WorldWideScience

Sample records for monocot plant species

  1. Transcript profiling of a novel plant meristem, the monocot cambium

    Science.gov (United States)

    Matthew Zinkgraf; Suzanne Gerttula; Andrew Groover

    2017-01-01

    While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an...

  2. Lumichrome and riboflavin are two novel symbiotic signals eliciting developmental changes in both monocot and dicot plant species

    Directory of Open Access Journals (Sweden)

    Felix Dapare Dakora

    2015-09-01

    Full Text Available Lumichrome and riboflavin are novel molecules from rhizobial exudates that stimulate plant growth. Developmental changes elicited by lumichrome at very low nanomolar concentrations (5 nM include early initiation of trifoliate leaves, expansion of unifoliate and trifoliate leaves, increased stem elongation and leaf area, and consequently greater biomass accumulation in monocots and dicots. However, higher lumichrome concentration (50 nM depressed root development and reduced growth of unifoliate and second trifoliate leaves. Applying either 10 nM lumichrome, 10 nM ABA, or 10 ml of infective rhizobial cells (0.2 OD600 to roots of monocots and dicots for 44 h produced identical effects, which included decreased stomatal conductance and leaf transpiration in Bambara groundnut, soybean and maize, increased stomatal conductance and transpiration in cowpea and lupin, and elevated root respiration in maize (19% by rhizobia and 20% by lumichrome. Extracellular exudation of lumichrome, riboflavin and IAA was greater in N2-fixing rhizobia than non-fixing bacteria, indicating their role as symbiotic signals. Xylem concentration of lumichrome in cowpea and soybean was greater in plants inoculated with infective rhizobia and treated with lumichrome (61.2 µmol lumichrome.ml-1 sap, followed by uninoculated plants receiving lumichrome (41.12 µmol lumichrome.ml-1 sap, and lowest in uninoculated, lumichrome-free plants (26.8 µmol lumichrome.ml-1 sap. Overall, soybean showed greater xylem concentration of lumichrome and a correspondingly increased accumulation in leaves relative to cowpea. As a result, soybean exhibited dramatic developmental changes than cowpea. Taken together, lumichrome and riboflavin secreted by soil rhizobia function as environmental cues for sensing stress. The fact that exogenous application of ABA to plant roots caused the same effect as lumichrome on stomatal functioning suggests molecular cross-talk in plant response to environmental

  3. Transcript profiling of a novel plant meristem, the monocot cambium.

    Science.gov (United States)

    Zinkgraf, Matthew; Gerttula, Suzanne; Groover, Andrew

    2017-06-01

    While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an amphivasal organization of tracheids encircling a central strand of phloem. Currently there is no information concerning the molecular genetic basis of the development or evolution of the monocot cambium. Here we report high-quality transcriptomes for monocot cambium and early derivative tissues in two monocot genera, Yucca and Cordyline. Monocot cambium transcript profiles were compared to those of vascular cambia and secondary xylem tissues of two forest tree species, Populus trichocarpa and Eucalyptus grandis. Monocot cambium transcript levels showed that there are extensive overlaps between the regulation of monocot cambia and vascular cambia. Candidate regulatory genes that vary between the monocot and vascular cambia were also identified, and included members of the KANADI and CLE families involved in polarity and cell-cell signaling, respectively. We suggest that the monocot cambium may have evolved in part through reactivation of genetic mechanisms involved in vascular cambium regulation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. Comparative proteomic analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale and different monocot species.

    Science.gov (United States)

    Salvato, Fernanda; Balbuena, Tiago S; Nelson, William; Rao, R Shyama Prasad; He, Ruifeng; Soderlund, Carol A; Gang, David R; Thelen, Jay J

    2015-04-01

    The rhizome is responsible for the invasiveness and competitiveness of many plants with great economic and agricultural impact worldwide. Besides its value as an invasive organ, the rhizome plays a role in the establishment and massive growth of forage, providing biomass for biofuel production. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development, and function in plants. In this work, we characterized the proteome of rhizome apical tips and elongation zones from different species using a GeLC-MS/MS (one-dimensional electrophoresis in combination with liquid chromatography coupled online with tandem mass spectrometry) spectral-counting proteomics strategy. Five rhizomatous grasses and an ancient species were compared to study the protein regulation in rhizomes. An average of 2200 rhizome proteins per species were confidently identified and quantified. Rhizome-characteristic proteins showed similar functional distributions across all species analyzed. The over-representation of proteins associated with central roles in cellular, metabolic, and developmental processes indicated accelerated metabolism in growing rhizomes. Moreover, 61 rhizome-characteristic proteins appeared to be regulated similarly among analyzed plants. In addition, 36 showed conserved regulation between rhizome apical tips and elongation zones across species. These proteins were preferentially expressed in rhizome tissues regardless of the species analyzed, making them interesting candidates for more detailed investigative studies about their roles in rhizome development.

  5. Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses)

    NARCIS (Netherlands)

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    The third part of a series of monographic treatments of cercosporoid fungi (formerly Cercospora s. lat., Mycosphaerellaceae, Ascomycota) continues with a treatment of taxa on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), covering asexual and holomorph species with mycosphaerella-like

  6. Motif content comparison between monocot and dicot species

    Directory of Open Access Journals (Sweden)

    Matyas Cserhati

    2015-03-01

    Full Text Available While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice.

  7. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  8. Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses).

    Science.gov (United States)

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2015-06-01

    The third part of a series of monographic treatments of cercosporoid fungi (formerly Cercospora s. lat., Mycosphaerellaceae, Ascomycota) continues with a treatment of taxa on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), covering asexual and holomorph species with mycosphaerella-like sexual morphs on true grasses (Poaceae), which were excluded from the second part. The species concerned are keyed out, alphabetically listed, described, illustrated and supplemented by references to previously published descriptions, illustrations, and exsiccatae. A key to the recognised genera and a discussion of taxonomically relevant characters was published in the first part of this series. Several species are lecto- or neotypified. The following taxonomic novelties are introduced: Cercospora barretoana comb. nov., C. cymbopogonicola nom. nov., Cladosporium elymi comb. nov., Passalora agrostidicola sp. nov., P. brachyelytri comb. nov., and P. dichanthii-annulati comb. nov.

  9. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Sunita Kumari

    Full Text Available Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs. The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica and dicot (A. thaliana genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.

  10. Lower Miocene plant assemblage with coastal-marsh herbaceous monocots from the Vienna Basin (Slovakia)

    Science.gov (United States)

    Kvaček, Zlatko; Teodoridis, Vasilis; Kováčová, Marianna; Schlögl, Ján; Sitár, Viliam

    2014-06-01

    A new plant assemblage of Cerová-Lieskové from Lower Miocene (Karpatian) deposits in the Vienna Basin (western Slovakia) is preserved in a relatively deep, upper-slope marine environment. Depositional conditions with high sedimentation rates allowed exceptional preservation of plant remains. The plant assemblage consists of (1) conifers represented by foliage of Pinus hepios and Tetraclinis salicornioides, a seed cone of Pinus cf. ornata, and by pollen of the Cupressaceae, Pinaceae, Pinus sp. and Cathaya sp., and (2) angiosperms represented by Cinnamomum polymorphum, Platanus neptuni, Potamogeton sp. and lauroid foliage, by pollen of Liquidambar sp., Engelhardia sp. and Craigia sp., and in particular by infructescences (so far interpreted as belonging to cereal ears). We validate genus and species assignments of the infructescences: they belong to Palaeotriticum Sitár, including P. mockii Sitár and P. carpaticum Sitár, and probably represent herbaceous monocots that inhabited coastal marshes, similar to the living grass Spartina. Similar infructescences occur in the Lower and Middle Miocene deposits of the Carpathian Foredeep (Slup in Moravia), Tunjice Hills (Žale in Slovenia), and probably also in the Swiss Molasse (Lausanne). This plant assemblage demonstrates that the paleovegetation was represented by evergreen woodland with pines and grasses in undergrowth, similar to vegetation inhabiting coastal brackish marshes today. It also indicates subtropical climatic conditions in the Vienna Basin (central Paratethys), similar to those implied by other coeval plant assemblages from Central Europe

  11. Lower Miocene plant assemblage with coastal-marsh herbaceous monocots from the Vienna Basin (Slovakia

    Directory of Open Access Journals (Sweden)

    Kvaček Zlatko

    2014-06-01

    Full Text Available A new plant assemblage of Cerová-Lieskové from Lower Miocene (Karpatian deposits in the Vienna Basin (western Slovakia is preserved in a relatively deep, upper-slope marine environment. Depositional conditions with high sedimentation rates allowed exceptional preservation of plant remains. The plant assemblage consists of (1 conifers represented by foliage of Pinus hepios and Tetraclinis salicornioides, a seed cone of Pinus cf. ornata, and by pollen of the Cupressaceae, Pinaceae, Pinus sp. and Cathaya sp., and (2 angiosperms represented by Cinnamomum polymorphum, Platanus neptuni, Potamogeton sp. and lauroid foliage, by pollen of Liquidambar sp., Engelhardia sp. and Craigia sp., and in particular by infructescences (so far interpreted as belonging to cereal ears. We validate genus and species assignments of the infructescences: they belong to Palaeotriticum Sitár, including P. mockii Sitár and P. carpaticum Sitár, and probably represent herbaceous monocots that inhabited coastal marshes, similar to the living grass Spartina. Similar infructescences occur in the Lower and Middle Miocene deposits of the Carpathian Foredeep (Slup in Moravia, Tunjice Hills (Žale in Slovenia, and probably also in the Swiss Molasse (Lausanne. This plant assemblage demonstrates that the paleovegetation was represented by evergreen woodland with pines and grasses in undergrowth, similar to vegetation inhabiting coastal brackish marshes today. It also indicates subtropical climatic conditions in the Vienna Basin (central Paratethys, similar to those implied by other coeval plant assemblages from Central Europe

  12. Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species

    Directory of Open Access Journals (Sweden)

    De-yong ZHAO

    2015-06-01

    Full Text Available Identifying and manipulating genes underlying selenium metabolism could be helpful for increasing selenium content in crop grain, which is an important way to overcome diseases resulted from selenium deficiency. A reciprocal smallest distance algorithm (RSD approach was applied using two experimentally confirmed Homocysteine S-Methyltransferases genes (HMT1 and HMT2 and a putative Selenocysteine Methyltransferase (SMT from dicots plant Arabidopsis thaliana, to explore their orthologs in seven sequenced diploid monocot species: Oryza sativa, Zea mays, Sorghum bicolor, Brachypodium distachyon, Hordeum vulgare, Aegilops tauschii (the D-genome donor of common wheat and Triticum urartu (the A-genome donor of common wheat. HMT1 was apparently diverged from HMT2 and most of SMT orthologs were the same with that of HMT2 in this study, leading to the hypothesis that SMT and HMT originate from one common ancestor gene. Identifying orthologs provide candidates for further experimental confirmation; also it could be helpful in designing primers to clone SMT or HMT orthologs in other crops.

  13. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  14. Structural variations among monocot emergent and amphibious species from lakes of the semi-arid region of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    KRB Leite

    Full Text Available Temporary lakes are common in the semi-arid region of the State of Bahia and form water mirrors in the rainy season. In this period, various vegetal species appear having different life forms adapted to the seasonality conditions of the rainfall regime. This work surveyed the adaptive anatomical structures of some emergent and amphibious monocot species occurring in these lakes. We studied the anatomy of roots, rhizomes, leaves and scapes of Cyperus odoratus, Oxycaryum cubense, Pycreus macrostachyos (Cyperaceae - amphibious species; and of Echinodorus grandiflorus (Alismataceae, Eichhornia paniculata (Pontederiaceae and Habenaria repens (Orchidaceae - emergent species. The anatomical features of the dermal, fundamental and vascular systems confirming the tendency of the adaptive convergence of these plants to temporary lacustrine the environment include: single layered epidermal cells with a thin cuticle layer in the aerial organs; the presence of air canals in all the organs; few or no supporting tissues; and less numerous conducting elements and thinner cell walls in the xylem. The reduction of the supporting tissues, the number of stomata, which can even be absent, and the number of conducting elements and the degree of cell wall lignification in the xylem of the emergent species is more accentuated than that of the amphibious species. The pattern of distribution of aerenchyma in the roots of the studied species was considered important to distinguish between amphibious and emergent life forms.

  15. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders

    Directory of Open Access Journals (Sweden)

    Tarr D Ellen K

    2009-09-01

    Full Text Available Abstract Background Plant resistance (R gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS and C-terminal leucine-rich repeat (LRR domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp., a gymnosperm (C. revoluta and a eudicot (C. canephora. We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales. Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids.

  16. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.

    Science.gov (United States)

    Ma, Xingliang; Liu, Yao-Guang

    2016-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc.

  17. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.

    Science.gov (United States)

    Ma, Xingliang; Zhang, Qunyu; Zhu, Qinlong; Liu, Wei; Chen, Yan; Qiu, Rong; Wang, Bin; Yang, Zhongfang; Li, Heying; Lin, Yuru; Xie, Yongyao; Shen, Rongxin; Chen, Shuifu; Wang, Zhi; Chen, Yuanling; Guo, Jingxin; Chen, Letian; Zhao, Xiucai; Dong, Zhicheng; Liu, Yao-Guang

    2015-08-01

    CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm

    Directory of Open Access Journals (Sweden)

    Roongsattham Peerapat

    2012-08-01

    Full Text Available Abstract Background Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. Results The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4 is the most highly induced in the fruit base, with a 700–5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. Conclusions The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit

  19. Do global diversity patterns of vertebrates reflect those of monocots?

    Directory of Open Access Journals (Sweden)

    Lynsey McInnes

    Full Text Available Few studies of global diversity gradients in plants exist, largely because the data are not available for all species involved. Instead, most global studies have focussed on vertebrates, as these taxa have historically been associated with the most complete data. Here, we address this shortfall by first investigating global diversity gradients in monocots, a morphologically and functionally diverse clade representing a quarter of flowering plant diversity, and then assessing congruence between monocot and vertebrate diversity patterns. To do this, we create a new dataset that merges biome-level associations for all monocot genera with country-level associations for almost all ∼70,000 species. We then assess the evidence for direct versus indirect effects of this plant diversity on vertebrate diversity using a combination of linear regression and structural equation modelling (SEM. Finally, we also calculate overlap of diversity hotspots for monocots and each vertebrate taxon. Monocots follow a latitudinal gradient although with pockets of extra-tropical diversity, mirroring patterns in vertebrates. Monocot diversity is positively associated with vertebrate diversity, but the strength of correlation varies depending on the clades being compared. Monocot diversity explains marginal amounts of variance (<10% after environmental factors have been accounted for. However, correlations remain among model residuals, and SEMs apparently reveal some direct effects of monocot richness. Our results suggest that collinear responses to environmental gradients are behind much of the congruence observed, but that there is some evidence for direct effects of producer diversity on consumer diversity. Much remains to be done before broad-scale diversity gradients among taxa are fully explained. Our dataset of monocot distributions will aid in this endeavour.

  20. Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Shuanghe Cao

    Full Text Available BACKGROUND: Nuclear Factor Y (NF-Y is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis, NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. METHODOLOGY/PRINCIPAL FINDINGS: We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y. By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. CONCLUSIONS/SIGNIFICANCE: The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses.

  1. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes.

    Science.gov (United States)

    Weishampel, Peter A; Bedford, Barbara L

    2006-10-01

    As an initial step towards evaluating whether mycorrhizas influence composition and diversity in calcareous fen plant communities, we surveyed root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSE) in 67 plant species in three different fens in central New York State (USA). We found colonization by AMF and DSE in most plant species at all three sites, with the type and extent of colonization differing between monocots and dicots. On average, AMF colonization was higher in dicots (58+/-3%, mean+/-SE) than in monocots (13+/-4%) but DSE colonization followed the opposite trend (24+/-3% in monocots and 9+/-1% in dicots). In sedges and cattails, two monocot families that are often abundant in fens and other wetlands, AMF colonization was usually very low (<10%) in five species and completely absent in seven others. However, DSE colonization in these species was frequently observed. Responses of wetland plants to AMF and DSE are poorly understood, but in the fen communities surveyed, dicots appear to be in a better position to respond to AMF than many of these more abundant monocots (e.g., sedges and cattails). In contrast, these monocots may be more likely to respond to DSE. Future work directed towards understanding the response of these wetland plants to AMF and DSE should provide insight into the roles these fungal symbionts play in influencing diversity in fen plant communities.

  2. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Science.gov (United States)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  3. pORE: a modular binary vector series suited for both monocot and dicot plant transformation.

    Science.gov (United States)

    Coutu, Catherine; Brandle, James; Brown, Dan; Brown, Kirk; Miki, Brian; Simmonds, John; Hegedus, Dwayne D

    2007-12-01

    We present a series of 14 binary vectors suitable for Agrobacterium-mediated transformation of dicotyledonous plants and adaptable for biolistic transformation of monocotyledonous plants. The vector size has been minimized by eliminating all non-essential elements from the vector backbone and T-DNA regions while maintaining the ability to replicate independently. The smallest of the vector series is 6.3 kb and possesses an extensive multiple cloning site with 21 unique restriction endonuclease sites that are compatible with common cloning, protein expression, yeast two-hybrid and other binary vectors. The T-DNA region was engineered using a synthetic designer oligonucleotide resulting in an entirely modular system whereby any vector element can be independently exchanged. The high copy number ColE1 origin of replication has been included to enhance plasmid yield in Escherichia coli. FRT recombination sites flank the selectable marker cassette regions and allow for in planta excision by FLP recombinase. The pORE series consists of three basic types; an 'open' set for general plant transformation, a 'reporter' set for promoter analysis and an 'expression' set for constitutive expression of transgenes. The sets comprise various combinations of promoters (P (HPL), P (ENTCUP2) and P (TAPADH)), selectable markers (nptII and pat) and reporter genes (gusA and smgfp).

  4. Discovery of Linear Cyclotides in Monocot Plant Panicum laxum of Poaceae Family Provides New Insights into Evolution and Distribution of Cyclotides in Plants*

    Science.gov (United States)

    Nguyen, Giang Kien Truc; Lian, Yilong; Pang, Edmund Weng Hou; Nguyen, Phuong Quoc Thuc; Tran, Tuan Dinh; Tam, James P.

    2013-01-01

    Cyclotides are disulfide-rich macrocyclic peptides that display a wide range of bioactivities and represent an important group of plant defense peptide biologics. A few linear variants of cyclotides have recently been identified. They share a high sequence homology with cyclotides but are biosynthetically unable to cyclize from their precursors. All hitherto reported cyclotides and their acyclic variants were isolated from dicot plants of the Rubiaceae, Violaceae, Cucurbitaceae, and recently the Fabaceae and Solanaceae families. Although several cyclotide-like genes in the Poaceae family were known from the data mining of the National Center for Biotechnology Information (NCBI) nucleotide database, their expression at the protein level has yet to be proven. Here, we report the discovery and characterization of nine novel linear cyclotides, designated as panitides L1–9, from the Panicum laxum of the Poaceae family and provide the first evidence of linear cyclotides at the protein level in a monocot plant. Disulfide mapping of panitide L3 showed that it possesses a cystine knot arrangement similar to cyclotides. Several panitides were shown to be active against Escherichia coli and cytotoxic to HeLa cells. They also displayed a high stability against heat and proteolytic degradation. Oxidative folding of the disulfide-reduced panitide L1 showed that it can fold efficiently into its native form. The presence of linear cyclotides in both dicots and monocots suggests their ancient origin and existence before the divergence of these two groups of flowering plants. Moreover, the Poaceae family contains many important food crops, and our discovery may open up new avenues of research using cyclotides and their acyclic variants in crop protection. PMID:23195955

  5. Determination of arsenic species in water, soils and plants

    Energy Technology Data Exchange (ETDEWEB)

    Mattusch, J.; Wennrich, R. [UFZ - Center for Environmental Research Leipzig / Halle, Department of Analytical Chemistry, Leipzig (Germany); Schmidt, A.C.; Reisser, W. [University of Leipzig, Institute of Botany, Leipzig (Germany)

    2000-01-01

    Ion chromatographic separation coupled with ICP-MS was used to determine arsenic species in plant and soil extracts. A scheme for growth, harvesting, sample pre-treatment and analysis was developed for the arsenic species to enable determination. Preliminary results obtained with ten herb plants grown on arsenic-contaminated soil compared to non-contaminated soil show a heterogeneous pattern of accumulation rate, metabolization and detoxification mechanisms in monocots and dicots. Arsenite appears to be the major component in plants with good growth. Organic arsenic species were even detected at very low concentrations (< 150 {mu}g kg{sup -1} (dry mass)). (orig.)

  6. The role of auxin transporters in monocots development

    Directory of Open Access Journals (Sweden)

    Sara eBalzan

    2014-08-01

    Full Text Available Auxin is a key regulator of plant growth and development, orchestrating cell division, elongation and differentiation, embryonic development, root and stem tropisms, apical dominance and transition to flowering. Auxin levels are higher in undifferentiated cell populations and decrease following organ initiation and tissue differentiation. This differential auxin distribution is achieved by polar auxin transport (PAT mediated by auxin transport proteins. There are 4 major families of auxin transporters in plants: PINs, ABCBs, AUX/LAXs and PILS. These families include proteins located at the plasma membrane (PM or at the Endoplasmic Reticulum (ER, which participate in auxin influx, efflux or both, from the apoplast into the cell or from the cytosol into the ER compartment. Auxin transporters have been largely studied in the dicotyledon model species Arabidopsis, but there is increasing evidence of their role in auxin regulated development in monocotyledon species. In monocots, families of auxin transporters are enlarged and often include duplicated genes and proteins with high sequence similarity. Some of these proteins underwent sub- and neo-functionalization with substantial modification to their structure and expression in organs such as adventitious roots, panicles, tassels and ears. Most of the present information on monocot auxin transporters function derives from studies conducted in rice, maize, sorghum and Brachypodium using pharmacological applications (PAT inhibitors or down-/up-regulation (over-expression and RNAi of candidate genes. Gene expression studies and comparison of predicted protein structures have also increased our knowledge of the role of PAT in monocots. However, knockout mutants and functional characterization of single genes are still scarce and the future availability of such resources will prove crucial to elucidate the role of auxin transporters in monocot development.

  7. Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation.

    Science.gov (United States)

    Lowe, Keith; Wu, Emily; Wang, Ning; Hoerster, George; Hastings, Craig; Cho, Myeong-Je; Scelonge, Chris; Lenderts, Brian; Chamberlin, Mark; Cushatt, Josh; Wang, Lijuan; Ryan, Larisa; Khan, Tanveer; Chow-Yiu, Julia; Hua, Wei; Yu, Maryanne; Banh, Jenny; Bao, Zhongmeng; Brink, Kent; Igo, Elizabeth; Rudrappa, Bhojaraja; Shamseer, P M; Bruce, Wes; Newman, Lisa; Shen, Bo; Zheng, Peizhong; Bidney, Dennis; Falco, S Carl; RegisterIII, James C; Zhao, Zuo-Yu; Xu, Deping; Jones, Todd J; Gordon-Kamm, William James

    2016-09-06

    While transformation of the major monocot crops is currently possible, the process typically remains confined to one or two genotypes per species, often with poor agronomics, and efficiencies that place these methods beyond the reach of most academic laboratories. Here, we report a transformation approach involving overexpression of the maize (Zea mays) Baby boom (Bbm) and maize Wuschel2 (Wus2) genes, which produced high transformation frequencies in numerous previously non-transformable maize inbred lines. For example, the Pioneer inbred PHH5G is recalcitrant to biolistic and Agrobacterium transformation. However, when Bbm and Wus2 were expressed, transgenic calli were recovered from over 40% of the starting explants, with most producing healthy, fertile plants. Another limitation for many monocots is the intensive labor and greenhouse space required to supply immature embryos for transformation. This problem could be alleviated by using alternative target tissues that could be supplied consistently with automated preparation. As a major step toward this objective, we transformed Bbm and Wus2 directly into either embryo slices from mature seed or leaf segments from seedlings in a variety of Pioneer inbred lines, routinely recovering healthy, fertile T0 plants. Finally, we demonstrated that the maize Bbm and Wus2 genes stimulate transformation in sorghum (Sorghum bicolor) immature embryos, sugarcane (Saccharum officinarum) callus, and indica rice (Oryza sativa var. indica) callus. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.

  8. Comparative analysis of ABCB1 reveals novel structural and functional conservation between monocots and dicots

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur Dhaliwal

    2014-11-01

    Full Text Available Phytohormone auxin plays a critical role in modulating plant architecture by creating a gradient regulated via its transporters such as ATP-binding cassette (ABC B1. Except for Arabidopsis and maize, where it was shown to interrupt auxin transport, ABCB1’s presence, structure and function in crop species is not known. Here we describe the structural and putative functional organization of ABCB1 among monocots relative to that of dicots. Identified from various plant species following specific and stringent criteria, ZmABCB1’s ‘true’ orthologs sequence identity ranged from 56-90% at the DNA and 75-91% at the predicted amino acid (aa level. Relative to ZmABCB1, the size of genomic copies ranged from -27 to +1.5% and aa from -7.7 to +0.6%. With the average gene size being similar (5.8 kb in monocots and 5.7 kb in dicots, dicots have about triple the number of introns with an average size of 194 bp (total 1743 bp compared to 556 bp (total 1667 bp in monocots. The intron-exon junctions across species were however conserved. N-termini of the predicted proteins were highly variable: in monocots due to mismatches and small deletions of 1-13 aa compared to large, species-specific deletions of up to 77 aa in dicots. The species- family-, and group- specific conserved motifs were identified in the N-terminus and linker regions of protein, possibly responsible for the specific functions. The near-identical conserved motifs of Nucleotide Binding Domains (NBDs in two halves of the protein showed subtle aa changes possibly favoring ATP binding to the N-terminus. Predicted 3-D protein structures showed remarkable similarity with each other and for the residues involved in auxin binding.

  9. Comparative cross-species alternative splicing in plants.

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.

  10. DNA barcoding of the Lemnaceae, a family of aquatic monocots

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2010-09-01

    Full Text Available Abstract Background Members of the aquatic monocot family Lemnaceae (commonly called duckweeds represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.

  11. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots.

    Science.gov (United States)

    Cenci, Albero; Guignon, Valentin; Roux, Nicolas; Rouard, Mathieu

    2014-05-01

    Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species.

  12. Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots

    Directory of Open Access Journals (Sweden)

    Li Chun

    2012-01-01

    Full Text Available Abstract Background Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Results Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes, were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. Conclusion Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.

  13. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize.

    Science.gov (United States)

    Gallavotti, Andrea; Barazesh, Solmaz; Malcomber, Simon; Hall, Darren; Jackson, David; Schmidt, Robert J; McSteen, Paula

    2008-09-30

    The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize.

