these objects were specified by the combined presence or absence of the pictorial cues of relative density, occlusion, and relative size. In Phase 1, the pigeons learned the task as a direct function of the number of cues present. The three monocular cues contributed equally to the discrimination. Phase 2 established that differential shading on the objects provided an additional discriminative cue. These results suggest that the pigeon visual system is sensitive to many of the same monocular depth cues that are known to be used by humans. The theoretical implications for a comparative psychology of picture processing are considered.

  19. Refractive error and monocular viewing strengthen the hollow-face illusion.

    Science.gov (United States)

    Hill, Harold; Palmisano, Stephen; Matthews, Harold

    2012-01-01

    We measured the strength of the hollow-face illusion--the 'flipping distance' at which perception changes between convex and concave--as a function of a lens-induced 3 dioptre refractive error and monocular/binocular viewing. Refractive error and closing one eye both strengthened the illusion to approximately the same extent. The illusion was weakest viewed binocularly without refractive error and strongest viewed monocularly with it. This suggests binocular cues disambiguate the illusion at greater distances than monocular cues, but that both are disrupted by refractive error. We argue that refractive error leaves the ambiguous low-spatial-frequency shading information critical to the illusion largely unaffected while disrupting other, potentially disambiguating, depth/distance cues.

  20. Web Based Distributed Coastal Image Analysis System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops Web based distributed image analysis system processing the Moderate Resolution Imaging Spectroradiometer (MODIS) data to provide decision...

  1. Image Coding Based on Address Vector Quantization.

    Science.gov (United States)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  2. Information Theoretic Similarity Measures for Content Based Image Retrieval.

    Science.gov (United States)

    Zachary, John; Iyengar, S. S.

    2001-01-01

    Content-based image retrieval is based on the idea of extracting visual features from images and using them to index images in a database. Proposes similarity measures and an indexing algorithm based on information theory that permits an image to be represented as a single number. When used in conjunction with vectors, this method displays…

  3. MEMS FPI-based smartphone hyperspectral imager

    Science.gov (United States)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  4. BW Trained HMM based Aerial Image Segmentation

    Directory of Open Access Journals (Sweden)

    R Rajasree

    2011-03-01

    Full Text Available Image segmentation is an essential preprocessing tread in a complicated and composite image dealing out algorithm. In segmenting arial image the expenditure of misclassification could depend on the factual group of pupils. In this paper, aggravated by modern advances in contraption erudition conjecture, I introduce a modus operandi to make light of the misclassification expenditure with class-dependent expenditure. The procedure assumes the hidden Markov model (HMM which has been popularly used for image segmentation in recent years. We represent all feasible HMM based segmenters (or classifiers as a set of points in the beneficiary operating characteristic (ROC space. optimizing HMM parameters is still an important and challenging work in automatic image segmentation research area. Usually the Baum-Welch (B-W Algorithm is used to calculate the HMM model parameters. However, the B-W algorithm uses an initial random guess of the parameters, therefore after convergence the output tends to be close to this initial value of the algorithm, which is not necessarily the global optimum of the model parameters. In this project, a Adaptive Baum-Welch (GA-BW is proposed.

  5. PET Imaging of Skull Base Neoplasms.

    Science.gov (United States)

    Mittra, Erik S; Iagaru, Andrei; Quon, Andrew; Fischbein, Nancy

    2007-10-01

    The utility of 18-F-fluorodeoxyglucose-positron emission tomography (PET) and PET/CT for the evaluation of skull base tumors is incompletely investigated, as a limited number of studies specifically focus on this region with regard to PET imaging. Several patterns can be ascertained, however, by synthesizing the data from various published reports and cases of primary skull base malignancies, as well as head and neck malignancies that extend secondarily to the skull base, including nasopharyngeal carcinoma, nasal cavity and paranasal sinus tumors, parotid cancers, and orbital tumors.

  6. Image Fakery Detection Based on Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    T. Basaruddin

    2009-11-01

    Full Text Available The growing of image processing technology nowadays make it easier for user to modify and fake the images. Image fakery is a process to manipulate part or whole areas of image either in it content or context with the help of digital image processing techniques. Image fakery is barely unrecognizable because the fake image is looking so natural. Yet by using the numerical computation technique it is able to detect the evidence of fake image. This research is successfully applied the singular value decomposition method to detect image fakery. The image preprocessing algorithm prior to the detection process yields two vectors orthogonal to the singular value vector which are important to detect fake image. The result of experiment to images in several conditions successfully detects the fake images with threshold value 0.2. Singular value decomposition-based detection of image fakery can be used to investigate fake image modified from original image accurately.

  7. Eye movements in chameleons are not truly independent - evidence from simultaneous monocular tracking of two targets.

    Science.gov (United States)

    Katz, Hadas Ketter; Lustig, Avichai; Lev-Ari, Tidhar; Nov, Yuval; Rivlin, Ehud; Katzir, Gadi

    2015-07-01

    Chameleons perform large-amplitude eye movements that are frequently referred to as independent, or disconjugate. When prey (an insect) is detected, the chameleon's eyes converge to view it binocularly and 'lock' in their sockets so that subsequent visual tracking is by head movements. However, the extent of the eyes' independence is unclear. For example, can a chameleon visually track two small targets simultaneously and monocularly, i.e. one with each eye? This is of special interest because eye movements in ectotherms and birds are frequently independent, with optic nerves that are fully decussated and intertectal connections that are not as developed as in mammals. Here, we demonstrate that chameleons presented with two small targets moving in opposite directions can perform simultaneous, smooth, monocular, visual tracking. To our knowledge, this is the first demonstration of such a capacity. The fine patterns of the eye movements in monocular tracking were composed of alternating, longer, 'smooth' phases and abrupt 'step' events, similar to smooth pursuits and saccades. Monocular tracking differed significantly from binocular tracking with respect to both 'smooth' phases and 'step' events. We suggest that in chameleons, eye movements are not simply 'independent'. Rather, at the gross level, eye movements are (i) disconjugate during scanning, (ii) conjugate during binocular tracking and (iii) disconjugate, but coordinated, during monocular tracking. At the fine level, eye movements are disconjugate in all cases. These results support the view that in vertebrates, basic monocular control is under a higher level of regulation that dictates the eyes' level of coordination according to context. © 2015. Published by The Company of Biologists Ltd.

  8. Canny edge-based deformable image registration

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  9. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  10. Elimination of aniseikonia in monocular aphakia with a contact lens-spectacle combination.

    Science.gov (United States)

    Schechter, R J

    1978-01-01

    Correction of monocular aphakia with contact lenses generally results in aniseikonia in the range of 7--9%; with correction by intraocular lenses, aniseikonia is approximately 2%. We present a new method of correcting aniseikonia in monocular aphakics using a contact lens-spectacle combination. A formula is derived wherein the contact lens is deliberately overcorrected; this overcorrection is then neutralized by the appropriate spectacle lens, to be worn over the contact lens. Calculated results with this system over a wide range of possible situations consistently results in an aniseikonia of 0.1%.

  11. Development of monocular and binocular multi-focus 3D display systems using LEDs

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Dong-Wook; Son, Jung-Young; Kwon, Yong-Moo

    2008-04-01

    Multi-focus 3D display systems are developed and a possibility about satisfaction of eye accommodation is tested. The multi-focus means the ability of monocular depth cue to various depth levels. By achieving the multi-focus function, we developed 3D display systems for one eye and both eyes, which can satisfy accommodation to displayed virtual objects within defined depth. The monocular accommodation and the binocular convergence 3D effect of the system are tested and a proof of the satisfaction of the accommodation and experimental result of the binocular 3D fusion are given as results by using the proposed 3D display systems.

  12. CMAC Based Color Separation in Printing Images

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-gang; YANG Jie; DING Yong-sheng

    2005-01-01

    To over come the drawbacks existing in current measurement methods for detecting and controlling colors in printing process, a new model for color separation and dot recognition is proposed from a view of digital image processing and patter recognition. In this model, firstly data samples are collected from some color patches by the Fuzzy C-Means (FCM)method; then a classifier based on the Cerebellar Model Articulation Controller (CMAC) is constructed which is used to recognize color pattern of each pixel in a microscopic halftone image. The principle of color separation and the algorithm model are introduced and the experiments show the effectiveness of the CMAC-based classifier as opposed to the BP network.

  13. Improved image filter based on SPCNN

    Institute of Scientific and Technical Information of China (English)

    ZHANG YuDong; WU LeNan

    2008-01-01

    By extraction of the thoughts of non-linear model and adaptive model match, an improved Nagao filter is brought. Meanwhile a technique based on simplified pulse coupled neural network and used for noise positioning, is put forward. Combining the two methods above, we acquire a new method that can restore images corrupted by salt and pepper noise. Experiments show that this method is more preferable than other popular ones, and still works well while noise density fluctuates severely.

  14. Multiple-image encryption algorithm based on mixed image element and permutation

    Science.gov (United States)

    Zhang, Xiaoqiang; Wang, Xuesong

    2017-05-01

    To improve encryption efficiency and facilitate the secure transmission of multiple digital images, by defining the pure image element and mixed image element, this paper presents a new multiple-image encryption (MIE) algorithm based on the mixed image element and permutation, which can simultaneously encrypt any number of images. Firstly, segment the original images into pure image elements; secondly, scramble all the pure image elements with the permutation generated by the piecewise linear chaotic map (PWLCM) system; thirdly, combine mixed image elements into scrambled images; finally, diffuse the content of mixed image elements by performing the exclusive OR (XOR) operation among scrambled images and the chaotic image generated by another PWLCM system. The comparison with two similar algorithms is made. Experimental results and algorithm analyses show that the proposed MIE algorithm is very simple and efficient, which is suitable for practical image encryption.

  15. Multispectral and panchromatic image fusion based on unsubsampled contourlet transform

    Science.gov (United States)

    Liu, Hui; Yuan, Yan; Su, Lijuan; Hu, Liang; Zhang, Siyuan

    2013-12-01

    In order to achieve the high-resolution multispectral image, we proposed an algorithm for MS image and PAN image fusion based on NSCT and improved fusion rule. This method takes into account two aspects, the spectral similarity between fused image and the original MS image and enhancing the spatial resolution of the fused image. According to local spectral similarity between MS and PAN images, it can help to select high frequency detail coefficients from PAN image, which are injected into MS image then. Thus, spectral distortion is limited; the spatial resolution is enhanced. The experimental results demonstrate that the proposed fusion algorithm perform some improvements in integrating MS and PAN images.

  16. Region-based indexing in an image database

    NARCIS (Netherlands)

    Nes, N.J.; Kersten, M.L.

    1997-01-01

    Image retrieval systems based on the image-query-by-example paradigm locate their answer set using a similarity measure of the query image with all images stored in the database. Although this approach generally works for quick re-location of `identical' or partly occluded images, it does not suppor

  17. Image-Based Multiresolution Implicit Object Modeling

    Directory of Open Access Journals (Sweden)

    Sarti Augusto

    2002-01-01

    Full Text Available We discuss two image-based 3D modeling methods based on a multiresolution evolution of a volumetric function′s level set. In the former method, the role of the level set implosion is to fuse ("sew" and "stitch" together several partial reconstructions (depth maps into a closed model. In the later, the level set′s implosion is steered directly by the texture mismatch between views. Both solutions share the characteristic of operating in an adaptive multiresolution fashion, in order to boost up computational efficiency and robustness.

  18. Experimental study of photo counting imaging based on APD

    Science.gov (United States)

    Qu, Huiming; Li, Yuan-yuan; Cao, Dan; Zheng, Qi; Ji, Zhong-Jie; Chen, Qian

    2012-10-01

    Photo counting imaging is a promising imaging method for very low-level-light condition and super high-speed imaging. An experimental setup with Geiger mode silicon avalanche photodiode single-photon counter was established in this study. This experimental setup achieved photon counting imaging through serial two-dimensional scanning mode of single APD. It extracts the extremely weak signal from the noise by scanning image, and then reconstructs the photon distribution image. The feasibility of the experiment platform was verified with many experiments. The resolution bar was scanned and imaged in different lighting condition. A Lena image was also scanned and imaged among several illumination conditions. The resolution ability and imaging quality are evaluated in different illumination surroundings. The imaging limited condition was concluded based on existing APD sensor. The experimental result indicates that the imaging based Geiger mode APD is an excellent candidate for very low level light imaging.

  19. Image superresolution of cytology images using wavelet based patch search

    Science.gov (United States)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  20. Image-based modelling of organogenesis.

    Science.gov (United States)

    Iber, Dagmar; Karimaddini, Zahra; Ünal, Erkan

    2016-07-01

    One of the major challenges in biology concerns the integration of data across length and time scales into a consistent framework: how do macroscopic properties and functionalities arise from the molecular regulatory networks-and how can they change as a result of mutations? Morphogenesis provides an excellent model system to study how simple molecular networks robustly control complex processes on the macroscopic scale despite molecular noise, and how important functional variants can emerge from small genetic changes. Recent advancements in three-dimensional imaging technologies, computer algorithms and computer power now allow us to develop and analyse increasingly realistic models of biological control. Here, we present our pipeline for image-based modelling that includes the segmentation of images, the determination of displacement fields and the solution of systems of partial differential equations on the growing, embryonic domains. The development of suitable mathematical models, the data-based inference of parameter sets and the evaluation of competing models are still challenging, and current approaches are discussed.

