WorldWideScience

Sample records for monoclonal fab selected

  1. Detection of experimental myocarditis by monoclonal antimyosin antibody, Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Rezkalla, S.; Kloner, R.A.; Khaw, B.A.; Haber, E.; Fallon, J.T.; Smith, F.E.; Khatib, R.

    1989-02-01

    The purpose of this study was to determine whether monoclonal antimyosin Fab (antigen binding fragment) was capable of labeling hearts with experimental coxsackievirus myocarditis, and to determine whether Fab could be used for detecting myocardial damage in either early or chronic phases of the disease. Sixty-five, 3-week-old cesarean-derived 1 (CD 1) mice were divided into two groups: group I (noninfected animals) and group II (infected with coxsackievirus B3). Mice from each group were killed on days 7, 17, 30, or 90 of infection. Forty-eight hours before killing, mice were injected with monoclonal I-125 antimyosin, Fab (25 microCi/injection) and radioactivity was counted in the heart. Selected heart sections were also examined by autoradiography. Heart radioactivity, count/m/mg (m +/- SEM) on days 7, 17, 30, and 90 of infection was 10.8 +/- 1.7, 21.3 +/- 1.1, 11.2 +/- 3.4, and 12.4 +/- 1.5 for group I, versus 36.7 +/- 8.0 (p less than 0.01), 50.0 +/- 4.5 (p less than 0.001), 33.4 +/- 16.1 (p = NS), and 40.6 +/- 8.5 (p less than 0.01) for group II, respectively. Autoradiography revealed focal uptake within areas of necrotic myocardium. We conclude that I125 Fab may be useful in detecting myocardial damage in the experimental model of murine myocarditis up to day 90 of infection.

  2. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    Science.gov (United States)

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  3. Generation and selection of immunized Fab phage display library against human B cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Yongmei Shen; Xiaochun Yang; Ningzheng Dong; Xiaofang Xie; Xia Bai; Yizhen Shi

    2007-01-01

    The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production of monoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the K light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94×107. Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (VH) and variable light domains (VL) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.

  4. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').

    Science.gov (United States)

    Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando

    2015-02-01

    We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.

  5. Effectiveness of Alpha-toxin Fab Monoclonal Antibody Therapy in Limiting the Pathology of Staphylococcus aureus Keratitis.

    Science.gov (United States)

    Caballero, A; Foletti, D; Bierdeman, M; Tang, A; Arana, A; Hasa-Moreno, A; Sangalang, E; O'Callaghan, R J

    2014-06-01

    Abstract Purpose: To investigate the effectiveness of a high-affinity human monoclonal antibody Fab fragment to Staphylococcus aureus alpha-toxin (LTM14 Fab) as therapy for S. aureus keratitis. Methods: A single topical drop of the LTM14 Fab antibody to alpha-toxin alone, or in 0.006% benzalkonium chloride (BAK), was applied every 30 min to S. aureus-infected rabbit corneas from 9 to 14 hours post-infection. Erosions and pathology were measured at 15 h post-infection. Results: LTM14 Fab with BAK limited corneal erosions better than LTM14 Fab alone (p = 0.036), and both limited erosions compared to untreated eyes (p ≤ 0.0001). Overall pathology was similar in all groups (p ≥ 0.070), but iritis and chemosis were reduced by treatment (p ≤ 0.036). Conclusions: The high-affinity human monoclonal Fab fragment antibody (LTM14 Fab) to S. aureus alpha-toxin was effective in reducing corneal damage during S. aureus keratitis.

  6. Crystallization of the Fab from a human monoclonal antibody against gp 41 of human immunodeficiency virus type I

    Science.gov (United States)

    Casale, Elena; He, Xiao-Min; Snyder, Robert S.; Carter, Daniel C.; Wenisch, Elisabeth; Jungbauer, Alois; Tauer, Christa; Ruker, Florian; Righetti, Pier Giorgio

    1990-01-01

    A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable platelike crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A, and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.

  7. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type

    Science.gov (United States)

    He, X. M.; Ruker, F.; Casale, E.; Carter, D. C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 degrees. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  8. Application of {sup 99m}Tc-labeled chimeric Fab fragments of monoclonal antibody A7 for radioimmunoscintigraphy of pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Hiroomi [Kyoto Prefectural Univ. of Medicine (Japan)

    1999-06-01

    Pancreatic cancer is one of the most lethal diseases and its prognosis is still poor. To improve the survival rate, it is essential to develop new technologies for early and definitive diagnosis. In this study, chimeric Fab fragments of monoclonal antibody A7 were successfully radio-labeled with {sup 99m}Tc, preventing depression of the antigen-binding activity. {sup 99m}Tc-labeled monoclonal antibody A7, {sup 99m}Tc-labeled chimeric Fab fragments of monoclonal antibody A7, {sup 99m}Tc-labeled normal mouse IgG and {sup 99m}Tc-labeled Fab fragments of normal mouse IgG were injected intravenously into nude mice bearing human pancreatic cancer xenografts and the radioactivity was subsequently measured. The tumor accumulation was significantly higher with labeled monoclonal antibody A7 than with normal mouse IgG, and higher with chimeric Fab fragments of monoclonal antibody A7 than with Fab fragments of normal mouse IgG. The tumor/blood ratio of radioactivity increased rapidly over time with chimeric Fab fragments of monoclonal antibody A7. These results suggest that chimeric Fab fragments of monoclonal antibody A7 may be useful for diagnosing pancreatic cancer by means of radioimmunoscintigraphy. (author)

  9. Feasibility study of the Fab fragment of a monoclonal antibody against tissue factor as a diagnostic tool.

    Science.gov (United States)

    Tsumura, Ryo; Sato, Ryuta; Furuya, Fumiaki; Koga, Yoshikatsu; Yamamoto, Yoshiyuki; Fujiwara, Yuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2015-12-01

    Tissue factor (TF) is expressed strongly in various types of cancer, especially cancers that are often refractory to treatment, such as pancreatic cancer. In this study, we compared the differences in the biophysical and pharmacological properties of whole IgG and the Fab fragment of anti-human TF monoclonal antibody (1849 antibodies), in order to determine their suitability for application in the diagnosis and treatment of cancers. In the biophysical examination, we investigated the characteristics of 1849-whole IgG and 1849-Fab by SPR sensing and confocal fluorescence microscopy analysis using recombinant human TF antigen and TF-overexpressing human pancreatic cancer cell line, BxPC3, respectively. After conjugation with Alexa-Flour-647, in vivo imaging was conducted in mice bearing BxPC3 xenograft tumors. Furthermore, the distribution of the conjugates in tumors and major organs was evaluated by ex vivo study. The in vitro experiments showed that 1849 antibodies had high affinity against TF antigen. In addition, 1849-Fab showed a faster dissociation rate from the antigen than 1849-whole IgG. In mice, 1849-Fab-Alexa-Flour-647 showed rapid renal clearance and faster tumor accumulation, achieving a high contrast signal over nearby normal tissues in the early phase and enhanced tumor penetration after administration. On the other hand, 1849-whole IgG-Alexa-Flour-647 showed slow clearance from the blood and sustained high tumor accumulation. These results suggest that 1849-Fab may be a useful tool for pancreatic cancer diagnosis.

  10. Cloning and Characterization of a Hybridoma Secreting a 4-(Methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-Specific Monoclonal Antibody and Recombinant F(ab

    Directory of Open Access Journals (Sweden)

    Lawrence K. Silbart

    2013-03-01

    Full Text Available Smokeless tobacco products have been associated with increased risks of oro-pharyngeal cancers, due in part to the presence of tobacco-specific nitrosamines (TSNAs such as 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. These potent carcinogens are formed during tobacco curing and as a result of direct nitrosation reactions that occur in the oral cavity. In the current work we describe the isolation and characterization of a hybridoma secreting a high-affinity, NNK-specific monoclonal antibody. A structurally-related benzoyl derivative was synthesized to facilitate coupling to NNK-carrier proteins, which were characterized for the presence of the N-nitroso group using the Griess reaction, and used to immunize BALB/c mice. Splenocytes from mice bearing NNK-specific antibodies were used to create hybridomas. Out of four, one was selected for subcloning and characterization. Approximately 99% of the monoclonal antibodies from this clone were competitively displaced from plate-bound NNKB conjugates in the presence of free NNK. The affinity of the monoclonal antibody to the NNKB conjugates was Kd = 2.93 nM as determined by surface plasmon resonance. Free nicotine was a poor competitor for the NNKB binding site. The heavy and light chain antibody F(ab fragments were cloned, sequenced and inserted in tandem into an expression vector, with an FMDV Furin 2A cleavage site between them. Expression in HEK 293 cells revealed a functional F(ab with similar binding features to that of the parent hybridoma. This study lays the groundwork for synthesizing transgenic tobacco that expresses carcinogen-sequestration properties, thereby rendering it less harmful to consumers.

  11. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1

    Science.gov (United States)

    He, Xiao M.; Rueker, Florian; Casale, Elena; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 deg. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  12. Allergen-specific regulation of allergic rhinitis in mice by intranasal exposure to IgG1 monoclonal antibody Fab fragments against pathogenic allergen.

    Science.gov (United States)

    Matsuoka, Daiko; Mizutani, Nobuaki; Sae-Wong, Chutha; Yoshino, Shin

    2014-09-01

    Fab fragments (Fabs) have the ability to bind to specific antigens but lack the Fc portion for binding to receptors on immune and inflammatory cells that play a critical role in allergic diseases. In the present study, we investigated whether Fabs of an allergen-specific IgG1 monoclonal antibody (mAb) inhibited allergic rhinitis in mice. BALB/c mice sensitized by intraperitoneal injections of ovalbumin (OVA) plus alum on days 0 and 14 were intranasally challenged with OVA on days 28-30, and 35. Fabs prepared by the digestion of an anti-OVA IgG1 mAb (O1-10) with papain were also intranasally administered 15min before each OVA challenge. The results showed that treatment with O1-10 Fabs significantly suppressed the sneezing frequency, associated with decrease of OVA-specific IgE in the serum and infiltration by mast cells in the nasal mucosa seen following the fourth antigenic challenge; additionally, the level of mouse mast cell protease-1, a marker of mast cell activation, in serum was decreased. Furthermore, infiltration of eosinophils and goblet cell hyperplasia in the nasal mucosa at the fourth challenge were inhibited by treatment with O1-10 Fabs. In conclusion, these results suggest that intranasal exposure to Fabs of a pathogenic antigen-specific IgG1 mAb may be effective in regulating allergic rhinitis through allergen capture by Fabs in the nasal mucosa before the interaction of the intact antibody and allergen.

  13. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants.

    Science.gov (United States)

    Karkov, Hanne Sophie; Krogh, Berit Olsen; Woo, James; Parimal, Siddharth; Ahmadian, Haleh; Cramer, Steven M

    2015-11-01

    In this study, a unique set of antibody Fab fragments was designed in silico and produced to examine the relationship between protein surface properties and selectivity in multimodal chromatographic systems. We hypothesized that multimodal ligands containing both hydrophobic and charged moieties would interact strongly with protein surface regions where charged groups and hydrophobic patches were in close spatial proximity. Protein surface property characterization tools were employed to identify the potential multimodal ligand binding regions on the Fab fragment of a humanized antibody and to evaluate the impact of mutations on surface charge and hydrophobicity. Twenty Fab variants were generated by site-directed mutagenesis, recombinant expression, and affinity purification. Column gradient experiments were carried out with the Fab variants in multimodal, cation-exchange, and hydrophobic interaction chromatographic systems. The results clearly indicated that selectivity in the multimodal system was different from the other chromatographic modes examined. Column retention data for the reduced charge Fab variants identified a binding site comprising light chain CDR1 as the main electrostatic interaction site for the multimodal and cation-exchange ligands. Furthermore, the multimodal ligand binding was enhanced by additional hydrophobic contributions as evident from the results obtained with hydrophobic Fab variants. The use of in silico protein surface property analyses combined with molecular biology techniques, protein expression, and chromatographic evaluations represents a previously undescribed and powerful approach for investigating multimodal selectivity with complex biomolecules.

  14. A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Mohr, Andreas Ø; Riise, Erik

    2016-01-01

    molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel...

  15. Improved renal clearance and tumor targeting of {sup 99m}Tc-labeled anti-Tac monoclonal antibody Fab by chemical modifications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Meyoung-kon; Jeong, Hyeh-Jean; Kao, Chih-Hao K.; Yao, Zhengsheng; Paik, David S.; Pie, Jae Eun; Kobayashi, Hisataka; Waldmann, Thomas A.; Carrasquillo, Jorge A.; Paik, Chang H. E-mail: cpaik@mail.cc.nih.gov

    2002-02-01

    This study was undertaken to improve the renal clearance and tumor targeting properties of {sup 99m}Tc-labeled humanized anti-Tac (HuTac) monoclonal antibody Fab fragments using two chemical approaches: 1) labeling with a renal secretion agent {sup 99m}Tc-mercaptoacetyltriglycine (MAG3) and 2) lowering its isoelectric point (pI) by acylation. HuTac Fab (3.3 mg/mL) was reacted with a trifluorophenyl ester (TFP) of {sup 99m}Tc-MAG3 alone or was additionally reacted with TFP-glycolate to reduce the pI. In Balb/c mice, {sup 99m}Tc-MAG3-Fab (pI>9.3) rapidly accumulated in the kidneys (177% injected dose [ID]/g at 15 min) and then gradually cleared out of the kidneys. In contrast, the glycolation (pI 4.6{approx}6.6) drastically reduced the renal uptake (31% ID/g) and also the whole-body retention (82% ID vs 101% for the nonglycolated) at 15 min, indicating that the glycolated {sup 99m}Tc-MAG3-Fab (pI 4.6{approx}6.6) was rapidly excreted. The glycolated remained in the blood longer than the nonglycolated (1.2% vs 0.3% ID/g at 360 min), but this effect was less drastic than the effect shown on the renal uptake. In nude mice bearing receptor-positive (ATAC4) tumors, the glycolated {sup 99m}Tc-MAG3-Fab increased the peak tumor uptake to 14.8% ID/g from 8.3% ID/g for {sup 99m}Tc-MAG3-Fab, whereas the glycolation resulted in a drastic reduction of the renal uptake at 15 min. We demonstrated that the renal clearance and the tumor targeting of Fab could be optimized by chemical modifications.

  16. Uptake of /sup 99m/Tc labelled (Fab')/sub 2/ fragments of monoclonal antibody 225. 28S by a benign ocular naevus

    Energy Technology Data Exchange (ETDEWEB)

    Bomanji, J.; Granowska, M.; Britton, K.E.; Hungerford, J.L.

    1988-06-01

    Malignant melanoma is one of the most common primary intraocular neoplasms. Recently, /sup 99m/Tc radiolabelled (Fab')/sub 2/ fragments of monoclonal antibody 225.28S raised against cutaneous melanomas have been used for imaging uveal melanomas. We report here a case where uptake of radiolabelled antibody was observed in a choroidal melanoma of the right eye and a benign choroidal naevus of the left.

  17. Imaging of cardiac allograft rejection in dogs using indium-111 monoclonal antimyosin Fab

    Energy Technology Data Exchange (ETDEWEB)

    Addonizio, L.J.; Michler, R.E.; Marboe, C.; Esser, P.E.; Johnson, L.L.; Seldin, D.W.; Gersony, W.M.; Alderson, P.O.; Rose, E.A.; Cannon, P.J.

    1987-03-01

    The acute rejection of cardiac allografts is currently diagnosed by the presence of myocyte necrosis on endomyocardial biopsy. We evaluated the efficacy of noninvasive scintigraphic imaging with indium-111-labeled anticardiac myosin Fab fragments (indium-111 antimyosin) to detect and quantify cardiac allograft rejection. Six dogs that had intrathoracic heterotopic cardiac allograft transplantation were injected with indium-111 antimyosin and planar and single photon emission computed tomographic (SPECT) images were obtained in various stages of acute and subacute rejection. Four dogs had an allograft older than 8 months and had been on long-term immunosuppressive therapy; two dogs had an allograft less than 2 weeks old and were not on immunosuppressive therapy. Count ratios comparing heterotopic with native hearts were calculated from both SPECT images and in vitro scans of excised and sectioned hearts and were compared with the degree of rejection scored by an independent histopathologic review. Indium-111 antimyosin uptake was not visible in planar or SPECT images of native hearts. Faint diffuse uptake was apparent in cardiac allografts during long-term immunosuppression and intense radioactivity was present in hearts with electrocardiographic evidence of rejection. The heterotopic to native heart count ratios in SPECT images correlated significantly with the count ratios in the excised hearts (r = 0.93) and with the histopathologic rejection score (r = 0.97). The distribution of indium-111 antimyosin activity in right and left ventricles corresponded to areas of histopathologic abnormalities.

  18. Optimization of IGF-1R SPECT/CT Imaging Using In-111-Labeled F(ab ')(2) and Fab Fragments of Article the Monoclonal Antibody R1507

    NARCIS (Netherlands)

    Heskamp, S.; Laarhoven, H.W.M. van; Molkenboer-Kuenen, J.D.M.; Bouwman, W.H.; Graaf, W.T. van der; Oyen, W.J.G.; Boerman, O.C.

    2012-01-01

    The insulin-like growth factor 1 receptor (IGF-1R) is a potential new target for the treatment of breast cancer. Patients with breast cancer lesions that express IGF-1R may benefit from treatment with anti-IGF-IR antibodies. IGF-1R expression can be visualized using radiolabeled R1507, a monoclonal

  19. Construction and selection of the natural immune Fab antibody phage display library from patients with colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Bao-Ping Wu; Bing Xiao; Tian-Mo Wan; Ya-Li Zhang; Zhen-Shu Zhang; Dian-Yuan Zhou; Zhuo-Sheng Lai; Chun-Fang Gao

    2001-01-01

    AIM: To construct the natural immune Fab antibody phage display libraries of colorectal cancer and to select antibodies related with colorectal cancer. METHODS: Extract total RNA from tissue of local cancer metastasis lymph nodes of patients with colorectal cancer.RT-PCR was used to amplify the heavy chain Fd and light chain к and the amplification products were inserted successively into the vector pComb3 to construct the human libraries of Fab antibodies. They were then panned by phage display technology. By means of Dot immunoblotting and ELISA, the libraries were identified and the Fab phage antibodies binding with antigens of colorectal cancer were selected. RESULTS: The amplified fragments of Fd and к gained by RT-PCR were about 650bp. Fd and к PCR products were subsequently inserted into the vector pComb3, resulting in a recombination rate of 40% and the volume of Fab phage display library reached 1.48 x 106. The libraries were enriched about 120-fold by 3 cycles of adsorption-elution- multiplication (panning). Dot immunoblotting showed Fab expressions on the phage libraries and ELISA showed 5clones of Fab phage antibodies which had binding activities with antigens of colorectal cancer. CONCLUSION: The natural immune Fab antibody phage display libraries of colorectal cancer were constructed. They could be used to select the relative antibodies of colorectal cancer.

  20. Display and selection of chicken IgA Fab fragments

    NARCIS (Netherlands)

    Wieland, W.H.; Orzaéz, D.; Lammers, A.; Parmentier, H.K.; Schots, A.

    2006-01-01

    Passive immune therapy is regaining interest to prevent and cure infectious diseases both in human and veterinary medicine. Therefore, systems are required that enable efficient targeted selection of antibodies originating from virtually any animal species. Here, a system for the selection of chicke

  1. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Syed A Ali

    Full Text Available Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.

  2. Measurement of infarct size and percentage myocardium infarcted in a dog preparation with single photon-emission computed tomography, thallium-201, and indium 111-monoclonal antimyosin Fab

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.L.; Lerrick, K.S.; Coromilas, J.; Seldin, D.W.; Esser, P.D.; Zimmerman, J.M.; Keller, A.M.; Alderson, P.O.; Bigger, J.T. Jr.; Cannon, P.J.

    1987-07-01

    Single photon-emission tomography (SPECT) and indium 111-labeled monoclonal antimyosin Fab fragments were used to measure myocardial infarct size in 12 dogs, six subjected to balloon catheter-induced coronary artery occlusion for 6 hr (late reperfusion) and six subjected to occlusion with reperfusion at 2 hr (early reperfusion). Tomographic imaging was performed 24 hr after the intravenous injection of labeled Fab fragments with the use of a dual-head SPECT camera with medium-energy collimators. Immediately after the first tomographic scan, thallium-201 was injected into nine of 12 dogs and imaging was repeated. Estimated infarct size in grams was calculated from transaxially reconstructed, normalized, and background-corrected indium SPECT images with the use of a threshold technique for edge detection. Estimated noninfarcted myocardium in grams was calculated from obliquely reconstructed thallium SPECT images by a similar method. The animals were killed and infarct size in grams and true infarct size as a percentage of total left ventricular myocardial volume were measured by triphenyl tetrazolium chloride staining. Estimated infarct size from indium SPECT images showed an excellent correlation with true infarct size (r = .95, SEE = 4.1 g). Estimated percentage myocardium infarcted was calculated by dividing estimated infarct size from indium images by the sum of estimated infarct size plus estimated noninfarcted myocardium obtained from thallium images. Correlation between the estimated percentage of myocardium infarcted and true percentage of myocardium infarcted was excellent.

  3. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Bärbel; Vogt, Matthew R.; Goudsmit, Jaap; Holdaway, Heather A.; Aksyuk, Anastasia A.; Chipman, Paul R.; Kuhn, Richard J.; Diamond, Michael S.; Rossmann, Michael G. (Purdue); (WU-MED); (Crucell)

    2010-11-15

    Many flaviviruses are significant human pathogens, with the humoral immune response playing an essential role in restricting infection and disease. CR4354, a human monoclonal antibody isolated from a patient, neutralizes West Nile virus (WNV) infection at a postattachment stage in the viral life-cycle. Here, we determined the structure of WNV complexed with Fab fragments of CR4354 using cryoelectron microscopy. The outer glycoprotein shell of a mature WNV particle is formed by 30 rafts of three homodimers of the viral surface protein E. CR4354 binds to a discontinuous epitope formed by protein segments from two neighboring E molecules, but does not cause any detectable structural disturbance on the viral surface. The epitope occurs at two independent positions within an icosahedral asymmetric unit, resulting in 120 binding sites on the viral surface. The cross-linking of the six E monomers within one raft by four CR4354 Fab fragments suggests that the antibody neutralizes WNV by blocking the pH-induced rearrangement of the E protein required for virus fusion with the endosomal membrane.

  4. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4) Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage.

    Science.gov (United States)

    Cai, Binggang; Wang, Maorong; Zhu, Xuhui; Xu, Jing; Zheng, Wenkai; Zhang, Yiqing; Zheng, Feng; Feng, Zhenqing; Zhu, Jin

    2015-01-01

    Lipopolysaccharides (LPS) can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4) signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2) complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  5. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4 Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage

    Directory of Open Access Journals (Sweden)

    Binggang Cai

    2015-10-01

    Full Text Available Lipopolysaccharides (LPS can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4 signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2 complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  6. A Fab-Selective Immunoglobulin-Binding Domain from Streptococcal Protein G with Improved Half-Life Extension Properties.

    Directory of Open Access Journals (Sweden)

    Felix Unverdorben

    Full Text Available Half-life extension strategies have gained increasing interest to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Recently, we established an immunoglobulin-binding domain (IgBD from streptococcal protein G (SpGC3 as module for half-life extension. SpGC3 is capable of binding to the Fc region as well as the CH1 domain of Fab arms under neutral and acidic conditions.Using site-directed mutagenesis, we generated a Fab-selective mutant (SpGC3Fab to avoid possible interference with the FcRn-mediated recycling process and improved its affinity for mouse and human IgG by site-directed mutagenesis and phage display selections. In mice, this affinity-improved mutant (SpGC3FabRR conferred prolonged plasma half-lives compared with SpGC3Fab when fused to small recombinant antibody fragments, such as single-chain Fv (scFv and bispecific single-chain diabody (scDb. Hence, the SpGC3FabRR domain seems to be a suitable fusion partner for the half-life extension of small recombinant therapeutics.The half-life extension properties of SpGC3 can be retained by restricting binding to the Fab fragment of serum immunoglobulins and can be improved by increasing binding activity. The modified SpGC3 module should be suitable to extend the half-life of therapeutic proteins and, thus to improve therapeutic activity.

  7. ANTITUMOR EFFECTS OF PINGYANGMYCIN CONJUGATED WITH Fab' FRAGMENT OF MONOCLONAL ANTIBODY%平阳霉素与单克隆抗体Fab'片段偶联物的抗肿瘤作用

    Institute of Scientific and Technical Information of China (English)

    刘小云; 刘秀均; 李毅; 王维刚; 甄永苏

    2000-01-01

    目的研制一种以单抗Fab'片段为基础的抗肿瘤导向药物.方法制备单抗3A5 Fab'片段及其与平阳霉素(PYM)偶联物Fab'-PYM后,测定Fab'-PYM与肿瘤细胞的免疫反应性、偶联物中PYM的抑菌活性、对肿瘤细胞的杀伤作用和体内抑瘤作用.结果 Fab'及Fab'-PYM保持了与靶细胞C26的免疫反应性;偶联物中PYM的抑菌活性为游离PYM的15%;Fab'-PYM对C26细胞的杀伤作用强于PYM;对非靶细胞KB的杀伤作用与PYM相似;ip和iv给药,Fab'-PYM对小鼠皮下接种的肠癌26生长抑制作用均强于3A5-PYM和PYM.结论 Fab'-PYM具有比PYM及3A5-PYM更强的体内外抗肿瘤作用.

  8. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, Thomas J.; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 {angstrom}, and diffracted to 2.0 {angstrom} resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  9. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment.

    Science.gov (United States)

    McKinstry, William J; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T; Martin, Thomas J; Parker, Michael W

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 A, and diffracted to 2.0 A resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  10. Atomic basis for the species-specific inhibition of αV integrins by monoclonal antibody 17E6 is revealed by the crystal structure of αVβ3 ectodomain-17E6 Fab complex.

    Science.gov (United States)

    Mahalingam, Bhuvaneshwari; Van Agthoven, Johannes F; Xiong, Jian-Ping; Alonso, José Luis; Adair, Brian D; Rui, Xianliang; Anand, Saurabh; Mehrbod, Mehrdad; Mofrad, Mohammad R K; Burger, Christa; Goodman, Simon L; Arnaout, M Amin

    2014-05-16

    The function-blocking, non-RGD-containing, and primate-specific mouse monoclonal antibody 17E6 binds the αV subfamily of integrins. 17E6 is currently in phase II clinical trials for treating cancer. To elucidate the structural basis of recognition and the molecular mechanism of inhibition, we crystallized αVβ3 ectodomain in complex with the Fab fragment of 17E6. Protein crystals grew in presence of the activating cation Mn(2+). The integrin in the complex and in solution assumed the genuflected conformation. 17E6 Fab bound exclusively to the Propeller domain of the αV subunit. At the core of αV-Fab interface were interactions involving Propeller residues Lys-203 and Gln-145, with the latter accounting for primate specificity. The Propeller residue Asp-150, which normally coordinates Arg of the ligand Arg-Gly-Asp motif, formed contacts with Arg-54 of the Fab that were expected to reduce soluble FN10 binding to cellular αVβ3 complexed with 17E6. This was confirmed in direct binding studies, suggesting that 17E6 is an allosteric inhibitor of αV integrins.

  11. Biodistribution and planar gamma camera imaging of {sup 123}I- and {sup 131}I-labeled F(ab'){sub 2} and Fab fragments of monoclonal antibody 14C5 in nude mice bearing an A549 lung tumor

    Energy Technology Data Exchange (ETDEWEB)

    Burvenich, Ingrid J.G. [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium)]. E-mail: ingrid.burvenich@ugent.be; Schoonooghe, Steve [Department of Biomedical Research, Flanders Institute of Biotechnology (VIB), University of Ghent, B-9000 Ghent (Belgium); Blanckaert, Peter [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Bacher, Klaus [Department of Medical Physics and Radiation Protection, Ghent University, B-9000 Ghent (Belgium); Vervoort, Liesbet [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Coene, Elisabeth [N. Goormaghtigh Institute of Pathology, Ghent University, B-9000 Ghent (Belgium); Mertens, Nico [Department of Biomedical Research, Flanders Institute of Biotechnology (VIB), University of Ghent, B-9000 Ghent (Belgium); Vos, Filip de [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Slegers, Guido [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium)

    2007-04-15

    Detection of antigen 14C5, involved in substrate adhesion and highly expressed on the membrane of many carcinomas, including lung cancer, provides important diagnostic information that can influence patient management. The aim of this study was to evaluate the biodistribution and planar gamma camera imaging characteristics of radioiodinated F(ab'){sub 2} and Fab fragments of monoclonal antibody (mAb) 14C5 in tumor-bearing mice. Methods: F(ab'){sub 2} and Fab 14C5 fragments were radioiodinated using the Iodo-Gen method. In vitro stability, binding specificity and affinity of {sup 125}I-labeled 14C5 fragments were studied in A549 lung carcinoma cells. Biodistribution, blood clearance and tumor-targeting characteristics of {sup 131}I-labeled 14C5 fragments and intact mAb 14C5 were studied in Swiss nu/nu mice bearing A549 lung carcinoma tumors. Planar gamma imaging illustrated the potential use of these {sup 123}I-labeled 14C5 fragments for radioimmunodetection (RID). Results: Saturation binding experiments showed highest affinity for {sup 125}I-labeled F(ab'){sub 2} fragments (K {sub d}=0.37{+-}0.10 nmol/L) and lowest affinity for {sup 125}I-labeled Fab fragments (K {sub d}=2.25{+-}0.44 nmol/L). Blood clearance studies showed that the alpha half-life (t1/2{alpha}) value for Fab, F(ab'){sub 2} and mAb 14C5 was 14.9, 21 and 118 min, respectively. The beta half-life t1/2{beta} value for Fab, F(ab'){sub 2} and mAb 14C5 was 439, 627 and 4067 min, respectively. {sup 131}I-Fab fragments showed highest tumor uptake 3 h after injection (2.4{+-}0.8 %ID/g), {sup 131}I-labeled F(ab'){sub 2} showed highest tumor uptake 6 h after injection (4.7{+-}0.7 %ID/g) and for {sup 131}I-labeled mAb highest tumor uptake was observed at 24 h (10.7{+-}2.3 %ID/g). In planar gamma imaging, both labeled fragments gave better tumor-to-background contrast than {sup 123}I-mAb 14C5. Conclusion: Fab and F(ab'){sub 2} fragments derived from intact mAb 14C5 have

  12. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and "bispecific" monoclonal antibody formation.

    Science.gov (United States)

    Debaene, François; Wagner-Rousset, Elsa; Colas, Olivier; Ayoub, Daniel; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah

    2013-10-15

    Monoclonal antibodies (mAbs) and derivatives such as antibody-drug conjugates (ADC) and bispecific antibodies (bsAb), are the fastest growing class of human therapeutics. Most of the therapeutic antibodies currently on the market and in clinical trials are chimeric, humanized, and human immunoglobulin G1 (IgG1). An increasing number of IgG2s and IgG4s that have distinct structural and functional properties are also investigated to develop products that lack or have diminished antibody effector functions compared to IgG1. Importantly, wild type IgG4 has been shown to form half molecules (one heavy chain and one light chain) that lack interheavy chain disulfide bonds and form intrachain disulfide bonds. Moreover, IgG4 undergoes a process of Fab-arm exchange (FAE) in which the heavy chains of antibodies of different specificities can dissociate and recombine in bispecific antibodies both in vitro and in vivo. Here, native mass spectrometry (MS) and time-resolved traveling wave ion mobility MS (TWIM-MS) were used for the first time for online monitoring of FAE and bsAb formation using Hz6F4-2v3 and natalizumab, two humanized IgG4s which bind to human Junctional Adhesion Molecule-A (JAM-A) and alpha4 integrin, respectively. In addition, native MS analysis of bsAb/JAM-A immune complexes revealed that bsAb can bind up to two antigen molecules, confirming that the Hz6F4 family preferentially binds dimeric JAM-A. Our results illustrate how IM-MS can rapidly assess bsAb structural heterogeneity and be easily implemented into MS workflows for bsAb production follow up and bsAb/antigen complex characterization. Altogether, these results provide new MS-based methodologies for in-depth FAE and bsAb formation monitoring. Native MS and IM-MS will play an increasing role in next generation biopharmaceutical product characterization like bsAbs, antibody mixtures, and antibody-drug conjugates (ADC) as well as for biosimilar and biobetter antibodies.

  13. Label-free Fab and Fc affinity/avidity profiling of the antibody complex half-life for polyclonal and monoclonal efficacy screening.

    Science.gov (United States)

    Read, Thomas; Olkhov, Rouslan V; Williamson, E Diane; Shaw, Andrew M

    2015-09-01

    A unified approach to affinity screening for Fab and Fc interactions of an antibody for its antigen and FcγR receptor has been developed. An antigen array is used for the Fab affinity and cross-reactivity screening and protein A/G proxy is the FcγR receptor. The affinities are derived using a simple 1:1 binding model with a consistent error analysis. The association and dissociation kinetics are measured over optimised times for accurate determination. The Fab/Fc affinities are derived for ten antibodies: mAb-actin (mouse), pAb-BSA (sheep), pAb-collagen V (rabbit), pAb-CRP (goat), mAb-F1 (mouse), mAbs (mouse) 7.3, 12.3, 29.3, 36.3 and 46.3 raised against LcrV in Yersinia pestis. The rate of the dissociation of antigen-antibody complexes relates directly to their immunological function as does the Fc-FcγR complex and a new half-life plot has been defined with a Fab/Fc half-life range of 17-470 min. The upper half-life value points to surface avidity. Two antibodies that are protective as an immunotherapy define a Fab half-life >250 min and an Fc half-life >50 min as characteristics of ideal interactions which can form the basis of an antibody screen for immunotherapy.

  14. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3.

    Science.gov (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine

    2003-10-03

    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  15. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C. (Kyoto Univ. (Japan))

    1990-11-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis.

  16. Preparation and activity of conjugate of monoclonal antibody HAbl8 against hepatoma F(ab')2 fragment and staphylococcal enterotoxin A

    Institute of Scientific and Technical Information of China (English)

    Lian Jun Yang; Yan Fang Sui; Zhi Nan Chen

    2001-01-01

    AIM To prepare the conjugate of staphylococcal enterotoxin A (SEA) protein which is a bacterial SAg and the F(ab')2 fragment of mAb HAbl8 against human hepatocellular carcinoma (HCC), and identify its activity in order to use SAg in the targeting therapy of HCC.METHODS MAb HAbl8 was extracted from the abdominal dropsy of Balb/ c mice, and was purified through chromatography column SP-40HR with Fast protein liquid chromatography (FPLC) system. The F(ab')2 fragment of mAb HAb18 was prepared by papainic digestion method. The conjugate of mAb HAb18 F(ab')2fragment and SEA was prepared with chemical conjugating reagent N-succinimidyl-3-( 2-pyridyldithio) propionate (SPDP) and purified through chromatography column Superose 12with FPLC system. The molecular mass and purity of each collected peak were identified with SDS-PAGE assay. The protein content was assayed by Lowry's method. The antibody activity of HAb18 F (ab')2 against HCC in the conjugate was identified by indirect immunocytochemical ABC method, and the activity of SEA in the conjugate to activate peripheral blood mononuclear cells (PBMC) was identified with MTT assay.RESULTS The lgG mAb HAb18 was extracted,and purified successfully. Immunocytochemical staining demonstrated that it reacted with most of HHCC cells of human HCC cell line. There were two peaks in the process of purification of the prepared HAb18 F(ab)2-SEA conjugate. SDS-PAGE assay demonstrated that the molecular mass of the first peak was about 130 ku, and the second peak was the mixture of about 45 ku and a little 100 ku proteins. The immunocytochemical staining was similar in HAb18 F (ab ')2-SEAconjugate and HAb18 F (ab ')2, i.e., thecytoplasm and/or cell membranes of most HHCC cells were positively stained. The MTT assay showed that the optical absorbance (A) value at 490 nm of HAb18 F (ab')2-SEA conjugate was 0.182 ± 0.012, that of negative control was 0.033± 0.009, and there was significant difference between them ( P < 0.05).CONCLUSION

  17. Fab Chaperone-Assisted RNA Crystallography (Fab CARC).

    Science.gov (United States)

    Sherman, Eileen; Archer, Jennifer; Ye, Jing-Dong

    2016-01-01

    Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.

  18. Imaging of low-grade bone infection with a technetium-99m labelled monoclonal anti-NCA-90 Fab' fragment in patients with previous joint surgery

    Energy Technology Data Exchange (ETDEWEB)

    Ivaneeviae, V.; Sandrock, D.; Munz, D.L. [Clinic for Nuclear Medicine, University Hospital Charite, Humboldt University of Berlin (Germany); Perka, C.; Hasart, O. [Orthopaedic Clinic, University Hospital Charite, Humboldt University of Berlin (Germany)

    2002-04-01

    We analysed 38 scans in 30 consecutive patients (age range, 30-85 years; median age, 62 years) referred for suspected low-grade bone infection. There were 17 patients (21 scans) with total hip arthroplasty (THA), six with total knee arthroplasty (TKA), three who had undergone hip or knee surgery for trauma and five (seven scans) with resected hips and no endoprostheses (Girdlestone situations); There were no patients with rheumatoid arthritis as the underlying disease. Results were verified by means of bacteriological cultures, histopathological findings and/or follow-up and compared with the respective Zimmerli scores, which were used for clinical assessment of inflammatory activity. In one patient, the final diagnosis could not be established. One, 5 and 24 h after intravenous injection of up to 1.1 GBq of MN3 Fab', whole-body and planar scans were performed using a dual-head gamma camera. Scans were analysed visually and semiquantitatively adopting an arbitrary score ranging from 0 to 3. There were 13 true positive, 14 true negative and 10 false positive outcomes, yielding an overall sensitivity of 100%, an overall specificity of 58%, an accuracy of 73% and positive and negative predictive values of 57% and 100%, respectively. In patients with THA or TKA, accuracy was 81% and 80%, respectively, while it dropped to 43% in patients with Girdlestone situations owing to a high proportion of false positive findings (4/7) in this subgroup. Scintigraphic score was 1 in all of the false positive and in 11/13 true positive findings. The two remaining true positive findings displayed scintigraphic scores of 2 and 3, respectively. Scintigraphic and Zimmerli scores were loosely correlated (Spearman {rho}=0.38, P<0.05). Infection was excluded in 22/24 investigations with Zimmerli scores of <6. In this group, there were 13 scintigraphically true negative, nine false positive outcomes, and just two true positive outcomes. In 11/12 investigations with Zimmerli scores of 6

  19. Modified cytokeratins expressed on the surface of carcinoma cells undergo endocytosis upon binding of human monoclonal antibody and its recombinant Fab fragment

    DEFF Research Database (Denmark)

    Ditzel, H J; Garrigues, U; Andersen, C B

    1997-01-01

    Previously, we have reported on successful imaging of colon, rectal, and pancreatic carcinomas in patients by using a radiolabeled all-human monoclonal antibody, COU-1, directed against modified cytokeratin. To further develop this antibody for use as an immunoconjugate, COU-1 was cloned by phage...

  20. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium -Copy Number Plasmids in Escherichia coli

    OpenAIRE

    Ali, Syed A.; Yik Wei Chew

    2015-01-01

    Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditio...

  1. Selection of Ceratitis capitata (Diptera: Tephritidae) specific recombinant monoclonal phage display antibodies for prey detection analysis.

    Science.gov (United States)

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators.

  2. Beyond Fab Four

    Science.gov (United States)

    Babichev, E.; Charmousis, C.; Langlois, D.; Saito, R.

    2015-12-01

    We show that the two additional Lagrangians that appear in theories beyond Horndeski can be reexpressed in terms of simple generalizations of the 'John' and 'Paul' terms of the Fab Four theories. We find that these extended Fab Four satisfy the same properties of self-tuning as the original Fab Four.

  3. Beyond Fab Four

    CERN Document Server

    Babichev, E; Langlois, D; Saito, R

    2015-01-01

    We show that the two additional Lagrangians that appear in theories beyond Horndeski can be reexpressed in terms of simple generalizations of the "John" and "Paul" terms of the Fab Four theories. We find that these extended Fab Four satisfy the same properties of self-tuning as the original Fab Four.

  4. Antitumor effects of the molecule-downsized immunoconjugate composed of lidamycin and Fab' fragment of monoclonal antibody directed against type IV collagenase

    Institute of Scientific and Technical Information of China (English)

    WANG; Fengqiang; SHANG; Boyang; ZHEN; Yongsu

    2004-01-01

    Type IV collagenase plays an important role in tumor invasion and metastasis through cleaving type IV collagen in the basement membrane and extracellular matrix. In this study a molecule-downsized immunoconjugate (Fab′-LDM) was constructed by linking lidamycin (LDM), a highly potent antitumor antibiotic, to the Fab′ fragment of a monoclonal antibody directed against type IV collagenase and its antitumor effect was investigated. As assayed in 10% SDS-PAGE gel, the molecular weight of Fab′-LDM conjugate was 65 kD with a 1:1 molecular ratio of Fab′ and LDM. The Fab′-LDM conjugate maintained most part of the immunoreactivity of Fab′ fragment to both type IV collagense and mouse hepatoma 22 cells by ELISA. By MTT assay, Fab′-LDM conjugate showed more potent cytotoxicity to hepatoma 22 cells than that of LDM. Administered intravenously, Fab′-LDM conjugate proved to be more effective against the growth of subcutaneously transplanted hepatoma 22 in mice than free LDM in two experiment settings. In Experiment I, the drugs were given intravenously on day 1 and day 8. Fab′-LDM at the doses of 0.025 mg/kg, 0.05 mg/kg and 0.1 mg/kg inhibited tumor growth by 76.7%, 93.3% and 94.8%, while free LDM at 0.05 mg/kg inhibited tumor growth by 76.1%, respectively. In experiment II, the drugs were given intravenously on day 4 and day 11, Fab′-LDM at the doses of 0.025 mg/kg and 0.05 mg/kg inhibited tumor growth by 74.2%, 80.9%, while free LDM at 0.05 mg/kg inhibited tumor growth by 60.5%, respectively. In terms of survival time, Fab′-LDM was more effective than free LDM. The results suggest that the molecule-downsized immunoconjugate directed against type IV collagenase is of high efficacy in experimental cancer therapy.

  5. Site-specific conjugation of bifunctional chelator BAT to mouse IgG1 Fab' fragment

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Xue-hao WANG; Xiao-ming WANG; Zhao-lai CHEN

    2006-01-01

    Aim: To perform a site-specific conjugation of Fab' fragments of a mouse monoclonal antibody(MoAb) B43(of IgG1 subtype) to a bifunctional chelator 6-[p-(bromoacetamido) benzyl]-l,4,8,11-tetraazacyclotetradecane-N,N',N",N'"-tetraacetic acid (BAT) via the thiol groups in the hinge distal to the antigenbinding site of the Fab'. Methods: B43 was cleaved using a simple 2-step method.First, stable F(ab')2 was produced by pepsin treatment. Fab' with free thiol in the hinge region was then obtained by cysteine reduction of F(ab')2. Second, a sitespecific conjugation of Fab' to thiol-specific BAT was performed in a one-step reaction. Results: The Fab' fragment had approximately 1.8 free thiol groups per molecule after cysteine reduction. The conjugation efficiency and the chemical yield were approximately 1.28 moles chelator/Fab' and 74% of the initial concentration of Fab', respectively. The F(ab')2, Fab' and Fab'-BAT all maintained reasonable antigen-binding properties. 67Cu labeling of the conjugate under standard conditions did not impair the immunoreactivity of Fab'-BAT. Conclusion: This is a simple and efficient method for producing immunoreactive conjugates of Fab'-BAT, which can be used to make radiometal-labeled conjugates for further diagnostic and therapeutic applications.

  6. Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin Fab fragment.

    Science.gov (United States)

    Obonai, Toshifumi; Fuchigami, Hirobumi; Furuya, Fumiaki; Kozuka, Naoyuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2016-01-01

    The diagnosis of early and aggressive types of cancer is important for providing effective cancer therapy. Cancer-induced fibrin clots exist only within lesions. Previously, we developed a monoclonal antibody (clone 102-10) that recognizes insoluble fibrin but not fibrinogen or soluble fibrin and confirmed that fibrin clots form continuously in various cancers. Here, we describe the development of a Fab fragment probe of clone 102-10 for tumour imaging. The distribution of 102-10 Fab was investigated in genetically engineered mice bearing pancreatic ductal adenocarcinoma (PDAC), and its effect on blood coagulation was examined. Immunohistochemical and ex vivo imaging revealed that 102-10 Fab was distributed selectively in fibrin clots in PDAC tumours 3 h after injection and that it disappeared from the body after 24 h. 102-10 Fab had no influence on blood coagulation or fibrinolysis. Tumour imaging using anti-fibrin Fab may provide a safe and effective method for the diagnosis of invasive cancers by detecting fibrin clots in tumour stroma.

  7. Single chain Fab (scFab fragment

    Directory of Open Access Journals (Sweden)

    Brenneis Mariam

    2007-03-01

    Full Text Available Abstract Background The connection of the variable part of the heavy chain (VH and and the variable part of the light chain (VL by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display. Results Here, we demonstrate that the introduction of a polypeptide linker between the fragment difficult (Fd and the light chain (LC, resulting in the formation of a single chain Fab fragment (scFab, can lead to improved production of functional molecules. We tested the impact of various linker designs and modifications of the constant regions on both phage display efficiency and the yield of soluble antibody fragments. A scFab variant without cysteins (scFabΔC connecting the constant part 1 of the heavy chain (CH1 and the constant part of the light chain (CL were best suited for phage display and production of soluble antibody fragments. Beside the expression system E. coli, the new antibody format was also expressed in Pichia pastoris. Monovalent and divalent fragments (DiFabodies as well as multimers were characterised. Conclusion A new antibody design offers the generation of bivalent Fab derivates for antibody phage display and production of soluble antibody fragments. This antibody format is of particular value for high throughput proteome binder generation projects, due to the avidity effect and the possible use of

  8. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  9. HIV-2 neutralization by intact V3-specific Fab fragments

    Directory of Open Access Journals (Sweden)

    Sourial Samer

    2008-08-01

    Full Text Available Abstract The V3 region of both HIV-1 gp120 and HIV-2 gp125 surface glycoprotein has been described as a target for neutralizing antibodies. In this study a conformation-sensitive (3C4 and a linear site-specific (7C8 anti-HIV-2 V3 monoclonal antibody (mAb were characterized. The neutralization capacity of the purified mAbs and their respective papain-generated Fab fragments was analyzed. The Fabs were further characterized by sequence analysis. Our results demonstrate that neither purified mAbs were capable of neutralizing HIV-2, while intact Fab fragments from both mAbs blocked in vitro infection of HIV-2 isolates. Moreover, the conformation sensitive 3C4 Fab neutralized both subtype A and B HIV-2 isolates and SIVsm. Sequence analysis of the hypervariable regions of 3C4 Fab and 7C8 Fab revealed that the third CDR of the heavy chain (CDRH3 of the antibodies was not as long as many of the previously characterized neutralizing antibodies. Our findings suggest that whole 7C8 and 3C4 mAbs are sterically hindered from neutralizing HIV-2, whereas the smaller size of Fab fragments enables access to the V3 region on the virion surface.

  10. Molecular characterization of monoclonal antibodies that inhibit acetylcholinesterase by targeting the peripheral site and backdoor region.

    Directory of Open Access Journals (Sweden)

    Yves Bourne

    Full Text Available The inhibition properties and target sites of monoclonal antibodies (mAbs Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE, have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis.

  11. Construction and selection of human Fab antibody phage display library of extracellular domain of HER 2%人源性抗HER2胞外段Fab噬菌体抗体库的构建及筛选

    Institute of Scientific and Technical Information of China (English)

    张为家; 刘孝荣; 李官成; 贺智敏

    2011-01-01

    .The humanized Fab phage antibody library against HEF2 ECD was constructed by infection of helper phage VCSM13.The libraries were enrich after panned three cycles by purification protein of recombinant HER2 ECD.Then random clones were tested by ELISA to select the positive ones, which were furher identified their antigen binding acticities by Western blot, and the strongest binding to HER2 ECD clone was sequenced.RESULTS: The Fab phage antibody library with 2.5 × 107 volume was constructed and four positive clones which specifically recognized the HER2 ECD were isolated and further demonstrated by Western blot.Sequence analysis of the positivest clone showed that the variable heavy domains(VH) and variable light domains(VL) were highly homologous with the human embryonal Ig heavy chain V region sequences and kappa light chain sequences, respectively.CONCLUSION: A fully humanized Fab phage antibody library is successfully constructed and specific antibodies against HER2 ECD are obtained, which provides an experimental foundation for new humanized anti-HER2 ECD monoclonal antibodies.

  12. Monoclonal antibody selection for interleukin-4 quantification using suspension arrays and forward-phase protein microarrays.

    Science.gov (United States)

    Wang, L; Cole, K D; Peterson, A; He, Hua-Jun; Gaigalas, A K; Zong, Y

    2007-12-01

    A recombinant mouse interleukin-4 (IL-4) and three different purified rat antimouse IL-4 monoclonal antibodies (Mab) with different clonalities were employed as a model system. This system was used to examine monoclonal antibody effectiveness using both conventional and high-throughput measurement techniques to select antibodies for attaining the most sensitive detection of the recombinant IL-4 through the "sandwich-type" immunoassays. Surface plasmon resonance (SPR) measurements and two high-throughput methods, suspension arrays (also called multiplexed bead arrays) and forward-phase protein microarrays, predicted the same capture (BVD4-1D11) and detection (BVD6-24G2) antibody pair for the most sensitive detection of the recombinant cytokine. By using this antibody pair, we were able to detect as low as 2 pg/mL of IL-4 in buffer solution and 13.5 pg/mL of IL-4 spiked in 100% normal mouse serum with the multiplexed bead arrays. Due to the large amount of material required for SPR measurements, the study suggests that the multiplexed bead arrays and protein microarrays are both suited for the selection of numerous antibodies against the same analyte of interest to meet the need in the areas of systems biology and reproducible clinical diagnostics for better patient care.

  13. Targeting human prostate cancer with (111) In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts

    NARCIS (Netherlands)

    Lutje, S.; Rij, C.M. van; Franssen, G.M.; Fracasso, G.; Helfrich, W.; Eek, A.; Oyen, W.J.G.; Colombatti, M.; Boerman, O.C.

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing sub

  14. Targeting human prostate cancer with In-111-labeled D2B IgG, F(ab ')(2) and Fab fragments in nude mice with PSMA-expressing xenografts

    NARCIS (Netherlands)

    Lutje, Susanne; van Rij, Catharina M.; Franssen, Gerben M.; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J.; Colombatti, Marco; Boerman, Otto C.

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab)(2) and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing su

  15. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    Science.gov (United States)

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  16. FabIO

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Sørensen, Henning O.; Wright, Jonathan P.

    2013-01-01

    FabIO is a Python module written for easy and transparent reading of raw two-dimensional data from various X-ray detectors. The module provides a function for reading any image and returning a fabioimage object which contains both metadata (header information) and the raw data. All fabioimage...

  17. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    Science.gov (United States)

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  18. 131I-肝癌单抗片段HAb18F(ab')2注射液药盒的制备%Preparation of 131I Labeled Hepatoma Monoclonal Antibody Fragment HAb18F(ab')2 Kit

    Institute of Scientific and Technical Information of China (English)

    冯强; 米力; 边惠洁; 余晓玲; 陈志南

    2002-01-01

    选择Mather高效碘标法(NBS法)制备应用于肝癌治疗的131I-肝癌单抗片段HAb18F(ab')2注射液药盒,确定并优化了冷药盒各组分的剂型、标记条件和纯化方法.制备出的药盒抗体标记物的放化纯度大于95%,整个标记过程可在10 min内完成,10 ℃以下干燥处可保存两年以上,适于临床应用.

  19. Fab Four Neutron Stars

    CERN Document Server

    Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-01-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the $\\Lambda$CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John") and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and we show that there are no viable compact star solutions in theories of the Paul class.

  20. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems.

    Science.gov (United States)

    Ojima-Kato, Teruyo; Fukui, Kansuke; Yamamoto, Hiroaki; Hashimura, Dai; Miyake, Shiro; Hirakawa, Yuki; Yamasaki, Tomomi; Kojima, Takaaki; Nakano, Hideo

    2016-04-01

    A small antibody fragment, fragment of antigen binding (Fab), is favorable for various immunological assays. However, production efficiency of active Fab in microorganisms depends considerably on the clones. In this study, leucine zipper-peptide pairs that dimerize in parallel (ACID-p1 (LZA)/BASE-p1 (LZB) or c-Jun/c-Fos) were fused to the C-terminus of heavy chain (Hc, VH-CH1) and light chain (Lc, VL-CL), respectively, to accelerate the association of Hc and Lc to form Fab in Escherichia coli in vivo and in vitro expression systems. The leucine zipper-fused Fab named 'Zipbody' was constructed using anti-E. coli O157 monoclonal antibody obtained from mouse hybridoma and produced in both in vitro and in vivo expression systems in an active form, whereas Fab without the leucine zipper fusion was not. Similarly, Zipbody of rabbit monoclonal antibody produced in in vitro expression showed significant activity. The purified, mouse Zipbody produced in the E. coli strain Shuffle T7 Express had specificity toward the antigen; in bio-layer interferometry analysis, the KD value was measured to be 1.5-2.0 × 10(-8) M. These results indicate that leucine zipper fusion to Fab C-termini markedly enhances active Fab formation in E. coli.