  14. KNOX1 genes regulate lignin deposition and composition in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Brad T Townsley

    2013-05-01

    Full Text Available Plant secondary cell walls are deposited mostly in vascular tissues such as xylem vessels, tracheids, and fibers. These cell walls are composed of a complex matrix of compounds including cellulose, hemicellulose, and lignin. Lignin functions primarily to maintain the structural and mechanical integrity of both the transport vessel and the entire plant itself. Since lignin has been identified as a major source of biomass for biofuels, regulation of secondary cell wall biosynthesis has been a topic of much recent investigation. Biosynthesis and patterning of lignin involves many developmental and environmental cues including evolutionarily conserved transcriptional regulatory modules and hormonal signals. Here, we investigate the role of the class I KNOX genes and gibberellic acid in the lignin biosynthetic pathway in a representative monocot and a representative eudicot. Knotted1 overexpressing mutant plants showed a reduction in lignin content in both maize and tobacco. Expression of four key lignin biosynthesis genes was analyzed and revealed that KNOX1 genes regulate at least two steps in the lignin biosynthesis pathway. The negative regulation of lignin both in a monocot and a eudicot by the maize Kn1 gene suggests that lignin biosynthesis may be preserved across large phylogenetic distances. The evolutionary implications of regulation of lignification across divergent species are discussed.

  15. In silico identification of conserved microRNAs in large number of diverse plant species

    Directory of Open Access Journals (Sweden)

    Jagadeeswaran Guru

    2008-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are recently discovered small non-coding RNAs that play pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals. Identification of miRNAs in large number of diverse plant species is important to understand the evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are conserved in higher plants, a homology based search using these databases can help identify orthologs or paralogs in plants. Results We searched all publicly available nucleotide databases of genome survey sequences (GSS, high-throughput genomics sequences (HTGS, expressed sequenced tags (ESTs and nonredundant (NR nucleotides and identified 682 miRNAs in 155 diverse plant species. We found more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in important model legumes such as Medicago, Lotus and soybean. Five miRNA families – miR319, miR156/157, miR169, miR165/166 and miR394 – were found in 51, 45, 41, 40 and 40 diverse plant species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444 homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots, thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore, we provide computational and/or experimental evidence for the conservation of 6 newly found Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840 and 2 small RNAs (small-85 and small-87 in Brassica spp. Conclusion Using all publicly available nucleotide databases, 682 miRNAs were identified in 155 diverse plant species. By combining the expression analysis with the computational approach, we found that 6 miRNAs and 2

  16. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    Science.gov (United States)

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.

  17. Comparative Cross-Species Alternative Splicing in Plants1[W][OA

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-01-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS. PMID:17496110

  18. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    Science.gov (United States)

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum changes inflorescence branching at early stages in di- and monocot plants and induces fruit abortion in Arabidopsis thaliana.

    Science.gov (United States)

    Drechsler, Frank; Schwinges, Patrick; Schirawski, Jan

    2016-05-03

    sporisorium reilianum f. sp. zeae is a biotrophic smut fungus that infects maize (Zea mays). Among others, the fungus-plant interaction is governed by secreted fungal effector proteins. The effector SUPPRESSOR OF APICAL DOMINANCE1 (SAD1) changes the development of female inflorescences and induces outgrowth of subapical ears in S. reilianum-infected maize. When stably expressed in Arabidopsis thaliana as a GFP-SAD1 fusion protein, SAD1 induces earlier inflorescence branching and abortion of siliques. Absence of typical hormone-dependent phenotypes in other parts of the transgenic A. thaliana plants expressing GFP-SAD1 hint to a hormone-independent induction of bud outgrowth by SAD1. Silique abortion and bud outgrowth are also known to be controlled by carbon source concentration and by stress-induced molecules, making these factors interesting potential SAD1 targets.

  20. The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Nicholas Holton

    2015-01-01

    Full Text Available During plant immunity, surface-localized pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs. The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs EFR and XA21 from Arabidopsis thaliana (Arabidopsis and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots.

  1. Characterization of barley (Hordeum vulgare L. NAC transcription factors suggests conserved functions compared to both monocots and dicots

    Directory of Open Access Journals (Sweden)

    Gregersen Per L

    2011-08-01

    Full Text Available Abstract Background The NAC transcription factor family is involved in the regulation of traits in both monocots and dicots of high agronomic importance. Understanding the precise functions of the NAC genes can be of utmost importance for the improvement of cereal crop plants through plant breeding. For the cereal crop plant barley (Hordeum vulgare L. only a few NAC genes have so far been investigated. Results Through searches in publicly available barley sequence databases we have obtained a list of 48 barley NAC genes (HvNACs with 43 of them representing full-length coding sequences. Phylogenetic comparisons to Brachypodium, rice, and Arabidopsis NAC proteins indicate that the barley NAC family includes members from all of the eight NAC subfamilies, although by comparison to these species a number of HvNACs still remains to be identified. Using qRT-PCR we investigated the expression profiles of 46 HvNACs across eight barley tissues (young flag leaf, senescing flag leaf, young ear, old ear, milk grain, late dough grain, roots, and developing stem and two hormone treatments (abscisic acid and methyl jasmonate. Conclusions Comparisons of expression profiles of selected barley NAC genes with the published functions of closely related NAC genes from other plant species, including both monocots and dicots, suggest conserved functions in the areas of secondary cell wall biosynthesis, leaf senescence, root development, seed development, and hormone regulated stress responses.

  2. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  3. Plant species in the kilimanjaro agroforestry system

    Energy Technology Data Exchange (ETDEWEB)

    O' kting' ati, A.; Maghembe, J.A.; Fernandes, E.C.M.; Weaver, G.H.

    1984-01-01

    An inventory of plant species was conducted on 30 farms, farm boundaries and homesteads in 6 villages in Hai District on the slopes of Mt. Kilimanjaro, Tanzania. Of 111 plant species identified, 53 were tree species, 29 food crop species, 21 non-woody plants of economic value and 8 weed species. Information on uses was obtained through interviews with farmers. Useful plants (most with 2 or more uses) were carefully chosen and closely intercropped on the same unit of land. Of the tree species, 90% were used for fuelwood, 30% for medicines, 25% for poles, 24% for shade, 23% for timber and 10% for fodder. These, and food, were the most important plant uses.

  4. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  5. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  6. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  7. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  8. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    Energy Technology Data Exchange (ETDEWEB)

    Straczek, Anne; Duquene, Lise [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Wegrzynek, Dariusz [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Chinea-Cano, Ernesto [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Wannijn, Jean [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Navez, Jacques [Royal Museum of Africa, Department of Geology, Leuvensesteenweg 13, 3080 Tervuren (Belgium); Vandenhove, Hildegarde, E-mail: hvandenh@sckcen.b [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2010-03-15

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 mumol U L{sup -1}, distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  9. New mite species associated with certain plant species from Guam

    Directory of Open Access Journals (Sweden)

    Gadi V.P. Reddy

    2011-04-01

    Full Text Available Several new mite species have been reported from certain plants from Guam. Most remarkably, the spider mite, Tetranychus marianae (Prostigmata: Tetranychidae and the predatory mite Phytoseius horridus (Mesostigmata: Phytoseiidae (Solanum melongena have been found on eggplant. The noneconomically important species of Brevipalpus californicus(Banks Prostigmata: Tenuipalpidae,Eupodes sp. (Acarina: Eupodidae and predator Cunaxa sp. (Prostigmata: Cunaxidae have been reported on guava (Psidium guajava L.. Also, the non-economically important species Brevipalpus californicus Prostigmata: Tenuipalpidae, Lepidoglyphus destructor (Astigmata: Glycyphagidae and a predator Amblyseius obtusus, species group Amblyseius near lentiginosus (Mesostigmata: Phytoseiidae, have been recorded on cycad (Cycas micronesica.

  10. Effects of hypobaria and hypoxia on seed germination of six plant species

    Science.gov (United States)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  11. Chemical composition and digestibility of some browse plant species collected from Algerian arid rangelands

    Energy Technology Data Exchange (ETDEWEB)

    Boufennara, S.; Lopez, S.; Boussebouna, H.; Bodas, R.; Bouazza, L.

    2012-11-01

    Many wild browse and bush species are undervalued mainly because of insufficient knowledge about their potential feeding value. The objective was to evaluate some nutritional attributes of various Algerian browse and shub species (Atriplex halimus, Artemisia campestris, Artemisia herba-alba, Astragalus gombiformis, Calobota saharae, Retama raetam, Stipagrostis pungens, Lygeum spartum and Stipa tenacissima). Chemical composition, phenols and tannins concentration, in vitro digestibility, in vitro gas production kinetics and in vitro bio-assay for assessment of tannins using buffered rumen fluid, and in situ disappearence of the edible parts of the plants (leaves, thin twigs and flowers) were determined. In general, protein content in dicotyledon species was always greater than in monocotyledon grasses, these showing higher neutral and acid detergent fibre and lower lignin contents than dicots. The tannin concentrations varied considerably between species, but in general the plants investigated in this study had low tannin contents (except for Artemisia spp. and S. tenacissima). Monocots showed lower in vitro and in situ digestibilities, fermentation rate, cumulative gas production and extent of degradation than dicot species. The plants were clustered by principal components analysis in two groups: poor-quality grasses and the most digestible dicot species. Chemical composition (neutral detergent fibre and protein) and digestibility were the main influential variables determining the ranking. In conclusion, A. halimus, A. campestris, A. herba-alba and A. gombiformis can be considered of greater nutritional value than the highly fibrous and low digestible grasses (S. pungens, L. spartum and S. tenacissima) that should be considered emergency roughages. (Author) 46 refs.

  12. In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf

    DEFF Research Database (Denmark)

    Dominy, N.J.; Grubb, P.J.; Jackson, R.V.

    2008-01-01

    -tolerant or gap-demanding species were considered. Conclusions: It is predicted that monocots will be found to experience lower rates of herbivory by invertebrates than dicots. The tough monocot leaves include both stiff leaves containing relatively little water at saturation (e.g. palms), and leaves which lack...... stiffness, are rich in water at saturation and roll readily during dry weather or even in bright sun around midday (e.g. gingers, heliconias and marants). Monocot leaves also show that it is possible for leaves to be notably tough throughout the expansion phase of development, something never recorded...... for dicots. The need to broaden the botanist's mental picture of a ‘tough leaf' is emphasized.   Key words: Dicots, fracture toughness, herbivory, leaves, monocots, punch strength, tropical rain forest  ...

  13. Evidence for electrotropism in some plant species.

    Science.gov (United States)

    Gorgolewski, S; Rozej, B

    2001-01-01

    The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots

    Directory of Open Access Journals (Sweden)

    Duo ePeng

    2014-11-01

    Full Text Available Sucrose transporters (SUTs are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2 that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms.

  15. Egyptian plant species as new ozone indicators.

    Science.gov (United States)

    Madkour, Samia A; Laurence, J A

    2002-01-01

    The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).

  16. Egyptian plant species as new ozone indicators

    Energy Technology Data Exchange (ETDEWEB)

    Madkour, S.A.; Laurence, J.A

    2002-12-01

    Of more than 30 species of plants from Egypt screened for sensitivity to ozone, four were found to be suitable for use as bioindicators. - The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O{sub 3}). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O{sub 3} levels in urban and rural sites. Four plant species were found to be more sensitive to O{sub 3} than the universally used O{sub 3}-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O{sub 3} injury symptoms faster and at lower O{sub 3} concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O{sub 3} response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g{sub s}) and net photosynthetic CO{sub 2} assimilation (P{sub net}). Pigment degradation was found to be unreliable in predicting species sensitivity to O{sub 3}. Evidence supporting stomatal conductance involvement in O{sub 3} tolerance was found only in tolerant species. A good correlation was found between g{sub s}, restriction of O{sub 3} and CO{sub 2} influx into the mesophyll tissues, and P{sub net}. Changes in P{sub net} seemed to depend largely on fluctuations in g{sub s}.

  17. Extensins in graminaceous monocots and dicots compared

    Energy Technology Data Exchange (ETDEWEB)

    Kieliszewski, M.; Lamport, D.T.A.

    1987-04-01

    Is the cellulose-extensin warp-weft model of primary cell wall organization generally applicable, or restricted to dicots. Although wall-bound hydroxyproline is usually a quantitative measure of extensin content, it is not definitive at low hyp levels typical of graminaceous monocots. Therefore the authors searched for putative soluble extensins ionically-bound to the cell wall of maize cell suspension cultures. Fractionation of AlCl/sub 3/ eluates on cellex-P, Cellex-E, and Superose-6 gave two HRGPs CEV and CE1 which compositionally resembled extensins rather than the arabinogalactan HRGPs. CEV and CE1 did not react with Yariv's antigen, but did cross-react with antibodies raised against tomato extensin. A tryptic peptide map of CEV gave some major peptides enriched in hydroxyproline and proline residues, indicating peptide periodicity. TEM of the low-angle shadowed protein gave flexuous rodlike molecules of 80 nm contour length. This is the best evidence to date for extensin in monocots.

  18. Compound leaf development in model plant species.

    Science.gov (United States)

    Bar, Maya; Ori, Naomi

    2015-02-01

    Plant leaves develop in accordance with a common basic program, which is flexibly adjusted to the species, developmental stage and environment. Two key stages of leaf development are morphogenesis and differentiation. In the case of compound leaves, the morphogenesis stage is prolonged as compared to simple leaves, allowing for the initiation of leaflets. Here, we review recent advances in the understanding of how plant hormones and transcriptional regulators modulate compound leaf development, yielding a substantial diversity of leaf forms, focusing on four model compound leaf organisms: cardamine (Cardamine hirsuta), tomato (Solanum lycopersicum), medicago (Medicago truncatula) and pea (Pisum sativum).

  19. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?

    Directory of Open Access Journals (Sweden)

    Rice Danny W

    2004-09-01

    Full Text Available Abstract Background Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505, whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots. Results We used two main approaches to test this hypothesis. First, we sequenced a large number of chloroplast genes from the monocot Acorus and added these plus previously sequenced Acorus genes to the Goremykin et al. (2003 dataset in order to explore the effects of altered monocot sampling under the same analytical conditions used in their study. With Acorus alone representing monocots, strongly supported Amborella-sister trees were obtained in all maximum likelihood and parsimony analyses, and in some distance-based analyses. Trees with both Acorus and grasses gave either a well-supported Amborella-sister topology or else a highly unlikely topology with 100% support for grasses-sister and paraphyly of monocots (i.e., Acorus sister to "dicots" rather than to grasses. Second, we reanalyzed the Goremykin et al. (2003 dataset focusing on methods designed to account for rate heterogeneity. These analyses supported an Amborella-sister hypothesis, with bootstrap support values often conflicting strongly with cognate analyses performed without allowing for rate heterogeneity. In addition, we carried out a limited set of analyses that included the chloroplast genome of Nymphaea, whose position as a basal angiosperm was

  20. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?

    Science.gov (United States)

    Stefanović, Saša; Rice, Danny W; Palmer, Jeffrey D

    2004-01-01

    Background Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505), whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots. Results We used two main approaches to test this hypothesis. First, we sequenced a large number of chloroplast genes from the monocot Acorus and added these plus previously sequenced Acorus genes to the Goremykin et al. (2003) dataset in order to explore the effects of altered monocot sampling under the same analytical conditions used in their study. With Acorus alone representing monocots, strongly supported Amborella-sister trees were obtained in all maximum likelihood and parsimony analyses, and in some distance-based analyses. Trees with both Acorus and grasses gave either a well-supported Amborella-sister topology or else a highly unlikely topology with 100% support for grasses-sister and paraphyly of monocots (i.e., Acorus sister to "dicots" rather than to grasses). Second, we reanalyzed the Goremykin et al. (2003) dataset focusing on methods designed to account for rate heterogeneity. These analyses supported an Amborella-sister hypothesis, with bootstrap support values often conflicting strongly with cognate analyses performed without allowing for rate heterogeneity. In addition, we carried out a limited set of analyses that included the chloroplast genome of Nymphaea, whose position as a basal angiosperm was also, and very recently

  1. Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall.

    Science.gov (United States)

    North, Gretchen B; Brinton, Erin K; Garrett, Tadao Y

    2008-08-01

    Contractile roots (CRs) that pull shoots further down in the soil are a possible example of convergent evolution in two monocot families, the Agavaceae and the Asphodelaceae. The association between CRs, water uptake and habitat aridity was investigated for agaves, yuccas and aloes by assessing the occurrence of CRs and the amount of root contraction for glasshouse-grown plants with respect to mean annual rainfall of their native habitats. Structural features of CRs as well as root hydraulic conductance were compared with those of non-contractile roots (NCRs). CRs occurred in 55% of the 73 species examined, including 64% of the agaves and 85% of the yuccas, but in none of the aloes despite the occurrence of CRs in related genera. The phylogenetic distribution of CRs was consistent with multiple acquisitions or losses of the trait. The amount of root contraction showed a highly significant negative relationship with mean annual rainfall, although other environmental factors may also be important. Radial hydraulic conductance of the basal (contractile) zone exceeded that of the midroot zone for CRs; for NCRs, the opposite was true. Thus, CRs in the species examined may provide a mechanism for greater water uptake near the soil surface in regions with limited rainfall.

  2. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  3. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  4. Virus-Induced Gene Silencing in the Culinary Ginger (Zingiber officinale): An Effective Mechanism for Down-Regulating Gene Expression in Tropical Monocots

    Institute of Scientific and Technical Information of China (English)

    Tanya Renner; Jennifer Bragga; Heather E. Driscoll; Juliana Cho; Andrew O. Jackson; Chelsea D. Specht

    2009-01-01

    Virus-induced gene silencing (VIGS) has been shown to be effective for transient knockdown of gene expres-sion in plants to analyze the effects of specific genes in development and stress-related responses. VlGS is well established for studies of model systems and crops within the Solanaceae, Brassicaceae, Leguminaceae, and Poaceae, but only recently has been applied to plants residing outside these families. Here, we have demonstrated that barley stripe mosaic virus (BSMV) can infect two species within the Zingiberaceae, and that BSMV-VlGS can be applied to specifically down-regulate phytoene desaturase in the culinary ginger Zingiber officinale. These results suggest that extension of BSMV-VIGS to monocots other than cereals has the potential for directed genetic analyses of many important temperate and tropical crop species.

  5. Species-specific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR gene family in plants.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34 is one of the key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically conserved throughout the plant kingdom.

  6. Plant structure in crop production: considerations on application of FSPM

    NARCIS (Netherlands)

    Vos, J.; Evers, J.B.

    2013-01-01

    Cereals, potato and glasshouse cut rose, representing monocot annuals, vegetative propagated dicot annual and woody perennials, have different structural development. ‘Bud break’, initiating tillering (monocots) and branching (dicots) is a key process determining plant structure. Plant population de

  7. Initial Survey Instructions for Invasive Plant Species Mapping and Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for Invasive Plant Species Mapping, 1.01a, and Invasive Plant Species Monitoring, 1.01b, at Fish Springs National Wildlife Refuge. These...

  8. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: correlations with toughness and leaf presentation

    DEFF Research Database (Denmark)

    Grubb, P.J.; Jackson, R.V.; Barberis, I.M.

    2008-01-01

    : At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama...... of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant...... insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed. Key words: anti-herbivore defences, dicots, herbivory, leaf folding...

  9. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    Science.gov (United States)

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  10. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species.

    Directory of Open Access Journals (Sweden)

    Jiaqin Shi

    Full Text Available Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences. The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type the angiosperm species (aside from a few species all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite

  11. New pasture plants intensify invasive species risk.

    Science.gov (United States)

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  12. The Language of Reactive Oxygen Species Signaling in Plants

    OpenAIRE

    2012-01-01

    Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear ...

  13. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; Boer, de W.; Putten, van der W.H.

    2012-01-01

    Soil organisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soil organisms may promote plant species of characteristic habitats, and suppress plant species of disturbed habitats. We cl

  14. New pasture plants intensify invasive species risk

    Science.gov (United States)

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  15. Is there evidence of optimisation for carbon efficiency in plant proteomes?

    Science.gov (United States)

    Jankovic, B; Seoighe, C; Alqurashi, M; Gehring, C

    2011-11-01

    Flowering plants, angiosperms, can be divided into two major clades, monocots and dicots, and while differences in amino acid composition in different species from the two clades have been reported, a systematic analysis of amino acid content and distribution remains outstanding. Here, we show that monocot and dicot proteins have developed distinct amino acid content. In Arabidopsis thaliana and poplar, as in the ancestral moss Physcomitrella patens, the average mass per amino acid appears to be independent of protein length, while in the monocots rice, maize and sorghum, shorter proteins tend to be made of lighter amino acids. An examination of the elemental content of these proteomes reveals that the difference between monocot and dicot proteins can be largely attributed to their different carbon signatures. In monocots, the shorter proteins, which comprise the majority of all proteins, are made of amino acids with less carbon, while the nitrogen content is unchanged in both monocots and dicots. We hypothesise that this signature could be the result of carbon use and energy optimisation in fast-growing annual Poaceae (grasses).

  16. Is there evidence of optimisation for carbon efficiency in plant proteomes?

    KAUST Repository

    Jankovic, Boris R.

    2011-07-25

    Flowering plants, angiosperms, can be divided into two major clades, monocots and dicots, and while differences in amino acid composition in different species from the two clades have been reported, a systematic analysis of amino acid content and distribution remains outstanding. Here, we show that monocot and dicot proteins have developed distinct amino acid content. In Arabidopsis thaliana and poplar, as in the ancestral moss Physcomitrella patens, the average mass per amino acid appears to be independent of protein length, while in the monocots rice, maize and sorghum, shorter proteins tend to be made of lighter amino acids. An examination of the elemental content of these proteomes reveals that the difference between monocot and dicot proteins can be largely attributed to their different carbon signatures. In monocots, the shorter proteins, which comprise the majority of all proteins, are made of amino acids with less carbon, while the nitrogen content is unchanged in both monocots and dicots. We hypothesise that this signature could be the result of carbon use and energy optimisation in fast-growing annual Poaceae (grasses). © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  18. Plant species diversity in a changing agricultural landscape: the ...

    African Journals Online (AJOL)

    Key words: Coffee plantation, plant species diversity, agroecosystem, vascular plants. Introduction. One of the ... Tbe livestock reared include cattle, goats, sheep, pigs and poultry. ... Assessment of trees, shrubs and grasses. Transects 500 m ...

  19. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  20. Palms versus trees: water use characteristics of native fruit-bearing plant species in the Central Amazon

    Science.gov (United States)

    Kunert, N.; Barros, P.; Higuchi, N.

    2012-12-01

    Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was

  1. Phytophthora species, new threats to the plant health in Korea.

    Science.gov (United States)

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  2. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  3. Lack of S-RNase-Based Gametophytic Self-Incompatibility in Orchids Suggests That This System Evolved after the Monocot-Eudicot Split

    Directory of Open Access Journals (Sweden)

    Shan-Ce Niu

    2017-06-01

    Full Text Available Self-incompatibility (SI is found in approximately 40% of flowering plant species and at least 100 families. Although orchids belong to the largest angiosperm family, only 10% of orchid species present SI and have gametophytic SI (GSI. Furthermore, a majority (72% of Dendrobium species, which constitute one of the largest Orchidaceae genera, show SI and have GSI. However, nothing is known about the molecular mechanism of GSI. The S-determinants of GSI have been well characterized at the molecular level in Solanaceae, Rosaceae, and Plantaginaceae, which use an S-ribonuclease (S-RNase-based system. Here, we investigate the hypothesis that Orchidaceae uses a similar S-RNase to those described in Rosaceae, Solanaceae, and Plantaginaceae SI species. In this study, two SI species (Dendrobium longicornu and D. chrysanthum were identified using fluorescence microscopy. Then, the S-RNase- and SLF-interacting SKP1-like1 (SSK1-like genes present in their transcriptomes and the genomes of Phalaenopsis equestris, D. catenatum, Vanilla shenzhenica, and Apostasia shenzhenica were investigated. Sequence, phylogenetic, and tissue-specific expression analyses revealed that none of the genes identified was an S-determinant, suggesting that Orchidaceae might have a novel SI mechanism. The results also suggested that RNase-based GSI might have evolved after the split of monocotyledons (monocots and dicotyledons (dicots but before the split of Asteridae and Rosidae. This is also the first study to investigate S-RNase-based GSI in monocots. However, studies on gene identification, differential expression, and segregation analyses in controlled crosses are needed to further evaluate the genes with high expression levels in GSI tissues.

  4. Binucleation to breed new plant species adaptable to their environments.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation.

  5. Features and distribution patterns of Chinese endemic seed plant species

    Institute of Scientific and Technical Information of China (English)

    Ji-Hong HUANG; Jian-Hua CHEN; Jun-Sheng YING; Ke-Ping MA

    2011-01-01

    We compiled and identified a list of Chinese. endemic seed plant species based on a large number of published References and expert reviews. The characters of these seed plant species and their distribution patterns were described at length. China is rich in endemic seed plants, with a total of 14 939 species (accounting for 52.1%of its total seed plant species) belonging to 1584 genera and 191 families. Temperate families and genera have a significantly higher proportion of endemism than cosmopolitan and tropical ones. The most primitive and derived groups have significantly higher endemism than the other groups. The endemism of tree, shrub, and liana or vine is higher than that of total species; in contrast, the endemism of herb is lower than that of total species. Geographically,these Chinese endemic plants are mainly distributed in Yunnan and Sichuan provinces, southwest China. Species richness and proportion of these endemic plants decrease with increased latitude and have a unimodal response to altitude. The peak value of proportion of endemism is at higher altitudes than that of total species and endemic species richness. The proportions of endemic shrub, liana or vine, and herb increase with altitude and have a clear unimodal curve. In contrast, the proportion of tree increases with altitude, with a sudden increase at~4000 m and has a completely different model. To date, our study provides the most comprehensive list of Chinese endemic seed plant species and their basic composition and distribution features.

  6. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species.

    Science.gov (United States)

    Alexandre, Hermine; Ponsard, Sergine; Bourguet, Denis; Vitalis, Renaud; Audiot, Philippe; Cros-Arteil, Sandrine; Streiff, Réjane

    2013-01-01

    The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.

  7. Plant growth regulation of Bt-cotton through Bacillus species

    OpenAIRE

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2013-01-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, wit...

  8. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced...... exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  9. Molecular basis of development in petaloid monocot flowers

    DEFF Research Database (Denmark)

    Johansen, Bo; Frederiksen, Signe; Skipper, Martin

    2006-01-01

    -class genes and at least two copies of A-class genes: one is expressed in floral meristems, the other in inflorescence meristems. In monocots and non-core eudicots the validity of the ABC model is under discussion. Generally, more than one functional copy is found of at least one of the B-class genes. The A......-class genes apparently are expressed in meristems of both flower and inflorescence. Morphologically petaloid stamens and styles are well known within the petaloid monocots, whereas the phenomenon is rare in core eudicots. A simple model based on the extra copies of B-class genes can explain the molecular...

  10. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  11. Native Plant Species Suitable for Ecological Restoration

    Science.gov (United States)

    2011-05-10

    Center The Dalles Research Facility Dallesport, WA Eau Galle Laboratory Spring Valley, WI Lewisville Aquatic Ecosystems Research Facility Lew isville, TX...of Agriculture . PLANTS data base. http://plants.usda.gov/  U.S. Department of Agriculture , Forest Service. Fire Effects Information System. http

  12. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  13. Phytophthora Species, New Threats to the Plant Health in Korea

    OpenAIRE

    Ik-Hwa Hyun; Woobong Choi

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries ...