  1. Homotopy Based Reconstruction from Acoustic Images

    DEFF Research Database (Denmark)

    Sharma, Ojaswa

    of the inherent arrangement. The problem of reconstruction from arbitrary cross sections is a generic problem and is also shown to be solved here using the mathematical tool of continuous deformations. As part of a complete processing, segmentation using level set methods is explored for acoustic images and fast...... GPU (Graphics Processing Unit) based methods are suggested for a streaming computation on large volumes of data. Validation of results for acoustic images is not straightforward due to unavailability of ground truth. Accuracy figures for the suggested methods are provided using phantom object......This thesis presents work in the direction of generating smooth surfaces from linear cross sections embedded in R2 and R3 using homotopy continuation. The methods developed in this research are generic and can be applied to higher dimensions as well. Two types of problems addressed in this research...

  2. Image Filtering Based on Improved Information Entropy

    Institute of Scientific and Technical Information of China (English)

    JINGXiaojun; LIUYulin; XIONGYuqing

    2004-01-01

    An image filtering based on improved information entropy is proposed in this paper, which can overcome the shortcomings of hybrid linear and non-linear filtering algorithm. Due to the shortcomings of information entropy in the field of data fusion, we introduce the consistency constraint factor of sub-source report and subsource performance difference parameter, propose the concept of fusion entropy, utilize its amendment and regularity function on sub-source decision-making matrix, bring into play the competency, redundency and complementarity of information fusion, suppress and delete fault and invalid information, strengthen and preserve correct and useful information, overcome the risk of error reporting on single source critical point and the shortcomings of reliability and error tolerating, add the decision-making criteria of multiple sub-source fusion, finally improve filtering quality. Subsequent experiments show its validity and improved filtering performance, thus providing a new way of image filtering technique.

  3. SQL based cardiovascular ultrasound image classification.

    Science.gov (United States)

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  4. Image-based air target identification

    Science.gov (United States)

    Glais, Thierry; Ayoun, Andre

    1994-09-01

    This paper presents the main results obtained through a study on aircraft identification and attitude estimation conducted by Thomson TRT Defense for the French Ministry of Defense/Direction Generale de l'Armement/Direction des Constructions Aeronautiques. The purpose of this study was automatic assistance to aircraft identification. Indeed, modern fight airplanes are equipped with optronic systems capable of detecting and tracking enemy aircraft. In order to react quickly, the pilot must know at least the target type and possibly its identity. Recognition of the target type and attitude is obtained by matching the observed image with patterns belonging to a database. Two matching algorithms, which have been tested, are presented. The first one, based on the contour Fourier transform, needs the complete target silhouette extraction. The second one, belonging to the class of prediction and verification algorithms, compares the individual parts of the target to the database and is able to recognize the target, even when it is partially occluded or ill-segmented due to the lack of contrast between the target and its environment. An original feature of the algorithm stays in a validation process which increases the reliability of transmitted answers. In case of low confidence, no answer is provided. In addition, successive answers are consolidated. This strategy is interesting especially for image sequences where the tracked airplane achieves attitude evolution or even simply flies over various backgrounds. The main output of this study is the parametric analysis of various factors which influence performance such as contrast, background complexity, distance, attitude and type. The evaluation method, largely based on image synthesis (including image sequences), allows fine interpretation of statistical results. Misclassification errors occur when resolution is not sufficient or when complex backgrounds cause erroneous segmentation. Best results are obtained when the

  5. Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?

    Science.gov (United States)

    Harris, Julie M.

    2010-02-01

    When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.

  6. Perception of Acceleration in Motion-In-Depth With Only Monocular and Binocular Information

    Directory of Open Access Journals (Sweden)

    Santiago Estaún

    2003-01-01

    Full Text Available Percepción de la aceleración en el movimiento en profundidad con información monocular y con información monocular y binocular. En muchas ocasiones es necesario adecuar nuestras acciones a objetos que cambian su aceleración. Sin embargo, no se ha encontrado evidencia de una percepción directa de la aceleración. En su lugar, parece ser que somos capaces de detectar cambios de velocidad en el movimiento 2-D dentro de una ventana temporal. Además, resultados recientes sugieren que el movimiento en profundidad se detecta a través de cambios de posición. Por lo tanto, para detectar aceleración en profundidad sería necesario que el sistema visual lleve a cabo algun tipo de cómputo de segundo orden. En dos experimentos, mostramos que los observadores no perciben la aceleración en trayectorias de aproximación, al menos en los rangos que utilizados [600- 800 ms] dando como resultado una sobreestimación del tiempo de llegada. Independientemente de la condición de visibilidad (sólo monocular o monocular más binocular, la respuesta se ajusta a una estrategia de velocidad constante. No obstante, la sobreestimación se reduce cuando la información binocular está disponible.

  7. LASIK monocular en pacientes adultos con ambliopía por anisometropía

    Directory of Open Access Journals (Sweden)

    Alejandro Tamez-Peña

    2017-09-01

    Conclusiones: La cirugía refractiva monocular en pacientes con ambliopía por anisometropía es una opción terapéutica segura y efectiva que ofrece resultados visuales satisfactorios, preservando o incluso mejorando la AVMC preoperatoria.

  8. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Directory of Open Access Journals (Sweden)

    Qingjiao Sun

    2016-01-01

    Full Text Available Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR pathological image enhancement method based on improved bias field correction and guided image filter (GIF. Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.

  9. Rotational invariant similarity measurement for content-based image indexing

    Science.gov (United States)

    Ro, Yong M.; Yoo, Kiwon

    2000-04-01

    We propose a similarity matching technique for contents based image retrieval. The proposed technique is invariant from rotated images. Since image contents for image indexing and retrieval would be arbitrarily extracted from still image or key frame of video, the rotation invariant property of feature description of image is important for general application of contents based image indexing and retrieval. In this paper, we propose a rotation invariant similarity measurement in cooperating with texture featuring base on HVS. To simplify computational complexity, we employed hierarchical similarity distance searching. To verify the method, experiments with MPEG-7 data set are performed.

  10. Medical Image Retrieval Based on Multi-Layer Resampling Template

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-rui; YANG Yun-feng

    2014-01-01

    Medical image application in clinical diagnosis and treatment is becoming more and more widely, How to use a large number of images in the image management system and it is a very important issue how to assist doctors to analyze and diagnose. This paper studies the medical image retrieval based on multi-layer resampling template under the thought of the wavelet decomposition, the image retrieval method consists of two retrieval process which is coarse and fine retrieval. Coarse retrieval process is the medical image retrieval process based on the image contour features. Fine retrieval process is the medical image retrieval process based on multi-layer resampling template, a multi-layer sampling operator is employed to extract image resampling images each layer, then these resampling images are retrieved step by step to finish the process from coarse to fine retrieval.

  11. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    Science.gov (United States)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the

  12. Harmonic Spatial Coherence Imaging: An Ultrasonic Imaging Method Based on Backscatter Coherence

    OpenAIRE

    DAHL, JEREMY J.; Jakovljevic, Marko; Pinton, Gianmarco F.; Trahey, Gregg E.

    2012-01-01

    HSCI and SLSC imaging less sensitive to clutter because it has low spatial coherence. The method is based on the coherence of the second harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also applicable to HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however second harmonic echoes are not necessaril...

  13. Image Denoising of Wavelet based Compressed Images Corrupted by Additive White Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Shyam Lal

    2012-08-01

    Full Text Available In this study an efficient algorithm is proposed for removal of additive white Gaussian noise from compressed natural images in wavelet based domain. First, the natural image is compressed by discrete wavelet transform and then proposed hybrid filter is applied for image denoising of compressed images corrupted by Additive White Gaussian Noise (AWGN. The proposed hybrid filter (HMCD is combination of non-linear fourth order partial differential equation and bivariate shrinkage function. The proposed hybrid filter provides better results in term of noise suppression with keeping minimum edge blurring as compared to other existing image denoising techniques for wavelet based compressed images. Simulation and experimental results on benchmark test images demonstrate that the proposed hybrid filter attains competitive image denoising performances as compared with other state-of-the-art image denoising algorithms. It is more effective particularly for the highly corrupted images in wavelet based compressed domain.

  14. Massive Medical Images Retrieval System Based on Hadoop

    Directory of Open Access Journals (Sweden)

    Qing-An YAO

    2014-02-01

    Full Text Available In order to improve the efficiency of massive medical images retrieval, against the defects of the single-node medical image retrieval system, a massive medical images retrieval system based on Hadoop is put forward. Brushlet transform and Local binary patterns algorithm are introduced firstly to extract characteristics of the medical example image, and store the image feature library in the HDFS. Then using the Map to match the example image features with the features in the feature library, while the Reduce to receive the calculation results of each Map task and ranking the results according to the size of the similarity. At the end, find the optimal retrieval results of the medical images according to the ranking results. The experimental results show that compared with other medical image retrieval systems, the Hadoop based medical image retrieval system can reduce the time of image storage and retrieval, and improve the image retrieval speed.

  15. Towards Better Retrievals in Content -Based Image Retrieval System

    Directory of Open Access Journals (Sweden)

    Kumar Vaibhava

    2014-04-01

    Full Text Available -This paper presents a Content-Based Image Retrieval (CBIR System called DEICBIR-2. The system retrieves images similar to a given query image by searching in the provided image database.Standard MPEG-7 image descriptors are used to find the relevant images which are similar to thegiven query image. Direct use of the MPEG-7 descriptors for creating the image database and retrieval on the basis of nearest neighbor does not yield accurate retrievals. To further improve the retrieval results, B-splines are used for ensuring smooth and continuous edges of the images in the edge-based descriptors. Relevance feedback is also implemented with user intervention. These additional features improve the retrieval performance of DEICBIR-2 significantly. Computational performance on a set of query images is presented and the performance of the proposed system is much superior to the performance of DEICBIR[9] on the same database and on the same set of query images.

  16. Intelligent Image Watermarking based on Handwritten Signature

    Directory of Open Access Journals (Sweden)

    Saeid Shahmoradi

    2016-09-01

    Full Text Available With the growth of digital technology over the past decades, the issue of copyright protection has become especially important. Digital watermarking is a suitable way of addressing this issue. The main problem in the area of watermarking, is the balance between image transparency and resistance to attacks after watermarking, where an increase in either one of them will always cause a decrease in the other. Providing statistical and intelligent methods, is the most common way of optimizing resistance and transparency. In this paper, the intelligent method of genetic algorithm (GA in watermarking will be examined and also the results of using this method will be compared with the results of a statistical SVD-based method. Also, by combining the issues of watermarking and authentication, a relatively higher security in these two issues can be achieved. In this scheme, the security of watermarking increases through the provision of a new method which is based on the combination of image watermarking with a person's handwritten signature. It must be mentioned that the section of signature recognition is implemented using neural networks. The results from implementing these two methods show that in this area, intelligent methods have a better performance compared to statistical methods. This method can also be used for tasks like passport or national identity card authentication.

  17. Edge-Preserving Decomposition-Based Single Image Haze Removal.

    Science.gov (United States)

    Li, Zhengguo; Zheng, Jinghong

    2015-12-01

    Single image haze removal is under-constrained, because the number of freedoms is larger than the number of observations. In this paper, a novel edge-preserving decomposition-based method is introduced to estimate transmission map for a haze image so as to design a single image haze removal algorithm from the Koschmiedars law without using any prior. In particular, weighted guided image filter is adopted to decompose simplified dark channel of the haze image into a base layer and a detail layer. The transmission map is estimated from the base layer, and it is applied to restore the haze-free image. The experimental results on different types of images, including haze images, underwater images, and normal images without haze, show the performance of the proposed algorithm.

  18. A method for semantic-based image retrieval

    Science.gov (United States)

    Liu, Hengwen; Tong, Hengqing; Tong, Qiaoling

    2009-10-01

    The most existed content-based image retrieval systems use traditional low-level features such as color, texture and shape to describe the image content, which are usually represented by statistic data. Actually, there are big differences between these statistic data and the image content which people understand. Therefore, how to describe image and to make it coincide with people's understanding become the key point of improving retrieval accuracy. In the point of cognition, people's understanding and description of image content is on semantic level. How to reduce 'semantic gap', how to accurately represent content semantic of image and retrieval intention of people becomes important and critical. One effective ways has been proposed to solve the problem: semantic image retrieval based on ontology. In this paper a new image retrieval system based on ontology and relevant feedback was presented. The ontology was used to describe the semantic features of images and then retrieve the images.

  19. AN IMAGE RETRIEVAL METHOD BASED ON SPATIAL DISTRIBUTION OF COLOR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity,wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm.The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.

  20. Colorfulness Enhancement Using Image Classifier Based on Chroma-histogram

    Institute of Scientific and Technical Information of China (English)

    Moon-cheol KIM; Kyoung-won LIM

    2010-01-01

    The paper proposes a colorfulness enhancement of pictorial images using image classifier based on chroma histogram.This ap-poach firstly estimates strength of colorfulness of images and their types.With such determined information,the algorithm automatically adjusts image colorfulness for a better natural image look.With the help of an additional detection of skin colors and a pixel chroma adaptive local processing,the algorithm produces more natural image look.The algorithm performance had been tested with an image quality judgment experiment of 20 persons.The experimental result indicates a better image preference.

  1. Performance Evaluation of Image Fusion Based on Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Ramkrishna Patil

    2013-05-01

    Full Text Available Discrete cosine transform (DCT is used for fusion of two different images and for image compression. Image fusion deals with creating an image by combining portions from other images to obtain an image in which all of the objects are in focus. Two multi focus images are used for image fusion. Different fusion algorithms are used and their performance is evaluated using evaluation metrics such as PSNR, SSIM, Spatial Frequency, Quality Index, Structural Content, Mean Absolute Error. Fusion performance is not good while using the algorithms with block size less than 64x64 and also the block size of 512x512. Contrast, amplitude and energy based image fusion algorithms performed well. The fused images are comparable with the reference image. Only the image size is considered but blurring percentage is not considered. These algorithms are very simple and might be suitable for real time applications

  2. Digital image inpainting by example-based image synthesis method

    Institute of Scientific and Technical Information of China (English)

    Nie Dongdong; Ma Lizhuang; Xiao Shuangjiu

    2006-01-01

    A simple and effective image inpainting method is proposed in this paper, which is proved to be suitable for different kinds of target regions with shapes from little scraps to large unseemly objects in a wide range of images. It is an important improvement upon the traditional image inpainting techniques.By introducing a new bijective-mapping term into the matching cost function, the artificial repetition problem in the final inpainting image is practically solved. In addition, by adopting an inpainting error map,not only the target pixels are refined gradually during the inpainting process but also the overlapped target patches are combined more seamlessly than previous method. Finally, the inpainting time is dramatically decreased by using a new acceleration method in the matching process.