  1. (Investigations into the use of radiolabeled monoclonal antibodies for selective cell labeling in whole blood):

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, M.L.

    1987-01-01

    Seventeen monoclonal antibodies (MAbs), 7 specific for human platelets and 10 specific for human polumorphonuclear leukocytes (PMNs) have been evaluated. One MAb has been identified as the antibody most suitable for canine platelets and another has been evaluted as the best among the group, for human neutrophil studies. Indium-111, Tc-99m, and I-125 have been used as the tracers. Six bifunctional chelating agents (BFCAs) were evaluated in order to determine the most efficient agent for maximal cell labeling efficiency. Among these, the DTPA has given us the best results. (4) To botain maximum In-111 chelation and minimum loss of the MAb affinity, the optimal BFCA to MAb ratios for both IgG and IgM type of MAbs were determined. Four different substances, stannous chloride, ascorbic acid, sodium dithionite and sodium borohydride, were evaluated as reducing agents for Tc-99m reduction and its optimal binding to MAbs. Dithionite at the concentration of 200 ug/ml DTPA-MAb solution provides greater than 50% Tc-99m labeling efficiency and maintains its immunospecificity equal to that of In-111-DTPA-MAb. The ability of radiolabeled MAb to interact with blood cells selectively in whole blood and with isolated blood cells was assessed and compared.

  2. Generation and characterization of the human neutralizing antibody fragment Fab091 against rabies virus

    Institute of Scientific and Technical Information of China (English)

    Chen LI; Feng ZHANG; Hong LIN; Zhong-can WANG; Xin-jian LIU; Zhen-qing FENG; Jin ZHU; Xiao-hong GUAN

    2011-01-01

    Aim: To transform the human anti-rabies virus glycoprotein (anti-RABVG) single-chain variable fragment (scFv) into a Fab fragment and to analyze its immunological activity.Methods: The Fab gene was amplified using overlap PCR and inserted into the vector pComb3XSS. The recombinant vector was then transformed into E coli Top10F' for expression and purification. The purified Fab was characterized using SDS-PAGE, Western blotting,indirect ELISA, competitive ELISA, and the fluorescent antibody virus neutralization test (FAVN), respectively, and examined in a Kunming mouse challenge model in vivo.Results: A recombinant vector was constructed. The Fab was expressed in soluble form In E coll Top10F'. Specific binding of the Fab to rabies virus was confirmed by indirect ELISA and immunoprecipitation (IP). The neutralizing antibody titer of Fab was 10.26 IU/mL.The mouse group treated with both vaccine and human rabies immunoglobulin (HRIG)/Fab091 (32 IU/kg) showed protection against rabies, compared with the control group (P<0.05, Logrank test).Conclusion: The antibody fragment Fab was shown to be a neutralizing antibody against RABVG. It can be used together with other monoclonal antibodies for post-exposure prophylaxis of rabies virus in future studies.

  3. Select host cell proteins coelute with monoclonal antibodies in protein A chromatography.

    Science.gov (United States)

    Nogal, Bartek; Chhiba, Krishan; Emery, Jefferson C

    2012-01-01

    The most significant factor contributing to the presence of host cell protein (HCP) impurities in Protein A chromatography eluates is their association with the product monoclonal antibodies (mAbs) has been reported previously, and it has been suggested that more efficacious column washes may be developed by targeting the disruption of the mAbs-HCP interaction. However, characterization of this interaction is not straight forward as it is likely to involve multiple proteins and/or types of interaction. This work is an attempt to begin to understand the contribution of HCP subpopulations and/or mAb interaction propensity to the variability in HCP levels in the Protein A eluate. We performed a flowthrough (FT) recycling study with product respiking using two antibody molecules of apparently different HCP interaction propensities. In each case, the ELISA assay showed depletion of select subpopulations of HCP in Protein A eluates in subsequent column runs, while the feedstock HCP in the FTs remained unchanged from its native harvested cell culture fluid (HCCF) levels. In a separate study, the final FT from each molecule's recycling study was cross-spiked with various mAbs. In this case, Protein A eluate levels remained low for all but two molecules which were known as having high apparent HCP interaction propensity. The results of these studies suggest that mAbs may preferentially bind to select subsets of HCPs, and the degree of interaction and/or identity of the associated HCPs may vary depending on the mAb.

  4. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb.

    Science.gov (United States)

    Li, Zongyi; Li, Ruiheng; Smith, Charles; Pan, Fang; Campana, Mario; Webster, John R P; van der Walle, Christopher F; Uddin, Shahid; Bishop, Steve M; Narwal, Rojaramani; Warwicker, Jim; Lu, Jian Ren

    2017-07-12

    Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.

  5. Increased Fab thermoresistance via VH-targeted directed evolution.

    Science.gov (United States)

    Entzminger, Kevin C; Johnson, Jennifer L; Hyun, Jeongmin; Lieberman, Raquel L; Maynard, Jennifer A

    2015-10-01

    Antibody aggregation is frequently mediated by the complementarity determining regions within the variable domains and can significantly decrease purification yields, shorten shelf-life and increase the risk of anti-drug immune responses. Aggregation-resistant antibodies could offset these risks; accordingly, we have developed a directed evolution strategy to improve Fab stability. A Fab-phage display vector was constructed and the VH domain targeted for mutagenesis by error-prone PCR. To enrich for thermoresistant clones, the resulting phage library was transiently heated, followed by selection for binding to an anti-light chain constant domain antibody. Five unique variants were identified, each possessing one to three amino acid substitutions. Each engineered Fab possessed higher, Escherichia coli expression yield, a 2-3°C increase in apparent melting temperature and improved aggregation resistance upon heating at high concentration. Select mutations were combined and shown to confer additive improvements to these biophysical characteristics. Finally, the wild-type and most stable triple variant Fab variant were converted into a human IgG1 and expressed in mammalian cells. Both expression level and aggregation resistance were similarly improved in the engineered IgG1. Analysis of the wild-type Fab crystal structure provided a structural rationale for the selected residues changes. This approach can help guide future Fab stabilization efforts.

  6. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells

    Directory of Open Access Journals (Sweden)

    Isobe Masaharu

    2011-04-01

    Full Text Available Abstract Background Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. Results We developed a single-step cloning method, target-selective homologous recombination (TS-HR, in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. Conclusion The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique.

  7. Contribution of Antibody Hydrodynamic Size to Vitreal Clearance Revealed through Rabbit Studies Using a Species-Matched Fab.

    Science.gov (United States)

    Shatz, Whitney; Hass, Philip E; Mathieu, Mary; Kim, Hok Seon; Leach, Kim; Zhou, Michelle; Crawford, Yongping; Shen, Amy; Wang, Kathryn; Chang, Debby P; Maia, Mauricio; Crowell, Susan R; Dickmann, Leslie; Scheer, Justin M; Kelley, Robert F

    2016-09-01

    We have developed a tool Fab fragment of a rabbit monoclonal antibody that is useful for early evaluation in rabbit models of technologies for long acting delivery (LAD) of proteins to the eye. Using this Fab we show that vitreal clearance can be slowed through increased hydrodynamic size. Fab (G10rabFab) and Fab' (G10rabFab') fragments of a rabbit monoclonal antibody (G10rabIgG) were expressed in Chinese hamster ovary (CHO) cells and purified using antigen-based affinity chromatography. G10rabFab retains antigen-binding upon thermal stress (37 °C) for 8 weeks in phosphate-buffered saline (PBS) and can be detected in rabbit tissues using an antigen-based ELISA. Hydrodynamic radius, measured using quasi-elastic light scattering (QELS), was increased through site-specific modification of the G10rabFab' free cysteine with linear methoxy-polyethylene glycol(PEG)-maleimide of 20000 or 40000 molecular weight. Pharmacokinetic studies upon intravitreal dosing in New Zealand white rabbits were conducted on the G10rabFab and PEGylated G10rabFab'. Results of single and multidose pharmacokinetic experiments yield reproducible results and a vitreal half-life for G10rabFab of 3.2 days. Clearance from the eye is slowed through increased hydrodynamic size, with vitreal half-life showing a linear dependence on hydrodynamic radius (RH). A linear dependence of vitreal half-life on RH suggests that molecule diffusivity makes an important contribution to vitreal clearance. A method for prediction of vitreal half-life from RH measurements is proposed.

  8. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. V., E-mail: vvo@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Lapuk, V. A. [Russian Academy of Sciences, Zelinskii Institute of Organic Chemistry (Russian Federation); Shtykova, E. V.; Stepina, N. D.; Dembo, K. A.; Sokolova, A. V.; Amarantov, S. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Timofeev, V. P. [Russian Academy of Sciences, Engelhardt Institute of Molecular Biology (Russian Federation); Ziganshin, R. Kh. [Russian Academy of Sciences, Shemyakin Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Varlamova, E. Yu. [Russian Academy of Medical Sciences, Hematology Research Center (Russian Federation)

    2008-05-15

    The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that for Fab-RF (21{+-}2 and 11{+-}1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.

  9. Purificação e caracterização do fragmento Fab anti-digoxina obtido pela técnica de phage display.

    OpenAIRE

    2016-01-01

    A digoxina é um dos medicamentos indicados para o tratamento de falência cardíaca. Possui janela terapêutica estreita, sendo responsável por casos de intoxicação. O único antídoto disponível para a desintoxicação é o anticorpo policlonal DigiFab®, no formato Fab. O seu uso é eficaz, porém de custo elevado. Clones bacterianos produtores de fragmento Fab monoclonal anti-digoxina foram obtidos previamente pelo nosso grupo, pela técnica de phage display. Neste trabalho as variantes Fab dos 4 clo...

  10. Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry : morphology selective binding of Fabs to hepatitis B virus capsids

    NARCIS (Netherlands)

    Bereszczak, Jessica Z; Havlik, Marlene; Weiss, Victor U; Marchetti-Deschmann, Martina; van Duijn, Esther; Watts, Norman R; Wingfield, Paul T; Allmaier, Guenter; Steven, Alasdair C; Heck, Albert J R

    2014-01-01

    The capsid of hepatitis B virus (HBV) is a major viral antigen and important diagnostic indicator. HBV capsids have prominent protrusions ('spikes') on their surface and are unique in having either T = 3 or T = 4 icosahedral symmetry. Mouse monoclonal and also human polyclonal antibodies bind either

  11. Apoptosis function on tumor cell by SEA-Fab' coupled protein%SWA-Fab'对肿瘤细胞的凋亡作用

    Institute of Scientific and Technical Information of China (English)

    舒晓刚; 王国斌

    2005-01-01

    目的研究SEA-Fab'对肿瘤细胞的凋亡作用及单克隆抗体于肿瘤定向治疗作用.方法实验分为三组:SEA-Fab'、SEA及对照组,三组肿瘤细胞分别用SEA-Fab'、SEA及PBMC+Walker-256细胞处理,在24~72 h内观察肿瘤细胞的凋亡情况.结果SEA-Fab'组、SEA组的肿瘤细胞指数分别为(34.6%~68.9%)和(15.5%~31.9%)高于对照组(5.5%~12.5%),差异存在显著性,SEA-Fab'组高于SEA组差异显著.结论SEA-Fab'在激活T细胞和杀死肿瘤细胞效果好于SEA,将来有可能利用单克隆抗体来作定向靶位治疗.%[Objective] To Study the anti-tumor effect of the SEA-Fab' coupled protein and the possibility of themonoclonal antibody Fab's targeted in immunotherapy of human tumor. [Methods] The experiment group was treat-ed by SEA-Fab' and SEA, the contrast group was treated by PBMC+Walker-256 cell. The apoptotic index was ob-served in 24~72 h. [Results] The poptotic index was significantly higher in the SEA-Fab's (34.6~68.9%) and SEAgroups (15.5~31.9%) compared with the PBMC+Wallker-256 cell group (5.5~12.8%). There was significant differ-ence between SEA-Fab group and SEA group (P<0.01). [Conclusion] SEA-Fab' is more effective to activate Tcells and kill tumor cell than SEA, there is ossibility of The monoclonal antibody targeted in immunotherapy of hu-man tumor.

  12. A new type of pseudothrombocytopenia: EDTA-mediated agglutination of platelets bearing Fab fragments of a chimaeric antibody.

    Science.gov (United States)

    Christopoulos, C G; Machin, S J

    1994-07-01

    In vitro agglutination of platelets leading to low automated platelet counts was observed in EDTA-anticoagulated blood from human volunteers receiving infusions of Fab fragments of a chimaeric monoclonal antibody to platelet glycoprotein IIb-IIIa. This pseudothrombocytopenia depended on the presence of chimaeric Fab on the platelet surface and was not seen when sodium citrate was used as anticoagulent. Preliminary evidence suggests that this phenomenon might be mediated by immunoglobulin G reactive with the human component of the chimaeric Fab. It is important to exclude pseudothrombocytopenia when low automated platelet counts are reported in association with the administration of chimaeric anti-platelet antibodies.

  13. Meleagrin, a new FabI inhibitor from Penicillium chryosogenum with at least one additional mode of action.

    Directory of Open Access Journals (Sweden)

    Chang Ji Zheng

    Full Text Available Bacterial enoyl-acyl carrier protein reductase (FabI is a promising novel antibacterial target. We isolated a new class of FabI inhibitor from Penicillium chrysogenum, which produces various antibiotics, the mechanisms of some of them are unknown. The isolated FabI inhibitor was determined to be meleagrin by mass spectroscopy and nuclear magnetic resonance spectral analyses, and its more active and inactive derivatives were chemically prepared. Consistent with their selective inhibition of Staphylococcus aureus FabI, meleagrin and its more active derivatives directly bound to S. aureus FabI in a fluorescence quenching assay, inhibited intracellular fatty acid biosynthesis and growth of S. aureus, and increased the minimum inhibitory concentration for fabI-overexpressing S. aureus. The compounds that were not effective against the FabK isoform, however, inhibited the growth of Streptococcus pneumoniae that contained only the FabK isoform. Additionally no resistant mutant to the compounds was obtained. Importantly, fabK-overexpressing Escherichia coli was not resistant to these compounds, but was resistant to triclosan. These results demonstrate that the compounds inhibited another target in addition to FabI. Thus, meleagrin is a new class of FabI inhibitor with at least one additional mode of action that could have potential for treating multidrug-resistant bacteria.

  14. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    Institute of Scientific and Technical Information of China (English)

    Biplab Bose; Navin Khanna; Subrat K Acharya; Subrata Sinha

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody.METHODS: We cloned the VH and VL genes of this mouse antibody; and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. Coli.RESULTS: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal.This chimeric antibody fragment was further expressed in different strains of E> coli to increase the yield.CONCLUSION: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a fulllength chimeric antibody for therapeutic uses.

  15. Crystal structure determination of anti-DNA Fab A52.

    Science.gov (United States)

    Stanfield, Robyn L; Eilat, Dan

    2014-08-01

    A52 is a murine monoclonal antibody isolated from autoimmune New Zealand Black/New Zealand White F1 mice that recognizes single and double stranded DNA. This mouse strain spontaneously develops systemic lupus erythematosus-like symptoms and has served as a model for that disease for many years. The 1.62 Å crystal structure of the A52 Fab fragment reveals an H3 complementarity determining region with four closely spaced arginine residues, creating a positively charged surface to accommodate bound DNA.

  16. Isolation of Osteosarcoma-Associated Human Antibodies from a Combinatorial Fab Phage Display Library

    Directory of Open Access Journals (Sweden)

    Carmela Dantas-Barbosa

    2009-01-01

    Full Text Available Osteosarcoma, a highly malignant disease, is the most common primary bone tumor and is frequently found in children and adolescents. In order to isolate antibodies against osteosarcoma antigens, a combinatorial osteosarcoma Fab library displayed on the surface of phages was used. After three rounds of selection on the surface of tumor cells, several osteosarcoma-reactive Fabs were detected. From these Fabs, five were better characterized, and despite having differences in their VH (heavy chain variable domain and Vκ (kappa chain variable domain regions, they all bound to a protein with the same molecular mass. Further analysis by cell ELISA and immunocytochemistry suggested that the Fabs recognize a membrane-associated tumor antigen expressed in higher amounts in neoplasic cells than in normal tissue. These results suggest that the human Fabs selected in this work are a valuable tool for the study of this neoplasia.

  17. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus.

    Science.gov (United States)

    Organtini, Lindsey J; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E; Makhov, Alexander M; Conway, James F; Parrish, Colin R; Hafenstein, Susan

    2016-11-01

    Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM.

  18. An improved single-chain Fab platform for efficient display and recombinant expression.

    Science.gov (United States)

    Koerber, James T; Hornsby, Michael J; Wells, James A

    2015-01-30

    Antibody phage display libraries combined with high-throughput selections have recently demonstrated tremendous promise to create the next generation of renewable, recombinant antibodies to study proteins and their many post-translational modification states; however, many challenges still remain, such as optimized antibody scaffolds. Recently, a single-chain fragment antigen binding (Fab) (scFab) format, in which the carboxy-terminus of the light chain is linked to the amino-terminus of the heavy chain, was described to potentially combine the high display levels of a single-chain fragment variable with the high stability of purified Fabs. However, this format required removal of the interchain disulfide bond to achieve modest display levels and subsequent bacterial expression resulted in high levels of aggregated scFab, hindering further use of scFabs. Here, we developed an improved scFab format that retains the interchain disulfide bond by increasing the linker length between the light and heavy chains to improve display and bacterial expression levels to 1-3 mg/L. Furthermore, rerouting of the scFab to the co-translational signal recognition particle pathway combined with reengineering of the signal peptide sequence results in display levels 24-fold above the original scFab format and 3-fold above parent Fab levels. This optimized scFab scaffold can be easily reformatted in a single step for expression in a bacterial or mammalian host to produce stable (Tm of 81 °C), predominantly monomeric (>90%) antibodies at a high yield. Ultimately, this new scFab format will advance high-throughput antibody generation platforms to discover the next generation of research and therapeutic antibodies.

  19. "Fab 13": The Learning Factory.

    Science.gov (United States)

    Crooks, Steven M.; Eucker, Tom R.

    2001-01-01

    Describes how situated learning theory was employed in the design of Fab 13, a four-day simulation-based learning experience for manufacturing professionals at Intel Corporation. Presents a conceptual framework for understanding situated learning and discusses context, content, anchored instruction, facilitation, scaffolding, collaborating,…

  20. "Fab 13": The Learning Factory.

    Science.gov (United States)

    Crooks, Steven M.; Eucker, Tom R.

    2001-01-01

    Describes how situated learning theory was employed in the design of Fab 13, a four-day simulation-based learning experience for manufacturing professionals at Intel Corporation. Presents a conceptual framework for understanding situated learning and discusses context, content, anchored instruction, facilitation, scaffolding, collaborating,…

  1. Anti-tumor Effect and Mechanism of SEA-Fab' Coupled Protein on Gastric Tumor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The anti-tumor effect and mechanism of SEA-Fab' coupled protein on gastric tumor was studied. The target cell Walker-256 was treated with SEA-Fab' synthesized chemically or SEA respectively for 24 h, 36 h or 72 h. PBMC+Walke-256 cells served as controls. The apoptotic index of SEA-Fab' against effector cells was detected. In the mouse gastric cancer models (n=60), SEAFab', SEA and normal saline was injected in experimental group, SEA group and control group respectively. The occurrence and weight of tumor was observed. The results showed that the apoptotic index was significantly higher in the SEA-Fab' (34.6 %-68.9 %) and SEA group (15.5 %-31.9 %) than in PBMC+Walker-256 group (5.5 %-12.8 %) with the difference being significant (P<0.01). And there was significant difference between SEA-Fab' group and SEA group (P <0. 01). The tumor weight in SEA-Fab', SEA and control groups was 3. 64±0. 53 g, 0. 78±0.26 g and 0.49 ±0.17 g respectively with the difference being statistically significant between the SEAFab' group, SEA group and the control group (P<0.01). In the SEA-Fab's and SEA groups,there were CD4+ T and CD8+ T cell infiltrates, but in the cotnrol group, no or few T lymphocytes were seen in the mouse tumor tissue. It was concluded that SEA-Fab' was more effective to activate T lymphocytes to kill the tumor cells than SEA used alone. It was feasibility by using the monoclonal antibody as carrier to perform the targeted immunotherapy of gatric tumor.

  2. Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment.

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Valdovinos, Hector F; Hernandez, Reinier; Hong, Hao; Nickles, Robert J; Cai, Weibo

    2014-12-17

    Scandium-44 (t1/2 = 3.9 h) is a relatively new radioisotope of potential interest for use in clinical positron emission tomography (PET). Herein, we report, for the first time, the room-temperature radiolabeling of proteins with (44)Sc for in vivo PET imaging. For this purpose, the Fab fragment of Cetuximab, a monoclonal antibody that binds with high affinity to epidermal growth factor receptor (EGFR), was generated and conjugated with N-[(R)-2-amino-3-(para-isothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N',N″,N″-pentaacetic acid (CHX-A″-DTPA). The high purity of Cetuximab-Fab was confirmed by SDS-PAGE and mass spectrometry. The potential of the bioconjugate for PET imaging of EGFR expression in human glioblastoma (U87MG) tumor-bearing mice was investigated after (44)Sc labeling. PET imaging revealed rapid tumor uptake (maximum uptake of ∼12% ID/g at 4 h postinjection) of (44)Sc-CHX-A″-DTPA-Cetuximab-Fab with excellent tumor-to-background ratio, which might allow for same day PET imaging in future clinical studies. Immunofluorescence staining was conducted to correlate tracer uptake in the tumor and normal tissues with EGFR expression. This successful strategy for immunoPET imaging of EGFR expression using (44)Sc-CHX-A″-DTPA-Cetuximab-Fab can make clinically translatable advances to select the right population of patients for EGFR-targeted therapy and also to monitor the therapeutic efficacy of anti-EGFR treatments.

  3. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker.

    Directory of Open Access Journals (Sweden)

    Fortunato Ferrara

    Full Text Available BACKGROUND: Current diagnostic methods for tuberculosis (TB, a major global health challenge that kills nearly two million people annually, are time-consuming and inadequate. During infection a number of bacterial molecules that play a role in the infective process are released and have been proposed as biomarkers for early TB diagnosis. Antigen 85 (Ag85 is the most abundant secreted TB protein, and a potential target for this diagnostic approach. One of the bottlenecks in the direct detection of such bacterial targets is the availability of robust, sensitive, specific antibodies. METHODS: Using Ag85 as a model, we describe a method to select antibodies against any potential target using a novel combination of phage and yeast display that exploits the advantage of each approach. RESULTS: The efficiency of this approach was attested to by the 111 specific antibodies identified in initial screens. These were assessed for binding to the different Ag85 subunits, affinity, and activity in sandwich assays. CONCLUSIONS: The novelty of this approach lies in the possibility of screening the entire output of a phage antibody selection in a single experiment by yeast display. This can be considered analogous to carrying out a million ELISAs. The monoclonal antibodies (mAbs identified in this way show high binding affinity and selectivity for the antigens and offer an advantage over traditional mAbs produced by relatively expensive and time consuming techniques. This approach has wide applicability, and the affinity of selected antibodies can be significantly improved, if required.

  4. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.; (Stanford-MED); (CH-Boston)

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.

  5. GTP-specific fab fragment-based GTPase activity assay.

    Science.gov (United States)

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  6. Triclosan Resistance in a Bacterial Fish Pathogen, Aeromonas salmonicida subsp. salmonicida, is Mediated by an Enoyl Reductase, FabV.

    Science.gov (United States)

    Khan, Raees; Lee, Myung Hwan; Joo, Hae-Jin; Jung, Yong-Hoon; Ahmad, Shabir; Choi, Jin-Hee; Lee, Seon-Woo

    2015-04-01

    Triclosan, the widely used biocide, specifically targets enoyl-acyl carrier protein reductase (ENR) in the bacterial fatty acid synthesis system. Although the fish pathogen Aeromonas salmonicida subsp. salmonicida exhibits triclosan resistance, the nature of this resistance has not been elucidated. Here, we aimed to characterize the triclosan resistance of A. salmonicida subsp. salmonicida causing furunculosis. The fosmid library of triclosan-resistant A. salmonicida subsp. salmonicida was constructed to select a fosmid clone showing triclosan resistance. With the fosmid clone showing triclosan resistance, a subsequent secondary library search resulted in the selection of subclone pTSR-1. DNA sequence analysis of pTSR-1 revealed the presence of a chromosomal-borne fabV-encoding ENR homolog. The ENR of A. salmonicida (FabVas) exhibited significant homology with previously known FabV, including the catalytic domain YX(8)K. fabVas introduction into E. coli dramatically increased its resistance to triclosan. Heterologous expression of FabVas might functionally replace the triclosan-sensitive FabI in vivo to confer E. coli with triclosan resistance. A genome-wide search for fabVas homologs revealed the presence of an additional fabV gene (fabVas2) paralog in A. salmonicida strains and the fabVas orthologs from other gram-negative fish pathogens. Both of the potential FabV ENRs expressed similarly with or without triclosan supplement. This is the first report about the presence of two potential FabV ENRs in a single pathogenic bacterium. Our result suggests that triclosan-resistant ENRs are widely distributed in various bacteria in nature, and the wide use of this biocide can spread these triclosan-tolerant ENRs among fish pathogens and other pathogenic bacteria.

  7. Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Michelle Cummins

    2014-05-01

    Full Text Available Ricin is a potent glycoprotein toxin that is structurally composed of two subunits joined via a disulfide bond: a ~30 kDa subunit A (RTA and a ~32 kDa subunit B (RTB. There are fears of ricin being used as a weapon for warfare and terrorism and, as such, there is an increasing need for the development of immunodiagnostic reagents targeted towards this toxin. This article describes the production and characterization of a panel of six ricin-specific monoclonal IgG antibodies (mAbs, previously selected based upon their ability to inhibit ricin-mediated killing of cultured cells. Subsequent epitope binding analysis using the surface plasmon resonance (SPR array biosensor (ProteOn XPR36 indicated three distinct, non-competitive binding epitopes (“bins”. The association (ka and dissociation (kd rate constants and binding affinities (KD of each of the mAbs to ricin were also determined by SPR using Biacore T100 instrument. Affinities (KD ranged from 0.1 nM to 9 nM. We present the coding sequences of the variable domains of the six mAbs, the expression, kinetic and cytotoxicity assays for two recombinant Fab (rFab fragments and demonstrate a rFab affinity improvement by chain-shuffling. Together, these antibodies and constituent rFabs represent a panel of reagents for high-affinity recognition of ricin with potential national security biosensor applications.

  8. LABELING McAb 3H11 AND ITS Fab FRAGMENT WITH 211At AND THEIR IMMUNOREACTIVITIES AND INJURY EFFECTS ON HUMAN GASTRIC CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    刘宁; 罗德元; 等

    1995-01-01

    An antigastric cancer monoclonal antibody,3H11,and its Fab fragment,were labeled using p-(211At)-astatobenzoic acid(pAtBA) intermediate,in the yields of more than 30%.The results of in vitro experiments show that 211 At-3H11 and 211At-3H11 Fab are stable,and have specific immunoreactivities and cytotoxic effects to human gastric cancer cell M85,The cytotoxic effects are dependent on the concentration of 211At-3H11 or 211 At-3H11 Fab and obviously stronger than that of Na211At.

  9. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  10. EGFR FISH analysis in colorectal cancer as a tool in selecting patients for antiEGFR monoclonal antibodies therapy

    Directory of Open Access Journals (Sweden)

    Mauro Moroni

    2011-12-01

    Full Text Available The recent introduction of targeted therapies in the treatment of patients with metastatic colorectal cancer (mCRC not only improved efficacy but also toxicity and costs of the therapy, therefore requiring the identification of decision-making tools to select patients who are likely to benefit from them. By now, several studies have demonstrated an association between epidermal growth factor receptor (EGFR non-increased gene copy number, evaluated by fluorescence in situ hybridization (FISH, and resistance to the treatment with antiEGFR monoclonal antibodies (moAbs in patients with mCRC. However, the reproducibility of data by standardization of methods still remains an obstacle to be faced for clinical application of the test. We present a review of studies pertaining EGFR FISH analysis as a predictive test of clinical outcome to the treatment with antiEGFR moAbs in mCRC to point out the existing knowledge and the open questions about this issue.

  11. High-efficiency screening of monoclonal antibodies for membrane protein crystallography.

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lim

    Full Text Available Determination of crystal structures of membrane proteins is often limited by difficulties obtaining crystals diffracting to high resolution. Co-crystallization with Fab fragments of monoclonal antibodies has been reported to improve diffraction of membrane proteins crystals. However, it is not simple to generate useful monoclonal antibodies for membrane protein crystallography. In this report, we present an optimized process for efficient screening from immunization to final validation of monoclonal antibody for membrane protein crystallography.

  12. Cholestatic liver disease after rituximab and adalimumab and the possible role of cross-reacting antibodies to Fab 2 fragments.

    Directory of Open Access Journals (Sweden)

    Joerg Latus

    Full Text Available BACKGROUND: Millions of patients are treated with therapeutic monoclonal antibodies (Tmabs for miscellaneous diseases. We investigated sera from six patients who received immune globulin, from one patient with refractory anti-neutrophil-cytoplasmic antibody (ANCA-associated granulomatosis with polyangiitis (GPA who developed two episodes of acute cholestatic liver disease, one after treatment with rituximab and a second after adalimumab and a healthy control group. METHODS: Three sera from the patient and six sera from patients who received immune globulin were analyzed for antibodies to rituximab and adalimumab by ELISA. Additionally, sera from the patients and from nine healthy blood donors were coated with the Fab fragment of an unrelated humanized monoclonal antibody, with human Fc proteins as well as a mouse IgG globulin. RESULTS: Viral serology for hepatitis A, B, C and autoantibodies specific for autoimmune liver disorders were negative. In all three sera from the patient antibodies to rituximab could be detected, but also antibodies to adalimumab were present even at time points when the patient had not yet received adalimumab, indicating cross reactivity between both substances. Testing against an unrelated human Fab fragment revealed positive results, indicating that the patient had antibodies against human Fab fragments in general. The Fc proteins were negative, and patients' sera did also not react with mouse IgG globulins. Remarkably, 2 out of 5 patients which were treated with immune globulin had antibodies against human Fab fragments in general whereas in none of the samples from healthy controls antibodies to Fab fragment could be detected. CONCLUSION: This is the first study demonstrating cholestatic liver disease induced by two different Tmabs. Cross - reacting antibodies to Fab2 fragments in general are probably involved. Further studies must show if these Fab2 antibodies in general are related with drug-induced side effects

  13. An efficient process of generating bispecific antibodies via controlled Fab-arm exchange using culture supernatants.

    Science.gov (United States)

    Paul, Suparna; Connor, Judy; Nesspor, Tom; Haytko, Peter; Boakye, Ken; Chiu, Mark L; Jiang, Haiyan

    2016-05-01

    Bispecific antibody generation is actively pursued for therapeutic and research antibody development. Although there are multiple strategies for generating bispecific antibodies (bsAbs); the common challenge is to develop a scalable method to prepare bsAbs with high purity and yield. The controlled Fab-arm exchange (cFAE) method combines two parental monoclonal antibodies (mAbs), each with a matched point mutation, F405L and K409R in the respective CH3 domains. The conventional process employs two steps: the purification of two parental mAbs from culture supernatants followed by cFAE. Following a reduction/oxidation reaction, the bispecific mAb is formed with greater than 95% heterodimerization efficiency. In this study, cFAE was initiated in culture supernatants expressing the two parental mAbs, thereby eliminating the need to first purify the parental mAbs. The bsAbs formed in culture supernatant was then purified using a Protein A affinity chromatography. The BsAbs generated in this manner had efficiency comparable to the conventional method using purified parental mAbs. BsAbs prepared by two different routes showed indistinguishable characteristics by SDS capillary electrophoresis, analytical size exclusion, and cation exchange chromatography. This alternative method significantly shortened timelines and reduced resources required for bsAb generation, providing an improved process with potential benefits in large-scale bsAb preparation, as well as for HTP small-scale bsAb matrix selection.

  14. Monoclonal antibody-based, selective isolation of DNA fragments containing an alkylated base to be quantified in defined gene sequences.

    Science.gov (United States)

    Hochleitner, K; Thomale, J; Nikitin AYu; Rajewsky, M F

    1991-08-25

    We have established a sensitive, monoclonal antibody (Mab)-based procedure permitting the selective enrichment of sequences containing the miscoding alkylation product O6-ethylguanine (O6-EtGua) from mammalian DNA. H5 rat hepatoma cells were reacted with the N-nitroso carcinogen N-ethyl-N-nitrosourea in vitro, to give overall levels of greater than or equal to 25 O6-EtGua residues per diploid genome (corresponding to O6-EtGua/guanine molar ratios of greater than or equal to 10(-8). For analysis, enzymatically restricted DNA from these cells is incubated with an antibody specific for O6-ethyl-2'-deoxyguanosine, the resulting Mab-DNA complexes are separated from (O6-EtGua)-free fragments by filtration through a nitrocellulose (NC) membrane, and the DNA is recovered from the filter-bound complexes quantitatively. The efficiency of Mab binding to DNA fragments containing O6-EtGua is constant over a range of O6-EtGua/guanine molar ratios between 10(-5) and 10(-8). (O6-EtGua)-containing restriction fragments encompassing known gene sequences (e.g., the immunoglobulin E heavy chain gene of H5 rat hepatoma cells used as a model in this study) are subsequently amplified by PCR and quantified by slot-blot hybridisation. The content and distribution of a specific carcinogen-DNA adduct in defined sequences of genomic DNA can thus be analyzed as well as the kinetics of intragenomic (toposelective) repair of any DNA lesion for which a suitable Mab is available.

  15. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    Science.gov (United States)

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  16. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes.

    Science.gov (United States)

    Yao, Jiangwei; Ericson, Megan E; Frank, Matthew W; Rock, Charles O

    2016-12-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Structure of the omalizumab Fab.

    Science.gov (United States)

    Jensen, Rasmus K; Plum, Melanie; Tjerrild, Luna; Jakob, Thilo; Spillner, Edzard; Andersen, Gregers Rom

    2015-04-01

    Omalizumab is a humanized anti-IgE antibody that inhibits the binding of IgE to its receptors on mast cells and basophils, thus blocking the IgE-mediated release of inflammatory mediators from these cells. Omalizumab binds to the Fc domains of IgE in proximity to the binding site of the high-affinity IgE receptor FcℇRI, but the epitope and the mechanisms and conformations governing the recognition remain unknown. In order to elucidate the molecular mechanism of its anti-IgE activity, the aim was to analyse the interaction of omalizumab with human IgE. Therefore, IgE Fc Cℇ2-4 was recombinantly produced in mammalian HEK-293 cells. Functionality of the IgE Fc was proven by ELISA and mediator-release assays. Omalizumab IgG was cleaved with papain and the resulting Fab was purified by ion-exchange chromatography. The complex of IgE Fc with omalizumab was prepared by size-exclusion chromatography. However, crystals containing the complex were not obtained, suggesting that the process of crystallization favoured the dissociation of the two proteins. Instead, two structures of the omalizumab Fab with maximum resolutions of 1.9 and 3.0 Å were obtained. The structures reveal the arrangement of the CDRs and the position of omalizumab residues known from prior functional studies to be involved in IgE binding. Thus, the structure of omalizumab provides the structural basis for understanding the function of omalizumab, allows optimization of the procedure for complex crystallization and poses questions about the conformational requirements for anti-IgE activity.

  18. Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity.

    Science.gov (United States)

    Kwong, Ka Yin; Baskar, Sivasubramanian; Zhang, Hua; Mackall, Crystal L; Rader, Christoph

    2008-12-31

    In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here, we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in immunoglobulin G (IgG) format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, that is, the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives.

  19. β-Hydroxyacyl-acyl Carrier Protein Dehydratase (FabZ) from Francisella tularensis and Yersinia pestis : Structure Determination, Enzymatic Characterization, and Cross-Inhibition Studies

    Energy Technology Data Exchange (ETDEWEB)

    McGillick, Brian E.; Kumaran, Desigan; Vieni, Casey; Swaminathan, Subramanyam

    2016-02-23

    The bacterial system for fatty acid biosynthesis (FAS) contains several enzymes whose sequence and structure are highly conserved across a vast array of pathogens. This, coupled with their low homology and difference in organization compared to the equivalent system in humans, makes the FAS pathway an excellent target for antimicrobial drug development. To this end, we have cloned, expressed, and purified the β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from both Francisella tularensis (FtFabZ) and Yersinia pestis (YpFabZ). We also solved the crystal structures and performed an enzymatic characterization of both enzymes and several mutant forms of YpFabZ. Additionally, we have discovered two novel inhibitors of FabZ, mangostin and stictic acid, which show similar potencies against both YpFabZ and FtFabZ. Lastly, we selected several compounds from the literature that have been shown to be active against single homologues of FabZ and tested them against both YpFabZ and FtFabZ. These results have revealed clues as to which scaffolds are likely to lead to broad-spectrum antimicrobials targeted against FabZ as well as modifications to existing FabZ inhibitors that may improve potency.

  20. Produção e caracterização da porção Fab do anticorpo anti-digoxina utilizando a tecnologia de phage display.

    OpenAIRE

    Viviane Midori Murata

    2012-01-01

    A digoxina é um medicamento usado para tratar distúrbios cardíacos, com janela terapêutica muito estreita. Para combater seu efeito tóxico, fragmentos Fab do anticorpo policlonal anti-digoxina estão disponíveis comercialmente. Nosso objetivo foi a obtenção de variantes de fragmentos Fab do anticorpo monoclonal anti-digoxina usando a tecnologia phage display, que permite gerar fragmentos de anticorpos de alta afinidade e especificidade. Uma biblioteca combinatória de fragmentos Fab anti-digoxi...

  1. Use of radiolabeled monoclonal antibodies for diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Keigo (Kyoto Univ. (Japan). Faculty of Medicine)

    1990-08-01

    Monoclonal antibodies (MoAbs) are expected to carry radionuclides selectively to target tissues and to offer antigen-specific diagnosis. Indium (In)-111 has many favorable nuclear properties and is efficiently labeled with MoAbs using DAPA as a bifunctional chelating agent. In-111 labeled MoAbs are clinically employed for the diagnosis of malignant melanoma, colorectal cancer and acute myocardial infarction in Japan. Although non-specific deposit of In-111 was seen in liver and bone-marrow, scintigraphy using In-111 labeled MoAbs was encouraging, since it detected about 80% of tumors, tumors missed by conventional diagnostic methods such as CT, and tumors in patients with normal serum CEA values, and acute myocarditis as well as acute myocardial infarction was positive with In-111 labeled Fab fraction of anti-myosin Ab. Acute or subacute toxicity was not observed. Human anti-murine antibody (HAMA) was detected in 53 of 64 (82.8%) patients who were intravenously administered with 20 to 42 mg of anti-melanoma or anti-CEA MoAbs (whole IgG). In contrast, only 5 of 406 (1.2%) patients had detectable levels of HAMA in their serum after receiving 0.5 mg of Fab fraction of MoAb. Recently mouse-human chimeric Ab has been produced by recombinant DNA techniques, which localized well in xenografted tumors and seems to be promising for clinical use. Investigations are under way to increase the tumor to non-tumor ratio by modifying chelating agents for coupling MoAbs with radionuclides. (author).

  2. Crystal structure and substrate specificity of the [beta]-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiayang; Choudhry, Anthony E.; Janson, Cheryl A.; Grooms, Michael; Daines, Robert A.; Lonsdale, John T.; Khandekar, Sanjay S. (GSK)

    2010-07-20

    {beta}-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 {angstrom} resolution. Although the overall structure of S. aureus FabH is similar to that of Escherichia coli FabH, the primer binding pocket in S. aureus FabH is significantly larger than that present in E. coli FabH. The structural differences, which agree with kinetic parameters, provide explanation for the observed varying substrate specificity for E. coli and S. aureus FabH. The rank order of activity of S. aureus FabH with various acyl-CoA primers was as follows: isobutyryl- > hexanoyl- > butyryl- > isovaleryl- >> acetyl-CoA. The availability of crystal structure may aid in designing potent, selective inhibitors of S. aureus FabH.

  3. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts.

    Science.gov (United States)

    Lütje, Susanne; van Rij, Catharina M; Franssen, Gerben M; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J; Colombatti, Marco; Boerman, Otto C

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing subcutaneous prostate cancer xenografts. The optimal time point for imaging was determined in biodistribution and microSPECT imaging studies with (111)In-D2B IgG, (111)In-capromab pendetide, (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments in mice with PSMA-expressing LNCaP and PSMA-negative PC3 tumors at several time points after injection. All (111)In-labeled antibody formats specifically accumulated in the LNCaP tumors, with highest uptake of (111)In-D2B IgG and (111)In-capromab pendetide at 168 h p.i. (94.8 ± 19.2% injected dose per gram (ID/g) and 16.7 ± 2.2% ID/g, respectively), whereas uptake of (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments peaked at 24 h p.i. (12.1 ± 3.0% ID/g and 15.1 ± 2.9% ID/g, respectively). Maximum LNCaP tumor-to-blood ratios were 13.0 ± 2.3 (168 h p.i.), 6.2 ± 0.7 (24 h p.i.), 23.0 ± 4.0 (24 h p.i.) and 4.5 ± 0.6 (168 h p.i.) for (111)In-D2B IgG, (111)In-F(ab')2, (111)In-Fab and (111)In-capromab pendetide, respectively. LNCaP tumors were clearly visualized with microSPECT with all antibody formats. This study demonstrates the feasibility of D2B IgG, F(ab')2 and Fab fragments for targeting PSMA-expressing prostate cancer xenografts.

  4. FAB (Functionally Alert Behavior Strategies) to Improve Self-Control

    Science.gov (United States)

    Pagano, John

    2015-01-01

    This paper describes the FAB (Functionally Alert Behavior) Strategies approach to improve behavior in children and adolescents with complex behavioral challenges. FAB Strategies include evidence-based environmental adaptations, sensory modulation, positive behavioral support, and physical self-regulation strategies. FAB Strategies can be used by…

  5. Rapportage LTO FAB II 2008 : Functionele Agro Biodiversiteit

    NARCIS (Netherlands)

    Scheele, J.; Gurp, van H.; Alebeek, van F.A.N.; Belder, den E.; Elderson, J.

    2009-01-01

    Doel van het LTO FAB II project is een gebruiksklaar FAB concept te ontwikkelen voor een aantal ziekten en plagen in een aantal gewassen die op eenvoudige wijze door telers benut kan worden en voor de toepasser kostenneutraal zijn. Uitgangspunt in het FAB project is een evenwichtige balans tussen de

  6. In vitro Fab display: a cell-free system for IgG discovery.

    Science.gov (United States)

    Stafford, Ryan L; Matsumoto, Marissa L; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R; Baliga, Ramesh; Murray, Christopher J; Thanos, Christopher D; Hallam, Trevor J; Sato, Aaron K

    2014-04-01

    Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF.

  7. FabH Mutations Confer Resistance to FabF-Directed Antibiotics in Staphylococcus aureus

    OpenAIRE

    Parsons, Joshua B.; Yao, Jiangwei; Frank, Matthew W.; Rock, Charles O.

    2014-01-01

    Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were...

  8. Production of single chain Fab (scFab fragments in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Dübel Stefan

    2007-11-01

    Full Text Available Abstract Background The demand on antigen binding reagents in research, diagnostics and therapy raises questions for novel antibody formats as well as appropriate production systems. Recently, the novel single chain Fab (scFab antibody format combining properties of single chain Fv (scFv and Fab fragments was produced in the Gram-negative bacterium Escherichia coli. In this study we evaluated the Gram-positive bacterium Bacillus megaterium for the recombinant production of scFab and scFvs in comparison to E. coli. Results The lysozyme specific D1.3 scFab was produced in B. megaterium and E. coli. The total yield of the scFab after purification obtained from the periplasmic fraction and culture supernatant of E. coli was slightly higher than that obtained from culture supernatant of B. megaterium. However, the yield of functional scFab determined by analyzing the antigen binding activity was equally in both production systems. Furthermore, a scFv fragment with specificity for the human C reactive protein was produced in B. megaterium. The total yield of the anti-CRP scFv produced in B. megaterium was slightly lower compared to E. coli, whereas the specific activity of the purified scFvs produced in B. megaterium was higher compared to E. coli. Conclusion B. megaterium allows the secretory production of antibody fragments including the novel scFab antibody format. The yield and quality of functional antibody fragment is comparable to the periplasmic production in E. coli.

  9. Use of a Plackett-Burman statistical design to determine the effect of selected amino acids on monoclonal antibody production in CHO cells.

    Science.gov (United States)

    González-Leal, I J; Carrillo-Cocom, L M; Ramírez-Medrano, A; López-Pacheco, F; Bulnes-Abundis, D; Webb-Vargas, Y; Alvarez, M M

    2011-01-01

    Culture media design is central to the optimization of monoclonal antibody (mAb) production. Although general strategies do not currently exist for optimization of culture media, the combined use of statistical design and analysis of experiments and strategies based on simple material balances can facilitate culture media design. In this study, we evaluate the effect of selected amino acids on the growth rate and monoclonal antibody production of a Chinese hamster ovary DG-44 (CHO-DG44) cell line. These amino acids were selected based on their relative mass fraction in the specific mAb produced in this study, their consumption rate during bioreactor experiments, and also through a literature review. A Plackett-Burman statistical design was conducted to minimize the number of experiments needed to obtain statistically relevant information. The effect of this set of amino acids was evaluated during exponential cell culture (considering viable cell concentration and the specific growth rate as main output variables) and during the high cell-density stage (considering mAb final concentration and specific productivity as relevant output variables). For this particular cell line, leucine (Leu) and arginine (Arg) had the highest negative and positive effects on cell viability, respectively; Leu and threonine (Thr) had the highest negative effect on growth rate, and valine (Val) and Arg demonstrated the highest positive impact on mAb final concentration. Results suggest the pertinence of a two-stage strategy for amino acid supplementation, with a mixture optimized for cell growth and a different amino acid mixture for mAb production at high density.

  10. Fab(nimotuzumab)-HYNIC-99mTc: Antibody Fragmentation for Molecular Imaging Agents.

    Science.gov (United States)

    Calzada, Victoria; García, María Fernanda; Alonso-Martínez, Luis Michel; Camachoc, Ximena; Goicochea, Enzo; Fernández, Marcelo; Castillo, Abmel Xiques; Díaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Montaña, René Leyva; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo

    2016-01-01

    Finally, fast blood clearance nimotuzumab is a humanized monoclonal antibody that recognise, with high specific affinity, the epidermal growth factor receptor (EGF-R) which play an important role in the growth process associated with many solid tumors. In this work, the whole antibody was digested with papain in order to generate a Fab fragment, derivatized with NHS-HYNIC-Tfa and radiolabel with technetium-99m (99mTc) as a potential agent of molecular imaging of cancer. Both, whole and fragment radiolabels were in-vivo and in-vitro characterized. Radiolabeling conditions with Tricine as coligand and quality controls were assessed to confirm the integrity of the labeled fragment. Biodistribution and imaging studies in normal and spontaneous adenocarcinoma mice were performed at different times to determine the in-vivo characteristics of the radiolabel fragment. Tumor localization was visualized by conventional gamma camera imaging studies, and the results were compared with the whole antibody. Also, an immunoreactivity assay was carried out for both. The results showed clearly the integrity of the nimotuzumab fragment and the affinity by the receptor was verified. Fab(nimotuzumab)-HYNIC was obtained with high purity and a simple strategy of radiolabeling was performed. Finally, a fast blood clearance was observed in the biodistribution studies increasing the tumor uptake of Fab(nimotuzumab)- HYNIC-99mTc over time, with tumor/muscle ratios of 3.81 ± 0.50, 5.16 ± 1.97 and 6.32 ± 1.98 at 1 h, 4 h and 24 h post injection. Urinary excretion resulted in 32.89 ± 3.91 %ID eliminated at 24 h. Scintigraphy images showed uptake in the tumor and the activity in non-target organs was consistent with the biodistribution data at the same time points. Hence, these preliminary results showed important further characteristic of Fab(nimotuzumab)-HYNIC-99mTc as a molecular imaging agent of cancer.

  11. Data of rational process optimization for the production of a full IgG and its Fab fragment from hybridoma cells.

    Science.gov (United States)

    Röhm, Martina; Handl, Alina; König, Maria; Mavoungou, Chrystelle; Handrick, René; Schindowski, Katharina

    2016-09-01

    This data article focuses on the production of monoclonal antibodies (mAb) and their fragments Fab and F(ab')2. Here, we present the data of an optimization protocol to improve the product yield of a hybridoma cell process using a Design of Experiment (DoE) strategy. Furthermore, the data of the evaluated conditions were used to test feeding strategies in shake flasks. They were verified in controlled 2 L fed-batch bioreactor processes. Supplementing the culture medium with human insulin-like growth factor-I (IGF-I) and Pluronic F-68, as well as a nutrient rich additive for fed-batch, resulted in improved cell growth correlating with a 7 day elongated process time and a 4.5 fold higher product titer. Finally, a rapid Fab generation protocol and the respective data are presented using different papain digestion and a camelid anti-kappa light chain VHH affinity ligand.

  12. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis.

    Science.gov (United States)

    Pepinsky, R Blake; Silvian, Laura; Berkowitz, Steven A; Farrington, Graham; Lugovskoy, Alexey; Walus, Lee; Eldredge, John; Capili, Allan; Mi, Sha; Graff, Christilyn; Garber, Ellen

    2010-05-01

    Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.

  13. Monitoring strategy to match the advanced fabs

    Science.gov (United States)

    Ackmann, Paul W.

    2004-06-01

    The reduction in feature size below the exposure wavelength, the requirement for high yields, the expectation for consistent cycletime and shipment to mix, all mean that the reticle industry must be like advanced wafer fabrication centers. Due to the lower output of write tools versus steppers, and the fact that a reticle is a lot of one instead of 25 or 50 wafers as well as the need to match ship data to Fab ramp, the reticle line monitoring strategy must be optimized for small sample size. The use of tool time and alternative inspection strategies can lead to the early detection of problems. Because every reticle is a customer specific design, the monitoring strategy takes on a new look compared to the Fab. We have organized the AMTC to resemble a wafer fab. We have a dedicated Integration group that works with the customers and technologists, to monitor the needs of the customers and then drive the development programs that improve reticle capability. We have dedicated yield team to identify and classify the yield loss mechanisms and define probable causes. The teams then work with the Process owners to fix the source of yield loss and track the corrective actions. All sources of variations must be modeled and then sources of errors reduced to levels below the tool specification. The manufacturing organization has all the process and tool experts to focus on Pilot Line and Development tasks to meet the advance needs of our customers. With the organization in place we can then develop the methods based on Reticle and Fab manufacturing to best control the line and provide development with manufacturing cycle times.

  14. Mask qualification strategies in a wafer fab

    Science.gov (United States)

    Jaehnert, Carmen; Kunowski, Angela

    2007-02-01

    Having consistent high quality photo masks is one of the key factors in lithography in the wafer fab. Combined with stable exposure- and resist processes, it ensures yield increases in production and fast learning cycles for technology development and design evaluation. Preventive controlling of incoming masks and quality monitoring while using the mask in production is essential for the fab to avoid yield loss or technical problems caused by mask issues, which eventually result in delivery problems to the customer. In this paper an overview of the procedures used for mask qualification and production release, for both logic and DRAM, at Infineon Dresden is presented. Incoming qualification procedures, such as specification checks, incoming inspection, and inline litho process window evaluation, are described here. Pinching and electrical tests, including compatibility tests for mask copies for high volume products on optimized litho processes, are also explained. To avoid mask degradation over lifetime, re-inspection checks are done for re-qualification while using the mask in production. The necessity of mask incoming inspection and re-qualification, due to the repeater printing from either the processing defects of the original mask or degrading defects of being used in the fab (i.e. haze, ESD, and moving particles, etc.), is demonstrated. The need and impact of tight mask specifications, such as CD uniformity signatures and corresponding electrical results, are shown with examples of mask-wafer CD correlation.

  15. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    OpenAIRE

    Hoang, T.T.; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemop...

  16. Conjugation of 10 kDa Linear PEG onto Trastuzumab Fab' Is Sufficient to Significantly Enhance Lymphatic Exposure while Preserving in Vitro Biological Activity.