  14. Status of vascular plant species on Hainan Island

    Directory of Open Access Journals (Sweden)

    Yukai Chen

    2016-08-01

    Full Text Available Maintaining plant diversity on tropical islands is a priority for biodiversity conservation. Hainan Island, located in the northern tropics, is the second largest island in China with high plant diversity. Several updated plant lists of local flora have been published after decades of field investigations. In this paper, we investigated the plant diversity on Hainan Island by conducting extensive field surveys and a literature review. Results indicated that, as of December 2015, there were 6,036 vascular plants recorded on Hainan Island with voucher specimens or practical materials. Among these species, 1,220 species were revised as synonymously, 4,579 species were wild (including 483 endemic and 512 rare and endangered species, 163 were naturalized species (including 57 invasive species and 1,294 species were cultivated species. Since the publication of Flora Hainanica in 1964–1977, a large proportion of newly recorded species were mainly wild or introduced species, and accounted for 35.9% and 75.9% of their corresponding totals, respectively.

  15. Diversification of the RAB Guanosine Triphosphatase Family in Dicots and Monocots

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    RAB guanosine triphosphatases (GTPases) are key regulators of vesicle trafficking and are essential to the growth and development of all eukaryotic cells. During evolution, the RAB family has expanded in different patterns to facilitate distinct cellular, developmental and physiological adaptations. Yeast has only 11 family members, whereas mammalian RABs have expanded to 18 RAB subfamilies. Plant RABs have diversified primarily by duplicating members within a single subfamily. Plant RABs are divided into eight subfamilies, corresponding to mammalian RAB1, RAB2, RAB5, RAB6,RAB7, RAB8, RAB11 and RAB18. Functional diversification of these is exemplified by the RAB11s, orthologs of which are partitioned into unique cell compartments in plants where they function to transport vesicles during localized tip growth.Similarly, the RAB2 family in grasses is likely involved in vesicle secretion associated with wall expansion, as determined by analysis of over-expression mutants. We propose that dicots and monocots have also diverged in their RAB profiles to accommodate unique cellular functions between the two groups. Here we present a bioinformatics analysis comparing the RAB sub-families of rice, maize and Arabidopsis. These results will guide future functional studies to test for the role of diversification of subfamilies unique to monocots compared to dicots.

  16. An assessment of molecular mechanisms involved in metal uptake, translocation and homeostasis in Agave, a genus of CAM succulent plants

    Science.gov (United States)

    Agave is a monocot genus with more than 200 species of succulent plants capable of growing under arid and desert lands, steep and rocky slopes, or in coasts with high salinity. Some of them have economic relevance either for the production of alcoholic beverages as Tequila, or for natural fiber prod...

  17. PERIANTH DEVELOPMENT IN THE BASAL MONOCOT TRIGLOCHIN MARITIMA (JUNCAGINACEAE)

    DEFF Research Database (Denmark)

    Buzgo, Matyas; Soltis, Douglas E.; Soltis, Pamela S.;

    2006-01-01

    Basal monocots exhibit considerable variation in inflorescence and floral structure. In some cases, such as Triglochin maritima, it is not clear whether the lateral and terminal structures of the inflores- cence are flowers or pseudanthia, or where the limits between flowers and inflorescence lie...

  18. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  19. Plant species persistence and turnover on small Bahamian islands.

    Science.gov (United States)

    Morrison, Lloyd W

    2003-06-01

    I conducted surveys of the plant species occupying 136 small islands in the Exuma Cays and 58 small islands near Andros, Bahamas. Most species occurred on relatively few islands, and most islands contained relatively few species. Identities of the most common species differed between the two archipelagos. Comparisons with earlier surveys revealed species extinctions and immigrations. Turnover was relatively low on both a per island and a per species basis on both archipelagos, although significant spatial variation in turnover rates between archipelagos was found. Most islands experienced no turnover; islands on which turnover did occur were larger and had higher species richness. Likewise, most species did not turnover, although much variation existed in turnover rates among those that did. Experimental introductions of two species to very small islands naturally devoid of vegetation revealed that these islands could support plant life. One species survived on eight of ten islands for >9 years, including the effects of a moderate (class 2) hurricane. This hurricane caused substantial damage and loss of plant biomass, but resulted in no species extinctions on 30 small islands. Data for the small islands in this region, now spanning almost a decade, reveal that most populations are persistent over periods of years to decades, rarely going extinct or immigrating. Even moderate hurricanes seem to have little impact on species compositions.

  20. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  1. Allelopathic Effects of Invasive Woody Plant Species in Hungary

    Directory of Open Access Journals (Sweden)

    CSISZÁR, Ágnes

    2009-01-01

    Full Text Available Allelopathy may play an important role in the invasion success of adventive plant species.The aim of this study was to determine the allelopathic potential of invasive woody plant species occurringin Hungary. Juglone index of fourteen invasive woody plant species in Hungary was determined by themethod of Szabó (1997, comparing the effects of juglone and substance extracted of plant species withunknown allelopathic potential on the germination rate, shoot length and rooth length of white mustard(Sinapis alba L. used as receiver species. Results have proven a more or less expressed allelopathicpotential in case of all species. The juglone index at higher concentration extracts (5 g dry plant materialextracted with 100 ml distilled water of almost every studied species approaches to 1 or is above 1, thismeans the effect of the extracts is similar to juglone or surpasses it. In terms of juglone index, theallelopathic potential of false indigo (Amorpha fruticosa L., tree-of-heaven (Ailanthus altissima (Mill.Swingle and hackberry (Celtis occidentalis L. were the highest. Besides these species the treatment withthe extracts of black walnut (Juglans nigra L., black cherry (Prunus serotina Ehrh. and green ash(Fraxinus pennsylvanica MARSH. var. subintegerrima (Vahl Fern. reduced extremely significantly thegermination rate, shoot and root length, compared to the control.

  2. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR

    Institute of Scientific and Technical Information of China (English)

    Fen Lu; Huiqin Wang; Shanzhi Wang; Wendi Jiang; Changlin Shan; Bin Li; Jun Yang; Shiyong Zhang; Wenxian Sun

    2015-01-01

    The elongation factor Tu (EF-Tu) receptor (EFR) in cruciferous plants specifical y recognizes the N-terminal acetylated elf18 region of bacterial EF-Tu and thereby activates plant immunity. It has been demonstrated that Arabidopsis EFR confers broad-spectrum bacterial resistance in the EFR transgenic solanaceous plants. Here, the transgenic rice plants (Oryza sativa L. ssp. japonica cv. Zhonghua 17) and cel cultures with constitutive expression of AtEFR were developed to investigate whether AtEFR senses EF-Tu and thus enhances bacterial resistance in the monocot plants. We demonstrated that the Xanthomonas oryzae-derived elf18 peptide induced oxidative burst and mitogen-activated protein kinase activa-tion in the AtEFR transgenic rice cel s and plants, respectively. Pathogenesis-related genes, such as OsPBZ1, were upregulated dramatical y in transgenic rice plant and cel lines in response to elf18 stimulation. Importantly, pretreatment with elf18 trig-gered strong resistance to X. oryzae pv. oryzae in the transgenic plants, which was largely dependent on the AtEFR expression level. These plants also exhibited enhanced resistance to rice bacterial brown stripe, but not to rice fungal blast. Col ectively, the results indicate that the rice plants with heterologous expression of AtEFR recognize bacterial EF-Tu and exhibit enhanced broad-spectrum bacterial disease resistance and that pattern recognition receptor-mediated immunity may be manipulated across the two plant classes, dicots and monocots.

  3. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    Directory of Open Access Journals (Sweden)

    Kishore Sarma

    2014-01-01

    Full Text Available ADP-glucose pyrophosphorylase (AGPase is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide.

  4. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare WRKY transcription factor family reveals putatively retained functions between monocots and dicots

    Directory of Open Access Journals (Sweden)

    Jansson Christer

    2008-04-01

    Full Text Available Abstract Background WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare, three different WRKY proteins have been characterized so far as regulators in sucrose signaling, pathogen defense, and in response to cold and drought. However, their phylogenetic relationship remained unresolved. Results In this study, we used available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY genes. According to their structural features, the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. Conclusion HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in monocot and dicot species.

  5. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  6. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  7. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  8. an assessment of seed propagation of oilferous plant species with

    African Journals Online (AJOL)

    nb

    pedata grew luxuriously in all soil types while Jatropha curcas performed poorly ... recalcitrant and probably needed special attention and shortest storage time .... assess the effect of growth media on seed ..... Figure 4: Plant height of 4 plant species grown in 4 different soils 180 days .... utilize more light prior to leaf canopy.

  9. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  10. Binucleation to breed new plant species adaptable to their environments

    OpenAIRE

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial at...

  11. Plant species differences in particulate matter accumulation on leaf surfaces.

    Science.gov (United States)

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  12. Lignans from the plant species Achillea lingulata

    Directory of Open Access Journals (Sweden)

    SLOBODAN MILOSAVLJEVIC

    2003-05-01

    Full Text Available Five lignans with a 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane skeleton, epieudesmin, kobusin, pinoresinol, fargesin and sesartemin, were isolated from the aerial parts and roots of Achillea lingulata. Their structures were identified by comparison of their 1H-NMR and MS data to those in the literature. Fargesin and pinoresinol have not been isolated previously from any species of the genus Achillea.

  13. Mycorrhizal status helps explain invasion success of alien plant species.

    Science.gov (United States)

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.

  14. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    Science.gov (United States)

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  15. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  16. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS, which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots.

  17. Preferential uptake of soil nitrogen forms by grassland plant species.

    Science.gov (United States)

    Weigelt, Alexandra; Bol, Roland; Bardgett, Richard D

    2005-02-01

    In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.

  18. Predicting species' maximum dispersal distances from simple plant traits.

    Science.gov (United States)

    Tamme, Riin; Götzenberger, Lars; Zobel, Martin; Bullock, James M; Hooftman, Danny A P; Kaasik, Ants; Pärtel, Meelis

    2014-02-01

    Many studies have shown plant species' dispersal distances to be strongly related to life-history traits, but how well different traits can predict dispersal distances is not yet known. We used cross-validation techniques and a global data set (576 plant species) to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances. Including dispersal syndrome (wind, animal, ant, ballistic, and no special syndrome), growth form (tree, shrub, herb), seed mass, seed release height, and terminal velocity in different combinations as explanatory variables we constructed models to explain variation in measured maximum dispersal distances and evaluated their power to predict maximum dispersal distances. Predictions are more accurate, but also limited to a particular set of species, if data on more specific traits, such as terminal velocity, are available. The best model (R2 = 0.60) included dispersal syndrome, growth form, and terminal velocity as fixed effects. Reasonable predictions of maximum dispersal distance (R2 = 0.53) are also possible when using only the simplest and most commonly measured traits; dispersal syndrome and growth form together with species taxonomy data. We provide a function (dispeRsal) to be run in the software package R. This enables researchers to estimate maximum dispersal distances with confidence intervals for plant species using measured traits as predictors. Easily obtainable trait data, such as dispersal syndrome (inferred from seed morphology) and growth form, enable predictions to be made for a large number of species.

  19. Biodiversity of Asterina species on Neotropical host plants: new species and records from Panama.

    Science.gov (United States)

    Hofmann, T A; Piepenbring, M

    2011-01-01

    Two new species of the genus Asterina are described from living leaves collected in provinces Chiriquí and Bocas del Toro in western Panama. Asterina alloplecti on Alloplectus ichtyoderma (Gesneriaceae) differs from other Asterina on Gesneriaceae by its stalked appressoria and host relationship. Asterina compsoneurae on Compsoneura sprucei (Myristicaceae) can be distinguished from other members of Asterina on Myristicaceae by its larger ascomata, larger, prominently spinose ascospores and host relationship. New records for Panama are Asterina corallopoda from a new host plant species (Solanum trizygum, Solanaceae), A. diplopoda, A. ekmanii from a new host plant species (Gonzalagunia rudis, Rubiaceae), A. siphocampyli from a new host plant genus and species (Burmeistera vulgaris, Campanulaceae) and A. styracina from a new host-plant species (Styrax argenteus, Styracaceae). This study increases the number of species of Asterina known for Panama from 12 to 19 and the number of Asterinaceae from 14 to 21. Asterina corallopoda, A. diplopoda, A. ekmanii, A. siphocampyli and A. styracina are illustrated for the first time. A phylogeny inferred from the analysis of LSU rDNA sequences of species of Asterina is presented. The diversity and host-plant patterns of known Neotropical species of Asterina are discussed.

  20. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  1. Efficient, Antibiotic Marker-Free Transformation of a Dicot and a Monocot Crop with Glutamate 1-Semialdehyde Aminotransferase Selectable Marker Genes.

    Science.gov (United States)

    Ferradini, Nicoletta; Giancaspro, Angelica; Nicolia, Alessandro; Gadaleta, Agata; Veronesi, Fabio; Rosellini, Daniele

    2016-01-01

    Antibiotic-free, efficient in vitro selection in plant genetic engineering can improve risk perception and speed up pre-market scrutiny of genetically modified crops. We provide a protocol for genetic transformation of two important crops, durum wheat and alfalfa, using a bacterial and a plant-derived selectable marker gene encoding mutated, gabaculine-insensitive glutamate 1-semialdehyde aminotransferase (GSA) enzymes. These methods can potentially be applied, with minor adaptations, to many other monocot and dicot crop plants.

  2. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.

    Science.gov (United States)

    Sonah, Humira; Deshmukh, Rupesh K; Sharma, Anshul; Singh, Vinay P; Gupta, Deepak K; Gacche, Raju N; Rana, Jai C; Singh, Nagendra K; Sharma, Tilak R

    2011-01-01

    Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related

  3. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    Full Text Available Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice and dicots (Arabidopsis, Medicago and Populus was performed. A total of 797,863 simple sequence repeats (SSRs were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium

  4. Metalaxyl toxicity, uptake, and distribution in several ornamental plant species.

    Science.gov (United States)

    Wilson, P C; Whitwell, T; Klaine, S J

    2001-01-01

    Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.

  5. MPIC: a mitochondrial protein import components database for plant and non-plant species.

    Science.gov (United States)

    Murcha, Monika W; Narsai, Reena; Devenish, James; Kubiszewski-Jakubiak, Szymon; Whelan, James

    2015-01-01

    In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved.

  6. The Language of Reactive Oxygen Species Signaling in Plants

    Directory of Open Access Journals (Sweden)

    Soumen Bhattacharjee

    2012-01-01

    Full Text Available Reactive oxygen species (ROS are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of specific proteins or expression of genes by changing redox balance of the cell. The network of redox signals orchestrates metabolism for regulating energy production to utilization, interfering with primary signaling agents (hormones to respond to changing environmental cues at every stage of plant development. The oxidative lipid peroxidation products and the resulting generated products thereof (associated with stress and senescence also represent “biological signals,” which do not require preceding activation of genes. Unlike ROS-induced expression of genes, these lipid peroxidation products produce nonspecific response to a large variety of environmental stresses. The present review explores the specific and nonspecific signaling language of reactive oxygen species in plant acclamatory defense processes, controlled cell death, and development. Special emphasis is given to ROS and redox-regulated gene expression and the role of redox-sensitive proteins in signal

  7. Rare and endangered species of plants--the soviet side.

    Science.gov (United States)

    Elias, T S

    1983-01-07

    In late 1972, the Soviet Union embarked on a program to identify and document plant species that are threatened with extinction. Perhaps 2000 species in the Soviet Union are in need of monitoring or protective measures, while nearly 200 may be in immediate danger of extinction. Currently, the Soviet Union has an official, national list of endangered species, and each of the 15 republics has prepared a regional list. Once a revised national list is prepared, Soviet scientists hope that the Supreme Soviet will pass a law protecting those species. A corresponding law for endangered animals was passed in 1980.

  8. Chromosome studies in the aquatic monocots of Myanmar: A brief review with additional records

    Directory of Open Access Journals (Sweden)

    Yu Ito

    2014-05-01

    Full Text Available Myanmar (Burma constitutes a significant component of the Indo-Myanmar biodiversity hotspot, with elements of the Indian, the Indochina, and the Sino-Japanese floristic regions, yet thus far only a few reliable sources of the country's flora have been available. As a part of a contribution for the floristic inventory of Myanmar, since it is important in a floristic survey to obtain as much information as possible, in addition to previous two reports, here we present three more chromosome counts in the aquatic monocots of Myanmar: Limnocharis flava with 2n = 20, Sagittaria trifolia with 2n = 22 (Alismataceae, and Potamogeton distinctus × P. nodosus with 2n = 52 (Potamogetonaceae; the third one is new to science. A brief review of cytological researches in the floristic regions' 45 non-hybrid aquatic monocots plus well investigated two inter-specific hybrids that are recorded in Myanmar is given, indicating that the further works with a focus on species in Myanmar that has infra-specific chromosome variation in the floristic regions will address the precise evolutionary history of the aquatic flora of Myanmar.

  9. Chromosome studies in the aquatic monocots of Myanmar: A brief review with additional records.

    Science.gov (United States)

    Ito, Yu; Tanaka, Nobuyuki

    2014-01-01

    Myanmar (Burma) constitutes a significant component of the Indo-Myanmar biodiversity hotspot, with elements of the Indian, the Indochina, and the Sino-Japanese floristic regions, yet thus far only a few reliable sources of the country's flora have been available. As a part of a contribution for the floristic inventory of Myanmar, since it is important in a floristic survey to obtain as much information as possible, in addition to previous two reports, here we present three more chromosome counts in the aquatic monocots of Myanmar: Limnocharisflava with 2n = 20, Sagittariatrifolia with 2n = 22 (Alismataceae), and Potamogetondistinctus × Potamogetonnodosus with 2n = 52 (Potamogetonaceae); the third one is new to science. A brief review of cytological researches in the floristic regions' 45 non-hybrid aquatic monocots plus well investigated two inter-specific hybrids that are recorded in Myanmar is given, indicating that the further works with a focus on species in Myanmar that has infra-specific chromosome variation in the floristic regions will address the precise evolutionary history of the aquatic flora of Myanmar.

  10. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    Science.gov (United States)

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  11. Which ornamental plant species effectively remove benzene from indoor air?

    Science.gov (United States)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  12. Rare and endangered plant species of the Chinese Altai Mountains

    Institute of Scientific and Technical Information of China (English)

    Marina; V.OLONOVA

    2010-01-01

    Altai (also named Altay in China) Mountain Country (Mountain System) is a unique natural region,located on the border between different floristic regimes of the Boreal and ancient Mediterranean sub-kingdoms,where distribution of plant species is actually limited. It is known to have sufficient endemic floral biodiversity in the Northern Asia. Many plants of Altai Mountain System need effective care and proper conservation measures for their survival and longer-term protection. Important Plant Area identified as the IUCN (the International Union for Conservation of Nature),specified criteria attract global attention for protection of floral biodiversity across the world. The records of 71 plant species from the Chinese Altai Mountains attributed to the criterion A and the dark conifer forests of Chinese Altai Mountains satisfied the criterion C,which may help qualify to fulfill the national obligation of the Convention on Biological Diversity.

  13. Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae).

    Science.gov (United States)

    Starr, Julian R; Naczi, Robert F C; Chouinard, Brianna N

    2009-05-01

    We investigate the species discriminatory power of a subset of the proposed plant barcoding loci (matK, rbcL, rpoC1, rpoB, trnH-psbA) in Carex, a cosmopolitan genus that represents one of the three largest plant genera on earth (c. 2000 species). To assess the ability of barcoding loci to resolve Carex species, we focused our sampling on three of the taxonomically best-known groups in the genus, sections Deweyanae (6/8 species sampled), Griseae (18/21 species sampled), and Phyllostachyae (10/10 species sampled). Each group represents one of three major phylogenetic lineages previously identified in Carex and its tribe Cariceae, thus permitting us to evaluate the potential of DNA barcodes to broadly identify species across the tribe and to differentiate closely related sister species. Unlike some previous studies that have suggested that plant barcoding could achieve species identification rates around 90%, our results suggest that no single locus or multilocus barcode examined will resolve much greater than 60% of Carex species. In fact, no multilocus combination can significantly increase the resolution and statistical support (i.e., ≥ 70% bootstrap) for species than matK alone, even combinations involving the second most variable region, trnH-psbA. Results suggest that a matK barcode could help with species discovery as 47% of Carex taxa recently named or resolved within cryptic complexes in the past 25 years also formed unique species clusters in upgma trees. Comparisons between the nrDNA internal transcribed spacer region (ITS) and matK in sect. Phyllostachyae suggest that matK not only discriminates more species (50-60% vs. 25%), but it provides more resolved phylogenies than ITS. Given the low levels of species resolution in rpoC1 and rpoB (0-13%), and difficulties with polymerase chain reaction amplification and DNA sequencing in rbcL and trnH-psbA (alignment included), we strongly advocate that matK should be part of a universal plant barcoding system

  14. Rhizobia species: A Boon for "Plant Genetic Engineering".

    Science.gov (United States)

    Patel, Urmi; Sinha, Sarika

    2011-10-01

    Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. "Rhizobia mediated transformation technology."

  15. Cupriavidus plantarum sp. nov., a plant-associated species.

    Science.gov (United States)

    Estrada-de Los Santos, Paulina; Solano-Rodríguez, Roosivelt; Matsumura-Paz, Lucía Tomiko; Vásquez-Murrieta, María Soledad; Martínez-Aguilar, Lourdes

    2014-11-01

    During a survey of plant-associated bacteria in northeast Mexico, a group of 13 bacteria was isolated from agave, maize and sorghum plants rhizosphere. This group of strains was related to Cupriavidus respiraculi (99.4 %), but a polyphasic investigation based on DNA-DNA hybridization analysis, other genotypic studies and phenotypic features showed that this group of strains actually belongs to a new Cupriavidus species. Consequently, taking all the results together, the description of Cupriavidus plantarum sp. nov. is proposed.

  16. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate.

    Science.gov (United States)

    Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Nandula, Vijay K

    2008-03-26

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.

  17. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  18. Plant antiherbivore defenses in Fabaceae species of the Chaco

    Directory of Open Access Journals (Sweden)

    T. E. Lima

    Full Text Available Abstract The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense – defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species, leaves (67%, and reproductive organs (56%. The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  19. Metal species involved in long distance metal transport in plants

    Science.gov (United States)

    Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier

    2014-01-01

    The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928

  20. Species Richness in Relation to the Presence of Crop Plants in Families of Higher Plants

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-10-01

    Full Text Available Crop species richness and percentages of cultivated plants in 75 families comprisingmore than 220000 species were analyzed. Three major groups have been made. The first group is including the “big five” families with 10000 and more species in each. The second group comprises 50 families with more than thousand and up to 10000 species and finally the third group contains families with relatively high numbers of crop species. The percentage of cultivated species is various, from 0.16 to 7.25 in group 1, 0 to 7.24 in group 2 and 2.30 to 32.5 in group 3. The results show that there is a positive correlation (r = + 0.56 between number of crop plants and species diversity of the families.

  1. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  2. Multiple strategies for drought survival among woody plant species

    OpenAIRE

    Pivovaroff, AL; Pasquini, SC; De Guzman, ME; Alstad, KP; Stemke, JS; Santiago, LS

    2015-01-01

    © 2015 British Ecological Society Drought-induced mortality and regional dieback of woody vegetation are reported from numerous locations around the world. Yet within any one site, predicting which species are most likely to survive global change-type drought is a challenge. We studied the diversity of drought survival traits of a community of 15 woody plant species in a desert-chaparral ecotone. The vegetation was a mix of chaparral and desert shrubs, as well as endemic species that only occ...

  3. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  4. The effect of plant species on soil nitrogen mineralization

    NARCIS (Netherlands)

    Krift, van der A.J.; Berendse, F.

    2001-01-01

    1. To ascertain the influence of different plant species on nitrogen (N) cycling, we performed a long-term garden experiment with six grasses and five dicots with different potential growth rates, that are adapted to habitats with different nutrient supplies. We measured in situ N mineralization and

  5. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  6. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    Science.gov (United States)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  7. Accumulation of K+ and Cs+ in Tropical Plant Species

    Science.gov (United States)

    Velasco, H.; Anjos, R. M.; Zamboni, C. B.; Macario, K. D.; Rizzotto, M.; Cid, A. S.; Medeiros, I. M. A.; Fernández, J.; Rubio, L.; Audicio, P.; Lacerda, T.

    2010-08-01

    Concentrations of K+ and 137Cs+ in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K+, Cs+ ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that 137Cs+ is positively correlated to 40K+ concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they pass through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of 40K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the 40K experimental results in the fruit ripening processes of lemon trees.

  8. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  9. What role does plant physiology play in limiting species distribution?

    Science.gov (United States)

    De Kauwe, M. G.; Medlyn, B. E.; Beaumont, L.; Duursma, R.; Baumgartner, J.

    2015-12-01

    To predict vulnerability of tree species to changes in climate, we need to understand what processes are currently limiting their distributions. Although the limits to distribution is among the most fundamental of ecological questions, there are few studies that determine quantitatively which processes can explain observed distributions. Focusing on two contrasting Eucalypt species, a fast-growing coastal species (E. saligna) and a slower-growing inland species (E. sideroxylon), we examined to what extent plant physiological characteristics limit species distributions. The ecophysiology of both species has been extensively characterised in both controlled and field environments. We parameterised an ecosystem model (GDAY, Generic Decomposition and Yield) for both species, using the best available experimental data. We then used the model to predict the spatial distribution of productivity for these species in eastern Australia, and compared these predictions with the actual distributions. The results of this comparison allow us to identify where the distributions of these species are limited by physiological constraints on productivity, and consequently their vulnerability to changes in climate.

  10. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.

  11. Alien Plant Species Mountain Endemic Tree Species in Gunung Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Budi Utomo

    2012-09-01

    Full Text Available 800x600 Up to now, montane rain forest of Gunung Gede-Pangrango National Park, faces problem in the form of invasion of exotic plant species into the area.  Location of the area that borders with various land uses, such as Botanical Garden and agricultural land, make it very susceptible toward invasion of plant species from outside the area.  The collapse of large trees which normally constitute a mechanism of natural regeneration, was in fact stimulating the development of exotic species, particularly those which were invasive, inside the area. The objective of this research was to test the competitive ability of endemic species, which in this case was represented by Cleystocalyx operculata and Mischocarpus pentapetalus, toward exotic plant species, represented by Austroeupatoriun inulaefolium and Passiflora ligularis, during 5 months of study.  Growth rate of exotic plant species, as well as the dry weight biomass, were larger than those of endemic species.  Indirect estimation of competitive ability showed that competitive ability (β of endemic species were 4-5 times less, namely 0.0274 (for C. operculata and 0.0251 (for M. pentapetalus; as compared with those of exotic species, namely 0.125 (for P. ligularis and 0.1104 (for A. inulaefolium.  Direct test also proved that competitive ability (β of endemic species was lower than that of exotic species, as shown by relative crowding value   Estimation of future competitive ability, using diagram of input/ output ratio, showed also the disability of endemic species to compete with exotic species, where position of input/output ratio points were parallel with equilibrium line y=x. Considering those facts, there is urgent need for controlling these invasive exotic species inside the National Park area to maintain the sustainability of biodiversity and regeneration of endemic species in montane rain forest of Gunung Gede–Pangrango National Park.    Keywords: endemic, exotic, invasion

  12. Temporal introduction patterns of invasive alien plant species to Australia

    Directory of Open Access Journals (Sweden)

    Brad Murray

    2012-05-01

    Full Text Available We examined temporal introduction patterns of 132 invasive alien plant species (IAPS to Australia since European colonisation in 1770. Introductions of IAPS were high during 1810–1820 (10 species, 1840–1880 (51 species, 38 of these between 1840 and 1860 and 1930–1940 (9 species. Conspicuously few introductions occurred during 10-year periods directly preceding each introduction peak. Peaks during early European settlement (1810–1820 and human range expansion across the continent (1840-1860 both coincided with considerable growth in Australia’s human population. We suggest that population growth during these times increased the likelihood of introduced plant species becoming invasive as a result of increased colonization and propagule pressure. Deliberate introductions of IAPS (104 species far outnumbered accidental introductions (28 species and were particularly prominent during early settlement. Cosmopolitan IAPS (25 species and those native solely to South America (53 species, Africa (27 species and Asia (19 species have been introduced deliberately and accidentally to Australia across a broad period of time. A small number of IAPS, native solely to Europe (5 species and North America (2 species, were all introduced to Australia prior to 1880. These contrasting findings for native range suggest some role for habitat matching, with similar environmental conditions in Australia potentially driving the proliferation of IAPS native to southern-hemisphere regions. Shrub, tree and vine species dominated IAPS introduced prior to 1840, with no grasses or forbs introduced during early colonisation. Since 1840, all five growth forms have been introduced deliberately and accidentally in relatively large numbers across a broad period of time. In particular, a large number of grass and forb IAPS were deliberately introduced between 1840 and 1860, most likely a direct result of the introduction of legislation promoting intensive agriculture across

  13. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  14. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  15. Methylated arsenic species in plants originate from soil microorganisms.