  3. UMLS-based automatic image indexing.

    Science.gov (United States)

    Sneiderman, C; Sneiderman, Charles Alan; Demner-Fushman, D; Demner-Fushman, Dina; Fung, K W; Fung, Kin Wah; Bray, B; Bray, Bruce

    2008-01-01

    To date, most accurate image retrieval techniques rely on textual descriptions of images. Our goal is to automatically generate indexing terms for an image extracted from a biomedical article by identifying Unified Medical Language System (UMLS) concepts in image caption and its discussion in the text. In a pilot evaluation of the suggested image indexing method by five physicians, a third of the automatically identified index terms were found suitable for indexing.

  4. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    Science.gov (United States)

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  5. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-10-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  6. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-11-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  7. Digital image-based classification of biodiesel.

    Science.gov (United States)

    Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Almeida, Valber Elias; Araújo, Thomas Souto Policarpo; Melo, Jessica Priscila; Diniz, Paulo Henrique Gonçalves Dias; Véras, Germano

    2015-07-01

    This work proposes a simple, rapid, inexpensive, and non-destructive methodology based on digital images and pattern recognition techniques for classification of biodiesel according to oil type (cottonseed, sunflower, corn, or soybean). For this, differing color histograms in RGB (extracted from digital images), HSI, Grayscale channels, and their combinations were used as analytical information, which was then statistically evaluated using Soft Independent Modeling by Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and variable selection using the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). Despite good performances by the SIMCA and PLS-DA classification models, SPA-LDA provided better results (up to 95% for all approaches) in terms of accuracy, sensitivity, and specificity for both the training and test sets. The variables selected Successive Projections Algorithm clearly contained the information necessary for biodiesel type classification. This is important since a product may exhibit different properties, depending on the feedstock used. Such variations directly influence the quality, and consequently the price. Moreover, intrinsic advantages such as quick analysis, requiring no reagents, and a noteworthy reduction (the avoidance of chemical characterization) of waste generation, all contribute towards the primary objective of green chemistry.

  8. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  9. Performance-based assessment of reconstructed images

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Kenneth [Los Alamos National Laboratory

    2009-01-01

    During the early 90s, I engaged in a productive and enjoyable collaboration with Robert Wagner and his colleague, Kyle Myers. We explored the ramifications of the principle that tbe quality of an image should be assessed on the basis of how well it facilitates the performance of appropriate visual tasks. We applied this principle to algorithms used to reconstruct scenes from incomplete and/or noisy projection data. For binary visual tasks, we used both the conventional disk detection and a new challenging task, inspired by the Rayleigh resolution criterion, of deciding whether an object was a blurred version of two dots or a bar. The results of human and machine observer tests were summarized with the detectability index based on the area under the ROC curve. We investigated a variety of reconstruction algorithms, including ART, with and without a nonnegativity constraint, and the MEMSYS3 algorithm. We concluded that the performance of the Raleigh task was optimized when the strength of the prior was near MEMSYS's default 'classic' value for both human and machine observers. A notable result was that the most-often-used metric of rms error in the reconstruction was not necessarily indicative of the value of a reconstructed image for the purpose of performing visual tasks.

  10. Fusion Method for Remote Sensing Image Based on Fuzzy Integral

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2014-01-01

    Full Text Available This paper presents a kind of image fusion method based on fuzzy integral, integrated spectral information, and 2 single factor indexes of spatial resolution in order to greatly retain spectral information and spatial resolution information in fusion of multispectral and high-resolution remote sensing images. Firstly, wavelet decomposition is carried out to two images, respectively, to obtain wavelet decomposition coefficients of the two image and keep coefficient of low frequency of multispectral image, and then optimized fusion is carried out to high frequency part of the two images based on weighting coefficient to generate new fusion image. Finally, evaluation is carried out to the image after fusion with introduction of evaluation indexes of correlation coefficient, mean value of image, standard deviation, distortion degree, information entropy, and so forth. The test results show that this method integrated multispectral information and space high-resolution information in a better way, and it is an effective fusion method of remote sensing image.

  11. Shannon Entropy based Randomness Measurement and Test for Image Encryption

    CERN Document Server

    Wu, Yue; Agaian, Sos

    2011-01-01

    The quality of image encryption is commonly measured by the Shannon entropy over the ciphertext image. However, this measurement does not consider to the randomness of local image blocks and is inappropriate for scrambling based image encryption methods. In this paper, a new information entropy-based randomness measurement for image encryption is introduced which, for the first time, answers the question of whether a given ciphertext image is sufficiently random-like. It measures the randomness over the ciphertext in a fairer way by calculating the averaged entropy of a series of small image blocks within the entire test image. In order to fulfill both quantitative and qualitative measurement, the expectation and the variance of this averaged block entropy for a true-random image are strictly derived and corresponding numerical reference tables are also provided. Moreover, a hypothesis test at significance?-level is given to help accept or reject the hypothesis that the test image is ideally encrypted/random-...

  12. Human-Centered Object-Based Image Retrieval

    NARCIS (Netherlands)

    Broek, E.L. van den; Rikxoort, E.M. van; Schouten, T.E.

    2005-01-01

    A new object-based image retrieval (OBIR) scheme is introduced. The images are analyzed using the recently developed, human-based 11 colors quantization scheme and the color correlogram. Their output served as input for the image segmentation algorithm: agglomerative merging, which is extended to co

  13. Cataract surgery: emotional reactions of patients with monocular versus binocular vision Cirurgia de catarata: aspectos emocionais de pacientes com visão monocular versus binocular

    Directory of Open Access Journals (Sweden)

    Roberta Ferrari Marback

    2012-12-01

    Full Text Available PURPOSE: To analyze emotional reactions related to cataract surgery in two groups of patients (monocular vision - Group 1; binocular vision - Group 2. METHODS: A transversal comparative study was performed using a structured questionnaire from a previous exploratory study before cataract surgery. RESULTS: 206 patients were enrolled in the study, 96 individuals in Group 1 (69.3 ± 10.4 years and 110 in Group 2 (68.2 ± 10.2 years. Most patients in group 1 (40.6% and 22.7% of group 2, reported fear of surgery (pOBJETIVO: Verificar reações emocionais relacionadas à cirurgia de catarata entre pacientes com visão monocular (Grupo 1 e binocular (Grupo 2. MÉTODOS: Foi realizado um estudo tranversal, comparativo por meio de um questionário estruturado respondido por pacientes antes da cirurgia de catarata. RESULTADOS: A amostra foi composta de 96 pacientes no Grupo 1 (69.3 ± 10.4 anos e 110 no Grupo 2 (68.2 ± 10.2 anos. Consideravam apresentar medo da cirugia 40.6% do Grupo 1 e 22.7% do Grupo 2 (p<0.001 e entre as principais causas do medo, a possibilidade de perda da visão, complicações cirúrgicas e a morte durante o procedimento foram apontadas. Os sentimentos mais comuns entre os dois grupos foram dúvidas a cerca dos resultados da cirurgia e o nervosismo diante do procedimento. CONCLUSÃO: Pacientes com visão monocular apresentaram mais medo e dúvidas relacionadas à cirurgia de catarata comparados com aqueles com visão binocular. Portanto, é necessário que os médicos considerem estas reações emocionais e invistam mais tempo para esclarecer os riscos e benefícios da cirurgia de catarata.

  14. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    , several other factors contributing to the image quality degradation, and while one should, theoretically, be able to obtain CT-like image quality from CBCT scans, clinical image quality is often very far from this ideal realisation. The present thesis describes the investigation of potential image quality...... improvements in clinical CBCT imaging achieved through post-processing of the clinical image data. A Monte Carlo model was established to predict patient specific scattered radiation in CBCT imaging, based on anatomical information from the planning CT scan. This allowed the time consuming Monte Carlo......Cone beam CT (CBCT) imaging is frequently used in modern radiotherapy to ensure the proper positioning of the patient prior to each treatment fraction. With the increasing use of CBCT imaging for image guidance, interest has grown in exploring the potential use of these 3– or 4–D medical images...

  15. A Fractional Random Wavelet Transform Based Image Steganography

    OpenAIRE

    G.K. Rajini; RAMACHANDRA REDDY G.

    2015-01-01

    This study presents a novel technique for image steganography based on Fractional Random Wavelet Transform. This transform has all the features of wavelet transform with randomness and fractional order built into it. The randomness and fractional order in the algorithm brings in robustness and additional layers of security to steganography. The stegano image generated by this algorithm contains both cover image and hidden image and image degradation is not observed in it. The steganography st...

  16. LEO AUTONOMOUS NAVIGATION BASED ON IMAGE MOTION

    Institute of Scientific and Technical Information of China (English)

    DUANFang; LIUJian-ye; YUFeng

    2005-01-01

    A method of LEO autonomous navigation is presented based on the nonlinear satellite velocity relative to the earth. The velocity is detected by a high-speed camera, with the attitude information detected by a star sensor. Compared with traditional autonomous navigation by landmark identification, the satellite velocity relarive to the earth is obtained by correlativity analysis of images. It does not need to recognize ground objects or views. Since it is not necessary to pre-store the database of ground marks, lots of memory space can be saved.The state and observation equations are constructed, and the filtering is processed by the Kalman filter. Simulation results show that the system has high autonomous navigation precision in LEO autonomous navigation.

  17. Liquid-crystal-based hyperspectral image projector

    Science.gov (United States)

    Linnenberger, Anna; Masterson, Hugh; Rice, Joseph P.; Stockley, Jay

    2010-04-01

    A hyperspectral image projector (HIP) is introduced that is built with liquid crystal based spatial light modulators (SLM) as opposed to micromirror arrays. The use of an SLM as a broadband intensity modulator presents several benefits to this application. With slight modifications to the SLM design, SLMs can be built for a wide range of spectral regimes, ranging from the ultraviolet (UV) to the long-wavelength infrared (LWIR). SLMs can have a large pixel pitch, significantly reducing diffraction in the mid-wavelength infrared (MWIR) and LWIR. Liquid crystal based devices offer direct analog intensity modulation, thus eliminating flicker from time sequential drive schemes. SLMs allow for an on-axis configuration, enabling a simple and compact optical layout. The design of the HIP system is broken into two parts consisting of a spectral and spatial engine. In the spectral engine a diffraction grating is used to disperse a broadband source into spectral components, where an SLM modulates the relative intensity of the components to dynamically generate complex spectra. The recombined output is fed to the spatial engine which is used to construct two-dimensional scenes. The system is used to simulate a broad range of real world environments, and will be delivered to the National Institute of Standards and Technology as an enabling tool for the development of calibration standards and performance testing techniques for multispectral and hyperspectral imagers. The focus of this paper is on a visible-band HIP system; however, related work is presented with regard to SLM use in the MWIR and LWIR.

  18. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    Science.gov (United States)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  19. Cirurgia monocular para esotropias de grande ângulo: histórico e novos paradigmas Monocular surgery for large-angle esotropias: review and new paradigms

    Directory of Open Access Journals (Sweden)

    Edmilson Gigante

    2010-08-01

    Full Text Available As primitivas cirurgias de estrabismo, as miotomias e as tenotomias, eram feitas, simplesmente, seccionando-se o músculo ou o seu tendão, sem nenhuma sutura. Estas cirurgias eram feitas, geralmente, em um só olho, tanto em pequenos como em grandes desvios e os resultados eram pouco previsíveis. Jameson, em 1922, propôs uma nova técnica cirúrgica, usando suturas e fixando, na esclera, o músculo seccionado, tornando a cirurgia mais previsível. Para as esotropias, praticou recuos de, no máximo, 5 mm para o reto medial, o que se tornou uma regra para os demais cirurgiões que o sucederam, sendo impossível, a partir daí, a correção de esotropias de grande ângulo com cirurgia monocular. Rodriguez-Vásquez, em 1974, superou o parâmetro de 5 mm, propondo amplos recuos dos retos mediais (6 a 9 mm para o tratamento da síndrome de Ciancia, com bons resultados. Os autores revisaram a literatura, ano a ano, objetivando comparar os vários trabalhos e, com isso, concluíram que a cirurgia monocular de recuo-ressecção pode constituir uma opção viável para o tratamento cirúrgico das esotropias de grande ângulo.The primitive strabismus surgeries, myotomies and tenotomies, were performed simply by sectioning the muscle or its tendon without any suture. Such surgeries were usually performed in just one eye both in small and in large angles with not really predictable results. In 1922, Jameson introduced a new surgery technique using sutures and fixing the sectioned muscle to the sclera, increasing surgery predictability. For the esotropias he carried out no more than 5 mm recession of the medial rectus, which became a rule for the surgeons who followed him, which made it impossible from then on to correct largeangle esotropias with a monocular surgery. Rodriguez-Vásquez, in 1974, exceeded the 5 mm parameter by proposing large recessions of the medial recti (6 to 9 mm to treat the Ciancia syndrome with good results. The authors revised the

  20. Remote sensing image fusion based on Bayesian linear estimation

    Institute of Scientific and Technical Information of China (English)

    GE ZhiRong; WANG Bin; ZHANG LiMing

    2007-01-01

    A new remote sensing image fusion method based on statistical parameter estimation is proposed in this paper. More specially, Bayesian linear estimation (BLE) is applied to observation models between remote sensing images with different spatial and spectral resolutions. The proposed method only estimates the mean vector and covariance matrix of the high-resolution multispectral (MS) images, instead of assuming the joint distribution between the panchromatic (PAN) image and low-resolution multispectral image. Furthermore, the proposed method can enhance the spatial resolution of several principal components of MS images, while the traditional Principal Component Analysis (PCA) method is limited to enhance only the first principal component. Experimental results with real MS images and PAN image of Landsat ETM+ demonstrate that the proposed method performs better than traditional methods based on statistical parameter estimation,PCA-based method and wavelet-based method.