    Science.gov (United States)

    Chan, Linda J; Ascher, David B; Yadav, Rajbharan; Bulitta, Jürgen B; Williams, Charlotte C; Porter, Christopher J H; Landersdorfer, Cornelia B; Kaminskas, Lisa M

    2016-04-01

    The lymphatic system is a major conduit by which many diseases spread and proliferate. There is therefore increasing interest in promoting better lymphatic drug targeting. Further, antibody fragments such as Fabs have several advantages over full length monoclonal antibodies but are subject to rapid plasma clearance, which can limit the lymphatic exposure and activity of Fabs against lymph-resident diseases. This study therefore explored ideal PEGylation strategies to maximize biological activity and lymphatic exposure using trastuzumab Fab' as a model. Specifically, the Fab' was conjugated with single linear 10 or 40 kDa PEG chains at the hinge region. PEGylation led to a 3-4-fold reduction in binding affinity to HER2, but antiproliferative activity against HER2-expressing BT474 cells was preserved. Lymphatic pharmacokinetics were then examined in thoracic lymph duct cannulated rats after intravenous and subcutaneous dosing at 2 mg/kg, and the data were evaluated via population pharmacokinetic modeling. The Fab' displayed limited lymphatic exposure, but conjugation of 10 kDa PEG improved exposure by approximately 11- and 5-fold after intravenous (15% dose collected in thoracic lymph over 30 h) and subcutaneous (9%) administration, respectively. Increasing the molecular weight of the PEG to 40 kDa, however, had no significant impact on lymphatic exposure after intravenous (14%) administration and only doubled lymphatic exposure after subcutaneous administration (18%) when compared to 10 kDa PEG-Fab'. The data therefore suggests that minimal PEGylation has the potential to enhance the exposure and activity of Fab's against lymph-resident diseases, while no significant benefit is achieved with very large PEGs.

  17. Identification and Function Reasearch of fabA and fabB of Sinorhizobium meliloti%苜蓿中华根瘤菌fabA和fabB基因功能的鉴定

    Institute of Scientific and Technical Information of China (English)

    胡喆; 马金成; 蒋晶晶; 王海洪

    2013-01-01

    在大肠杆菌(Escherichia coli)脂肪酸合成酶体系中,fabA基因编码有双功能的3-羟基脂酰ACP脱水异构酶,其异构产物能被fabB基因编码的3-酮基脂酰ACP合成酶Ⅰ延伸,合成不饱和脂肪酸,该FabA-FabB途径被认为是缺氧条件下不饱和脂肪酸合成的经典途径.生物信息学分析发现,苜蓿中华根瘤菌(Sinorhizobium meliloti)的SmFabA与EcFabA相似性达到60.6%,具有相同的保守活性位点和两个保守的α螺旋结构;SmFabB与EcFabB相似性达到61.1%,具有相同的Cys-His-His活性中心.用携带SmfabA和SmfabB的质粒载体遗传互补大肠杆菌湿度敏感突变株CY57和CY242,在添加三氯森(TCL)抑制烯脂酰ACP还原酶活性的条件下,转化子能在42℃恢复生长,且放射性薄层层析能检测到转化子中不饱和脂肪酸棕榈油酸(A9C16:1)和十八碳烯酸(△11C18:1)的合成.体外重建脂肪酸合成反应表明,SmFabA能催化羟脂酰ACP的脱水反应且能够使反-2-癸烯酰ACP异构化,SmFabB能催化不同链长的脂酰ACP和丙二酸单酰ACP的聚合反应.另外,未得到SmFabA和SmFabB的突变株,表明SmFabA和SmFabB可能是苜蓿中华根瘤菌脂肪酸合成酶系中必不可少的关键蛋白.上述结果证实了苜蓿中华根瘤菌fabA和fabB两个基因在不饱和脂肪酸合成中的功能.

  18. Novel Schiff-base-derived FabH inhibitors with dioxygenated rings as antibiotic agents.

    Science.gov (United States)

    Zhou, Yang; Du, Qian-Ru; Sun, Jian; Li, Jing-Ran; Fang, Fei; Li, Dong-Dong; Qian, Yong; Gong, Hai-Bin; Zhao, Jing; Zhu, Hai-Liang

    2013-03-01

    Fatty acid biosynthesis plays a vital role in bacterial survival and several key enzymes involved in this biosynthetic pathway have been identified as attractive targets for the development of new antibacterial agents. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target that could trigger the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and -negative bacteria. Designing small molecules with FabH inhibitory activity displays great significance for developing antibiotic agents, which should be highly selective, nontoxic and broad-spectrum. In this manuscript, a series of novel Schiff base compounds were designed and synthesized, and their biological activities were evaluated as potential inhibitors. Among these 21 new compounds, (E)-N-((3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)methylene)hexadecan-1-amine (10) showed the most potent antibacterial activity with a MIC value of 3.89-7.81 μM(-1) against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with an IC(50) value of 1.6 μM. Docking simulation was performed to position compound 10 into the E. coli FabH active site to determine the probable binding conformation.

  19. Optimization of an antibreast carcinoma monoclonal antibody as a tumor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.; Colcher, D.; Kaplan, W.D.; Schlom, J.; Kufe, D.

    1984-01-01

    The authors have previously reported that monoclonal antibody B6.2 and its fragments labeled with I-125 selectively localizes in human breast tumor (bt) xeongrafts in nude mice. Herein the authors compare I-125 B6.2 and its fragments with regard to (a) in vitro binding to bt extracts and (b) blood clearance. Antibody B6.2 and fragments were labeled using iodogen and then incubated with cell extracts of a human bt metastasis to the liver (Met.173), MCF-7 bt line, and normal human liver. Scatchard analysis of the data revealed that I-125-B6.2 and its fragments bound to both breast tumors with affinity constants of the order of 10/sup 9/M/sup -1/; no specific binding to normal liver was observed. The affinity constant for both divalent fragments was higher than that observed for the monovalent Fab' fragment. Serial sampling of blood from tumor bearing mice indicated that the blood clearance of F(ab')/sub 2/ was more rapid than IgG and that Fab' cleared considerably faster still. A comparison of the biodistribution at 0.1 and 5 ..mu..g protein per mouse suggests that with 1 gm tumors, lower doses do not necessarily result in better tumor-to-tissue ratios. When the blood clearance of I-125-B6.2 was compared to that of a non-specific IgG (MOPC), a much faster clearance of I-125 activity, significantly greater than that resultant from uptake in the tumor, was observed. Accelerated blood clearance may be due to selective catabolism of the specific antibody. When I-125 labeled B6.2 was injected into mice bearing breast and melanoma tumors, the thyroid uptake of I-125 activity was 2-3 times greater in the bt mice. The authors conclude that catabolism may be an important factor in determining the optimal radiolabel for immunoscintigraphy.

  20. Integrated fab process for metal oxide EUV photoresist

    Science.gov (United States)

    Grenville, Andrew; Anderson, Jeremy T.; Clark, Benjamin L.; De Schepper, Peter; Edson, Joseph; Greer, Michael; Jiang, Kai; Kocsis, Michael; Meyers, Stephen T.; Stowers, Jason K.; Telecky, Alan J.; De Simone, Danilo; Vandenberghe, Geert

    2015-03-01

    Inpria is developing directly patternable, metal oxide hardmasks as robust, high-resolution photoresists for EUV lithography. Targeted formulations have achieved 13nm half-pitch at 35 mJ/cm2 on an ASML's NXE:3300B scanner. Inpria's second-generation materials have an absorbance of 20/μm, thereby enabling an equivalent photon shot noise compared to conventional resists at a dose lower by a factor of 4X. These photoresists have ~40:1 etch selectivity into a typical carbon underlayer, so ultrathin 20nm films are possible, mitigating pattern collapse. In addition to lithographic performance, we review progress in parallel advances required to enable the transition from lab to fab for such a metal oxide photoresist. This includes considerations and data related to: solvent compatibility, metals cross-contamination, coat uniformity, stability, outgassing, and rework.

  1. Pathogen-free screening of bacteria-specific hybridomas for selecting high-quality monoclonal antibodies against pathogen bacteria as illustrated for Legionella pneumophila.

    Science.gov (United States)

    Féraudet-Tarisse, Cécile; Vaisanen-Tunkelrott, Marja-Liisa; Moreau, Karine; Lamourette, Patricia; Créminon, Christophe; Volland, Hervé

    2013-05-31

    Antibodies are potent biological tools increasingly used as detection, diagnostic and therapeutic reagents. Many technological advances have optimized and facilitated production and screening of monoclonal antibodies. We report here an original method to screen for antibodies targeting biosafety level 2 or 3 pathogens without the fastidious handling inherent to pathogen use. A double ELISA screening was performed using as coated antigen transformed Escherichia coli expressing at its surface a protein specific to the pathogenic bacteria versus control untransformed E. coli. This method was applied to Legionella, using the surface-exposed Mip protein (macrophage infectivity potentiator). This screening proved to be an excellent means of selecting mAbs that bind Legionella pneumophila 1 surface-exposed Mip protein. This method also appears more biologically relevant than screening using the recombinant Mip protein alone and less tedious than a test performed directly on Legionella bacteria. We obtained 21 mAbs that bind strongly to L. pneumophila serogroups 1 to 13, and we validated their use in a rapid ELISA (performed in 4.5 h) and an immunochromatographic test (20 min).

  2. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Aβ peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Miles, Luke A. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Crespi, Gabriela A. N. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Wycherley, Kaye [WEHI Biotechnology Centre, La Trobe R& D Park, Bundoora, Victoria 3086 (Australia); Ascher, David B. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Barnham, Kevin J.; Cappai, Roberto [Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Beyreuther, Konrad [ZMBH, University of Heidelberg, Heidelberg (Germany); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Parker, Michael W. [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010 (Australia); McKinstry, William J., E-mail: wjmckinstry@hotmail.com [Biota Structural Biology Laboratory and Centre for Structural Neurobiology, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia); Department of Medicine (St Vincent’s Hospital), The University of Melbourne, 41 Victoria Parade, Fitzroy 3065 (Australia)

    2008-05-01

    Crystallization and X-ray diffraction data collection of the Fab fragment of the monoclonal antibody WO2 in the absence or presence of amyloid β peptides associated with Alzheimer’s disease are reported. The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid β peptide (Aβ) associated with Alzheimer’s disease. This region of Aβ has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Aβ peptides Aβ{sub 1–16} and Aβ{sub 1–28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 Å resolution. The complexes of WO2 Fab with either Aβ{sub 1–@}@{sub 16} or Aβ{sub 1–28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 Å resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble Aβ{sub 1–42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 Å resolution.

  3. The cosmology of the Fab-Four

    CERN Document Server

    Copeland, Edmund J; Saffin, Paul M

    2012-01-01

    We have recently proposed a novel self tuning mechanism to alleviate the famous cosmological constant problem, based on the general scalar tensor theory proposed by Horndeski. The self-tuning model ends up consisting of four geometric terms in the action, with each term containing a free potential function of the scalar field; the four together being labeled as the Fab-Four. In this paper we begin the important task of deriving the cosmology associated with the Fab-Four Lagrangian. Performing a phase plane analysis of the system we are able to obtain a number of fixed points for the system, with some remarkable new solutions emerging from the trade-off between the various potentials. As well as obtaining inflationary solutions we also find conventional radiation/matter-like solutions, but in regimes where the energy density is dominated by a cosmological constant, and where we do not have any explicit forms of radiation or matter. Stability conditions for matter solutions are obtained and we show how it is po...

  4. Een inventarisatie naar de bekendheid van Functionele Agrobiodiversiteit (FAB) en de mogelijkheden om FAB met andere agroranden te combineren

    NARCIS (Netherlands)

    Geerts, R.H.E.M.; Meerburg, B.G.

    2011-01-01

    Op dit moment zijn er regio's waar het FAB concept al breed wordt toegepast en goed is ingebed (West-Brabant/Zeeland), waar het in opmars is (Flevoland en Zuid-Holland) en enkele regio's waar het FAB gedachtegoed slechts matig aanwezig is (Groningen / Drenthe).

  5. A kit to prepare (111)In-DTPA-trastuzumab (Herceptin) Fab fragments injection under GMP conditions for imaging or radioimmunoguided surgery of HER2-positive breast cancer.

    Science.gov (United States)

    Scollard, Deborah A; Chan, Conrad; Holloway, Claire M B; Reilly, Raymond M

    2011-01-01

    The human epidermal growth factor receptor-2 (HER2) gene is amplified in 25% of invasive breast cancers, and receptor overexpression has been noted in up to 60% of early stages of the disease [ductal carcinoma in situ (DCIS)]. Preclinical studies have revealed high tumor/blood ratios (>27:1) for (111)In-labeled Fab fragments of the HER2 monoclonal antibody, trastuzumab (Herceptin) ((111)In-DTPA-trastuzumab Fab) at 72 h pi in athymic mice bearing subcutaneous human breast cancer xenografts. Our aim in this study was to formulate a kit for preparation of (111)In-DTPA-trastuzumab Fab injection under good manufacturing practice (GMP) conditions suitable for human administration in a Phase I clinical trial of imaging and radioimmunoguided surgery (RIGS) of HER2-positive breast cancer. Fab fragments were produced by digestion of trastuzumab IgG (Herceptin) with immobilized papain for 20 h at 37°C. Fab fragments were purified by ultrafiltration, then reacted with a 10-fold molar excess of diethylenetriaminepentaacetic acid (DTPA) dianhydride. DTPA-Fab fragments were purified, then sterilized by filtration into unit dose glass vials (kits). Kits were tested against specifications for volume (0.9-1.1 ml), protein concentration (0.45-0.55 mg/ml), pH (5.5-6.5), DTPA substitution (0.5-4.0 mol DTPA/mol Fab), appearance (clear, colorless and particle free), labeling efficiency (≥ 85%), and sterility and apyrogenicity (USP XXXII). Immunoreactivity of (111)In-DTPA-trastuzumab Fab towards HER2 was measured by saturation radioligand binding assays using SKBR-3 human breast cancer cells (specifications: K(a) = 0.6-9.6 × 10(7) L/mol; B(max) = 0.6-10.4 × 10(6) sites/cell). (111)In-DTPA-trastuzumab Fab injection was prepared by adding 80-100 MBq of (111)InCl(3) to a single kit vial and incubating for 30 min at room temperature. (111)In-DTPA-trastuzumab Fab was assayed for the amount of radioactivity and tested for pH, radiochemical purity (RCP), appearance and sterility. Pure and

  6. A kit to prepare {sup 111}In-DTPA-trastuzumab (Herceptin) Fab fragments injection under GMP conditions for imaging or radioimmunoguided surgery of HER2-positive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Holloway, Claire M.B. [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 1H1 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.c [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3E2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada)

    2011-01-15

    Introduction: The human epidermal growth factor receptor-2 (HER2) gene is amplified in 25% of invasive breast cancers, and receptor overexpression has been noted in up to 60% of early stages of the disease [ductal carcinoma in situ (DCIS)]. Preclinical studies have revealed high tumor/blood ratios (>27:1) for {sup 111}In-labeled Fab fragments of the HER2 monoclonal antibody, trastuzumab (Herceptin) ({sup 111}In-DTPA-trastuzumab Fab) at 72 h pi in athymic mice bearing subcutaneous human breast cancer xenografts. Our aim in this study was to formulate a kit for preparation of {sup 111}In-DTPA-trastuzumab Fab injection under good manufacturing practice (GMP) conditions suitable for human administration in a Phase I clinical trial of imaging and radioimmunoguided surgery (RIGS) of HER2-positive breast cancer. Methods: Fab fragments were produced by digestion of trastuzumab IgG (Herceptin) with immobilized papain for 20 h at 37{sup o}C. Fab fragments were purified by ultrafiltration, then reacted with a 10-fold molar excess of diethylenetriaminepentaacetic acid (DTPA) dianhydride. DTPA-Fab fragments were purified, then sterilized by filtration into unit dose glass vials (kits). Kits were tested against specifications for volume (0.9-1.1 ml), protein concentration (0.45-0.55 mg/ml), pH (5.5-6.5), DTPA substitution (0.5-4.0 mol DTPA/mol Fab), appearance (clear, colorless and particle free), labeling efficiency ({>=}85%), and sterility and apyrogenicity (USP XXXII). Immunoreactivity of {sup 111}In-DTPA-trastuzumab Fab towards HER2 was measured by saturation radioligand binding assays using SKBR-3 human breast cancer cells (specifications: K{sub a}=0.6-9.6x10{sup 7} L/mol; B{sub max}=0.6-10.4x10{sup 6} sites/cell). {sup 111}In-DTPA-trastuzumab Fab injection was prepared by adding 80-100 MBq of {sup 111}InCl{sub 3} to a single kit vial and incubating for 30 min at room temperature. {sup 111}In-DTPA-trastuzumab Fab was assayed for the amount of radioactivity and tested for p

  7. Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody.

    Science.gov (United States)

    Cignetto, Simona; Modica, Chiara; Chiriaco, Cristina; Fontani, Lara; Milla, Paola; Michieli, Paolo; Comoglio, Paolo M; Vigna, Elisa

    2016-06-01

    The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable to the original MvDN30 in vitro, acting as full Met antagonists, impairing Met phosphorylation and activation of downstream signaling pathways. As a consequence, Met-mediated biological responses were inhibited, including anchorage-dependent and -independent cell growth. In vivo DCD-1 and DCD-2 showed a pharmacokinetic profile significantly improved over the original MvDN30, doubling the circulating half-life and reducing the clearance. In pre-clinical models of cancer, generated by injection of tumor cells or implant of patient-derived samples, systemic administration of the engineered molecules inhibited the growth of Met-addicted tumors.

  8. Functional humanization of an anti-CD16 Fab fragment: obstacles of switching from murine {lambda} to human {lambda} or {kappa} light chains.

    Science.gov (United States)

    Schlapschy, Martin; Fogarasi, Marton; Gruber, Helga; Gresch, Oliver; Schäfer, Claudia; Aguib, Yasmine; Skerra, Arne

    2009-03-01

    An alphaCD30xalphaCD16 bispecific monoclonal antibody (MAb) was previously shown to induce remission of Hodgkin's disease refractory to chemo- and radiotherapy through specific activation of natural killer (NK) cells, but the appearance of a human anti-mouse antibody (HAMA) response prevented its use for prolonged therapy. Here, we describe an effort to humanize the Fab arm directed against FcgammaRIII (CD16), which-in context with the previously humanized CD30 Fab fragment-provides the necessary component for the design of a clinically useful bispecific antibody. Thus, the CDRs of the anti-CD16 mouse IgG1/lambda MAb A9 were grafted onto human Ig sequences. In a first attempt, the murine V(lambda) domain was converted to a humanized lambda chain, which led, however, to complete loss of antigen-binding activity and extremely poor folding efficiency upon periplasmic expression in Escherichia coli. Hence, its CDRs were transplanted onto a human kappa light chain in a second attempt, which resulted in a functional recombinant Fab fragment, yet with 100-fold decreased antigen affinity. In the next step, an in vitro affinity maturation was performed, wherein random mutations were introduced into the humanized V(H) and V(kappa) domains through error-prone PCR, followed by a filter sandwich colony screening assay for increased binding activity towards the bacterially produced extracellular CD16 fragment. Finally, an optimized Fab fragment was obtained, which carries nine additional amino acid exchanges and exhibits an affinity that is within a factor of 2 identical to that of the original murine A9 Fab fragment. The resulting humanized Fab fragment was fully functional with respect to binding of the recombinant CD16 antigen in enzyme-linked immunosorbent assay and in cytofluorimetry with CD16-positive granulocytes, thus providing a promising starting point for the preparation of a fully human bispecific antibody that permits the therapeutic recruitment of NK cells.

  9. A comparison of 67Cu- and 131I-labelled forms of monoclonal antibodies SEN7 and SWA20 directed against small-cell lung cancer.

    Science.gov (United States)

    Smith, A; Zangemeister-Wittke, U; Waibel, R; Schenker, T; Schubiger, P A; Stahel, R A

    1994-01-01

    The intact anti-SCLC monoclonal antibody (MAb) SEN7 and its F(ab')2 were labelled with the beta-emitting isotope 67Cu. Both materials retained their biological activity in vitro as determined by the Lindmo assay. In a direct comparison of in vivo distribution in a xenograph model, 131I- and 67Cu-labelled intact SEN7 showed similar absolute tumour accumulation. Blood levels were markedly lower in the case of the 67Cu-labelled antibody, resulting in improved tumour:blood ratios which reached a maximum of 13:1 compared with only 4.5:1 for 131I-SEN7. In the case of the 67Cu-labelled F(ab')2, very high accumulation of the nuclide was observed in the kidney. Levels of radio copper in liver and spleen were also found to be significantly raised when compared with radio iodine. SWA20, a MAb which had previously failed to show any selective in vivo accumulation in tumour xenografts when labelled with radio iodine showed higher and more stable tumour accumulation when labelled with 67Cu.

  10. How Fabulous Is Fab 5 Cosmology?

    CERN Document Server

    Linder, Eric V

    2013-01-01

    Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.

  11. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs.

    Science.gov (United States)

    Sivaraman, Sharada; Zwahlen, Jacque; Bell, Alasdair F; Hedstrom, Lizbeth; Tonge, Peter J

    2003-04-22

    Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.

  12. COMPARISON OF FOUR METHODS TO GENERATE IMMUNOREACTIVE FRAGMENTS OF A MURINE MONOCLONAL ANTIBODY OC859 AGAINST HUMAN OVARIAN EPITHELIAL CANCER ANTIGEN

    Institute of Scientific and Technical Information of China (English)

    邹颖; 卞美璐; 杨子义; 连利娟; 刘文淑; 许秀英

    1995-01-01

    In the present study,four different proteases (pepsin,papain,bromelain and ficin) were screened with a murine monoclonal antibody OC859,in order to verify whether different digestion procedures could improve yield and stability of the F(ab')2 or Fab fragments.The yields of F(ab')2 or Fab fragments from digestion with pepsin,papain,bromelain and ficin were respectively 20.3+/-2.0%,50.5%+/-5.0%,74.4+/-2.7% and 82.8+/-10.2% of the theoretical maximum.Immunoreactivity in a noncompetitive solid-phase radioimmunoassay (SPRIA) of the fragments generated by the four proteases were respectively 10+/-5%,36+/-5%,60+/-6% and 75+/-6% of the intact OC859 IgG.These results suggested that the fragmentation of OC859 with ficin gave a higher yield of superior immunoreactive fragments.

  13. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Roosild, Tarmo P.; Castronovo, Samantha; Choe, Senyon, E-mail: choe@salk.edu [Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 (United States)

    2006-09-01

    The X-ray crystallographic analysis of anti-FLAG M2 Fab is reported and the implications of the structure on FLAG epitope binding are described as a first step in the development of a tool for the structural and biophysical study of membrane proteins. The inherent difficulties of stabilizing detergent-solubilized integral membrane proteins for biophysical or structural analysis demand the development of new methodologies to improve success rates. One proven strategy is the use of antibody fragments to increase the ‘soluble’ portion of any membrane protein, but this approach is limited by the difficulties and expense associated with producing monoclonal antibodies to an appropriate exposed epitope on the target protein. Here, the stabilization of a detergent-solubilized K{sup +} channel protein, KvPae, by engineering a FLAG-binding epitope into a known loop region of the protein and creating a complex with Fab fragments from commercially available anti-FLAG M2 monoclonal antibodies is reported. Although well diffracting crystals of the complex have not yet been obtained, during the course of crystallization trials the structure of the anti-FLAG M2 Fab domain was solved to 1.86 Å resolution. This structure, which should aid future structure-determination efforts using this approach by facilitating molecular-replacement phasing, reveals that the binding pocket appears to be specific only for the first four amino acids of the traditional FLAG epitope, namely DYKD. Thus, the use of antibody fragments for improving the stability of target proteins can be rapidly applied to the study of membrane-protein structure by placing the short DKYD motif within a predicted peripheral loop of that protein and utilizing commercially available anti-FLAG M2 antibody fragments.

  14. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    Science.gov (United States)

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  15. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding.

    Directory of Open Access Journals (Sweden)

    Jill Glesner

    Full Text Available BACKGROUND: Cockroach allergy is strongly associated with asthma, and involves the production of IgE antibodies against inhaled allergens. Reports of conformational epitopes on inhaled allergens are limited. The conformational epitopes for two specific monoclonal antibodies (mAb that interfere with IgE antibody binding were identified by X-ray crystallography on opposite sites of the quasi-symmetrical cockroach allergen Bla g 2. METHODOLOGY/PRINCIPAL FINDINGS: Mutational analysis of selected residues in both epitopes was performed based on the X-ray crystal structures of the allergen with mAb Fab/Fab' fragments, to investigate the structural basis of allergen-antibody interactions. The epitopes of Bla g 2 for the mAb 7C11 or 4C3 were mutated, and the mutants were analyzed by SDS-PAGE, circular dichroism, and/or mass spectrometry. Mutants were tested for mAb and IgE antibody binding by ELISA and fluorescent multiplex array. Single or multiple mutations of five residues from both epitopes resulted in almost complete loss of mAb binding, without affecting the overall folding of the allergen. Preventing glycosylation by mutation N268Q reduced IgE binding, indicating a role of carbohydrates in the interaction. Cation-π interactions, as well as electrostatic and hydrophobic interactions, were important for mAb and IgE antibody binding. Quantitative differences in the effects of mutations on IgE antibody binding were observed, suggesting heterogeneity in epitope recognition among cockroach allergic patients. CONCLUSIONS/SIGNIFICANCE: Analysis by site-directed mutagenesis of epitopes identified by X-ray crystallography revealed an overlap between monoclonal and IgE antibody binding sites and provided insight into the B cell repertoire to Bla g 2 and the mechanisms of allergen-antibody recognition, including involvement of carbohydrates.

  16. Yeast mating for combinatorial Fab library generation and surface display

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, Jane M.; Lou, Jianlong; Coleman, James R.; Siegel, Robert W.; Marks, James D.; Feldhaus, Michael

    2004-04-23

    Yeast display of antibody fragments has proven to be an efficient and productive means for directed evolution of single chain Fv (scFv) antibodies for increased affinity and thermal stability, and more recently for the display and screening of a non-immune library. In this paper, we describe an elegant and simple method for constructing large combinatorial Fab libraries for display on the surface of Saccharomyces cerevisiae, from modestly sized, and easily constructed, heavy and light chain libraries. To this end, we have constructed a set of yeast strains and a two vector system for heavy chain and light chain surface display of Fab fragments with free native amino termini. Through yeast mating of the haploid libraries, a very large heterodimeric immune Fab library was displayed on the diploids and high affinity antigen specific Fabs were isolated from the library.

  17. Site specific discrete PEGylation of (124)I-labeled mCC49 Fab' fragments improves tumor MicroPET/CT imaging in mice.

    Science.gov (United States)

    Ding, Haiming; Carlton, Michelle M; Povoski, Stephen P; Milum, Keisha; Kumar, Krishan; Kothandaraman, Shankaran; Hinkle, George H; Colcher, David; Brody, Rich; Davis, Paul D; Pokora, Alex; Phelps, Mitchell; Martin, Edward W; Tweedle, Michael F

    2013-11-20

    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2-4 kDa discrete, branched PEGylation reagents on mCC49 Fab' (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab' (Fab'-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG 12-(dPEG24COOH)3 acid (Mal-dPEG-A), maleimide-dPEG12-(dPEG12COOH)3 acid (Mal-dPEG-B), or maleimide-dPEG12-(m-dPEG24)3 (Mal-dPEG-C), and then radiolabeled with iodine-124 ((124)I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab' with Mal-dPEG-A (Fab'-A) reduced the binding affinity of the non PEGylated Fab' by 30%; however, in vivo, Fab'-A significantly lengthened the blood retention vs Fab'-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, p images due to higher tumor accumulation, and increased tumor concentration in excised tissues at 72 h by 130% (5.09 ± 0.83 vs 3.83 ± 1.50%ID/g, p imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, p < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, p < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A.

  18. A Case Study of a High School Fab Lab

    Science.gov (United States)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  19. An Efficient and Economical Assay to Screen for Triclosan Binding to FabI.

    Science.gov (United States)

    Demissie, Robel D; Kabre, Pauline; Tuntland, Micheal L; Fung, Leslie W-M

    2016-04-01

    Triclosan is an effective inhibitor for enoyl acyl carrier protein reductase (ENR) in fatty acid biosynthesis. Triclosan-resistant mutants of ENR have emerged. Thus, it is important to detect these triclosan-resistant mutations in ENR. Generally, enzyme activity assays on the mutants are used to determine the effect of triclosan on ENR activity. Since the substrates are linked to acyl carrier protein (ACP), the assays are challenging due to the need to prepare the ACP and link it to the substrates. Non-ACP-linked (coenzyme A [CoA]-linked) substrates can be used in some ENR, but not in all. Consequently, screening for triclosan-resistant mutants is also challenging. We have developed a simple thermal shift assay, which does not use ACP-linked substrates, to determine the binding ability of triclosan to the ENR active site, and thus it can be used for screening for triclosan-resistant mutants. Staphylococcus aureus FabI enzyme and its mutants were used to demonstrate the binding ability of triclosan with NADP(+) to FabI. The direct correlation between the binding ability and enzyme activity was demonstrated with Francisella tularensis FabI. This method may also be applied to select effective triclosan analogues that inhibit ENR activity.

  20. Implementation of high-resolution reticle inspection in wafer fabs

    Science.gov (United States)

    Dayal, Aditya; Bergmann, Nathan M.; Sanchez, Peter

    2003-05-01

    Many advanced wafer fabs are currently fabricating devices with 130nm or smaller design rules. To meet the challenges at these sub-wavelength technology nodes, fabs are using a variety of resolution enhancement techniques (RETs) in lithography and exploring new methods of processing, inspecting and requalifying photomasks. The acceleration of the lithography roadmap imposes more stringent requirements on mask qualification and requalification to ensure that device yields are not compromised: mask inspection tools of today need to find smaller defects on reticles against considerably more complicated patterns or tighter critical dimensions (CDs). In this paper we describe the early stages of implementation and proliferation of advanced reticle inspection tools at high volume manufacturing wafer fabs. The fabs run incoming multi-surface contamination inspections on masks sent from the mask shop (Intel Mask Operations, IMO), and follow them up with periodic inspections/review to make sure any new contaminant or damage does not go undetected. When necessary, images of defects are electronically presented to engineers at IMO for review. Reticle requalification with these inspection tools reduces or eliminates the need for print test verification. We describe the tools and procedure used to streamline reticle requalification at the fabs and improve the feedback loop between the fabs and the mask shop.

  1. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  2. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  3. Data of rational process optimization for the production of a full IgG and its Fab fragment from hybridoma cells

    Directory of Open Access Journals (Sweden)

    Martina Röhm

    2016-09-01

    Full Text Available This data article focuses on the production of monoclonal antibodies (mAb and their fragments Fab and F(ab′2. Here, we present the data of an optimization protocol to improve the product yield of a hybridoma cell process using a Design of Experiment (DoE strategy. Furthermore, the data of the evaluated conditions were used to test feeding strategies in shake flasks. They were verified in controlled 2 L fed-batch bioreactor processes. Supplementing the culture medium with human insulin-like growth factor-I (IGF-I and Pluronic F-68, as well as a nutrient rich additive for fed-batch, resulted in improved cell growth correlating with a 7 day elongated process time and a 4.5 fold higher product titer. Finally, a rapid Fab generation protocol and the respective data are presented using different papain digestion and a camelid anti-kappa light chain VHH affinity ligand.

  4. 抗内毒素Fab'的制备%Production of Fab' of the chicken egg yolk antibody against lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    马思远; 张雅萍

    2007-01-01

    目的 研究抗内毒素卵黄免疫球蛋白(IgY)的活性片断Fab',探讨防治内毒素血症的新途径.方法 用内毒素(LPS)作为抗原免疫25周龄德国罗曼鸡,改良水溶法提取抗内毒素IgY,胃蛋白酶切后提取Fab'片断,光密度法测抗内毒素Fab'的浓度和含量、ELISA检测抗内毒素Fab'效价、SDS-聚丙烯酰胺凝胶电泳检测其分子量及纯度. 结果 抗内毒素Fab'含量为4.2 mg/mL蛋黄液,效价为1∶51 200,纯度为92%,相对分子质量为44 000. 结论 抗内毒素Fab'产量大、效价高、特异性强.

  5. Self-tuning and the derivation of the Fab Four

    CERN Document Server

    Charmousis, Christos; Padilla, Antonio; Saffin, Paul M

    2011-01-01

    We have recently proposed a special class of scalar tensor theories known as the Fab Four. These arose from attempts to analyse the cosmological constant problem within the context of Horndeski's most general scalar tensor theory. The Fab Four together give rise to a model of self-tuning, with the relevant solutions evading Weinberg's no-go theorem by relaxing the condition of Poincare invariance in the scalar sector. The Fab Four are made up of four geometric terms in the action with each term containing a free potential function of the scalar field. In this paper we rigorously derive this model from the general model of Horndeski, proving that the Fab Four represents the only classical scalar tensor theory of this type that has any hope of tackling the cosmological constant problem. We present the full equations of motion for this theory, and give an heuristic argument to suggest that one might be able to keep radiative corrections under control. We also give the Fab Four in terms of the potentials presente...

  6. Heterogeneity of monoclonal antibodies.

    Science.gov (United States)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Faldu, Dinesh; Chumsae, Chris; Sun, Joanne

    2008-07-01

    Heterogeneity of monoclonal antibodies is common due to the various modifications introduced over the lifespan of the molecules from the point of synthesis to the point of complete clearance from the subjects. The vast number of modifications presents great challenge to the thorough characterization of the molecules. This article reviews the current knowledge of enzymatic and nonenzymatic modifications of monoclonal antibodies including the common ones such as incomplete disulfide bond formation, glycosylation, N-terminal pyroglutamine cyclization, C-terminal lysine processing, deamidation, isomerization, and oxidation, and less common ones such as modification of the N-terminal amino acids by maleuric acid and amidation of the C-terminal amino acid. In addition, noncovalent associations with other molecules, conformational diversity and aggregation of monoclonal antibodies are also discussed. Through a complete understanding of the heterogeneity of monoclonal antibodies, strategies can be employed to better identify the potential modifications and thoroughly characterize the molecules.

  7. Targeting Mast Cells and Basophils with Anti-FcεRIα Fab-Conjugated Celastrol-Loaded Micelles Suppresses Allergic Inflammation.

    Science.gov (United States)

    Peng, Xia; Wang, Juan; Li, Xianyang; Lin, Lihui; Xie, Guogang; Cui, Zelin; Li, Jia; Wang, Yuping; Li, Li

    2015-12-01

    Mast cells and basophils are effector cells in the pathophysiology of allergic diseases. Targeted elimination of these cells may be a promising strategy for the treatment of allergic disorders. Our present study aims at targeted delivery of anti-FcεRIα Fab-conjugated celastrol-loaded micelles toward FcεRIα receptors expressed on mast cells and basophils to have enhanced anti-allergic effect. To achieve this aim, we prepared celastrol-loaded (PEO-block-PPO-block-PEO, Pluronic) polymeric nanomicelles using thin-film hydration method. The anti-FcεRIα Fab Fragment was then conjugated to carboxyl groups on drug-loaded micelles via EDC amidation reaction. The anti-FcεRIα Fab-conjugated celastrol-loaded micelles revealed uniform particle size (93.43 ± 12.93 nm) with high loading percentage (21.2 ± 1.5% w/w). The image of micelles showed oval and rod like. The anti-FcεRIα Fab-conjugated micelles demonstrated enhanced cellular uptake and cytotoxity toward target KU812 cells than non-conjugated micelles in vitro. Furthermore, diffusion of the drug into the cells allowed an efficient induction of cell apoptosis. In mouse model of allergic asthma, treatment with anti-FcεRIα Fab-conjugated micelles increased lung accumulation of micelles, and significantly reduced OVA-sIgE, histamine and Th2 cytokines (IL-4, IL-5, TNF-α) levels, eosinophils infiltration and mucus production. In addition, in mouse model of passive cutaneous anaphylaxis, anti-FcεRIα Fab-conjugated celastrol-loaded micelles treatment significantly decreased extravasated evan's in the ear. These results indicate that anti-FcεRIα Fab-conjugated celastrol-loaded micelles can target and selectively kill mast cells and basophils which express FcεRIα, and may be efficient reagents for the treatment of allergic disorders and mast cell related diseases.

  8. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  9. Data of rational process optimization for the production of a full IgG and its Fab fragment from hybridoma cells

    OpenAIRE

    Martina Röhm; Alina Handl; Maria König; Chrystelle Mavoungou; René Handrick; Katharina Schindowski

    2016-01-01

    This data article focuses on the production of monoclonal antibodies (mAb) and their fragments Fab and F(ab′)2. Here, we present the data of an optimization protocol to improve the product yield of a hybridoma cell process using a Design of Experiment (DoE) strategy. Furthermore, the data of the evaluated conditions were used to test feeding strategies in shake flasks. They were verified in controlled 2 L fed-batch bioreactor processes. Supplementing the culture medium with human insulin-like...

  10. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Liu, Hongcheng; Manuilov, Anton V; Chumsae, Chris; Babineau, Michelle L; Tarcsa, Edit

    2011-07-01

    A method including protein A purification, limited Lys-C digestion, and mass spectrometry analysis was used in the study to quantify a recombinant monoclonal antibody in cynomolgus monkey serum. The same antibody that was isotopically labeled was used as an internal standard. Interferences from serum proteins were first significantly reduced by protein A purification and then by limited Lys-C digestion of protein A bound IgG, including both monkey and the recombinant IgG. Fab fragment of the recombinant human IgG was analyzed directly by LC-MS, while monkey IgG and the Fc fragment of the recombinant human IgG remained bound to protein A resin. Quantitation was achieved by measuring the peak intensity of the Fab from the recombinant human IgG and comparing it to that of the Fab from the stable isotope-labeled internal standard. The results were in good agreement with the values from ELISA. LC-MS can therefore be used as a complementary approach to ELISA to quantify recombinant monoclonal antibodies in serum for pharmacokinetics studies and it can also be used where specific reagents such as antigens are not readily available for ELISA.

  11. Characterization of botulinum neurotoxin type A neutralizing monoclonal antibodies and influence of their half-lives on therapeutic activity.

    Directory of Open Access Journals (Sweden)

    Christelle Mazuet

    Full Text Available Botulinum toxins, i.e. BoNT/A to/G, include the most toxic substances known. Since botulism is a potentially fatal neuroparalytic disease with possible use as a biowarfare weapon (Centers for Disease Control and Prevention category A bioterrorism agent, intensive efforts are being made to develop vaccines or neutralizing antibodies. The use of active fragments from non-human immunoglobulins (F(ab'(2, Fab', scFv, chemically modified or not, may avoid side effects, but also largely modify the in vivo half-life and effectiveness of these reagents. We evaluated the neutralizing activity of several monoclonal anti-BoNT/A antibodies (mAbs. F(ab'(2 fragments, native or treated with polyethyleneglycol (PEG, were prepared from selected mAbs to determine their half-life and neutralizing activity as compared with the initial mAbs. We compared the protective efficiency of the different biochemical forms of anti-toxin mAbs providing the same neutralizing activity. Among fourteen tested mAbs, twelve exhibited neutralizing activity. Fragments from two of the best mAbs (TA12 and TA17, recognizing different epitopes, were produced. These two mAbs neutralized the A1 subtype of the toxin more efficiently than the A2 or A3 subtypes. Since mAb TA12 and its fragments both exhibited the greatest neutralizing activity, they were further evaluated in the therapeutic experiments. These showed that, in a mouse model, a 2- to 4-h interval between toxin and antitoxin injection allows the treatment to remain effective, but also suggested an absence of correlation between the half-life of the antitoxins and the length of time before treatment after botulinum toxin A contamination. These experiments demonstrate that PEG treatment has a strong impact on the half-life of the fragments, without affecting the effectiveness of neutralization, which was maintained after preparation of the fragments. These reagents may be useful for rapid treatment after botulinum toxin A

  12. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties.

    Science.gov (United States)

    Tiller, Thomas; Schuster, Ingrid; Deppe, Dorothée; Siegers, Katja; Strohner, Ralf; Herrmann, Tanja; Berenguer, Marion; Poujol, Dominique; Stehle, Jennifer; Stark, Yvonne; Heßling, Martin; Daubert, Daniela; Felderer, Karin; Kaden, Stefan; Kölln, Johanna; Enzelberger, Markus; Urlinger, Stefanie

    2013-01-01

    This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.

  13. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  14. Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments.

    Science.gov (United States)

    Blaise, Lydia; Wehnert, Anita; Steukers, Mieke P G; van den Beucken, Twan; Hoogenboom, Hennie R; Hufton, Simon E

    2004-11-24

    Yeast display is a powerful technology for the affinity maturation of human antibody fragments. However, the technology thus far has been limited by the size of antibody libraries that can be generated, as using current transformation protocols libraries of only between 10(6) and 10(7) are typically possible. We have recently shown that Fab antibodies can be displayed on the cell surface of Saccharomyces cerevisiae [van den Beucken, T., Pieters, H., Steukers, M., van der Vaart, M., Ladner, R.C., Hoogenboom, H.R., Hufton, S.E., 2003. Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett. 546, 288-294]. This discovery and the knowledge that Fab antibodies are heterodimeric suggest that independent repertoires of heavy chain (HC) and light chain (LC) can be constructed in haploid yeast strains of opposite mating type. These separate repertoires can then be combined by highly efficient yeast mating. Using this approach, we have rapidly generated a naive human Fab yeast display library of over 10(9) clones. In addition, utilizing error-prone polymerase chain reaction, we have diversified Fab sequences and generated combinatorial and hierarchical chain shuffled libraries with complexities of up to 5 x 10(9) clones. These libraries have been selected for higher affinity using a repeating process of mating-driven chain shuffling and flow cytometric sorting.

  15. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fab fragment specific... Test Systems § 866.5520 Immunoglobulin G (Fab fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fab fragment specific) immunological test system is a device that...

  16. 20 CFR 30.316 - How does the FAB issue a final decision on a claim?

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How does the FAB issue a final decision on a... Adjudicatory Process Hearings and Final Decisions on Claims § 30.316 How does the FAB issue a final decision on... waives any objections to all or part of the recommended decision, the FAB may issue a final...

  17. The role of indium-111 antimyosin (Fab) imaging as a noninvasive surveillance method of human heart transplant rejection

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, D.; Scibilia, G.; Macchiarelli, A.G.; Cassisi, A.; Tonelli, E.; Papalia, U.; Gallo, P.; Antolini, M.; Pitucco, G.; Reale, A. (Universita degli Studi di Roma I La Sapienza Policlinico Umberto I (Italy))

    1989-09-01

    The identification of rejection after heart transplantation in patients receiving cyclosporine immunosuppressive therapy requires the endomyocardial biopsy, an invasive method associated with a finite morbidity. To evaluate the role of indium-111 antimyosin (Fab) scintigraphy as a noninvasive surveillance method of heart transplant rejection, the Fab fragment of murine monoclonal antimyosin antibodies labeled with indium-111 was administered intravenously in 30 scintigraphic studies to 10 consecutive heart transplant recipients. Endomyocardial biopsy specimens were obtained 72 hours after each scintigraphic study. Nineteen scintigraphic studies had negative findings; no false negative finding was obtained. Eleven antimyosin scintigraphic studies had positive findings, and in these studies endomyocardial biopsy revealed mild rejection in two cases, moderate acute rejection with myocyte necrosis in two cases, myocyte necrosis as a consequence of ischemic injury in six cases, and possibly cytotoxic damage in one case. Antimyosin scintigraphy may represent a reliable screening method for the surveillance of heart transplant patients. In the presence of a negative finding from antimyosin scintigraphy, it may be possible to avoid endomyocardial biopsy. Conversely, in patients who have a positive finding from antimyosin scintigraphy, the endomyocardial biopsy is mandatory to establish the definitive diagnosis by histologic examination of the myocardium.

  18. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface.

    Science.gov (United States)

    Lewis, Steven M; Wu, Xiufeng; Pustilnik, Anna; Sereno, Arlene; Huang, Flora; Rick, Heather L; Guntas, Gurkan; Leaver-Fay, Andrew; Smith, Eric M; Ho, Carolyn; Hansen-Estruch, Christophe; Chamberlain, Aaron K; Truhlar, Stephanie M; Conner, Elaine M; Atwell, Shane; Kuhlman, Brian; Demarest, Stephen J

    2014-02-01

    Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.

  19. Pollution prevention opportunity assessment for MicroFab and SiFab facilities at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Morgan Evan

    2011-12-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the MicroFab and SiFab facilities at Sandia National Laboratories/New Mexico in Fiscal Year 2011. The primary purpose of this PPOA is to provide recommendations to assist organizations in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, the analyses performed, and recommended options for implementation. The Sandia National Laboratories Environmental Management System (EMS) and Pollution Prevention (P2) staff will continue to work with the organizations to implement the recommendations.

  20. Monoclonal antibody technologies and rapid detection assays

    Science.gov (United States)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  1. Production of anti-horse antibodies induced by IgG, F(ab')2 and Fab applied repeatedly to rabbits. Effect on antivenom pharmacokinetics.

    Science.gov (United States)

    Vázquez, Hilda; Olvera, Felipe; Alagón, Alejandro; Sevcik, Carlos

    2013-12-15

    We separated whole IgG, Fab and F(ab')2 fragments from horse plasma. We previously studied the pharmacokinetics of these immunoglobulins and fragments in rabbits and shown that Fab and F(ab')2 pharmacokinetics were well described by a three-exponential kinetics, while IgG and IgG(T) pharmacokinetics, however, deviated from the three-exponential kinetics 120 h after injecting a bolus of the immunotherapeutics; this departure was shown to be due to a surge of anti-horse antibodies occurring after 120 h, peaking at ≈260 h and decaying slowly afterward (Vázquez et al., 2010). We now describe antivenom pharmacokinetics and anti-horse IgG production in rabbits receiving three boluses (300 μg/kg, I.V.) of Fab, F(ab')2 or IgG separated by 21 days.

  2. Optimal conditions for the papain digestion of polyclonal ovine IgG for the production of bio-therapeutic Fab fragments.

    Science.gov (United States)

    Cresswell, Chrissie; Newcombe, Anthony R; Davies, Susannah; Macpherson, Ian; Nelson, Paul; O'Donovan, Kieran; Francis, Richard

    2005-10-01

    In the present paper, we describe a rapid method for the determination of optimum conditions for papain digestion of polyclonal ovine IgG (purified by Na(2)SO(4) precipitation) for the production of bio-therapeutic Fabs (antigen-binding fragments). To determine the optimum conditions for digestion, a factorial approach to the design of experiments was undertaken. The resulting experimental data were used to construct the mathematical models using Design Expert 6.06(R) (Stat-Ease, Minneapolis, MN, U.S.A.) to predict the optimum conditions for a robust IgG digestion step. Optimum conditions were evaluated experimentally, and the applicability of the conditions for large-scale manufacture of bio-therapeutic Fab fragments was assessed. The results and methods described in the present paper suggest that, provided the time and temperature are maintained at the high settings evaluated (24 h, 40 degrees C), the modelled data predict IgG digestion close to 100% for all the papain concentrations used. Provided papain is used at >2.5% (w/w), either time and/or temperature may be reduced. The results and methods described in the present paper may also be applicable to the generation of therapeutic Fab fragments from other immunoglobulins, including monoclonal antibodies purified from mammalian cell culture.

  3. Imaging of deep venous thrombosis in patients using a radiolabelled anti-D-dimer Fab' fragment ({sup 99m}Tc-DI-DD3B6/22-80B3): results of a phase I trial

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, David [University of Queensland, School of Medicine, Brisbane (Australia); Socrates, Angelides; Larcos, George [University of Sydney, Department of Medicine, Sydney (Australia)]|[Westmead Hospital, Department of Nuclear Medicine and Ultrasound, Westmead (Australia)]|[Westmead Hospital, Centre for Biomedical Imaging and Research, Westmead (Australia); Eisenberg, Paul [Amgen Inc, Thousand Oaks, CA (United States); Roach, Paul [University of Sydney, Department of Medicine, Sydney (Australia)]|[Royal North Shore Hospital, Nuclear Medicine, St. Leonards (Australia); Gerometta, Michael [Agen Biomedical Pty Ltd, Brisbane (Australia); Smart, Richard; Tsui, Wendy [St. George Hospital, Nuclear Medicine Department, Sydney (Australia)]|[University of New South Wales, Department of Medicine, Sydney (Australia); Scott, Andrew M. [Austin Hospital, Centre for PET, Melbourne (Australia)]|[Ludwig Institute, Melbourne (Australia)

    2009-02-15

    {sup 99m}Tc-DI-DD3B6/22-80B3 (ThromboView registered, hereafter abbreviated to {sup 99m}Tc-DI-80B3 Fab') is a radiolabelled humanised monoclonal Fab' fragment with affinity and specificity for D-dimer domains of cross-linked fibrin. Detection of thromboembolic events has been demonstrated in canine models. The study objectives were evaluation of safety and characterisation of biodistribution, immunogenicity and pharmacokinetic profile of increasing doses of {sup 99m}Tc-DI-80B3 Fab' in subjects with acute lower-limb DVT. Twenty-six patients with acute lower limb DVT were enrolled. Of these, 21 received a single intravenous dose of 0.5 mg (n = 6), 1.0 mg (n = 9) or 2 mg (n = 6) {sup 99m}Tc-DI-80B3 Fab'. Blood and urine samples and gamma camera images were collected to 24 h after administration for pharmacokinetic and dosimetry analysis. Vital signs, electrocardiography, hematological and biochemical data and human anti-human antibody (HAHA) levels were monitored for up to 30 days following administration. Patients were assigned to either planar or single photon emission computed tomographic (SPECT) imaging of the thorax at 4 h following injection. Thirty-five adverse events were reported in 15 of the 21 subjects. Those deemed possibly related to administration of {sup 99m}Tc-DI-80B3 Fab' included mild hypertension, mild elevation of LD (lactate dehydrogenase) and moderate elevation of ALT (alanine transaminase). HAHA assays remained negative. Pharmacokinetics and organ dosimetry were comparable to prior normal volunteer data. Localisation of Thromboview registered to sites of known thrombus was evident as early as 30 min post-injection. In subjects with acute DVT, {sup 99m}Tc-DI-80B3 Fab' was well tolerated with favourable characteristics for the detection of acute venous thrombosis. (orig.)

  4. Imaging of deep venous thrombosis in patients using a radiolabelled anti-D-dimer Fab' fragment (99mTc-DI-DD3B6/22-80B3): results of a phase I trial.

    Science.gov (United States)

    Macfarlane, David; Socrates, Angelides; Eisenberg, Paul; Larcos, George; Roach, Paul; Gerometta, Michael; Smart, Richard; Tsui, Wendy; Scott, Andrew M

    2009-02-01

    (99m)Tc-DI-DD3B6/22-80B3 (ThromboView, hereafter abbreviated to (99m)Tc-DI-80B3 Fab') is a radiolabelled humanised monoclonal Fab' fragment with affinity and specificity for D-dimer domains of cross-linked fibrin. Detection of thromboembolic events has been demonstrated in canine models. The study objectives were evaluation of safety and characterisation of biodistribution, immunogenicity and pharmacokinetic profile of increasing doses of (99m)Tc-DI-80B3 Fab' in subjects with acute lower-limb DVT. Twenty-six patients with acute lower limb DVT were enrolled. Of these, 21 received a single intravenous dose of 0.5 mg (n = 6), 1.0 mg (n = 9) or 2 mg (n = 6) (99m)Tc-DI-80B3 Fab'. Blood and urine samples and gamma camera images were collected to 24 h after administration for pharmacokinetic and dosimetry analysis. Vital signs, electrocardiography, hematological and biochemical data and human anti-human antibody (HAHA) levels were monitored for up to 30 days following administration. Patients were assigned to either planar or single photon emission computed tomographic (SPECT) imaging of the thorax at 4 h following injection. Thirty-five adverse events were reported in 15 of the 21 subjects. Those deemed possibly related to administration of (99m)Tc-DI-80B3 Fab' included mild hypertension, mild elevation of LD (lactate dehydrogenase) and moderate elevation of ALT (alanine transaminase). HAHA assays remained negative. Pharmacokinetics and organ dosimetry were comparable to prior normal volunteer data. Localisation of Thromboview to sites of known thrombus was evident as early as 30 min post-injection. In subjects with acute DVT, (99m)Tc-DI-80B3 Fab' was well tolerated with favourable characteristics for the detection of acute venous thrombosis.