    Science.gov (United States)

    Lomax, Charlotte; Liu, Wen-Ju; Wu, Liyou; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; McGrath, Steve P; Meharg, Andrew A; Miller, Anthony J; Zhao, Fang-Jie

    2012-02-01

    • Inorganic arsenic (iAs) is a ubiquitous human carcinogen, and rice (Oryza sativa) is the main contributor to iAs in the diet. Methylated pentavalent As species are less toxic and are routinely found in plants; however, it is currently unknown whether plants are able to methylate As. • Rice, tomato (Solanum lycopersicum) and red clover (Trifolium pratense) were exposed to iAs, monomethylarsonic acid (MMA(V)), or dimethylarsinic acid (DMA(V)), under axenic conditions. Rice seedlings were also grown in two soils under nonsterile flooded conditions, and rice plants exposed to arsenite or DMA(V) were grown to maturity in nonsterile hydroponic culture. Arsenic speciation in samples was determined by HPLC-ICP-MS. • Methylated arsenicals were not found in the three plant species exposed to iAs under axenic conditions. Axenically grown rice was able to take up MMA(V) or DMA(V), and reduce MMA(V) to MMA(III) but not convert it to DMA(V). Methylated As was detected in the shoots of soil-grown rice, and in rice grain from nonsterile hydroponic culture. GeoChip analysis of microbial genes in a Bangladeshi paddy soil showed the presence of the microbial As methyltransferase gene arsM. • Our results suggest that plants are unable to methylate iAs, and instead take up methylated As produced by microorganisms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Mechanisms underlying the long-term survival of the monocot Dracaena marginata under drought conditions.

    Science.gov (United States)

    Jupa, Radek; Plichta, Roman; Paschová, Zuzana; Nadezhdina, Nadezhda; Gebauer, Roman

    2017-09-01

    Efficient water management is essential for the survival of vascular plants under drought stress. While interrelations among drought stress, plant anatomy and physiological functions have been described in woody dicots, similar research is very limited for non-palm arborescent and shrubby monocots despite their generally high drought tolerance. In this study, potted transplants of Dracaena marginata Lam. in primary growth stage were exposed to several short- and long-term drought periods. Continuous measurements of sap flow and stem diameter, the evaluation of capacitance and leaf conductance, the quantification of non-structural carbohydrates (NSC), and organ-specific anatomical analyses were performed to reveal the mechanisms promoting plant resistance to limited soil moisture. The plants showed sensitive stomata regulation in the face of drying soil, but only intermediate resistance to water loss through cuticular transpiration. The water losses were compensated by water release from stem characterized by densely interconnected, parenchyma-rich ground tissue and considerable hydraulic capacitance. Our results suggest that the high concentration of osmotically active NSC in aboveground organs combined with the production of root pressures supported water uptake and the restoration of depleted reserves after watering. The described anatomical features and physiological mechanisms impart D. marginata with high resistance to irregular watering and long-term water scarcity. These findings should help to improve predictions with respect to the impacts of droughts on this plant group. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... and tested on a total of 10,413 images containing 22 weed and crop species at early growth stages. These images originate from six different data sets, which have variations with respect to lighting, resolution, and soil type. This includes images taken under controlled conditions with regard to camera...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  18. Pollinators visit related plant species across 29 plant-pollinator networks.

    Science.gov (United States)

    Vamosi, Jana C; Moray, Clea M; Garcha, Navdeep K; Chamberlain, Scott A; Mooers, Arne Ø

    2014-06-01

    Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant-pollinator networks of varying sizes, with "clade specialization" increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization.

  19. The cobblers stick to their lasts : pollinators prefer native over alien plant species in a multi-species experiment

    OpenAIRE

    Chrobock, Thomas; Winiger, Pius; Fischer, Markus; van Kleunen, Mark

    2013-01-01

    The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whethe...

  20. Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta; Zak, Marcelo R; Bartoloni, Norberto

    2009-01-01

    In Argentina the Yungas forests are among the ecosystems most affected by human activity, with loss of biodiversity. To assess the arbuscular mycorrhizal (AM) colonization and the arbuscular mycorrhizal fungi (AMF) spore numbers in these ecosystems, the roots of the most dominant native plants (one tree, Alnus acuminata; three herbaceous, Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub, Sambucus peruviana) were studied throughout the year from two sites of Yungas forests. Assessments of mycorrhizal colonization (percent root length, intraradical structures) were made by washing and staining the roots. Soil samples of each plant species were pooled and subsamples were obtained to determine AM spore numbers. The herbaceous species formed both Arum- and Paris-type morphologies, whereas the tree and the shrub species formed respectively single structural types of Arum- and Paris-type. AM colonization, intraradical fungi structures and AMF spore numbers displayed variation in species, seasons and sites. D. indica showed the highest AM colonization, whereas the highest spore numbers was observed in the rhizosphere of A. acuminata. No correlation was observed between spore numbers and root length percentage colonized by AM fungi. Results of this study showed that Alnus acuminata is facultatively AM. The AM colonization, intraradical fungi structures and AMF spore numbers varied in species depending on phenological, climatic and edaphic conditions.

  1. Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?

    Science.gov (United States)

    Bell, Colin; Carrillo, Yolima; Boot, Claudia M; Rocca, Jennifer D; Pendall, Elise; Wallenstein, Matthew D

    2014-01-01

    As a consequence of the tight linkages among soils, plants and microbes inhabiting the rhizosphere, we hypothesized that soil nutrient and microbial stoichiometry would differ among plant species and be correlated within plant rhizospheres. We assessed plant tissue carbon (C) : nitrogen (N) : phosphorus (P) ratios for eight species representing four different plant functional groups in a semiarid grassland during near-peak biomass. Using intact plant species-specific rhizospheres, we examined soil C : N : P, microbial biomass C : N, and soil enzyme C : N : P nutrient acquisition activities. We found that few of the plant species' rhizospheres demonstrated distinct stoichiometric properties from other plant species and unvegetated soil. Plant tissue nutrient ratios and components of below-ground rhizosphere stoichiometry predominantly differed between the C4 plant species Buchloe dactyloides and the legume Astragalus laxmannii. The rhizospheres under the C4 grass B. dactyloides exhibited relatively higher microbial C and lower soil N, indicative of distinct soil organic matter (SOM) decomposition and nutrient mineralization activities. Assessing the ecological stoichiometry among plant species' rhizospheres is a high-resolution tool useful for linking plant community composition to below-ground soil microbial and nutrient characteristics. By identifying how rhizospheres differ among plant species, we can better assess how plant-microbial interactions associated with ecosystem-level processes may be influenced by plant community shifts.

  2. Hybrid Viability and Fertility in Co-occuring Plant Species

    Science.gov (United States)

    Hernandez, E.; Garcia, C.; Yost, J.

    2012-12-01

    Similar species of plants can co-exist due to reproductive barriers that keep them from hybridizing. In the case of Lasthenia gracilis and L. californica, certain reproductive barriers allow them to co-exist at Jasper Ridge without hybridization. The two species are locally adapted to different regions of the same hillside, and have slight differences in flowering time but hybrids can be created at low rate in the green house. We tested the viability and fertility of green house produced hybrids to quantify post-zygotic reproductive isolation at Jasper Ridge. We planted 10 hybrid seeds and 10 control seeds from 11 different families. We measured the percent germination, survival to flowering and pollen fertility of the seeds. We expect lower germination, lower survival to flowering, and lower pollen viability of hybrid seeds as compared to control seeds.

  3. Behavioral Response of Nothanguina phyllobia to Selected Plant Species.

    Science.gov (United States)

    Robinson, A F; Orr, C C; Abernathy, J R

    1979-01-01

    The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics.

  4. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  5. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to preven

  6. Biodegradation of 2,4-dinitrotoluene by different plant species.

    Science.gov (United States)

    Podlipná, Radka; Pospíšilová, Blanka; Vaněk, Tomáš

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l).

  7. Gymnosporangium Species – An Important Issue of Plant Protection

    Directory of Open Access Journals (Sweden)

    Lāce Baiba

    2017-06-01

    Full Text Available Rusts (Fungi, Basidiomycota, Pucciniomycotina, Pucciniomycetes, Pucciniales are one of the most important causal agents of diseases and they are infecting many plants including cereals and field crops, vegetables, trees and many ornamentals. They have been studied for a long time and have economic importance among the plant diseases caused by agents of different species of fungi. In Europe, thirteen rust genera have been reported, of which the genus Gymnosporangium is the second largest after genus Phragmidium. The most significant fruit tree rust pathogen is the genus Gymnosporangium. The literature review shows quite limited scientific information about this genus and its species. Studies have mainly focused on some stages of the pathogen development cycle, which are significant for the spread of diseases - uredo and teleito stages. Special attention of the review was paid to European pear rust (caused by G. sabinae (Dicks. G. Winter, the distribution of which has increased during the last ten years, especially in organic pear orchards. Currently there is a limited number of scientific publications about European pear rust, and they are mainly based only on observations in vitro without trials in the field, despite the fact that it has become one of the most devastating diseases. Therefore, the presented review analyses the rust exploration history, diversity and distribution of species, life cycle, development biology and plant protection issues.

  8. Floristic characteristics of alien invasive seed plant species in China

    Directory of Open Access Journals (Sweden)

    CONGYAN WANG

    Full Text Available ABSTRACT This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  9. Conserved Subgroups and Developmental Regulation in the Monocot rop Gene Family1[w

    Science.gov (United States)

    Christensen, Todd M.; Vejlupkova, Zuzana; Sharma, Yogesh K.; Arthur, Kirstin M.; Spatafora, Joseph W.; Albright, Carol A.; Meeley, Robert B.; Duvick, Jon P.; Quatrano, Ralph S.; Fowler, John E.

    2003-01-01

    Rop small GTPases are plant-specific signaling proteins with roles in pollen and vegetative cell growth, abscisic acid signal transduction, stress responses, and pathogen resistance. We have characterized the rop family in the monocots maize (Zea mays) and rice (Oryza sativa). The maize genome contains at least nine expressed rops, and the fully sequenced rice genome has seven. Based on phylogenetic analyses of all available Rops, the family can be subdivided into four groups that predate the divergence of monocots and dicots; at least three have been maintained in both lineages. However, the Rop family has evolved differently in the two lineages, with each exhibiting apparent expansion in different groups. These analyses, together with genetic mapping and identification of conserved non-coding sequences, predict orthology for specific rice and maize rops. We also identified consensus protein sequence elements specific to each Rop group. A survey of ROP-mRNA expression in maize, based on multiplex reverse transcriptase-polymerase chain reaction and a massively parallel signature sequencing database, showed significant spatial and temporal overlap of the nine transcripts, with high levels of all nine in tissues in which cells are actively dividing and expanding. However, only a subset of rops was highly expressed in mature leaves and pollen. Intriguingly, the grouping of maize rops based on hierarchical clustering of expression profiles was remarkably similar to that obtained by phylogenetic analysis. We hypothesize that the Rop groups represent classes with distinct functions, which are specified by the unique protein sequence elements in each group and by their distinct expression patterns. PMID:14605221

  10. Psychoactive plant species – actual list of plants prohibited in Poland

    Directory of Open Access Journals (Sweden)

    Simonienko, Katarzyna

    2013-06-01

    Full Text Available According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520. the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where – among primeval cultures – are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  11. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  12. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  13. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  14. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  15. UNMANNED AERIAL VEHICLES FOR ALIEN PLANT SPECIES DETECTION AND MONITORING

    Directory of Open Access Journals (Sweden)

    P. Dvořák

    2015-08-01

    Full Text Available Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms by using purposely designed unmanned aircraft (UAV. We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid. Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded. The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  16. Plant inter-species effects on rhizosphere priming effect and nitrogen acquisition by plants

    Science.gov (United States)

    Sun, Yue; Xu, Xingliang; Yang, Baijie; Kuzyakov, Yakov

    2015-04-01

    Rhizosphere interactions play a central role linking roots-soil system and regulate various aspects of nutrient cycling. Rhizodeposition inputs are known to change soil organic matter (SOM) decomposition via rhizosphere priming effects (RPEs) through enhancing soil biological activity and altering microbial community structure. The magnitude of RPEs varies widely among plant-species and root biomass possibly due to different quality and quantity of rhizodeposits. However, it is virtually unknown whether the RPEs are influenced by plant inter-species interactions and how these processes affect N mineralization and available N for plants. Monocultures of maize (M) and soybean (S), and mixed cultures of maize/maize (MM), soybean/soybean (SS), maize/soybean (MS) were grown over a 45-day greenhouse experiment. We labeled them with plant litter that was enriched in13C and 15N. The 15N distributions in plants and microbial biomass were measured at 14, 35, and 45days after labeling. The RPEs were positive under all plants, ranging from 11.7% to 138.3% and gradually decreased with plant growth. The RPE in the SS was significantly higher than these in others treatments at 14 days, while at 45 days it was higher in the MS than these from their monocultures, suggesting that the RPE was enhanced by the inter-species effects of maize and soybean. The litter decomposition ratio and 15N recovery of plants and microorganism increased with the root growth across all plants. The 15N recovery of plants in the MS (14.2%) was higher than these in the MM (12.3%) and SS(9.7%) at 45 days. Similarly, the 15N recovery of microorganism in the corresponding treatments was 6.7%, 2.2%, and 6.8%, respectively. The MS showed higher soil organic N mineralization amount than that from all soybean and maize monocultures at 45 days. We conclude that plant inter-species interactions may have significant effect on rhizosphere priming and modify the plant N uptake from litter resource and SOM.

  17. Imaging techniques for elements and element species in plant science.

    Science.gov (United States)

    Wu, Bei; Becker, J Sabine

    2012-05-01

    Revealing the uptake, transport, localization and speciation of both essential and toxic elements in plants is important for understanding plant homeostasis and metabolism, subsequently, providing information for food and nutrient studies, agriculture activities, as well as environmental research. In the last decade, emerging techniques for elemental imaging and speciation analysis allowed us to obtain increasing knowledge of elemental distribution and availabilities in plants. Chemical imaging techniques include mass spectrometric methods such as secondary ionization mass spectrometry (SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron-based techniques such as X-ray fluorescence spectroscopy (SRXRF), and so forth. On the other hand, X-ray absorption spectroscopy (XAS) based on synchrotron radiation is capable of in situ investigation of local atomic structure around the central element of interest. This technique can also be operated in tandem with SRXRF to image each element species of interest within plant tissue. In this review, the principles and state-of-the-art of these techniques regarding sample preparation, advantages and limitations, and improvement of sensitivity and spatial resolution are discussed. New results with respect to elemental distribution and speciation in plants revealed by these techniques are presented.

  18. Chemical recognition of partner plant species by foundress ant queens in Macaranga-Crematogaster myrmecophytism.

    Science.gov (United States)

    Inui, Y; Itioka, T; Murase, K; Yamaoka, R; Itino, T

    2001-10-01

    The partnership in the Crematogaster-Macaranga ant-plant interaction is highly species-specific. Because a mutualistic relationship on a Macaranga plant starts with colonization by a foundress queen of a partner Crematogaster species, we hypothesized that the foundress queens select their partner plant species by chemical recognition. We tested this hypothesis with four sympatric Macaranga species and their Crematogaster plant-ant species. We demonstrated that foundress Crematogaster queens can recognize their partner Macaranga species by contact with the surface of the seedlings, that they can recognize compounds from the stem surface of seedlings of their partner plant species, and that the gas chromatographic profiles are characteristic of the plant species. These findings support the hypothesis that foundress queens of the Crematogaster plant-ant species select their partner Macaranga species by recognizing nonvolatile chemical characteristics of the stem surfaces of seedlings.

  19. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  20. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  1. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  2. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Science.gov (United States)

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; László, Zoltán; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies

  3. 78 FR 48943 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2013-08-12

    ... August 12, 2013 Part II Department of Commerce National Oceanic and Atmospheric Administration Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for Alewife and... Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for Alewife...

  4. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    Science.gov (United States)

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  5. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice

    Institute of Scientific and Technical Information of China (English)

    Ling Chang; Hong Ma; Hong-Wei Xue

    2009-01-01

    The Arabidopsis SDS (SOLO DANCERS) and RCK (ROCK-N-ROLLERS) genes are important for male meiosis, but it is still unknown whether they represent conserved functions in plants. We have performed phylogenetic analy-ses of SDS and RCK and their respective homologs, and identified their putative orthologs in poplar and rice. Quan-titative real-time RT-PCR analysis indicated that rice SDS and RCK are expressed preferentially in young flowers, and transgenic RNAi rice lines with reduced expression of these genes exhibited normal vegetative development, but showed significantly reduced fertility with partially sterile flowers and defective pollens. SDS deficiency also caused a decrease in pollen amounts. Further cytological examination of male meiocytes revealed that the SDS deficiency led to defects in homolog interaction and bivalent formation in meiotic prophase I, and RCK deficiency resulted in defec-tive meiotic crossover formation. These results indicate that rice SDS and RCK genes have similar functions to their Arabidopsis orthologs. Because rice and Arabidopsis, respectively, are members of monocots and eudicots, two largest groups of flowering plants, our results suggest that the functions of SDS and RCK are likely conserved in flowering plants.

  6. Short communication: occurrence of Arcobacter species in industrial dairy plants.

    Science.gov (United States)

    Serraino, A; Giacometti, F

    2014-01-01

    The present study investigated the presence of Arcobacter spp. in industrial dairy plants. Between February and September 2013, pasteurized milk used for cheesemaking, processing and cleaning water, cheese, and environmental samples from different plant sites, including surfaces in contact or not in contact with food, were sampled. A total of 126 samples were analyzed by the cultural method and isolates were identified by multiplex PCR. Arcobacter spp. were isolated from 22 of 75 environmental samples (29.3%): of them, 22.7% were surfaces in contact with food and 38.7% surfaces not in contact with food. A total of 135 Arcobacter spp. isolates were obtained; of these, 129 and 6 were identified as Arcobacter butzleri and Arcobacter cryaerophilus, respectively. All food processing water and pasteurized milk samples were negative for Arcobacter species. We were not able to determine the primary source of contamination, but the isolation of both A. butzleri and A. cryaerophilus in surfaces in contact with food before and during manufacturing suggests that Arcobacter spp. are not or are only partially affected by routine sanitizing procedures in the industrial dairy plants studied. The efficacy of sanitizing procedures should be evaluated and further studies are needed to determine whether certain Arcobacter strains persist for long periods of time in industrial dairy plants and whether they can survive in different types of cheese in cases of postprocessing contamination.

  7. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  8. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  9. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers...

  10. Increased plant carbon translocation linked to overyielding in grassland species mixtures

    NARCIS (Netherlands)

    Deyn, de G.B.; Quirk, H.; Oakley, S.; Ostle, N.J.; Bardgett, R.D.

    2012-01-01

    Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and det

  11. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  12. Mineral contents from some fabaceous plant species of Rajasthan desert

    Directory of Open Access Journals (Sweden)

    B.B.S.Kapoor

    2013-12-01

    Full Text Available Evaluation of mineral contents from three selected plant species of Fabaceae family growing in arid region of Rajasthan Desert was carried out. The roots, shoots and fruits of Clitoria ternatea, Sesbania bispinosa and Tephrosia purpurea collected from two different areas Chhatargarh area (Bikaner district and Ratangarh area (Churu district were analysed for mineral contents. The maximum Calcium (3.86%, Phosphorus (0.48%, Potassium (0.92% and Sodium (1.08% contents were found in roots and shoots of Grewia tenax collected from study area.

  13. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  14. Characterization of tobacco expressing functional oat phytochrome. Domains responsible for the rapid degradation of Pfr are conserved between monocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, J.R.; Vierstra, R.D. (Univ. of Wisconsin, Madison (United States)); Hershey, H.P. (E.I.du Pont de Nemours and Co., Wilmington, DE (United States))

    1991-07-01

    Constitutive expression of a chimeric oat phytochrome gene in tobacco (Nicotiana tabacum) results in the accumulation of a functional 124-kilodalton photoreceptor that markedly alters the phenotype of light-grown tobacco. Here, we provide a detailed phenotypic and biochemical characterization of homozygous tobacco expressing high levels of oat phytochrome. Phenotypic changes include a substantial inhibition of stem elongation, decreased apical dominance, increased leaf chlorophyll content, and delayed leaf senescence. Oat phytochrome synthesized in tobacco is indistinguishable from that present in etiolated oats, having photoreversible difference spectrum maxima at 665 and 730 nanometers, exhibiting negligible dark reversion of phytochrome - far red-absorbing from (Pfr) to phytochrome - red-absorbing form (Pr), and existing as a dimer with an apparent size of approximately 300 kilodaltons. Heterodimers between the oat and tobacco chromoproteins were detected. Endogenous tobacco phytochrome and transgenically expressed oat phytochrome are rapidly degraded in vivo upon photoconversion of Pr to Pfr. Breakdown of both oat and tobacco Pfr is associated with the accumulation of ubiquitin-phytochrome conjugates, suggesting that degradation occurs via the ubiquitin-dependent proteolytic pathway. This result indicates that the factors responsible for selective recognition of Pfr by the ubiquitin pathway are conserved between monocot and dicot phytochromes. More broadly, it demonstrates that the domains(s) within a plant protein responsible for its selective breakdown can be recognized by the degradation machinery of heterologous species.

  15. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Directory of Open Access Journals (Sweden)

    Saito Shigeru

    2010-05-01

    Full Text Available Abstract Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  16. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Science.gov (United States)

    2010-01-01

    Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events. PMID:20433765

  17. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators.

    Science.gov (United States)

    Takata, Naoki; Saito, Shigeru; Saito, Claire Tanaka; Uemura, Matsuo

    2010-05-01

    Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  18. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system.

  19. Stem photosynthesis and hydraulics are coordinated in desert plant species.

    Science.gov (United States)

    Ávila-Lovera, Eleinis; Zerpa, Antonio J; Santiago, Louis S

    2017-08-21

    Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Reactive oxygen species in response of plants to gravity stress

    Science.gov (United States)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  1. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  2. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Science.gov (United States)

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  3. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  4. Historic land use influences contemporary establishment of invasive plant species.

    Science.gov (United States)

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.

  5. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  6. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    Science.gov (United States)

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  7. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  8. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  9. How important is long-distance seed dispersal for the regional survival of plant species?

    OpenAIRE

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species' dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed di...

  10. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast.

    Science.gov (United States)

    Abbruscato, Pamela; Nepusz, Tamás; Mizzi, Luca; Del Corvo, Marcello; Morandini, Piero; Fumasoni, Irene; Michel, Corinne; Paccanaro, Alberto; Guiderdoni, Emmanuel; Schaffrath, Ulrich; Morel, Jean-Benoît; Piffanelli, Pietro; Faivre-Rampant, Odile

    2012-10-01

    With the aim of identifying novel regulators of host and nonhost resistance to fungi in rice, we carried out a systematic mutant screen of mutagenized lines. Two mutant wrky22 knockout lines revealed clear-cut enhanced susceptibility to both virulent and avirulent Magnaporthe oryzae strains and altered cellular responses to nonhost Magnaporthe grisea and Blumeria graminis fungi. In addition, the analysis of the pathogen responses of 24 overexpressor OsWRKY22 lines revealed enhanced resistance phenotypes on infection with virulent M. oryzae strain, confirming that OsWRKY22 is involved in rice resistance to blast. Bioinformatic analyses determined that the OsWRKY22 gene belongs to a well-defined cluster of monocot-specific WRKYs. The co-regulatory analysis revealed no significant co-regulation of OsWRKY22 with a representative panel of OsWRKYs, supporting its unique role in a series of transcriptional responses. In contrast, inquiring a subset of biotic stress-related Affymetrix data, a large number of resistance and defence-related genes were found to be putatively co-expressed with OsWRKY22. Taken together, all gathered experimental evidence places the monocot-specific OsWRKY22 gene at the convergence point of signal transduction circuits in response to both host and nonhost fungi encountering rice plants.

  11. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal, which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs. While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.

  12. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness.

    Science.gov (United States)

    Fraser, Lauchlan H; Pither, Jason; Jentsch, Anke; Sternberg, Marcelo; Zobel, Martin; Askarizadeh, Diana; Bartha, Sandor; Beierkuhnlein, Carl; Bennett, Jonathan A; Bittel, Alex; Boldgiv, Bazartseren; Boldrini, Ilsi I; Bork, Edward; Brown, Leslie; Cabido, Marcelo; Cahill, James; Carlyle, Cameron N; Campetella, Giandiego; Chelli, Stefano; Cohen, Ofer; Csergo, Anna-Maria; Díaz, Sandra; Enrico, Lucas; Ensing, David; Fidelis, Alessandra; Fridley, Jason D; Foster, Bryan; Garris, Heath; Goheen, Jacob R; Henry, Hugh A L; Hohn, Maria; Jouri, Mohammad Hassan; Klironomos, John; Koorem, Kadri; Lawrence-Lodge, Rachael; Long, Ruijun; Manning, Pete; Mitchell, Randall; Moora, Mari; Müller, Sandra C; Nabinger, Carlos; Naseri, Kamal; Overbeck, Gerhard E; Palmer, Todd M; Parsons, Sheena; Pesek, Mari; Pillar, Valério D; Pringle, Robert M; Roccaforte, Kathy; Schmidt, Amanda; Shang, Zhanhuan; Stahlmann, Reinhold; Stotz, Gisela C; Sugiyama, Shu-ichi; Szentes, Szilárd; Thompson, Don; Tungalag, Radnaakhand; Undrakhbold, Sainbileg; van Rooyen, Margaretha; Wellstein, Camilla; Wilson, J Bastow; Zupo, Talita

    2015-07-17

    The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

  13. Effects of vehicle exhaust emissions on urban wild plant species.

    Science.gov (United States)

    Bell, J N B; Honour, S L; Power, S A

    2011-01-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  15. Ecophysiological studies of Mediterranean plant species at the Castelporziano estate

    Science.gov (United States)

    Manes, Fausto; Seufert, Günther; Vitale, Marcello

    The aim of this work was to characterize the eco-physiological performance of the main plant species of the Castelporziano site by single leaf investigations. We measured the leaf gas exchange of Quercus ilex L., Pinus pinea L., Pistacia lentiscus L. and Asphodelus microcarpus L. for several days. Additionally, the xylem water potential of Quercus ilex, Pinus pinea and Pistacia lentiscus was recorded in order to obtain more physiological background information for the discussion of the trace gas emissions. This study indicates significantly different physiological responses to the different environmental conditions. In particular, summer conditions (high values of light, air temperature and low xylem water potentials) caused the depression of photosynthesis in Quercus ilex and Pinus pinea but did not affect photosynthesis of Pistacia lentiscus and Asphodelus microcarpus. This should be taken into account when discussing VOC emission rates and fluxes.