  1. Evaluación de la reproducibilidad de la retinoscopia dinámica monocular de Merchán

    Directory of Open Access Journals (Sweden)

    Lizbeth Acuña

    2010-08-01

    Full Text Available Objetivo: Evaluar la reproducibilidad de la retinoscopia dinámica monocular y su nivel de acuerdo con la retinoscopia estática binocular y monocular, retinoscopia de Nott y Método Estimado Monocular (MEM. Métodos: Se determinó la reproducibilidad entre los evaluadores y entre los métodos por medio del coeficiente de correlación intraclase (CCI y se establecieron los límites de acuerdo de Bland y Altman. Resultados: Se evaluaron 126 personas entre 5 y 39 años y se encontró una baja reproducibilidad interexaminador de la retinoscopia dinámica monocular en ambos ojos CCI ojo derecho: 0.49 (IC95% 0.36; 0.51; ojo izquierdo 0.51 (IC95% 0.38; 0.59. El límite de acuerdo entre evaluadores fue ±1.25 D. Al evaluar la reproducibilidad entre la retinoscopia dinámica monocular y la estática se observó que la mayor reproducibilidad se obtuvo con la estática binocular y monocular y, en visión próxima, entre el método estimado monocular y la retinoscopia de Nott. Conclusiones: La retinoscopia dinámica monocular no es una prueba reproducible y presenta diferencias clínicas significativas para determinar el estado refractivo, en cuanto a poder dióptrico y tipo de ametropía, por tanto, no se puede considerar dentro de la batería de exámenes aplicados para determinar diagnósticos y correcciones refractivas tanto en la visión lejana como en la visión próxima.

  2. Evaluación de la reproducibilidad de la retinoscopia dinámica monocular de Merchán

    Directory of Open Access Journals (Sweden)

    Lizbeth Acuña

    2009-12-01

    Full Text Available Objetivo: Evaluar la reproducibilidad de la retinoscopia dinámica monocular y su nivel de acuerdo con la retinoscopia estática binocular y monocular, retinoscopia de Nott y Método Estimado Monocular (MEM.Métodos: Se determinó la reproducibilidad entre los evaluadores y entre los métodos por medio del coeficiente de correlación intraclase (CCI y se establecieron los límites de acuerdo de Bland y Altman.Resultados: Se evaluaron 126 personas entre 5 y 39 años y se encontró una baja reproducibilidad interexaminador de la retinoscopia dinámica monocular en ambos ojos CCI ojo derecho: 0.49 (IC95% 0.36; 0.51; ojo izquierdo 0.51 (IC95% 0.38; 0.59. El límite de acuerdo entre evaluadores fue ±1.25 D. Al evaluar la reproducibilidad entre la retinoscopia dinámica monocular y la estática se observó que la mayor reproducibilidad se obtuvo con la estática binocular y monocular y, en visión próxima, entre el método estimado monocular y la retinoscopia de Nott.Conclusiones: La retinoscopia dinámica monocular no es una prueba reproducible y presenta diferencias clínicas significativas para determinar el estado refractivo, en cuanto a poder dióptrico y tipo de ametropía, por tanto, no se puede considerar dentro de la batería de exámenes aplicados para determinar diagnósticos y correcciones refractivas tanto en la visión lejana como en la visión próxima.

  3. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    Science.gov (United States)

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks.

  4. Image Segmentation Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    XU Hai-xiang; ZHU Guang-xi; TIAN Jin-wen; ZHANG Xiang; PENG Fu-yuan

    2005-01-01

    Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated.Experimental results show that: the effects of kernel function and model parameters on the segmentation performance are significant; SVM approach is less sensitive to noise in image segmentation; The segmentation performance of SVM approach is better than that of back-propagation multi-layer perceptron (BP-MLP) approach and fuzzy c-means (FCM) approach.

  5. A Shearlets-based Edge Identification Algorithem for Infrared Image

    OpenAIRE

    Rui-bin ZOU; Cai-cheng SHI

    2013-01-01

    A shearlets-based edge identification algorithem for infrared image is proposed. The algorithem demonstrates the performance of edge detection based on shearlets, combines with the edge hysteresis thresholding, designs steps of edge detection, which is proper to use in infrared images.Simultaneously, with the advantage of edge geometric features provided by the shearlets, infrared image were extracted the direction information of edge of Infrared image, and classified. In computer simulations...

  6. Monocular Depth Perception and Robotic Grasping of Novel Objects

    Science.gov (United States)

    2009-06-01

    in which local features were insufficient and more contextual information had to be used. Examples include image denoising [92], stereo vision [155... partially visible in the image (e.g., Fig. 3.2, row 2: tree on the left). For a point lying on such an object, most of the point’s neighbors lie outside...proved the equivalence of force-closure analysis with the study of the equilibria of an ordinary differential equation . All of these methods focussed

  7. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    State-of-the-art optical fiber technology can contribute towards complex multi-element broadband terahertz imaging systems. Classical table-top terahertz imaging systems are generally limited to a single emitter/receiver pair, which constrains their imaging capability to tedious raster scanning...... imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  8. Image Recovery Algorithm Based on Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Xinghui Zhu

    2014-01-01

    Full Text Available We proposed a recovery scheme for image deblurring. The scheme is under the framework of sparse representation and it has three main contributions. Firstly, considering the sparse property of natural image, the nonlocal overcompleted dictionaries are learned for image patches in our scheme. And, then, we coded the patches in each nonlocal clustering with the corresponding learned dictionary to recover the whole latent image. In addition, for some practical applications, we also proposed a method to evaluate the blur kernel to make the algorithm usable in blind image recovery. The experimental results demonstrated that the proposed scheme is competitive with some current state-of-the-art methods.

  9. STUDY ON IMAGE EDGE PROPERTY LOCATION BASED ON FRACTAL THEORY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel approach of printed circuit board(PCB)image locating is presentedBased on the rectangle mark image edge of PCB,the featur es is used to describe the image edge and the fractal properby of image edge is analyzedIt is proved that the rectangle mark image edge of PCB has some fracta l featuresA method of deleting unordinary curve noise and compensating the l ength of the fractal curve is put forward,which can get the fractal dimension value from one complex edge fractal property curveThe relation between the dim ension of the fractal curve and the turning angle of image can be acquired from an equation,as a result,the angle value of the PCB image is got exactlyA real image edge analysis result confirms that the method based on the fractal theory is a new powerful tool for angle locating on PCB and related image area

  10. [Multiple transmission electron microscopic image stitching based on sift features].

    Science.gov (United States)

    Li, Mu; Lu, Yanmeng; Han, Shuaihu; Wu, Zhuobin; Chen, Jiajing; Liu, Zhexing; Cao, Lei

    2015-08-01

    We proposed a new stitching method based on sift features to obtain an enlarged view of transmission electron microscopic (TEM) images with a high resolution. The sift features were extracted from the images, which were then combined with fitted polynomial correction field to correct the images, followed by image alignment based on the sift features. The image seams at the junction were finally removed by Poisson image editing to achieve seamless stitching, which was validated on 60 local glomerular TEM images with an image alignment error of 62.5 to 187.5 nm. Compared with 3 other stitching methods, the proposed method could effectively reduce image deformation and avoid artifacts to facilitate renal biopsy pathological diagnosis.

  11. Local fingerprint image reconstruction based on gabor filtering

    Science.gov (United States)

    Bakhtiari, Somayeh; Agaian, Sos S.; Jamshidi, Mo

    2012-06-01

    In this paper, we propose two solutions for fingerprint local image reconstruction based on Gabor filtering. Gabor filtering is a popular method for fingerprint image enhancement. However, the reliability of the information in the output image suffers, when the input image has a poor quality. This is the result of the spurious estimates of frequency and orientation by classical approaches, particularly in the scratch regions. In both techniques of this paper, the scratch marks are recognized initially using reliability image which is calculated using the gradient images. The first algorithm is based on an inpainting technique and the second method employs two different kernels for the scratch and the non-scratch parts of the image to calculate the gradient images. The simulation results show that both approaches allow the actual information of the image to be preserved while connecting discontinuities correctly by approximating the orientation matrix more genuinely.

  12. ROI-based DICOM image compression for telemedicine

    Indian Academy of Sciences (India)

    Vinayak K Bairagi; Ashok M Sapkal

    2013-02-01

    Many classes of images contain spatial regions which are more important than other regions. Compression methods capable of delivering higher reconstruction quality for important parts are attractive in this situation. For medical images, only a small portion of the image might be diagnostically useful, but the cost of a wrong interpretation is high. Hence, Region Based Coding (RBC) technique is significant for medical image compression and transmission. Lossless compression schemes with secure transmission play a key role in telemedicine applications that help in accurate diagnosis and research. In this paper, we propose lossless scalable RBC for Digital Imaging and Communications in Medicine (DICOM) images based on Integer Wavelet Transform (IWT) and with distortion limiting compression technique for other regions in image. The main objective of this work is to reject the noisy background and reconstruct the image portions losslessly. The compressed image can be accessed and sent over telemedicine network using personal digital assistance (PDA) like mobile.

  13. Quantum Multi-Image Encryption Based on Iteration Arnold Transform with Parameters and Image Correlation Decomposition

    Science.gov (United States)

    Hu, Yiqun; Xie, Xinwen; Liu, Xingbin; Zhou, Nanrun

    2017-07-01

    A novel quantum multi-image encryption algorithm based on iteration Arnold transform with parameters and image correlation decomposition is proposed, and a quantum realization of the iteration Arnold transform with parameters is designed. The corresponding low frequency images are obtained by performing 2-D discrete wavelet transform on each image respectively, and then the corresponding low frequency images are spliced randomly to one image. The new image is scrambled by the iteration Arnold transform with parameters, and the gray-level information of the scrambled image is encoded by quantum image correlation decomposition. For the encryption algorithm, the keys are iterative times, added parameters, classical binary and orthonormal basis states. The key space, the security and the computational complexity are analyzed, and all of the analyses show that the proposed encryption algorithm could encrypt multiple images simultaneously with lower computational complexity compared with its classical counterparts.

  14. Embolic and nonembolic transient monocular visual field loss: a clinicopathologic review.

    Science.gov (United States)

    Petzold, Axel; Islam, Niaz; Hu, Han-Hwa; Plant, Gordon T

    2013-01-01

    Transient monocular blindness and amaurosis fugax are umbrella terms describing a range of patterns of transient monocular visual field loss (TMVL). The incidence rises from ≈1.5/100,000 in the third decade of life to ≈32/100,000 in the seventh decade of life. We review the vascular supply of the retina that provides an anatomical basis for the types of TMVL and discuss the importance of collaterals between the external and internal carotid artery territories and related blood flow phenomena. Next, we address the semiology of TMVL, focusing on onset, pattern, trigger factors, duration, recovery, frequency-associated features such as headaches, and on tests that help with the important differential between embolic and non-embolic etiologies.

  15. Monocular trajectory intersection method for 3D motion measurement of a point target

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This article proposes a monocular trajectory intersection method,a videometrics measurement with a mature theoretical system to solve the 3D motion parameters of a point target.It determines the target’s motion parameters including its 3D trajectory and velocity by intersecting the parametric trajectory of a motion target and series of sight-rays by which a motion camera observes the target,in contrast with the regular intersection method for 3D measurement by which the sight-rays intersect at one point.The method offers an approach to overcome the technical failure of traditional monocular measurements for the 3D motion of a point target and thus extends the application fields of photogrammetry and computer vision.Wide application is expected in passive observations of motion targets on various mobile beds.

  16. Monocular trajectory intersection method for 3D motion measurement of a point target

    Institute of Scientific and Technical Information of China (English)

    YU QiFeng; SHANG Yang; ZHOU Jian; ZHANG XiaoHu; LI LiChun

    2009-01-01

    This article proposes a monocular trajectory intersection method,a videometrics measurement with a mature theoretical system to solve the 3D motion parameters of a point target.It determines the target's motion parameters including its 3D trajectory and velocity by intersecting the parametric trajectory of a motion target and series of sight-rays by which a motion camera observes the target,in contrast with the regular intersection method for 3D measurement by which the sight-rays intersect at one point.The method offers an approach to overcome the technical failure of traditional monocular measurements for the 3D motion of a point target and thus extends the application fields of photogrammetry and computer vision.Wide application is expected in passive observations of motion targets on various mobile beds.

  17. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  18. Gabor filter based fingerprint image enhancement

    Science.gov (United States)

    Wang, Jin-Xiang

    2013-03-01

    Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.