  5. Safety, pharmacokinetic and dosimetry evaluation of the proposed thrombus imaging agent {sup 99m}Tc-DI-DD-3B6/22-80B3 Fab'

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, David J. [Royal Brisbane and Women' s Hospital, Department of Nuclear Medicine, Brisbane (Australia); Smart, Richard C. [St George Hospital, Department of Nuclear Medicine, Sydney (Australia); Tsui, Wendy W. [St George Hospital, Department of Nuclear Medicine, Sydney (Australia); University of New South Wales, School of Medicine, Sydney (Australia); Gerometta, Michael [AGEN Biomedical Limited, Research and Development, Brisbane (Australia); Eisenberg, Paul R. [Eli Lilly Company, Lilly Research Laboratories, Indianapolis (United States); Scott, Andrew M. [Austin Health, Centre for PET, Melbourne (Australia); Ludwig Institute for Cancer Research, Melbourne (Australia)

    2006-06-15

    {sup 99m}Tc-DI-DD-3B6/22-80B3 (Thromboview, hereafter abbreviated to {sup 99m}Tc-DI-80B3 Fab') is a humanised, radiolabelled monoclonal antibody Fab' fragment with high affinity and specificity for the D-dimer domain of cross-linked fibrin. The purpose of this study was to evaluate the safety, pharmacokinetics and dosimetry of four increasing doses of {sup 99m}Tc-DI-80B3 Fab' in healthy volunteers. Thirty-two healthy volunteers (18-70 years; 16 male, 16 female) received a single intravenous injection of 0.5, 1.0, 2.0 or 4.0 mg of {sup 99m}Tc-DI-80B3 Fab'. Safety outcomes (vital signs, electrocardiography, haematology, biochemistry, adverse events and development of human anti-human antibodies) were assessed up to 30 days post injection. Blood and urine samples were collected up to 48 h post injection. Gamma camera images were acquired at 0.5, 1, 2, 4, 6 and 24 h post injection. Dosimetry was performed using standard MIRD methodology. No adverse events considered to be drug related were observed. Human anti-human antibody was not detectable in any subject during the follow-up period. {sup 99m}Tc-DI-80B3 Fab' had a rapid initial plasma clearance (t{sub 1/2}{alpha}=1 h). The pharmacokinetic profile of the Fab' fragment was generally linear across the four dose cohorts. By 24 h, 30-35% of the administered radioactivity appeared in the urine. There was marked renal accumulation with time, but no specific uptake was identified within other normal tissues. The effective dose was 9 mSv/750 MBq. (orig.)

  6. Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis.

    Science.gov (United States)

    Li, Meng; Meng, Qiu; Fu, Huihui; Luo, Qixia; Gao, Haichun

    2016-11-15

    As type II fatty acid synthesis is essential for the growth of Escherichia coli, its many components are regarded as potential targets for novel antibacterial drugs. Among them, β-ketoacyl-acyl carrier protein (ACP) synthase (KAS) FabB is the exclusive factor for elongation of the cis-3-decenoyl-ACP (cis-3-C10-ACP). In our previous study, we presented evidence to suggest that this may not be the case in Shewanella oneidensis, an emerging model gammaproteobacterium renowned for its respiratory versatility. Here, we identified FabF1, another KAS, as a functional replacement for FabB in S. oneidensis In fabB(+) or desA(+) (encoding a desaturase) cells, which are capable of making unsaturated fatty acids (UFA), FabF1 is barely produced. However, UFA auxotroph mutants devoid of both fabB and desA genes can be spontaneously converted to suppressor strains, which no longer require exogenous UFAs for growth. Suppression is caused by a TGTTTT deletion in the region upstream of the fabF1 gene, resulting in enhanced FabF1 production. We further demonstrated that the deletion leads to transcription read-through of the terminator for acpP, an acyl carrier protein gene immediately upstream of fabF1 There are multiple tandem repeats in the region covering the terminator, and the TGTTTT deletion, as well as others, compromises the terminator efficacy. In addition, FabF2 also shows an ability to complement the FabB loss, albeit substantially less effectively than FabF1.

  7. Expression, purification and characterization of enoyl-ACP reductase II, FabK, from Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Hevener, Kirk E.; Mehboob, Shahila; Boci, Teuta; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)

    2012-10-25

    The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agent of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP{sup +} during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.

  8. 20 CFR 30.319 - May a claimant request reconsideration of a final decision of the FAB?

    Science.gov (United States)

    2010-04-01

    ... final decision of the FAB? 30.319 Section 30.319 Employees' Benefits OFFICE OF WORKERS' COMPENSATION... reconsideration of a final decision of the FAB? (a) A claimant may request reconsideration of a final decision of the FAB by filing a written request with the FAB within 30 days from the date of issuance of...

  9. Systems approach for the selection of micro-RNAs as therapeutic biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer

    Science.gov (United States)

    Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia

    2015-01-01

    miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.

  10. Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system.

    Science.gov (United States)

    Loh, Qiuting; Leong, Siew Wen; Tye, Gee Jun; Choong, Yee Siew; Lim, Theam Soon

    2015-05-15

    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.

  11. Protein crystallization with microseed matrix screening: application to human germline antibody Fabs

    Energy Technology Data Exchange (ETDEWEB)

    Obmolova, Galina, E-mail: gobmolov@its.jnj.com; Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L., E-mail: gobmolov@its.jnj.com [Janssen Research and Development LLC, 1400 McKean Road, Spring House, PA 19477 (United States)

    2014-07-23

    The power of microseed matrix screening is demonstrated in the crystallization of a panel of antibody Fab fragments. The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization.

  12. Challenges and opportunities for monoclonal antibody therapy in veterinary oncology.

    Science.gov (United States)

    Beirão, Breno C B; Raposo, Teresa; Jain, Saurabh; Hupp, Ted; Argyle, David J

    2016-12-01

    Monoclonal antibodies (mAbs) have come to dominate the biologics market in human cancer therapy. Nevertheless, in veterinary medicine, very few clinical trials have been initiated using this form of therapy. Some of the advantages of mAb therapeutics over conventional drugs are high specificity, precise mode of action and long half-life, which favour infrequent dosing of the antibody. Further advancement in the field of biomedical sciences has led to the production of different forms of antibodies, such as single chain antibody fragment, Fab, bi-specific antibodies and drug conjugates for use in diagnostic and therapeutic purposes. This review describes the potential for mAbs in veterinary oncology in supporting both diagnosis and therapy of cancer. The technical and financial hurdles to facilitate clinical acceptance of mAbs are explored and insights into novel technologies and targets that could support more rapid clinical development are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of highly reactive cysteine residues at less exposed positions in the Fab constant region for site-specific conjugation.

    Science.gov (United States)

    Shiraishi, Yasuhisa; Muramoto, Takashige; Nagatomo, Kazutaka; Shinmi, Daisuke; Honma, Emiko; Masuda, Kazuhiro; Yamasaki, Motoo

    2015-06-17

    Engineered cysteine residues are currently used for the site-specific conjugation of antibody-drug conjugates (ADC). In general, positions on the protein surface have been selected for substituting a cysteine as a conjugation site; however, less exposed positions (with less than 20% of accessible surface area [ASA]) have not yet been evaluated. In this study, we engineered original cysteine positional variants of a Fab fragment, with less than 20% of ASA, and evaluated their thiol reactivities through conjugation with various kinds of payloads. As a result, we have identified three original cysteine positional variants (heavy chain: Hc-A140C, light chain: Lc-Q124C and Lc-L201C), which exhibited similar monomer content, thermal stability, and antigen binding affinity in comparison to the wild-type Fab. In addition, the presence of cysteine in these positions made it possible for the Fab variants to react with variable-sized molecules with high efficiency. The favorable physical properties of the cysteine positional variants selected in our study suggest that less exposed positions, with less than 20% of ASA, provide an alternative for creating conjugation sites.

  14. Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Haustraete Jurgen

    2009-08-01

    Full Text Available Abstract Background Tumour associated antigens on the surface of tumour cells, such as MUC1, are being used as specific antibody targets for immunotherapy of human malignancies. In order to address the poor penetration of full sized monoclonal antibodies in tumours, intermediate sized antibodies are being developed. The cost-effective and efficient production of these molecules is however crucial for their further success as anti-cancer therapeutics. The methylotropic P. pastoris yeast grows in cheap mineral media and is known for its short process times and the efficient production of recombinant antibody fragments like scFvs, bivalent scFvs and Fabs. Results Based on the anti-MUC1 PH1 Fab, we have developed bivalent PH1 bibodies and trivalent PH1 tribodies of intermediate molecular mass by adding PH1 scFvs to the C-terminus of the Fab chains using flexible peptide linkers. These recombinant antibody derivatives were efficiently expressed in both mammalian and P. pastoris cells. Stable production in NS0 cells produced 130.5 mg pure bibody and 27 mg pure tribody per litre. This high yield is achieved as a result of the high overall purification efficiency of 77%. Expression and purification of PH1 bibodies and tribodies from Pichia supernatant yielded predominantly correctly heterodimerised products, free of light chain homodimers. The yeast-produced bi- and tribodies retained the same specific activity as their mammalian-produced counterparts. Additionally, the yields of 36.8 mg pure bibody and 12 mg pure tribody per litre supernatant make the production of these molecules in Pichia more efficient than most other previously described trispecific or trivalent molecules produced in E. coli. Conclusion Bi- and tribody molecules are efficiently produced in P. pastoris. Furthermore, the yeast produced molecules retain the same specific affinity for their antigen. These results establish the value of P. pastoris as an efficient alternative expression

  15. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.;

    2015-01-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  16. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis.

    Science.gov (United States)

    Jin, Jing; Liss, Nathan M; Chen, Dong-Hua; Liao, Maofu; Fox, Julie M; Shimak, Raeann M; Fong, Rachel H; Chafets, Daniel; Bakkour, Sonia; Keating, Sheila; Fomin, Marina E; Muench, Marcus O; Sherman, Michael B; Doranz, Benjamin J; Diamond, Michael S; Simmons, Graham

    2015-12-22

    We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV) infection. Potently neutralizing antibodies (NAbs) blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G) at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  17. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jing Jin

    2015-12-01

    Full Text Available We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV infection. Potently neutralizing antibodies (NAbs blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  18. Structural Basis of HIV-1 Neutralization by Affinity Matured Fabs Directed against the Internal Trimeric Coiled-Coil of gp41

    Energy Technology Data Exchange (ETDEWEB)

    Gustchina, Elena; Li, Mi; Louis, John M.; Anderson, D.Eric; Lloyd, John; Frisch, Christian; Bewley, Carole A.; Gustchina, Alla; Wlodawer, Alexander; Clore, G.Marius (NIH); (NCI); (AbD Serotec)

    2010-12-03

    The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naive human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing. The crystal structures reveal important differences in the conformations of the CDR-H2 loops in the complexes that propagate into other regions of the antigen-antibody interface, and suggest that both neutralization properties and affinity for the target can be attributed, at least in part, to the differences in the interactions of the CDR-H2 loops with the antigen. Furthermore, modeling of the complex of an N-HR trimer with three Fabs suggests that the CDR-H2 loop may be involved in close intermolecular contacts between neighboring antibody molecules, and that such contacts may hinder the formation of complexes between the N-HR trimer and more than one antibody molecule depending on the conformation of the bound CDR-H2 loop which is defined by its interactions with antigen. Comparison with the crystal structure of the complex of 5-Helix with another neutralizing monoclonal antibody known as D5, derived using an entirely different antibody library and panning procedure, reveals remarkable convergence in the optimal sequence and conformation of the CDR-H2 loop.

  19. The analysis of VH and VL genes repertoires of Fab library built from peripheral B cells of human rabies virus vaccinated donors.

    Science.gov (United States)

    Houimel, Mehdi

    2014-08-01

    A human combinatorial Fab antibody library was generated from immune repertoire based on peripheral B cells of ten rabies virus vaccinated donors. The analysis of random Fab fragments from the unselected library presented some bias of V gene usage towards IGHV-genes and IGLV-gen families. The screening of the Fab library on rabies virus allowed specific human Fab antibody fragments characterized for their gene encoding sequences, binding and specificities to RV. Genetic analysis of selected Fabs indicated that the IGHV and IGLV differ from the germ-line sequence. At the level of nucleotide sequences, the IGHV and IGLV domains were found to share 74-92% and 90-96% homology with sequences encoded by the corresponding human germ-line genes respectively. IGHV domains are characterized most frequently by IGHV3 genes, and large proportions of the anti-RV heavy chain IGHV domains are obtained following a VDJ recombination process that uses IGHD3, IGHD2, IGHD1 and IGHD6 genes. IGHJ3 and IGHJ4 genes are predominantly used in RV-Fab. The IGLV domains are dominated by IGKV1, IGLV1 and IGLV3 genes. Numerous somatic hypermutations in the RV-specific IGHV are detected, but only limited amino acid replacement in most of the RV-specific IGLV particularly in those encoded by J proximal IGLV or IGKV genes are found. Furthermore, IGHV3-IGKV1, IGHV3-IGVL1, and IGHV3-IGLV3 germ-line family pairings are preferentially enriched after the screening on rabies virus.

  20. Production of a PEGylated Fab' of the anti-LINGO-1 Li33 antibody and assessment of its biochemical and functional properties in vitro and in a rat model of remyelination.

    Science.gov (United States)

    Pepinsky, R Blake; Walus, Lee; Shao, Zhaohui; Ji, Benxiu; Gu, Sheng; Sun, Yaping; Wen, Dingyi; Lee, Xinhua; Wang, Qin; Garber, Ellen; Mi, Sha

    2011-02-16

    The use of LINGO-1 antagonists to promote repair of damaged myelin is an emerging therapeutic opportunity for treatment of CNS diseases caused by demyelination such as multiple sclerosis. The Li33 anti-LINGO-1 antibody is a potent inducer of myelination in vitro and in vivo, but aggregation issues prevented the engineering of an optimal development candidate. PEGylated Li33 Fab' is one of several versions of the Li33 antibody that is being investigated in an attempt to identify the most favorable anti-LINGO-1 antibody design. For targeted PEGylation, a Li33 Fab' construct was engineered with a single unpaired cysteine in the heavy-chain hinge sequence. The Fab' was expressed in CHO cells, purified, and PEGylated with 20 kDa methoxy-poly(ethylene glycol) maleimide using a reaction strategy optimized to improve the yield of the PEG-Fab'. Biochemical analysis of the Li33 PEG-Fab' verified the selectivity of the PEGylation reaction. The in vitro and in vivo attributes of the PEG-Fab' were benchmarked against a Li33 full antibody. Both the Li33 PEG-Fab' and intact antibody bound LINGO-1 with nanomolar affinity, promoted myelination in an in vitro signaling assay, and promoted the repair of damaged myelin in the rat lysolecithin model. These studies extend our understanding of the biological activity of the Li33 mAb and validate the use of an anti-LINGO-1 PEG-Fab' for treatment of CNS diseases caused by demyelination.

  1. Design, synthesis and antibacterial activities of 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiol derivatives containing Schiff base formation as FabH inhibitory.

    Science.gov (United States)

    Zhang, Fei; Wen, Qing; Wang, She-Feng; Shahla Karim, Baloch; Yang, Yu-Shun; Liu, Jia-Jia; Zhang, Wei-Ming; Zhu, Hai-Liang

    2014-01-01

    A series of novel schiff base derivatives (H(1)-H(20)) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H(17) showed the most potent antibacterial activity with MIC values of 0.39-1.56μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2μM, being better than the positive control Kanamycin B with IC50 of 6.3μM. Furthermore, docking simulation was performed to position compound H(17) into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H(17) has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.

  2. Studies towards the improvement of an anti-cocaine monoclonal antibody for treatment of acute overdose.

    Science.gov (United States)

    Zhou, Bin; Eubanks, Lisa M; Jacob, Nicholas T; Ellis, Beverly; Roberts, Amanda J; Janda, Kim D

    2016-10-15

    There is currently no clinically-approved antidote for cocaine overdose. Efforts to develop a therapy via passive immunization have resulted in a human monoclonal antibody, GNCgzk, with a high affinity for cocaine (Kd=0.18nM). Efforts to improve the production of antibody manifolds based on this antibody are disclosed. The engineering of an HRV 3C protease cleavage site into the GNCgzk IgG has allowed for increased production of a F(ab')2 with a 20% superior capacity to reduce mortality for cocaine overdose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    Science.gov (United States)

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  4. Characterization of molecular mechanisms controlling fabAB transcription in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Herbert P Schweizer

    Full Text Available BACKGROUND: The FabAB pathway is one of the unsaturated fatty acid (UFA synthesis pathways for Pseudomonas aeruginosa. It was previously noted that this operon was upregulated in biofilms and repressed by exogenous UFAs. Deletion of a 30 nt fabA upstream sequence, which is conserved in P. aeruginosa, P. putida, and P. syringae, led to a significant decrease in fabA transcription, suggesting positive regulation by an unknown positive regulatory mechanism. METHODS/PRINCIPAL FINDINGS: Here, genetic and biochemical approaches were employed to identify a potential fabAB activator. Deletion of candidate genes such as PA1611 or PA1627 was performed to determine if any of these gene products act as a fabAB activator. However, none of these genes were involved in the regulation of fabAB transcription. Use of mariner-based random mutagenesis to screen for fabA activator(s showed that several genes encoding unknown functions, rpoN and DesA may be involved in fabA regulation, but probably via indirect mechanisms. Biochemical attempts performed did fail to isolate an activator of fabAB operon. CONCLUSION/SIGNIFICANCE: The data suggest that fabA expression might not be regulated by protein-binding, but by a distinct mechanism such as a regulatory RNA-based mechanism.

  5. Crystallization and molecular-replacement studies of the monoclonal antibody mAbR310 specific for the (R)-HNE-modified protein

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Sohei, E-mail: itosohei@u-shizuoka-ken.ac.jp [Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka 422-8526 (Japan); Tatsuda, Emi [Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601 (Japan); Ishino, Kousuke; Suzuki, Kenichiro; Sakai, Hiroshi [Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka 422-8526 (Japan); Uchida, Koji [Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601 (Japan); Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka 422-8526 (Japan)

    2006-06-01

    Antigen-free Fab fragment of mAbR310, which recognizes (R)-HNE modified protein, has been crystallized. Initial phases have been obtained by molecular replacement. 4-Hydroxy-2-nonenal (HNE), a major racemic product of lipid peroxidation, reacts with histidine to form a stable HNE–histidine Michael addition-type adduct possessing three chiral centres in the cyclic hemiacetal structure. Monoclonal antibodies against HNE-modified protein have been widely used for assessing oxidative stress in vitro and in vivo. Here, the purification, crystallization and preliminary crystallographic analysis of a Fab fragment of novel monoclonal antibody R310 (mAbR310), which recognizes (R)-HNE-modified protein, are reported. The Fab fragment of mAbR310 was obtained by digestion with papain, purified and crystallized. Using hanging-drop vapour-diffusion crystallization techniques, crystals of mAbR310 Fab were obtained. The crystal belongs to the monoclinic space group C2 (unit-cell parameters a = 127.04, b = 65.31, c = 64.29 Å, β = 118.88°) and diffracted X-rays to a resolution of 1.84 Å. The asymmetric unit contains one molecule of mAbR310, with a corresponding crystal volume per protein weight of 2.51 Å{sup 3} Da{sup −1} and a solvent content of 51.0%.

  6. Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes.

    Science.gov (United States)

    Shafreen, Rajamohmed Beema; Pandian, Shunmugiah Karutha

    2013-09-01

    Streptococcus pyogenes (SP) is the major cause of pharyngitis accompanied by strep throat infections in humans. 3-keto acyl reductase (FabG), an important enzyme involved in the elongation cycle of the fatty acid pathway of S. pyogenes, is essential for synthesis of the cell-membrane, virulence factors and quorum sensing-related mechanisms. Targeting SPFabG may provide an important aid for the development of drugs against S. pyogenes. However, the absence of a crystal structure for FabG of S. pyogenes limits the development of structure-based drug designs. Hence, in the present study, a homology model of FabG was generated using the X-ray crystallographic structure of Aquifex aeolicus (PDB ID: 2PNF). The modeled structure was refined using energy minimization. Furthermore, active sites were predicted, and a large dataset of compounds was screened against SPFabG. The ligands were docked using the LigandFit module that is available from Discovery Studio version 2.5. From this list, 13 best hit ligands were chosen based on the docking score and binding energy. All of the 13 ligands were screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. From this, the two best descriptors, along with one descriptor that lay outside the ADMET plot, were selected for molecular dynamic (MD) simulation. In vitro testing of the ligands using biological assays further substantiated the efficacy of the ligands that were screened based on the in silico methods.

  7. Crystal structure of human TWEAK in complex with the Fab fragment of a neutralizing antibody reveals insights into receptor binding.

    Directory of Open Access Journals (Sweden)

    Alfred Lammens

    Full Text Available The tumor necrosis factor-like weak inducer of apoptosis (TWEAK is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics. To gain insights into this important signaling pathway, we determined the structure of soluble human TWEAK in complex with the Fab fragment of an antibody selected for inhibition of receptor binding. In the crystallized complex TWEAK is bound by three Fab fragments of the neutralizing antibody. Homology modeling shows that Fab binding overlaps with the putative Fn14 binding site of TWEAK. Docking of the Fn14 cysteine rich domain (CRD to that site generates a highly complementary interface with perfectly opposing charged and hydrophobic residues. Taken together the presented structure provides new insights into the biology of TWEAK and the TWEAK/Fn14 pathway, which will help to optimize the therapeutic strategy for treatment of related cancer types and autoimmune diseases.

  8. Spherical Cows in the Sky with Fab Four

    CERN Document Server

    Kaloper, Nemanja

    2013-01-01

    We explore spherically symmetric static solutions in a subclass of unitary scalar-tensor theories of gravity, called the `Fab Four' models. The weak field large distance solutions may be phenomenologically viable, but only if the Gauss-Bonnet term is negligible. Only in this limit will the Vainshtein mechanism work consistently. Further, classical constraints and unitarity bounds constrain the models quite tightly. Nevertheless, in the limits where the range of individual terms at large scales is respectively Kinetic Braiding, Horndeski, and Gauss-Bonnet, the horizon scale effects may occur while the theory satisfies Solar system constraints and, marginally, unitarity bounds. On the other hand, to bring the cutoff down to below a millimeter constrains all the couplings scales such that `Fab Fours' can't be heard outside of the Solar system.

  9. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    Science.gov (United States)

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  10. Preparation of F(ab')2 fragments of immunoglobulin G.

    Science.gov (United States)

    Killion, J J; Holtgrewe, E M

    1983-11-01

    We describe a simple protocol for the preparation of F(ab')2 fragments of immunoglobulin G, based upon the known Fc- binding properties of protein A-Sepharose. The fragment preparations of xenogeneic and allogeneic anti-IgG were noncytotoxic to intact target cells, and were able to block the cytotoxicity of intact antibody. This method should therefore be useful for functional studies not requiring biochemical homogeneity.

  11. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  12. New Insights into the Functional Behavior of Antibodies as Revealed by Binding Studies on an Anti-Uranium Monoclonal Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Diane A.; Xia Li; Haini Yu; Blake, Robert C.

    2004-03-17

    As part of an ongoing effort to develop immunoassays for chelated uranium(VI) on a hand-held flow fluorimeter, an anti-uranium monoclonal antibody designated as 8A11 was fluorescently labeled using two different strategies. When 8A11 was coupled via reactive lysines to either ALEXATM 488 or Cy5TM, the resulting fluorescent antibody conjugate exhibited positive cooperativity in the presence of its antigen, U(VI) chelated with 2,9-dicarboxy-1,10-phenanthroline (U(VI)-DCP). That is, when one of the two binding sites on the covalently modified 8A11 was occupied with bound antigen, the affinity of the remaining site on the antibody for U(VI)-DCP appeared to increase. Unmodified 8A11 bound U(VI)-DCP with the expected hyperbolic dependence on the concentration of antigen, consistent with independent and equal binding of ligand at both sites. Proteolytic cleavage of the fluorescently conjugated 8A11 to produce the fluorescent monovalent Fab fragment yielded an active preparation that now bound U(VI)-DCP with no evidence of positive cooperativity. Although, in principle, any divalent antibody has the potential to exhibit positive cooperativity in its binding interactions with its antigen, very little literature precedent for this type of behavior exists. Native 8A11 was also noncovalently labeled with highly fluorescent ZENONTM reagents. These reagents are fluorescently-labeled Fab fragments of goat anti-mouse antibodies that bind to the Fc portion of 8A11. These high-affinity, monovalent fluorescent reagents permitted the intact 8A11 mouse antibody to be labeled in situ with no covalent modifications. Incubation of the 8A11 with ZENON 647 produced a fluorescent protein complex that showed an 8-fold higher affinity for U(VI)-DCP than did the free 8A11 alone. Again, very few literature precedents exist for this phenomenon, where agents that bind to the Fc portion of an intact antibody change the affinity of the antibody for the antigen at the structurally distant Fab portion

  13. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    Science.gov (United States)

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening.

  14. Strategy optimization for mask rule check in wafer fab

    Science.gov (United States)

    Yang, Chuen Huei; Lin, Shaina; Lin, Roger; Wang, Alice; Lee, Rachel; Deng, Erwin

    2015-07-01

    Photolithography process is getting more and more sophisticated for wafer production following Moore's law. Therefore, for wafer fab, consolidated and close cooperation with mask house is a key to achieve silicon wafer success. However, generally speaking, it is not easy to preserve such partnership because many engineering efforts and frequent communication are indispensable. The inattentive connection is obvious in mask rule check (MRC). Mask houses will do their own MRC at job deck stage, but the checking is only for identification of mask process limitation including writing, etching, inspection, metrology, etc. No further checking in terms of wafer process concerned mask data errors will be implemented after data files of whole mask are composed in mask house. There are still many potential data errors even post-OPC verification has been done for main circuits. What mentioned here are the kinds of errors which will only occur as main circuits combined with frame and dummy patterns to form whole reticle. Therefore, strategy optimization is on-going in UMC to evaluate MRC especially for wafer fab concerned errors. The prerequisite is that no impact on mask delivery cycle time even adding this extra checking. A full-mask checking based on job deck in gds or oasis format is necessary in order to secure acceptable run time. Form of the summarized error report generated by this checking is also crucial because user friendly interface will shorten engineers' judgment time to release mask for writing. This paper will survey the key factors of MRC in wafer fab.

  15. Disulfide cross-linked Fab-aggregates: preparation and biodistribution.

    Science.gov (United States)

    Dalkara, S; Petrov, A; Trubetskoy, V S; Khaw, B A; Torchilin, V P

    1998-01-01

    The high-molecular-weight soluble aggregates of Fab fragments of murine antibodies against cardiac myosin were prepared as a potential long-circulating and low immunogenic pharmaceutical carriers by conjugation of thiolated Fab and Fab modified with succinimidyl 3-(2-pyridyldithio)propionate. The clearance time and biodistribution of 111In-radiolabeled aggregates were studied in normal and nude-mice bearing human breast tumor implant and in rabbits with experimental myocardial infarction. The aggregates had a prolonged circulation time (half clearance time ca. 3-5 h) and ability to concentrate in the tumor and in the necrotic area of infarcted myocardium. Similar tumor-to-normal and infarct-to-normal accumulation ratios (ca. 3 h in both cases) suggest that combination of long circulation with impaired filtration in necrotic tissues is responsible for this accumulation rather than a specific interaction. The aggregates prepared may serve as long-circulating drug carriers able to deliver pharmaceuticals into areas with affected and leaky vasculature.

  16. A novel bispecific antibody, S-Fab, induces potent cancer cell killing.

    Science.gov (United States)

    Li, Li; He, Ping; Zhou, Changhua; Jing, Li; Dong, Bin; Chen, Siqi; Zhang, Ning; Liu, Yawei; Miao, Ji; Wang, Zhong; Li, Qing

    2015-01-01

    Bispecific antibodies that engage immune cells to kill cancer cells have been actively studied in cancer immunotherapy. In this study, we present a novel bispecific format, S-Fab, fabricated by linking a single-domain anti-carcinoembryonic antigen VHH to a conventional anti-CD3 Fab. In contrast to most bispecific antibodies, the S-Fab bispecific antibody can be efficiently expressed and purified from bacteria. The purified S-Fab is stable in serum and is able to recruit T cells to drive potent cancer cell killing. In xenograft models, the S-Fab antibody suppresses tumor growth in the presence of human immune cells. Our study suggested that the bispecific S-Fab format can be applied to a wide range of immunotherapies.

  17. Recent developments in monoclonal antibody radiolabeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Mease, R.C.

    1989-01-01

    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs.

  18. Efficient generation of human IgA monoclonal antibodies.

    Science.gov (United States)

    Lorin, Valérie; Mouquet, Hugo

    2015-07-01

    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  19. Assessment of Digoxin-Specific Fab Fragment Dosages in Digoxin Poisoning.

    Science.gov (United States)

    Nordt, Sean Patrick; Clark, Richard F; Machado, Carol; Cantrell, F Lee

    2016-01-01

    Digoxin poisoning still remains a common cause of morbidity and mortality. Fortunately, digoxin-specific Fab fragments are commercially available as an antidote. However, these Fab fragments are several thousand dollars per vial. There is a standardized formula to calculate appropriate Fab fragment dosage based on the serum digoxin concentration. This can greatly reduce the amount of Fab fragment administered. There is also an empiric dosing guideline recommending 6-10 vials be given; however, this may result in higher amounts of Fab fragments being administered than required. We performed this study to assess the amounts of digoxin-specific Fab fragments administered in the treatment of digoxin poisonings recorded in a poison control system database from January 1, 2000, to December 31, 2009, in which digoxin serum concentrations were available. This was a retrospective study of 278 patients, 107 with acute poisonings (group A) and 171 following chronic poisoning (group B). In group A, the calculated Fab dose was higher than the calculated dose based on available concentrations in 39 (36%) of group A and 15 (9%) of group B patients. The average wholesale price cost of the excessive dosages ranged from $4818 to as high as $50,589 per patient. Our data suggests that clinician education on digoxin poisoning and the use of the standardized formula to calculate the Fab dose may decrease over utilization and decrease costs associated with the administration of digoxin-specific Fab fragments in the treatment of digoxin poisonings.

  20. Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Liu, Yinghui; Feng, Yanbin; Cao, Xupeng; Li, Xia; Xue, Song

    2015-10-07

    PhaB (acetoacetyl-CoA reductase) catalyzes the reduction of acetoacetyl-CoA to (R)-3-hydroxybutyryl-CoA in polyhydroxybutyrate (PHB) synthesis and FabG (3-ketoacyl-acyl-carrier-protein reductase) catalyzes the β-ketoacyl-ACP to yield (R)-3-hydroxyacyl-ACP in fatty acid biosynthesis. Both of them have been classified into the same group EC 1.1.1. PhaB is limited with substrate specificities, while FabG was considered as a potential PhaB due to broad substrate selectivity despite of low activity. Here, X-ray crystal structures of FabG and PhaB from the photosynthetic microorganism Synechocystis sp. PCC 6803 were resolved. Based on them, a high-performance FabG on acyl-CoA directed by structural evolution was constructed that may serve as a critical enzyme to partition carbon flow from fatty acid synthesis to PHA. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Complex Binding of the FabR Repressor of Bacterial Unsaturated Fatty Acid Biosynthesis to its Cognate Promoters

    OpenAIRE

    Feng, Youjun; Cronan, John E.

    2011-01-01

    Two transcriptional regulators, the FadR activator and the FabR repressor control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was bloc...

  2. Monoclonal gammopathy of undetermined significance

    National Research Council Canada - National Science Library

    Kyle, Robert A; Vincent Rajkumar, S

    2006-01-01

    Summary Significant advances have been made in our understanding of the natural history, pathogenesis, mechanisms of progression and prognosis of monoclonal gammopathy of undetermined significance (MGUS...

  3. Selective cytotoxicity of murine monoclonal antibody LAM2 against human small-cell carcinoma in the presence of human complement: possible use for in vitro elimination of tumor cells from bone marrow.

    Science.gov (United States)

    Stahel, R A; Mabry, M; Sabbath, K; Speak, J A; Bernal, S D

    1985-05-15

    LAM2 is a murine IgM monoclonal antibody (MAb) which binds strongly to the cell membrane of human lung small-cell carcinoma (SCC) and squamous-cell carcinoma but not to normal bone-marrow cells. The cytotoxicity of this antibody in the presence of human complement was investigated in vitro by chromium release and clonogenic assays. The optimal treatment conditions included incubation with antibody for 30 min at 37 degrees C followed by 3 additions of human complement 30 min apart. Cell lysis ranged from 94 to 98% in 4 SCC cell lines at antibody dilutions of 1:100: a lower level of lysis (60%) occurred in a lung squamous-cell carcinoma cell line. The cytotoxic effect was strictly complement-dependent. No cytotoxic effect was seen with other human cell lines including lung adenocarcinoma, lung large-cell carcinoma, myeloid leukemia, and lymphoblastic leukemia. No lysis was seen with nucleated marrow cells from healthy volunteers. Normal marrow cells in excess did not inhibit SCC cell lysis. Incubation with antibody and complement resulted in a 100-fold reduction of colony formation of SCC cells, but did not reduce the number of colonies of marrow-cell precursors, including CFU-GEMM, BFU-E, and CFU-C. The selective cytotoxicity of LAM2 antibody to SCC, but not to normal bone-marrow cells, suggests that this antibody may be useful for the in vitro elimination of SCC cells from the bone marrow.

  4. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Charles E. Rengifo

    2013-01-01

    Full Text Available Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC and non-small-cell lung carcinoma (NSCLC, respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment.

  5. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy.

    Science.gov (United States)

    Rengifo, Charles E; Blanco, Rancés; Blanco, Damián; Cedeño, Mercedes; Frómeta, Milagros; Calzado, Enrique Rengifo

    2013-01-01

    Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF) are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab) in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment.

  6. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

    OpenAIRE

    Jeffrey D. Nanson; Himiari, Zainab; Swarbrick, Crystall M. D.; Forwood, Jade K.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier protein synthases, FabB, FabF, and FabH, catalyse the elongation of fatty acids as part of the type II f...

  7. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Davide Corti

    Full Text Available BACKGROUND: The isolation of human monoclonal antibodies (mAbs that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16 specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194 bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20 with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.

  8. Rational optimization of drug-target residence time: Insights from inhibitor binding to the S. aureus FabI enzyme-product complex

    Science.gov (United States)

    Chang, Andrew; Schiebel, Johannes; Yu, Weixuan; Bommineni, Gopal R.; Pan, Pan; Baxter, Michael V.; Khanna, Avinash; Sotriffer, Christoph A.; Kisker, Caroline; Tonge, Peter J.

    2013-01-01

    Drug-target kinetics has recently emerged as an especially important facet of the drug discovery process. In particular, prolonged drug-target residence times may confer enhanced efficacy and selectivity in the open in vivo system. However, the lack of accurate kinetic and structural data for series of congeneric compounds hinders the rational design of inhibitors with decreased off-rates. Therefore, we chose the Staphylococcus aureus enoyl-ACP reductase (saFabI) - an important target for the development of new anti-staphylococcal drugs - as a model system to rationalize and optimize the drug-target residence time on a structural basis. Using our new, efficient and widely applicable mechanistically informed kinetic approach, we obtained a full characterization of saFabI inhibition by a series of 20 diphenyl ethers complemented by a collection of 9 saFabI-inhibitor crystal structures. We identified a strong correlation between the affinities of the investigated saFabI diphenyl ether inhibitors and their corresponding residence times, which can be rationalized on a structural basis. Due to its favorable interactions with the enzyme, the residence time of our most potent compound exceeds 10 hours. In addition, we found that affinity and residence time in this system can be significantly enhanced by modifications predictable by a careful consideration of catalysis. Our study provides a blueprint for investigating and prolonging drug-target kinetics and may aid in the rational design of long-residence-time inhibitors targeting the essential saFabI enzyme. PMID:23697754

  9. A monoclonal antibody against leptin.

    Science.gov (United States)

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin.

  10. Functionally Approached Body (FAB) Strategies for Young Children Who Have Behavioral and Sensory Processing Challenges

    Science.gov (United States)

    Pagano, John

    2005-01-01

    Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…

  11. Phage-display libraries of murine and human antibody Fab fragments

    DEFF Research Database (Denmark)

    Engberg, J; Andersen, P S; Nielsen, L K

    1996-01-01

    We provide efficient and detailed procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. In addition, protocols for producing and using ultra-electrocompetent cells, for producing Fab...

  12. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1.

    Science.gov (United States)

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2015-01-01

    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  13. The Emerging Importance of IgG Fab Glycosylation in Immunity.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Hafkenscheid, Lise; Rispens, Theo; Rombouts, Yoann

    2016-02-15

    Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity.

  14. 75 FR 21353 - Intel Corporation, Fab 20 Division, Including On-Site Leased Workers From Volt Technical...

    Science.gov (United States)

    2010-04-23

    ... Employment and Training Administration Intel Corporation, Fab 20 Division, Including On-Site Leased Workers... for Worker Adjustment Assistance on March 10, 2010, applicable to workers of Intel Corporation, Fab 20... the Hillsboro, Oregon location of Intel Corporation, Fab 20 Division. The Department has...

  15. Characterization of deamidation at Asn138 in L-chain of recombinant humanized Fab expressed from Pichia pastoris.

    Science.gov (United States)

    Ohkuri, Takatoshi; Murase, Eri; Sun, Shu-Lan; Sugitani, Jun; Ueda, Tadashi

    2013-10-01

    A method was previously established for evaluating Asn deamidation by matrix-assisted laser desorption/ionization time of flight-mass spectrometry using endoproteinase Asp-N. In this study, we demonstrated that this method could be applied to the identification of the deamidation site of the humanized fragment antigen-binding (Fab). First, a system for expressing humanized Fab from methylotrophic yeast Pichia pastoris was constructed, resulting in the preparation of ∼30 mg of the purified humanized Fab from 1 l culture. Analysis of the L-chain derived from recombinant humanized Fab that was heated at pH 7 and 100°C for 1 h showed the deamidation at Asn138 in the constant region. Then, we prepared L-N138D Fab and L-N138A Fab and examined their properties. The circular dichroism (CD) spectrum of the L-N138D Fab was partially different from that of the wild-type Fab. The measurement of the thermostability showed that L-N138D caused a significant decrease in the thermostability of Fab. On the other hand, the CD spectrum and thermostability of L-N138A Fab showed the same behaviour as the wild-type Fab. Thus, it was suggested that the introduction of a negative charge at position 138 in the L-chain by the deamidation significantly affected the stability of humanized Fab.

  16. 20 CFR 30.320 - Can a claim be reopened after the FAB has issued a final decision?

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Can a claim be reopened after the FAB has... AMENDED Adjudicatory Process Reopening Claims § 30.320 Can a claim be reopened after the FAB has issued a final decision? (a) At any time after the FAB has issued a final decision pursuant to § 30.316,...

  17. Fab-based bispecific antibody formats with robust biophysical properties and biological activity.

    Science.gov (United States)

    Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J

    2015-01-01

    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.

  18. Comparing domain interactions within antibody Fabs with kappa and lambda light chains.

    Science.gov (United States)

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W; Dickey, Mark; Froning, Karen; Conner, Elaine M; Cujec, Thomas P; Demarest, Stephen J

    2016-10-01

    IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.

  19. Monoclonal gammopathy and spurious hypophosphatemia.

    Science.gov (United States)

    Weisbord, Steven D; Chaudhuri, Anita; Blauth, Kathleen; DeRubertis, Frederick R

    2003-02-01

    Spuriously low levels of plasma phosphate have been reported previously in patients with multiple myeloma and polyclonal gammopathy. We report 2 cases of spurious hypophosphatemia in patients with elevated concentrations of serum monoclonal immunoglobulins, 1 of whom had monoclonal gammopathy of undetermined significance and the other multiple myeloma. Plasma phosphate concentrations were measured using nondeproteinized and deproteinized plasma samples from patients with monoclonal gammopathies. In 2 patients with monoclonal gammopathy, the levels of plasma inorganic phosphate were reported as <1.0 mg/dL when the phosphate concentration was determined using an analyzer that employs nondeproteinized plasma. When the samples were reanalyzed using a laboratory method that removes serum proteins, normal or elevated concentrations of phosphate were found. Plasma levels of phosphate in 4 other patients with monoclonal gammopathy were normal by both methods. These data confirm previous reports that spurious hypophosphatemia occurs in some patients with increased levels of serum monoclonal immunoglobulins when laboratory methods using nondeproteinized samples are employed. The occurrence of unusually low plasma phosphate concentrations in patients without symptoms or clinically apparent causes of hypophosphatemia should alert physicians to search for monoclonal gammopathy.

  20. Glomerular filtration rate after alpha-radioimmunotherapy with 211At-MX35-F(ab')2: a long-term study of renal function in nude mice

    DEFF Research Database (Denmark)

    Back, T.; Haraldsson, B.; Hultborn, R;

    2009-01-01

    and animals bearing subcutaneous xenografts of the human ovarian cancer cell line, OVCAR-3, were used. The animals received approximately 0.4, 0.8, or 1.2 MBq in one, two, or three fractions. The mean absorbed doses to the kidneys ranged from 1.5 to 15 Gy. The renal function was studied by serial GFR...... of the glomerular filtration rate (GFR). The renal toxicity was evaluated at levels close to the dose limit for the bone marrow and well within the range for therapeutic efficacy on tumors. Astatinated MX35-F(ab')(2) monoclonal antibodies were administered intravenously to nude mice. Both non-tumor-bearing animals...... manifested late. Examination of the kidney sections showed histologic changes that were overall subdued. Following alpha-RIT with (211)At-MX35-F(ab')(2) at levels close to the dose limit of severe myelotoxicity, the effects found on renal function were relatively small, with only minor to moderate reductions...

  1. Structure of the Fab fragment of the anti-murine EGFR antibody 7A7 and exploration of its receptor binding site.

    Science.gov (United States)

    Talavera, Ariel; Mackenzie, Jenny; Garrido, Greta; Friemann, Rosmarie; López-Requena, Alejandro; Moreno, Ernesto; Krengel, Ute

    2011-07-01

    The EGF receptor is an important target of cancer immunotherapies. The 7A7 monoclonal antibody has been raised against the murine EGFR, but it cross-reacts with the human receptor. The results from experiments using immune-competent mice can therefore, in principle, be extrapolated to the corresponding scenario in humans. In this work we report the crystal structure of the 7A7 Fab at an effective resolution of 1.4Å. The antibody binding site comprises a deep pocket, located at the interface between the light and heavy chains, with major contributions from CDR loops H1, H2, H3 and L1. Binding experiments show that 7A7 recognizes a site on the EGFR extracellular domain that is not accessible in its most stable conformations, but that becomes exposed upon treatment with a tyrosine kinase inhibitor. This suggests a recognition mechanism similar to that proposed for mAb 806.

  2. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    Science.gov (United States)

    Willrich, Maria A V; Murray, David L; Kyle, Robert A

    2017-05-04

    Monoclonal gammopathies (MG) are defined by increased proliferation of clonal plasma cells, resulting in a detectable abnormality called monoclonal component or M-protein. Detection of the M-protein as either narrow peaks on protein electrophoresis and discrete bands on immunofixation is the defining feature of MG. MG are classified as low-tumor burden disorders, pre-malignancies and malignancies. Since significant disease can be present at any level, several different tests are employed in order to encompass the inherent diverse nature of the M-proteins. In this review, we discuss the main characteristics and limitations of clinical assays to detect M-proteins: protein electrophoresis, immunofixation, immunoglobulin quantitation, serum free light chains and heavy-light chain assays, as well as the newly developed MALDI-TOF mass spectrometric methods. In addition, the definitions of the pre-malignancies monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), as well as monoclonal gammopathy of renal significance (MGRS) are presented in the context of the 2014 international guidelines for definition of myeloma requiring treatment, and the role of the laboratory in test selection for screening and monitoring these conditions is highlighted. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Improved flow cytometric identification of myelopoiesis by the simultaneous labelling with CD13, CD14 and CD66 monoclonal antibodies

    DEFF Research Database (Denmark)

    Bonde, J; Meyer, K; Broe, M K

    1996-01-01

    in the fast determination of remission state. In MDS, the immature myeloid component could be distinguished in patients defined according to the FAB classification with the possibility of identifying aberrant phenotypes, the assay should also be of interest in other myeloproliferative disorders. Moreover......The aim of the present study was to increase our knowledge of myelopoiesis evaluated by flow cytometry. We therefore designed a triple-marker assay employing monoclonal antibodies against the CD13 (immature), the CD14 (monocytic), and the CD66 (mature myeloid) antigens using three...

  4. Production and Characterization of Monoclonal Antibodies of Shrimp White Spot Syndrome Virus Envelope Protein VP28

    Institute of Scientific and Technical Information of China (English)

    Wan-gang GU; Jun-fa YUAN; Ge-lin XU; Li-juan LI; Ni LIU; Cong ZHANG; Jian-hong ZHANG; Zheng-li SHI

    2007-01-01

    BALB/c mice were immunized with purified White spot syndrome virus (WSSV).Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E.coll in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish.Westernblot suggested that all these monoclonal antibodies were against the conformational structure of VP28.The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling.These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.

  5. sup 111 In-antimyosin Fab scintigraphy in cardiovascular diseases; Multicenter clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Chuichi; Matsumori, Akira; Endo, Keigo (Kyoto Univ. (Japan). Faculty of Medicine); Nishimura, Tsunehiko

    1990-12-01

    In a multicenter study, a total of 380 patients with myocardial infarction, myocarditis and cardiomyopathy underwent {sup 111}In-antimyosin Fab myocardial imaging. {sup 111}In-antimyosin Fab was administered intravenously and myocardial images were obtained 48 hours later. Only 3 patients developed mild adverse effects. Human antimouse antibodies were detected in 7 patients. Positive scans in patients with myocardial infarction were seen in 92/119 (77%) within 2 weeks after the onset of myocardial infarction, in 58/71 (82%) at 3-4 weeks, in 20/22 (91%) at 4-8 weeks and 17/31 (55%) thereafter. The location of myocardial damage delineated by {sup 111}In-antimyosin Fab imaging was concordant with the infarct location by ECG and coronary angiography. In patients with myocarditis, {sup 111}In-antimyosin Fab uptake was positive in 7/12 (58%) within 8 weeks and 6/17 (35%) thereafter. Positive {sup 111}In-antimyosin Fab scans were seen in 12/36 (33%) in dilated cardiomyopathy and in 17/19 (89%) in hypertrophic cardiomyopathy. Although the mechanism of persistently positive {sup 111}In-antimyosin Fab images in the subacute to chronic stage of myocardial infarction and myocarditis remains to be clarified, {sup 111}In-antimyosin Fab may be useful for the detection of the disease and in evaluating the prognosis of patients with cardiomyopathy. (author).

  6. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro.

    Science.gov (United States)

    Barbas, C F; Björling, E; Chiodi, F; Dunlop, N; Cababa, D; Jones, T M; Zebedee, S L; Persson, M A; Nara, P L; Norrby, E

    1992-01-01

    A panel of 20 recombinant Fab fragments reactive with the surface glycoprotein gp120 of human type 1 immunodeficiency virus (HIV-1) were examined for their ability to neutralize MN and IIIB strains of the virus. Neutralization was determined as the ability of the Fab fragments to inhibit infection as measured in both a p24 ELISA and a syncytium-formation assay. One group of closely sequence-related Fab fragments was found to neutralize virus in both assays with a 50% neutralization titer at approximately 1 micrograms/ml. Another Fab neutralized in the p24 ELISA but not in the syncytium assay. The other Fab fragments showed weak or no neutralizing ability. The results imply that virion aggregation or crosslinking of gp120 molecules on the virion surface is not an absolute requirement for HIV-1 neutralization. Further, all of the Fab fragments were shown to be competitive with soluble CD4 for binding to gp120 and yet few neutralized the virus effectively, implying that the mechanism of neutralization in this case may not involve receptor blocking. The observation of a preponderance of high-affinity Fab fragments with poor or no neutralizing ability could have implications for vaccine strategies. PMID:1384050

  7. Modification of fibrin network ultrastructure by Fab fragments specific for different domain of fibrinogen.

    Science.gov (United States)

    Cierniewski, C S; Janiak, A; Wyroba, E

    1986-01-01

    Kinetics of inhibition of fibrin monomer polymerization produced by Fab fragments prepared from immunochemically purified monospecific antibodies to the surface epitopes of different domains of fibrinogen molecule has been correlated with electron microscopic observations of resulting specimens. Fab fragments prepared from anti FgD antisera were the most efficient inhibitors of thrombin-catalysed conversion of fibrinogen to fibrin; polymerization of fibrin monomers as detected spectrophotometrically was abolished at 2:1 molar ratio of anti FgD Fab fragments to fibra monomer. These Fab fragments acting as a steric hindrance of polymerization sites inhibited the first stage of fibrin monomer aggregation. Interaction of Fab fragments derived from antibodies specific for alpha 239-476 with corresponding segment of fibrinogen molecule resulted in a weak inhibition of fibrin monomer polymerization. However, fibrin obtained in the presence of these Fab fragments was significantly modified and showed no periodicity. This observation may suggest that anti alpha 239-476 Fab impaired the course of the second stage of fibrin monomer polymerization, i.e. lateral association of fibrin fibrils.

  8. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Cha, Sang-Hoon

    2016-01-01

    The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion.

  9. Immobilization of Fab' fragments onto substrate surfaces: A survey of methods and applications.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2015-08-15

    Antibody immobilization onto surfaces has widespread applications in many different fields. It is desirable to bind antibodies such that their fragment-antigen-binding (Fab) units are oriented away from the surface in order to maximize analyte binding. The immobilization of only Fab' fragments yields benefits over the more traditional whole antibody immobilization technique. Bound Fab' fragments display higher surface densities, yielding a higher binding capacity for the analyte. The nucleophilic sulfide of the Fab' fragments allows for specific orientations to be achieved. For biosensors, this indicates a higher sensitivity and lower detection limit for a target analyte. The last thirty years have shown tremendous progress in the immobilization of Fab' fragments onto gold, Si-based, polysaccharide-based, plastic-based, magnetic, and inorganic surfaces. This review will show the current scope of Fab' immobilization techniques available and illustrate methods employed to minimize non-specific adsorption of undesirables. Furthermore, a variety of examples will be given to show the versatility of immobilized Fab' fragments in different applications and future directions of the field will be addressed, especially regarding biosensors.

  10. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  11. Hepatic targeting and hypocholesterolemic effect of lactosaminated Fab against low density lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, F.; Bocan, T.M.A.; Via, D.P.; Gotto, A.M. Jr.; Smith, L.C.

    1986-03-01

    Lactosaminated Fab (lac-Fab) specific for human LDL induces plasma clearance and uptake of circulating (/sup 125/-I)-iodo-LDL in rat, a process mediated by galactose receptors of the liver. This study demonstrates that lac-Fab is a specific carrier of LDL to the liver parenchymal cells and exhibits hypocholesterolemic activity in vivo. Rats were injected with fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-LDL (diI-LDL) or 6 mg of LDL plus tracer amounts of (/sup 125/I)-iodo-LDL. After 10-20 min, the animals received 3-10 mg of lac-Fab. Histologic examination of the liver sections showed the uptake of diI-LDL in the parenchymal cells, as compared to diI-acetyl-LDL which was localized in sinusoidal cells. More than 85% of human LDL disappeared within 2.5 hr after lac-Fab injection, reducing plasma cholesterol from 133.0 +/- 12.6 mg/dl to 66.4 +/- 8.0 mg/dl, the basal value in the rat. In control rats, only about 20% of radioactivity and cholesterol disappeared at 2.5 hr. HDL levels were unaffected. The authors conclude that lac-Fab is a specific carrier of LDL to hepatocytes and can lower plasma LDL-cholesterol in vivo. Lac-Fab specific for other antigens may act as specific carriers of molecule or macromolecules to hepatocytes.

  12. Single-reagent one-step procedures for the purification of ovine IgG, F(ab')2 and Fab antivenoms by caprylic acid.

    Science.gov (United States)

    Al-Abdulla, Ibrahim; Casewell, Nicholas R; Landon, John

    2014-01-15

    Antivenoms are typically produced in horses or sheep and often purified using salt precipitation of immunoglobulins or F(ab')2 fragments. Caprylic (octanoic) acid fractionation of antiserum has the advantage of not precipitating the desired antibodies, thereby avoiding potential degradation that can lead to the formation of aggregates, which may be the cause of some adverse reactions to antivenoms. Here we report that when optimising the purification of immunoglobulins from ovine antiserum raised against snake venom, caprylic acid was found to have no effect on the activity of the enzymes pepsin and papain, which are employed in antivenom manufacturing to digest immunoglobulins to obtain F(ab')2 and Fab fragments, respectively. A "single-reagent" method was developed for the production of F(ab')2 antivenom whereby whole ovine antiserum was mixed with both caprylic acid and pepsin and incubated for 4h at 37°C. For ovine Fab antivenom production from whole antiserum, the "single reagent" comprised of caprylic acid, papain and l-cysteine; after incubation at 37°C for 18-20h, iodoacetamide was added to stop the reaction. Caprylic acid facilitated the precipitation of albumin, resulting in a reduced protein load presented to the digestion enzymes, culminating in substantial reductions in processing time. The ovine IgG, F(ab')2 and Fab products obtained using these novel caprylic acid methods were comparable in terms of yield, purity and specific activity to those obtained by multi-step conventional salt fractionation with sodium sulphate.

  13. 20 CFR 30.318 - Can the FAB consider objections to HHS's reconstruction of a radiation dose or to the guidelines...