  16. Response of xylem-feeding leafhopper to host plant species and plant quality.

    Science.gov (United States)

    Rossi, A M; Brodbeck, B V; Strong, D R

    1996-04-01

    Carneocephala floridana, an oligophagous leafhopper that inhabits the salt marshes along the coasts of Florida, utilizesBorrichia frutescens andSalicornia virginica (both herbs) as primary summer hosts, but uses two grasses,Distichlis spicata andSpartina alterniflora, during the winter. We tested whether the seasonal patterns of abundance and apparent host-switching byCarneocephala are related to plant quality. In laboratory experiments, nymphs ofCarneocephala reared on nonfertilized control plants of the two herbs produced adults that were similar in size to field-collected insects. OnlyCarneocephala raised at the lowest densities onSpartina andDistichlis from the highest fertilizer treatments produced adults similar in body mass to those reared on nonfertilizedBorrichia andSalicornia. ForDistichlis, superior quality (high foliar nitrogen) plants were able to mitigate the negative effect of nymphal crowding on adult body mass. However, laboratory fertilization regimes produced an extremely high foliar nitrogen content in the two herbs and the organic acid concentration in the xylem fluid ofBorrichia, the only host species suitable for xylem fluid extraction, increased 2.5- to 3-fold. Total amino acid concentration in the xylem fluid of fertilizedBorrichia decreased compared to nonfertilized plants.Carneocephala demonstrated reduced feeding efficiencies on high nitrogenBorrichia. Our results suggest thatCarneocephala prefers, and performs better on, plants with high nitrogen content up to a threshold, beyond which high nitrogen levels result in reduced leafhopper feeding rates and assimilation efficiencies.

  17. Phytotoxicity of soluble graphitic nanofibers to model plant species.

    Science.gov (United States)

    Gorka, Danielle E; Jeger, Jonathan Litvak; Zhang, Hongbo; Ma, Yanwen; Colman, Benjamin P; Bernhardt, Emily S; Liu, Jie

    2016-12-01

    Carbon nanomaterials are considered promising for applications in energy storage, catalysis, and electronics. This has motivated study of their potential environmental toxicity. Recently, a novel nanomaterial consisting of graphene oxide wrapped around a carbon nanotube (CNT) core was synthesized. The resulting soluble graphitic nanofibers were found to have superior catalytic properties, which could result in their use in fuel cells. Before this material undergoes widespread use, its environmental toxicity must be determined because of its aqueous solubility. The authors used the plant species Lolium multiflorum, Solanum lycopersicum, and Lactuca sativa to study the toxicity of the soluble graphitic nanofibers, as well as multiwalled carbon nanotubes (MWCNTs) and graphene oxide, all synthesized in-house. Soluble graphitic nanofiber-exposed plant roots and shoots showed decreased growth, with roots showing more toxicity than shoots. Decreased pH of nanomaterial solutions corresponded to insignificantly decreased root growth, suggesting that another mechanism of toxicity must exist. Agglomeration and adsorption of soluble graphitic nanofibers onto the roots likely caused the remaining toxicity because a gray layer could be seen around the surface of the root. Multiwalled carbon nanotubes showed little toxicity over the concentration range tested, whereas graphene oxide showed a unique pattern of high toxicity at both the lowest and highest concentrations tested. Overall, soluble graphitic nanofibers showed moderate toxicity between that of the more toxic graphene oxide and the relatively nontoxic MWCNTs. Environ Toxicol Chem 2016;35:2941-2947. © 2016 SETAC.

  18. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    Directory of Open Access Journals (Sweden)

    Xoaquín Moreira

    Full Text Available Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves. We found that both forms of plant diversity had positive effects on stem (but not leaf defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer

  19. Species area relationships in mediterranean-climate plant communities

    Science.gov (United States)

    Keeley, Jon E.; Fotheringham, C.J.

    2003-01-01

    Aim To determine the best-fit model of species–area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species–area models.Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions.Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series.Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The

  20. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...... of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant...

  1. Rice Brittleness Mutants: A Way to Open the 'Black Box' of Monocot Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Baocai Zhang; Yihua Zhou

    2011-01-01

    Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice(Oryza sativa L.)plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling.Our group focuses on the study of isolation of brittle culm(bc)mutants and characterization of their corresponding genes.To date,several bc mutants have been reported.The identified genes have covered several pathways of cell wall biosynthesis,revealing many secrets of monocot cell wall biosynthesis.Here,we review the progress achieved in this research field and also highlight the perspectives in expectancy.All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.

  2. 78 FR 64637 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15...

    Science.gov (United States)

    2013-10-29

    ... danger of extinction throughout all their ranges as the result of ongoing threats that include the... and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15 Species on...-AY09 Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for 15...

  3. Towards a working list of all known plant species

    National Research Council Canada - National Science Library

    E. N. Lughadha

    2004-01-01

    .... The adoption of the Global Strategy for Plant Conservation has reinforced the urgent need for a global plant checklist to support, facilitate and monitor the conservation and sustainable use of plant...

  4. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    J. M. QUEIROZ

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  5. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  6. Stress tolerance in plants via habitat-adapted symbiosis.

    Science.gov (United States)

    Rodriguez, Rusty J; Henson, Joan; Van Volkenburgh, Elizabeth; Hoy, Marshal; Wright, Leesa; Beckwith, Fleur; Kim, Yong-Ok; Redman, Regina S

    2008-04-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.

  7. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  8. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-01-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  9. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil

    NARCIS (Netherlands)

    Cong, Wen-Feng; van Ruijven, Jasper; van der Werf, Wopke; De Deyn, Gerlinde B.; Mommer, Liesje; Berendse, Frank; Hoffland, Ellis

    2015-01-01

    Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic m

  10. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  11. Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles.

    Science.gov (United States)

    Gan, Pamela; Narusaka, Mari; Kumakura, Naoyoshi; Tsushima, Ayako; Takano, Yoshitaka; Narusaka, Yoshihiro; Shirasu, Ken

    2016-05-22

    Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species

    Directory of Open Access Journals (Sweden)

    von Arnim Albrecht G

    2009-05-01

    Full Text Available Abstract Background Plant genome sequencing has resulted in the identification of a large number of uncharacterized genes. To investigate these unknown gene functions, several transient transformation systems have been developed as quick and convenient alternatives to the lengthy transgenic assay. These transient assays include biolistic bombardment, protoplast transfection and Agrobacterium-mediated transient transformation, each having advantages and disadvantages depending on the research purposes. Results We present a novel transient assay based on cocultivation of young Arabidopsis (Arabidopsis thaliana seedlings with Agrobacterium tumefaciens in the presence of a surfactant which does not require any dedicated equipment and can be carried out within one week from sowing seeds to protein analysis. This Fast Agro-mediated Seedling Transformation (FAST was used successfully to express a wide variety of constructs driven by different promoters in Arabidopsis seedling cotyledons (but not roots in diverse genetic backgrounds. Localizations of three previously uncharacterized proteins were identified by cotransformation with fluorescent organelle markers. The FAST procedure requires minimal handling of seedlings and was also adaptable for use in 96-well plates. The high transformation efficiency of the FAST procedure enabled protein detection from eight transformed seedlings by immunoblotting. Protein-protein interaction, in this case HY5 homodimerization, was readily detected in FAST-treated seedlings with Förster resonance energy transfer and bimolecular fluorescence complementation techniques. Initial tests demonstrated that the FAST procedure can also be applied to other dicot and monocot species, including tobacco, tomato, rice and switchgrass. Conclusion The FAST system provides a rapid, efficient and economical assay of gene function in intact plants with minimal manual handling and without dedicated device. This method is potentially

  13. Increased plant carbon translocation linked to overyielding in grassland species mixtures.

    Directory of Open Access Journals (Sweden)

    Gerlinde B De Deyn

    Full Text Available Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C- translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a (13C-CO(2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived (13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts of the recently assimilated (13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of (13C enrichment in 6-species mixtures, while (13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of (13C in the respired CO(2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of (13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased

  14. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  15. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  16. Advances in seed conservation of wild plant species: a review of recent research

    National Research Council Canada - National Science Library

    Hay, Fiona R; Probert, Robin J

    2013-01-01

    .... Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management...

  17. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose.

  18. Performance of dryland and wetland plant species on extensive green roofs

    Science.gov (United States)

    MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.

    2011-01-01

    Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further

  19. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species.

    Science.gov (United States)

    Kosma, Dylan K; Rice, Adam; Pollard, Mike

    2015-09-01

    Aliphatic waxes can be found in association with suberized tissues, including roots. Non-polar lipids were isolated by rapid solvent extraction of mature regions of intact roots from eleven angiosperms, including both monocots and dicots. The majority of roots analyzed were taproots or tuberous taproots that had undergone secondary growth and thus were covered by a suberized periderm. The exceptions therein were maize (Zea mays L.) and rice (Oryza sativa L.), which present a suberized exodermis. The analysis herein focused on aliphatic waxes, with particular emphasis on alkyl hydroxycinnamates (AHCs). AHCs were widely distributed, absent from only one species, were found in both aerial and subterranean portions of tuberous taproots, and were associated with the fibrous roots of both maize and rice. Most species also contained monoacylglycerols, fatty alcohols and/or free fatty acids. Carrot (Daucus carrota L.) was the outlier, containing only free fatty acids, sterols, and polyacetylenes as identified components. Sterols were the only ubiquitous component across all roots analyzed. Monoacylglycerols of ω-hydroxy fatty acids were present in maize and rice root waxes. For species within the Brassiceae, wax compositions varied between subspecies or varieties and between aerial and subterranean portions of taproots. In addition, reduced forms of photo-oxidation products of ω-hydroxy oleate and its corresponding dicarboxylic acid (10,18-dihydroxy-octadec-8-enoate, 9,18-dihydroxy-octadec-10-enoate and 9-hydroxyoctadec-10-ene-1,18-dioate) were identified as naturally occurring suberin monomers in rutabaga (Brassica napus subsp. rapifera Metzg.) periderm tissues.

  20. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves.

    Science.gov (United States)

    Wang, Chunjing; Liu, Chengzhu; Wan, Jizhong; Zhang, Zhixiang

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves.

  1. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  2. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Nielsen, K. K.

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...... explained variation is in general small. The results show that the species area relationships are different for native and endemic species. This is discussed in relation to classical island biogeographical models, and the concepts of radiative speciation. Udgivelsesdato: 2002...

  3. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  4. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Muhammad ShoaibAmjad; MuhammadArshad

    2014-01-01

    To document ethnobotanical informations of useful woody plant species in the region of Kotli, Azad Kashmir. Methods: An ethnobotanical survey was conducted in Kotli. Data were collected by interview and semi structured questionnaire from selected local informants and traditional practitioners as well as by field assessment. Results: The present study documented the etnobotanical uses of 33 woody plant species. Most of the species have been used for dual purpose. Only 5 species are used for one purpose. Study revealed all species have medicinal value, among which 21 were used as fuel wood species, 16 as fodder species, 4 as timber wood species, 12 as edible fruit species, 6 as fence or hedge plant, 7 as ornamental species and 12 species had other uses. Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  5. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    Science.gov (United States)

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  6. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    Science.gov (United States)

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of

  7. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  8. Fruit Plants Species along Corridor in Kopendukuh Village as a Resource for Rural Tourism Development

    Directory of Open Access Journals (Sweden)

    Widya Kristiyanti Putri

    2015-02-01

    Full Text Available This research aims to identify fruit plants species which is potential for tourism attraction, spatially describes fruit plants distribution and identify local people’s response for fruit plants as tourims attraction in Kopendukuh village, Banyuwangi. Survey was done along the villages corridors. The fruit plant species along corridors was identified and mapped using GPS. Furthermore, semi-structural interview was used to gain informations of local people response about fruit plants as tourism attraction. There were about 18 species and 162 individuals were found along corridor of Kopendukuh village. Fruit plants always found in local home gardens along rural corridor. Local peoples argue that fruit planst s important for numerous purposes. Local people support tourism development in rural area which based on the fruit plants richness (i.e. agrotourism. Keywords: fruit plants, mapping, corridor, rural tourism.

  9. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  10. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  11. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  12. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  13. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  14. How important is long-distance seed dispersal for the regional survival of plant species?

    NARCIS (Netherlands)

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by fi

  15. 78 FR 47582 - Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner...

    Science.gov (United States)

    2013-08-06

    ... Fish and Wildlife Service 50 CFR Part 17 RIN 1018-AY55 Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Sharpnose Shiner and Smalleye Shiner AGENCY: Fish and Wildlife Service... procedures for adding species to the Federal Lists of Endangered and Threatened Wildlife and Plants....

  16. The occurrence of alien plant species in field margins in Finland

    OpenAIRE

    Jauni, Miia; Hyvönen, Terho

    2009-01-01

    The results suggest that alien plant species comprise an important part of the biodiversity of Finnish field margins and semi-natural agricultural habitats. The role of field margins as dispersal corridors for invasive alien plants is limited for certain species.

  17. Influence of plant species on population dynamics, genotypic diversity and antibiotic production by indigenous Pseudomonas spp

    NARCIS (Netherlands)

    Bergsma-Vlami, M.; Prins, M.E.; Raaijmakers, J.M.

    2005-01-01

    The population dynamics, genotypic diversity and activity of naturally-occurring 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. was investigated for four plant species (wheat, sugar beet, potato, lily) grown in two different soils. All four plant species tested, except lily and in some

  18. How important is long-distance seed dispersal for the regional survival of plant species?

    NARCIS (Netherlands)

    Soons, M.B.; Ozinga, W.A.

    2005-01-01

    Long-distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long-distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by

  19. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log-tran...

  20. Are non-native plants perceived to be more risky? Factors influencing horticulturists' risk perceptions of ornamental plant species.

    Directory of Open Access Journals (Sweden)

    Franziska Humair

    Full Text Available Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625 to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.

  1. Heavy metal uptake by selected marsh plant species grown in hydroponic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.R.; Sturgis, T.C.; Landin, M.C.

    1975-01-01

    Eight marsh plant species (Cyperus esculentus, Scirpus validus, Spartina patens, Scirpus robustus, Triglochin maritima, Distichlis spicata, Spartina alterniflora, and Spartina foliosa) were grown under greenhouse conditions in chemically controlled nutrient solutions. Heavy metals (zinc, cadmium, nickel, chromium, and lead) were added to the nutrient solutions at levels of 0, 0.5, and 1.0 mg/l. Plant parts (leaves, rhizomes, tubers, and roots) were harvested separately for each species and analyzed for heavy metal content. The concentration and plant uptake of heavy metals in each plant species will be discussed.

  2. Altitudinal Pattern of Plant Species Diversity in Shennongjia Mountains, Central China

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming ZHAO; Wei-Lie CHEN; Zi-Qiang TIAN; Zong-Qiang XIE

    2005-01-01

    One hundred and sixty plots, approximately every 100 m above sea level (a.s.l.) along an altitudinal gradient from 470 to 3 080 m a.s.l, at the southern and northern watershed of Mt. Shennongjia,China, were examined to determine the altitudinal pattern of plant species diversity. Mt. Shennongjia was found to have high plant species diversity, with 3 479 higher plants recorded. Partial correlation analysis and detrended canonical correspondence analysis (DCCA) based on plant species diversity revealed that altitude was the main factor affecting the spatial pattern of plant species diversity on Mt. Shennongjia and that canopy coverage of the arbor layer also had a considerable effect on plant species diversity. The DCCA based on species data of importance value further revealed that altitude gradient was the primary factor shaping the spatial pattern of plant species. In addition, the rule of the "mid-altitude bulge" was supported on Mt. Shennongjia. Plant species diversity was closely related to vegetation type and the transition zone usually had a higher diversity. Higher plant species diversity appeared in the mixed evergreen and deciduous broadleaved forest zone (900-1 500 m a.s.l.) and its transition down to evergreen broadleaved forest zone or up to deciduous broadleaved forest zone. The largest plant species diversity in whole communities on Mt. Shennongjia lay at approximately 1 200 m a.s.l. Greatest tree diversity, shrub diversity, and grass diversity was found at approximately 1 500, 1 100, and 1 200 m a.s.l., respectively. The southern watershed showed higher plant species diversity than the northern watershed, with maximum plant species diversity at a higher altitude in the southern watershed than the northern watershed. These results indicate that Mt.Shennongjia shows characteristics of a transition region. The relationship between the altitudinal pattern of plant species diversity and the vegetation type in eastern China are also discussed and a

  3. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  4. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Science.gov (United States)

    Choe, Hyeyeong; Thorne, James H; Seo, Changwan

    2016-01-01

    Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS) multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD) calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the threshold and scale

  5. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    Directory of Open Access Journals (Sweden)

    Isabel Díaz-Reviriego

    2016-03-01

    Full Text Available Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  6. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  7. Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis.

    Science.gov (United States)

    Douda, Jan; Doudová-Kochánková, Jana; Boublík, Karel; Drašnarová, Alena

    2012-06-01

    It has been suggested that a heterogeneous environment enhances species richness and allows for the coexistence of species. However, there is increasing evidence that environmental heterogeneity can have no effect or even a negative effect on plant species richness and plant coexistence at a local scale. We examined whether plant species richness increases with local heterogeneity in the water table depth, microtopography, pH and light availability in a swamp forest community at three local spatial scales (grain: 0.6, 1.2 and 11.4 m). We also used the variance partitioning approach to assess the relative contributions of niche-based and other spatial processes to species occurrence. We found that heterogeneity in microtopography and light availability positively correlated with species richness, in accordance with the habitat heterogeneity hypothesis. However, we recorded different heterogeneity-diversity relationships for particular functional species groups. An increase in the richness of bryophytes and woody plant species was generally related to habitat heterogeneity at all measured spatial scales, whereas a low impact on herbaceous species richness was recorded only at the 11.4 m scale. The distribution of herbaceous plants was primarily explained by other spatial processes, such as dispersal, in contrast to the occurrence of bryophytes, which was better explained by environmental factors. Our results suggest that both niche-based and other spatial processes are important determinants of the plant composition and species turnover at local spatial scales in swamp forests.

  8. Moose as a vector for non-indigenous plant species in Alaska

    Science.gov (United States)

    White sweetclover and narrowleaf hawksbeard are non-indigenous invasive plant species in Alaska that are rapidly spreading, including into areas that are otherwise free of non-indigenous plants. There has been concern that native moose could be dispersing viable seed from these plants after ingestio...

  9. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native co

  10. Rhizosphere microbial community and its response to plant species and soil history

    NARCIS (Netherlands)

    Garbeva, P.V.; van Elsas, J.D.; Van Veen, J.A.

    2008-01-01

    The plant rhizosphere is a dynamic environment in which many parameters may influence the population structure, diversity and activity of the microbial community. Two important factors determining the structure of microbial community present in the vicinity of plant roots are plant species and soil

  11. Beyond Arabidopsis: the circadian clock in non-model plant species.

    Science.gov (United States)

    McClung, C Robertson

    2013-05-01

    Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Plant Species Richness and Nitrogen Deposition can Alter Microbial Assimilation of New Photosynthate

    Science.gov (United States)

    Chung, H.; Zak, D.; Reich, P.

    2009-12-01

    Microbial assimilation of recent photosynthate was analyzed in a 6-year-long field experiment to determine how plant species richness impacts microbial metabolism of new photosynthate, and how this may be modified by atmospheric N deposition. Our study was conducted at the BioCON (Biodiversity, CO2, and Nitrogen) FACE (Free-Air Carbon dioxide Enrichment) experiment located at the Cedar Creek Natural History area in Minnesota, USA. In this experiment, plant species richness, atmospheric N deposition, and atmospheric CO2 concentration were manipulated in concert. The depleted δ13C of fumigation CO2 enabled us to investigate the effect of plant species richness and atmospheric N deposition on the metabolism of soil microbial communities in the elevated CO2 treatment. We determined the δ13C of bacterial, actinobacterial, and fungal phospholipid fatty acids (PLFA). In the elevated CO2 conditions of this study, the δ13C of bacterial PLFAs (i15:0, i16:0, 16:1ω7c, 16:1ω9c, 10Me16:0, and 10Me18:0) and the fungal PLFA 18:1ω9c was significantly lower in species-rich plant communities than in species-poor plant communities, indicating that microbial incorporation of new C increased with plant species richness. Despite an increase in plant production, total PLFA decreased under N deposition by 27%. Moreover, N deposition also decreased fungal relative abundance in species-rich plant communities. In our study, plant species richness directly increased microbial incorporation of new photosynthate, providing a mechanistic link between greater plant detritus production in species-rich plant communities and larger and more active soil microbial community.

  13. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  14. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  15. Discriminating plant species across California's diverse ecosystems using airborne VSWIR and TIR imagery

    Science.gov (United States)

    Meerdink, S.; Roberts, D. A.; Roth, K. L.

    2015-12-01

    Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of

  16. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  17. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...... consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5.  Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each...

  18. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    Science.gov (United States)

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  19. Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae).

    Science.gov (United States)

    Weingartner, E; Wahlberg, N; Nylin, S

    2006-03-01

    The ability of insects to utilize different host plants has been suggested to be a dynamic and transient phase. During or after this phase, species can shift to novel host plants or respecialize on ancestral ones. Expanding the range of host plants might also be a factor leading to higher levels of net speciation rates. In this paper, we have studied the possible importance of host plant range for diversification in the genus Polygonia (Nymphalidae, Nymphalini). We have compared species richness between sistergroups in order to find out if there are any differences in number of species between clades including species that utilize only the ancestral host plants ('urticalean rosids') and their sisterclades with a broader (or in some cases potentially broader) host plant repertoire. Four comparisons could be made, and although these are not all phylogenetically or statistically independent, all showed clades including butterfly species using other or additional host plants than the urticalean rosids to be more species-rich than their sisterclade restricted to the ancestral host plants. These results are consistent with the theory that expansions in host plant range are involved in the process of diversification in butterflies and other phytophagous insects, in line with the general theory that plasticity may drive speciation.

  20. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  1. Concentrations and Soil-To-Plant Transfer Factor of Selenium in Soil and Plant Species from an Arid Area

    Science.gov (United States)

    Sakizadeh, Mohamad; Mehrabi Sharafabadi, Fatemeh; Shayegan, Eshagh; Ghorbani, Hadi

    2016-10-01

    The concentration of selenium in 97 plants related to seven different species and the associated soil samples was considered in an arid area in the central part of Iran. The mean of Se in the soil samples varied from 0.17 to 0.43 mgkg-1 which is within the worldwide range. There was a highly significant correlation (r=0.688, pfruit) were higher than stem/stalk implying the facile translocation of this element in the considered plant species. The higher than one bio concentration factors (BCFs) of selenium for the chives, spindle tree and wheat is indicative of high phytoremediation potential for these plants.

  2. 77 FR 63927 - Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered...

    Science.gov (United States)

    2012-10-17

    ... and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island as Endangered and Designating... 17 RIN 1018-AY09 Endangered and Threatened Wildlife and Plants; Listing 15 Species on Hawaii Island... previously listed plant species. Isodendrion pyrifolium, listed as an endangered species on March 4, 1994...

  3. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  4. Species Diversity in Northern California Salt Marshes: Functional Significance of Parasitic Plant Interactions

    OpenAIRE

    Grewell, Brenda J.

    2004-01-01

    I studied how parasitic plant interactions contribute to species coexistence in tidal wetlands of northern California. First, I address the effects of the native parasite Cuscuta salina on species interactions and plant community structure, showed that Cuscuta is restricted to nutrient poor areas with significant canopy gaps and high species diversity. I examined timing, level, and frequency of host infectivity and identified Plantago maritima as the primary host. I experimentally removed Cus...

  5. The effect of AMF suppression on plant species composition in a nutrient-poor dry grassland.

    Science.gov (United States)

    Dostálek, Tomáš; Pánková, Hana; Münzbergová, Zuzana; Rydlová, Jana

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are expected to be one of the key drivers determining the diversity of natural plant communities, especially in nutrient-poor and dry habitats. Several previous studies have explored the importance of AMF for the composition of plant communities in various types of habitats. Surprisingly, studies of the role of AMF in nutrient-poor dry grassland communities dominated by less mycotrophic plant species are still relatively rare. We present the results of a 3-year study in which a plant community in a species-rich dry grassland was subjected to the fungicide carbendazim to suppress AMF colonization. We tested the effect of the fungicide on the following parameters: the plant species composition; the number of plant species; the cover of the rare, highly mycorrhiza-dependent species Aster amellus; the cover of the dominant, less mycorrhiza-dependent species Brachypodium pinnatum; and the cover of graminoids and perennial forbs. In addition, we examined the mycorrhizal inoculation potential of the soil. We found that the suppression of AMF with fungicide resulted in substantial changes in plant species composition and significant decrease in species richness, the cover of A. amellus and the cover of perennial forbs. In contrast the species increasing their cover after fungicide application were graminoids--the C3 grasses B. pinnatum and Bromus erectus and the sedge Carex flacca. These species appear to be less mycorrhiza dependent. Moreover, due to their clonal growth and efficient nutrient usage, they are, most likely, better competitors than perennial forbs under fungicide application. Our results thus suggest that AMF are an essential part of the soil communities supporting a high diversity of plant species in species-rich dry grasslands in nutrient-poor habitats. The AMF are especially important for the maintenance of the populations of perennial forbs, many of which are rare and endangered in the area.

  6. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  7. Rejoinder to Harrison (2008): The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; Curtis Flather; Catherine S. Jarnevich; David T. Barnett; John Kartesz

    2008-01-01

    We find ourselves in general agreement with many of Harrison's remarks especially since we both find our data present a ' strong case that at county to state scales, exotic plant invasions have led to few native plant extinctions' (emphasis added, Harrison 2007: 000). Where we differ appears related to the breadth of scales to which our conclusions may...

  8. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  9. Adaptive radiation of gall-inducing insects within a single host-plant species.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2007-04-01

    Speciation of plant-feeding insects is typically associated with host-plant shifts, with subsequent divergent selection and adaptation to the ecological conditions associated with the new plant. However, a few insect groups have apparently undergone speciation while remaining on the same host-plant species, and such radiations may provide novel insights into the causes of adaptive radiation. We used mitochondrial and nuclear DNA to infer a phylogeny for 14 species of gall-inducing Asphondylia flies (Diptera: Cecidomyiidae) found on Larrea tridentata (creosote bush), which have been considered to be monophyletic based on morphological evidence. Our phylogenetic analyses provide strong support for extensive within-host plant speciation in this group, and it demonstrates that diversification has involved numerous shifts between different plant organs (leaves, buds, flowers, and stems) of the same host-plant species. Within-plant speciation of Asphondylia is thus apparently facilitated by the opportunity to partition the plant ecologically. One clade exhibits temporal isolation among species, which may have facilitated divergence via allochronic shifts. Using a novel method based on Bayesian reconstruction, we show that the rate of change in an ecomorphological trait, ovipositor length, was significantly higher along branches with inferred shifts between host-plant organs than along branches without such shifts. This finding suggests that Larrea gall midges exhibit close morphological adaptation to specific host-plant parts, which may mediate ecological transitions via disruptive selection.