  19. The method of infrared image simulation based on the measured image

    Science.gov (United States)

    Lou, Shuli; Liu, Liang; Ren, Jiancun

    2015-10-01

    The development of infrared imaging guidance technology has promoted the research of infrared imaging simulation technology and the key of infrared imaging simulation is the generation of IR image. The generation of IR image is worthful in military and economy. In order to solve the problem of credibility and economy of infrared scene generation, a method of infrared scene generation based on the measured image is proposed. Through researching on optical properties of ship-target and sea background, ship-target images with various gestures are extracted from recorded images based on digital image processing technology. The ship-target image is zoomed in and out to simulate the relative motion between the viewpoint and the target according to field of view and the distance between the target and the sensor. The gray scale of ship-target image is adjusted to simulate the radiation change of the ship-target according to the distance between the viewpoint and the target and the atmospheric transmission. Frames of recorded infrared images without target are interpolated to simulate high frame rate of missile. Processed ship-target images and sea-background infrared images are synthetized to obtain infrared scenes according to different viewpoints. Experiments proved that this method is flexible and applicable, and the fidelity and the reliability of synthesis infrared images can be guaranteed.

  20. mage Mining using Content Based Image Retrieval System

    OpenAIRE

    Rajshree S. Dubey; Niket Bhargava; Rajnish Choubey

    2010-01-01

    The image depends on the Human perception and is also based on the Machine Vision System. The Image Retrieval is based on the color Histogram, texture. The perception of the Human System of Image is based on the Human Neurons which hold the 1012 of Information; the Human brain continuously learns with the sensory organs like eye which transmits the Image to the brain which interprets the Image. The research challenge is that how the brain processes the informationin the semantic manner is hot...

  1. ISAR imaging based on sparse subbands fusion

    Science.gov (United States)

    Li, Gang; Tian, Biao; Xu, Shiyou; Chen, Zengping

    2015-12-01

    Data fusion using subbands, which can obtain a higher range resolution without altering the bandwidth, hardware, and sampling rate of the radar system, has attracted more and more attention in recent years. A method of ISAR imaging based on subbands fusion and high precision parameter estimation of geometrical theory of diffraction (GTD) model is presented in this paper. To resolve the incoherence problem in subbands data, a coherent processing method is adopted. Based on an all-pole model, the phase difference of pole and scattering coefficient between each sub-band is used to effectively estimate the incoherent components. After coherent processing, the high and low frequency sub-band data can be expressed as a uniform all-pole model. The gapped-data amplitude and phase estimation (GAPES) algorithm is used to fill up the gapped band. Finally, fusion data is gained by high precision parameter estimation of GTD-all-pole model with full-band data, such as scattering center number, scattering center type and amplitude. The experimental results of simulated data show the validity of the algorithm.

  2. The role of binocular disparity in stereoscopic images of objects in the macaque anterior intraparietal area.

    Directory of Open Access Journals (Sweden)

    Maria C Romero

    Full Text Available Neurons in the macaque Anterior Intraparietal area (AIP encode depth structure in random-dot stimuli defined by gradients of binocular disparity, but the importance of binocular disparity in real-world objects for AIP neurons is unknown. We investigated the effect of binocular disparity on the responses of AIP neurons to images of real-world objects during passive fixation. We presented stereoscopic images of natural and man-made objects in which the disparity information was congruent or incongruent with disparity gradients present in the real-world objects, and images of the same objects where such gradients were absent. Although more than half of the AIP neurons were significantly affected by binocular disparity, the great majority of AIP neurons remained image selective even in the absence of binocular disparity. AIP neurons tended to prefer stimuli in which the depth information derived from binocular disparity was congruent with the depth information signaled by monocular depth cues, indicating that these monocular depth cues have an influence upon AIP neurons. Finally, in contrast to neurons in the inferior temporal cortex, AIP neurons do not represent images of objects in terms of categories such as animate-inanimate, but utilize representations based upon simple shape features including aspect ratio.

  3. Content-based Image Retrieval by Spatial Similarity

    Directory of Open Access Journals (Sweden)

    Archana M. Kulkarn

    2002-07-01

    Full Text Available Similarity-based retrieval of images is an important task in image databases. Most of the user's queries are on retrieving those database images that are spatially similar to a query image. In defence strategies, one wants to know a number of armoured vehicles, such as battle tanks, portable missile launching vehicles, etc. moving towards it, so that one can decide counter strategy. Content-based spatial similarity retrieval of images can be used to locate spatial relationship of various objects in a specific area from the aerial photographs and to retrieve images similar to the query image from image database. A content-based image retrieval system that efficiently and effectively retrieves information from a defence image database along with the architecture for retrieving images by spatial similarity is presented. A robust algorithm SIMdef for retrieval by spatial similarity is proposed that utilises both directional and topological relations for computing similarity between images, retrieves similar images and recognises images even after they undergo modelling transformations (translation, scale and rotation. A case study for some of the common objects, used in defence applications using SIMdef algorithm, has been done.

  4. Physical Optics Based Computational Imaging Systems

    Science.gov (United States)

    Olivas, Stephen Joseph

    There is an ongoing demand on behalf of the consumer, medical and military industries to make lighter weight, higher resolution, wider field-of-view and extended depth-of-focus cameras. This leads to design trade-offs between performance and cost, be it size, weight, power, or expense. This has brought attention to finding new ways to extend the design space while adhering to cost constraints. Extending the functionality of an imager in order to achieve extraordinary performance is a common theme of computational imaging, a field of study which uses additional hardware along with tailored algorithms to formulate and solve inverse problems in imaging. This dissertation details four specific systems within this emerging field: a Fiber Bundle Relayed Imaging System, an Extended Depth-of-Focus Imaging System, a Platform Motion Blur Image Restoration System, and a Compressive Imaging System. The Fiber Bundle Relayed Imaging System is part of a larger project, where the work presented in this thesis was to use image processing techniques to mitigate problems inherent to fiber bundle image relay and then, form high-resolution wide field-of-view panoramas captured from multiple sensors within a custom state-of-the-art imager. The Extended Depth-of-Focus System goals were to characterize the angular and depth dependence of the PSF of a focal swept imager in order to increase the acceptably focused imaged scene depth. The goal of the Platform Motion Blur Image Restoration System was to build a system that can capture a high signal-to-noise ratio (SNR), long-exposure image which is inherently blurred while at the same time capturing motion data using additional optical sensors in order to deblur the degraded images. Lastly, the objective of the Compressive Imager was to design and build a system functionally similar to the Single Pixel Camera and use it to test new sampling methods for image generation and to characterize it against a traditional camera. These computational

  5. NEW APPROACH FOR IMAGE REPRESENTATION BASED ON GEOMETRIC STRUCTURAL CONTENTS

    Institute of Scientific and Technical Information of China (English)

    Jia Xiaomeng; Wang Guoyu

    2003-01-01

    This paper presents a novel approach for representation of image contents based on edge structural features. Edge detection is carried out for an image in the pre-processing stage.For feature representation, edge pixels are grouped into a set of segments through geometrical partitioning of the whole edge image. Then the invariant feature vector is computed for each edge-pixel segment. Thereby the image is represented with a set of spatially distributed feature vectors, each of which describes the local pattern of edge structures. Matching of two images can be achieved by the correspondence of two sets of feature vectors. Without the difficulty of image segmentation and object extraction due to the complexity of the real world images, the proposed approach provides a simple and flexible description for the image with complex scene, in terms of structural features of the image content. Experiments with real images illustrate the effectiveness of this new method.

  6. Molecular–Genetic Imaging: A Nuclear Medicine–Based Perspective

    Directory of Open Access Journals (Sweden)

    Ronald G. Blasberg

    2002-07-01

    Full Text Available Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular–genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography imaging as well as magnetic resonance (MR and in vivo optical imaging. Molecular–genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular–genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1 “indirect” reporter gene imaging; (2 “direct” imaging of endogenous molecules; or (3 “surrogate” or “bio-marker” imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular–genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular–genetic and cellular processes will complement established ex vivo molecular–biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes.

  7. A Case of Recurrent Transient Monocular Visual Loss after Receiving Sildenafil

    Directory of Open Access Journals (Sweden)

    Asaad Ghanem Ghanem

    2011-01-01

    Full Text Available A 53-year-old man was attended to the Clinic Ophthalmic Center, Mansoura University, Egypt, with recurrent transient monocular visual loss after receiving sildenafil citrate (Viagra for erectile dysfunction. Examination for possible risk factors revealed mild hypercholesterolemia. Family history showed that his father had suffered from bilateral nonarteritic anterior ischemic optic neuropathy (NAION. Physicians might look for arteriosclerotic risk factors and family history of NAION among predisposing risk factors before prescribing sildenafil erectile dysfunction drugs.

  8. Benign pituitary adenoma associated with hyperostosis of the spenoid bone and monocular blindness. Case report.

    Science.gov (United States)

    Milas, R W; Sugar, O; Dobben, G

    1977-01-01

    The authors describe a case of benign chromophobe adenoma associated with hyperostosis of the lesser wing of the sphenoid bone and monocular blindness in a 38-year-old woman. The endocrinological and radiological evaluations were all suggestive of a meningioma. The diagnosis was established by biopsy of the tumor mass. After orbital decompression and removal of the tumor, the patient was treated with radiation therapy. Her postoperative course was uneventful, and her visual defects remained fixed.

  9. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Science.gov (United States)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  10. Short-term monocular patching boosts the patched eye’s response in visual cortex

    Science.gov (United States)

    Zhou, Jiawei; Baker, Daniel H.; Simard, Mathieu; Saint-Amour, Dave; Hess, Robert F.

    2015-01-01

    Abstract Purpose: Several recent studies have demonstrated that following short-term monocular deprivation in normal adults, the patched eye, rather than the unpatched eye, becomes stronger in subsequent binocular viewing. However, little is known about the site and nature of the underlying processes. In this study, we examine the underlying mechanisms by measuring steady-state visual evoked potentials (SSVEPs) as an index of the neural contrast response in early visual areas. Methods: The experiment consisted of three consecutive stages: a pre-patching EEG recording (14 minutes), a monocular patching stage (2.5 hours) and a post-patching EEG recording (14 minutes; started immediately after the removal of the patch). During the patching stage, a diffuser (transmits light but not pattern) was placed in front of one randomly selected eye. During the EEG recording stage, contrast response functions for each eye were measured. Results: The neural responses from the patched eye increased after the removal of the patch, whilst the responses from the unpatched eye remained the same. Such phenomena occurred under both monocular and dichoptic viewing conditions. Conclusions: We interpret this eye dominance plasticity in adult human visual cortex as homeostatic intrinsic plasticity regulated by an increase of contrast-gain in the patched eye. PMID:26410580

  11. Bayesian Image Reconstruction Based on Voronoi Diagrams

    CERN Document Server

    Cabrera, G F; Hitschfeld, N

    2007-01-01

    We present a Bayesian Voronoi image reconstruction technique (VIR) for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a-posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a-priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images and chi^2 values are used to compare our reconstructions with fixed grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view.

  12. Monocular, boundary preserving joint recovery of scene flow and depth

    Directory of Open Access Journals (Sweden)

    Amar Mitiche

    2016-09-01

    Full Text Available Variational joint recovery of scene flow and depth from a single image sequence, rather than from a stereo sequence as others required, was investigated in Mitiche et al. (2015 using an integral functional with a term of conformity of scene flow and depth to the image sequence spatiotemporal variations, and L2 regularization terms for smooth depth field and scene flow. The resulting scheme was analogous to the Horn and Schunck optical flow estimation method except that the unknowns were depth and scene flow rather than optical flow. Several examples were given to show the basic potency of the method: It was able to recover good depth and motion, except at their boundaries because L2 regularization is blind to discontinuities which it smooths indiscriminately. The method we study in this paper generalizes to L1 regularization the formulation of Mitiche et al. (2015 so that it computes boundary preserving estimates of both depth and scene flow. The image derivatives, which appear as data in the functional, are computed from the recorded image sequence also by a variational method which uses L1 regularization to preserve their discontinuities. Although L1 regularization yields nonlinear Euler-Lagrange equations for the minimization of the objective functional, these can be solved efficiently. The advantages of the generalization, namely sharper computed depth and three-dimensional motion, are put in evidence in experimentation with real and synthetic images which shows the results of L1 versus L2 regularization of depth and motion, as well as the results using L1 rather than L2 regularization of image derivatives.

  13. BW Trained HMM based Aerial Image Segmentation

    OpenAIRE

    R Rajasree; J. Nalini; S C Ramesh

    2011-01-01

    Image segmentation is an essential preprocessing tread in a complicated and composite image dealing out algorithm. In segmenting arial image the expenditure of misclassification could depend on the factual group of pupils. In this paper, aggravated by modern advances in contraption erudition conjecture, I introduce a modus operandi to make light of the misclassification expenditure with class-dependent expenditure. The procedure assumes the hidden Markov model (HMM) which has been popularly u...

  14. Scene matching based on non-linear pre-processing on reference image and sensed image

    Institute of Scientific and Technical Information of China (English)

    Zhong Sheng; Zhang Tianxu; Sang Nong

    2005-01-01

    To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.

  15. From Content-Based Image Retrieval by Shape to Image Annotation

    Directory of Open Access Journals (Sweden)

    MOCANU, I.

    2010-11-01

    Full Text Available In many areas such as commerce, medical investigations, and others, large collections of digital images are being created. Search operations inside these collections of images are usually based on low-level features of objects contained in an image: color, shape, texture. Although such techniques of content-based image retrieval are useful, they are strongly limited by their inability to consider the meaning of images. Moreover, specifying a query in terms of low level features may not be very simple. Image annotation, in which images are associated with keywords describing their semantics, is a more effective way of image retrieval and queries can be naturally specified by the user. The paper presents a combined set of methods for image retrieval, in which both low level features and semantic properties are taken into account when retrieving images. First, it describes some methods for image representation and retrieval based on shape, and proposes a new such method, which overcomes some of the existing limitations. Then, it describes a new method for image semantic annotation based on a genetic algorithm, which is further improved from two points of view: the obtained solution value - using an anticipatory genetic algorithm, and the execution time - using a parallel genetic algorithm.