    Science.gov (United States)

    2010-04-01

    ... at 42 CFR part 82, is binding on the FAB. The FAB reviewer may determine, however, that objections... CFR part 81, is also binding on the FAB (see § 30.213). However, since OWCP applies this methodology... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Can the FAB consider objections to...

  14. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  15. Direct-write scanning probe lithography: towards a desktop fab

    Science.gov (United States)

    Giam, Louise R.; Senesi, Andrew J.; Liao, Xing; Wong, Lu Shin; Chai, Jinan; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Rasin, Boris; He, Shu; Mirkin, Chad A.

    2011-06-01

    Massively parallel scanning-probe based methods have been used to address the challenges of nanometer to millimeter scale printing for a variety of materials and mark a step towards the realization of a "desktop fab." Such tools enable simple, flexible, high-throughput, and low-cost nano- and microscale patterning, which allow researchers to rapidly synthesize and study systems ranging from nanoparticle synthesis to biological processes. We have developed a novel scanning probe-based cantilever-free printing method termed polymer pen lithography (PPL), which uses an array of elastomeric tips to transfer materials (e.g. alkanethiols, proteins, polymers) in a direct-write manner onto a variety of surfaces. This technique takes the best attributes of dip-pen nanolithography (DPN) and eliminates many of the disadvantages of contact printing. Various related techniques such as beam pen lithography (BPL), scanning probe block copolymer lithography (SPBCL), and hard-tip, soft spring lithography (HSL) are also discussed.

  16. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the A[beta] peptides associated with Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S.; Miles, Luke A.; Crespi, Gabriela A.N.; Wycherley, Kaye; Ascher, David B.; Barnham, Kevin J.; Cappai, Roberto; Beyreuther, Konrad; Masters, Colin L.; Parker, Michael W.; McKinstry, William J. (SVIMR-A); (HeidelbergU); (WEHI); (Melbourne)

    2008-05-28

    The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. This region of A{beta} has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Az{beta} peptides A{beta}{sub 1-16} and A{beta}{sub 1-28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 {angstrom} resolution. The complexes of WO2 Fab with either A{beta}{sub 1-16} or A{beta}{sub 1-28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 {angstrom} resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble A{beta}{sub 1-42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 {angstrom} resolution.

  17. Fragmentation of monoclonal antibodies

    Science.gov (United States)

    Vlasak, Josef

    2011-01-01

    Fragmentation is a degradation pathway ubiquitously observed in proteins despite the remarkable stability of peptide bond; proteins differ only by how much and where cleavage occurs. The goal of this review is to summarize reports regarding the non-enzymatic fragmentation of the peptide backbone of monoclonal antibodies (mAbs). The sites in the polypeptide chain susceptible to fragmentation are determined by a multitude of factors. Insights are provided on the intimate chemical mechanisms that can make some bonds prone to cleavage due to the presence of specific side-chains. In addition to primary structure, the secondary, tertiary and quaternary structures have a significant impact in modulating the distribution of cleavage sites by altering local flexibility, accessibility to solvent or bringing in close proximity side chains that are remote in sequence. This review focuses on cleavage sites observed in the constant regions of mAbs, with special emphasis on hinge fragmentation. The mechanisms responsible for backbone cleavage are strongly dependent on pH and can be catalyzed by metals or radicals. The distribution of cleavage sites are different under acidic compared to basic conditions, with fragmentation rates exhibiting a minimum in the pH range 5–6; therefore, the overall fragmentation pattern observed for a mAb is a complex result of structural and solvent conditions. A critical review of the techniques used to monitor fragmentation is also presented; usually a compromise has to be made between a highly sensitive method with good fragment separation and the capability to identify the cleavage site. The effect of fragmentation on the function of a mAb must be evaluated on a case-by-case basis depending on whether cleavage sites are observed in the variable or constant regions, and on the mechanism of action of the molecule. PMID:21487244

  18. SpiderFab: Architecture for On-Orbit Construction of Kilometer-Scale Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The SpiderFab effort has investigated the value proposition and technical feasibility of radically changing the way we build and deploy spacecraft in order to escape...

  19. Preparation and Purification of IgY and Fab' Against Human Rotavirus%抗轮状病毒IgY和Fab'的分离与纯化

    Institute of Scientific and Technical Information of China (English)

    孙淑清; 段春燕; 胡彦涛; 孟岩

    2006-01-01

    抗轮状病毒IgY可用两步盐析结合凝胶过滤从蛋黄中分离出来,用SDS-PAGE检测其纯度可达到95%以上.纯的IgY经胃蛋白酶分解得到的抗体片断(Fab'),经SDS-PAGE和MALDI质谱法测定,其纯度达到99%以上.结果表明,所设计的分离抗轮状病毒IgY和Fab'的方法简单、有效.经ELISA法检测,Fab'的活性仍保持在IgY原始活性的70%以上.

  20. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  1. Monoclonal antibodies for the control of influenza virus vaccines.

    NARCIS (Netherlands)

    H.J.M. van de Donk; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)

    1984-01-01

    textabstractHybridomas producing haemagglutination inhibiting monoclonal antibodies against influenza A/Texas/1/77 H3N2 were developed. One hybridoma producing antibodies reacting with Victoria/3/75, Texas/1/77 Bangkok/1/79 and England/496/80 was selected to determine the potency of influenza virusv

  2. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy

    OpenAIRE

    Bondt, Albert; Wuhrer, Manfred; Kuijper, Martijn; Hazes, Mieke; Dolhain, Radboud

    2016-01-01

    Background Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. Methods IgGs were captured from RA and control sera obtained before (RA only), during and after pregnancy, followed by Fc and Fab separation, glycan release, and mass spectrometric detection. In parallel, glycans from i...

  3. Promoter engineering to optimize recombinant periplasmic Fab' fragment production in Escherichia coli.

    Science.gov (United States)

    Schofield, Desmond M; Templar, Alex; Newton, Joseph; Nesbeth, Darren N

    2016-07-01

    Fab' fragments have become an established class of biotherapeutic over the last two decades. Likewise, developments in synthetic biology are providing ever more powerful techniques for designing bacterial genes, gene networks and entire genomes that can be used to improve industrial performance of cells used for production of biotherapeutics. We have previously observed significant leakage of an exogenous therapeutic Fab' fragment into the growth medium during high cell density cultivation of an Escherichia coli production strain. In this study we sought to apply a promoter engineering strategy to address the issue of Fab' fragment leakage and its consequent bioprocess challenges. We used site directed mutagenesis to convert the Ptac promoter, present in the plasmid, pTTOD-A33 Fab', to a Ptic promoter which has been shown by others to direct expression at a 35% reduced rate compared to Ptac . We characterized the resultant production trains in which either Ptic or Ptac promoters direct Fab' fragment expression. The Ptic promoter strain showed a 25-30% reduction in Fab' expression relative to the original Ptac strain. Reduced Fab' leakage and increased viability over the course of a fed-batch fermentation were also observed for the Ptic promoter strain. We conclude that cell design steps such as the Ptac to Ptic promoter conversion reported here, can yield significant process benefit and understanding with respect to periplasmic Fab' fragment production. It remains an open question as to whether the influence of transgene expression on periplasmic retention is mediated by global metabolic burden effects or periplasm overcapacity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:840-847, 2016.

  4. Immunoglobulin fragments, F(ab')2, that are cytotoxic to enzyme-treated cells.

    Science.gov (United States)

    Holtgrewe, E M; Killion, J J

    1984-07-01

    Bivalent immunoglobulin fragments of IgG, F(ab')2, prepared from normal murine sera were found to be cytotoxic to neuraminidase-treated cells. The fragments were cytotoxic to both allogenic and syngeneic targets (with respect to the source of the sera), suggesting that the antigen bound by the F(ab')2 is not related to the major histocompatibility locus of mice (H-2).

  5. Functional characterization of triclosan-resistant enoyl-acyl-carrier protein reductase (FabV in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Yong-Heng Huang

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR, FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholera fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acylhomoserine lactones (AHLs production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore to the fabV mutant strain the ability to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity.

  6. Functional Characterization of Triclosan-Resistant Enoyl-acyl-carrier Protein Reductase (FabV) in Pseudomonas aeruginosa

    Science.gov (United States)

    Huang, Yong-Heng; Lin, Jin-Shui; Ma, Jin-Cheng; Wang, Hai-Hong

    2016-01-01

    Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR), FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholerae fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acyl-homoserine lactones (AHLs) production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore the fabV mutant strain to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity. PMID:27965638

  7. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  8. Structural characterisation of the fatty acid biosynthesis enzyme FabF from the pathogen Listeria monocytogenes

    Science.gov (United States)

    Soares da Costa, Tatiana P.; Nanson, Jeffrey D.; Forwood, Jade K.

    2017-01-01

    Development of new antimicrobial agents is required against the causative agent for listeriosis, Listeria monocytogenes, as the number of drug resistant strains continues to increase. A promising target is the β-ketoacyl-acyl carrier protein synthase FabF, which participates in the catalysis of fatty acid synthesis and elongation, and is required for the production of phospholipid membranes, lipoproteins, and lipopolysaccharides. In this study, we report the 1.35 Å crystal structure of FabF from L. monocytogenes, providing an excellent platform for the rational design of novel inhibitors. By comparing the structure of L. monocytogenes FabF with other published bacterial FabF structures in complex with known inhibitors and substrates, we highlight conformational changes within the active site, which will need to be accounted for during drug design and virtual screening studies. This high-resolution structure of FabF represents an important step in the development of new classes of antimicrobial agents targeting FabF for the treatment of listeriosis. PMID:28045020

  9. Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex.

    Science.gov (United States)

    Wolle, Daniel; Cleard, Fabienne; Aoki, Tsutomu; Deshpande, Girish; Schedl, Paul; Karch, Francois

    2015-11-01

    Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C.

  10. Preparation and Identification of Anti-rabies Virus Monoclonal Antibodies

    Institute of Scientific and Technical Information of China (English)

    Wen-juan Wang; Xiong Li; Li-hua Wang; Hu Shan; Lei Cao; Peng-cheng Yu; Qing Tang; Guo-dong Liang

    2012-01-01

    To provide a foundation for the development of rapid and specific methods for the diagnosis of rabies virus infection,anti-rabies virus monoclonal antibodies were prepared and rabies virus nucleoprotein and human rabies virus vaccine strain (PV strain) were used as immunogens to immunize 6-8 week old female BALB/c mice.Spleen cells and SP2/0 myeloma cells were fused according to conventional methods:the monoclonal cell strains obtained were selected using the indirect immunofluorescence test; this was followed by preparation of monoclonal antibody ascitic fluid; and finally,systematic identification of subclass,specificity and sensitivity was carried out.Two high potency and specific monoclonal antibodies against rabies virus were obtained and named 3B12 and 4A12,with ascitic fluid titers of 1∶8000 and 1∶10000,respectively.Both belonged to the IgG2a subclass.These strains secrete potent,stable and specific anti-rabies virus monoclonal antibodies,which makes them well suited for the development of rabies diagnosis reagents.

  11. Uses of monoclonal antibody 8H9

    Science.gov (United States)

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  12. Detection of Campylobacter species using monoclonal antibodies

    Science.gov (United States)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  13. Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells.

    Science.gov (United States)

    Desplancq, Dominique; Freund, Guillaume; Conic, Sascha; Sibler, Annie-Paule; Didier, Pascal; Stoessel, Audrey; Oulad-Abdelghani, Mustapha; Vigneron, Marc; Wagner, Jérôme; Mély, Yves; Chatton, Bruno; Tora, Laszlo; Weiss, Etienne

    2016-03-15

    Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.

  14. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))

    1982-10-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  15. Detection of adriamycin cardiotoxicity with indium-111 labeled antimyosin monoclonal antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takehiko; Matsumori, Akira; Tamaki, Nagara; Morishima, Shigeru; Watanabe, Yuji; Yonekura, Yoshiharu; Endo, Keigo; Konishi, Junji; Kawai, Chuichi (Kyoto Univ. (Japan). Faculty of Medicine)

    1991-04-01

    Myocardial imaging with indium-111 labeled antimyosin monoclonal antibody (antimyosin imaging) has been reported to be useful in the noninvasive detection of myocardial cell necrosis in dilated cardiomyopathy as well as in myocardial infarction and myocarditis. We used antimyosin imaging to detect myocardial damage in 2 patients with malignant lymphoma in whom adriamycin cardiotoxicity was suspected. Patients were injected with 74 MBq of indium-111 labeled antimyosin (Fab. fraction). Forty-eight hours later, planar imaging and single-photon emission computed tomography were performed using a gamma camera with a medium energy general purpose collimator. Antimyosin imaging demonstrated diffuse myocardial uptake not only in one patient with congestive heart failure but also in another patient at the early stage without congestive heart failure. Antimyosin imaging may be a sensitive method for noninvasive visualization of myocardial cell damage and useful in the early diagnosis of specific heart muscle disease. (author).

  16. Fab Four: When John and George play gravitation and cosmology

    CERN Document Server

    Bruneton, Jean-Philippe; Kanfon, Antonin; Hees, Aurélien; Schlögel, Sandrine; Füzfa, André

    2012-01-01

    Scalar-tensor theories of gravitation have recently regained a great interest after the discovery of the Chameleon mechanism and of the Galileon models. The former allows, in principle, to reconcile the presence of cosmological scalar fields with the constraints from experiments at the Solar System scale. The latter open up the possibility of building inflationary models that, among other things, do not need ad hoc potentials. Further generalizations have finally led to the most general tensor-scalar theory, recently dubbed the "Fab Four", with only first and second order derivatives of the fields in the equations of motion and that self-tune to a vanishing cosmological constant. This model has a very rich phenomenology that needs to be explored and confronted with experimental data in order to constrain a very large parameter space. In this paper, we present some results regarding a subset of the theory named "John", which corresponds to a non-minimal derivative coupling between the scalar field and the Eins...

  17. Fab Four: When John and George Play Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    J.-P. Bruneton

    2012-01-01

    Full Text Available Scalar-tensor theories of gravitation attract again a great interest since the discovery of the Chameleon mechanism and of the Galileon models. The former allows reconciling the presence of a scalar field with the constraints from Solar System experiments. The latter leads to inflationary models that do not need ad hoc potentials. Further generalizations lead to a tensor-scalar theory, dubbed the “Fab Four,” with only first and second order derivatives of the fields in the equations of motion that self-tune to a vanishing cosmological constant. This model needs to be confronted with experimental data in order to constrain its large parameter space. We present some results regarding a subset of this theory named “John,” which corresponds to a nonminimal derivative coupling between the scalar field and the Einstein tensor in the action. We show that this coupling gives rise to an inflationary model with very unnatural initial conditions. Thus, we include the term named “George,” namely, a nonminimal, but nonderivative, coupling between the scalar field and Ricci scalar. We find a more natural inflationary model, and, by performing a post-Newtonian analysis, we derive the set of equations that constrain the parameter space with data from experiments in the Solar System.

  18. RetroFab: A Design Tool for Retrofitting Physical Interfaces using Actuators, Sensors and 3D Printing

    OpenAIRE

    2016-01-01

    We present RetroFab, an end-to-end design and fabrication environment that allows non-experts to retrofit physical interfaces. Our approach allows for changing the layout and behavior of physical interfaces. Unlike customizing software interfaces, physical interfaces are often challenging to adapt because of their rigidity. With RetroFab, a new physical interface is designed that serves as a proxy interface for the legacy controls that are now operated by actuators. RetroFab makes this concep...

  19. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao

    Full Text Available Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252 and two anti-V-specific human mAb (m253, m254 by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  20. Effects of Fab' fragments of specific egg yolk antibody (IgY-Fab') against Shewanella putrefaciens on the preservation of refrigerated turbot.

    Science.gov (United States)

    Zhang, Qian; Lin, Hong; Sui, Jianxin; Wang, Jingxue; Cao, Limin

    2015-01-01

    In our previous studies the specific egg yolk antibody (IgY) against Shewanella putrefaciens (one of the specific spoilage organisms for marine products during aerobic chilling storage) demonstrated significant activity to prolong the shelf life of refrigerated fish. The exploitation of the antigen-binding fragment plus the hinge region (IgY-Fab') is now considered a promising method for improving the efficiency of such natural antimicrobial agents. The antimicrobial activity of IgY-Fab' against S. putrefaciens was investigated using refrigerated turbot as samples. By microbial, chemical and sensory tests, it was shown to be able to effectively inhibit bacterial growth and prolong the shelf life of samples, with an efficiency evaluated significantly higher than that of whole IgY with the same molarity. The interaction between IgY agents and S. putrefaciens cells was also investigated, and the IgY-Fab' showed a much greater ability to damage cell membranes than the whole IgY. Compared to whole IgY with the same molarity, IgY-Fab' demonstrated higher and more durable antimicrobial efficiency. Such a result was assumed to be closely related to its structural properties (such as the much lower molecular weight), which may enhance its ability to influence physiological activities of antigen bacteria, especially the property or/and structure of cell membranes. © 2014 Society of Chemical Industry.

  1. 3-Substituted Indole Inhibitors Against Francisella tularensis FabI Identified by Structure-Based Virtual Screening

    Science.gov (United States)

    2013-07-01

    FabI, but share low sequence identity and are poorly inhibited by triclosan.25,26 S. pneumoniae and P. aeruginosa contain FabK,24 and Vibrio cholerae ,27...Massengo-Tiasse, R. P.; Cronan, J. E. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J. Biol. Chem. 2008, 283, 1308...of enoyl- (acyl-carrier protein) reductase, FabV, from Vibrio fischeri. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2012, 68, 78−80. (27

  2. Management of Tissue Loss After Agkistrodon Snakebite: Appropriate Use of Crotalidae-Fab Antivenin.

    Science.gov (United States)

    Larson, Kenneth W; Schaefer, Keith R; Austin, Cindy; Norton, Rhy; Finley, Phillip J

    2016-01-01

    Although initially created for the treatment of rattlesnake (genus: Crotalus) bites, Crotalidae-Fab antivenin is used to treat many different pit viper envenomations. However, the efficacy of Crotalidae-Fab in preventing tissue loss from copperhead (Agkistrodon contortrix) or cottonmouth (Agkistrodon piscivorus) snakebites remains unclear. Recent reports show that Agkistrodon-related bites rarely require treatment beyond simple observation and pain control. The purpose of this study was to examine the amount of tissue loss in patients who received Crotalidae-Fab compared with those who did not after an Agkistrodon bite. After institutional review board approval, a retrospective study was completed at a Level 1 trauma center. Between 2009 and 2013, a total of 57 snakebites were identified. Of the 57 bites, the snake species was documented in 36 cases including 31 copperheads, 1 cottonmouth, and 4 rattlesnakes. The other 21 bites were from unknown or nonvenomous species. Of the 32 Agkistrodon-related bites, 15 patients received Crotalidae-Fab (average of 3 vials administered) and 17 did not receive Crotalidae-Fab. None of the 32 patients, regardless of treatment option, had tissue loss or required surgical interventions. Only 1 patient received Crotalidae-Fab and debridement of a vesicle associated with the bite. No clinically significant differences were observed between the groups. These findings support previous literature that failed to show added benefit of Crotalidae-Fab treatment for Agkistrodon bites beyond patient comfort and pain control. Evaluation of current protocols for Agkistrodon envenomations is warranted. Snakebite wound education in trauma physicians and nurses may decrease unnecessary use of antivenom medication.

  3. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA.

    Science.gov (United States)

    Moynié, Lucile; Hope, Anthony G; Finzel, Kara; Schmidberger, Jason; Leckie, Stuart M; Schneider, Gunter; Burkart, Michael D; Smith, Andrew D; Gray, David W; Naismith, James H

    2016-01-16

    Eukaryotes and prokaryotes possess fatty acid synthase (FAS) biosynthetic pathways that comprise iterative chain elongation, reduction, and dehydration reactions. The bacterial FASII pathway differs significantly from human FAS pathways and is a long-standing target for antibiotic development against Gram-negative bacteria due to differences from the human FAS, and several existing antibacterial agents are known to inhibit FASII enzymes. N-Acetylcysteamine (NAC) fatty acid thioesters have been used as mimics of the natural acyl carrier protein pathway intermediates to assay FASII enzymes, and we now report an assay of FabV from Pseudomonas aeruginosa using (E)-2-decenoyl-NAC. In addition, we have converted an existing UV absorbance assay for FabA, the bifunctional dehydration/epimerization enzyme and key target in the FASII pathway, into a high-throughput enzyme coupled fluorescence assay that has been employed to screen a library of diverse small molecules. With this approach, N-(4-chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine (N42FTA) was found to competitively inhibit (pIC50=5.7±0.2) the processing of 3-hydroxydecanoyl-NAC by P. aeruginosa FabA. N42FTA was shown to be potent in blocking crosslinking of Escherichia coli acyl carrier protein and FabA, a direct mimic of the biological process. The co-complex structure of N42FTA with P. aeruginosa FabA protein rationalises affinity and suggests future design opportunities. Employing NAC fatty acid mimics to develop further high-throughput assays for individual enzymes in the FASII pathway should aid in the discovery of new antimicrobials.

  4. Comparison of the C-mediating killing activity and C-activating properties of mouse monoclonal and polyclonal antibodies against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    T. L. Kipnis

    1992-01-01

    Full Text Available A Mouse polyclonal antiserum against Trypanosoma cruzi or its IgG and IgM fractions and five monoclonal antibodies (two IgM, two IgG1 and one IgG2a recognize and combine with membrane components of trypomastigote forms of the parasite as revealed by immunofluorescence. Although all these antibodies sensitize trypomastigotes and prepare them to activate the complement (C system, as measured by consumption of total C, C4, B and C3, only the polyclonal antiserum or its IgG, IgM and Fabμ fragments were able to induce trypanosome lysis by the alternative C pathway.

  5. Enhancement of retroviral infection in vitro by anti-Le(y) IgG: reversal by humanization of monoclonal mouse antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Sørensen, A M; Arendrup, M

    1993-01-01

    Monoclonal mouse IgG3 antibody (ABL 364) against the carbohydrate Le(y) antigen enhanced infection in vitro with HTLV-1 and with HIV-1 when propagated in both transformed and normal lymphocytes. Enhancement was independent of complement, occurred with both lymphocytes and monocytes as target cells...... with no indication of any alternative pathway of infection, as evidenced by abrogation of enhancement by anti-CD4 MAb or soluble recombinant CD4, and also the inability of anti-Le(y) MAb to mediate HIV infection of HSB-2 cells in which HTLV-1/HIV pseudovirus infection was enhanced. While F(ab)2 fragments of ABL 364...

  6. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    Science.gov (United States)

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones.

  7. Anti-fouling properties of Fab' fragments immobilized on silane-based adlayers

    Science.gov (United States)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-12-01

    Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab') in biosensors. One Fab' linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab' fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab' fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab'-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection.

  8. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry

    Science.gov (United States)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad

    2015-12-01

    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  9. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C., E-mail: jcwilliams@coh.org [Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010 (United States)

    2016-05-23

    An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex.

  10. Reorienting the Fab domains of trastuzumab results in potent HER2 activators.

    Directory of Open Access Journals (Sweden)

    Justin M Scheer

    Full Text Available The structure of the Fab region of antibodies is critical to their function. By introducing single cysteine substitutions into various positions of the heavy and light chains of the Fab region of trastuzumab, a potent antagonist of HER2, and using thiol chemistry to link the different Fabs together, we produced a variety of monospecific F(ab'(2-like molecules with activities spanning from activation to inhibition of breast tumor cell growth. These isomers (or bis-Fabs of trastuzumab, with varying relative spatial arrangements between the Fv-regions, were able to either promote or inhibit cell-signaling activities through the PI3K/AKT and MAPK pathways. A quantitative phosphorylation mapping of HER2 indicated that the agonistic isomers produced a distinct phosphorylation pattern associated with activation. This study suggests that antibody geometric isomers, found both in nature and during synthetic antibody development, can have profoundly different biological activities independent of their affinities for their target molecules.

  11. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    Science.gov (United States)

    Nanson, Jeffrey D; Forwood, Jade K

    2015-01-01

    Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  12. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Nanson

    Full Text Available Ketoacyl-acyl carrier protein reductases (FabG are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP linked thioesters within the bacterial type II fatty acid synthesis (FASII pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG, the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  13. Real-time kinetic analysis applied to the production of bispecific monoclonal antibodies for radioimmunodetection of cancer.

    Science.gov (United States)

    Horenstein, A L; Poiesi, C; DeMonte, L; Camagna, M; Mariani, M; Albertini, A; Malavasi, F

    1993-01-01

    An automated biosensor system designed for measuring molecular interactions in real-time and without labelling of the reactants has been used to evaluate the association/dissociation rate and affinity constants of bivalent monoclonal antibodies and a monovalent bispecific monoclonal antibody. Observed differences in affinity between parental and bispecific antibody produced were related to the association rate constants, since the dissociation rate constants were in the same range. Values were also closely related to radioimmunochemical data. These results indicate that the biosensor system, besides presenting several advantages for characterizing antigen-antibody interaction, is valuable for selecting monoclonal antibodies with properties which might be useful in the development of bispecific monoclonal antibodies.

  14. Novel monoclonal treatments in severe asthma

    DEFF Research Database (Denmark)

    Meteran, Howraman; Meteran, Hanieh; Porsbjerg, Celeste

    2017-01-01

    AIM: To provide a general overview of the current biological treatments and discuss their potential anti-asthmatic effects. DATA SOURCES: We reviewed articles in PubMed found using the search words "Asthma/therapy AND antibodies, monoclonal/therapeutic use AND cytokines." STUDY SELECTIONS: Only...... articles published in English since 2000 were considered. The search identified 29 studies; 8 additional studies were found by hand search, generating 37 studies. RESULTS: Of the 37 studies investigating biological treatments of asthma, 5 were on the effects of anti-IgE (omalizumab); 12 on anti-IL-5; 8...... TSLP, IL-9, and TNF-α lacked convincing effectiveness. CONCLUSION: Research on the biological treatment of asthma shows promising results. While anti-IgE (omalizumab) has been used in the treatment of asthma for some years, anti-IL-5 has recently been approved for use. The efficacy of results of other...

  15. Treatment of digitalis intoxication with emphasis on the clinical use of digoxin immune Fab.

    Science.gov (United States)

    Allen, N M; Dunham, G D

    1990-10-01

    Many studies and cases of digitalis intoxication have been reported since the time of William Withering's first publication in 1785. Recognition and management of digitalis toxicity is challenging. Before digoxin immune Fab was commercially available, treatment consisted of managing the signs and symptoms of toxicity until the digitalis was eliminated. Digoxin immune Fab offers a safe, effective, and specific method of quickly reversing digitalis toxicity. Factors that must be considered with the clinical use of this agent include the dosage calculation, administration technique, postdose monitoring, pharmacokinetics, mechanism of action, interference with commercially available digoxin assays, partial neutralizing dosing, rebound of free digoxin, and indications for use. For severe, life-threatening toxicity, digoxin immune Fab is the treatment of choice.

  16. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange.

    Science.gov (United States)

    van der Neut Kolfschoten, Marijn; Schuurman, Janine; Losen, Mario; Bleeker, Wim K; Martínez-Martínez, Pilar; Vermeulen, Ellen; den Bleker, Tamara H; Wiegman, Luus; Vink, Tom; Aarden, Lucien A; De Baets, Marc H; van de Winkel, Jan G J; Aalberse, Rob C; Parren, Paul W H I

    2007-09-14

    Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.

  17. 3D printing in social education: Eki-Fab and student PBL

    Science.gov (United States)

    Makino, Masato; Saito, Azusa; Kodama, Mai; Takamatsu, Kyuuichiro; Tamate, Hideaki; Sakai, Kazuyuki; Wada, Masato; Khosla, Ajit; Kawakami, Masaru; Furukawa, Hidemitsu

    2017-04-01

    Additive manufacturing or 3D printer is one of the most innovative material processing methods. We are considering that human resources for 3D printing would be needed in the future. To educate the abilities of the digital fabrication, we have the public digital fabrication space "Eki-Fab" for junior and high school students and Project Based Learning (PBL) class for undergraduate students. Eki-Fab is held on every Saturday at the Yonezawa train station. In the "Eki-Fab", anybody can study the utilizing of 3D printer and modeling technics under the instruction of staff in Yamagata University. In the PBL class, we have the class every Thursday. The students get the techniques of the digital fabrication through the PBL.

  18. Advances in monoclonal antibody application in myocarditis

    Institute of Scientific and Technical Information of China (English)

    Li-na HAN; Shuang HE; Yu-tang WANG; Li-ming YANG; Si-yu LIU; Ting ZHANG

    2013-01-01

    Monoclonal antibodies have become a part of daily preparation technologies in many laboratories.Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases,inflammatory diseases,cancer,and other immune-associated diseases.This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis,an inflammatory disease of the heart,could be a novel approach in the future.In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis,we,through a significant amount of literature research both domestic and abroad,developed a systematic elaboration of monoclonal antibodies,pathogenesis of myocarditis,and application of monoclonal antibodies in myocarditis.This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future.Under conventional therapy,myocarditis is typically associated with congestive heart failure as a progressive outcome,indicating the need for alternative therapeutic strategies to improve long-term results.Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis,we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above.However,several issues remain.The technology on howto make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues.If we are to further stimulate

  19. 20 CFR 30.908 - How will the FAB evaluate new medical evidence submitted to challenge the impairment...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How will the FAB evaluate new medical... Medical Evidence of Impairment § 30.908 How will the FAB evaluate new medical evidence submitted to... impairment evaluation that differs from the impairment evaluation relied upon by the district office, the...

  20. The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F-ab and F-c fragments

    NARCIS (Netherlands)

    Vermeer, AWP; Norde, W; van Amerongen, A

    2000-01-01

    The unfolding and further denaturation of IgG and its F-ab and F-c fragments were studied both on a macroscopic and molecular level, using differential scanning calorimetry and circular dichroism spectroscopy, respectively. It was shown that the structural integrity of the F-ab and F-c units was ret

  1. Prokaryotic expression and renaturation of engineering chimeric Fab antibody against human hepatoma

    Institute of Scientific and Technical Information of China (English)

    Jin-Liang Xing; Xiang-Min Yang; Xi-Ying Yao; Fei Song; Zhi-Nan Chen

    2004-01-01

    AIM: To express chimeric Fd (cFd) and chimeric light chain (cL) in E.coli respectively and refold them into chimeric Fab (cFab) antibody.METHODS: cFd and cL genes were respectively inserted into the prokaryotic expression vector pET32a to construct recombinant vectors pET32a/cFd and pET32a/cL. Then,the competent E. colicells were transformed by the recombinant vectors and induced by IPTG. Moreover, a large quantity of cFd and cL expression products were prepared and mixed with equal molar to refold into cFab by gradient dialysis. The refolded products were identified and analyzed by sodium SDS-PAGE, Western blotting,ELISA and HPLC.RESULTS: High efficient prokaryotic expressions of both cFd and cL in the form of non-fusion protein were obtained with the expression levels of 28.3% and 32.3% of total bacteria proteins, respectively. Their relative molecular masses were all 24 ku or so, and both of them mainly existed in the form of inclusion bodies. In addition, cFd and cL were successfully refolded into cFab by gradient dialysis, with about 59.45% of recovery when the starting total protein concentration was 100 μg/mL. The renatured cFab could specifically bind to related antigen with high affinity.CONCLUSION: The cFab antibody against human hepatoma was highly and efficiently expressed and refolded, which laid a solid foundation for studying its application in the treatment of hepatoma.

  2. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation.

    Science.gov (United States)

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.

  3. Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-01-01

    Full Text Available Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS, has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa. Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.

  4. Research advances on Fabs antibodies%Fab类抗体的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘美君; 高向东; 徐晨

    2014-01-01

    In genetic engineering antibodies,Fabs antibodies have many advantages,such as lower relative molecular mass, specific tissue distribution and lower immunogenicity, which have made Fabs antibodies the research hotspot for the past few decades. Besides the widely used enzymatic generation, multiple expression systems which include E. coli. and insects are used in the generation of Fabs antibodies. E. coli. expression system is most thoroughly explored and has been used in the preparation of clinical Fabs drugs. There are six Fab drugs that have been approved by FDA, such as certolizumabpegol and many Fabs are still in clinical research. This review discusses the recent research progress of Fabs drugs, including Fabs′ structure and characteristics, the generation and expression of Fabs, strategies to increase production and clinical applications, with the emphasis on generation, expression and clinical applications.%在基因工程抗体中,Fab类(Fabs)抗体有许多优势,如相对分子质量小、组织分布特异性强和免疫原性低等,使Fab类抗体成为近几十年来的研究热点。除了应用较广泛的体外酶消化法外,多种表达系统(如大肠杆菌和昆虫等)皆用于Fab类抗体的获得,其中大肠杆菌表达的系统研究最为彻底,且已经应用于制备Fab类临床药物。目前已经有赛妥珠单抗等6种Fab类抗体药物通过了美国FDA申请并上市,并有多种Fab类药物正处于临床试验阶段。本文分别对Fab类抗体的基本结构及特点、Fab类抗体的生成、表达和提高产量的策略、临床应用的研究进展进行介绍。

  5. International Foot and Ankle Biomechanics Community (i-FAB: past, present and beyond

    Directory of Open Access Journals (Sweden)

    Rosenbaum Dieter

    2009-06-01

    Full Text Available Abstract The International Foot and Ankle Biomechanics Community (i-FAB is an international collaborative activity which will have an important impact on the foot and ankle biomechanics community. It was launched on July 2nd 2007 at the foot and ankle session of the International Society of Biomechanics (ISB meeting in Taipei, Taiwan. i-FAB is driven by the desire to improve our understanding of foot and ankle biomechanics as it applies to health, disease, and the design, development and evaluation of foot and ankle surgery, and interventions such as footwear, insoles and surfaces.

  6. [Structural Life Science towards the Regulation of Selective GPCR Signaling].

    Science.gov (United States)

    Kobayashi, Takuya

    2016-01-01

    G protein-coupled receptors (GPCRs) are the largest family of receptors in the human genome. They are involved in many diseases and also the target of approximately 30% of all modern medicinal drugs. GPCRs respond to a broad spectrum of chemical entities, ranging from photons, protons, and calcium ions to small organic molecules (including odorants and neurotransmitters), peptides, and glycoproteins. Many GPCRs are members of closely related subfamilies that respond to the same hormone or neurotransmitter. However, they have different physiologic functions based on the cells in which they are expressed and the different signaling pathways that they exploit (e.g., coupling through heterotrimeric G-proteins such as Gs, Gi, and Gq, as well as β-arrestins). Antibody fragments including Fab and Fv can effectively stabilize and crystallize membrane proteins. However, using the mouse hybridoma technology it has been difficult to develop monoclonal antibodies that can recognize conformational epitopes of native GPCRs. We have recently succeeded in developing antibodies against native GPCRs using this technology in combination with our improved immunization and screening methods. In this symposium review, I present a successful example of prostaglandin E2 receptor (one of the GPCRs) crystallization using antibody fragments. To avoid several adverse effects of current therapeutics, it is essential to understand the molecular mechanism of GPCR signaling in a monomeric, dimeric, or oligomeric state. Also, we are interested in selectively regulating GPCR signaling via functional antibodies developed using our methods and/or the designed small organic molecules depending on the GPCR structure.

  7. The epitope and neutralization mechanism of AVFluIgG01, a broad-reactive human monoclonal antibody against H5N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Zhiliang Cao

    Full Text Available The continued spread of highly pathogenic avian influenza (HPAI H5N1 virus underscores the importance of effective antiviral approaches. AVFluIgG01 is a potent and broad-reactive H5N1-neutralizing human monoclonal antibody (mAb showing great potential for use either for therapeutic purposes or as a basis of vaccine development, but its antigenic epitope and neutralization mechanism have not been finely characterized. In this study, we first demonstrated that AVFluIgG01 targets a novel conformation-dependent epitope in the globular head region of H5N1 hemagglutinin (HA. By selecting mimotopes from a random peptide library in combination with computational algorithms and site-directed mutagenesis, the epitope was mapped to three conserved discontinuous sites (I-III that are located closely at the three-dimensional structure of HA. Further, we found that this HA1-specific human mAb can efficiently block both virus-receptor binding and post-attachment steps, while its Fab fragment exerts the post-attachment inhibition only. Consistently, AVFluIgG01 could inhibit HA-mediated cell-cell membrane fusion at a dose-dependent manner and block the acquisition of pH-induced protease sensitivity. These results suggest a neutralization mechanism of AVFluIgG01 by simultaneously blocking viral attachment to the receptors on host cells and interfering with HA conformational rearrangements associated with membrane fusion. The presented data provide critical information for developing novel antiviral therapeutics and vaccines against HPAI H5N1 virus.

  8. Anti-human IgE monoclonal antibodies recognizing epitopes related to the binding sites of high and low affinity IgE receptors.

    Science.gov (United States)

    Takemoto, H; Nishimura, S; Kosada, Y; Hata, S; Takagi, S; Hosoi, S; Ezumi, K; Ide, M; Harada, S

    1994-01-01

    Anti-human IgE monoclonal antibodies (mAbs) were produced and eight clones recognizing epitopes on native IgE were selected. Epitopes were mapped by a competitive inhibition enzyme-linked immunosorbent assay, Western blotting and a multi-pin peptide technology. Four sites (one each in the C epsilon 1, C epsilon 2, C epsilon 2/C epsilon 3 junction and C epsilon 3) were recognized by the mAbs. The relationship between the four epitopes and the binding sites of high and low affinity IgE receptors (Fc epsilon RI and Fc epsilon RII, respectively) was studied using a monovalent Fab fragment of each mAb as a binding inhibitor. The IgE-Fc epsilon RII binding was clearly inhibited by the mAb recognizing the C epsilon 2/C epsilon 3 junction, suggesting that Fc epsilon RII binds to a rather limited area around the C epsilon 2/C epsilon 3 junction. The IgE-Fc epsilon RI binding, on the other hand, was scarcely inhibited by any single mAb. However, the binding was inhibited when the epitope in C epsilon 2 was blocked simultaneously with that at the C epsilon 2/C epsilon 3 junction or with that in C epsilon 3, indicating that these three distinct epitopes are related to the Fc epsilon RI binding sites. When these three epitopes were shown in the stereograph of human IgE, the Fc epsilon RI binding area was spread largely on the groove side between C epsilon 2 and C epsilon 3 domains. These results suggest that Fc epsilon RI acquires the high affinity through multiple bindings.

  9. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  10. AGILE integration into APC for high mix logic fab

    Science.gov (United States)

    Gatefait, M.; Lam, A.; Le Gratiet, B.; Mikolajczak, M.; Morin, V.; Chojnowski, N.; Kocsis, Z.; Smith, I.; Decaunes, J.; Ostrovsky, A.; Monget, C.

    2015-09-01

    mix logic Fab) in term of product and technology portfolio AGILE corrects for up to 120nm of product topography error on process layer with less than 50nm depth of focus Based on tool functionalities delivered by ASML and on high volume manufacturing requirement, AGILE integration is a real challenge. Regarding ST requirements "Automatic AGILE" functionality developed by ASML was not a turnkey solution and a dedicated functionality was needed. A "ST homemade AGILE integration" has been fully developed and implemented within ASML and ST constraints. This paper describes this integration in our Advanced Process Control platform (APC).

  11. 20 CFR 30.317 - Can the FAB request a further response from the claimant or return a claim to the district office?

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Can the FAB request a further response from....317 Can the FAB request a further response from the claimant or return a claim to the district office? At any time before the issuance of its final decision, the FAB may request that the claimant...

  12. 20 CFR 30.312 - What will the FAB do if the claimant objects to the recommended decision but does not request a...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What will the FAB do if the claimant objects....312 What will the FAB do if the claimant objects to the recommended decision but does not request a... period of time allotted in § 30.310 but does not request a hearing, the FAB will consider any...

  13. Super-Genotype: Global Monoclonality Defies the Odds of Nature

    OpenAIRE

    Johannes J Le Roux; Wieczorek, Ania M.; Wright, Mark G.; Carol T Tran

    2007-01-01

    The ability to respond to natural selection under novel conditions is critical for the establishment and persistence of introduced alien species and their ability to become invasive. Here we correlated neutral and quantitative genetic diversity of the weed Pennisetum setaceum Forsk. Chiov. (Poaceae) with differing global (North American and African) patterns of invasiveness and compared this diversity to native range populations. Numerous molecular markers indicate complete monoclonality with...

  14. Quench-condensing superconducting thin films using the Fab on a Chip approach

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Del Corro, Pablo; Stark, Thomas; Lally, Richard; Pardo, Flavio; Bolle, Cristian; Bishop, David

    Micro-electromechanical systems (MEMS) being manufactured in a macroscopic fab inspires the idea of getting the process further down to fabricate even smaller structures, namely nano-structures, using MEMS. The Fab on a Chip concept was proposed based on such ideas. By implementing the final-step, additive fabrication approach, manufacturing, characterization and experiments of nano-structures are integrated in-situ. Due to the miniature size of MEMS, the thickness precision is significantly improved while the power consumption is significantly depressed, making the quench-condensation of very thin films well controlled and easily achievable. Among various types of nano-structures, quench-condensed superconducting thin films are of great interest for physicists. Here we present such experiments done on superconducting thin films quench-condensed using the Fab on a Chip. We show that we are able to fabricate very thin films with its thickness precisely controlled, and the base temperature kept under ~3K during the process. The resistivity data demonstrates the high purity and uniformity of the film, as well as the annealing effect when cycling to higher temperatures. Based on the tremendous results obtained from the superconducting thin films, more complex nano-circuits can be fabricated and investigated using the Fab on a Chip, enabling a new approach for novel condensed matter physics experiments. This research is funded by the NSF through their CMMI division. This research is funded by the NSF through their CMMI division.

  15. Integrated MEMS mass sensor and atom source for a ``Fab on a Chip''

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Bishop, David

    2014-03-01

    ``Fab on a Chip'' is a new concept suggesting that the semiconductor fabrication facility can be integrated into a single silicon chip for nano-manufacturing. Such a chip contains various MEMS devices which can work together, operating in a similar way as a conventional fab does, to fabricate nano-structures. Here we present two crucial ``Fab on a chip'' components: the MEMS mass sensor and atomic evaporation source. The mass sensor is essentially a parallel plate capacitor with one suspended plate. When incident atoms deposit on the suspended plate, the mass change of the plate can be measured by detecting the resonant frequency shift. Using the mass sensor, a mass resolution of 3 fg is achieved. The MEMS evaporation source consists of a polysilicon plate suspended by two electrical leads with constrictions. By resistively heating the plate, this device works as a tunable atom flux source. By arranging many of these devices into an array, one can build a multi-element atom evaporator. The mass sensor and atom source are integrated so that the mass sensor is used to monitor and characterize the atomic flux. A material source and a sensor to monitor the fabrication are two integral components for our ``Fab on a Chip.''

  16. 75 FR 9438 - Samsung Austin Semiconductor, LLC, DRAM Fab 1, a Subsidiary of Samsung Electronics Corporation...

    Science.gov (United States)

    2010-03-02

    ... Employment and Training Administration Samsung Austin Semiconductor, LLC, DRAM Fab 1, a Subsidiary of Samsung..., applicable to workers of Samsung Austin Semiconductor, LLC, a subsidiary of Samsung Electronics Corporation... Systems, Inc. were employed on-site at the Austin, Texas location of Samsung Austin Semiconductor, LLC,...

  17. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy

    NARCIS (Netherlands)

    A. Bondt (Albert); M. Wuhrer (Manfred); T.M. Kuijper (Martijn); J.M.W. Hazes (Mieke); R.J.E.M. Dolhain (Radboud)

    2016-01-01

    textabstractBackground: Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. Methods:

  18. Part I, FAB evaluation & application trials AFUE measurements: Part II, Integrated heating system (IHS) development

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, R.W. [Brookhaven National Lab., Upton, NY (United States); Fisher, L. [BNL Consultant, Colrain, MA (United States)

    1996-07-01

    An oil burner/boiler efficiency test stand has been set up in the BNL oil heat laboratory which can measure the Annual Fuel Utilization Efficiency (AFUE) of burner/boiler combinations in accordance with ASHRAE and DOE standards. Measurements include both steady state efficiencies and heat-up and cool-down characteristics so that cycling effects can be included in an estimate of seasonal average performance. In addition to AFUE measurements, the direct conversion of fuel energy content to enthalpy increase in the boiler water is monitored. The system is largely automated, with most control functions under computer control and data taken electronically and permanently recorded on disks for future reference. To date, a retention-head burner and a fan atomized burner (FAB) have been tested in a steel boiler, the latter operating at two different fuel flow rates. The results are presented below, and verify that the very tight construction of the FAB`s fan results in a significant decrease in off-cycle sensible heat losses. Tests were also performed on a center-flue water heater fired with a conventional retention-head burner and with an FAB. The tests conformed to DOE standard procedures for hot water heaters, and the results are discussed below.

  19. Cyclization strategies of meditopes: affinity and diffraction studies of meditope-Fab complexes.

    Science.gov (United States)

    Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra A; Horne, David A; Williams, John C

    2016-06-01

    Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic `pocket' and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope-Fab complex.

  20. Orienterende Fast Atom Bombardment (FAB) experimenten met de VG-70-SQ massaspectrometer

    NARCIS (Netherlands)

    Hove GJ ten; Boer AC den; Burgers PC; Jong APJM de

    1988-01-01

    Eerste orienterende metingen met fast atom bombardment (FAB) ionisatietechniek zijn uitgevoerd. De techniek werd toegepast bij de analyse van korte-keten polypeptiden (n=2-5), cyclosporine, NADP en microperoxidase. Onderzocht werd de invloed van de aard van de matrix (glycerol, thioglycerol) op

  1. Crystal Structure of the Fab Fragment of an Anti-factor IX Antibody 10C12

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Li; ZENG Tu; HUANG Ming-Dong

    2008-01-01

    10C12 is an anticoagulant antibody identified from a phage display single-chain Fv human antibody library. It can be directed at the calcium-stabilized Gla domain of Factor-IX, an important coagulation factor in intrinsic pathway of blood coagulation cascade, and interfere with membrane anchoring of Factor IX, thus inhibiting blood coagulation function. 10C12 has been demonstrated as an effective anti-coagulant in attenuating thrombosis in several different animal models. Here, we report the crystal structure of the Fab fragment of 10C12. The crystal contains two Fab molecules in the asymmetric unit with identical conformation, forming a lattice with large cavities. In addition, comparison of this free Fab with the antigen-bound structure of 10C12 shows no change in CDR conformations and the relative disposition of the variable subunits of H and L chains, suggesting the rigid conformation of this 10C12 Fab and a lock-and-key mechanism of antibody-antigen recognition for 10C 12.

  2. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    Science.gov (United States)

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  3. Various Energy-Saving Approaches to a TFT-LCD Panel Fab

    Directory of Open Access Journals (Sweden)

    Cheng-Kuang Chang

    2016-09-01

    Full Text Available This study employs the developed simulation software for the energy use of the high-tech fabrication plant (hereafter referred as a fab to examine six energy-saving approaches for the make-up air unit (MAU of a TFT-LCD (thin-film transistor liquid-crystal display fab. The studied approaches include: (1 Approach 1: adjust the set point of dry bulb temperature and relative humidity in the cleanroom; (2 Approach 2: lower the flow rate of supply air volume in the MAU; (3 Approach 3: use a draw-through type instead of push through type MAU; (4 Approach 4: combine the two stage cooling coils in MAU to a single stage coil; (5 Approach 5: reduce the original MAU exit temperature from 16.5 °C to 14.5 °C; and (6 Approach 6: avoid an excessive increase in pressure drop over the filter by replacing the HEPA filter more frequently. The simulated results are further compared to the measured data of the studied TFT-LCD fab in Taiwan. The simulated results showed that Approach 1 exhibits more significant influence on annual power consumption than the other approaches. The advantage/disadvantage of each approach is elaborated. The impact of the six approaches on the annual power consumption of the fab is also discussed.

  4. The tumor-inhibitory effectiveness of a novel anti-Trop2 Fab conjugate in pancreatic cancer.

    Science.gov (United States)

    Mao, Yuan; Wang, Xiaoying; Zheng, Feng; Wang, Changjun; Tang, Qi; Tang, Xiaojun; Xu, Ning; Zhang, Huiling; Zhang, Dawei; Xiong, Lin; Liang, Jie; Zhu, Jin

    2016-04-26

    Human trophoblastic cell surface antigen 2 (Trop2) has been reported to act oncogenically. In this study, one-step quantitative real-time polymerase chain reaction (qPCR) test and immunohistochemistry (IHC) analysis with were employed to evaluate the relationship between Trop2 expression and the clinicopathological features of patients with PC. Then a novel anti-Trop2 Fab antibody was conjugated with Doxorubicin (DOX) to form Trop2Fab-DOX, an antibody-drug conjugate. This Trop2Fab-DOX conjugate was characterized by cell ELISA and immunofluorescence assay. MTT and wound healing analyses were used to evaluate the inhibitory effect of Trop2Fab-DOX on PC cell growth in vitro, while xenograft nude mice model was established to examine the tumor-inhibitory effects of PC in vivo. High Trop2 expression was observed in PC tissues and Trop2 expression was associated with several malignant attributes of PC patients, including overall survival. Trop2Fab-DOX can bind to the Trop2-expressing PC cells and provide an improved releasing type of DOX. In addition, Trop2Fab-DOX inhibited the proliferation and suppressed the migration of PC cells in a dose-dependent manner in vitro, while inhibited the growth of PC xenografts in vivo. Trop2 is a specific marker for PC, and a novel Trop2Fab-DOX ADC has a potent antitumor activity.

  5. Docking and molecular dynamics studies on triclosan derivatives binding to FabI.

    Science.gov (United States)

    Yang, Xuyun; Lu, Junrui; Ying, Ming; Mu, Jiangbei; Li, Peichun; Liu, Yue

    2017-01-01

    FabI, enoyl-ACP reductase (ENR), is the rate-limiting enzyme in the last step for fatty acids biosynthesis in many bacteria. Triclosan (TCL) is a commercial bactericide, and as a FabI inhibitor, it can depress the substrate (trans-2-enoyl-ACP) binding with FabI to hinder the fatty acid synthesis. The structure-activity relationship between TCL derivatives and FabI protein has already been acknowledged, however, their combination at the molecular level has never been investigated. This paper uses the computer-aided approaches, such as molecular docking, molecular dynamics simulation, and binding free energy calculation based on the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method to illustrate the interaction rules of TCL derivatives with FabI and guide the development of new derivatives. The consistent data of the experiment and corresponding activity demonstrates that electron-withdrawing groups on side chain are better than electron-donating groups. 2-Hydroxyl group on A ring, promoting the formation of hydrogen bond, is vital for bactericidal effect; and the substituents at 4-position of A ring, 2'-position and 4'-position of B ring benefit antibacterial activity due to forming a hydrogen bond or stabilizing the conformation of active pocket residues of receptor. While the substituents at 3'-position and 5'-position of B ring destroy the π-π stacking interaction of A ring and NAD(+) which depresses the antibacterial activity. This study provides a new sight for designing novel TCL derivatives with superior antibacterial activity.

  6. Construction, Expression and in vitro Biological Effects of Idiotype Ig Fab Fragment of B-Chronic Lymphocytic Leukemia

    Institute of Scientific and Technical Information of China (English)

    Feng WANG; Ping LEI; Ping HU; Lijuan ZHU; Huifeng ZHU; Yue ZHANG; Jing YANG; Guanxin SHEN

    2008-01-01

    Summary: The purpose of this study was to construct expression vectors of idiotype (Id) Smlg in patients with B-chronic lymphocytic leukemia and to express them in E.coli to obtain recombinant Id,and to investigate the effect of the protein on the proliferation and secretion of IL-2 and IFN-γ of stimulated peripheral blood mononuclear cells (PBMC) in vitro. Light chain gene and Fd fragment of heavy chain gene were inserted into fd-tet-DOG2 vector to construct fd-tet-DOG2-Fab. Fab gene was further cloned into expression vector pHEN2 to construct the soluble expression vector pHEN2-Fab. After induction by IPTG, Fab protein was purified by Ni-NTA-chromatography. MTT was used to determine the effects of purified protein on the proliferation of stimulated PBMC in vitro and the concentrations of IL-2 and IFN-γ in the culture supernatants were detected by ELISA. The results showed that recombinant pHEN2-Fab expression vector was constructed successfully. Fab protein was expressed in positive clone after induced by 1PTG and two specific bands at 24-25 kD position were observed by SDS-PAGE electrophoresis. Proliferation of PBMC could be induced by purified Fab and the concentrations of IL-2 and IFN-γ, in culture supernatants were increased significantly after induction. It was suggested that the expression vector of SmIg Fab fragment was constructed successfully, and expressed and secreted from E. Coli. The Fab protein could induce proliferation of PBMC and promote secretion of IL-2 and IFN-γ.