  10. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  11. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  12. Ecological specialization and rarity indices estimated for a large number of plant species in France

    Directory of Open Access Journals (Sweden)

    Samira Mobaied

    2015-06-01

    Here, we present a list of specialization and rarity values for more than 2800 plant species of continental France, which were computed from the large botanical and ecological dataset SOPHY. Three specialization indices were calculated using species co-occurrence data. All three indices are based on (dissimilarity among plant communities containing a focal species, quantified either as beta diversity in an additive (Fridley et al., 2007 [6] or multiplicative (Zeleny, 2008 [15] partitioning of diversity or as the multiple site similarity of Baselga et al. (2007 [1]. Species rarity was calculated as the inverse of a species occurrence.

  13. Phytotoxic Effects and a Phytotoxin from the Invasive Plant Xanthium italicum Moretti

    Directory of Open Access Journals (Sweden)

    Hua Shao

    2012-04-01

    Full Text Available The allelopathic effects of different parts of the plant Xanthium italicum Moretti were evaluated by conducting bioassays against two dicot plants, amaranth (Amaranthus mangostanus L. and lettuce (Lectuca sativa L., and two monocot plants, wheat (Triticum aestivum Linn and ryegrass (Lolium multiforum. Leaf and fruit extract possessed the strongest biological activity, killing all seeds of four test species at 0.05 g/mL concentration. Fruits were chosen for further investigation because of their high biomass. This led to the isolation and identification of a phytotoxin—Xanthinosin—a known sesquiterpene lactone. Xanthinosin significantly affected seedling growth of all test species at 160 µM concentration. Cultivating seeds in 800 μM xanthinosin solution resulted in a great decrease in seedling growth of all test species, especially for the two dicot plants, amaranth and lettuce, whose root length was inhibited by 78% and 89%, respectively. By comparison, the numbers were 69% lower for wheat, and 66% for ryegrass, two monocot plants. When treated with 4 mM xanthinosin solution, seed germination of all test plants was almost completely inhibited. The possibility of utilizing xanthinosin as an eco-friendly herbicide was discussed.

  14. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems

    Institute of Scientific and Technical Information of China (English)

    FU; Shenglei; Howard; Ferris

    2006-01-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting.The shoot-to-root ratios were not significantly different between two CO2 levels.

  15. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    Science.gov (United States)

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  16. Genome-wide comparative analysis of tonoplast intrinsic protein (TIP) genes in plants.

    Science.gov (United States)

    Regon, Preetom; Panda, Piyalee; Kshetrimayum, Erina; Panda, Sanjib Kumar

    2014-12-01

    Tonoplast intrinsic proteins (TIPs) play a vital role in water transport across membranes. In the present study, we performed a comparative analysis of TIP genes in ten plant species including both monocots and dicots. A total of 100 TIP aquaporin genes were identified, and their relationships among the plant species were analyzed. Phylogenetic analysis was performed to evaluate the relationship of these genes within the plant species. Based on the phylogenetic analysis results, TIPs were classified into five distinct arbitrary groups (group I to group V), which represented TIP2, TIP5, TIP4, TIP1, and TIP3, respectively. Group I represented the largest arbitrary group, followed by group IV, in the phylogenetic tree. The result clearly indicates that TIP2 and TIP1 are abundant aquaporins and highly related among the species. In the present review, a comparative study of gene structure analysis between dicots and monocots has been performed to analyze their structural variation. Most of the predicted motifs are conserved among the species, signifying an evolutionary relationship. The gene expression analysis indicated that the expression of TIP genes varies during different developmental stages and also during stressed conditions. The results indicated a great degree of evolutionary relationship and variation in the expression levels of TIPs in plants.

  17. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  18. The role of cattle in maintaining plant species diversity in wet dune valleys

    NARCIS (Netherlands)

    Aptroot, A.; van Dobben, H. F.; Slim, P. A.; Olff, H.

    2007-01-01

    The succession of species-rich wetland vegetation in dune valleys into species-poor dwarf shrub vegetation was followed by means of permanent vegetation plots, in which the cover of vascular plant, moss and lichen species were recorded over a period of up to 33 years. Low density cattle grazing is a

  19. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have be...

  20. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Science.gov (United States)

    Stohlgren, Thomas J.; Barnett, David; Flather, Curtis; Fuller, Pamela L.; Peterjohn, Bruce G.; Kartesz, John; Master, Lawrence L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors.

  1. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  2. Phytochemicals of selected plant species of the Apocynaceae and Asclepiadaceae from Western Ghats, Tamil Nadu, India

    Science.gov (United States)

    A concern about the declining supply of petroleum products has led to a renewed interest in evaluating plant species as potential alternate sources of energy. Five species of the Apocynaceae and three species of the Asclepiadaceae from the Western Ghats were evaluated as alternative sources of energ...

  3. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  4. Leaf traits are good predictors of plant performance across 53 rain forest species

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.

    2006-01-01

    We compared the leaf traits and plant performance of 53 co-occurring tree species in a semi-evergreen tropical moist forest community. The species differed in all leaf traits analyzed: leaf life span varied 11-fold among species, specific leaf area 5-fold, mass-based nitrogen 3-fold, mass-based assi

  5. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Bergstrom Gary C

    2011-02-01

    Full Text Available Abstract Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot. Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the

  6. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  7. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  8. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    Science.gov (United States)

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thébault, Aurélie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).

  9. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots

    Directory of Open Access Journals (Sweden)

    Wu Chun-Lin

    2008-01-01

    Full Text Available Abstract Background Various expansions or contractions of inverted repeats (IRs in chloroplast genomes led to fluxes in the IR-LSC (large single copy junctions. Previous studies revealed that some monocot IRs contain a trnH-rps19 gene cluster, and it has been speculated that this may be an evidence of a duplication event prior to the divergence of monocot lineages. Therefore, we compared the organizations of genes flanking two IR-LSC junctions in 123 angiosperm representatives to uncover the evolutionary dynamics of IR-LSC junctions in basal angiosperms and monocots. Results The organizations of genes flanking IR-LSC junctions in angiosperms can be classified into three types. Generally each IR of monocots contains a trnH-rps19 gene cluster near the IR-LSC junctions, which differs from those in non-monocot angiosperms. Moreover, IRs expanded more progressively in monocots than in non-monocot angiosperms. IR-LSC junctions commonly occurred at polyA tract or A-rich regions in angiosperms. Our RT-PCR assays indicate that in monocot IRA the trnH-rps19 gene cluster is regulated by two opposing promoters, S10A and psbA. Conclusion Two hypotheses are proposed to account for the evolution of IR expansions in monocots. Based on our observations, the inclusion of a trnH-rps19 cluster in majority of monocot IRs could be reasonably explained by the hypothesis that a DSB event first occurred at IRB and led to the expansion of IRs to trnH, followed by a successive DSB event within IRA and lead to the expansion of IRs to rps19 or to rpl22 so far. This implies that the duplication of trnH-rps19 gene cluster was prior to the diversification of extant monocot lineages. The duplicated trnH genes in the IRB of most monocots and non-monocot angiosperms have distinct fates, which are likely regulated by different expression levels of S10A and S10B promoters. Further study is needed to unravel the evolutionary significance of IR expansion in more recently diverged

  10. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  11. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    Science.gov (United States)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  12. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation.

    Science.gov (United States)

    Vieira, Denise R P; Amaral, Flavia MaM; Maciel, Márcia C G; Nascimento, Flávia R F; Libério, Silvana A; Rodrigues, Vandílson P

    2014-09-29

    Ethnopharmacological surveys show that several plant species are used empirically by the population, in oral diseases. However, it is necessary to check the properties of these plant species. To evaluate in vitro antimicrobial activity against Streptococcus mutans from plant species selected in a previous ethnopharmacology study. An ethnopharmacological survey was conducted with users of a dental clinic school services, located in Sao Luis, Maranhão, Brazil, aiming to identify plant species used in oral diseases treatment. From the ethnopharmacological survey, species were selected for in vitro antimicrobial activity evaluation against Streptococcus mutans, by agar diffusion method and determination of Minimum Inhibitory Concentration (MIC). Two hundred and seventy one people participated in the research: 55.7% reported the use of plants for medicinal purposes, 29.5% of which have knowledge and/or use plants for some type of oral disease. Thirty four species belonging to 24 (twenty four) botanical families were reported, being Aloe vera L., Anacardium occidentale L., Schinus terebinthifolius Raddi, Chenopodium ambrosioides L. and Punica granatum L. the most cited. The most commonly reported indications were healing after tooth extraction, followed by toothache, inflammation and bleeding gums., The determination of Minimum Inhibitory Concentration (MIC) demonstrated that Punica granatum L., Psidium guajava L. and Schinus terebinthifolius Raddi showed similar activity to 0.12% chlorhexidine, used as positive control. That result is important to follow up the study of these species in the search for new anticariogenic agents originated by plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The exploration of plant species in nature reserve of Mount Mutis East Nusa Tenggara Province

    Directory of Open Access Journals (Sweden)

    Solikin Solikin

    2016-04-01

    Full Text Available This research was aimed to explore and inventory the plant diversity, especially medicinal plants in Nature Reserve of Mount Mutis. Data were collected in Fatumnasi Village, Fatumnasi District of South Central Timor Regency in Octo-ber 2011 through plant exploration and interview the local people. Plants inventory was conducted along the tracks during exploration. Herbs vegetation analysis was conducted among the tree stands of Eucalyptus urophylla. In addi-tion, orchid vegetation analysis was only conducted to orchids that have been found attaching to Eucalyptus urophylla trees. Results showed that there were about 52 family, 78 genera and 84 species of plants in the observed area. Tree species was dominated by 'ampupu' (Eucalyptus urophylla, while orchid species was dominated by Eria retusa. Herbaceous plant communities were dominated by Centella asiatica, Cyperus sp. and Cynodon dactylon. There were about eight plant species of medicinal plants and one food plant species found in the forestthat have been known by local people. Keywords: exploration, inventory, Mount Mutis, nature reserve

  14. A checklist of the flowering plants of Katerniaghat Wildlife Sanctuary, Uttar Pradesh, India

    Directory of Open Access Journals (Sweden)

    Anoop Kumar

    2015-06-01

    Full Text Available Katerniaghat Wildlife Sanctuary, a tropical moist deciduous forest along the Indo-Nepal boarder comprises of 778 species of angiosperms, out of which 613 species are dicots under 386 genera and 91 families and 165 species are monocots under 103 genera and 23 families.  It contains 82 species that are in cultivation and/or growing as alien invasives.  The species include 149 trees, 81 shrubs, 445 herbs and 103 climbers.  Fabaceae with 100 species and Poaceae with 65 species occupy the first position in dicots and monocots, respectively.  Cyperus with 14 species has been found to be the largest genus represented while 355 genera are represented by solitary species.  The present study enumerates all species of flowering plants occurring in the sanctuary area with their correct name along with first citation and some important references pertaining to the flora of the study area.  Important synonyms have also been provided.  For majority of species the representative voucher specimens have also been supplied.  The paper also briefly deals with the vegetation types of the area. The outcome of the work is based on extensive field survey of the area conducted during 2008–2011, study of literature and examination of specimens of earlier collections housed at BSA, BSIP, CDRI and LWG.

  15. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  16. Plant responses to climatic extremes: within-species variation equals among-species variation

    DEFF Research Database (Denmark)

    Malyshev, Andrey; Arfin Kahn, Mohammed A.S.; Beierkuhnlein, Carl

    2016-01-01

    , root 15N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among- species variation for each seed......) and for practical applications (e.g., biodiversity conservation)....

  17. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.

    Science.gov (United States)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C; Semple, Kirk T

    2013-02-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of (14)C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of (14)C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of (14)C-phenanthrene degradation; lag phase, maximum rates and total extents of (14)C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities.

  18. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    Directory of Open Access Journals (Sweden)

    Tim Schnoor

    Full Text Available Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation, and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We

  19. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    Science.gov (United States)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a

  20. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  1. Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship

    Science.gov (United States)

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A. Q.; Silva, Mara S. A.; Vieira, Marisa C. L.; Izzo, Thiago J.; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences. PMID:24918750

  2. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Science.gov (United States)

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A Q; Silva, Mara S A; Vieira, Marisa C L; Izzo, Thiago J; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  3. Root uptake of organic contaminants into plants: Species differences

    OpenAIRE

    Orita, Naho

    2012-01-01

    Trace amounts of xenobiotic organic contaminants have been frequently identified in the environment, including surface water and wastewater streams, and some are even in drinking water. The concern of unintended ingestion by humans or wildlife of such compounds resulting from the uptake by plants has risen in recent years. Although the uptake of a variety of xenobiotic organic contaminants by plants has been reported and the contaminants are found in the fruits in some cases, the differences ...

  4. Nitrogen and protein contents in some aquatic plant species

    OpenAIRE

    Krystyna Bytniewska

    2015-01-01

    Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L.) Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein conten...

  5. Moving Uphill: Microbial Facilitation at the Leading Edge of Plant Species Distributional Shifts

    Science.gov (United States)

    Suding, K.; Farrer, E.; Spasojevic, M.; Porazinska, D.; Bueno de Mesquita, C.; Schmidt, S. K.

    2016-12-01

    Climate change is expected to influence species distributions and reshuffle patterns of biodiversity. A key challenge to our understanding of these effects is that biotic interactions - new species to compete with, new stressors that increase dependence on facilitation, new prey or predators - will likely affect the ability of species to track climate at the leading edges of their distributional range. While it is well established that soil biota strongly influence plant abundance and diversity, it has been difficult to quantify the key belowground dynamics. This presentation will investigate the influence of one key biotic interaction, between plants and soil microbiota, on the ability of plant species to track climate change and expand their range uphill in a high montane system in the Front Range of Colorado. High-resolution photography from 1972 and 2008 indicate colonization of tundra vegetation in formerly unvegetated areas. Observational work on the distributions patterns of both plants and soil microbiota (bacteria, fungi and nematodes) in a spatially-explicit grid at the upper edge of plant distributions indicate strong, mostly positive, associations between plant species and soil taxa. Abiotic factors, while important, consistently underpredicted the occurrence of plant species and, in nine of the 12 most common tundra plants, co-occurring microbial taxa were important predictors of plant occurrence. Comparison of plant and microbial distributional patterns in 2007 and 2015 indicate the influence of microbial community composition on assembly and beta-diversity of the plant community over time. Plant colonization patterns in this region previously devoid of vegetation will likely influence carbon, nitrogen and phosphorus dynamics, with downstream consequences on nutrient limitation and phytoplankton composition in alpine lakes.

  6. Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites

    Directory of Open Access Journals (Sweden)

    Rensing Stefan A

    2006-05-01

    Full Text Available Abstract Background The moss Physcomitrella patens is an emerging model in comparative plant science. At present, the Physcomitrella genome is sequenced at the Joint Genome Institute (USA. In this study we present our results on the development of expressed sequence tag-derived microsatellite markers for Physcomitrella patens, their classification and applicability as genetic markers on the intra- as well as on the interspecies level. We experienced severe restrictions to compare our results on Physcomitrella with earlier studies for other plant species due to varying microsatellite search criteria and a limited selection of analysed species. As a consequence, we performed a side by side analysis of expressed sequence tag-derived microsatellites among 24 plant species covering a broad phylogenetic range and present our results on the observed frequencies. Results We identified 3,723 microsatellites using the software MISA in a non-redundant Physcomitrella expressed sequence tag database comprising more than 37 megabases of nucleotide information. For 2,951 microsatellites appendant primer sequences have been derived. PCR of 376 microsatellites yielded 88 % successful amplicons and over 30 % polymorphisms between two Physcomitrella accessions. The polymorphism information content of 64 microsatellites based on 21 different Physcomitrella accessions was comparably high with a mean of 0.47 +/- 0.17. Of the 64 Physcomitrella microsatellite markers, 34 % respectively 79.7 % revealed cross-species applicability in two closely related moss species. In our survey of two green algae, two mosses, a fern, a fern palm, the ginkgo tree, two conifers, ten dicots and five monocots we detected an up to sevenfold variation in the overall frequency with a minimum of 37 up to maximal 258 microsatellites per megabase and a high variability among the different microsatellite class and motif frequencies. Numerous species-specific microsatellite frequencies became

  7. Evaluation of Monocot and Eudicot Divergence Using the Sugarcane Transcriptome1[w

    Science.gov (United States)

    Vincentz, Michel; Cara, Frank A.A.; Okura, Vagner K.; da Silva, Felipe R.; Pedrosa, Guilherme L.; Hemerly, Adriana S.; Capella, Adriana N.; Marins, Mozart; Ferreira, Paulo C.; França, Suzelei C.; Grivet, Laurent; Vettore, Andre L.; Kemper, Edson L.; Burnquist, Willian L.; Targon, Maria L.P.; Siqueira, Walter J.; Kuramae, Eiko E.; Marino, Celso L.; Camargo, Luis E.A.; Carrer, Helaine; Coutinho, Luis L.; Furlan, Luiz R.; Lemos, Manoel V.F.; Nunes, Luiz R.; Gomes, Suely L.; Santelli, Roberto V.; Goldman, Maria H.; Bacci, Maurício; Giglioti, Eder A.; Thiemann, Otávio H.; Silva, Flávio H.; Van Sluys, Marie-Anne; Nobrega, Francisco G.; Arruda, Paulo; Menck, Carlos F.M.

    2004-01-01

    Over 40,000 sugarcane (Saccharum officinarum) consensus sequences assembled from 237,954 expressed sequence tags were compared with the protein and DNA sequences from other angiosperms, including the genomes of Arabidopsis and rice (Oryza sativa). Approximately two-thirds of the sugarcane transcriptome have similar sequences in Arabidopsis. These sequences may represent a core set of proteins or protein domains that are conserved among monocots and eudicots and probably encode for essential angiosperm functions. The remaining sequences represent putative monocot-specific genetic material, one-half of which were found only in sugarcane. These monocot-specific cDNAs represent either novelties or, in many cases, fast-evolving sequences that diverged substantially from their eudicot homologs. The wide comparative genome analysis presented here provides information on the evolutionary changes that underlie the divergence of monocots and eudicots. Our comparative analysis also led to the identification of several not yet annotated putative genes and possible gene loss events in Arabidopsis. PMID:15020759

  8. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  9. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  10. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  11. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    OpenAIRE

    Kadri Koorem; Price, Jodi N; Mari Moora

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest--evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two specie...

  12. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  13. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  14. Plant species with extremely small populations (PSESP in China: A seed and spore biology perspective

    Directory of Open Access Journals (Sweden)

    Ellie Merrett Wade

    2016-10-01

    Full Text Available Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP. Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination of at-risk species? We have used China's PSESP (the first group listing as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP, storage characteristics are only known for 8% of PSESP (10 species. Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.

  15. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Tsai

    Full Text Available The spatial structure of species richness is often characterized by the species-area relationship (SAR. However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha, northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals of target species departs (i.e., positively, negatively, or with no obvious trend from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate or decreases (repel neighborhood species richness. We found that (i accumulators were dominant at small interaction distances (30 m; (iii repellers were rarely detected; and (iv large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow might create the spatial heterogeneity of species richness and promote positive species interactions.

  16. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.

    Science.gov (United States)

    Jambhulkar, Hemlata P; Juwarkar, Asha A

    2009-05-01

    A field experiment was conducted on a 10-hectare area on fly ash dump at Khaperkheda Thermal Power Plant, Nagpur, India, where different ecologically and economically important plant species were planted using bioremediation technology. The technology involves the use of organic amendment and selection of suitable plant species along with site-specific nitrogen-fixing strains of biofertilizers. The study was conducted to find out the metal accumulation potential of different plant species. The total heavy metal contents in fly ash were determined and their relative abundance was found in the order of Fe>Mn>Zn>Cu>Ni>Cr>Pb>Cd. Fly ash samples had acidic pH, low electrical conductivity, low level of organic carbon and trace amounts of N and P. Plantation of divergent species was done on fly ash dump using the bioremediation technique. After 3 years of plantation, luxuriant growth of these species was found covering almost the entire fly ash dump. The results of the metal analysis of these species indicated that iron accumulated to the greatest extent in vegetation followed by Mn, Ni, Zn, Cu, Cr and Pb. Cassia siamea was found to accumulate all metals at higher concentrations compared to other species. The experimental study revealed that C. siamea could be used as a hyper-accumulator plant for bioremediation of fly ash dump.

  17. How do Plant Morphological Characteristics, Species Composition and Richness Regulate Eco-hydrological Function?

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hong Wang; Chang-Qun Duan

    2010-01-01

    Although considerable research has focused on the relationship between ecosystem structure and function, interactions of plant morphological characteristics, species composition and richness with eco-hydrological functions remain unclear. We measured water adherence (i.e. the capacity of a plant species to retain water), documented plant surface morphology and observed surface runoff at three sites in China. The adhering water ratios for each plant species differed, ranging from 17.1% to 151.5% in leaves, and from 14.4% to 41.1% in branches. Small, light-weight, soft, non-cuticularized leaves that were densely situated on small branches showed good water adherence. The next best adherence was found by branches with intermediately coarse surfaces. The plant species with high standing biomass also showed good water adherence, and the contribution of a species to total adherence was dependent upon its aboveground standing biomass. Vegetation parameters strongly affected water adherence,whereas the effect of species richness was not significant. Conversely, species richness showed a significant influence on surface runoff. The effect of plant morphological characteristics and composition constitutes a basic process in the regulation of eco-hydrological function, and vegetation parameters play somewhat different roles in that regulation. The key roles must therefore be considered from a management perspective.

  18. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    socio-economic impacts such as interrupting the supply of ecosystem goods ... programs of three IAPs in two urban nature reserves within the eThekwini Municipality. ...... do we understand the impacts of alien species on ecosystem services?

  19. Exotic and indigenous problem plants species used, by the Bapedi ...

    African Journals Online (AJOL)

    EB

    Department of Biodiversity, School of Molecular and Life Sciences, University of Limpopo, ... verum, and Citrullus lanatus are reported for the first time in the treatment of the investigated STIs. ... valuable species may be lost through improper.

  20. The performance of plant species in removing nutrients from ...

    African Journals Online (AJOL)

    2011-10-26

    Oct 26, 2011 ... The discharge was collected from a drainage pipe at the base of each of the 150 containers. ... The species that performed well for all three nutrients include .... layers were placed below the Malmesbury shale, comprising of.

  1. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  2. Comparative pharmacognosy of medicinal plant species used as Prsniparni

    Directory of Open Access Journals (Sweden)

    S Lalitha

    2012-01-01

    Full Text Available Background: Substitution or adulteration of a particular genuine drug with other species due to demand exceeding the supply of the original species, is rampant in the present trade scenario. As a result, proper authentication of the drug for safe administration as an herbal medicine assumes paramount significance. Aim: Prsniparni, Uraria picta (Jacq. DC., is one such drug for which three different botanical entities are commonly used as substitutes, namely U. lagopodoides (L.DC; Desmodium gangeticum (L. DC., and Pseudarthria viscida (L. Wight and Arn.; all belonging to the family Fabaceae. The anatomical, histochemical and powder microscopic characters of the four species were compared in the field-collected samples to validate the quality herbal drug and to find the similarity and dissimilarity of the substitute species. Materials and Methods: Histological and histochemical characters were studied using sectioned materials following standard protocols. Histochemical methods were adopted to localize the presence of the primary metabolites such as starch, lipids, total proteins and amino acids and the secondary metabolites such as volatile oils, resins, tannins, lignin and pectin. Results: The present study shows that the authentic species U. picta and substitute species U. lagopodoides showing higher similarities of 90% based on histology, histochemistry and powder microscopy analysis. Other two candidates, D. gangeticum and P. viscida showing 60 % and 55% similarities, respectively, when compared to U. picta. Thus, the similarity matrix were developed using characters based on anatomical, histochemical and powder microscopy. Conclusion: Ayurvedic texts suggest use of substitute herbs for the rare species. The substitution is proved to be logical by our studies that U. lagopodoides can be used as a substitute species in the place of U. picta under Prsniparni and also the present study validates the genuinity of the drug by anatomical

  3. ORNAMENTAL SPECIES USED IN WATER GARDENS FROM SOUTH KOREA

    Directory of Open Access Journals (Sweden)

    PARK SANG KUN

    2009-12-01

    Full Text Available Aquatic plants (hydrophytic plants or hydrophytes are plants that have adapted to live in or on aquatic environments. Because they are living under the water require numerous special adaptations, aquatic plants can only grow in water or permanently saturated soil. Aquatic vascular plants can be ferns or angiosperms (from a variety of families, including monocots and dicots. As opposed to plants types such as mesophytes and xerophytes, hydrophytes do not have a problem in retaining water due to the abundance of water in its environment. This means the plant has less need to regulate transpiration (indeed, the regulation of transpiration would require more energy than the possible benefits incurred.The Korean vascular flora contains 217 families, 1.045 genera, 3.034 species, and 406 infraspecific taxa [CHONG-WOOK PARK, 2007].In Mokp’o region (South Korea, in 1995, was identified hydrophytes species composed by 11 orders, 22 families, 23 genera, 38 species, 9 varieties, total 48 taxa. These were composed by 22 taxa emerged plants, 15 taxa floating-leaves plants, 8 taxa submerged plants and 3 taxa free-floating plants [JEONG WOO-GYU & al., 1995].The same research collective, in 1996, in Paksil, Yundang (South Korea swamp region was identified hydrophytes species composed by 11 orders, 22 families, 31 genera, 41 species, 10 varieties; it represents 12.1% of total plants. These is composed of 25 taxa emerged plants, 15 taxa floating-leaves plants, 9 taxa submerged plants and 3 taxa free-floating plants [JEONG WOO-GYU & al., 1996].This paper contains the classification of water plants and a brief description of some aquatic species used in Korean ancient and modern gardens in order to introduce in our country.

  4. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  5. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species.

    Science.gov (United States)

    Keser, Lidewij H; Visser, Eric J W; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

  6. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  7. Proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action

    CSIR Research Space (South Africa)

    Nel, JL

    2004-01-01

    Full Text Available Many invasive alien plant species in South Africa are already well-established and cause substantial damage, while scores of others are at the early stages of invasion (only recently introduced and/or entering a phase of rapid population growth...

  8. Species-specific size expansion and molecular evolution of the oleosins in angiosperms.

    Science.gov (United States)

    Liu, Qi; Sun, Yepeng; Su, Wujie; Yang, Jing; Liu, Xiuming; Wang, Yanfang; Wang, Fawei; Li, Haiyan; Li, Xiaokun

    2012-11-10

    Oleosins are hydrophobic plant proteins thought to be important for the formation of oil bodies, which supply energy for seed germination and subsequent seedling growth. To better understand the evolutionary history and diversity of the oleosin gene family in plants, especially angiosperms, we systematically investigated the molecular evolution of this family using eight representative angiosperm species. A total of 73 oleosin members were identified, with six members in each of four monocot species and a greater but variable number in the four eudicots. A phylogenetic analysis revealed that the angiosperm oleosin genes belonged to three monophyletic lineages. Species-specific gene duplications, caused mainly by segmental duplication, led to the great expansion of oleosin genes and occurred frequently in eudicots after the monocot-eudicot divergence. Functional divergence analyses indicate that significant amino acid site-specific selective constraints acted on the different clades of oleosins. Adaptive evolution analyses demonstrate that oleosin genes were subject to strong purifying selection after their species-specific duplications and that rapid evolution occurred with a high degree of evolutionary dynamics in the pollen-specific oleosin genes. In conclusion, this study serves as a foundation for genome-wide analyses of the oleosins. These findings provide insight into the function and evolution of this gene family in angiosperms and pave the way for studies in other plants. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry.