  16. Multiple descriptions based wavelet image coding

    Institute of Scientific and Technical Information of China (English)

    陈海林; 杨宇航

    2004-01-01

    We present a simple and efficient scheme that combines multiple descriptions coding with wavelet transform under JPEG2000 image coding architecture. To reduce packet losses, controlled amounts of redundancy are added to the wavelet transform coefficients to produce multiple descriptions of wavelet coefficients during the compression process to produce multiple descriptions bit-stream of a compressed image. Even if areceiver gets only parts of descriptions (other descriptions being lost), it can still reconstruct image with acceptable quality. Specifically, the scheme uses not only high-performance wavelet transform to improve compression efficiency, but also multiple descriptions technique to enhance the robustness of the compressed image that is transmitted through unreliable network channels.

  17. An Image Processing Algorithm Based On FMAT

    Science.gov (United States)

    Wang, Lui; Pal, Sankar K.

    1995-01-01

    Information deleted in ways minimizing adverse effects on reconstructed images. New grey-scale generalization of medial axis transformation (MAT), called FMAT (short for Fuzzy MAT) proposed. Formulated by making natural extension to fuzzy-set theory of all definitions and conditions (e.g., characteristic function of disk, subset condition of disk, and redundancy checking) used in defining MAT of crisp set. Does not need image to have any kind of priori segmentation, and allows medial axis (and skeleton) to be fuzzy subset of input image. Resulting FMAT (consisting of maximal fuzzy disks) capable of reconstructing exactly original image.

  18. Explosive Field Visualization Based on Image Fusion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-yao; JIANG Ling-shuang

    2009-01-01

    m the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.

  19. Fusion Core Imaging Experiment Based on the Shenguang Ⅱ Facility

    Institute of Scientific and Technical Information of China (English)

    郑志坚; 曹磊峰; 滕浩; 成金秀

    2002-01-01

    A laser fusion experiment was performed based on the Shenguang Ⅱ facility. An image of thermonuclear burning region was obtained with a Fresnel zone plate-coded imaging technique, where the laser-driven target was served as an α-particle source, and the coded image obtained in the experiment was reconstructed by a numerical way.

  20. A CT Image Segmentation Algorithm Based on Level Set Method

    Institute of Scientific and Technical Information of China (English)

    QU Jing-yi; SHI Hao-shan

    2006-01-01

    Level Set methods are robust and efficient numerical tools for resolving curve evolution in image segmentation. This paper proposes a new image segmentation algorithm based on Mumford-Shah module. The method is used to CT images and the experiment results demonstrate its efficiency and veracity.

  1. Structured-light Image Compression Based on Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of fractal image compression is introduced which is applied to compress the line structured-light image. Based on the self-similarity of the structured-light image, we attain satisfactory compression ratio and higher peak signal-to-noise ratio (PSNR). The experimental results indicate that this method can achieve high performance.

  2. Image dissimilarity-based quantification of lung disease from CT

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Loog, Marco; Lo, Pechin

    2010-01-01

    In this paper, we propose to classify medical images using dissimilarities computed between collections of regions of interest. The images are mapped into a dissimilarity space using an image dissimilarity measure, and a standard vector space-based classifier is applied in this space. The classif...

  3. SAR image target segmentation based on entropy maximization and morphology

    Institute of Scientific and Technical Information of China (English)

    柏正尧; 刘洲峰; 何佩琨

    2004-01-01

    Entropy maximization thresholding is a simple, effective image segmentation method. The relation between the histogram entropy and the gray level of an image is analyzed. An approach, which speeds the computation of optimal threshold based on entropy maximization, is proposed. The suggested method has been applied to the synthetic aperture radar (SAR) image targets segmentation. Mathematical morphology works well in reducing the residual noise.

  4. Under-Exposed Image Enhancement Based on Relaxed Luminance Optimization

    National Research Council Canada - National Science Library

    Chunxiao Liu; Feng Yang

    2013-01-01

    ... optimization based under-exposed image clearness enhancement algorithm, which treats it as the simultaneous augmentation of luminance and contrast, and combines them in an optimization framework under...

  5. Web Image Retrieval Search Engine based on Semantically Shared Annotation

    Directory of Open Access Journals (Sweden)

    Alaa Riad

    2012-03-01

    Full Text Available This paper presents a new majority voting technique that combines the two basic modalities of Web images textual and visual features of image in a re-annotation and search based framework. The proposed framework considers each web page as a voter to vote the relatedness of keyword to the web image, the proposed approach is not only pure combination between image low level feature and textual feature but it take into consideration the semantic meaning of each keyword that expected to enhance the retrieval accuracy. The proposed approach is not used only to enhance the retrieval accuracy of web images; but also able to annotated the unlabeled images.

  6. A New Images Hiding Scheme Based on Chaotic Sequences

    Institute of Scientific and Technical Information of China (English)

    LIU Nian-sheng; GUO Dong-hui; WU Bo-xi; Parr G

    2005-01-01

    We propose a data hidding technique in a still image. This technique is based on chaotic sequence in the transform domain of covert image. We use different chaotic random sequences multiplied by multiple sensitive images, respectively, to spread the spectrum of sensitive images. Multiple sensitive images are hidden in a covert image as a form of noise. The results of theoretical analysis and computer simulation show the new hiding technique have better properties with high security, imperceptibility and capacity for hidden information in comparison with the conventional scheme such as LSB (Least Significance Bit).

  7. Optical microscopic imaging based on VRML language

    Science.gov (United States)

    Zhang, Xuedian; Zhang, Zhenyi; Sun, Jun

    2009-11-01

    As so-called VRML (Virtual Reality Modeling Language), is a kind of language used to establish a model of the real world or a colorful world made by people. As in international standard, VRML is the main kind of program language based on the "www" net building, which is defined by ISO, the kind of MIME is x-world or x-VRML. The most important is that it has no relationship with the operating system. Otherwise, because of the birth of VRML 2.0, its ability of describing the dynamic condition gets better, and the interaction of the internet evolved too. The use of VRML will bring a revolutionary change of confocal microscope. For example, we could send different kinds of swatch in virtual 3D style to the net. On the other hand, scientists in different countries could use the same microscope in the same time to watch the same samples by the internet. The mode of sending original data in the model of text has many advantages, such as: the faster transporting, the fewer data, the more convenient updating and fewer errors. In the following words we shall discuss the basic elements of using VRML in the field of Optical Microscopic imaging.

  8. MS Based Imaging of Barley Seed Development

    Institute of Scientific and Technical Information of China (English)

    Manuela Peukert; Andrea Matros; Hans-Peter Mock

    2012-01-01

    Spatially resolved analysis of metabolites and proteins is essential to model compartmentalized cellular processes in plants.Within recent years,tremendous progress has been made in MS based imaging (MSI) techniques,mostly MALDI MSI.The technology has been pioneered and is now widely applied in medicinal and pharmacological studies,and in recent years found its way into plant science (Kaspar et al.,2011; Peukert etal.,2012).We are interested in the elucidation of spatially resolved metabolic networks related to barley grain development.An understanding of developmentally and ecologically regulated processes affecting agronomical traits such as final grain weight,seed quality and stress tolerance is of outmost importance,as barley provides one of the staple foods.Barley also serves as a model plant for other cereals such as wheat.The presentation will introduce an untargeted MALDI MSI approach to the analysis of me-tabolite patterns during barley grain development.We analyzed longitudinal and cross sections from developing barley grains (3,7,10 and 14 days after pollination).In the presentation we will address spatial resolution,sensitivity and identification of unknown compounds will also be discussed.A major task is to connect the metabolite patterns to distinct cellular and physiological events.As an example,particular metabolite distributions indicative for nutrient transport into the developing endosperm will be shown.

  9. Image compression and transmission based on LAN

    Science.gov (United States)

    Huang, Sujuan; Li, Yufeng; Zhang, Zhijiang

    2004-11-01

    In this work an embedded system is designed which implements MPEG-2 LAN transmission of CVBS or S-video signal. The hardware consists of three parts. The first is digitization of analog inputs CVBS or S-video (Y/C) from TV or VTR sources. The second is MPEG-2 compression coding primarily performed by a MPEG-2 1chip audio/video encoder. Its output is MPEG-2 system PS/TS. The third part includes data stream packing, accessing LAN and system control based on an ARM microcontroller. It packs the encoded stream into Ethernet data frames and accesses LAN, and accepts Ethernet data packets bearing control information from the network and decodes corresponding commands to control digitization, coding, and other operations. In order to increase the network transmission rate to conform to the MEPG-2 data stream, an efficient TCP/IP network protocol stack is constructed directly from network hardware provided by the embedded system, instead of using an ordinary operating system for embedded systems. In the design of the network protocol stack to obtain a high LAN transmission rate on a low-end ARM, a special transmission channel is opened for the MPEG-2 stream. The designed system has been tested on an experimental LAN. The experiment shows a maximum LAN transmission rate up to 12.7 Mbps with good sound and image quality, and satisfactory system reliability.

  10. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    Science.gov (United States)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  11. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    Science.gov (United States)

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  12. Fingerprint Image Enhancement Based on Second Directional Derivative of the Digital Image

    Directory of Open Access Journals (Sweden)

    Onnia Vesa

    2002-01-01

    Full Text Available This paper presents a novel approach of fingerprint image enhancement that relies on detecting the fingerprint ridges as image regions where the second directional derivative of the digital image is positive. A facet model is used in order to approximate the derivatives at each image pixel based on the intensity values of pixels located in a certain neighborhood. We note that the size of this neighborhood has a critical role in achieving accurate enhancement results. Using neighborhoods of various sizes, the proposed algorithm determines several candidate binary representations of the input fingerprint pattern. Subsequently, an output binary ridge-map image is created by selecting image zones, from the available binary image candidates, according to a MAP selection rule. Two public domain collections of fingerprint images are used in order to objectively assess the performance of the proposed fingerprint image enhancement approach.

  13. Intrinsic feature-based pose measurement for imaging motion compensation

    Science.gov (United States)

    Baba, Justin S.; Goddard, Jr., James Samuel

    2014-08-19

    Systems and methods for generating motion corrected tomographic images are provided. A method includes obtaining first images of a region of interest (ROI) to be imaged and associated with a first time, where the first images are associated with different positions and orientations with respect to the ROI. The method also includes defining an active region in the each of the first images and selecting intrinsic features in each of the first images based on the active region. Second, identifying a portion of the intrinsic features temporally and spatially matching intrinsic features in corresponding ones of second images of the ROI associated with a second time prior to the first time and computing three-dimensional (3D) coordinates for the portion of the intrinsic features. Finally, the method includes computing a relative pose for the first images based on the 3D coordinates.

  14. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  15. Application of optical coherence tomography based microangiography for cerebral imaging

    Science.gov (United States)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  16. Image mosaic method based on SIFT features of line segment.

    Science.gov (United States)

    Zhu, Jun; Ren, Mingwu

    2014-01-01

    This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  17. RESEARCH ON WEIGHTED PRIORITY OF EXEMPLAR-BASED IMAGE INPAINTING

    Institute of Scientific and Technical Information of China (English)

    Zhou Yatong; Li Lin; Xia Kewen

    2012-01-01

    The priority of the filled patch play a key role in the exemplar-based image inpainting,and it should be determined firstly to optimize the process of image inpainting.A modified image inpainting algorithm is proposed by weighted-priority based on the Criminisi algorithm.The improved algorithm demonstrates better relationship between the data term and the confidence term for the optimization of the priority than the classical Criminisi algorithm.By comparing the effect of the inpainted images with different structure,conclusion can be drawn that the optimal priority should be chosen properly for different images with different structures.

  18. Multiresolution image fusion scheme based on fuzzy region feature

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; JING Zhong-liang; SUN Shao-yuan

    2006-01-01

    This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important regions and background regions. Each feature of the regions is used to determine the region's degree of membership in the multiresolution representation,and then to achieve multiresolution representation of the fusion result. The final image fusion result can be obtained by using the inverse multiresolution transform. Experiments showed that the proposed image fusion method can have better performance than existing image fusion methods.

  19. A Novel Image Fusion Algorithm for Visible and PMMW Images based on Clustering and NSCT

    OpenAIRE

    Xiong Jintao; Xie Weichao; Yang Jianyu; Fu Yanlong; Hu Kuan; Zhong Zhibin

    2016-01-01

    Aiming at the fusion of visible and Passive Millimeter Wave (PMMW) images, a novel algorithm based on clustering and NSCT (Nonsubsampled Contourlet Transform) is proposed. It takes advantages of the particular ability of PMMW image in presenting metal target and uses the clustering algorithm for PMMW image to extract the potential target regions. In the process of fusion, NSCT is applied to both input images, and then the decomposition coefficients on different scale are combined using differ...

  20. Segmentation and Content-Based Watermarking for Color Image and Image Region Indexing and Retrieval

    Directory of Open Access Journals (Sweden)

    Nikolaos V. Boulgouris

    2002-04-01

    Full Text Available In this paper, an entirely novel approach to image indexing is presented using content-based watermarking. The proposed system uses color image segmentation and watermarking in order to facilitate content-based indexing, retrieval and manipulation of digital images and image regions. A novel segmentation algorithm is applied on reduced images and the resulting segmentation mask is embedded in the image using watermarking techniques. In each region of the image, indexing information is additionally embedded. In this way, the proposed system is endowed with content-based access and indexing capabilities which can be easily exploited via a simple watermark detection process. Several experiments have shown the potential of this approach.