  7. Plasmid selection in Escherichia coli using an endogenous essential gene marker

    Directory of Open Access Journals (Sweden)

    Good Liam

    2008-08-01

    Full Text Available Abstract Background Antibiotic resistance genes are widely used for selection of recombinant bacteria, but their use risks contributing to the spread of antibiotic resistance. In particular, the practice is inappropriate for some intrinsically resistant bacteria and in vaccine production, and costly for industrial scale production. Non-antibiotic systems are available, but require mutant host strains, defined media or expensive reagents. An unexplored concept is over-expression of a host essential gene to enable selection in the presence of a chemical inhibitor of the gene product. To test this idea in E. coli, we used the growth essential target gene fabI as the plasmid-borne marker and the biocide triclosan as the selective agent. Results The new cloning vector, pFab, enabled selection by triclosan at 1 μM. Interestingly, pFab out-performed the parent pUC19-ampicillin system in cell growth, plasmid stability and plasmid yield. Also, pFab was toxic to host cells in a way that was reversed by triclosan. Therefore, pFab and triclosan are toxic when used alone but in combination they enhance growth and plasmid production through a gene-inhibitor interaction. Conclusion The fabI-triclosan model system provides an alternative plasmid selection method based on essential gene over-expression, without the use of antibiotic-resistance genes and conventional antibiotics.

  8. Monoclonal antibodies in chronic lymphocytic leukemia.

    Science.gov (United States)

    Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J

    2006-09-01

    Multiple options are now available for the treatment of chronic lymphocytic leukemia. Over the last 10 years, monoclonal antibodies have become an integral part of the management of this disease. Alemtuzumab has received approval for use in patients with fludarabine-refractory chronic lymphocytic leukemia. Rituximab has been investigated extensively in chronic lymphocytic leukemia both as a single agent and in combination with chemotherapy and other monoclonal antibodies. Epratuzumab and lumiliximab are newer monoclonal antibodies in the early phase of clinical development. This article will review the monoclonal antibodies more commonly used to treat chronic lymphocytic leukemia, the results obtained with monoclonal antibodies as single agents and in combination with chemotherapy, and other biological agents and newer compounds undergoing clinical trials.

  9. Monoclonal antibodies based on hybridoma technology.

    Science.gov (United States)

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs.

  10. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.

  11. FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures

    CERN Document Server

    Groen, Derek; Suter, James; Hetherington, James; Zasada, Stefan; Coveney, Peter

    2015-01-01

    We present FabSim, a toolkit developed to simplify a range of computational tasks for researchers in diverse disciplines. FabSim is flexible, adaptable, and allows users to perform a wide range of tasks with ease. It also provides a systematic way to automate the use of resourcess, including HPC and distributed resources, and to make tasks easier to repeat by recording contextual information. To demonstrate this, we present three use cases where FabSim has enhanced our research productivity. These include simulating cerebrovascular bloodflow, modelling clay-polymer nanocomposites across multiple scales, and calculating ligand-protein binding affinities.

  12. Native MS and ECD Characterization of a Fab-Antigen Complex May Facilitate Crystallization for X-ray Diffraction

    Science.gov (United States)

    Zhang, Ying; Cui, Weidong; Wecksler, Aaron T.; Zhang, Hao; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2016-07-01

    Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis.

  13. Crystal Structure of a Dimerized Cockroach Allergen Bla g 2 Complexed with a Monoclonal Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi; Gustchina, Alla; Alexandratos, Jerry; Wlodawer, Alexander; Wünschmann, Sabina; Kepley, Christopher L.; Chapman, Martin D.; Pomes, Anna (INDOOR Bio.); (VCU); (NIH)

    2008-09-03

    The crystal structure of a 1:1 complex between the German cockroach allergen Bla g 2 and the Fab' fragment of a monoclonal antibody 7C11 was solved at 2.8-{angstrom} resolution. Bla g 2 binds to the antibody through four loops that include residues 60-70, 83-86, 98-100, and 129-132. Cation-{pi} interactions exist between Lys-65, Arg-83, and Lys-132 in Bla g 2 and several tyrosines in 7C11. In the complex with Fab', Bla g 2 forms a dimer, which is stabilized by a quasi-four-helix bundle comprised of an {alpha}-helix and a helical turn from each allergen monomer, exhibiting a novel dimerization mode for an aspartic protease. A disulfide bridge between C51a and C113, unique to the aspartic protease family, connects the two helical elements within each Bla g 2 monomer, thus facilitating formation of the bundle. Mutation of these cysteines, as well as the residues Asn-52, Gln-110, and Ile-114, involved in hydrophobic interactions within the bundle, resulted in a protein that did not dimerize. The mutant proteins induced less {beta}-hexosaminidase release from mast cells than the wild-type Bla g 2, suggesting a functional role of dimerization in allergenicity. Because 7C11 shares a binding epitope with IgE, the information gained by analysis of the crystal structure of its complex provided guidance for site-directed mutagenesis of the allergen epitope. We have now identified key residues involved in IgE antibody binding; this information will be useful for the design of vaccines for immunotherapy.

  14. Simple NMR methods for evaluating higher order structures of monoclonal antibody therapeutics with quinary structure.

    Science.gov (United States)

    Chen, Kang; Long, Dianna S; Lute, Scott C; Levy, Michaella J; Brorson, Kurt A; Keire, David A

    2016-09-01

    Monoclonal antibody (mAb) drugs constitute the largest class of protein therapeutics currently on the market. Correctly folded protein higher order structure (HOS), including quinary structure, is crucial for mAb drug quality. The quinary structure is defined as the association of quaternary structures (e.g., oligomerized mAb). Here, several commonly available analytical methods, i.e., size-exclusion-chromatography (SEC) FPLC, multi-angle light scattering (MALS), circular dichroism (CD), NMR and multivariate analysis, were combined and modified to yield a complete profile of HOS and comparable metrics. Rituximab and infliximab were chosen for method evaluation because both IgG1 molecules are known to be homologous in sequence, superimposable in Fab crystal structure and identical in Fc structure. However, herein the two are identified to be significantly different in quinary structure in addition to minor secondary structure differences. All data collectively showed rituximab was mostly monomeric while infliximab was in mono-oligomer equilibrium driven by its Fab fragment. The quinary structure differences were qualitatively inferred from the less used but more reproducible dilution-injection-SEC-FPLC curve method. Quantitative principal component analysis (PCA) was performed on NMR spectra of either the intact or the in-situ enzymatic-digested mAb samples. The cleavage reactions happened directly in NMR tubes without further separation, which greatly enhanced NMR spectra quality and resulted in larger inter- and intra-lot variations based on PCA. The new in-situ enzymatic digestion method holds potential in identifying structural differences on larger therapeutic molecules using NMR.

  15. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

    Science.gov (United States)

    Ye, Xiaohua; Fan, Chen; Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-03-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.

  16. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Xiaohua Ye

    2016-03-01

    Full Text Available Enterovirus 71 (EV71 is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3 of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2, the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.

  17. 双功能螯合剂BAT与鼠IgG1 Fab'片段的点特异性交联方法的研究%Site-Specific Conjugation of Bifunctional Chelator BAT to Mouse IgG1 Fab' Fragment

    Institute of Scientific and Technical Information of China (English)

    李君; 王学浩; 成峰; 王晓明; 陈兆雷; 沈喜平

    2005-01-01

    目的报道一种用双功能螯合剂BAT与鼠单克隆抗体Fab'片段行点特异性交联的新方法.方法通过位于Fab'铰链区、远离抗原结合位点的活性巯基(-SH)直接与BAT相交联.用简单的两步法制备B43单抗的Fab'片段.首先单抗用胃蛋白酶处理,产生稳定的F(ab')2 片段,然后 F(ab')2经半胱氨酸还原后产生Fab'片段,最后Fab'片段直接与BAT交联.结果每个Fab'分子平均含1.8个-SH基团,74%的Fab'片段可与BAT生成交联物,平均每个Fab'分子携带1.28个BAT.经检测,F(ab')2、Fab' 及 Fab'-BAT 均保持着良好的免疫活性.结论该交联法简单、高效,为双功能螯合剂BAT与鼠单抗Fab'片段的交联提供了一个新途径.

  18. OBTAINING OF MONOCLONAL ANTIBODIES AGAINST CHOLERA TOXIN AND HEAT LABILE ENTEROTOXIN OF E. coli FOR DEVELOPMENT OF THE TOXINS DIPLEX ANALYSIS IN ENVIRONMENTAL SPECIMENS

    OpenAIRE

    Eu. V. Grishin; T. I. Valiakina

    2013-01-01

    The present study focuses on development of monoclonal antibodies (MAbs) which specifically interact with cholera toxin or heat labile enterotoxin of E. coli. Such monoclonal antibodies MAbs are possessed of ability to identify cholera toxin or heat labile enterotoxin in different immunochemical assays. We obtained hybridoma clones which produced monoclonal antibodies of IgG isotypes to cholera toxin and heat labile enterotoxin. On application of the method of serial dilutions we selected the...

  19. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  20. High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity.

    Directory of Open Access Journals (Sweden)

    Yasmina Noubia Abdiche

    Full Text Available Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs. In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic

  1. Activités insecticides de Striga hermonthica (Del.) Benth (Scrophulariaceae) sur Callosobrichus maculatus (Fab.) (Coleoptera : Bruchidae)

    OpenAIRE

    Nacoulma OG.; Ouedraogo AP.; Kiendrebeogo M.

    2006-01-01

    Insecticidal activities of Striga hermonthica (Del.) Benth (Scrophulariacecae) on Callobruchus maculatus (Fab.) (Coleptera Bruchidae). This paper deals with insecticidal potentialities of Striga hermonthica (Del.) (Scrophulariaceae) in protection of cowpea Vigna unguculata (L.) Walp against Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae) during storage. Crude acetone extract at 0,5% w/w (100 mg of extract for 20 g of grain) exhibits 48% of ovicidal effect and then reduces by half emer...

  2. Drug Development of Therapeutic Monoclonal Antibodies.

    Science.gov (United States)

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics.

  3. Improving Assessment of Work Related Mental Health Function Using the Work Disability Functional Assessment Battery (WD-FAB).

    Science.gov (United States)

    Marfeo, Elizabeth E; Ni, Pengsheng; McDonough, Christine; Peterik, Kara; Marino, Molly; Meterko, Mark; Rasch, Elizabeth K; Chan, Leighton; Brandt, Diane; Jette, Alan M

    2017-05-05

    Purpose To improve the mental health component of the Work Disability Functional Assessment Battery (WD-FAB), developed for the US Social Security Administration's (SSA) disability determination process. Specifically our goal was to expand the WD-FAB scales of mood & emotions, resilience, social interactions, and behavioral control to improve the depth and breadth of the current scales and expand the content coverage to include aspects of cognition & communication function. Methods Data were collected from a random, stratified sample of 1695 claimants applying for the SSA work disability benefits, and a general population sample of 2025 working age adults. 169 new items were developed to replenish the WD-FAB scales and analyzed using factor analysis and item response theory (IRT) analysis to construct unidimensional scales. We conducted computer adaptive test (CAT) simulations to examine the psychometric properties of the WD-FAB. Results Analyses supported the inclusion of four mental health subdomains: Cognition & Communication (68 items), Self-Regulation (34 items), Resilience & Sociability (29 items) and Mood & Emotions (34 items). All scales yielded acceptable psychometric properties. Conclusions IRT methods were effective in expanding the WD-FAB to assess mental health function. The WD-FAB has the potential to enhance work disability assessment both within the context of the SSA disability programs as well as other clinical and vocational rehabilitation settings.

  4. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo.

    Science.gov (United States)

    Lin, Hong; Zhang, Huiling; Wang, Jun; Lu, Meiping; Zheng, Feng; Wang, Changjun; Tang, Xiaojun; Xu, Ning; Chen, Renjie; Zhang, Dawei; Zhao, Ping; Zhu, Jin; Mao, Yuan; Feng, Zhenqing

    2014-03-01

    Human trophoblastic cell surface antigen 2 (Trop2) has been suggested as an oncogene, which is associated with the different types of tumors. In this study, a human Fab antibody against Trop2 extracellular domain was isolated from phage library by phage display technology, and characterized by ELISA, FACS, fluorescence staining and Western blotting analysis. MTT, apoptosis assay and wound healing assay were employed to evaluate the inhibitory effects of Trop2 Fab on breast cancer cell growth in vitro, while tumor-xenograft model was employed to evaluate the inhibitory effects on breast cancer growth in vivo. The results showed that Trop2 Fab inhibited the proliferation, induced the apoptosis and suspended the migration of MDA-MB-231 cells in a dose dependent manner. The expression caspase-3 was activated, and the expression of Bcl-2 was reduced while that of Bax was elevated in MDA-MB-231 cells by treating with Trop2 Fab. In addition, Trop2 Fab inhibited the growth of breast cancer xenografts and the expression of Bcl-2 was reduced while that of Bax was elevated in xenografts. Trop2 Fab, which was isolated successfully in this research, is a promising therapeutic agent for the treatment of Trop2 expressing breast cancer.

  5. SWARM INTELLIGENCE BASED DYNAMIC REAL-TIME SCHEDULING APPROACH FOR SEMICONDUCTOR WAFER FAB

    Institute of Scientific and Technical Information of China (English)

    Li Li; Fei Qiao; Wu Qidi

    2005-01-01

    Based on the analysis of collective activities of ant colonies, the typical example of swarm intelligence, a new approach to construct swarm intelligence based multi-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed. The relevant algorithm,pheromone-based dynamic real-time scheduling algorithm (PBDR), is given. MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out), SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules, i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior to FIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery, especially for on-time delivery performance.

  6. The FermiFab Toolbox for Fermionic Many-Particle Quantum Systems

    CERN Document Server

    Mendl, Christian B

    2011-01-01

    This paper introduces the FermiFab toolbox for many-particle quantum systems. It is mainly concerned with the representation of (symbolic) fermionic wavefunctions and the calculation of corresponding reduced density matrices (RDMs). The toolbox transparently handles the inherent antisymmetrization of wavefunctions and incorporates the creation/annihilation formalism. Thus, it aims at providing a solid base for a broad audience to use fermionic wavefunctions with the same ease as matrices in Matlab, say. Leveraging symbolic computation, the toolbox can greatly simply tedious pen-and-paper calculations for concrete quantum mechanical systems, and serves as "sandbox" for theoretical hypothesis testing. FermiFab (including full source code) is freely available as a plugin for both Matlab and Mathematica.

  7. Development of tools to study personal weight control strategies: OxFAB taxonomy

    OpenAIRE

    Hartmann‐Boyce, Jamie; Aveyard, Paul; Koshiaris, Constantinos; Jebb, Susan A

    2016-01-01

    Objective To describe the development of the Oxford Food and Activity Behaviors (OxFAB) taxonomy and questionnaire to explore the cognitive and behavioral strategies used by individuals during weight management attempts. Methods The taxonomy was constructed through a qualitative analysis of existing resources and a review of existing behavior change taxonomies and theories. The taxonomy was translated into a questionnaire to identify strategies used by individuals. Think‐aloud interviews were...

  8. Development of tools to study personal weight control strategies: OxFAB taxonomy.

    OpenAIRE

    Hartmann-Boyce, J; Aveyard, P; Koshiaris, C; Jebb, SA

    2016-01-01

    To describe the development of the Oxford Food and Activity Behaviors (OxFAB) taxonomy and questionnaire to explore the cognitive and behavioral strategies used by individuals during weight management attempts.The taxonomy was constructed through a qualitative analysis of existing resources and a review of existing behavior change taxonomies and theories. The taxonomy was translated into a questionnaire to identify strategies used by individuals. Think-aloud interviews were conducted to test ...

  9. Fab the coming revolution on your desktop : from personal computers to personal fabrication

    CERN Document Server

    Gershenfeld, Neil

    2005-01-01

    What if you could someday put the manufacturing power of an automobile plant on your desktop? According to Neil Gershenfeld, the renowned MIT scientist and inventor, the next big thing is personal fabrication-the ability to design and produce your own products, in your own home, with a machine that combines consumer electronics and industrial tools. Personal fabricators are about to revolutionize the world just as personal computers did a generation ago, and Fab shows us how.

  10. A status analysis of current digital marketing: a case study of Kauneusstudio FAB

    OpenAIRE

    Tran, Trong

    2015-01-01

    The subject of this thesis is a small company's current digital marketing status. This study was con-ducted in order for the owners of the beauty and hair salon Kauneusstudio FAB to improve their understanding of their customers’ behavior online and the significance of each digital channel they are using in the present marketing strategy. The goal of this study is to provide information for the company to recognize the strengths and the development points of the current digital marketing stra...

  11. Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs

    Science.gov (United States)

    Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji

    2004-08-01

    The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.

  12. Functional capacity of immunoglobulin G preparations and the F(ab')2 split product.

    OpenAIRE

    Steele, R W

    1989-01-01

    Five immunoglobulin G preparations, including one 5S F(ab')2 split product, were compared for activity against common bacterial, viral, and protozoan pathogens. Standard assays were used to quantitate antibodies to tetanus, diphtheria, cytomegalovirus, herpes simplex virus types 1 and 2, rubella virus, and Toxoplasma gondii. Opsonization and killing of bacteria were examined by chemiluminescence methods using Streptococcus pneumoniae types 5, 12F, and 14 and Staphylococcus aureus. Antibodies ...

  13. Family of Advanced Beyond Line-of-Sight Terminals (FAB-T)

    Science.gov (United States)

    2015-12-01

    Conferencing (PNVC) function; the Telemetry , Tracking & Control for the Milstar and AEHF constellations, for Nuclear Command, Control, & Communications...Coexistences: 4 ​Footnotes: 1/ For FAB-T, access to privileged Tracking Telemetry and Control (TT&C) capabilities and resource controller capabilities is...DIACAP - DoD Information Assurance Certification & Accreditation Process DIRECT - Defense IEMATS Replacement Command and Control Terminal DMU - Dual

  14. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.

    Science.gov (United States)

    Karkov, Hanne Sophie; Woo, James; Krogh, Berit Olsen; Ahmadian, Haleh; Cramer, Steven M

    2015-12-24

    This study describes the in silico design, surface property analyses, production and chromatographic evaluations of a diverse set of antibody Fab fragment variants. Based on previous findings, we hypothesized that the complementarity-determining regions (CDRs) constitute important binding sites for multimodal chromatographic ligands. Given that antibodies are highly diversified molecules and in particular the CDRs, we set out to examine the generality of this result. For this purpose, four different Fab fragments with different CDRs and/or framework regions of the variable domains were identified and related variants were designed in silico. The four Fab variant libraries were subsequently generated by site-directed mutagenesis and produced by recombinant expression and affinity purification to enable examination of their chromatographic retention behavior. The effects of geometric re-arrangement of the functional moieties on the multimodal resin ligands were also investigated with respect to Fab variant retention profiles by comparing two commercially available multimodal cation-exchange ligands, Capto MMC and Nuvia cPrime, and two novel multimodal ligand prototypes. Interestingly, the chromatographic data demonstrated distinct selectivity trends between the four Fab variant libraries. For three of the Fab libraries, the CDR regions appeared as major binding sites for all multimodal ligands. In contrast, the fourth Fab library displayed a distinctly different chromatographic behavior, where Nuvia cPrime and related multimodal ligand prototypes provided markedly improved selectivity over Capto MMC. Clearly, the results illustrate that the discriminating power of multimodal ligands differs between different Fab fragments. The results are promising indications that multimodal chromatography using the appropriate multimodal ligands can be employed in downstream bioprocessing for challenging selective separation of product related variants.

  15. [Digitoxin poisoning: reversing ventricular fibrillation with Fab fragments of anti-digoxin antibody].

    Science.gov (United States)

    Domart, Y; Bismuth, C; Schermann, J M; Abuaf, N; Pontal, P G; Baud, F; Bolo, A; Gailliot, M; Fournier, P E

    1982-12-25

    Purified Fab fragments of ovine anti-digoxin antibodies (Wellcome Foundation) were used to treat a patient who attempted suicide by absorbing 10 mg of digitoxin (serum concentration 265 micrograms/l). The poor prognosis, as assessed clinically and from serum potassium levels (7.5 mEq/l), seemed to warrant such a treatment. The weak (6.85%) cross-reactivity elicited in vitro between the anti-digoxin antibodies and digitoxin was compensated by increasing the doses, but improvement was observed with 3.6 g, i.e. about half the effective dosage initially considered. The criteria of effectiveness were clinical, electrocardiographic (reversal of the ventricular fibrillation), biochemical (simultaneous and opposite changes in extra- and intracellular potassium levels, suggesting that ATPase inhibition by digitalis is a reversible process) and toxicological: there was an increase in digitoxin serum levels suggesting displacement of the drug from tissue sites to plasma and other extracellular compartments where the Fab fragments are distributed, and Fab-bound digitoxin appeared fairly rapidly in the urine, which suggested shunting of the normal hepatic metabolic pathway.

  16. Productivity improvement through automated operation of reticle defect inspection tools in a wafer fab environment

    Science.gov (United States)

    Holfeld, Christian; Wagner, Heiko; Tchikoulaeva, Anna; Loebeth, Steffen; Melzig, Stephan; Zhang, Yulin; Tanabe, Shinichi; Katoh, Takenori; Moriizumi, Koichi

    2013-04-01

    Traditionally, product development for reticle defect inspection mostly addressed operational requirements of the mask shops with highly individualized manufacturing. As a result, limited automation capability was available as compared to the standards in wafer production. Wafer fabs are guided by completely different conditions. Thousands of active reticles exist in a single fab requiring frequent re-inspections without interruption of wafer exposures. This requires high throughput of inspection tools, smart management of tool fleet, sophisticated scheduling and in-time execution of reticle inspections linked to the wafer manufacturing. The paper reports about the successful implementation of fully automated reticle defect inspection in a high-volume advanced logic fab. Automation scenarios - created based on existing SEMI standards - included inspection scheduling, reticle transport and inspection tool operation. A considerable productivity gain for the operation of Lasertec MATRICS X700 series inspection tools was obtained. Based on the learning throughout implementation, the requirements to the automation capability and tool operation as well as adjustments to working procedures are discussed.

  17. Fabricating quench condensed lead thin film circuits using MEMS Fab on a Chip technology

    Science.gov (United States)

    Imboden, Matthias; Han, Han; Del Corro, Pablo; Pardo, Flavio; Bolle, Cristian; Bishop, David

    2015-03-01

    We have developed a MEMS Fab on a Chip consisting of micro-sources, mass sensors, heaters/thermometers, shutters and a dynamic stencil. The fab only occupies a volume of a few cubic millimeters and consumes milliwatts of power, and hence can be operated in a cryostat. Thin film patterns of arbitrary shapes using multiple materials can be manufactured, while strongly suppressing thermal annealing effects. We demonstrate deposition of quench condensed lead films with fractions of a monolayer thickness control. Furthermore, using low deposition rates it is estimated that the surface temperature of the target heats by only 1.7 K. We study the effects of growing quench condensed films with different evaporation rates to demonstrate thermal annealing effects which occur during deposition. We measure the minimum conduction thickness (insulator to metal transition) as well as the superconducting transition temperature as a function of film thickness in order to shed light on growth of amorphous films and the transition to nanocluster formations. The Fab on a Chip will allow us to build nanocircuits made of ultra-thin materials. Annealing and doping is controlled and measurements occur in situ, without exposing the fabricated circuits to thermal fluctuations or foreign contaminants. This enables new types of experiments based on quantum circuits which cannot be fabricated using standard lithography techniques.

  18. Precise construction of oligonucleotide-Fab fragment conjugate for homogeneous immunoassay using HaloTag technology.

    Science.gov (United States)

    Päkkilä, Henna; Peltomaa, Riikka; Lamminmäki, Urpo; Soukka, Tero

    2015-03-01

    The use of oligonucleotide-protein conjugates enables the development of novel types of bioanalytical assays. However, convenient methods for producing covalent and stoichiometric oligonucleotide-protein conjugates are still rare. Here we demonstrate, for the first time, covalent conjugation of DNA oligonucleotide to Fab fragments with a 1:1 ratio using HaloTag self-labeling technology. The oligonucleotide coupling was carried out while the Fab was attached to protein G matrix, thereby enabling straightforward production of covalent conjugates. Furthermore, it allowed convenient purification of the product because the unreacted components were easily removed before the elution of the high-purity conjugate. The prepared conjugate was employed in a homogeneous immunoassay where prostate-specific antigen was used as a model analyte. Switchable lanthanide luminescence was used for detection, and the obtained limit of detection was 0.27 ng/ml. In the future, the developed method for covalent conjugation and successive purification in protein G column could also be applied for introducing other kinds of modifications to Fab fragments in a simple and site-specific manner.

  19. Use of AN Eosinophil Specific Monoclonal Antibody in Assessing Eosinophil Function.

    Science.gov (United States)

    Minkoff, Marjorie Sue

    A monoclonal antibody to an eosinophil specific determinant is very important in assessing eosinophil function during helminthic infection. Eosinophils induced by Schistosoma mansoni infection in BALB/c mice were used to induce C57B1/6 immunocytes for production of hybridomas secreting eosinophil monoclonal antibodies. These antibodies were shown to react with an eosinophil surface epitope but not with neutrophils or macrophages as determined by ELISA, immunodiffusion, immunofluorescence, and immunoblot assay. Affinity chromatography with eosinophil chemotactic factor-sepharose consistently selected out a { rm M_ R} 67,000 protein from solubilized eosinophil membrane antigens but not from neutrophil and macrophage antigens. In vitro studies showed that the eosinophil-specific monoclonal antibodies abrogated antibody-dependent eosinophil -mediated killing of S. mansoni schistosomula using mouse, rat or human eosinophils. Neutrophil and macrophage killing activities were unaffected. The monoclonal antibodies effected complement-dependent lysis of mouse and rat eosinophils but not of human eosinophils. ECF-treated eosinophils showed enhanced killing of schistosomula which was blocked by the monoclonal antibody. Murine and human eosinophils preincubated with monoclonal antibody exhibited decreased chemotaxis to ECF at optimal chemotactic concentrations. The monoclonal antibody also blocked eosinophil binding to ECF- sepharose beads. In vivo induction of peripheral blood eosinophilia by injection of S. mansoni eggs was suppressed by injections of monoclonal antibodies 2CD13 and 2QD45 in mouse and rat experimental models. Eosinophilia induced by keyhole limpet hemocyanin- cyclophosphamide treatment was also suppressed by monoclonal antibody in both murine and rat systems. Pulmonary granulomas in mice given egg injection and monoclonal antibody were smaller and contained fewer eosinophils than those granulomas from mice given eggs only. In immuno-biochemical studies, the

  20. Production and Screening of Monoclonal Peptide Antibodies.

    Science.gov (United States)

    Trier, Nicole Hartwig; Mortensen, Anne; Schiolborg, Annette; Friis, Tina

    2015-01-01

    Hybridoma technology is a remarkable and indispensable tool for generating high-quality monoclonal antibodies. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents, but have also emerged as the most rapidly expanding class of therapeutic biologicals. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma production and antibody screening are presented, including characterization of peptide antibodies.

  1. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor.

    Science.gov (United States)

    Kalli, K R; Hsu, P H; Bartow, T J; Ahearn, J M; Matsumoto, A K; Klickstein, L B; Fearon, D T

    1991-12-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti-CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) -B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and the CR1/CR2 chimeras, respectively, and assayed for binding of 125I-pC3b. The dissociation constants (Kd) for pC3b of wild-type CR1 and the LHR-BD and -CD constructs were in the range of 1.0-2.7 nM, and of the CR1/CR2 chimeras containing SCRs 1-4, 1-3, and 2-4 of LHR-B or -C were 1.8-2.4, 6-9, and 22-36 nM, respectively. The factor I-cofactor function of the CR1/CR2 chimeras paralleled the C3b-binding function of the constructs. A CR1/immunoglobulin (Ig) chimeric protein was prepared by fusing SCRs 1-4 of LHR-B to the heavy chains of a murine F(ab')2 anti-nitrophenacetyl (NP) monoclonal antibody. The (CR1)2-F(ab')2 chimera, which retained its specificity for NP, was as effective as soluble, full-length CR1 in binding pC3b, serving as a cofactor for factor I-mediated cleavage of C3b, and inhibiting activation of the alternative pathway, indicating that the bivalent expression of these SCRs reconstitutes the alternative pathway inhibitory function of CR1. The feasibility of creating CR1/Ig chimeras makes possible a new strategy of targeting complement inhibition by the use of Ig fusion partners having particular antigenic specificities.

  2. Pharmacokinetics interactions of monoclonal antibodies.

    Science.gov (United States)

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction.

  3. Regulation of fatty acid biosynthesis by the global regulator CcpA and the local regulator FabT in Streptococcus mutans

    OpenAIRE

    Faustoferri, R.C.; Hubbard, C.J.; Santiago, B.; Buckley, A.A.; Seifert, T.B.; Quivey, R.G.

    2014-01-01

    SMU.1745c, encoding a putative transcriptional regulator of the MarR family, maps to a location proximal to the fab gene cluster in Streptococcus mutans. Deletion of the SMU.1745c (fabTSm) coding region resulted in a membrane fatty acid composition comprised of longer-chained, unsaturated fatty acids (UFA), compared with the parent strain. Previous reports have indicated a role for FabT in regulation of genes in the fab gene cluster in other organisms, through binding to a palindromic DNA seq...

  4. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex.

    Directory of Open Access Journals (Sweden)

    Olga Kyrchanova

    2016-07-01

    Full Text Available Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.

  5. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-01

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  6. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex.

    Science.gov (United States)

    Kyrchanova, Olga; Mogila, Vladic; Wolle, Daniel; Deshpande, Girish; Parshikov, Alexander; Cléard, Fabienne; Karch, Francois; Schedl, Paul; Georgiev, Pavel

    2016-07-01

    Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.

  7. PREPARATION AND IDENTIFICATION OF ANTI-PROGESTERONE Fab'-SBP%抗孕酮Fab'-大豆过氧化物酶交联物的制备和鉴定

    Institute of Scientific and Technical Information of China (English)

    龚振明; 李蓓; 陈鲁勇; 沈明泉

    2003-01-01

    用硫酸铵沉淀法对兔抗孕酮血清进行粗提后用DEAE Sepharose Fast Fl0W对IgG进行层析纯化,然后用胃蛋白酶切除Fc片段而制备F(ab')2,用β-巯基乙醇还原F(ab')2后得到Fab',再将Fab'与热稳定性较高的大豆过氧化物酶(SBP)偶联制得抗孕酮Fab'-SBP.将抗孕酮Fab'-SBP用于二级竞争酶联免疫法测定孕酮有以下优点:(1)减少因Fc片段与固相载体非特异性吸附而引起的高背景干扰;(2)由于Fab'和SBP在很温和的条件下偶联,可使偶联产物保持较高的免疫活性和酶活性.

  8. Studies of a murine monoclonal antibody directed against DARC: reappraisal of its specificity.

    Directory of Open Access Journals (Sweden)

    Dorota Smolarek

    Full Text Available Duffy Antigen Receptor for Chemokines (DARC plays multiple roles in human health as a blood group antigen, a receptor for chemokines and the only known receptor for Plasmodium vivax merozoites. It is the target of the murine anti-Fy6 monoclonal antibody 2C3 which binds to the first extracellular domain (ECD1, but exact nature of the recognized epitope was a subject of contradictory reports. Here, using a set of complex experiments which include expression of DARC with amino acid substitutions within the Fy6 epitope in E. coli and K562 cells, ELISA, surface plasmon resonance (SPR and flow cytometry, we have resolved discrepancies between previously published reports and show that the basic epitope recognized by 2C3 antibody is 22FEDVW26, with 22F and 26W being the most important residues. In addition, we demonstrated that 30Y plays an auxiliary role in binding, particularly when the residue is sulfated. The STD-NMR studies performed using 2C3-derived Fab and synthetic peptide corroborated most of these results, and together with the molecular modelling suggested that 25V is not involved in direct interactions with the antibody, but determines folding of the epitope backbone.

  9. Patterns of evolution of myocyte damage after human heart transplantation detected by indium-111 monoclonal antimyosin

    Energy Technology Data Exchange (ETDEWEB)

    Ballester-Rodes, M.; Carrio-Gasset, I.; Abadal-Berini, L.; Obrador-Mayol, D.; Berna-Roqueta, L.; Caralps-Riera, J.M.

    1988-09-15

    The indium-111 labeled Fab fragment of antimyosin monoclonal antibody was used to study cardiac rejection and the time course of myocyte damage after transplantation. Fifty-three studies were performed in 21 patients, 17 men and 4 women, aged 19 to 54 years (mean 37 +/- 8), from 7 to 40 months after transplantation. Repeat studies were available in 8, and 10 were studied after the first year of transplantation. A heart-to-lung ratio was used for quantitation of uptake (normal 1.46 +/- 0.04). Differences between absent (1.69 +/- 0.29) and moderate (1.90 +/- 0.36) rejection were significant (p less than 0.03). Antimyosin ratio at 1 to 3 months (1.89 +/- 0.35) differed from that at greater than 12 months (1.65 +/- 0.2) (p less than 0.01). Repeat studies revealed a decrease in antimyosin ratio in 5 patients with uneventful clinical course; 2 had persistent activity after transplantation and suffered heart failure from rejection. After 1 year of transplantation uptake was within normal limits in 7 of 10 patients, and high uptake was associated with vascular rejection in 1. Because they can define evolving patterns of myocardial lesion activity, antimyosin studies could be useful both in patient management and in concentrating resources for those patients who most require them. The heart-to-lung ratio is suggested to monitor sequentially the degree of myocyte damage after transplantation.

  10. The Effect of CD3-Specific Monoclonal Antibody on Treating Experimental Autoimmune Myasthenia Gravis

    Institute of Scientific and Technical Information of China (English)

    Ruonan Xu; Jianan Wang; Guojiang Chen; Gencheng Han; Renxi Wang; Beffen Shen; Yan Li

    2005-01-01

    CD3-specific monoclonal antibody was the first one used for clinical practice in field of transplantation. Recently,renewed interests have elicited in its capacity to prevent autoimmune diabetes by inducing immune tolerance. In this study, we tested whether this antibody can also be used to treat another kind of autoimmune disease myasthenia gravis (MG) and explored the possible mechanisms. MG is caused by an autoimmune damage mediated by antibody- and complement-mediated destruction of AChR at the neuromuscular junction. We found that administration of CD3-specific antibody (Fab)2 to an animal model with experimental autoimmune myasthenia gravis (EAMG) (B6 mice received 3 times of AChR/CFA immunization) could not significantly improve the clinical signs and clinical score. When the possible mechanisms were tested, we found that CD3 antibody treatment slightly down-regulated the T-cell response to AChR, modestly up-regulation the muscle strength. And no significant difference in the titers of IgG2b was found between CD3 antibody treated and control groups. These data indicated that CD3-specific antibody was not suitable for treating MG, an antibody- and complementmediated autoimmune disease, after this disease has been established. The role of CD3-specific antibody in treating this kind of disease remains to be determined.

  11. Development of a monoclonal sandwich ELISA for direct detection of bluetongue virus 8 in infected animals.

    Science.gov (United States)

    Ten Haaf, Andre; Kohl, Johannes; Pscherer, Sibylle; Hamann, Hans-Peter; Eskens, Hans Ulrich; Bastian, Max; Gattenlöhner, Stefan; Tur, Mehmet Kemal

    2017-05-01

    Bluetongue is an infectious viral disease which can cause mortality in affected ruminants, and tremendous economic damage via impacts upon fertility, milk production and the quality of wool. The disease is caused by bluetongue virus (BTV) which is transmitted by species of Culicoides biting midge. Rapid detection of BTV is required to contain disease outbreaks and reduce economic losses. The purpose of this study was to develop a monoclonal sandwich ELISA for direct detection of BTV in infected animals. Phage display technology was used to isolate BTV specific antibody fragments by applying the human scFv Tomlinson antibody libraries directly on purified BTV-8 particles. Three unique BTV-8 specific human antibody fragments were isolated which were able to detect purified BTV particles and also BTV in serum of an infected sheep. A combination of a human/mouse scFv-Fc chimeric fusion protein and a human Fab fragment in a sandwich ELISA format was able to detect BTV specifically with a limit of detection (LOD) of 10(4) infectious virus particles, as determined by tissue culture titration. This approach provided pilot data towards the development of a novel diagnostic test that might be used for direct detection of BTV-8 particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing.

    Science.gov (United States)

    Levy, Nicholas E; Valente, Kristin N; Choe, Leila H; Lee, Kelvin H; Lenhoff, Abraham M

    2014-05-01

    Downstream processing of monoclonal antibodies (mAbs) has evolved to allow the specific process for a new product to be developed largely by empirical specialization of a platform process that enables removal of impurities of different kinds. A more complete characterization of impurities and the product itself would provide insights into the rational design of efficient downstream processes. This work identifies and characterizes host cell protein (HCP) product-associated impurities, that is, HCP species carried through the downstream processes via direct interactions with the mAb. Interactions between HCPs and mAbs are characterized using cross-interaction chromatography under solution conditions typical of those used in downstream processing. The interacting species are then identified by two-dimensional gel electrophoresis and mass spectrometry. This methodology has been applied to identify product-associated impurities in one particular purification step, namely protein A affinity chromatography, for four therapeutic mAbs as well as the Fab and Fc domains of one of these mAbs. The results show both the differences in HCP-mAb interactions among different mAbs, and the relative importance of product association compared to co-elution in protein A affinity chromatography. © 2013 Wiley Periodicals, Inc.

  13. Deletion of fabN in Enterococcus faecalis results in unsaturated fatty acid auxotrophy and decreased release of inflammatory cytokines.

    Science.gov (United States)

    Diederich, Ann-Kristin; Duda, Katarzyna A; Romero-Saavedra, Felipe; Engel, Regina; Holst, Otto; Huebner, Johannes

    2016-05-01

    The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several commonly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the ΔfabN mutant using a specific glycolipid. In addition, we demonstrate that cytokine release in vitro is almost abolished after stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence.

  14. Two courses of rituximab (anti-CD20 monoclonal antibody) for recalcitrant pemphigus vulgaris

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    Background Pemphigus vulgaris (PV) is a severe autoimmune blistering disease involving the skin and mucous membranes. The response to therapy varies greatly amongst patients and treatment may be challenging. Rituximab is a chimeric monoclonal antibody that selectively targets cell surface antigen...

  15. The generation of monoclonal antibodies and their use in rapid diagnostic tests

    Science.gov (United States)

    Antibodies are the most important component of an immunoassay. In these proceedings we outline novel methods used to generate and select monoclonal antibodies that meet performance criteria for use in rapid lateral flow and microfluidic immunoassay tests for the detection of agricultural pathogens ...

  16. Human monoclonal HLA antibodies reveal interspecies crossreactive swine MHC class I epitopes relevant for xenotransplantation.

    NARCIS (Netherlands)

    Mulder, A.; Kardol, M.J.; Arn, J.S.; Eijsink, C.; Franke, M.E.; Schreuder, G.M.; Haasnoot, G.W.; Doxiadis, I.I.; Sachs, D.H.; Smith, D.M.; Claas, F.H.

    2010-01-01

    Crossreactivity of anti-HLA antibodies with SLA alleles may limit the use of pig xenografts in some highly sensitized patients. An understanding of the molecular basis for this crossreactivity may allow better selection of xenograft donors. We have tested 68 human monoclonal HLA class I antibodies (

  17. Synthetic methyl hexagalacturonate hapten inhibitors of antihomogalacturonan monoclonal antibodies LM7, JIM5 and JIM7

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig; Willats, William George Tycho; Knox, J. Paul

    2003-01-01

    A range of synthetic methyl hexagalacturonates were used as potential hapten inhibitors in competitive-inhibition enzyme-linked immunosorbent assays (ELISAs) with anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. The selective inhibition of these antibodies by different haptens prov...

  18. 抗HBs Fab-IFNα融合蛋白的制备与初步鉴定%Preparation and preliminary identification of anti HBs Fab-IFNa fusion protein

    Institute of Scientific and Technical Information of China (English)

    陆慧琦; 宋杰; 叶伟民; 韩焕兴

    2011-01-01

    目的 构建抗HBsAg的pComb Fab-IFNα载体,原核表达具双重生物活性的抗HBs Fab-IFNα融合蛋白.方法 以pBAD-Fab和pBAD IFNα作为模板,分别扩增Fd、λ和IENα基因,经相应的限制性内切酶酶切后分3次克隆人pComBHss质粒,转化XL-1 Blue大肠埃希菌.限制性酶切和测序鉴定重组质粒,免疫蛋向印迹(Western blotting)和斑点印迹(Dot blotting)鉴定融合蛋白的表达及抗原结合活性.结果 重组载体的酶切、电泳及测序表明抗HBs Fab-IFNα基因克隆正确.表达产物经12%SDS-PAGE电泳、转印,Western blotting显示该融合蛋白分子量约为65kD,Dot blotting显示其与HBsAg具有结合能力.细胞病变抑制法测定IFNα生物学活性为7.8×104~5.1×105U/ml.结论 该原核系统成功表达了抗HBs Fab-IFNα融合蛋白,表明其既具有抗HBsAg结合能力,又具备IFNα的生物活性,为进一步的系统表达和应用研究提供了条件.%Objective To construct the anti HBsAg pComb Fab-IFNe vector, and to express the fusion protein consisting of IFN and anti-HBs Fab in prokaryon. Methods Using pBAD-IFN plasmid and pBAD-Fab plasmid as template, the anti-HBs Fd, and IFN were amplified separately with corresponding endonuclease sites by polymerase chain reaction (PCR). Each PCR product was digested with specific endonuclease and inserted into pComBHss vector, and then transformed into XL-1 Blue. The recombinant plasmid was isolated by miniprep for restriction analysis and sequencing. Fusion protein was identified by Western blotting and Dot blotting. Results The recombinant plasmid was confirmed by restriction electrophoresis and sequencing. Aliquots of human anti-HBs Fab-IFNα were concentrated and size fractionated by 12% SDS-PAGE and stained with Coomassie. The proteins were transferred to nitrocellulose, incubated with HRP- conjugated goat anti-human IgG Fab and Rah anti-human IFN. The molecular weight of the fusion protein was about 65kD. Anti HBs Fab-IFNa fusion

  19. The FermiFab toolbox for fermionic many-particle quantum systems

    Science.gov (United States)

    Mendl, Christian B.

    2011-06-01

    This paper introduces the FermiFab toolbox for many-particle quantum systems. It is mainly concerned with the representation of (symbolic) fermionic wavefunctions and the calculation of corresponding reduced density matrices (RDMs). The toolbox transparently handles the inherent antisymmetrization of wavefunctions and incorporates the creation/annihilation formalism. Thus, it aims at providing a solid base for a broad audience to use fermionic wavefunctions with the same ease as matrices in Matlab, say. Leveraging symbolic computation, the toolbox can greatly simply tedious pen-and-paper calculations for concrete quantum mechanical systems, and serves as "sandbox" for theoretical hypothesis testing. FermiFab (including full source code) is freely available as a plugin for both Matlab and Mathematica. Program summaryProgram title:FermiFab Catalogue identifier: AEIN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special license provided by the author No. of lines in distributed program, including test data, etc.: 1 165 461 No. of bytes in distributed program, including test data, etc.: 15 557 308 Distribution format: tar.gz Programming language: MATLAB 7.9, Mathematica 7.0, C Computer: PCs, Sun Solaris workstation Operating system: Any platform supporting MATLAB or Mathematica; tested with Windows (32 and 64 bit) and Sun Solaris. RAM: Case dependent Classification: 4.15 Nature of problem: Representation of fermionic wavefunctions, computation of RDMs (reduced density matrices) and handing of the creation/annihilation operator formalism. Solution method: Mapping of Slater determinants to bitfields, implementation of the creation/annihilation and RDM formalism by bit operations. Running time: Depends on the problem size; several seconds for the provided demonstration files.

  20. Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41.

    Directory of Open Access Journals (Sweden)

    Charles Sabin

    Full Text Available The human monoclonal antibody (mAb HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1 of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.

  1. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Holers, V.M.; Kotzin, B.L.

    1985-09-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases.

  2. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    Science.gov (United States)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  3. PREPARATION OF IMMUNOGEN AND PURIFICA¬TION OF HIGH AFFINITY AND SPECIFICITY FAB FRAGMENT OF ANTI-DIGOXIN POLYCLONAL ANTIBODIES

    Directory of Open Access Journals (Sweden)

    M. Pour-Amir

    2000-01-01

    Full Text Available In this study we produced and purified a high titer of specific and high affin¬ity Fab fragments of anti-digoxin antibody. Immunization of rabbits with a conju¬gate of the cardiac glycoside digoxin, coupled by a periodate oxidation method to the amino group of lysine in bovine serum albumin resulted in the production of this type of high titer digoxin-specific antibodies with exceptionally high affinity (109 L/mol and specificity in immune response. Increase in titer was found in steps of purification ending up with the highest titer for Fab fragment to be at 1.75 ug of purified Fab (for 50% binding of I25I-digoxin. High specificity for antigenic determinants of the steroid nucleus of digoxin was observed such that much less cross-reaction with digoxin (2.3% and no cross-reaction with ouabaine, estradiol, Cortisol, progesterone and testosterone were detected.

  4. Critical Stage Rule-Based Real Time Dispatch(RTD)System in Highly-Mixed-Products (HMP) FAB

    Institute of Scientific and Technical Information of China (English)

    YUXiao-hua; XIANGYu-qun

    2005-01-01

    An improving utilization and efficiency of critical equipments in semiconductor wafer fabrication facilities are concerned. Semiconductor manufacturing FAB is one of the most complicated and cost sensitive environments. A good dispatching tool will make big difference in equipment utilization and FAB output as a whole. The equipment in this paper is In-Line DUV Scanner.There are many factors impacting utilization and output on this equipment group. In HMP environment one of the issues is changing of reticule in this area and idle counts due to load unbalance between equipments. Here we'll introduce a rule-based RTD system which aiming at decreasing the number of recipe change and idle counts among a group of scanner equipment in a high-mixedproducts FAB.

  5. Critical Stage Rule-Based Real Time Dispatch(RTD) System in Highly-Mixed-Products (HMP) FAB

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-hua; XIANG Yu-qun

    2005-01-01

    An improving utilization and efficiency of critical equipments in semiconductor wafer fabrication facilities are concerned. Semiconductor manufacturing FAB is one of the most omplicated and cost sensitive environments. A good dispatching tool will make big difference in equipment utilization and FAB output as a whole. The equipment in this paper is In-Line DUV Scanner.There are many factors impacting utilization and output on this equipment group. In HMP environment one of the issues is changing of reticule in this area and idle counts due to load unbalance between equipments. Here we'll introduce a rule-based RTD system which aiming at decreasing the number of recipe change and idle counts among a group of scanner equipment in a high-mixedproducts FAB.

  6. Antibacterial FabH Inhibitors with Mode of Action Validated in Haemophilus influenzae by in Vitro Resistance Mutation Mapping.

    Science.gov (United States)

    McKinney, David C; Eyermann, Charles J; Gu, Rong-Fang; Hu, Jun; Kazmirski, Steven L; Lahiri, Sushmita D; McKenzie, Andrew R; Shapiro, Adam B; Breault, Gloria

    2016-07-01

    Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (β-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.

  7. A study on EUV reticle surface molecular contamination under different storage conditions in a HVM foundry fab

    Science.gov (United States)

    Singh, SherJang; Yatzor, Brett; Taylor, Ron; Wood, Obert; Mangat, Pawitter

    2017-03-01

    The prospect of EUVL (Extreme Ultraviolet Lithography) insertion into HVM (High Volume Manufacturing) has never been this promising. As technology is prepared for "lab to fab" transition, it becomes important to comprehend challenges associated with integrating EUVL infrastructure within existing high volume chip fabrication processes in a foundry fab. The existing 193nm optical lithography process flow for reticle handling and storage in a fab atmosphere is well established and in-fab reticle contamination concerns are mitigated with the reticle pellicle. However EUVL reticle pellicle is still under development and if available, may only provide protection against particles but not molecular contamination. HVM fab atmosphere is known to be contaminated with trace amounts of AMC's (Atmospheric Molecular Contamination). If such contaminants are organic in nature and get absorbed on the reticle surface, EUV photon cause photo-dissociation resulting into carbon generation which is known to reduce multilayer reflectivity and also degrades exposure uniformity. Chemical diffusion and aggregation of other ions is also reported under the e-beam exposure of a EUV reticle which is known to cause haze issues in optical lithography. Therefore it becomes paramount to mitigate absorbed molecular contaminant concerns on EUVL reticle surface. In this paper, we have studied types of molecular contaminants that are absorbed on an EUVL reticle surface under HVM fab storage and handling conditions. Effect of storage conditions (gas purged vs atmospheric) in different storage pods (Dual pods, Reticle Clamshells) is evaluated. Absorption analysis is done both on ruthenium capping layer as well as TaBN absorber. Ru surface chemistry change as a result of storage is also studied. The efficacy of different reticle cleaning processes to remove absorbed contaminant is evaluated as well.

  8. Enhancement of retroviral infection in vitro by anti-Le(y) IgG: reversal by humanization of monoclonal mouse antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Sørensen, A M; Arendrup, M

    1993-01-01

    also enhanced infection, a human/mouse chimeric antibody and a fully humanized antibody had no enhancing effect on free virus infection. We suggest that binding of anti-Le(y) ABL 364 or its F(ab)2 fragment induced a conformational change in the gp120 oligomers facilitating the process of infection...... with no indication of any alternative pathway of infection, as evidenced by abrogation of enhancement by anti-CD4 MAb or soluble recombinant CD4, and also the inability of anti-Le(y) MAb to mediate HIV infection of HSB-2 cells in which HTLV-1/HIV pseudovirus infection was enhanced. While F(ab)2 fragments of ABL 364......Monoclonal mouse IgG3 antibody (ABL 364) against the carbohydrate Le(y) antigen enhanced infection in vitro with HTLV-1 and with HIV-1 when propagated in both transformed and normal lymphocytes. Enhancement was independent of complement, occurred with both lymphocytes and monocytes as target cells...

  9. Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody.

    Science.gov (United States)

    Vázquez, A M; Pérez, A; Hernández, A M; Macías, A; Alfonso, M; Bombino, G; Pérez, R

    1998-12-01

    An IgM monoclonal antibody (MAb), named P3, has the characteristic to react specifically with a broad battery of N-glycolyl containing-gangliosides and with antigens expressed on breast tumors. When this MAb was administered alone in syngeneic mice, an specific IgG anti-idiotypic antibody (Ab2) response was induced, this Ab2 response was increased when P3 MAb was injected coupled to a carrier protein and in the presence of Freund's adjuvant. Spleen cells from these mice were used in somatic-cell hybridization experiments, using the murine myeloma cell line P3-X63-Ag8.653 as fusion partner. Five Ab2 MAbs specific to P3 MAb were selected. These IgG1 Ab2 MAbs were able to block the binding of P3 MAb to GM3(NeuGc) ganglioside and to a human breast carcinoma cell line. Cross-blocking experiments demonstrated that these Ab2 MAbs are recognizing the same or very close sites on the Abl MAb. The five Ab2 MAbs were injected into syngeneic mice and four of them produced strong anti-anti-idiotypic antibody (Ab3) response. While these Ab2 MAbs were unable to generate Ab3 antibodies with the same antigenic specificity than P3 MAb, three of them induced antibodies bearing P3 MAb idiotopes (Ag-Id+ Ab3). These results demonstrated that these Ab2 MAbs are not "internal image" antibodies, but they could define "regulatory idiotopes."

  10. Structural Analysis of Human and Macaque Monoclonal Antibodies 2909 and 2.5B: Implications for the Configuration of the Quaternary Neutralizing Epitope of HIV-1 gp120

    Energy Technology Data Exchange (ETDEWEB)

    B Spurrier; J Sampson; M Totrov; H Li; T ONeal; C Williams; J Robinson; M Gorny; S Zolla-Pazner; X Kong

    2011-12-31

    The quaternary neutralizing epitope (QNE) of HIV-1 gp120 is preferentially expressed on the trimeric envelope spikes of intact HIV virions, and QNE-specific monoclonal antibodies (mAbs) potently neutralize HIV-1. Here, we present the crystal structures of the Fabs of human mAb 2909 and macaque mAb 2.5B. Both mAbs have long beta hairpin CDR H3 regions >20 {angstrom} in length that are each situated at the center of their respective antigen-binding sites. Computational analysis showed that the paratopes include the whole CDR H3, while additional CDR residues form shallow binding pockets. Structural modeling suggests a way to understand the configuration of QNEs and the antigen-antibody interaction for QNE mAbs. Our data will be useful in designing immunogens that may elicit potent neutralizing QNE Abs.