    Science.gov (United States)

    Honkanen, Merja; Sorjanen, Aili-Maria; Mönkkönen, Mikko

    2011-06-01

    Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

  10. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  11. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins

    Science.gov (United States)

    A long standing goal in plant defense research is to optimize the protective function of biochemicals that impede pathogen and pest attack. Nearly 40 years ago pathogen-inducible non-volatile diterpenoids were described in rice and demonstrated to function as potent antimicrobial phytoalexins. Using...

  12. Tree-Dwelling Ants: Contrasting Two Brazilian Cerrado Plant Species without Extrafloral Nectaries

    Directory of Open Access Journals (Sweden)

    Jonas Maravalhas

    2012-01-01

    Full Text Available Ants dominate vegetation stratum, exploiting resources like extrafloral nectaries (EFNs and insect honeydew. These interactions are frequent in Brazilian cerrado and are well known, but few studies compare ant fauna and explored resources between plant species. We surveyed two cerrado plants without EFNs, Roupala montana (found on preserved environments of our study area and Solanum lycocarpum (disturbed ones. Ants were collected and identified, and resources on each plant noted. Ant frequency and richness were higher on R. montana (67%; 35 spp than S. lycocarpum (52%; 26, the occurrence of the common ant species varied between them, and similarity was low. Resources were explored mainly by Camponotus crassus and consisted of scale insects, aphids, and floral nectaries on R. montana and two treehopper species on S. lycocarpum. Ants have a high diversity on cerrado plants, exploring liquid and prey-based resources that vary in time and space and affect their presence on plants.

  13. Population Age Structures of Tree Species in Four Plant Communities in the Great Dismal Swamp, Virginia

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of the present study was to determine the age structures of species occurring in four plant communities in the Great Dismal Swamp, Virginia, by...

  14. Vascular Plant Species Occurrences - Okefenokee National Wildlife Refuge, Charlton, Clinch, and Ware Counties GA

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This spreadsheet contains up-to-date (2016) information on the occurrence of vascular plant species observed within the Okefenokee NWR since 1932. This list should...

  15. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Directory of Open Access Journals (Sweden)

    E. A. Gallo

    2013-04-01

    Full Text Available Aim of study: The effects and interactions of shelterwood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests.Area of study: Tierra del Fuego (Argentina, on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests and three site qualities (high, medium and low.Material and Methods: Understory richness and cover (% were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms. Two-way ANOVAs and multivariate analyses were conducted.Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups.Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness should be considered to better promote understory plant species conservation inside managed areas.Key words: plant species conservation; years after harvesting; forest management; Tierra del Fuego.

  16. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Corinna Wallinger

    Full Text Available Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae, the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  17. Contaminant Removal of Domestic Wastewater by Constructed Wetlands: Effects of Plant Species

    Institute of Scientific and Technical Information of China (English)

    Qiong Yang; Zhang-He Chen; Jian-Gang Zhao; Bin-He Gu

    2007-01-01

    A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, length×width×depth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands.Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communls Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.

  18. Antimicrobial activity of some endemic plant species from Turkey

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... For the determination of antimicrobial activity, 3 g of ground plant parts were ... negative control, 1 ml of methanol – 5 ml of deionized water mixture ..... CAM. 2: 259-263. Dülger B, Ceyhan M, Alitsaous M, Uğurlu E (1999).

  19. New species and new records of plants in Guiana

    NARCIS (Netherlands)

    Cowan, Richard S.

    1957-01-01

    For several years, The New York Botanical Garden has conducted a study of vegetation overlying certain ferruginous areas principally in Venezuela. During the winter of 1954-55, field work was organized to continue reconnaissance of plant-cover growing on iron-cap or ore-bodies in northeastern

  20. New species and new records of plants in Guiana

    NARCIS (Netherlands)

    Cowan, Richard S.

    1957-01-01

    For several years, The New York Botanical Garden has conducted a study of vegetation overlying certain ferruginous areas principally in Venezuela. During the winter of 1954-55, field work was organized to continue reconnaissance of plant-cover growing on iron-cap or ore-bodies in northeastern Brazil

  1. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; De Boer, W.; Van der Putten, W.H.

    2012-01-01

    Soilorganisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soilorganisms may promote plantspecies of characteristic habitats, and suppress plantspecies of disturbed habitats. We classi

  2. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... Thus, molecular analysis reveals that the micropropagation system described is a ... polymorphic DNA; MP, mother plant; PCR, polymerase chain reaction; CTAB, cetyltrimethylammonium .... bands, which were monomorphic for all the analyzed ... and RAPD could be a good molecular marker to evaluate.

  3. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  4. A comparison of plant species for rearing Asian citrus psyllid

    Science.gov (United States)

    Five plant genotypes were compared with respect to Asian citrus psyllid (ACP) reproduction potential: Bergera koenigii, Citrus aurantiifolia, C. macrophylla, C. taiwanica and Murraya paniculata. Asian citrus psyllid reproduction is dependent on young flush and thus Asian citrus psyllid production po...

  5. Evidence for plant viruses in the region of Argentina Islands, Antarctica.

    Science.gov (United States)

    Polischuk, Valery; Budzanivska, Irena; Shevchenko, Tetyana; Oliynik, Svitlana

    2007-02-01

    This work focused on the assessment of plant virus occurrence among primitive and higher plants in the Antarctic region. Sampling occurred during two seasons (2004/5 and 2005/6) at the Ukrainian Antarctic Station 'Academician Vernadskiy' positioned on Argentina Islands. Collected plant samples of four moss genera (Polytrichum, Plagiatecium, Sanionia and Barbilophozia) and one higher monocot plant species, Deschampsia antarctica, were further subjected to enzyme-linked immunosorbent assay to test for the presence of common plant viruses. Surprisingly, samples of Barbilophozia and Polytrichum mosses were found to contain antigens of viruses from the genus Tobamovirus, Tobacco mosaic virus and Cucumber green mottle mosaic virus, which normally parasitize angiosperms. By contrast, samples of the monocot Deschampsia antarctica were positive for viruses typically infecting dicots: Cucumber green mottle mosaic virus, Cucumber mosaic virus and Tomato spotted wilt virus. Serological data for Deschampsia antarctica were supported in part by transmission electron microscopy observations and bioassay results. The results demonstrate comparatively high diversity of plant viruses detected in Antarctica; the results also raise questions of virus specificity and host susceptibility, as the detected viruses normally infect dicotyledonous plants. However, the means of plant virus emergence in the region remain elusive and are discussed.

  6. Effects of Drought on Plant Species Diversity and Productivity in the Oak Forests of Western Iran

    OpenAIRE

    Hassan Pourbabaei; Verya Rahimi; Mohammad Naghi Adel

    2014-01-01

    A severe drought in 2008 extensively damaged a variety of economic, social, agricultural and natural resources in Iran. This study investigated the effects of the 2008 drought on plant species composition, diversity and productivity in Western Iran. To this end, plant species diversity in the drought year (2008) was compared to pre-drought (2007) and post-drought (2009) diversity. The Shannon-Wiener diversity index and Margalef richness index had significant differences between years, dec...

  7. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  8. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species

    OpenAIRE

    Honnay, Olivier; Jacquemyn, Hans; Bossuyt, B; Hermy, Martin

    2005-01-01

    Habitat fragmentation is one of the major threats to species diversity. In this review, we discuss how the genetic and demographic structure of fragmented populations of herbaceous forest plant species is affected by increased genetic drift and inbreeding, reduced mate availability, altered interactions with pollinators, and changed environmental conditions through edge effects. Reported changes in population genetic and demographic structure of fragmented plant populations have, however, not...

  9. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  10. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  11. The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings.

    Science.gov (United States)

    Parraga-Aguado, Isabel; Gonzalez-Alcaraz, Maria Nazaret; Alvarez-Rogel, Jose; Jimenez-Carceles, Francisco J; Conesa, Hector M

    2013-05-01

    Phytomanagement in terms of phytostabilisation is considered a suitable method to decrease environmental risks of metal(loid) enriched mine tailings. The goal of this study was to identify plant-favourable edaphic niches in mine tailings from a semiarid area, in order to obtain relevant information for further phytostabilisation procedures. For this purpose, a transect-designed sampling from non-disturbed soils to two mine tailings was performed, including the description of soil and plant ecology gradients. Plant ecological indicators showed several stages in plant succession: from weeds to stable patches of late successional plant species. PCA results revealed that plant distribution at the tailings was driven mainly by salinity while metal(loid) concentrations played a minor role. The presence of soil desiccation cracks generated low salinity patches which facilitated favourable niches for plant establishment. Edaphic-patch distribution may condition phytostabilisation since ploughing or the employment of certain amendments should take into account favourable niches for plant growth.

  12. Patch size and isolation predict plant species density in a naturally fragmented forest.

    Science.gov (United States)

    Munguía-Rosas, Miguel A; Montiel, Salvador

    2014-01-01

    Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.

  13. Patch size and isolation predict plant species density in a naturally fragmented forest.

    Directory of Open Access Journals (Sweden)

    Miguel A Munguía-Rosas

    Full Text Available Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest. We surveyed the vascular flora (except lianas and epiphytes of 19 forest patches using five belt transects (50×4 m each per patch (area sampled per patch = 0.1 ha. As predicted, plant species density was positively associated (logarithmically with patch size and negatively associated (linearly with patch isolation (distance to the nearest patch. Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation, however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.

  14. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Science.gov (United States)

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...

  15. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Science.gov (United States)

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  16. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  17. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  18. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species

    Directory of Open Access Journals (Sweden)

    Milena Nikolova

    2011-01-01

    Full Text Available Background: Discovery of new plant species with antioxidant properties is a priority of many research teams. Most of the species included in this study are unstudied for antioxidant properties, but they are taxonomically related to reference plants with well-documented antioxidant activity. Materials and Methods: Free radical scavenging activity of plant extracts was evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH assay. An aluminum chloride colorimetric method was used for flavonoid determination. The amount of phenolic compounds in the extracts was estimated by using the Folin-Ciocalteu reagent. Results: As a result of screening, it was found that the significant antioxidant properties possess several unstudied until now plant species (Veronica bellidioides L., V. kellereri Deg. et Urm, V. vindobonensis (M. Fisher M. Fisher, V. beccabunga L., V. rhodopaea L., V. austriaca (Velen. Degen., Clinopodium vulgare L., Stachys recta L., Clematis vitalba L., and Xeranthemum annum L.. The antioxidant potential of the new species is comparable to that of reference medicinal plants. Conclusions: The existing data presented here provide new information for antioxidant potential of plant species that have not been traditionally used as medicinal plants.

  19. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  20. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  1. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    Science.gov (United States)

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  2. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    Directory of Open Access Journals (Sweden)

    Shilin Chen

    Full Text Available BACKGROUND: The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2 of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. CONCLUSIONS: The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  3. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  4. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; Boer, de W.; Cornelissen, J.H.C.; Putten, van der W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  5. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Science.gov (United States)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  6. Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants

    NARCIS (Netherlands)

    Leeggangers, H.A.C.F.; Moreno Pachón, N.M.; Gude, H.; Immink, G.H.

    2013-01-01

    The extensive characterization of plant genes and genome sequences summed to the continuous development of biotechnology tools, has played a major role in understanding biological processes in plant model species. The challenge for the near future is to generate methods and pipelines for an efficien

  7. Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species

    Science.gov (United States)

    2017-05-01

    mixture, Sigma-Aldrich] for 3 months ( Phillips , Bernhardt, and Schle- singer). Ten replicate plants were grown per species. Plants were then transferred to...pp.105.070334. Phillips , Richard P., Emily S. Bernhardt, and William H. Schlesinger. 2009. “Elevated CO2 Increases Root Exudation from Loblolly

  8. The new flora of northeastern USA: quantifying introduced plant species occupancy in forest ecosystems.

    Science.gov (United States)

    Schulz, Bethany K; Gray, Andrew N

    2013-05-01

    Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment of introduced species occupancy in native plant communities over broad regions. Vegetation data from 1,302 forest inventory plots across 24 states in northeastern and mid-western USA were used to examine and compare the distribution of introduced species in relation to forest fragmentation across ecological provinces and forest types, and to examine correlations between native and introduced species richness. There were 305 introduced species recorded, and 66 % of all forested plots had at least one introduced species. Forest edge plots had higher constancy and occupancy of introduced species than intact forest plots, but the differences varied significantly among ecological provinces and, to a lesser degree, forest types. Weak but significant positive correlations between native and introduced species richness were observed most often in intact forests. Rosa multiflora was the most common introduced species recorded across the region, but Hieracium aurantiacum and Epipactus helleborine were dominant in some ecological provinces. Identifying regions and forest types with high and low constancies and occupation by introduced species can help target forest stands where management actions will be the most effective. Identifying seemingly benign introduced species that are more prevalent than realized will help focus attention on newly emerging invasives.

  9. Pathogenicity of eight formae speciales of Fusarium oxysporum Schlecht. in relation to different plants species

    Directory of Open Access Journals (Sweden)

    Maria Wagner

    2014-08-01

    Full Text Available Eight formae speciales of Fusarium oxysporum were isolated from plants of aster, flax, bean, pea, tomato, carnation, yellow lupine and pine, showing visible symptoms of wilting. Plants of the eight species were inoculated with each of the studied formae speciales of F. oxysporum, F. oxysporum f. sp. lupini could be reisolated only from lupine, while the others were pathogenic for the hosts and showed ability to colonize another plants.

  10. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib Amjad

    2014-12-01

    Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  11. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....... in the structure and functions of cell walls, and in the evolution of their remarkably complex polysaccharide structures. The grasses and cereals (order Poales), have long been regarded as being unique in that their cell walls contain an unbranched homopolymer, (1¿3)(1¿4)-ß-D-glucan, in which short blocks of (1...

  12. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  13. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  14. Population dynamics of Scirtothrips dorsalis (Thysanoptera: Thripidae) and other thrips species on two ornamental host plant species in Southern Florida.

    Science.gov (United States)

    Mannion, Catharine M; Derksen, Andrew I; Seal, Dakshina R; Osborne, Lance S; Martin, Cliff G

    2014-08-01

    Since its 2005 introduction into the United States, chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), has become a problematic pest of agronomic, vegetable, fruit, and ornamental plants. Knowledge of its population dynamics may help managers better monitor and control S. dorsalis. Population estimates were recorded for S. dorsalis and other thrips species on Knock-Out rose (Rosa 'Radrazz') and green buttonwood (Conocarpus erectus L.) from July 2007 to September 2008 in two field plots (one per plant species) in Homestead, FL. Yellow sticky card traps and samples of terminals, flowers, buds, and leaves were collected. S. dorsalis accounted for 95% of all thrips individuals collected from plants and 84% from traps with the remainder including at least 18 other thrips species. More thrips were caught on or flying near rose plants (47,438) than on or near buttonwoods (5,898), and on-plant densities of S. dorsalis appeared higher for rose than for buttonwood. Compared with rose leaves, rose buds, terminals, and flowers each had higher numbers of S. dorsalis, and buds and terminals had higher densities. On each host plant species, S. dorsalis density fluctuated over time with peaks in the late spring, summer, and fall, but populations were consistently low in the late winter and early spring. On roses, increased plant damage ratings correlated with reduced numbers of flowers and buds, reduced mean flower areas, and increased on-plant number and density of S. dorsalis. There were positive correlations over time between S. dorsalis density and plant damage rating for rose flowers (R = 0.78; P = 0.0003) and for buttonwood terminals (R = 0.90; P = 0.0001). Yellow sticky card traps were effective for monitoring S. dorsalis and may be especially useful and economically justified for the most susceptible hosts, but they also work well for less susceptible hosts. A good S. dorsalis scouting program should hence consider trap catches and symptoms such as leaf

  15. Plant Species Richness After Revegetation on The Reclaimed Coal Mine Land of PT Adaro Indonesia, South Kalimantan

    Directory of Open Access Journals (Sweden)

    Mochamad Arief Soendjoto

    2015-02-01

    Full Text Available The focus of monitoring was the plant purposely cultivated because after re-vegetation, there were a very few of other plants growing naturally on reclimed coal mining area which were recorded, whereas these plants had important values. The research aimed to record all plants and to identify predominant plants over the reclaimed land of PT Adaro Indonesia. There were four sampling locations with 13 squares of 50 × 20 m2 on each location established and on each square there were 5 plots of 2 × 2 m2 plotse made. Both plant species and its individual number of woodyplantsaplings were recorded on each square, so in each plot, there were small species and its individual number of either woody-plant seedlings or non-woody plants (herbs/shrubs, grasses, ferns. The relative density and the relative frequency of woody or non-woody plants were summed to obtain the important value index (IVI of each successional stage. There were 107 plant species consisting of 32, 43, 27, and 5 species of saplings,seedlings/herbs/shrubs, grasses, and ferns respectively. From those species, 16 species of woody plants and 2 species of herbs were planted purposely,other species grew naturally and even some of them were dominants. Either the number of plants or the dominating plant is varied according to the sampling location and the growing stage.Keywords: plant, revegetation, richness, sapling, seedling

  16. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  17. Allelopathic effect of a native species on a major plant invader in Europe

    Science.gov (United States)

    Christina, Mathias; Rouifed, Soraya; Puijalon, Sara; Vallier, Félix; Meiffren, Guillaume; Bellvert, Floriant; Piola, Florence

    2015-04-01

    Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopia x bohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27 % for plants originating from rhizomes and by 38 % for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20 %. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25 % for plants originating from rhizomes and 70, 61 and 55 % for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species.

  18. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.

    Science.gov (United States)

    Kopp, Christopher W; Cleland, Elsa E

    2015-01-01

    Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California's White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.

  19. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.

    Directory of Open Access Journals (Sweden)

    Christopher W Kopp

    Full Text Available Shifts in plant species phenology (the timing of life-history events such as flowering have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii, interact to influence the flowering phenology (day of first and peak flowering and production (number of flowers of an alpine cushion plant, Trifolium andersonii, in California's White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.

  20. Isoscapes resolve species-specific spatial patterns in plant-plant interactions in an invaded Mediterranean dune ecosystem.

    Science.gov (United States)

    Hellmann, Christine; Rascher, Katherine G; Oldeland, Jens; Werner, Christiane

    2016-12-01

    Environmental heterogeneity and plant-plant interactions are key factors shaping plant communities. However, the spatial dimension of plant-plant interactions has seldom been addressed in field studies. This is at least partially rooted in a lack of methods that can accurately resolve functional processes in a spatially explicit manner. Isoscapes, that is, spatially explicit representations of stable isotope data, provide a versatile means to trace functional changes on spatial scales, for example, related to N-cycling (foliar δ(15)N) and water use efficiency (WUEi, foliar δ(13)C). In a case study in a nutrient-depleted Mediterranean dune ecosystem, we analysed the spatial impact of the invasive N2-fixing Acacia longifolia on three native species of different functional types using δ(15)N and δ(13)C isoscapes and spatial autocorrelation analyses. Isoscapes revealed strong spatial patterns in δ(15)N and δ(13)C with pronounced species-specific differences, demonstrating distinct spatial ranges of plant-plant interactions. A coniferous tree and an ericaceous dwarf shrub showed significant enrichment in δ(15)N within a range of 5-8 m surrounding the canopy of A. longifolia, indicating input of N originating from symbiotic N2-fixation by the invader. In the dwarf shrub, which was most responsive to invader influence, enrichment in δ(13)C additionally demonstrated spatially explicit changes to WUEi, while a native N2-fixer was unresponsive to the presence of the invader. Furthermore, δ(15)N and δ(13)C isoscapes yielded different patterns, indicating that plant-plant interactions can have distinct spatial distributions and ranges based on the process measured. Additionally, the magnitude of the effect differed between field situations with high and low invasion pressure. This study highlights that the spatial scale must be accounted for when assessing the effects and outcome of species interactions. Functional tracers such as stable isotopes enable us to

  1. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  2. Distribution of Vascular Plant Species Richness Along an Elevational Gradient in the Dongling Mountains, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the

  3. Plant species richness drives the density and diversity of Collembola in temperate grassland

    Science.gov (United States)

    Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

    2011-05-01

    Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts were largely consistent in spring and autumn. By contrast, in the presence of small herbs the density of hemiedaphic Collembola and the diversity of Isotomidae increased in spring whereas they decreased in autumn. Beneficial impacts of plant diversity as well as those of grasses and legumes were likely due to increased root and microbial biomass, and elevated quantity and quality of plant residues serving as food resources for Collembola. By contrast, beneficial impacts of small herbs in spring probably reflect differences in microclimatic conditions, and detrimental effects in autumn likely were due to low quantity and quality of resources. The results point to an intimate relationship between plants and the diversity of belowground biota, even at small spatial scales, contrasting the findings of previous studies. The pronounced response of soil animals in the present study was presumably due to the fact that plant communities had established over several years. As decomposer invertebrates significantly impact plant performance, changes in soil biota density and diversity are likely

  4. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages.

    Science.gov (United States)

    Tranbarger, Timothy J; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne

    2017-01-01

    The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are

  5. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  6. 78 FR 32013 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for 38 Species...

    Science.gov (United States)

    2013-05-28

    ... are currently in danger of extinction throughout all their ranges, as the result of the following... threats are exacerbated by these species' inherent vulnerability to extinction from stochastic events at... further proposed to designate critical habitat for 39 of these 40 plant and animal species, to...

  7. Advances in seed conservation of wild plant species: a review of recent research.

    Science.gov (United States)

    Hay, Fiona R; Probert, Robin J

    2013-01-01

    Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management. However, over the last 10-20 years, problems and knowledge gaps have been identified, which have led to more focused seed conservation research on diverse species. For example, there is now greater ecogeographic understanding of seed storage behaviour and of the relative longevity of orthodox seeds, and we are therefore able to predict which species should be conserved using cryostorage techniques; seed development studies have identified when seeds should be harvested for maximal tolerance of desiccation and longevity in storage, as well as highlighting how seed development can vary between species; and there is now a wealth of literature on the dormancy-breaking and germination requirements of wild species which, as well as enabling better management of accessions, will also mean that their use in restoration, species reintroduction, or for evaluation for other applications is possible. Future research may be focused, for example, on nursery and plant production systems for wild plant species that maximize genetic diversity, so that introduced seeds and plant materials have the resilience to cope with future environmental stresses.

  8. Comparison of nutrient acquisition in exotic plant species and congeneric natives

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Verhoeven, K.J.F.; Boschker, H.T.S.; Van der Putten, W.H.

    2011-01-01

    1.The ability of exotic plant species to establish and expand in new areas may be enhanced by a relatively high ability to acquire soil nutrients. To test this hypothesis, we predicted that the capacity for nutrient acquisition would be higher in seedlings of exotic species than in seedlings of nati

  9. Effects of salinity on growth of plant species from terrestrializing fens

    NARCIS (Netherlands)

    Stofberg, S.F.; Klimkovska, A.; Paulissen, M.P.C.P.; Witte, J.Ph.M.; Zee, van der S.E.A.T.M.

    2015-01-01

    Terrestrializing lowland fens may be temporarily exposed to elevated surface water salinity, which may have serious consequences for nature conservation. We investigated the response of five fresh water fen plant species to elevated salinity. In a controlled greenhouse experiment, these species were

  10. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  11. Seed and root endophytic fungi in a range expanding and a related plant species

    NARCIS (Netherlands)

    Geisen, Stefan; Kostenko, Olga; Cnossen, Mark C.; Hooven, ten Freddy C.; Vreš, Branko; Putten, van der Wim H.

    2017-01-01

    Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne

  12. Seed and root endophytic fungi in a range expanding and a related plant species

    NARCIS (Netherlands)

    Geisen, Stefan; Kostenko, Olga; Cnossen, Mark C.; ten Hooven, Freddy C.; Vreš, Branko; van Der Putten, Wim H.

    2017-01-01

    Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic

  13. Plant Species Diversity along an Altitudinal Gradient of Bhabha Valley in Western Himalaya

    Institute of Scientific and Technical Information of China (English)

    Amit Chawla; S. Rajkumar; K.N. Singh; Brij Lal; R.D. Singh; A. K. Thukral

    2008-01-01

    The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a charactersfic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90% of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.

  14. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  15. Determinants of plant establishment success in a multispecies introduction experiment with native and alien species.

    Science.gov (United States)

    Kempel, Anne; Chrobock, Thomas; Fischer, Markus; Rohr, Rudolf Philippe; van Kleunen, Mark

    2013-07-30

    Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits--fine-tuned by environmental factors--determine success or failure of alien and native plants in temperate grasslands.

  16. Ten-Year Growth of Five Planted Hardwood Species Mechanical Weed Control on Sharkey Clay Soil

    Science.gov (United States)

    Roger M. Krinard; Harvey E. Kennedy

    1983-01-01

    Five hardwood species planted on Sharkey clay soil showed little practical difference in growth whether plots were mowed or diskedfor weed control in years 6 to 10, although disking had given better growth in the first 5 years. After 10 years, cottonwood (Populus deltoides Bartr. ex Marsh.) stem volume was at least three times greater than other species. Changes in...

  17. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    NARCIS (Netherlands)

    Oyelami, A.O.; Okere, U.V.; Orwin, K.; Deyn, de G.B.; Jones, K.C.; Semple, K.T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing

  18. Description of two species of Tenuipalpus (Acari: Trombidiformes) from succulent plants

    Science.gov (United States)

    A new species of Tenuipalpus, T. sarcophilus n. sp., (Tenuipalpidae) is described from specimens collected from several species of ornamental succulent plants in Florida, including Crassula tetragona L, Sedum spp., Echeveria spp., Pachyphytum spp. (Crassulaceae) and Aloe spp. (Asphodelaceae), and fr...

  19. Advances in the reintroduction of rare and endangered wild plant species.

    Science.gov (United States)

    Ren, Hai; Jian, ShuGuang; Liu, HongXiao; Zhang, QianMei; Lu, HongFang

    2014-06-01

    Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species. One effective way to conserve these rare and endangered species is through reintroduction. In this review, we summarize the advances in wild plant reintroduction from five perspectives: the establishment of reintroduction biology as an important tool for biodiversity conservation; the importance of genetic diversity in reintroduction; reintroduction under global climate change; recruitment limitation in reintroduction; and reintroduction and ecological restoration. In addition, we consider the future of plant reintroduction strategies.

  20. Drag forces of common plant species in temperate streams: consequences of morphology, velocity and biomass

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand

    2008-01-01

    Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distribution...... a variety of environmental conditions and plant traits influences distribution. Drag on the trailing canopy usually increased 15- to 35-fold for a 100-fold increase of biomass suggesting that an even distribution of plants at low density across the stream bed offers greater resistance to downstream flow...

  1. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  2. Olfactory cues from different plant species in host selection by female pea moths.

    Science.gov (United States)

    Thöming, Gunda; Norli, Hans Ragnar

    2015-03-01

    In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments.

  3. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  4. The relation between unpalatable species, nutrients and plant species richness in Swiss montane pastures.

    NARCIS (Netherlands)

    Kleijn, D.; Muller-Scharer, H.