  1. Tilt correction method of text image based on wavelet pyramid

    Science.gov (United States)

    Yu, Mingyang; Zhu, Qiguo

    2017-04-01

    Text images captured by camera may be tilted and distorted, which is unfavorable for document character recognition. Therefore,a method of text image tilt correction based on wavelet pyramid is proposed in this paper. The first step is to convert the text image captured by cameras to binary images. After binarization, the images are layered by wavelet transform to achieve noise reduction, enhancement and compression of image. Afterwards,the image would bedetected for edge by Canny operator, and extracted for straight lines by Radon transform. In the final step, this method calculates the intersection of straight lines and gets the corrected text images according to the intersection points and perspective transformation. The experimental result shows this method can correct text images accurately.

  2. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...

  3. Image-based information, communication, and retrieval

    Science.gov (United States)

    Bryant, N. A.; Zobrist, A. L.

    1980-01-01

    IBIS/VICAR system combines video image processing and information management. Flexible programs require user to supply only parameters specific to particular application. Special-purpose input/output routines transfer image data with reduced memory requirements. New application programs are easily incorporated. Program is written in FORTRAN IV, Assembler, and OS JCL for batch execution and has been implemented on IBM 360.

  4. Moving Target Information Extraction Based on Single Satellite Image

    Directory of Open Access Journals (Sweden)

    ZHAO Shihu

    2015-03-01

    Full Text Available The spatial and time variant effects in high resolution satellite push broom imaging are analyzed. A spatial and time variant imaging model is established. A moving target information extraction method is proposed based on a single satellite remote sensing image. The experiment computes two airplanes' flying speed using ZY-3 multispectral image and proves the validity of spatial and time variant model and moving information extracting method.

  5. Application of fuzzy logic in content-based image retrieval

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-ling; XIE Kang-lin

    2008-01-01

    We propose a fuzzy logic-based image retrieval system, in which the image similarity can be inferred in a nonlinear manner as human thinking. In the fuzzy inference process, weight assignments of multi-image features were resolved impliedly. Each fuzzy rule was embedded into the subjectivity of human perception of image contents. A color histogram called the average area histogram is proposed to represent the color features. Experimental results show the efficiency and feasibility of the proposed algorithms.

  6. Accurate Image Retrieval Algorithm Based on Color and Texture Feature

    Directory of Open Access Journals (Sweden)

    Chunlai Yan

    2013-06-01

    Full Text Available Content-Based Image Retrieval (CBIR is one of the most active hot spots in the current research field of multimedia retrieval. According to the description and extraction of visual content (feature of the image, CBIR aims to find images that contain specified content (feature in the image database. In this paper, several key technologies of CBIR, e. g. the extraction of the color and texture features of the image, as well as the similarity measures are investigated. On the basis of the theoretical research, an image retrieval system based on color and texture features is designed. In this system, the Weighted Color Feature based on HSV space is adopted as a color feature vector, four features of the Co-occurrence Matrix, saying Energy, Entropy, Inertia Quadrature and Correlation, are used to construct texture vectors, and the Euclidean distance for similarity measure is employed as well. Experimental results show that this CBIR system is efficient in image retrieval.

  7. Colorimetry-based edge preservation approach for color image enhancement

    Science.gov (United States)

    Suresh, Merugu; Jain, Kamal

    2016-07-01

    "Subpixel-based downsampling" is an approach that can implicitly enhance perceptible image resolution of a downsampled image by managing subpixel-level representation preferably with individual pixel. A subpixel-level representation for color image sample at edge region and color image representation is focused with the problem of directional filtration based on horizontal and vertical orientations using colorimetric color space with the help of saturation and desaturation pixels. A diagonal tracing algorithm and an edge preserving approach with colorimetric color space were used for color image enhancement. Since, there exist high variations at the edge regions, it could not be considered as constant or zero, and when these variations are random the need to compensate these to minimum value and then process for image representation. Finally, the results of the proposed method show much better image information as compared with traditional direct pixel-based methods with increased luminance and chrominance resolutions.

  8. An Improved Image Segmentation Based on Mean Shift Algorithm

    Institute of Scientific and Technical Information of China (English)

    CHENHanfeng; QIFeihu

    2003-01-01

    Gray image segmentation is to segment an image into some homogeneous regions and only one gray level is defined for each region as the result. These grayl evels are called major gray levels. Mean shift algorithm(MSA) has shown its efficiency in image segmentation. An improved gray image segmentation method based on MSAis proposed in this paper since usual image segmentation methods based on MSA often fail in segmenting imageswith weak edges. Corrupted block and its J-value are defined firstly in the proposed method. Then, J-matrix gotten from corrupted blocks are proposed to measure whether weak edges appear in the image. According to the J-matrix, major gray levels gotten with usual segmen-tation methods based on MSA are augmented and corre-sponding allocation windows are modified to detect weak edges. Experimental results demonstrate the effectiveness of the proposed method in gray image segmentation.

  9. DBSC-Based Grayscale Line Image Vectorization

    Institute of Scientific and Technical Information of China (English)

    Konstantin Melikhov; Feng Tian; Jie Qiu; Quan Chen; Hock Soon Seah

    2006-01-01

    Vector graphics plays an important role in computer animation and imaging technologies. However present techniques and tools cannot fully replace traditional pencil and paper. Additionally, vector representation of an image is not always available. There is not yet a good solution for vectorizing a picture drawn on a paper. This work attempts to solve the problem of vectorizing grayscale line drawings. The solution proposed uses Disk B-Spline curves to represent strokes of an image in vector form. The algorithm builds a vector representation from a grayscale raster image, which can be a scanned picture for instance. The proposed method uses a Gaussian sliding window to calculate skeleton and perceptive width of a stroke. As a result of vectorization, the given image is represented by a set of Disk B-Spline curves.

  10. Microscopic neural image registration based on the structure of mitochondria

    Science.gov (United States)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  11. Content-based Image Retrieval by Information Theoretic Measure

    Directory of Open Access Journals (Sweden)

    Madasu Hanmandlu

    2011-09-01

    Full Text Available Content-based image retrieval focuses on intuitive and efficient methods for retrieving images from databases based on the content of the images. A new entropy function that serves as a measure of information content in an image termed as 'an information theoretic measure' is devised in this paper. Among the various query paradigms, 'query by example' (QBE is adopted to set a query image for retrieval from a large image database. In this paper, colour and texture features are extracted using the new entropy function and the dominant colour is considered as a visual feature for a particular set of images. Thus colour and texture features constitute the two-dimensional feature vector for indexing the images. The low dimensionality of the feature vector speeds up the atomic query. Indices in a large database system help retrieve the images relevant to the query image without looking at every image in the database. The entropy values of colour and texture and the dominant colour are considered for measuring the similarity. The utility of the proposed image retrieval system based on the information theoretic measures is demonstrated on a benchmark dataset.Defence Science Journal, 2011, 61(5, pp.415-430, DOI:http://dx.doi.org/10.14429/dsj.61.1177

  12. An Integrated Approach for Image Retrieval based on Content

    Directory of Open Access Journals (Sweden)

    Kavita Choudhary

    2010-05-01

    Full Text Available The difficulties faced in an image retrieval system used for browsing, searching and retrieving of image in an image databases cannot be underestimated also the efficient management of the rapidly expanding visual information has become an urgent problem in science and technology. This requirement formed the driving force behind the emergence of image retrieval techniques. Image retrieval based on content also called content based image retrieval, is a technique which uses the visual contents to search an image in the scale database. This Image retrieval technique integrate both low-level visual features, addressing the more detailed perceptual aspects, and high-level semantic features underlying the more general conceptual aspects of visual data. In connection with this Content Based Image Retrieval is a technology that is being developed to address different application areas, remote sensing, geographic information systems, and weather forecasting, architectural and engineering design, multimedia documents for digital libraries. In this paper we present an approach that significantly automates the retrieving process by relying on image analysis techniques that are based on image visual features like color with spatial information, texture and shape.

  13. Content Based Medical Image Retrieval for Histopathological, CT and MRI Images

    Directory of Open Access Journals (Sweden)

    Swarnambiga AYYACHAMY

    2013-09-01

    Full Text Available A content based approach is followed for medical images. The purpose of this study is to access the stability of these methods for medical image retrieval. The methods used in color based retrieval for histopathological images are color co-occurrence matrix (CCM and histogram with meta features. For texture based retrieval GLCM (gray level co-occurrence matrix and local binary pattern (LBP were used. For shape based retrieval canny edge detection and otsu‘s method with multivariable threshold were used. Texture and shape based retrieval were implemented using MRI (magnetic resonance images. The most remarkable characteristics of the article are its content based approach for each medical imaging modality. Our efforts were focused on the initial visual search. From our experiment, histogram with meta features in color based retrieval for histopathological images shows a precision of 60 % and recall of 30 %. Whereas GLCM in texture based retrieval for MRI images shows a precision of 70 % and recall of 20 %. Shape based retrieval for MRI images shows a precision of 50% and recall of 25 %. The retrieval results shows that this simple approach is successful.

  14. Chromaticity based smoke removal in endoscopic images

    Science.gov (United States)

    Tchaka, Kevin; Pawar, Vijay M.; Stoyanov, Danail

    2017-02-01

    In minimally invasive surgery, image quality is a critical pre-requisite to ensure a surgeons ability to perform a procedure. In endoscopic procedures, image quality can deteriorate for a number of reasons such as fogging due to the temperature gradient after intra-corporeal insertion, lack of focus and due to smoke generated when using electro-cautery to dissect tissues without bleeding. In this paper we investigate the use of vision processing techniques to remove surgical smoke and improve the clarity of the image. We model the image formation process by introducing a haze medium to account for the degradation of visibility. For simplicity and computational efficiency we use an adapted dark-channel prior method combined with histogram equalization to remove smoke artifacts to recover the radiance image and enhance the contrast and brightness of the final result. Our initial results on images from robotic assisted procedures are promising and show that the proposed approach may be used to enhance image quality during surgery without additional suction devices. In addition, the processing pipeline may be used as an important part of a robust surgical vision pipeline that can continue working in the presence of smoke.

  15. Monocular concurrent recovery of structure and motion scene flow

    Directory of Open Access Journals (Sweden)

    Amar eMitiche

    2015-09-01

    Full Text Available This paper describes a variational method of joint three-dimensional structure and motion scene flow recovery from a single image sequence. A basic scheme is developed by minimizing a functional with a term of conformity of scene flow and depth to the image sequence spatiotemporal variations, and quadratic smoothness regularization terms. The data term follows by re-writing optical velocity in the optical flow gradient constraint in terms of scene flow and depth. As a result, this problem statement is analogous to the classical Horn and Schunck optical flow formulation except that it involves scene flow and depth rather than image motion. When discretized, the Euler-Lagrange equations give a large scale sparse system of linear equations in the unknowns of the scene flow three coordinates and depth. The equations can be ordered in such a way that its matrix is symmetric positive definite such that they can be solved efficiently by Gauss-Seidel iterations. Experiments are shown to verify the scheme’s validity and efficiency.

  16. Image segmentation based on competitive learning

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LIU Qun; Baikunth Nath

    2004-01-01

    Image segment is a primary step in image analysis of unexploded ordnance (UXO) detection by ground p enetrating radar (GPR) sensor which is accompanied with a lot of noises and other elements that affect the recognition of real target size. In this paper we bring forward a new theory, that is, we look the weight sets as target vector sets which is the new cues in semi-automatic segmentation to form the final image segmentation. The experiment results show that the measure size of target with our method is much smaller than the size with other methods and close to the real size of target.

  17. Piecewise Linear Model-Based Image Enhancement

    Directory of Open Access Journals (Sweden)

    Fabrizio Russo

    2004-09-01

    Full Text Available A novel technique for the sharpening of noisy images is presented. The proposed enhancement system adopts a simple piecewise linear (PWL function in order to sharpen the image edges and to reduce the noise. Such effects can easily be controlled by varying two parameters only. The noise sensitivity of the operator is further decreased by means of an additional filtering step, which resorts to a nonlinear model too. Results of computer simulations show that the proposed sharpening system is simple and effective. The application of the method to contrast enhancement of color images is also discussed.

  18. Fast image matching algorithm based on projection characteristics

    Science.gov (United States)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  19. Indexing natural images for retrieval based on Kansei factors

    Science.gov (United States)

    Black, John A., Jr.; Kahol, Kanav; Tripathi, Priyamvada; Kuchi, Prem; Panchanathan, Sethuraman

    2004-06-01

    Current image indexing methods are based on measures of visual content. However, this approach provides only a partial solution to the image retrieval problem. For example, an artist might want to retrieve an image (for use in an advertising campaign) that evokes a particular "feeling" in the viewer. One technique for measuring evoked feelings, which originated in Japan, indexes images based on the inner impression (i.e. the kansei) experienced by a person while viewing an image or object-impressions such as busy, elegant, romantic, or lavish. The aspects of the image that evoke this inner impression in the viewer are called kansei factors. The challenge in kansei research is to enumerate those factors, with the ultimate goal of indexing images with the "inner impression" that viewers experience. Thus, the focus is on the viewer, rather than on the image, and similarity measures derived from kansei indexing represent similarities in inner experience, rather than visual similarity. This paper presents the results of research that indexes images based on a set of kansei impressions, and then looks for correlations between that indexing and traditional content-based indexing. The goal is to allow the indexing of images based on the inner impressions they evoke, using visual content.

  20. A New Robust Image Matching Method Based on Distance Reciprocal

    Institute of Scientific and Technical Information of China (English)

    赵春江; 施文康; 邓勇

    2004-01-01

    Object matching between two-dimensional images is an important problem in computer vision. The purpose of object matching is to decide the similarity between two objects. A new robust image matching method based on distance reciprocal was presented. The distance reciprocal is based on human visual perception. This method is simple and effective. Moreover, it is robust against noise. The experiments show that this method outperforms the Hausdorff distance, when the images with noise interfered need to be recognized.