  11. Human Monoclonal Antibodies as a Countermeasure Against Botulinum Toxins

    Science.gov (United States)

    2012-11-30

    REPORT Human monoclonal antibodies as a countermeasure against Botulinum toxins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this report, we...Prescribed by ANSI Std. Z39.18 - 31-Aug-2012 Human monoclonal antibodies as a countermeasure against Botulinum toxins Report Title ABSTRACT In this report...DTRA Final Report: Human monoclonal antibodies as a countermeasure against Botulinum toxins   Page 1 of 22 DTRA Final Report: Human monoclonal

  12. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  13. 抗胃癌鼠单抗Fab段在大肠杆菌中的表达%EXPRESSION OF MONOCLONAL MOUSE ANTI-Fab FRAGMENT IN E. COLI

    Institute of Scientific and Technical Information of China (English)

    李时荣; 王琰; 孙勤暖; 翁立新

    2006-01-01

    目的:探索强启动子T7在可溶性抗体Fab表达中的作用.方法:利用DNA重组的方法将Fd段及K链基因转移到质粒pT7中,置于T7噬菌体启动子的下游,通过蛋白质印迹法证明pT7- 3G9是否有可溶性Fab的表达.结果:pT7- 3G9有可溶性Fab的表达;pT7- 3G9表达的可溶性Fab比p3G9-L高.结论:强启动子系统可作为可溶性抗体Fab的表达载体,T7启动子在可溶性抗体Fab表达中作用比Lac启动子强.

  14. Crystallization and preliminary X-ray analysis of birch-pollen allergen Bet v 1 in complex with a murine monoclonal IgG Fab' fragment

    DEFF Research Database (Denmark)

    Spangfort, M D; Mirza, Osman Asghar; Gajhede, M

    1999-01-01

    The human type I allergic response is characterized by the presence of allergen-specific serum immunoglobulin E (IgE). Allergen-mediated cross-linking of receptor-bound IgE on the surface of mast cells and circulating basophils triggers the release of mediators, resulting in the development of th......, with unit-cell parameters a = 91.65, b = 99.14, c = 108.90 A, alpha = 105.7, beta = 98.32, gamma = 97.62 degrees, and diffract to 2.9 A resolution when analyzed at 100 K using synchrotron-generated X--rays....

  15. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia.

  16. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Science.gov (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  17. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    1989-01-01

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia. Antibod

  18. Nurturing Creativity and Innovation Through FabKids: A Case Study

    Science.gov (United States)

    Beyers, Ronald Noel

    2010-10-01

    This paper will report on a case study that was conducted involving Grade 10 learners who were exposed to a high-tech rapid-prototyping environment of a Fabrication Laboratory as part of a FabKids experience. This project must be viewed in the context of a global shortage of key skills placing a higher priority on the initiation and development of a pipeline to attract youth into science, engineering and technology careers. Creativity and innovation feature high on the skills agenda but more importantly preliminary results indicate that learners from a broad range of schools were able to operate effectively in this post constructivist environment. Participants had to apply their knowledge, skill, attitudes and values in order to produce a solution to the challenges provided. The fundamentals of the design process of investigate, design, make, evaluate and communicate were emphasized where the FabKids had to draw on their own collective knowledge using a range of technologies available to them.

  19. Anti-neuropilin 1 antibody Fab' fragment conjugated liposomal docetaxel for active targeting of tumours.

    Science.gov (United States)

    Manjappa, Arehalli S; Goel, Peeyush N; Gude, Rajiv P; Ramachandra Murthy, Rayasa S

    2014-09-01

    Neuropilin-1, a transmembrane receptor entailed in wide range of human tumour cell lines and diverse neoplasms, mediates the effects of VEGF and Semaphorins during the processes of cellular proliferation, survival and migration. In view of this, we had developed and evaluated in vitro and in vivo efficacy of anti-neuropilin-1 immunoliposomes against neuropilin-1 receptor expressing tumours. The PEGylated liposomes loaded with docetaxel were prepared using thin film hydration method. Functionalised PEGylated liposomes were prepared using post-insertion technique. Anti-neuropilin-1 immunoliposomes were prepared by covalently conjugating Fab' fragments of neuropilin-1 antibody to functionalised PEGylated liposomes via thioether linkage. In vivo evaluation of Taxotere and liposomal formulations was performed using intradermal tumour model to demonstrate anti-angiogenic and tumour regression ability. The modified Fab' fragments and immunoliposomes were found to be immunoreactive against A549 cells. Further, docetaxel loaded PEGylated liposomes and PEGylated immunoliposomes demonstrated higher in vitro cytotoxicity than Taxotere formulation at the same drug concentration and exposure time. The live imaging showed distinctive cellular uptake of functional immunoliposomes. Further, significant decrease in micro-blood vessel density and tumour volumes was observed using bio-engineered liposomes. The results clearly highlight the need to seek neuropilin-1 as one of the prime targets in developing an anti-angiogenic therapy.

  20. Membrane adsorbers as purification tools for monoclonal antibody purification.

    Science.gov (United States)

    Boi, Cristiana

    2007-03-15

    Downstream purification processes for monoclonal antibody production typically involve multiple steps; some of them are conventionally performed by bead-based column chromatography. Affinity chromatography with Protein A is the most selective method for protein purification and is conventionally used for the initial capturing step to facilitate rapid volume reduction as well as separation of the antibody. However, conventional affinity chromatography has some limitations that are inherent with the method, it exhibits slow intraparticle diffusion and high pressure drop within the column. Membrane-based separation processes can be used in order to overcome these mass transfer limitations. The ligand is immobilized in the membrane pores and the convective flow brings the solute molecules very close to the ligand and hence minimizes the diffusional limitations associated with the beads. Nonetheless, the adoption of this technology has been slow because membrane chromatography has been limited by a lower binding capacity than that of conventional columns, even though the high flux advantages provided by membrane adsorbers would lead to higher productivity. This review considers the use of membrane adsorbers as an alternative technology for capture and polishing steps for the purification of monoclonal antibodies. Promising industrial applications as well as new trends in research will be addressed.

  1. Monoclonal Antibody-Based Therapeutics for Melioidosis and Glanders

    Directory of Open Access Journals (Sweden)

    Hyung-Yong Kim

    2011-01-01

    Full Text Available Problem statement: Burkholderia Pseudomallei (BP and B. Mallei (BM were two closely related pathogenic gram-negative bacteria. They were the causative agents of melioidosis and glanders, respectively and are recognized by CDC as category B select agents. Significant efforts had been devoted to developing the diagnostic and therapeutic measures against these two pathogens. Monoclonal antibody-based therapeutic was a promising targeted therapy to fight against melioidosis and glanders. Valuable findings have been reported by different groups in their attempt to identify vaccine targets against these two pathogens. Approach: Our group has generated neutralizing Monoclonal Antibodies (MAbs against BP and BM and characterized them by both in vitro and in vivo experiments. We present an overview of the MAb-based therapeutic approaches against BP and BM and demonstrate some of our efforts for developing chimeric and fully human MAbs using antibody engineering. Results: Throughout conventional mouse hybridoma technique and antibody engineering (chimerization and in vitro antibody library techniques, we generated 10 chimeric MAbs (3 stable MAbs and 7 transient MAbs and one fully human MAb against BP and BM. In addition, we present the reactive antigen profiles of these MAbs. Our approaches had potentials to accelerate the development of therapeutics for melioidosis and glanders in humans. Conclusion: Our experience and findings presented here will be valuable for choosing the best antigenic targets and ultimately for the production of effective vaccines for these two pathogens.

  2. Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41.

    Directory of Open Access Journals (Sweden)

    Elena Gustchina

    Full Text Available A series of mini-antibodies (monovalent and bivalent Fabs targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066 broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062 non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN363 or 3-H has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen

  3. Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.

    Science.gov (United States)

    Zhang, Huimin; Zheng, Beiwen; Gao, Rongsui; Feng, Youjun

    2015-09-01

    The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid

  4. 人源Fab抗体库的构建和抗hPRLR抗体的筛选鉴定%Screening and identification of human Fab antibody against hPRLR from large phage-display library originated from breast cancer patients

    Institute of Scientific and Technical Information of China (English)

    屈芫; 魏钦俊; 姚俊; 鲁雅洁; 王天明; 曹新; 冯振卿

    2012-01-01

    cWe aim to get specific Fab antibody against human prolactin receptor (hPRLR) from the human Fab antibody library constructed by phage display technology. Human lymphocytes were collected from peripheral blood of 24 breast cancer patients. And then the total RNA was extracted and reversely transcribed to cDNA. Genes of light and heavy chains of human antibody were amplified by RT-PCR to construct anti-hPRLR immunized human antibody library. After three rounds of panning and one round of crossed-panning with against his-hPRLR fusion protein, BSA-polypeptide (epitopes of hPRLR) and GST-hPRLR fusion protein, positive clones were chosen by Phage-ELISA and DNA sequencing. Then the positive clones were transformed into E. coli Top 10' and induced to express antibody protein. The results indicated that the human Fab phage-display library consisting of l.0×l09 clones were successfully constructed, and six clones were selected after four rounds. One of them named FabG2 expressed protein correctly. ELISA and Western blot analysis showed that FabG2 could bind hPRLR specifically. We concluded that the hPRLR specific Fab antibody selected from large phage-display library could be used as candidates for therapy agent of breast cancer which over-expresses hPRLR.%目的 构建人源Fab噬菌体抗体库,筛选抗hPRLR抗体片段并进行初步鉴定.方法 从乳腺癌患者外周血提取总RNA,通过RT-PCR扩增人抗体轻链和重链基因,构建抗hPRLR人源Fab抗体库.分别以His-hPRLR融合蛋白、BSA-hPRLR表位多肽融合蛋白和GST-hPRLR融合蛋白作为抗原包板,经过3轮循环的吸附一洗脱一扩增的筛选及1轮交叉筛选,挑单克隆用Phage-ELISA、DNA测序筛选阳性克隆,将筛选到的阳性克隆Fabc2转化至Top10’受体菌,诱导表达可溶性Fab抗体,通过Western blot和ELISA进行特异性的鉴定.结果 构建的人源Fab库容为1.0×109,4轮的筛选,获得6株能与hPRLR结合的人源抗体克隆.选取的Fabc2能够进行

  5. Construction of a human recombinant polyclonal Fab fragment antibody library using peripheral blood lymphocytes of snake bitten victims

    Directory of Open Access Journals (Sweden)

    Motedayen, M.H.

    2015-12-01

    Full Text Available Human snake bitten poisoning is a serious threat in many tropical and subtropical countries such as Iran. The best acceptable treatment of envenomated humans is antivenoms; however they have a series of economic and medical problems and need more improvements. In this study a combinatorial human immunoglobulin gene library against some of Iranian snakes venoms was constructed. Total RNA prepared from peripheral blood lymphocytes of two recovered snake victims. RT-PCR was used for cDNA synthesis and amplification of the heavy (Fd segment and kappa light chains of IgG antibody. After digestion of the heavy chain with SpeI and XhoI and light chain with XbaI and SacI enzymes, inserted successively into the cloning vector pComb3x, and then recombinant vector transformed to TG1 bacteria to construct the Fab library. For determination insertion rate of Fab segment into cloning vector, plasmids of 12 clones of library were extracted and digested with SfiI. Length of amplified Fd and κ chains, were 650 - 750 bp. Primary library size was determined to contain 4.9×105 members out of which half of them contained the same size of Fab fragment. This result is comparable to some researchers and shows that this method could be appropriate tool for the production of human polyclonal Fab fragment antibodies for management of poisonous snake bitted victims.

  6. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    Science.gov (United States)

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  7. Generation of a haptoglobin-hemoglobin complex-specific Fab antibody blocking the binding of the complex to CD163

    DEFF Research Database (Denmark)

    Horn, Ivo R; Nielsen, Marianne Jensby; Madsen, Mette

    2003-01-01

    During intravascular hemolysis hemoglobin (Hb) binds to haptoglobin (Hp) leading to endocytosis of the complex by the macrophage receptor, CD163. In the present study, we used a phage-display Fab antibody strategy to explore if the complex formation between Hp and Hb leads to exposure of antigenic...

  8. FabSim: Facilitating computational research through automation on large-scale and distributed e-infrastructures

    Science.gov (United States)

    Groen, Derek; Bhati, Agastya P.; Suter, James; Hetherington, James; Zasada, Stefan J.; Coveney, Peter V.

    2016-10-01

    We present FabSim, a toolkit developed to simplify a range of computational tasks for researchers in diverse disciplines. FabSim is flexible, adaptable, and allows users to perform a wide range of tasks with ease. It also provides a systematic way to automate the use of resources, including HPC and distributed machines, and to make tasks easier to repeat by recording contextual information. To demonstrate this, we present three use cases where FabSim has enhanced our research productivity. These include simulating cerebrovascular bloodflow, modelling clay-polymer nanocomposites across multiple scales, and calculating ligand-protein binding affinities. Catalogue identifier: AFAO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAO_v1_0.html Program obtainable from: CPC Programme Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD 3-Clause No. of lines in distributed program, including test data, etc.: 268282 No. of bytes in distributed program, including test data, etc.: 2791792 Distribution format: tar.gz Programming language: Python. Computer: PC or Mac. Operating system: Unix, OSX. RAM: 1 Gbytes Classification: 3, 4, 6.5. External routines: NumPy, SciPy, Fabric (1.5 or newer), PyYaml Nature of problem: Running advanced computations using remote resources is an activity that requires considerable time and human attention. These activities, such as organizing data, configuring software and setting up individual runs often vary slightly each time they are performed. To lighten this burden, we required an approach that introduced little burden of its own to set up and adapt, beyond which very substantial productivity ensues. Solution method: We present a toolkit which helps to simplify and automate the activities which surround computational science research. FabSim is aimed squarely at the experienced computational scientist, who can use the command line interface and a system of modifiable content to quickly automate sets of

  9. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity.

    Science.gov (United States)

    Graille, M; Stura, E A; Corper, A L; Sutton, B J; Taussig, M J; Charbonnier, J B; Silverman, G J

    2000-05-09

    Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-A resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (V(H)) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human V(H)3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig V(H) regions and the T-cell receptor V(beta) regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor V(beta) backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.

  10. The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies.

    Science.gov (United States)

    Quintero-Hernández, Veronica; Juárez-González, Victor R; Ortíz-León, Mauricio; Sánchez, Rosalba; Possani, Lourival D; Becerril, Baltazar

    2007-02-01

    The antigen-binding fragment (Fab) has been considered a more functionally stable version of recombinant antibodies than single chain antibody fragments (scFvs), however this intuitive consideration has not been sufficiently proven in vivo. This communication shows that three out of four specific scFvs against a scorpion toxin, with different affinities and stabilities, become neutralizing in vivo when expressed as Fabs, despite the fact that they are not neutralizing in the scFv format. A scFv fragment previously obtained from a neutralizing mouse antibody (BCF2) was used to produce three derived scFvs by directed evolution. Only one of them was neutralizing, however when expressed as Fab, all of them became neutralizing fragments in vivo. The initial scFvBCF2 (earlier used for directed evolution) was not neutralizing in the scFv format. After expressing it as Fab did not become a neutralizing fragment, but did reduce the intoxication symptoms of experimental mice. The stability of the four Fabs derived from their respective scFvs was improved when tested in the presence of guanidinium chloride. The in vitro stability of the Fab format has been shown earlier, but the physiological consequences of this stability are shown in this communication. The present results indicate that improved functional stability conferred by the Fab format can replace additional maturation steps, when the affinity and stability are close to the minimum necessary to be neutralizing.

  11. Monoclonal Antibodies to Plant Growth Regulators

    Science.gov (United States)

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  12. Fab'-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis.

    Science.gov (United States)

    Laroui, Hamed; Viennois, Emilie; Xiao, Bo; Canup, Brandon S B; Geem, Duke; Denning, Timothy L; Merlin, Didier

    2014-07-28

    Patients suffering from inflammatory bowel disease (IBD) are currently treated by systemic drugs that can have significant side effects. Thus, it would be highly desirable to target TNFα siRNA (a therapeutic molecule) to the inflamed tissue. Here, we demonstrate that TNFα siRNA can be efficiently loaded into nanoparticles (NPs) made of poly (lactic acid) poly (ethylene glycol) block copolymer (PLA-PEG), and that grafting of the Fab' portion of the F4/80 Ab (Fab'-bearing) onto the NP surface via maleimide/thiol group-mediated covalent bonding improves the macrophage (MP)-targeting kinetics of the NPs to RAW264.7 cells in vitro. Direct binding was shown between MPs and the Fab'-bearing NPs. Next, we orally administered hydrogel (chitosan/alginate)-encapsulated Fab'-bearing TNFα-siRNA-loaded NPs to 3% dextran sodium sulfate (DSS)-treated mice and investigated the therapeutic effect on colitis. In vivo, the release of TNFα-siRNA-loaded NPs into the mouse colon attenuated colitis more efficiently when the NPs were covered with Fab'-bearing, compared to uncovered NPs. All DSS-induced parameters of colonic inflammation (e.g., weight loss, myeloperoxidase activity, and Iκbα accumulation) were more attenuated Fab'-bearing NPs loaded with TNFα siRNA than without the Fab'-bearing. Grafting the Fab'-bearing onto the NPs improved the kinetics of endocytosis as well as the MP-targeting ability, as indicated by flow cytometry. Collectively, our results show that Fab'-bearing PLA-PEG NPs are powerful and efficient nanosized tools for delivering siRNAs into colonic macrophages.

  13. Building blocks X-FAB SOI 0.18 μm

    Science.gov (United States)

    Cizel, J.-B.; Ahmad, S.; Callier, S.; Cornat, R.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; Raux, L.; de La Taille, C.; Thienpont, D.

    2015-02-01

    This work has been done in order to study a new technology provided by X-FAB named xt018. It is an SOI (Silicon On Insulator) technology with a minimal gate length of 180 nm. Building blocks have been done to test the advantages and drawbacks of this technology compared to the one currently used (AMS SiGe 0.35 μm). These building blocks have been designed to fit in an existing experience housed by the CALICE collaboration: the read-out chip for the Electromagnetic CALorimeter (ECAL) of the foreseen International Linear Collider (ILC). Performances will be compared to those of the SKIROC2 chip designed by the OMEGA laboratory, trying to fit the same requirements. The chip is being manufactured and will be back for measurements in December, the displayed results are only simulation results and thus the conclusions concerning the performances of these building blocks are subject to change.

  14. Photomask film degradation effects in the wafer fab: how to detect and monitor over time

    Science.gov (United States)

    Whittey, John; Hess, Carl; Garcia, Edgardo; Wagner, Mark; Duffy, Brian

    2012-11-01

    As a result of repeated cleanings and exposure effects such as chrome migration or MoSi oxidation some photomasks in the semiconductor fabs exhibit changes in critical dimension uniformity (CDU) over time. Detecting these effects in a timely manner allows for better risk management and process control in manufacturing. By monitoring changes in film reflectance intensity due to the various degradation mechanisms it is possible to predict when they may begin to influence across chip line width variations (ACLV). By accurately predicting the magnitude of these changes it is possible for semiconductor manufacturers to replace the photomasks before they have an impact on yields. This paper looks at possible causes of CDU variations on reticles during use and how this information might be used to improve or monitor reticle CDU changes over time.

  15. Polyclonal and monoclonal antibodies in clinic.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses

    2014-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.

  16. Efecto de la temperatura, humedad y dieta sobre el desarrollo de Gnathocerus cornutus Fab. (Coleopera: Tenebrionidae

    Directory of Open Access Journals (Sweden)

    Núñez Fernando

    1989-06-01

    Full Text Available The influence of temperature, relative humídíty and diet composítíon in the duration and velocity of the development cicle of Gnathoccnis comutus Fab., was studied. Each of two diets (Aand Bl was tried in presence of 5 different combinations of temperature and humídíty. Optimal conditions fOI development were found to be: 28°C and 85-90% R.H.. in which the complete cycle lasts 54 days. the larval stage is the critical one in the development in which a htgh variation among individuals in both, velocity and span of development, are notorious. The cycle duration is virtually the same for both diets, but in the diet A. a better adaptability, expressed as a proportion of descendents, was observed. Life tables and surviving curves were made.
    Se estudió la influencia de la temperatura. la humedad relativa y la composición de la dieta sobre la duración del ciclo de desarrollo y la velocidad del mismo en Gnathocerus comutus Fab, Para el efecto. cada una de las dos dietas (A y B] se ensayó en presencia de 5 combinaciones distintas de temperatura y humedad. Se encontró que las condiciones óptimas para el desarrollo. son: 28°C y 85-90% H.R.. en las cuales. el ciclo completo se desenvuelve en 54 días. El estado crítico en cuanto al desarrollo. es el larval en el cual es notoria una alta variación entre los individuos en velocidad y tiempo de desarrollo. La duración del ciclo es virtualmente la misma en ambas dietas. pero en la A se observa una mejor adaptabilidad expresada en proporctón de descendientes. Se construyeron tablas de vida y curvas de supervivencia.

  17. The Intrinsic Dynamics and Unfolding Process of an Antibody Fab Fragment Revealed by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Ji-Guo Su

    2015-12-01

    Full Text Available Antibodies have been increasingly used as pharmaceuticals in clinical treatment. Thermal stability and unfolding process are important properties that must be considered in antibody design. In this paper, the structure-encoded dynamical properties and the unfolding process of the Fab fragment of the phosphocholine-binding antibody McPC603 are investigated by use of the normal mode analysis of Gaussian network model (GNM. Firstly, the temperature factors for the residues of the protein were calculated with GNM and then compared with the experimental measurements. A good result was obtained, which provides the validity for the use of GNM to study the dynamical properties of the protein. Then, with this approach, the mean-square fluctuation (MSF of the residues, as well as the MSF in the internal distance (MSFID between all pairwise residues, was calculated to investigate the mobility and flexibility of the protein, respectively. It is found that the mobility and flexibility of the constant regions are higher than those of the variable regions, and the six complementarity-determining regions (CDRs in the variable regions also exhibit relative large mobility and flexibility. The large amplitude motions of the CDRs are considered to be associated with the immune function of the antibody. In addition, the unfolding process of the protein was simulated by iterative use of the GNM. In our method, only the topology of protein native structure is taken into account, and the protein unfolding process is simulated through breaking the native contacts one by one according to the MSFID values between the residues. It is found that the flexible regions tend to unfold earlier. The sequence of the unfolding events obtained by our method is consistent with the hydrogen-deuterium exchange experimental results. Our studies imply that the unfolding behavior of the Fab fragment of antibody McPc603 is largely determined by the intrinsic dynamics of the protein.

  18. Generation, characterization, and docking studies of DNA-hydrolyzing recombinant F(ab) antibodies.

    Science.gov (United States)

    Zein, Haggag S; El-Sehemy, Ahmed A; Fares, Mohamed O; ElHefnawi, Mahmoud; da Silva, Jaime A Teixeira; Miyatake, Kazutaka

    2011-01-01

    Previously we established a series of catalytic antibodies (catAbs) capable of hydrolyzing DNA prepared by hybridoma technology. A group of these catAbs exhibited high reactivity and substrate specificity. To determine the molecular basis for these catAbs, we cloned, sequenced, and expressed the variable regions of this group of antibodies as functional F(ab) fragments. The nucleotide and deduced amino acid sequences of the expressed light chain (Vκ) germline gene assignments confidently belonged to germline family Vκ1A, gene bb1.1 and GenBank accession number EF672207 while heavy chain variable region V(H) genes belonged to V(H) 1/V(H) J558, gene V130.3 and GenBank accession number EF672221. A well-established expression system based on the pARA7 vector was examined for its ability to produce catalytically active antibodies. Recombinant F(ab) (rF(ab) ) fragments were purified and their hydrolyzing activity was analyzed against supercoiled pUC19 plasmid DNA (scDNA). The study of rF(ab) provides important information about the potential catalytic activities of antibodies whose structure allows us to understand their basis of catalysis. Molecular surface analysis and docking studies were performed on the molecular interactions between the antibodies and poly(dA9), poly(dG9), poly(dT9), and poly(dC9) oligomers. Surface analysis identified the important sequence motifs at the binding sites, and different effects exerted by arginine and tyrosine residues at different positions in the light and heavy chains. This study demonstrates the potential usefulness of the protein DNA surrogate in the investigation of the origin of anti-DNA antibodies. These studies may define important features of DNA catAbs.

  19. Model-based prediction of monoclonal antibody retention in ion-exchange chromatography.

    Science.gov (United States)

    Guélat, Bertrand; Delegrange, Lydia; Valax, Pascal; Morbidelli, Massimo

    2013-07-12

    In order to support a model-based process design in ion-exchange chromatography, an adsorption equilibrium model was adapted to predict the protein retention behavior from the amino acid sequence and from structural information on the resin. It is based on the computation of protein-resin interactions with a colloidal model and accounts for the contribution of each ionizable amino acid to the protein charge. As a verification of the protein charge model, the experimental titration curve of a monoclonal antibody was compared to its predicted net charge. Using this protein charge model in the computation of the protein-resin interactions, it is possible to predict the adsorption equilibrium constant (i.e. retention factor or Henry constant) with an explicit pH and salt dependence. The application of the model-based predictions for an in silico screening of the protein retention on various stationary phases or, alternatively, for the comparison of various monoclonal antibodies on a given cation-exchanger was demonstrated. Furthermore, considering the structural differences between charge variants of a monoclonal antibody, it was possible to predict their individual retention times. The selectivity between the side variants and the main isoform of the monoclonal antibody were computed. The comparison with the experimental data showed that the model was reliable with respect to the identification of the operating conditions maximizing the selectivity, i.e. the most promising conditions for a monoclonal antibody variant separation. Such predictions can be useful in reducing the experimental effort to identify the parameter space.

  20. Immunomodulatory therapies for relapsing-remitting multiple sclerosis: monoclonal antibodies, currently approved and in testing.

    Science.gov (United States)

    Craddock, Jessica; Markovic-Plese, Silva

    2015-05-01

    Relapsing-remitting multiple sclerosis (RRMS), a CNS inflammatory demyelinating disease, is one of the most prevalent causes of chronic disability in young adults. Studies of the disease pathogenesis have identified multiple therapeutic targets. The number of approved disease modifying therapies has almost doubled within the past 5 years, which creates a challenge for medical professionals to stay abreast of their use in everyday practice. This manuscript provides an overview of available injectable, oral, and intravenous therapies for RRMS, and offers guidance in selecting an appropriate therapy. Focus is on the recently approved and emerging monoclonal antibody therapies, because they offer more selective and superior therapeutic efficacy compared with injectable and oral disease modifying therapies. We discuss the outlook for monoclonal antibodies and their role in RRMS treatment in the future.

  1. Mechanism of quinine-dependent monoclonal antibody binding to platelet glycoprotein IIb/IIIa.

    Science.gov (United States)

    Bougie, Daniel W; Peterson, Julie; Rasmussen, Mark; Aster, Richard H

    2015-10-29

    Drug-dependent antibodies (DDAbs) that cause acute thrombocytopenia upon drug exposure are nonreactive in the absence of the drug but bind tightly to a platelet membrane glycoprotein, usually α(IIb)/β3 integrin (GPIIb/IIIa) when the drug is present. How a drug promotes binding of antibody to its target is unknown and is difficult to study with human DDAbs, which are poly-specific and in limited supply. We addressed this question using quinine-dependent murine monoclonal antibodies (mAbs), which, in vitro and in vivo, closely mimic antibodies that cause thrombocytopenia in patients sensitive to quinine. Using surface plasmon resonance (SPR) analysis, we found that quinine binds with very high affinity (K(D) ≈ 10⁻⁹ mol/L) to these mAbs at a molar ratio of ≈ 2:1 but does not bind detectably to an irrelevant mAb. Also using SPR analysis, GPIIb/IIIa was found to bind monovalently to immobilized mAb with low affinity in the absence of quinine and with fivefold greater affinity (K(D) ≈ 2.2 × 10⁻⁶) when quinine was present. Measurements of quinine-dependent binding of intact mAb and fragment antigen-binding (Fab) fragments to platelets showed that affinity is increased 10 000- to 100 000-fold by bivalent interaction between antibody and its target. Together, the findings indicate that the first step in drug-dependent binding of a DDAb is the interaction of the drug with antibody, rather than with antigen, as has been widely thought, where it induces structural changes that enhance the affinity/specificity of antibody for its target epitope. Bivalent binding may be essential for a DDAb to cause thrombocytopenia.

  2. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Science.gov (United States)

    Hart, Felix; Danielczyk, Antje; Goletz, Steffen

    2017-01-01

    IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  3. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    Science.gov (United States)

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  4. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  5. Assay for the specificity of monoclonal antibodies in crossed immunoelectrophoresis

    DEFF Research Database (Denmark)

    Skjødt, K; Schou, C; Koch, C

    1984-01-01

    A method is described based on crossed immunoelectrophoresis of a complex antigen mixture in agarose gel followed by incubation of the gel with the monoclonal antibody. The bound monoclonal antibody is detected by the use of a secondary enzyme-labelled antibody. Using this technique we have been...... I molecules. In other experiments using the same technique we demonstrated the reaction of a monoclonal antibody specific for chicken Ig light chains. Udgivelsesdato: 1984-Aug-3...

  6. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    Science.gov (United States)

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars.

  7. Characterization of the co-elution of host cell proteins with monoclonal antibodies during protein A purification.

    Science.gov (United States)

    Zhang, Qingchun; Goetze, Andrew M; Cui, Huanchun; Wylie, Jenna; Tillotson, Ben; Hewig, Art; Hall, Michael P; Flynn, Gregory C

    2016-05-01

    Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co-purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D-LC-HDMS(E) approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (∼10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co-purification with individual Fc and (Fab')2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708-717, 2016. © 2016 American Institute of Chemical Engineers.

  8. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    Science.gov (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  9. ON THE NOTION OF SYNERGY OF MONOCLONAL ANTIBODIES AS DRUGS

    Directory of Open Access Journals (Sweden)

    Michael Sela

    2013-08-01

    Full Text Available History of developing synergy between monoclonal antibodies, anti-tumor activity of monoclonal antibodies against tyrosine-kinases receptors EGFR/ErbB-1 and HER2/ErbB-2 as well as growth factor VEGF in various combinations are considered in the article. There were proposed hypotheses about potential molecular mechanisms underlay synergy between monoclonal antibodies (for homo- and hetero combinations of antibodies appropriately specific for antigenic determinants on the same or different receptors. Future trends in researches necessary to deeper understanding causes of this phenomenon and perspectives for practical application of monoclonal antibodies acted synergistically as immunotherapeutic drugs for human tumors treatment are reviewed.

  10. The Role of Monoclonal Antibodies in the Management of Leukemia

    Science.gov (United States)

    Al-Ameri, Ali; Cherry, Mohamad; Al-Kali, Aref; Ferrajoli, Alessandra

    2010-01-01

    This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  11. The Role of Monoclonal Antibodies in the Management of Leukemia

    Directory of Open Access Journals (Sweden)

    Mohamad Cherry

    2010-10-01

    Full Text Available This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML. As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  12. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    Science.gov (United States)

    Kyle, Robert A; San-Miguel, Jesus F; Mateos, Maria-Victoria; Rajkumar, S Vincent

    2014-10-01

    Monoclonal gammopathy of undetermined significance (MGUS) is characterized by an M spike less than 3 g/dL and a bone marrow containing fewer than 10% plasma cells without evidence of CRAB (hypercalcemia, renal insufficiency, anemia, or bone lesions). Light chain MGUS has an abnormal free light chain (FLC) ratio, increased level of the involved FLC, no monoclonal heavy chain, and fewer than 10% monoclonal plasma cells in the bone marrow. Smoldering multiple myeloma has an M protein of at least 3 g/dL and/or at least 10% monoclonal plasma cells in the bone marrow without CRAB features. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Structure-based design,synthesis of novel inhibitors of Mycobacterium tuberculosis FabH as potential anti-tuberculosis agents

    Institute of Scientific and Technical Information of China (English)

    Xue Hui Zhang; Hong Yu; Wu Zhong; Li Li Wang; Song Li

    2009-01-01

    Mycobacterium tuberculosis FabH,an essential enzyme in mycolic acids biosynthetic pathway,is an attractive target for novel anti-tuberculosis agents.Structure-based design,synthesis of novel inhibitors of mrFabH was reported in this paper.A novel scaffold structure was designed,and 12 candidate compounds that displayed favorable binding with the active site were identified and synthesized.

  14. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H J; Hensbergen, Paul J; Reiding, Karli R; Hazes, Johanna M W; Dolhain, Radboud J E M; Wuhrer, Manfred

    2014-11-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding.

  15. Active site modification of the β-ketoacyl-ACP synthase FabF3 of Streptomyces coelicolor affects the fatty acid chain length of the CDA lipopeptides.

    Science.gov (United States)

    Lewis, Richard A; Nunns, Laura; Thirlway, Jenny; Carroll, Kathleen; Smith, Colin P; Micklefield, Jason

    2011-02-14

    Using site directed mutagenesis we altered an active site residue (Phe107) of the enzyme encoded by fabF3 (SCO3248) in the Streptomyces coelicolor gene cluster required for biosynthesis of the calcium dependent antibiotics (CDAs), successfully generating two novel CDA derivatives comprising truncated (C4) lipid side chains and confirming that fabF3 encodes a KAS-II homologue that is involved in determining CDA fatty acid chain length.

  16. Production of Monoclonal Antibody against Human Nestin.

    Science.gov (United States)

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-04-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140-250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays.

  17. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    Science.gov (United States)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  18. Anaphylaxis to chemotherapy and monoclonal antibodies.

    Science.gov (United States)

    Castells, Mariana C

    2015-05-01

    Hypersensitivity reactions are increasingly prevalent, although underrecognized and underreported. Platins induce immunoglobulin E-mediated sensitization; taxenes and some monoclonal antibodies can induce reactions at first exposure. Severe hypersensitivity can preclude first-line therapy. Tryptase level at the time of a reaction is a useful diagnostic tool. Skin testing provides a specific diagnosis. Newer tests are promising diagnostic tools to help identify patients at risk before first exposure. Safe management includes rapid drug desensitization. This review provides information regarding the scope of hypersensitivity and anaphylactic reactions induced by chemotherapy and biological drugs, as well as diagnosis, management, and treatment options.

  19. Inhibition of ErbB3 by a monoclonal antibody that locks the extracellular domain in an inactive configuration.

    Science.gov (United States)

    Lee, Sangwon; Greenlee, Etienne B; Amick, Joseph R; Ligon, Gwenda F; Lillquist, Jay S; Natoli, Edward J; Hadari, Yaron; Alvarado, Diego; Schlessinger, Joseph

    2015-10-27

    ErbB3 (HER3) is a member of the EGF receptor (EGFR) family of receptor tyrosine kinases, which, unlike the other three family members, contains a pseudo kinase in place of a tyrosine kinase domain. In cancer, ErbB3 activation is driven by a ligand-dependent mechanism through the formation of heterodimers with EGFR, ErbB2, or ErbB4 or via a ligand-independent process through heterodimerization with ErbB2 overexpressed in breast tumors or other cancers. Here we describe the crystal structure of the Fab fragment of an antagonistic monoclonal antibody KTN3379, currently in clinical development in human cancer patients, in complex with the ErbB3 extracellular domain. The structure reveals a unique allosteric mechanism for inhibition of ligand-dependent or ligand-independent ErbB3-driven cancers by binding to an epitope that locks ErbB3 in an inactive conformation. Given the similarities in the mechanism of ErbB receptor family activation, these findings could facilitate structure-based design of antibodies that inhibit EGFR and ErbB4 by an allosteric mechanism.

  20. Isolation of highly active monoclonal antibodies against multiresistant gram-positive bacteria.

    Directory of Open Access Journals (Sweden)

    Friederike S Rossmann

    Full Text Available Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA. At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium, a mouse peritonitis model (using S. aureus Newman and LAC and a rat endocarditis model (using E. faecalis 12030 and were shown to provide protection in all models at a concentration of 4 μg/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials.

  1. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  2. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    Science.gov (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp.

    Science.gov (United States)

    My, Laetitia; Rekoske, Brian; Lemke, Justin J; Viala, Julie P; Gourse, Richard L; Bouveret, Emmanuelle

    2013-08-01

    In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability.

  4. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2016-03-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.

  5. Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers

    Institute of Scientific and Technical Information of China (English)

    Zuanning Yuan; Minge Du; Yiwen Chen; Fei Dou

    2013-01-01

    Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe-cifical y recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifical y to human amyloid-beta 42 te-tramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc-cessful y constructed a human phage display library and screened a single-domain antibody that specifical y recognized amyloid-beta 42 oligomers.

  6. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT).

    Science.gov (United States)

    Ghadbane, Hemza; Brown, Alistair K; Kremer, Laurent; Besra, Gurdyal S; Fütterer, Klaus

    2007-10-01

    Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 A resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni2+ ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.

  7. A MONOCLONAL-ANTIBODY AGAINST HUMAN BETA-GLUCURONIDASE FOR APPLICATION IN ANTIBODY-DIRECTED ENZYME PRODRUG THERAPY

    NARCIS (Netherlands)

    Haisma, Hidde; VANMUIJEN, M; SCHEFFER, G; SCHEPER, RJ; PINEDO, HM; BOVEN, E

    1995-01-01

    The selectivity of anticancer agents may be improved by antibody-directed enzyme prodrug therapy (ADEPT), The immunogenicity of antibody-enzyme conjugates and the low tumor to normal tissue ratio calls for the use of a human enzyme and the development of a monoclonal antibody (MAb) against that enzy

  8. Enterococcus faecalis endocarditis severity in rabbits is reduced by IgG Fabs interfering with aggregation substance.

    Directory of Open Access Journals (Sweden)

    Patrick M Schlievert

    Full Text Available BACKGROUND: Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue. Our previous research determined that enterococcal aggregation substance (AS is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS+ E. faecalis endocarditis. METHODOLOGY/PRINCIPAL FINDINGS: When challenged with AS+ E. faecalis, 10 rabbits actively immunized against AS+ E. faecalis developed more significant vegetations than 9 animals immunized against AS⁻E. faecalis, and 9/10 succumbed compared to 2/9 (p<0.005, suggesting enhanced aggregation by IgG contributes significantly to disease. IgG antibodies against AS also enhanced enterococcal aggregation as tested in vitro. In contrast, Fab fragments of IgG from rabbits immunized against purified AS, when passively administered to rabbits (6/group immediately before challenge with AS+E. faecalis, reduced total vegetation (endocarditis lesion microbial counts (7.9 x 10⁶ versus 2.0 x 10⁵, p = 0.02 and size (40 mg versus 10, p = 0.05. In vitro, the Fabs prevented enterococcal aggregation. CONCLUSIONS/SIGNIFICANCE: The data confirm the role of AS in infective endocarditis formation and suggest that use of Fabs against AS will provide partial protection from AS+E. faecalis illness.

  9. Construction of a large synthetic human Fab antibody library on yeast cell surface by optimized yeast mating.

    Science.gov (United States)

    Baek, Du-San; Kim, Yong-Sung

    2014-03-28

    Yeast surface-displayed antibody libraries provide an efficient and quantitative screening resource for given antigens, but suffer from typically modest library sizes owing to low yeast transformation efficiency. Yeast mating is an attractive method for overcoming the limit of yeast transformation to construct a large, combinatorial antibody library, but the optimal conditions have not been reported. Here, we report a large synthetic human Fab (antigen binding fragment) yeast surface-displayed library generated by stepwise optimization of yeast mating conditions. We first constructed HC (heavy chain) and LC (light chain) libraries, where all of the six CDRs (complementarity-determining regions) of the variable domains were diversified mimicking the human germline antibody repertoires by degenerate codons, onto single frameworks of VH3-23 and Vkappa1-16 germline sequences, in two haploid cells of opposite mating types. Yeast mating conditions were optimized in the order of cell density, media pH, and cell growth phase, yielding a mating efficiency of ~58% between the two haploid cells carrying HC and LC libraries. We constructed two combinatorial Fab libraries with CDR-H3 of 9 or 11 residues in length with colony diversities of more than 10(9) by one round of yeast mating between the two haploid HC and LC libraries, with modest diversity sizes of ~10(7). The synthetic human Fab yeast-displayed libraries exhibited relative amino acid compositions in each position of the six CDRs that were very similar to those of the designed repertoires, suggesting that they are a promising source for human Fab antibody screening.

  10. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae.

    Science.gov (United States)

    Mohedano, Maria L; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.

  11. Characterization and crystallization of a recombinant IgE Fab fragment in complex with the bovine β-lactoglobulin allergen

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, Merja, E-mail: merja.niemi@joensuu.fi; Jänis, Janne [Department of Chemistry, University of Joensuu, PO Box 111, FIN-80101 Joensuu (Finland); Jylhä, Sirpa [VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT (Finland); Kallio, Johanna M.; Hakulinen, Nina [Department of Chemistry, University of Joensuu, PO Box 111, FIN-80101 Joensuu (Finland); Laukkanen, Marja-Leena; Takkinen, Kristiina [VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT (Finland); Rouvinen, Juha [Department of Chemistry, University of Joensuu, PO Box 111, FIN-80101 Joensuu (Finland)

    2008-01-01

    The high-resolution mass-spectrometric characterization, crystallization and X-ray diffraction studies of a recombinant IgE Fab fragment in complex with bovine β-lactoglobulin are reported. A D1 Fab fragment containing the allergen-binding variable domains of the IgE antibody was characterized by ESI FT–ICR mass spectrometry and crystallized with bovine β-lactoglobulin (BLG) using the hanging-drop vapour-diffusion method at 293 K. X-ray data suitable for structure determination were collected to 2.8 Å resolution using synchrotron radiation. The crystal belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.0, b = 100.6, c = 168.1 Å. The three-dimensional structure of the D1 Fab fragment–BLG complex will provide the first insight into IgE antibody–allergen interactions at the molecular level.

  12. Crystallization and preliminary X-ray analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Jun, E-mail: jun-saito@meiji.co.jp; Yamada, Mototsugu; Watanabe, Takashi; Kitagawa, Hideo; Takeuchi, Yasuo [Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567 (Japan)

    2006-06-01

    Enoyl-acyl carrier protein (ACP) reductases are responsible for bacterial type II fatty-acid biosynthesis and are attractive targets for developing novel antibiotics. The S. pneumoniae enoyl-ACP reductase (FabK) was crystallized and selenomethionine MAD data were collected to 2 Å resolution. The enoyl-acyl carrier protein (ACP) reductase from Streptococcus pneumoniae (FabK; EC 1.3.1.9) is responsible for catalyzing the final step in each elongation cycle of fatty-acid biosynthesis. Selenomethionine-substituted FabK was purified and crystallized by the hanging-drop vapour-diffusion method at 277 K. The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 50.26, b = 126.70, c = 53.63 Å, β = 112.46°. Diffraction data were collected to 2.00 Å resolution using synchrotron beamline BL32B2 at SPring-8. Two molecules were estimated to be present in the asymmetric unit, with a solvent content of 45.1%.

  13. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    Science.gov (United States)

    Mohedano, Maria L.; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M.; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation. PMID:27610104

  14. Enterococcus faecalis Endocarditis Severity in Rabbits Is Reduced by IgG Fabs Interfering with Aggregation Substance

    Science.gov (United States)

    Schlievert, Patrick M.; Chuang-Smith, Olivia N.; Peterson, Marnie L.; Cook, Laura C. C.; Dunny, Gary M.

    2010-01-01

    Background Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS+ E. faecalis endocarditis. Methodology/Principal Findings When challenged with AS+ E. faecalis, 10 rabbits actively immunized against AS+ E. faecalis developed more significant vegetations than 9 animals immunized against AS− E. faecalis, and 9/10 succumbed compared to 2/9 (pendocarditis lesion) microbial counts (7.9×106 versus 2.0×105, p = 0.02) and size (40 mg versus 10, p = 0.05). In vitro, the Fabs prevented enterococcal aggregation. Conclusions/Significance The data confirm the role of AS in infective endocarditis formation and suggest that use of Fabs against AS will provide partial protection from AS+ E. faecalis illness. PMID:20957231

  15. Antigen binding of human IgG Fabs mediate ERK-associated proliferation of human breast cancer cells.

    Science.gov (United States)

    Wen, Yue-Jin; Mancino, Anne; Pashov, Anastas; Whitehead, Tracy; Stanley, Joseph; Kieber-Emmons, Thomas

    2005-02-01

    Serum-circulating antibody can be linked to poor outcomes in some cancer patients. To investigate the role of human antibodies in regulating tumor cell growth, we constructed a recombinant cDNA expression library of human IgG Fab from a patient with breast cancer. Clones were screened from the library with breast tumor cell lysate. Sequence analysis of the clones showed somatic hypermutations when compared to their closest VH/VL germ-line genes. Initial characterizations focused on five clones. All tested clones displayed stronger binding to antigen derived from primary breast cancers and established breast cancer cell lines than to normal breast tissues. In vitro functional studies showed that four out of five tested clones could stimulate the growth of MDA-MB-231 breast cancer cell lines, and one out of five was able to promote MCF-7 cell growth as well. Involvement of ERK2 pathway was observed. By 1H-NMR spectra and Western blot analysis, it was evident that two tested antibody Fabs are capable of interacting with sialic acid. Our study suggests a possible role for human antibody in promoting tumor cell growth by direct binding of IgG Fab to breast tumor antigen. Such studies prompt speculation regarding the role of serum antibodies in mediating tumor growth as well as their contribution to disease progression.

  16. Independent evolution of Fc- and Fab-mediated HIV-1-specific antiviral antibody activity following acute infection

    Science.gov (United States)

    Dugast, Anne-Sophie; Stamatatos, Leonidas; Tonelli, Andrew; Suscovich, Todd J.; Licht, Anna F.; Mikell, Iliyana; Ackerman, Margaret E.; Streeck, Hendrik; Klasse, P.J.; Moore, John P.; Alter, Galit

    2014-01-01

    Fc-related antibody activities, such as antibody-dependent cellular cytotoxicity (ADCC), or more broadly, antibody-mediated cellular viral inhibition (ADCVI), play a role in curbing early SIV viral replication, are enriched in human long-term infected non-progressors, and could potentially contribute to protection from infection. However, little is known about the mechanism by which such humoral immune responses are naturally induced following infection. Here we focused on the early evolution of the functional antibody response, largely driven by the Fc portion of the antibody, in the context of the evolving binding and neutralizing antibody response, which is driven mainly by the antibody binding fragment (Fab). We show that ADCVI/ADCC-inducing responses in humans are rapidly generated following acute HIV-1 infection, peak at approximately 6 months post-infection, but decay rapidly in the setting of persistent immune activation, as Fab-related activities persistently increase. Moreover, the loss of Fc activity occurred in synchrony with a loss of HIV-specific IgG3 responses. Our data strongly suggest that Fc- and Fab-related antibody functions are modulated in a distinct manner following acute HIV infection. Vaccination strategies intended to optimally induce both sets of antiviral antibody activities may, therefore, require a fine-tuning of the inflammatory response. PMID:25043633

  17. Slow-Onset Inhibition of the FabI Enoyl Reductase from Francisella tularensis: Residence Time and in Vivo Activity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.; England, K; Ende, C; Truglio, J; Luckner, S; Reddy, B; Marlenee, N; Knudson, S; Knudson, D; et. al.

    2009-01-01

    Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularemia in mammals. The high infectivity and the ability of the bacterium to survive for weeks in a cool, moist environment have raised the possibility that this organism could be exploited deliberately as a potential biological weapon. Fatty acid biosynthesis (FAS-II) is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterials. The FAS-II enoyl reductase ftuFabI has been cloned and expressed, and a series of diphenyl ethers have been identified that are subnanomolar inhibitors of the enzyme with MIC90 values as low as 0.00018 ?g mL-1. The existence of a linear correlation between the Ki and MIC values strongly suggests that the antibacterial activity of the diphenyl ethers results from direct inhibition of ftuFabI within the cell. The compounds are slow-onset inhibitors of ftuFabI, and the residence time of the inhibitors on the enzyme correlates with their in vivo activity in a mouse model of tularemia infection. Significantly, the rate of breakdown of the enzyme-inhibitor complex is a better predictor of in vivo activity than the overall thermodynamic stability of the complex, a concept that has important implications for the discovery of novel chemotherapeutics that normally rely on equilibrium measurements of potency.

  18. 抗轮状病毒IgY和Fab的研制%Preparation of IgY and Fab against HRV

    Institute of Scientific and Technical Information of China (English)

    孙淑清; 孟岩; 段春燕; 胡彦涛

    2005-01-01

    目的对抗轮状病毒(RV)IgY和胃蛋白酶水解片断Fab进行分离与纯化.方法免疫鸡得到抗HRVIgY,用两步盐析结合凝胶过滤将其从蛋黄中分离出来,纯的IgY经胃蛋白酶水解得抗体片断Fab.结果抗HRVIgY用SDS-PAGE检测纯度可达到95%以上.抗轮状病毒(RV)IgY和抗体片断Fab经SDS-PAGE和MALDIMS法测定,其纯度达到99%以上,经ELISA法检测,Fab'的活性保持在IgY原始活性的70%以上.结论我们所设计的分离和纯化抗HRVIgY和Fab'的方法简单、有效.

  19. Site-Specific Photolabeling of the IgG Fab Fragment Using a Small Protein G Derived Domain.

    Science.gov (United States)

    Kanje, Sara; von Witting, Emma; Chiang, Samuel C C; Bryceson, Yenan T; Hober, Sophia

    2016-09-21

    Antibodies are widely used reagents for recognition in both clinic and research laboratories all over the world. For many applications, antibodies are labeled through conjugation to different reporter molecules or therapeutic agents. Traditionally, antibodies are covalently conjugated to reporter molecules via primary amines on lysines or thiols on cysteines. While efficient, such labeling is variable and nonstoichiometric and may affect an antibody's binding to its target. Moreover, an emerging field for therapeutics is antibody-drug conjugates, where a toxin or drug is conjugated to an antibody in order to increase or incorporate a therapeutic effect. It has been shown that homogeneity and controlled conjugation are crucial in these therapeutic applications. Here we present two novel protein domains developed from an IgG-binding domain of Streptococcal Protein G. These domains show obligate Fab binding and can be used for site-specific and covalent attachment exclusively to the constant part of the Fab fragment of an antibody. The two different domains can covalently label IgG of mouse and human descent. The labeled antibodies were shown to be functional in both an ELISA and in an NK-cell antibody-dependent cellular cytotoxicity assay. These engineered protein domains provide novel tools for controlled labeling of Fab fragments and full-length IgG.

  20. Sexing murine embryos with an indirect immunofluorescence assay using phage antibody B9-Fab against SDM antigen.

    Science.gov (United States)

    Wang, Naidong; Yuan, Anwen; Ma, Jun; Deng, Zhibang; Xue, Liqun

    2015-06-01

    The use of serologically detectable male (SDM; also called H-Y) antigens to identify male embryos may be limited by the source of anti-SDM antibody. In the present study, novel anti-SDM B9-Fab recombinant clones (obtained by chain shuffling of an A8 original clone) were used to detect SDM antigens on murine embryos. Murine morulae and blastocysts (n=138) were flushed from the oviducts of Kunming mice and incubated with anti-SDM B9-Fab for 30 min at 37°C. With an indirect immunofluorescence assay, the membrane and inner cell mass had bright green fluorescence (presumptive males). Overall, 43.5% (60/138) were classified as presumptive males and 56.5% (78/138) as presumptive females, with 85.0 and 88.5% of these, respectively, confirmed as correct predictions (based on PCR analysis of a male-specific [Sry] sequence). We concluded that the anti-SDM B9-Fab molecule had potential for non-invasive, technically simple immunological sexing of mammalian embryos.

  1. The response regulator YycF inhibits expression of the fatty acid biosynthesis repressor FabT in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Maria Luz Mohedano

    2016-08-01

    Full Text Available The YycFG (also known as WalRK, VicRK, MicAB or TCS02 two-component system (TCS is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.

  2. Structural and functional insights into the anti-BACE1 Fab fragment that recognizes the BACE1 exosite.

    Science.gov (United States)

    Gutiérrez, Lucas Joel; Andujar, Sebastián Antonio; Enriz, Ricardo Daniel; Baldoni, Héctor Armando

    2014-01-01

    A molecular modeling study giving structural, functional, and mutagenesis insights into the anti-BACE1 Fab fragment that recognizes the BACE1 exosite is reported. Our results allow extending experimental data resulting from X-ray diffraction experiments in order to examine unknown aspects for the Fab-BACE1 recognition and its binding mode. Thus, the study performed here allows extending the inherently static nature of crystallographic structures in order to gain a deeper understanding of the structural and dynamical basis at the atomic level. The characteristics and strength of the interatomic interactions involved in the immune complex formation are exhaustively analyzed. The results might explain how the anti-BACE1 Fab fragment and other BACE1 exosite binders are capable to produce an allosteric modulation of the BACE1 activity. Our site-directed mutagenesis study indicated that the functional anti-BACE1 paratope, residues Tyr32 (H1), Trp50 (H2), Arg98 (H3), Phe101 (H3), Trp104 (H3) and Tyr94 (L3), strongly dominates the binding energetics with the BACE1 exosite. The mutational studies described in this work might accelerate the development of new BACE1 exosite binders with interesting pharmacological activity.