    2006-01-01

    In agriculturally marginal areas, the control of unpalatable weeds on species rich pastures may become problematic due to agricultural and socio-economic developments. It is unclear how increased dominance of unpalatable species would affect the botanical diversity of these grasslands. We investigat

  5. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    OpenAIRE

    Naim Berisha; Fadil Millaku; Elez Krasniqi; Bekim Gashi

    2014-01-01

    Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are cha...

  6. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  7. Ecological engineering by a native leaf-cutting ant increases the performance of exotic plant species.

    Science.gov (United States)

    Farji-Brener, Alejandro G; Lescano, Natalia; Ghermandi, Luciana

    2010-05-01

    Numerous mechanisms are proposed to explain why exotic plants successfully invade natural communities. However, the positive effects of native engineers on exotic plant species have received less consideration. We tested whether the nutrient-rich soil patches created by a native ecological engineer (refuse dumps from the leaf-cutting ant Acromyrmex lobicornis) increase the performance of exotic more than native plants. In a greenhouse experiment, individuals from several native and exotic species were planted in pots with refuse dumps (RDs) and non-nest soils (NNSs). Total plant biomass and foliar nutrient content were measured at the end of the experiment. We also estimated the cover of exotic and native plant species in external RDs from 54 field ant nests and adjacent areas. Greenhouse plants showed more biomass and foliar nutrient content in RDs than in NNS pots. Nevertheless, differences in the final mean biomass among RD and NNS plants were especially great in exotics. Accordingly, the cover of exotic plants was higher in field RDs than in adjacent, non-nest soils. Our results demonstrated that plants can benefit from the enhanced nutrient content of ant RDs, and that A. lobicornis acts as an ecosystem engineer, creating a substrate that especially increases the performance of exotics. This supports the fluctuating resource hypothesis as a mechanism to promote biological invasions, and illustrates how this hypothesis may operate in nature. Since ant nests and exotic plants are more common in disturbed than in pristine environments, the role of ant nests in promoting biological invasions might be of particular interest. Proposals including the use of engineer species to restore disturbed habitats should be planned with caution because of their potential role in promoting invasions.

  8. Tropical plant-herbivore networks: reconstructing species interactions using DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Carlos García-Robledo

    Full Text Available Plants and their associated insect herbivores, represent more than 50% of all known species on earth. The first step in understanding the mechanisms generating and maintaining this important component of biodiversity is to identify plant-herbivore associations. In this study we determined insect-host plant associations for an entire guild of insect herbivores using plant DNA extracted from insect gut contents. Over two years, in a tropical rain forest in Costa Rica (La Selva Biological Station, we recorded the full diet breadth of rolled-leaf beetles, a group of herbivores that feed on plants in the order Zingiberales. Field observations were used to determine the accuracy of diet identifications using a three-locus DNA barcode (rbcL, trnH-psbA and ITS2. Using extraction techniques for ancient DNA, we obtained high-quality sequences for two of these loci from gut contents (rbcL and ITS2. Sequences were then compared to a comprehensive DNA barcode library of the Zingiberales. The rbcL locus identified host plants to family (success/sequence = 58.8% and genus (success/sequence = 47%. For all Zingiberales except Heliconiaceae, ITS2 successfully identified host plants to genus (success/sequence = 67.1% and species (success/sequence = 61.6%. Kindt's sampling estimates suggest that by collecting ca. four individuals representing each plant-herbivore interaction, 99% of all host associations included in this study can be identified to genus. For plants that amplified ITS2, 99% of the hosts can be identified to species after collecting at least four individuals representing each interaction. Our study demonstrates that host plant identifications at the species-level using DNA barcodes are feasible, cost-effective, and reliable, and that reconstructing plant-herbivore networks with these methods will become the standard for a detailed understanding of these interactions.

  9. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  10. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding.

    Science.gov (United States)

    Nithaniyal, Stalin; Vassou, Sophie Lorraine; Poovitha, Sundar; Raju, Balaji; Parani, Madasamy

    2017-02-01

    Plants are the major source of therapeutic ingredients in complementary and alternative medicine (CAM). However, species adulteration in traded medicinal plant raw drugs threatens the reliability and safety of CAM. Since morphological features of medicinal plants are often not intact in the raw drugs, DNA barcoding was employed for species identification. Adulteration in 112 traded raw drugs was tested after creating a reference DNA barcode library consisting of 1452 rbcL and matK barcodes from 521 medicinal plant species. Species resolution of this library was 74.4%, 90.2%, and 93.0% for rbcL, matK, and rbcL + matK, respectively. DNA barcoding revealed adulteration in about 20% of the raw drugs, and at least 6% of them were derived from plants with completely different medicinal or toxic properties. Raw drugs in the form of dried roots, powders, and whole plants were found to be more prone to adulteration than rhizomes, fruits, and seeds. Morphological resemblance, co-occurrence, mislabeling, confusing vernacular names, and unauthorized or fraudulent substitutions might have contributed to species adulteration in the raw drugs. Therefore, this library can be routinely used to authenticate traded raw drugs for the benefit of all stakeholders: traders, consumers, and regulatory agencies.

  11. Comment on "Changes in climatic water balance drive downhill shifts in plant species' optimum elevations"

    Science.gov (United States)

    Stephenson, Nathan L.; Das, Adrian J.

    2011-01-01

    Crimmins et al. (Reports, 21 January 2011, p. 324) attributed an apparent downward elevational shift of California plant species to a precipitation-induced decline in climatic water deficit. We show that the authors miscalculated deficit, that the apparent decline in species' elevations is likely a consequence of geographic biases, and that unlike temperature changes, precipitation changes should not be expected to cause coordinated directional shifts in species' elevations.

  12. An evaluation of the contaminant impacts on plants serving as habitat for an endangered species

    Energy Technology Data Exchange (ETDEWEB)

    DeShields, B.R.; Stelljes, M.E.; Hawkins, E.T.; Alsop, W.R. [Harding Lawson Associates, Novato, CA (United States); Collins, W. [Dept. of the Army, Fort Ord, CA (United States)

    1995-12-31

    As part of an ecological risk assessment at a Superfund site in Monterey County, California, potential impacts on an endangered species, the Smith`s blue butterfly (Euphilotes enoptes smithi) were evaluated. This species of butterfly lives along beach dunes historically used as small arms trainfire ranges. Historical land use resulted in the accumulation of spent bullets and varying concentrations of metals in site soil. Two species of buckwheat occurring at the site (Erigonium parvifolium and E. latifolium) that serve as the sole habitat for the butterfly were evaluated. It was assumed that if there were no impacts to the habitat, there would be no impacts to the endangered species itself. Surface soil and collocated plants were sampled and chemically analyzed in order to correlate soil concentrations with plant tissue concentrations. Surface soil and collocated plants were also sampled at reference sites to determine background concentrations. Tissue concentrations were compared to benchmark concentrations to evaluate potential impacts. In addition, soil samples and seeds from buckwheat growing at the site were collected and used to conduct root elongation assays in the laboratory. The objective of the assays was to assess effects of metals associated with the spent bullets in soil on plant growth. Within the plants, higher concentrations of all metals except zinc were found in the roots; zinc was equally distributed throughout the plants. No chemical-related impacts to the plants were identified.

  13. Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai - Egypt.

    Science.gov (United States)

    El-Shatoury, Sahar A; El-Kraly, Omnia A; Trujillo, Martha E; El-Kazzaz, Waleed M; El-Din, El-Sayeda Gamal; Dewedar, Ahmed

    2013-09-01

    The diversity of culturable endophytic actinomycetes associated with wild Compositae plants is scantily explored. In this study, one hundred and thirty one endophytic actinobacteria were isolated from ten Compositae plant species collected from South Sinai in Egypt. Microscopic and chemotaxonomic investigation of the isolates indicated fourteen genera. Rare genera, such as Microtetraspora, and Intrasporangium, which have never been previously reported to be endophytic, were identified. Each plant species accommodated between three to eight genera of actinobacteria and unidentified strains were recovered from seven plant species. The generic diversity analysis of endophytic assemblages grouped the plant species into three main clusters, representing high, moderate and low endophytic diversity. The endophytes showed high functional diversity, based on forty four catabolic and plant growth promotion traits; providing some evidence that such traits could represent key criteria for successful residence of endophytes in the endosphere. Stress-tolerance traits were more predictive measure of functional diversity differences between the endophyte assemblages (Shannon's index, p = 0.01). The results indicate a potential prominent role of endophytes for their hosts and emphasize the potency of plant endosphere as a habitat for actinobacteria with promising future applications.

  14. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species.

    Science.gov (United States)

    Honnay, Olivier; Jacquemyn, Hans; Bossuyt, Beatrijs; Hermy, Martin

    2005-06-01

    Habitat fragmentation is one of the major threats to species diversity. In this review, we discuss how the genetic and demographic structure of fragmented populations of herbaceous forest plant species is affected by increased genetic drift and inbreeding, reduced mate availability, altered interactions with pollinators, and changed environmental conditions through edge effects. Reported changes in population genetic and demographic structure of fragmented plant populations have, however, not resulted in large-scale extinction of forest plants. The main reason for this is very likely the long-term persistence of small and isolated forest plant populations due to prolonged clonal growth and long generation times. Consequently, the persistence of small forest plant populations in a changing landscape may have resulted in an extinction debt, that is, in a distribution of forest plant species reflecting the historical landscape configuration rather than the present one. In some cases, fragmentation appears to affect ecosystem integrity rather than short-term population viability due to the opposition of different fragmentation-induced ecological effects. We finally discuss extinction and colonization dynamics of forest plant species at the regional scale and suggest that the use of the metapopulation concept, both because of its heuristic power and conservation applications, may be fruitful.

  15. Distribution of endangered and protected species of synanthropic plants in Łask

    OpenAIRE

    Suwara-Szmigielska, Sylwia

    2008-01-01

    The article presents description and distribution of protected and endangered species of synanthropic plants found in the Łask area in 2001-2002. The research was carried out with the use of a cartogram method. As a result, ten species of protected plants were found in the researched area, four of which under strict protection, and six under partial protection. Eight out of the ten protected species are in the danger of extinction. Zadanie pt. „Digitalizacja i udostępnienie w C...

  16. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants

    Science.gov (United States)

    Zhao, Peng; Liu, Fang; Li, Ying-Ming; Cai, Lei

    2016-01-01

    Gymnosporangium species (Pucciniaceae, Pucciniales) cause serious diseases and significant economic losses to apple cultivars. Most of the reported species are heteroecious and complete their life cycles on two different plant hosts belonging to two unrelated genera, i.e. Juniperus and Malus. However, the phylogenetic relationships among Gymnosporangium species and the evolutionary history of Gymnosporangium on its aecial and telial hosts were still undetermined. In this study, we recognized species based on rDNA sequence data by using coalescent method of generalized mixed Yule-coalescent (GMYC) and Poisson Tree Processes (PTP) models. The evolutionary relationships of Gymnosporangium species and their hosts were investigated by comparing the cophylogenetic analyses of Gymnosporangium species with Malus species and Juniperus species, respectively. The concordant results of GMYC and PTP analyses recognized 14 species including 12 known species and two undescribed species. In addition, host alternations of 10 Gymnosporangium species were uncovered by linking the derived sequences between their aecial and telial stages. This study revealed the evolutionary process of Gymnosporangium species, and clarified that the aecial hosts played more important roles than telial hosts in the speciation of Gymnosporangium species. Host switch, losses, duplication and failure to divergence all contributed to the speciation of Gymnosporangium species. PMID:27385413

  17. Species delimitation and phylogeny of a New Zealand plant species radiation

    Directory of Open Access Journals (Sweden)

    Meudt Heidi M

    2009-05-01

    Full Text Available Abstract Background Delimiting species boundaries and reconstructing the evolutionary relationships of late Tertiary and Quaternary species radiations is difficult. One recent approach emphasizes the use of genome-wide molecular markers, such as amplified fragment length polymorphisms (AFLPs and single nucleotide polymorphisms (SNPs, to identify distinct metapopulation lineages as taxonomic species. Here we investigate the properties of AFLP data, and the usefulness of tree-based and non-tree-based clustering methods to delimit species and reconstruct evolutionary relationships among high-elevation Ourisia species (Plantaginaceae in the New Zealand archipelago. Results New Zealand Ourisia are shown to comprise a geologically recent species radiation based on molecular dating analyses of ITS sequences (0.4–1.3 MY. Supernetwork analyses indicate that separate tree-based clustering analyses of four independent AFLP primer combinations and 193 individuals of Ourisia produced similar trees. When combined and analysed using tree building methods, 15 distinct metapopulations could be identified. These clusters corresponded very closely to species and subspecies identified on the basis of diagnostic morphological characters. In contrast, Structure and PCO-MC analyses of the same data identified a maximum of 12 and 8 metapopulations, respectively. All approaches resolved a large-leaved group and a small-leaved group, as well as a lineage of three alpine species within the small-leaved group. We were unable to further resolve relationships within these groups as corrected and uncorrected distances derived from AFLP profiles had limited tree-like properties. Conclusion Ourisia radiated into a range of alpine and subalpine habitats in New Zealand during the Pleistocene, resulting in 13 morphologically and ecologically distinct species, including one reinstated from subspecies rank. Analyses of AFLP identified distinct metapopulations consistent with

  18. The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri)1[OPEN

    Science.gov (United States)

    Golicz, Agnieszka A.; Paterson, Andrew H.; Sablok, Gaurav; Krishnaraj, Rahul R.; Chan, Chon-Kit Kenneth; Batley, Jacqueline; Ralph, Peter J.

    2016-01-01

    Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages. PMID:27373688

  19. Variation in species-level plant functional traits over wetland indicator status categories

    Science.gov (United States)

    McCoy-Sulentic, Miles E.; Kolb, Thomas E.; Merritt, David M.; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-01-01

    Wetland indicator status (WIS) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species-level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species-level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA), stem specific gravity (SSG), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species-level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG, seed mass, % leaf carbon and height, and for woody species occurred for height, SSG, and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low-density stem tissue. Adaptations to drier habitats in the riparian zone include short, high-density cavitation-resistant stem tissue, and high water use

  20. Comparative studies on plant range size: Linking reproductive and regenerative traits in two Ipomoea species

    Science.gov (United States)

    Astegiano, Julia; Funes, Guillermo; Galetto, Leonardo

    2010-09-01

    Reproductive and regenerative traits associated with colonization and persistence ability may determine plant range size. However, few comparative studies on plant distribution have assessed these traits simultaneously. Pollinator richness and frequency of visits, autonomous self-pollination ability, reproductive output (i.e., reproductive traits), seed bank strategy and seedling density (i.e., regenerative traits) were compared between the narrowly distributed Ipomoea rubriflora O'Donnell (Convolvulaceae) and its widespread congener Ipomoea purpurea (L.) Roth. The narrowly distributed species showed higher ecological specialization to pollinators and lower autonomous self-pollination ability. Frequency of visits, natural seed/ovule ratio and fruit set, and total fruit production did not differ between species. However, the number of seeds produced per fruit was lower in the narrowly distributed species, translating into lower total seed production per plant. Indeed, I. rubriflora formed smaller transient and persistent seed banks and showed lower seedling density than the widespread I. purpurea. These reproductive and regenerative trait results suggest that the narrowly distributed species may have lower colonization and persistence ability than its widespread congener. They further suggest that the negative effects of lower fecundity in the narrowly distributed species might persist in time through the long-lasting effects of total seed production on seed bank size, reducing the species' ability to buffered environmental stochasticity. However, other regenerative traits, such as seed size, and processes such as pre- and post-dispersal seed predation, might modulate the effects of plant fecundity on plant colonization and persistence ability and thus range size.

  1. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau.

    Science.gov (United States)

    Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun

    2012-07-01

    • Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  2. Identifying plant species using MIR and TIR (2 - 14 μm) emissivity spectra

    Science.gov (United States)

    Ullah, S.; Schlerf, M.; Skidmore, A. K.; Hecker, C.

    2012-04-01

    Tittle: Identifying plant species using MIR and TIR (2 - 14 µm) emissivity spectra Identification plant species using remote sensing is generally limited by the similarity of their reflectance spectra in the visible, NIR and SWIR domains. Laboratory measured emissivity spectra in the mid to thermal infrared (MIR-TIR; 2 µm - 14 µm) shows significant differences. The laboratory emissivity spectra of thirteen common broad leaved species, comprising 3024 spectral bands in the MIR and TIR, were analyzed. For each wavelength the differences between the species were tested for significance using the one way analysis of variance (ANOVA) with the post-hoc Tukey HSD test. The emissivity spectra of the analysed species were found to be statistically different at various wavebands. Subsequently, six spectral bands were selected (based on the histogram of separable pairs of species for each waveband) to quantify the separability between each species pair based on the Jefferies Matusita (JM) distance. Out of 78 combinations, 76 pairs had a significantly different JM distance. Using the selected six wavebands for multiple plant species, overall classification accuracy of 92 % was achieved. This means that careful selection of hyperspectral bands in the MIR and TIR (2.5 µm - 14 µm) results in reliable species discrimination. Keywords: Spectral emissivity, J-M distance, ANOVA, Tukey HSD, spectral separability, Kirchhoff law

  3. Stimulation of flower nectar replenishment by removal: A survey of eleven animal-pollinated plant species

    Directory of Open Access Journals (Sweden)

    Elaine Y Luo

    2014-02-01

    Full Text Available Understanding the interaction between reward-seeking flower feeding animals and plants requires consideration of the dynamic nature of nectar secretion. Studies on several plants suggest that nectar secretion may increase in response to its removal, but it is not clear whether the phenomenon is widespread. We determined whether 11 species of Colorado mountain wildflowers showed removal-enhanced nectar replenishment (RENR. We measured floral phenology, nectar volumes, rate of replenishment, and compared the cumulative nectar produced following five hourly removals with that accumulated after five hours. Nectar replenishment occurred rapidly, within minutes; statistically significant RENR was observed in 9 of our 11 study species, with the strongest effects in bee-pollinated species. We discuss the implications of RENR in plant species on the measurement of nectar, the adaptive advantage of RENR, and the energetic costs of RENR.

  4. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy.

    Science.gov (United States)

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E

    2014-07-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Habitat area and climate stability determine geographical variation in plant species range sizes.

    Science.gov (United States)

    Morueta-Holme, Naia; Enquist, Brian J; McGill, Brian J; Boyle, Brad; Jørgensen, Peter M; Ott, Jeffrey E; Peet, Robert K; Símová, Irena; Sloat, Lindsey L; Thiers, Barbara; Violle, Cyrille; Wiser, Susan K; Dolins, Steven; Donoghue, John C; Kraft, Nathan J B; Regetz, Jim; Schildhauer, Mark; Spencer, Nick; Svenning, Jens-Christian

    2013-12-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~ 85 000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity.

  6. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85,000 ...... concerns over the potential effects of future climate change and habitat loss on biodiversity.......,000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past...... glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen...

  7. Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Hammer, Kathrine

    2012-01-01

    Dense moss cushions of different size are distributed across the bare limestone pavements on Øland, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species...... richness, and evaluated duration of plant activity during desiccation as a function of ground area, for a large collection of moss cushions. We found that lower evaporation and higher water storage contributed equally to extending the desiccation period with increasing cushion size. Evaporation rates...... under stagnant conditions. One moss species was added to the species pool for every nine-fold increase in cushion area. Vascular plants were absent from the smallest cushions, whereas one or two species, on average, appeared in 375- and 8,500-cm(2) cushions with water available for 6 and 10 days during...

  8. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species

    Science.gov (United States)

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study

  9. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    Science.gov (United States)

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study

  10. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  11. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.

    Science.gov (United States)

    Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam

    2016-11-15

    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. Copyright © 2016. Published by Elsevier B.V.

  12. Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species.

    Science.gov (United States)

    Amir, Hamid; Lagrange, Alexandre; Hassaïne, Nadine; Cavaloc, Yvon

    2013-10-01

    In order to improve knowledge about the role of arbuscular mycorrhizal fungi (AMF) in the tolerance to heavy metals in ultramafic soils, the present study investigated the influence of two Glomus etunicatum isolates from New Caledonian ultramafic maquis (shrubland), on nickel tolerance of a model plant species Sorghum vulgare, and of two ultramafic endemic plant species, Alphitonia neocaledonica and Cloezia artensis. In a first step, plants were grown in a greenhouse, on sand with defined concentrations of Ni, to appreciate the effects of the two isolates on the alleviation of Ni toxicity in controlled conditions. In a second step, the influence of the AMF on A. neocaledonica and C. artensis plants grown in a New Caledonian ultramafic soil rich in extractable nickel was investigated. Ni reduced mycorrhizal colonization and sporulation of the fungal isolates, but the symbionts increased plant growth and adaptation of endemic plant species to ultramafic conditions. One of the two G. etunicatum isolates showed a stronger positive effect on plant biomass and phosphorus uptake, and a greater reduction in toxicity symptoms and Ni concentration in roots and shoots. The symbionts seemed to act as a barrier to the absorption of Ni by the plant and reduced root-to-shoot Ni translocation. Results indicate the potential of selected native AMF isolates from ultramafic areas for ecological restoration of such degraded ecosystems.

  13. Landscaping and performance of some aesthetic plant species in hot,arid conditions of India

    Institute of Scientific and Technical Information of China (English)

    Rajesh Kumar Gupta; Pradeep Chaudhry; Rameshwar Lal Srivastava

    2012-01-01

    Abstract:Establishment of ornamental and aesthetic plants in hot,arid conditions of India is difficult due to the prevailing climatic,edaphic and biotic factors.Effect of turfgrass on the growth of ornamental plants in hot arid conditions has not been studied so far anywhere in the world.A study was conducted on the campus of Arid Forest Research Institute,Jodhpur,India to assess the performance of a few ornamental plant species in combination with turfgrass and without turfgrass with respect to different soil tilling intervals.Growth of plants was better with turfgrass than without turfgrass.We suggest adopting a soil tilling interval of 30 days to achieve optimum growth of ornamental plant species in terms of height and crown diameter.Our results can help reduce labor costs and achieving better landscapes in fewer days in hot urban conditions of Indian sub continent.

  14. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    Science.gov (United States)

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  15. Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types

    Directory of Open Access Journals (Sweden)

    Panpan Jing

    2016-11-01

    Full Text Available Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT and low night temperature (LNT on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4 and CAM, growth forms (herbaceous, woody, and economic purposes (crop, non-crop. We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are

  16. Characteristics of plant calcium fractions for 25 species in Tengger Desert

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Little attention has been paid to plant calcium fractions in the desert.To address the characteristic of the calcium fractions of desert plants,we collected 25 plant species in Tengger Desert,observed the calcium crystals using an optical microscope and determined water soluble calcium,acetic acid soluble calcium,and hydrochloric acid soluble calcium.To do so,we used sequential fractionation procedures to probe the relationships among different functional groups,different growth forms,or different successional stages.The results showed that the psammophyte,the late successional plants,and the drought-resistant shrub and semi-shrub all held considerable calcium oxalate crystal compared to the grassland plants,the early successional plants,and the perennial herb.With the proceeding succession,the acetic acid soluble calcium decreased gradually,and the hydrochloric acid soluble calcium increased gradually.The perennial herb had more water soluble calcium,while shrub held greater hydrochloric acid soluble calcium.The grassland plants held more water soluble calcium,while psammophyte had greater hydrochloric acid soluble calcium.This implies that the plants that are relatively sensitive to drought hold more calcium ion,while the drought-resistance plants hold more calcium oxalate.Thus,the plant calcium components are in close relation to plant drought-resistance,and of important significance in plant physiology of the desert.

  17. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs

    Directory of Open Access Journals (Sweden)

    Campoli Chiara

    2012-06-01

    Full Text Available Abstract Background The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Results Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1, HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. Conclusion We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in

  18. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    Science.gov (United States)

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  19. Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species.

    Science.gov (United States)

    Carta, Angelino; Hanson, Sarah; Müller, Jonas V

    2016-06-01

    Seed germination is the most important transitional event between early stages in the life cycle of spermatophytes and understanding it is crucial to understand plant adaptation and evolution. However, so far seed germination of phylogenetically closely related species has been poorly investigated. To test the hypothises that phylogenetically related plant species have similar seed ecophysiological traits thereby reflecting certain habitat conditions as a result of local adaptation, we studied seed dormancy and germination in seven Mediterranean species in the genus Romulea (Iridaceae). Both the across-species model and the model accounting for shared evolutionary history showed that cool temperatures (≤ 15°C) were the main factor that promoted seed germination. The absence of embryo growth before radicle emergence is consistent with a prompt germination response at cool temperatures. The range of temperature conditions for germination became wider after a period of warm stratification, denoting a weak primary dormancy. Altogether these results indicate that the studied species exhibit a Mediterranean germination syndrome, but with species-specific germination requirements clustered in a way that follows the phylogenetic relatedness among those species. In addition, species with heavier seeds from humid habitats showed a wider range of conditions for germination at dispersal time than species from dry habitats possessing lighter seeds. We conclude that while phylogenetically related species showed very similar germination requirements, there are subtle ecologically meaningful differences, confirming the onset of adaptation to local ecological factors mediated by species relatedness.

  20. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem.

    Science.gov (United States)

    Moreno-Gutiérrez, Cristina; Dawson, Todd E; Nicolás, Emilio; Querejeta, José Ignacio

    2012-10-01

    Variation in the stable carbon and oxygen isotope composition (δ13C, Δ18O) of co-occurring plant species may reflect the functional diversity of water use strategies present in natural plant communities. We investigated the patterns of water use among 10 coexisting plant species representing diverse taxonomic groups and life forms in semiarid southeast Spain by measuring their leaf δ13C and Δ18O, the oxygen isotope ratio of stem water and leaf gas exchange rates. Across species, Δ18O was tightly negatively correlated with stomatal conductance (gs), whereas δ13C was positively correlated with intrinsic water use efficiency (WUEi). Broad interspecific variation in Δ18O, δ13C and WUEi was largely determined by differences in gs, as indicated by a strong positive correlation between leaf δ13C and Δ18O across species The 10 co-occurring species segregated along a continuous ecophysiological gradient defined by their leaf δ13C and Δ18O, thus revealing a wide spectrum of stomatal regulation intensity and contrasting water use strategies ranging from 'profligate/opportunistic' (high gs, low WUEi) to 'conservative' (low gs, high WUEi). Coexisting species maintained their relative isotopic rankings in 2 yr with contrasting rainfall, suggesting the existence of species-specific 'isotopic niches' that reflect ecophysiological niche segregation in dryland plant communities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  1. Host plant use by the Heath fritillary butterfly, Melitaea athalia : plant habitat, species and chemistry

    NARCIS (Netherlands)

    Reudler Talsma, J.H.; Torri, K.; van Nouhuys, S.

    2008-01-01

    We present a study of habitat use, oviposition plant choice, and food plant suitability for the checkerspot butterfly Melitaea athalia Rottemburg (Lepidoptera: Nymphalidae) in Åland, Finland. We found that in Åland, unlike in the mainland of Finland and many parts of its range, M. athalia flies main

  2. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  3. On the relationships between nematodes, mycorrhizal fungi and plants: functional composition of species and plant performance

    NARCIS (Netherlands)

    Brussaard, L.; Kuyper, T.W.; Goede, de R.G.M.

    2001-01-01

    We analysed data from descriptive and experimental studies on the possible relationships between plants, nematodes and mycorrhizal fungi in (successional) plant communities in The Netherlands. A key role for pathogenic nematodes in cyclic succession in grazed grassland confirmed similar results in

  4. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a `r

  5. Plant DNA barcodes can accurately estimate species richness in poorly kno