  1. Comparison of Two Distance Based Alignment Method in Medical Imaging

    Science.gov (United States)

    2001-10-25

    very helpful to register large datasets of contours or surfaces, commonly encountered in medical imaging . They do not require special ordering or...COMPARISON OF TWO DISTANCE BASED ALIGNMENT METHOD IN MEDICAL IMAGING G. Bulan, C. Ozturk Institute of Biomedical Engineering, Bogazici University...Two Distance Based Alignment Method in Medical Imaging Contract Number Grant Number Program Element Number Author(s) Project Number Task Number

  2. Mobile image based color correction using deblurring

    Science.gov (United States)

    Wang, Yu; Xu, Chang; Boushey, Carol; Zhu, Fengqing; Delp, Edward J.

    2015-03-01

    Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many chronic diseases such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) System, developed at Purdue University, is to automatically identify and quantify foods and beverages consumed by utilizing food images acquired with a mobile device. Color correction serves as a critical step to ensure accurate food identification and volume estimation. We make use of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging system so that the variations of food appearance under different lighting conditions can be determined. In this paper, we propose an image quality enhancement technique by combining image de-blurring and color correction. The contribution consists of introducing an automatic camera shake removal method using a saliency map and improving the polynomial color correction model using the LMS color space.

  3. Multiple descriptions based wavelet image coding

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-lin(陈海林); YANG Yu-hang(杨宇航)

    2004-01-01

    We present a simple and efficient scheme that combines multiple descriptions coding with wavelet transform under JPEG2000 image coding architecture. To reduce packet losses, controlled amounts of redundancy are added to the wavelet transform coefficients to produce multiple descriptions of wavelet coefficients during the compression process to produce multiple descriptions bit-stream of a compressed image. Even if a receiver gets only parts of descriptions (other descriptions being lost), it can still reconstruct image with acceptable quality. Specifically, the scheme uses not only high-performance wavelet transform to improve compression efficiency, but also multiple descriptions technique to enhance the robustness of the compressed image that is transmitted through unreliable network channels.

  4. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  5. Image Content Based Retrieval System using Cosine Similarity for Skin Disease Images

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kaur

    2013-09-01

    Full Text Available A content based image retrieval system (CBIR is proposed to assist the dermatologist for diagnosis of skin diseases. First, after collecting the various skin disease images and their text information (disease name, symptoms and cure etc, a test database (for query image and a train database of 460 images approximately (for image matching are prepared. Second, features are extracted by calculating the descriptive statistics. Third, similarity matching using cosine similarity and Euclidian distance based on the extracted features is discussed. Fourth, for better results first four images are selected during indexing and their related text information is shown in the text file. Last, the results shown are compared according to doctor’s description and according to image content in terms of precision and recall and also in terms of a self developed scoring system.

  6. Creating a Web-based image database for benchmarking image retrieval systems

    Science.gov (United States)

    Joergensen, Corinne; Srihari, Rohini K.

    1999-05-01

    There is, at present, a critical need within image retrieval research for an image testbed which would enable the objective evaluation of different content-based search engines, indexing and metadata schemes, and search heuristics, as well as research and evaluation in image- based knowledge structures and system architectures, user's needs in image retrieval and the cognitive processes involved in image searching. This paper discusses a pilot project specifying and establishing a prototype testbed for the evaluation of image retrieval techniques. A feasibility study is underway focusing on the development of a large set of standardized test images accessible through a web interface, and researchers in the field are being surveyed for input. Areas being addressed in the feasibility study include technical specifications as well as content issues such as: which specific image domains to include; the useful proportion of imags belonging to specific domains to images belonging to a general 'world' domain; types of image attributes and baseline and 'advanced' levels of image description needed, and research needs to be accommodated, as well as development of a standardized set of test queries and the establishment of methods for 'truthing' the database and test queries.

  7. Straight line feature based image distortion correction

    Institute of Scientific and Technical Information of China (English)

    Zhang Haofeng; Zhao Chunxia; Lu Jianfeng; Tang Zhenmin; Yang Jingyu

    2008-01-01

    An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordi-nation is not need to know, and the method is easy to implement. The experiment result shows its high accuracy.

  8. Image-based Localization using Hourglass Networks

    OpenAIRE

    Melekhov, Iaroslav; Ylioinas, Juha; Kannala, Juho; Rahtu, Esa

    2017-01-01

    In this paper, we propose an encoder-decoder convolutional neural network (CNN) architecture for estimating camera pose (orientation and location) from a single RGB-image. The architecture has a hourglass shape consisting of a chain of convolution and up-convolution layers followed by a regression part. The up-convolution layers are introduced to preserve the fine-grained information of the input image. Following the common practice, we train our model in end-to-end manner utilizing transfer ...

  9. OBJECT-BASED CHANGE DETECTION USING GEOREFERENCED UAV IMAGES

    Directory of Open Access Journals (Sweden)

    J. Shi

    2012-09-01

    Full Text Available Unmanned aerial vehicles (UAV have been widely used to capture and down-link real-time videos/images. However, their role as a low-cost airborne platform for capturing high-resolution, geo-referenced still imagery has not been fully utilized. The images obtained from UAV are advantageous over remote sensing images as they can be obtained at a low cost and potentially no risk to human life. However, these images are distorted due to the noise generated by the rotary wings which limits the usefulness of such images. One potential application of such images is to detect changes between the images of the same area which are collected over time. Change detection is of widespread interest due to a large number of applications, including surveillance and civil infrastructure. Although UAVs can provide images with high resolution in a portable and easy way, such images only cover small parts of the entire field of interest and are often with high deformation. Until now, there is not much application of change detection for UAV images. Also the traditional pixel-based change detection method does not give satisfactory results for such images. In this paper, we have proposed a novel object-based method for change detection using UAV images which can overcome the effect of deformation and can fully utilize the high resolution capability of UAV images. The developed method can be divided into five main blocks: pre-processing, image matching, image segmentation and feature extraction, change detection and accuracy evaluation. The pre-processing step is further divided into two sub-steps: the first sub-step is to geometrically correct the bi-temporal image based on the geo-reference information (GPS/INS installed on the UAV system, and the second sub-step is the radiometric normalization using a histogram method. The image matching block uses the well-known scale-invariant feature transform (SIFT algorithm to match the same areas in the images and then

  10. Thinning based Antialiasing Approach for Visual Saliency of Digital Images

    NARCIS (Netherlands)

    Rukundo, O.

    2015-01-01

    A thinning based approach for spatial antialiasing (TAA) has been proposed for visual saliency of digital images. This TAA approach is based on edge-matting and digital compositing strategies. Prior to edgematting the image edges are detected using ant colony optimization (ACO) algorithm and then th

  11. Thinning based Antialiasing Approach for Visual Saliency of Digital Images

    NARCIS (Netherlands)

    Rukundo, O.

    2015-01-01

    A thinning based approach for spatial antialiasing (TAA) has been proposed for visual saliency of digital images. This TAA approach is based on edge-matting and digital compositing strategies. Prior to edgematting the image edges are detected using ant colony optimization (ACO) algorithm and then

  12. Biomedical images texture detail denoising based on PDE

    Science.gov (United States)

    Chen, Guan-nan; Pan, Jian-ji; Li, Chao; Chen, Rong; Lin, Ju-qiang; Yan, Kun-tao; Huang, Zu-fang

    2009-08-01

    Biomedical images denosing based on Partial Differential Equation are well-known for their good processing results. General denosing methods based on PDE can remove the noises of images with gentle changes and preserve more structure details of edges, but have a poor effectiveness on the denosing of biomedical images with many texture details. This paper attempts to make an overview of biomedical images texture detail denosing based on PDE. Subsequently, Three kinds of important image denosing schemes are introduced in this paper: one is image denosing based on the adaptive parameter estimation total variation model, which denosing the images based on region energy distribution; the second is using G norm on the perception scale, which provides a more intuitive understanding of this norm; the final is multi-scale denosing decomposition. The above methods involved can preserve more structures of biomedical images texture detail. Furthermore, this paper demonstrates the applications of those three methods. In the end, the future trend of biomedical images texture detail denosing Based on PDE is pointed out.

  13. A Color Image Digital Watermarking Scheme Based on SOFM

    CERN Document Server

    Anitha, J

    2011-01-01

    Digital watermarking technique has been presented and widely researched to solve some important issues in the digital world, such as copyright protection, copy protection and content authentication. Several robust watermarking schemes based on vector quantization (VQ) have been presented. In this paper, we present a new digital image watermarking method based on SOFM vector quantizer for color images. This method utilizes the codebook partition technique in which the watermark bit is embedded into the selected VQ encoded block. The main feature of this scheme is that the watermark exists both in VQ compressed image and in the reconstructed image. The watermark extraction can be performed without the original image. The watermark is hidden inside the compressed image, so much transmission time and storage space can be saved when the compressed data are transmitted over the Internet. Simulation results demonstrate that the proposed method has robustness against various image processing operations without sacrif...

  14. Incorporating privileged genetic information for fundus image based glaucoma detection.

    Science.gov (United States)

    Duan, Lixin; Xu, Yanwu; Li, Wen; Chen, Lin; Wing, Damon Wing Kee; Wong, Tien Yin; Liu, Jiang

    2014-01-01

    Visual features extracted from retinal fundus images have been increasingly used for glaucoma detection, as those images are generally easy to acquire. In recent years, genetic researchers have found that some single nucleic polymorphisms (SNPs) play important roles in the manifestation of glaucoma and also show superiority over fundus images for glaucoma detection. In this work, we propose to use the SNPs to form the so-called privileged information and deal with a practical problem where both fundus images and privileged genetic information exist for the training subjects, while the test objects only have fundus images. To solve this problem, we present an effective approach based on the learning using privileged information (LUPI) paradigm to train a predictive model for the image visual features. Extensive experiments demonstrate the usefulness of our approach in incorporating genetic information for fundus image based glaucoma detection.

  15. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  16. Colorimetric Sensor Arrays System Based on FPGA for Image Recognition

    Institute of Scientific and Technical Information of China (English)

    Rui Chen; Jian-Hua Xu; Ya-Dong Jiang

    2009-01-01

    A FPGA-based image recognition system is designed for colorimetric sensor array in order to recognize a wide range of volatile organic compounds. The gas molecule is detected by the responsive sensor array and the responsive image is obtained. The image is decomposed to RGB color components using CMOS image sensor. An embedded image recognition archi- tecture based on Xilinx Spartan-3 FPGA is designed to implement the algorithms of image recognition. The algorithm of color coherence vector is discussed in detail[X1] compared with the algorithm of color histograms, and experimental results demonstrate that both of the two algorithms could be analyzed effectively to represent different volatile organic compounds according to their different responsive images in this system.

  17. Manifold learning based registration algorithms applied to multimodal images.

    Science.gov (United States)

    Azampour, Mohammad Farid; Ghaffari, Aboozar; Hamidinekoo, Azam; Fatemizadeh, Emad

    2014-01-01

    Manifold learning algorithms are proposed to be used in image processing based on their ability in preserving data structures while reducing the dimension and the exposure of data structure in lower dimension. Multi-modal images have the same structure and can be registered together as monomodal images if only structural information is shown. As a result, manifold learning is able to transform multi-modal images to mono-modal ones and subsequently do the registration using mono-modal methods. Based on this application, in this paper novel similarity measures are proposed for multi-modal images in which Laplacian eigenmaps are employed as manifold learning algorithm and are tested against rigid registration of PET/MR images. Results show the feasibility of using manifold learning as a way of calculating the similarity between multimodal images.

  18. Total Variation Based Perceptual Image Quality Assessment Modeling

    Directory of Open Access Journals (Sweden)

    Yadong Wu

    2014-01-01

    Full Text Available Visual quality measure is one of the fundamental and important issues to numerous applications of image and video processing. In this paper, based on the assumption that human visual system is sensitive to image structures (edges and image local luminance (light stimulation, we propose a new perceptual image quality assessment (PIQA measure based on total variation (TV model (TVPIQA in spatial domain. The proposed measure compares TVs between a distorted image and its reference image to represent the loss of image structural information. Because of the good performance of TV model in describing edges, the proposed TVPIQA measure can illustrate image structure information very well. In addition, the energy of enclosed regions in a difference image between the reference image and its distorted image is used to measure the missing luminance information which is sensitive to human visual system. Finally, we validate the performance of TVPIQA measure with Cornell-A57, IVC, TID2008, and CSIQ databases and show that TVPIQA measure outperforms recent state-of-the-art image quality assessment measures.

  19. IMAGE SELECTION FOR 3D MEASUREMENT BASED ON NETWORK DESIGN

    Directory of Open Access Journals (Sweden)

    T. Fuse

    2015-05-01

    Full Text Available 3D models have been widely used by spread of many available free-software. On the other hand, enormous images can be easily acquired, and images are utilized for creating the 3D models recently. However, the creation of 3D models by using huge amount of images takes a lot of time and effort, and then efficiency for 3D measurement are required. In the efficiency strategy, the accuracy of the measurement is also required. This paper develops an image selection method based on network design that means surveying network construction. The proposed method uses image connectivity graph. By this, the image selection problem is regarded as combinatorial optimization problem and the graph cuts technique can be applied. Additionally, in the process of 3D reconstruction, low quality images and similarity images are extracted and removed. Through the experiments, the significance of the proposed method is confirmed. Potential to efficient and accurate 3D measurement is implied.

  20. System refinement for content based satellite image retrieval

    Directory of Open Access Journals (Sweden)

    NourElDin Laban

    2012-06-01

    Full Text Available We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.