  3. 抗呼吸道合胞病毒Fab噬菌体抗体库的构建及初步筛选%Construction and preliminary panning of Fab phage display antibody library against respiratory syncytial virus

    Institute of Scientific and Technical Information of China (English)

    汪治华; 张国成; 李安茂; 周南; 陈一; 李小青; 苏字飞; 邓阳彬; 王治静

    2008-01-01

    Objective To construct a human phage display antibody library,which will help to develop new drugs and vaccines against respiratory syncytial virus (RSV) and solve many of the issues that have limited the progression and application of murine monoclonal antibodies (McAbs) in the clinic.This can provide a platform for human antibody preparation and diagnosis,prophylaxis and therapy of RSV infection in children.Methods Peripheral blood lymphocytes were isolated from 52 children with RSV infection,cDNA was synthesized from the total RNA of lymphocytes.The light and heavy chain Fd (VH-CH1)fragments of immunoglobulin gene were amplified by RT-PCR.The amplified products were cloned into phagemid vector pComb3x and the clone samples were electrotransformed into competent E.coli XL1-Blue.The transformed cells were then infected with M13K07 helper phage to yield recombinant phage antibody of Fabs.The plasmids extracted from amplified E.coil were digested with restriction endonucleases Sac 1,Xba I,Spe I and Xho I to monitor the insertion of the light or heavy chain Fd genes.RSV virions were utilized as antigens to screen Fab antibodies.Results By recombination of light and heavy chain genes,an immune Fab phage display antibody library against RSV containing 2.08×107 different clones was constructed,in which 70% clones had light chains and heavy chain Fd genes.The capacity of Fab phage antibody gene library was 1.46×107 and the titre of the original Fab antibody library was about 1.06 x 1012 pfu/mL The antibody library gained an enrichment in different degrees after the preliminary panning.Condusions Utilizing the technology of phage display,an immune Fab phage display antibody library against RSV was successfully constructed in this study,which laid a valuable experimental foundation for further study and created favorable conditions for preparing human McAbs. This may also contribute to the improvement in the diagnosis,therapy and prophylaxis of RSV infection in children

  4. Generation and characterization of a human neutralizing bivalent antibody Fab094-DDD against rabies virus%人源特异性抗狂犬病毒二价Fab094-DDD抗体的制备及鉴定

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    目的:利用蛋白激酶A(protein kinase A,PKA)调节亚基(R亚基)的二聚体化功能结构域(DDD)的二聚化功能,制备具有中和活性的人源特异性抗狂犬病毒二价抗体.方法:优化合成linker-C-DDD序列,设计引物扩增抗狂犬病毒抗体Fab094的Fd段和轻链可变区序列(Vκ),通过overlap PCR将Fab094的Fd段和linker-C-DDD基因重组为Fd-DDD,将其和Vκ分别克隆到真核表达载体中,共转染293Free style细胞,表达纯化该抗体.应用SDS-PAGE 、Western blot、ELISA、免疫共沉淀、亲和力测定及免疫荧光试验检测该抗体的免疫学特性,用荧光抗体病毒中和试验检测其中和活性.结果:成功构建了全人源抗狂犬病毒二价抗体Fab094-DDD的真核表达载体,获得的二价Fab094-DDD抗体与抗原保持着较好的亲和力,能特异性结合狂犬病毒,中和效价为213.2 U/mg.结论:成功制备了抗狂犬病毒二价Fab094-DDD抗体,具有较高的中和活性,为进一步研发狂犬病治疗性抗体药物奠定了基础,对于其他疾病双表位人源特异性抗体的制备也具有借鉴作用.

  5. Emerging monoclonal antibodies against Clostridium difficile infection.

    Science.gov (United States)

    Péchiné, Séverine; Janoir, Claire; Collignon, Anne

    2017-04-01

    Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.

  6. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  7. Monoclonal IgG can ameliorate immune thrombocytopenia in a murine model of ITP: an alternative to IVIG.

    Science.gov (United States)

    Song, Seng; Crow, Andrew R; Freedman, John; Lazarus, Alan H

    2003-05-01

    Intravenous immunoglobulin (IVIG) is used to treat immune thrombocytopenia resulting from a variety of autoimmune and nonautoimmune diseases such as idiopathic thrombocytopenic purpura (ITP), heparin-induced thrombocytopenia, and posttransfusion purpura. IVIG is a limited resource and although considered safe, may nevertheless carry some risk of transferring disease. Its high cost makes monoclonal antibodies, capable of mimicking the clinical effects of IVIG, highly desirable. We show here, using a murine model of ITP, that selected monoclonal antibodies can protect against thrombocytopenia. SCID mice were pretreated with 1 of 21 monoclonal antibodies before induction of thrombocytopenia by antiplatelet antibody. Four antibodies reacted with the CD24 antigen on erythrocytes. Two antibodies were of the IgM class, and although one IgM antibody caused a minimal degree of anemia (P <.05), neither antibody ameliorated immune thrombocytopenia. One of 2 anti-CD24 antibodies of the IgG class ameliorated immune thrombocytopenia and blocked reticuloendothelial system function at the same doses that protected against thrombocytopenia. Some antibodies reactive with other circulating cell types also protected against immune-mediated thrombocytopenia while no antibody without a distinct target antigen in the mice was protective. Protective monoclonal antibodies significantly prevented thrombocytopenia at down to a 1000-fold lower dose (200 microg/kg) as compared with standard IVIG treatment (2 g/kg). It is concluded that monoclonal IgG with specificity for a circulating cellular target antigen may provide an alternative therapeutic approach to treating immune thrombocytopenia.

  8. Immunochemical Characterization of Anti-Acetylcholinesterase Inhibitory Monoclonal Antibodies

    Science.gov (United States)

    1993-01-01

    formation. This conformation was first proposed using studies with monoclonal antibodies against a synthetic peptide mimicking the sequence of the...distinct antigenic determinants on dengue -2 virus using monoclonal antibodies, Am. J. Trop. Med. Hyg., 31 (1982) 548-555. 7 D. De la Hoz, B.P. Doctor

  9. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  10. Polyneuropathy associated with monoclonal gammopathy, cause and consequence

    NARCIS (Netherlands)

    Eurelings, Marijke

    2005-01-01

    The relation between monoclonal antibodies and polyneuropathy is best supported for polyneuropathy associated with IgM monoclonal anti-myelin associated glycoprotein (anti-MAG) antibodies. These anti-MAG antibodies are reactive against peripheral nerve autoantigen, thereby causing an autoimmune medi

  11. Route of infection and hematological effect of Metarhizium anisopliae (Metsch.) Sorokin on Dysdercus cingulatus (Fab.) adult.

    Science.gov (United States)

    Sahayaraj, Kitherian; Borgio, Jesu Francis; Lucini, Luigi

    2014-01-01

    The primary objective of this work was to identify, under laboratory conditions, the route of infection and hemogram of Dysdercus cingulatus (Fab.) adults by Metarhizium anisopliae. The infection process in D. cingulatus by M. anisopliae involved the conidia adherence to the host cuticle and germination after 24 h post-infection, accompanied by falling of bristles. The subsequent step, within 24-48 h post-infection, comprised penetration of fungus through spiracles, root of bristles, hemolymph, and the three dorsal sacs. Subsequently, within 72-96 h post-infection, the fungus penetrated into trachea and sacs, then emerged on cuticular surface and was found to be maximum in hemolymph. A great decrease in hemocytes count was observed within 96 h from infection. The hemosomic index (HSI) decreased gradually as the incubation period increased. As far as we know, this is the first study to know the mechanism of action of M. anisopliae to D. cingulatus.

  12. Characterization of silicon photomultipliers at National Nano-Fab Center for PET-MR.

    Science.gov (United States)

    Kim, Hyoungtaek; Sul, Woo Suk; Cho, Gyuseong

    2014-10-01

    The silicon photomultipliers (SiPMs) were fabricated for magnetic resonance compatible positron emission tomography (PET) applications using customized CMOS processes at National NanoFab Center. Each micro-cell consists of a shallow n+/p well junction on a p-type epitaxial wafer and passive quenching circuit was applied. The size of the SiPM is 3 × 3 mm(2) and the pitch of each micro-cell is 65 μm. In this work, several thousands of SiPMs were packaged and tested to build a PET ring detector which has a 60 mm axial and 390 mm radial field of view. I-V characteristics of the SiPMs are shown good uniformity and breakdown voltage is around 20 V. The photon detection efficiency was measured via photon counting method and the maximum value was recorded as 16% at 470 nm. The gamma ray spectrum of a Ge-68 isotope showed nearly 10% energy resolution at 511 keV with a 3 × 3 × 20 mm(3) LYSO crystal.

  13. Characterization of silicon photomultipliers at National Nano-Fab Center for PET-MR

    Science.gov (United States)

    Kim, Hyoungtaek; Sul, Woo Suk; Cho, Gyuseong

    2014-10-01

    The silicon photomultipliers (SiPMs) were fabricated for magnetic resonance compatible positron emission tomography (PET) applications using customized CMOS processes at National NanoFab Center. Each micro-cell consists of a shallow n+/p well junction on a p-type epitaxial wafer and passive quenching circuit was applied. The size of the SiPM is 3 × 3 mm2 and the pitch of each micro-cell is 65 μm. In this work, several thousands of SiPMs were packaged and tested to build a PET ring detector which has a 60 mm axial and 390 mm radial field of view. I-V characteristics of the SiPMs are shown good uniformity and breakdown voltage is around 20 V. The photon detection efficiency was measured via photon counting method and the maximum value was recorded as 16% at 470 nm. The gamma ray spectrum of a Ge-68 isotope showed nearly 10% energy resolution at 511 keV with a 3 × 3 × 20 mm3 LYSO crystal.

  14. Purification and characterization of Fab fragments with rapid reaction kinetics against myoglobin.

    Science.gov (United States)

    Song, Hyung-Nam; Kim, Dong-Hyung; Park, Sung-Goo; Lee, Myung Kyu; Paek, Se-Hwan; Woo, Eui-Jeon

    2015-01-01

    Myoglobin is an early biomarker for acute myocardial infarction. Recently, we isolated the antibody IgG-Myo2-7ds, which exhibits unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid dissociation kinetics are thought to be premature IgG forms that are produced during the early stage of in vivo immunization. In the present study, we identified the epitope region of the IgG-Myo2-7ds antibody to be the C-terminal region of myoglobin, which corresponds to 144-154 aa. The Fab fragment was directly purified by papain cleavage and protein G affinity chromatography and demonstrated kinetics of an association constant of 4.02 × 10(4) M(-1) s(-1) and a dissociation constant of 2.28 × 10(-2) s(-1), which retained the unique reaction kinetics of intact IgG-Myo2-7ds antibodies. Because a rapid dissociation antibody can be utilized for antibody recycling, the results from this study would provide a platform for the development of antibody engineering in potential diagnostic areas such as a continuous monitoring system for heart disease.

  15. Integration of the APC framework with AMD's Fab25 factory system

    Science.gov (United States)

    Bushman, Scott; Campbell, William J.; Miller, Michael L.

    1999-09-01

    This paper discusses the integration and development of advanced process control technologies with AMD's Fab25 factory systems using the Advance Process Control Framework. The Framework is an open software architecture that allows the integration of existing factory systems, such as the manufacturing execution systems, configurable equipment interfaces, recipe management systems, metrology tools, process tools, and add-on sensors, into a system which provides advanced process control specific functionality. The Advanced Process Control Framework project was formulated to enable effective integration of Advanced Process Control applications into a semiconductor facility to improve manufacturing productivity and product yields. The main communication link between the factory system and the Framework is the Configurable Equipment Interface. It interfaces through a specialized component in the framework, the Machine Interface, which converts the factory system communication protocol, ISIS, to the Framework protocol, CORBA. The Framework is a distributed architecture that uses CORBA as a communication protocol between specialized components. A generalized example of how the Framework is integrated into the semiconductor facility is provided, as well as a description of the overall architecture used for process control strategy development. The main development language, Tcl/Tk, provides for increased development and deployment over traditional coding methods.

  16. Monoclonal gammopathy with both nemaline myopathy and amyloid myopathy.

    Science.gov (United States)

    Wang, Min; Lei, Lin; Chen, Hai; Di, Li; Pang, Mi; Lu, Yan; Lu, Lu; Shen, Xin-Ming; Da, Yuwei

    2017-10-01

    Monoclonal gammopathies due to plasma cell dyscrasias can induce diverse rare neuromuscular disorders. Deposition of monoclonal antibody light chains in skeletal muscle causes amyloid myopathy. Monoclonal gammopathy is occasionally associated with sporadic late-onset nemaline myopathy. Here we report a monoclonal gammopathy patient with both sporadic late-onset nemaline myopathy and amyloid myopathy. The diagnoses were based on immunofixation electrophoresis of urine, and serum for free light chain assay, Congo red staining and Thioflavin S staining of muscle biopsies, as well as immunohistochemical staining and electron-microscopic observation. Nemaline myopathy and amyloid myopathy can present in the same patient with monoclonal gammopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Monoclonal antibodies against PCSK9: from bench to clinic].

    Science.gov (United States)

    Guijarro Herraiz, Carlos

    2016-05-01

    Antibodies are glycoproteins with high specificity binding to multiple antigens due to the large number of structural conformations of the variable chains. Hybridoma technology (fusion of myeloma cells with immunoglobulin-producing lymphocytes) has allowed the synthesis of large quantities of unique antibodies (monoclonal [mAb]). mAbs were initially murine. Subsequently, chimeric mAbs were developed, followed by humanized mAbs and finally human mAbs. The high selectivity and good tolerance of human mAbs allows their therapeutic administration to block specific exogenous or endogenous molecules. Selective human mAbs to the catalytic domain of PCSK9 have recently been developed. These antibodies block PCSK9, favour low-density lipoprotein receptor recycling and markedly reduce circulating cholesterol. Preliminary studies indicate that lowering cholesterol through anti-PCSK9 antibodies may significantly reduce the cardiovascular complications of arteriosclerosis. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Arteriosclerosis. All rights reserved.

  18. Super-genotype: global monoclonality defies the odds of nature.

    Directory of Open Access Journals (Sweden)

    Johannes J Le Roux

    Full Text Available The ability to respond to natural selection under novel conditions is critical for the establishment and persistence of introduced alien species and their ability to become invasive. Here we correlated neutral and quantitative genetic diversity of the weed Pennisetum setaceum Forsk. Chiov. (Poaceae with differing global (North American and African patterns of invasiveness and compared this diversity to native range populations. Numerous molecular markers indicate complete monoclonality within and among all of these areas (F(ST = 0.0 and is supported by extreme low quantitative trait variance (Q(ST = 0.00065-0.00952. The results support the general-purpose-genotype hypothesis that can tolerate all environmental variation. However, a single global genotype and widespread invasiveness under numerous environmental conditions suggests a super-genotype. The super-genotype described here likely evolved high levels of plasticity in response to fluctuating environmental conditions during the Early to Mid Holocene. During the Late Holocene, when environmental conditions were predominantly constant but extremely inclement, strong selection resulted in only a few surviving genotypes.

  19. Super-genotype: global monoclonality defies the odds of nature.

    Science.gov (United States)

    Le Roux, Johannes J; Wieczorek, Ania M; Wright, Mark G; Tran, Carol T

    2007-07-04

    The ability to respond to natural selection under novel conditions is critical for the establishment and persistence of introduced alien species and their ability to become invasive. Here we correlated neutral and quantitative genetic diversity of the weed Pennisetum setaceum Forsk. Chiov. (Poaceae) with differing global (North American and African) patterns of invasiveness and compared this diversity to native range populations. Numerous molecular markers indicate complete monoclonality within and among all of these areas (F(ST) = 0.0) and is supported by extreme low quantitative trait variance (Q(ST) = 0.00065-0.00952). The results support the general-purpose-genotype hypothesis that can tolerate all environmental variation. However, a single global genotype and widespread invasiveness under numerous environmental conditions suggests a super-genotype. The super-genotype described here likely evolved high levels of plasticity in response to fluctuating environmental conditions during the Early to Mid Holocene. During the Late Holocene, when environmental conditions were predominantly constant but extremely inclement, strong selection resulted in only a few surviving genotypes.

  20. Gene transfer by retrovirus-derived shuttle vectors in the generation of murine bispecific monoclonal antibodies.

    Science.gov (United States)

    DeMonte, L B; Nistico, P; Tecce, R; Dellabona, P; Momo, M; Anichini, A; Mariani, M; Natali, P G; Malavasi, F

    1990-01-01

    The present study reports on the use of gene transfer by retrovirus-derived shuttle vectors in the generation of hybrid hybridomas secreting bispecific monoclonal antibodies. neo- and dhfr- genes were infected into distinct murine hybridomas, thus conferring a dominant resistance trait to geneticin (G418) and to methotrexate. The vectors employed were replication-deficient and dependent on complementation by a helper virus provided by the irradiated packaging lines. After cocultivation with the relevant packaging cell lines, stable hybridoma lines expressing the selectable markers were easily obtained and were then suitable for conventional somatic fusion. This high-efficiency method was used to generate two bispecific monoclonal antibodies simultaneously targeting molecules expressed on cytotoxic cells (i.e., T lymphocytes and natural killer cells) against a human melanoma-associated antigen. Images PMID:2326256

  1. Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis.

    Science.gov (United States)

    Szabo, Zoltan; Guttman, András; Bones, Jonathan; Karger, Barry L

    2011-07-01

    Characterization of the N-glycosylation present in the Fc region of therapeutic monoclonal antibodies requires rapid, high-resolution separation methods to guarantee product safety and efficacy during all stages of process development. Determination of fucosylated oligosaccharides is particularly important during clone selection, product characterization, and lot release as fucose has been shown to adversely affect the ability of mAbs to induce antibody dependent cellular cytotoxicity (ADCC). Here, we apply a general capillary electrophoresis optimization strategy to separate functionally relevant fucosylated and afucosylated glycans on mononclonal antibody products in the presence of several high mannose oligosaccharides. The N-glycans chosen represent those most commonly reported on CHO cell derived therapeutic antibodies. A rapid (processing for automated 96 well plate-based glycosylation analyses of two nonproprietary therapeutic monoclonal antibodies, demonstrating ruggedness and suitability for high-throughput process and product monitoring applications.

  2. Molecular characterization of human IgG monoclonal antibodies specific for the major birch pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic reaction.

    Science.gov (United States)

    Denépoux, S; Eibensteiner, P B; Steinberger, P; Vrtala, S; Visco, V; Weyer, A; Kraft, D; Banchereau, J; Valenta, R; Lebecque, S

    2000-01-07

    We report the molecular characterization of five human monoclonal antibodies, BAB1-5 (BAB1: IgG(1); BAB4: IgG(2); BAB2, 3, 5: IgG(4)), with specificity for the major birch pollen allergen, Bet v 1. BAB1-5 were obtained after immunotherapy and contained a high degree of somatic mutations indicative of an antigen-driven affinity maturation process. While BAB1 inhibited the binding of patients IgE to Bet v 1, BAB2 increased IgE recognition of Bet v 1, and, even as Escherichia coli-expressed Fab, augmented Bet v 1-induced immediate type skin reactions. The demonstration that IgG antibodies can enhance allergen-induced allergic reactions is likely to explain the unpredictability of specific immunotherapy.

  3. Treatment with anti-interferon-δ monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-δ receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2001-01-01

    Neuroinflammation, neuronal degeneration, regeneration, monoclonal antibodies, multiple schlerosis......Neuroinflammation, neuronal degeneration, regeneration, monoclonal antibodies, multiple schlerosis...

  4. Induction and characterization of monoclonal anti-idiotypic antibodies reactive with idiotopes of canine parvovirus neutralizing monoclonal antibodies.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. van Es (Johan); G.A. Drost; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractMonoclonal anti-idiotypic (anti-Id) antibodies (Ab2) were generated against idiotypes (Id) of canine parvovirus (CPV) specific monoclonal antibodies (MoAbs). The binding of most of these anti-Id antibodies to their corresponding Id could be inhibited by antigen, thus classifying these an

  5. A Human Anti-Toll Like Receptor 4 Fab Fragment Inhibits Lipopolysaccharide-Induced Pro-Inflammatory Cytokines Production in Macrophages.

    Science.gov (United States)

    Wang, Maorong; Zheng, Wenkai; Zhu, Xuhui; Xu, Jing; Cai, Binggang; Zhang, Yiqing; Zheng, Feng; Zhou, Linfu; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin

    2016-01-01

    The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis.

  6. Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on Vibrio cholerae agglutination, motility, and surface morphology.

    Science.gov (United States)

    Levinson, Kara J; De Jesus, Magdia; Mantis, Nicholas J

    2015-04-01

    2D6 is a dimeric monoclonal immunoglobulin A (IgA) specific for the nonreducing terminal residue of Ogawa O-polysaccharide (OPS) of Vibrio cholerae. It was previously demonstrated that 2D6 IgA is sufficient to passively protect suckling mice from oral challenge with virulent V. cholerae O395. In this study, we sought to define the mechanism by which 2D6 IgA antibody protects the intestinal epithelium from V. cholerae infection. In a mouse ligated-ileal-loop assay, 2D6 IgA promoted V. cholerae agglutination in the intestinal lumen and limited the ability of the bacteria to associate with the epithelium, particularly within the crypt regions. In vitro fluorescence digital video microscopy analysis of antibody-treated V. cholerae in liquid medium revealed that 2D6 IgA not only induced the rapid (5- to 10-min) onset of agglutination but was an equally potent inhibitor of bacterial motility. Scanning electron microscopy showed that 2D6 IgA promoted flagellum-flagellum cross-linking, as well as flagellar entanglement with bacterial bodies, suggesting that motility arrest may be a consequence of flagellar tethering. However, monovalent 2D6 Fab fragments also inhibited V. cholerae motility, demonstrating that antibody-mediated agglutination and motility arrest are separate phenomena. While 2D6 IgA is neither bactericidal nor bacteriostatic, exposure of V. cholerae to 2D6 IgA (or Fab fragments) resulted in a 5-fold increase in surface-associated blebs, as well an onset of a wrinkled surface morphotype. We propose that the protective immunity conferred by 2D6 IgA is the result of multifactorial effects on V. cholerae, including agglutination, motility arrest, and possibly outer membrane stress.

  7. Rapid Effects of a Protective O-Polysaccharide-Specific Monoclonal IgA on Vibrio cholerae Agglutination, Motility, and Surface Morphology

    Science.gov (United States)

    Levinson, Kara J.; De Jesus, Magdia

    2015-01-01

    2D6 is a dimeric monoclonal immunoglobulin A (IgA) specific for the nonreducing terminal residue of Ogawa O-polysaccharide (OPS) of Vibrio cholerae. It was previously demonstrated that 2D6 IgA is sufficient to passively protect suckling mice from oral challenge with virulent V. cholerae O395. In this study, we sought to define the mechanism by which 2D6 IgA antibody protects the intestinal epithelium from V. cholerae infection. In a mouse ligated-ileal-loop assay, 2D6 IgA promoted V. cholerae agglutination in the intestinal lumen and limited the ability of the bacteria to associate with the epithelium, particularly within the crypt regions. In vitro fluorescence digital video microscopy analysis of antibody-treated V. cholerae in liquid medium revealed that 2D6 IgA not only induced the rapid (5- to 10-min) onset of agglutination but was an equally potent inhibitor of bacterial motility. Scanning electron microscopy showed that 2D6 IgA promoted flagellum-flagellum cross-linking, as well as flagellar entanglement with bacterial bodies, suggesting that motility arrest may be a consequence of flagellar tethering. However, monovalent 2D6 Fab fragments also inhibited V. cholerae motility, demonstrating that antibody-mediated agglutination and motility arrest are separate phenomena. While 2D6 IgA is neither bactericidal nor bacteriostatic, exposure of V. cholerae to 2D6 IgA (or Fab fragments) resulted in a 5-fold increase in surface-associated blebs, as well an onset of a wrinkled surface morphotype. We propose that the protective immunity conferred by 2D6 IgA is the result of multifactorial effects on V. cholerae, including agglutination, motility arrest, and possibly outer membrane stress. PMID:25667263

  8. Identification of key amino acid residues in a thyrotropin receptor monoclonal antibody epitope provides insight into its inverse agonist and antagonist properties.

    Science.gov (United States)

    Chen, Chun-Rong; McLachlan, Sandra M; Rapoport, Basil

    2008-07-01

    CS-17 is a murine monoclonal antibody to the human TSH receptor (TSHR) with both inverse agonist and antagonist properties. Thus, in the absence of ligand, CS-17 reduces constitutive TSHR cAMP generation and also competes for TSH binding to the receptor. The present data indicate that for both of these functions, the monovalent CS-17 Fab (50 kDa) behaves identically to the intact, divalent IgG molecule (150 kDa). The surprising observation that CS-17 competes for TSH binding to the human but not porcine TSHR enabled identification of a number of amino acids in its epitope. Replacement of only three human TSHR residues (Y195, Q235, and S243) with the homologous porcine TSHR residues totally abolishes CS-17 binding as detected by flow cytometry. TSH binding is unaffected. Of these residues, Y195 is most important, with Q235 and S243 contributing to CS-17 binding to a much lesser degree. The functional effects of CS-17 IgG and Fab on constitutive cAMP generation by porcinized human TSHR confirm the CS-17 binding data. The location of TSHR amino acid residues Y195, Q235, and S243 deduced from the crystal structure of the FSH receptor leucine-rich domain provides valuable insight into the CS-17 and TSH binding sites. Whereas hormone ligands bind primarily to the concave surface of the leucine-rich domains, a major portion of the CS-17 epitope lies on the opposite convex surface with a minor component in close proximity to known TSH binding residues.

  9. Biochemical and structural characterization of the interface mediating interaction between the influenza A virus non-structural protein-1 and a monoclonal antibody

    Science.gov (United States)

    Wu, Jianping; Mok, Chee-Keng; Chow, Vincent Tak Kwong; Yuan, Y. Adam; Tan, Yee-Joo

    2016-01-01

    We have previously shown that a non-structural protein 1 (NS1)-binding monoclonal antibody, termed as 2H6, can significantly reduce influenza A virus (IAV) replication when expressed intracellularly. In this study, we further showed that 2H6 binds stronger to the NS1 of H5N1 than A/Puerto Rico/8/1934(H1N1) because of an amino acid difference at residue 48. A crystal structure of 2H6 fragment antigen-binding (Fab) has also been solved and docked onto the NS1 structure to reveal the contacts between specific residues at the interface of antibody-antigen complex. In one of the models, the predicted molecular contacts between residues in NS1 and 2H6-Fab correlate well with biochemical results. Taken together, residues N48 and T49 in H5N1 NS1 act cooperatively to maintain a strong interaction with mAb 2H6 by forming hydrogen bonds with residues found in the heavy chain of the antibody. Interestingly, the pandemic H1N1-2009 and the majority of seasonal H3N2 circulating in humans since 1968 has N48 in NS1, suggesting that mAb 2H6 could bind to most of the currently circulating seasonal influenza A virus strains. Consistent with the involvement of residue T49, which is well-conserved, in RNA binding, mAb 2H6 was also found to inhibit the interaction between NS1 and double-stranded RNA. PMID:27633136

  10. Intracellular routing in breast cancer cells of streptavidin-conjugated trastuzumab Fab fragments linked to biotinylated doxorubicin-functionalized metal chelating polymers.

    Science.gov (United States)

    Liu, Peng; Cai, Zhongli; Kang, Jae W; Boyle, Amanda J; Adams, Jarret; Lu, Yijie; Ngo Ndjock Mbong, Ghislaine; Sidhu, Sachdev; Reilly, Raymond M; Winnik, Mitchell A

    2014-03-10

    We describe the synthesis of a heterotelechelic metal-chelating polymer (Bi-MCP-Dox), a polyacrylamide with a number average degree of polymerization DPn = 50 (PDI = 1.2), with biotin (Bi) and doxorubicin (Dox) as functional chain ends and diethylenetriaminepentaacetic acid (DTPA) pendant groups as the binding sites for metal ions. We compared its behavior in cell-uptake experiments with a similar polymer (Bi-MCP) without Dox. These MCPs were complexed with trastuzumab Fab (tmFab) fragments covalently linked to streptavidin (SAv) to form tmFab-SAv-Bi-MCP-Dox and tmFab-SAv-Bi-MCP via the strong affinity between Bi and SAv. tmFab targets human epidermal growth factor receptor-2 (HER2), which is overexpressed on certain human breast cancer cells. Surface plasmon resonance (SPR) experiments with the extracellular domain (ECD) of HER2 showed that incorporation of the MCPs in these complexes had no significant effect on the association or dissociation rate with the HER2 ECD and the dissociation constants. The tmFab-complexed MCPs were subsequently labeled with (111)In (an Auger electron emitting radionuclide). Auger electrons can cause lethal DNA double strand breaks (DSBs) but only if they are emitted intracellularly and especially, in close proximity to the nucleus. To evaluate the cellular and nuclear uptake of tmFab-SAv-Bi-MCP-Dox, we incubated HER2+ SK-BR-3 human breast cancer cells with the complexes saturated with stable In(3+) and visualized their distribution by confocal fluorescence microscopy, monitoring the fluorescence of Dox. In parallel, we carried out cell fractionation studies on tmFab-SAv-Bi-MCP-Dox and on tmFab-SAv-Bi-MCP labeled with (111)In. Both radiolabeled complexes showed cell internalization and nuclear localization. We conclude that metal-chelating polymers with this composition appear to encourage internalization, nuclear uptake, and chromatin (DNA) binding of trastuzumab fragments modified with streptavidin in human breast cancer cells

  11. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD[superscript +] and triclosan

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)

    2010-11-19

    Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD{sup +} has been solved to a resolution of 2.1 {angstrom}. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure (PDB code 2jjy) which is bound to only NAD{sup +} reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD{sup +} cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors.

  12. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using {sup 111}In-trastuzumab (Herceptin) Fab fragments

    Energy Technology Data Exchange (ETDEWEB)

    Tang Ying [Division of Nuclear Medicine, University Health Network, Toronto, Ontario, M5G 2C4 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, M5S 2S2 (Canada); Wang, Judy [Division of Nuclear Medicine, University Health Network, Toronto, Ontario, M5G 2C4 (Canada); Scollard, Deborah A. [Division of Nuclear Medicine, University Health Network, Toronto, Ontario, M5G 2C4 (Canada); Mondal, Hridya [Division of Nuclear Medicine, University Health Network, Toronto, Ontario, M5G 2C4 (Canada); Holloway, Claire [Sunnybrook and Women' s College Health Sciences Center, Toronto, Ontario, M4N 3M5 (Canada); Kahn, Harriette J. [Sunnybrook and Women' s College Health Sciences Center, Toronto, Ontario, M4N 3M5 (Canada); Reilly, Raymond M. [Division of Nuclear Medicine, University Health Network, Toronto, Ontario, M5G 2C4 (Canada) and Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, M5S 2S2 (Canada) and Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5S 3E2 (Canada)]. E-mail: raymond.reilly@utoronto.ca

    2005-01-01

    Trastuzumab (Herceptin) Fab were prepared by digestion of intact IgG with immobilized papain, derivatized with diethylenetriaminepentaacetic acid (DTPA) and radiolabeled with {sup 111}In. The dissociation constant (K{sub d}) for binding of Fab to HER2/neu-positive SK-BR-3 human breast cancer cells was two- to threefold higher than for intact IgG (14-36 vs. 8-14 nM). The binding affinity was not significantly decreased after DTPA derivatization (K{sub d}=47 nM). {sup 111}In-trastuzumab Fab localized specifically in HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice with tumor uptake of 7.8{+-}0.7% injected dose (ID)/g and tumor/blood ratio of 25.2{+-}1.6 at 72 h postinjection compared with 2.7{+-}0.7% ID/g and 7.0{+-}0.9 for {sup 111}In-HuM195 anti-CD33 Fab (significantly different, P<.001). Small (3-5 mm in diameter) BT-474 tumors were imaged with {sup 111}In-trastuzumab Fab as early as 24 h postinjection.

  13. Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility.

    Science.gov (United States)

    Six, David A; Yuan, Yanqiu; Leeds, Jennifer A; Meredith, Timothy C

    2014-01-01

    The β-acetoacetyl-acyl carrier protein synthase FabY is a key enzyme in the initiation of fatty acid biosynthesis in Pseudomonas aeruginosa. Deletion of fabY results in an increased susceptibility of P. aeruginosa in vitro to a number of antibiotics, including vancomycin and cephalosporins. Because antibiotic susceptibility can be influenced by changes in membrane lipid composition, we determined the total fatty acid profile of the ΔfabY mutant, which suggested alterations in the lipid A region of the lipopolysaccharide. The majority of lipid A species in the ΔfabY mutant lacked a single secondary lauroyl group, resulting in hypoacylated lipid A. Adding exogenous fatty acids to the growth media restored the wild-type antibiotic susceptibility profile and the wild-type lipid A fatty acid profile. We suggest that incorporation of hypoacylated lipid A species into the outer membrane contributes to the shift in the antibiotic susceptibility profile of the ΔfabY mutant.

  14. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.

    Science.gov (United States)

    Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L

    2015-04-01

    Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.

  15. Best-practice evaluation-methods for wafer-fab photomask-requalification inspection tools

    Science.gov (United States)

    Cho, Chan Seob; Mungmode, Ashish; Taylor, Ron; Cho, David; Koh, Hui Peng

    2014-10-01

    Requalifying semiconductor photomasks remains critically important and is increasingly challenging for 20nm and 14nm node logic reticles. Patterns are becoming more complex on the photomask, and defect sensitivity requirements are more stringent than ever before. Reticle inspection tools are equally important for effective process development and the successful ramp and sustained yield for high volume manufacturing. The inspection stages considered were: incoming inspection to match with Mask Shop Outgoing result and to detect defects generated during transport; requalification by routine cycle inspection to detect Haze and any other defects; and inspection by in-house or Mask shop at the post cleaning. There are many critical capability and capacity factors for the decision for best inspection tool and strategy for high volume manufacturing, especially objective Lens NA, wavelength, power, pixel size, throughput, full-automation inspection linked with Overhead Transport, algorithm application, engineering application function, and inspection of PSM and OMOG . These tools are expensive but deliver differentiated value in terms of performance and throughput as well as extendibility. Performing a thorough evaluation and making a technically sound choice which explores these many factors is critical for success of a fab. This paper examines the methodology for evaluating two different photomask inspection tools. The focus is on ensuring production worthiness on real and advanced product photomasks requiring accurate evaluation of sensitivity, throughput, data analysis function and engineering work function on those product photomasks. Photomasks used for data collection are production reticles, PDM(Program defect Mask), SiN spray defect Reticle which is described that evaluates how the tools would perform on a contaminated plate.

  16. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.

    Science.gov (United States)

    Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen

    2015-08-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites.

  17. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM

    2012-01-01

    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  18. Inhibition of iodothyronine transport into rat liver cells by a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Mol, J.A.; Krenning, E.P.; Docter, R.; Rozing, J.; Hennemann, G.

    1986-06-15

    The role of the rat liver plasma membrane in the regulation of uptake and subsequent deiodination of thyroxine (T4) or the biologically active thyroid hormone 3,3',5-triiodothyronine (T3) was investigated. Here we report on the production of monoclonal antibodies raised against rat hepatocytes. Two antibodies were selected. Antibody ER-22 did bind to a Mr 52,000 membrane protein and inhibited the 1- and 5-min uptake of both T4 and T3 by primary cultured rat hepatocytes in a dose-dependent fashion. As the uptake of T4 and T3 depends on the presence of a sodium gradient over the plasma membrane, the inhibitory potency of ER-22 on the Na+,K+-ATPase activity was investigated. No inhibition of the uptake of 86Rb+ could be determined, indicating that antibody ER-22 is not directed against the Na+,K+-ATPase but probably the carrier protein itself. Clearance of T3 from the medium and concomitant iodide production by cultured rat hepatocytes during a 20-h incubation in the presence of ER-22 were both inhibited by 50% with respect to a control incubation in the absence of monoclonal antibody, pointing to the importance of carrier-mediated transport in cellular uptake and metabolism of T3. A second monoclonal antibody did bind to two other plasma membrane proteins but did not inhibit transport of thyroid hormone.

  19. Characterization of Endotrypanum Parasites Using Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ramos Franco Antonia Maria

    1997-01-01

    Full Text Available A large number of Endotrypanum stocks (representing an heterogeneous population of strains have been screened against a panel of monoclonal antibodies (MAbs derived for selected species of Endotrypanum or Leishmania, to see whether this approach could be used to group/differentiate further among these parasites. Using different immunological assay systems, MAbs considered specific for the genus Endotrypanum (E-24, CXXX-3G5-F12 or strain M6159 of E. schaudinni (E-2, CXIV-3C7-F5 reacted variably according to the test used but in the ELISA or immunofluorescence assay both reacted with all the strains tested. Analyses using these MAbs showed antigenic diversity occurring among the Endotrypanum strains, but no qualitative or quantitative reactivity pattern could be consistently related to parasite origin (i.e., host species involved or geographic area of isolation. Western blot analyses of the parasites showed that these MAbs recognized multiple components. Differences existed either in the epitope density or molecular forms associated with the antigenic determinants and therefore allowed the assignment of the strains to specific antigenic groups. Using immunofluorescence or ELISA assay, clone E-24 produced reaction with L. equatorensis (which is a parasite of sloth and rodent, but not with other trypanosomatids examined. Interestingly, the latter parasite and the Endotrypanum strains cross-reacted with a number of MAbs that were produced against members of the L. major-L. tropica complex

  20. Plasmid copy number noise in monoclonal populations of bacteria

    Science.gov (United States)

    Wong Ng, Jérôme; Chatenay, Didier; Robert, Jérôme; Poirier, Michael Guy

    2010-01-01

    Plasmids are extra chromosomal DNA that can confer to their hosts’ supplementary characteristics such as antibiotic resistance. Plasmids code for their copy number through their own replication frequency. Even though the biochemical networks underlying the plasmid copy number (PCN) regulation processes have been studied and modeled, no measurement of the heterogeneity in PCN within a whole population has been done. We have developed a fluorescent-based measurement system, which enables determination of the mean and noise in PCN within a monoclonal population of bacteria. Two different fluorescent protein reporters were inserted: one on the chromosome and the other on the plasmid. The fluorescence of these bacteria was measured with a microfluidic flow cytometry device. We show that our measurements are consistent with known plasmid characteristics. We find that the partitioning system lowers the PCN mean and standard deviation. Finally, bacterial populations were allowed to grow without selective pressure. In this case, we were able to determine the plasmid loss rate and growth inhibition effect.

  1. ANTITUMOR EFFECTS OF MONOCLONAL ANTIBODY FAB′ FRAGMENT CONTAINING IMMUNOCONJUGATES

    Institute of Scientific and Technical Information of China (English)

    刘小云; 甄永苏

    2002-01-01

    Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.

  2. Anti-bacterial monoclonal antibodies: back to the future?

    Science.gov (United States)

    Oleksiewicz, Martin B; Nagy, Gábor; Nagy, Eszter

    2012-10-15

    Today's medicine has to deal with the emergence of multi-drug resistant bacteria, and is beginning to be confronted with pan-resistant microbes. This worsening inadequacy of the antibiotics concept, which has ruled infectious medicine in the last six decades creates an increasing unmet medical need that can be addressed by passive immunization. While past experience from the pre-antibiotic era with serum therapy was in many cases encouraging, antibacterial monoclonal antibodies have so far suffered high attrition rates in the clinic, generally from lack of efficacy. Yet, we believe that recent developments in a number of areas such as infectious disease pathogenesis research, translational medicine, mAb engineering, mAb manufacturing and rapid bedside diagnostics are converging to make the medium-term future permissive for antibacterial mAb development. Here, we review antibacterial mAb-based approaches that are or were in clinical development, and may potentially act as paradigms with regards to molecular targets, antibody formats and mode-of-action, pre-clinical validation and selection of most relevant patient populations, in order to increase the likelihood of successful product development in this field.

  3. Downstream processing of monoclonal antibodies--application of platform approaches.

    Science.gov (United States)

    Shukla, Abhinav A; Hubbard, Brian; Tressel, Tim; Guhan, Sam; Low, Duncan

    2007-03-15

    This paper presents an overview of large-scale downstream processing of monoclonal antibodies and Fc fusion proteins (mAbs). This therapeutic modality has become increasingly important with the recent approval of several drugs from this product class for a range of critical illnesses. Taking advantage of the biochemical similarities in this product class, several templated purification schemes have emerged in the literature. In our experience, significant biochemical differences and the variety of challenges to downstream purification make the use of a completely generic downstream process impractical. Here, we describe the key elements of a flexible, generic downstream process platform for mAbs that we have adopted at Amgen. This platform consists of a well-defined sequence of unit operations with most operating parameters being pre-defined and a small subset of parameters requiring development effort. The platform hinges on the successful use of Protein A chromatography as a highly selective capture step for the process. Key elements of each type of unit operation are discussed along with data from 14 mAbs that have undergone process development. Aspects that can be readily templated as well as those that require focused development effort are identified for each unit operation. A brief description of process characterization and validation activities for these molecules is also provided. Finally, future directions in mAb processing are summarized.

  4. OBTAINING OF MONOCLONAL ANTIBODIES AGAINST CHOLERA TOXIN AND HEAT LABILE ENTEROTOXIN OF E. coli FOR DEVELOPMENT OF THE TOXINS DIPLEX ANALYSIS IN ENVIRONMENTAL SPECIMENS

    Directory of Open Access Journals (Sweden)

    Eu. V. Grishin

    2013-08-01

    Full Text Available The present study focuses on development of monoclonal antibodies (MAbs which specifically interact with cholera toxin or heat labile enterotoxin of E. coli. Such monoclonal antibodies MAbs are possessed of ability to identify cholera toxin or heat labile enterotoxin in different immunochemical assays. We obtained hybridoma clones which produced monoclonal antibodies of IgG isotypes to cholera toxin and heat labile enterotoxin. On application of the method of serial dilutions we selected the clones which produced monoclonal antibodies with specific activity against only one of the toxins. We found the 16 pairs of monoclonal antibodies to cholera toxin and 28 ones to heat labile enterotoxin. By means of these monoclonal antibodies it was possible to realize the quantitative analysis of theses toxins in sandwich immunoassay ELISA and diplex sandwich xMAP-assay. The limits of detection of cholera toxin and heat labile enterotoxin in ELISA in control buffer were 0.2 and 0.4 ng/ml, respectively, and in xMAP assay — 0.01 and 0.08 ng/ml, respectively. In probes of cow milk, meat soup, pond water and nasopharyngeal washes cholera toxin was detected in the both assays with the same limits of detections, but heat labile enterotoxin limits of detections were above the ones in control buffers.

  5. Screening of Human Antibody Fab Fragment against HBsAg and the Construction of its dsFv Form

    Directory of Open Access Journals (Sweden)

    Leili Jia, Jiyun Yu, Hongbin Song, Xuelin Liu, Weina Ma, Yuanyong Xu, Chuanfu Zhang, Shicun Dong, Qiao Li

    2008-01-01

    Full Text Available The objective of this study was to pursue the techniques involving the screening of the human antibody Fab fragment against hepatitis B virus surface antigen (HBsAg and the construction of its disulfide-stabilized Fv fragment (dsFv. The phage antibody Fab fragments against HBsAg were screened from the human combinatorial immunoglobulin library. Sequence analysis revealed that its heavy chain gene was complete, but the light chain gene was lost. To improve the affinity of the antibody by chain shuffling, a human antibody light chain gene repertoire was generated by reverse transcriptase-polymerase chain reaction (RT-PCR from the human peripheral blood lymphocytes. A phage antibody sub-library was then constructed by inserting the light chain gene repertoire into the phagmid that contained the Fd gene. Five clones with appreciably higher absorbance than that of the original clone were obtained, which indicated that the affinity of the light chain-shuffled phage antibodies was improved. Then, the mutated genes of dsFv against HBsAg were constructed by using PCR-based point mutagenesis method. Purified VH and VL proteins were folded into a 25-kDa protein, designated as anti-HBsAg dsFv. ELISA and competition ELISA revealed that the dsFv maintained the specificity of the Fab by binding to HBsAg, even through with a lower binding activity. These results have facilitated the undertaking of further functional analyses of the constructed dsFv, and may therefore provide an improved technique for the production and application of dsFvs against HBsAg.

  6. The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation.

    Science.gov (United States)

    Silva, John-Paul; Vetterlein, Olivia; Jose, Joby; Peters, Shirley; Kirby, Hishani

    2015-02-27

    Human immunoglobulin G isotype 4 (IgG4) antibodies (Abs) are potential candidates for immunotherapy when reduced effector functions are desirable. IgG4 Abs are dynamic molecules able to undergo a process known as Fab arm exchange (FAE). This results in functionally monovalent, bispecific antibodies (bsAbs) with unknown specificity and hence, potentially, reduced therapeutic efficacy. IgG4 FAE is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 Abs. To date, the mechanism of FAE is not entirely understood and studies measuring FAE in ex vivo matrices have been hampered by the presence and abundance of endogenous IgG4 wild-type (WT) Abs. Using representative humanized WT IgG4 monoclonal Abs, namely, anti-IL-6 and anti-TNF, and a core-hinge stabilized serine 228 to proline (S228P) anti-IL-6 IgG4 mutant, it is demonstrated for the first time how anti-IgG4 affinity chromatography can be used to prepare physiologically relevant matrices for assessing and quantifying FAE. A novel method for quantifying FAE using a single MSD immunoassay is also reported and confirms previous findings that, dependent on the redox conditions, the S228P mutation can prevent IgG4 FAE to undetectable levels both in vitro and in vivo. Together, the findings and novel methodologies will allow researchers to monitor and quantify FAE of their own IgG4 molecules in physiologically relevant matrices.

  7. cDNA sequence and Fab crystal structure of HL4E10, a hamster IgG lambda light chain antibody stimulatory for γδ T cells.

    Directory of Open Access Journals (Sweden)

    Petra Verdino

    Full Text Available Hamsters are widely used to generate monoclonal antibodies against mouse, rat, and human antigens, but sequence and structural information for hamster immunoglobulins is sparse. To our knowledge, only three hamster IgG sequences have been published, all of which use kappa light chains, and no three-dimensional structure of a hamster antibody has been reported. We generated antibody HL4E10 as a probe to identify novel costimulatory molecules on the surface of γδ T cells which lack the traditional αβ T cell co-receptors CD4, CD8, and the costimulatory molecule CD28. HL4E10 binding to γδ T cell, surface-expressed, Junctional Adhesion Molecule-Like (JAML protein leads to potent costimulation via activation of MAP kinase pathways and cytokine production, resulting in cell proliferation. The cDNA sequence of HL4E10 is the first example of a hamster lambda light chain and only the second known complete hamster heavy chain sequence. The crystal structure of the HL4E10 Fab at 2.95 Å resolution reveals a rigid combining site with pockets faceted by solvent-exposed tyrosine residues, which are structurally optimized for JAML binding. The characterization of HL4E10 thus comprises a valuable addition to the spartan database of hamster immunoglobulin genes and structures. As the HL4E10 antibody is uniquely costimulatory for γδ T cells, humanized versions thereof may be of clinical relevance in treating γδ T cell dysfunction-associated diseases, such as chronic non-healing wounds and cancer.

  8. cDNA sequence and Fab crystal structure of HL4E10, a hamster IgG lambda light chain antibody stimulatory for γδ T cells.

    Science.gov (United States)

    Verdino, Petra; Witherden, Deborah A; Podshivalova, Katie; Rieder, Stephanie E; Havran, Wendy L; Wilson, Ian A

    2011-01-01

    Hamsters are widely used to generate monoclonal antibodies against mouse, rat, and human antigens, but sequence and structural information for hamster immunoglobulins is sparse. To our knowledge, only three hamster IgG sequences have been published, all of which use kappa light chains, and no three-dimensional structure of a hamster antibody has been reported. We generated antibody HL4E10 as a probe to identify novel costimulatory molecules on the surface of γδ T cells which lack the traditional αβ T cell co-receptors CD4, CD8, and the costimulatory molecule CD28. HL4E10 binding to γδ T cell, surface-expressed, Junctional Adhesion Molecule-Like (JAML) protein leads to potent costimulation via activation of MAP kinase pathways and cytokine production, resulting in cell proliferation. The cDNA sequence of HL4E10 is the first example of a hamster lambda light chain and only the second known complete hamster heavy chain sequence. The crystal structure of the HL4E10 Fab at 2.95 Å resolution reveals a rigid combining site with pockets faceted by solvent-exposed tyrosine residues, which are structurally optimized for JAML binding. The characterization of HL4E10 thus comprises a valuable addition to the spartan database of hamster immunoglobulin genes and structures. As the HL4E10 antibody is uniquely costimulatory for γδ T cells, humanized versions thereof may be of clinical relevance in treating γδ T cell dysfunction-associated diseases, such as chronic non-healing wounds and cancer.

  9. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  10. A monoclonal antibody toolkit for C. elegans.

    Directory of Open Access Journals (Sweden)

    Gayla Hadwiger

    Full Text Available BACKGROUND: Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. METHODOLOGY/PRINCIPAL FINDINGS: We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1, a component of synaptic vesicles; to Rim (UNC-10, a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1, a component of centrosomes; to CENP-C (HCP-4, which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2, a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5; to the nuclear envelope protein lamin (LMN-1; to EHD1 (RME-1 a marker for recycling endosomes; to caveolin (CAV-1, a marker for caveolae; to the cytochrome P450 (CYP-33E1, a resident of the endoplasmic reticulum; to beta-1,3-glucuronyltransferase (SQV-8 that labels the Golgi; to a chaperonin (HSP-60 targeted to mitochondria; to LAMP (LMP-1, a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7 of the 26S proteasome; to dynamin (DYN-1 and to the alpha-subunit of the adaptor complex 2 (APA-2 as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1 and cadherin (HMR-1, both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1, which localized to apical membranes; to an ERBIN family protein (LET-413 which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7 which localizes to the plasma membrane at cell-cell contacts. In addition to

  11. Construction of a human na(i)ve Fab library and screening of phage antibody against arginine vasopressin%人源Fab噬菌体抗体库的构建与抗精氨酸加压素抗体的筛选

    Institute of Scientific and Technical Information of China (English)

    董越华; 胡占东; 公倩; 李常颖; 畅继武; 朱铁虹

    2012-01-01

    Objective: To construct a naive human Fab phage display library, screen and identify arginine vasopressin Fab antibody from the library. Methods: Total RNA was extracted from peripheral blood lymphocytes of 18 healthy donors, and the light chain and heavy chain Fd genes were amplified by RT-PCR. Then the amplification products were sequentially cloned into phagemid vector pComb3XSS to construct a human Fab phage antibody library. The insertion of the light chain or heavy chain Fd genes were identified by cutting with endonucleases and PCR amplification. Arginine vasopressin was used as target antigen to pan the original Fab antibody library. After five rounds of panning were carried out,fifty randomly selected clones were assayed by phage-ELISA analysis. The positive clones were analyzed by DNA sequencing. Results: A large human Fab phage antibody library consisting of 2.4 × 108 members was successfully constructed. After having been panned by AVP,we obtained six positive clones which had specificity and binding reactivity towards AVP. The C4 clone was analyzed and showed that its heavy chain belonged to IgG subvariety and its light chain to X family. Conclusion : We successfully constructed a large human Fab phage antibody library and isolated the specific human anti-AVP Fab antibodies,which provided a solid foundation for the establishment of rapid detection method of arginine vasopressin in future research.%目的:构建人源天然Fab噬菌体抗体库,筛选抗精氨酸加压素特异性抗体并进行初步鉴定.方法:从18位健康成人的外周血淋巴细胞,提取总RNA.利用RT-PCR扩增人Fab抗体基因片段,将其克隆至噬菌粒载体pComb3XSS内,构建人源天然Fab噬菌体抗体库.以固相化的精氨酸加压素为靶抗原对抗体库进行五轮筛选后,随机挑取50个单克隆进行phage-ELISA检测,阳性克隆行DNA测序分析.结果:成功构建库容为2.4×108的噬菌体抗体库,从中筛选到6株阳性克隆能够与精

  12. Generation and characterization of monoclonal antibodies specific to Coenzyme A

    Directory of Open Access Journals (Sweden)

    Malanchuk O. M.

    2015-06-01

    Full Text Available Aim. Generation of monoclonal antibodies specific to Coenzyme A. Methods. Hybridoma technique. KLH carrier protein conjugated with CoA was used for immunization. Screening of positive clones was performed with BSA conjugated to CoA. Results. Monoclonal antibody that specifically recognizes CoA and CoA derivatives, but not its precursors ATP and cysteine has been generated. Conclusion. In this study, we describe for the first time the production and characterization of monoclonal antibodies against CoA. The monoclonal antibody 1F10 was shown to recognize specifically CoA in Western blotting, ELISA and immunoprecipitation. These properties make this antiboby a particularly valuable reagent for elucidating CoA function in health and disease.

  13. Generation of monoclonal antibodies to native active human glycosyltransferases

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Bennett, Eric Paul; Clausen, Henrik;

    2013-01-01

    using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating...

  14. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.;

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  15. Crystallization and X-ray diffraction analysis of the β-ketoacyl-acyl carrier protein reductase FabG from Aquifex aeolicus VF5

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Qilong [Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Duax, William L.; Umland, Timothy C., E-mail: umland@hwi.buffalo.edu [Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY (United States)

    2007-02-01

    FabG from A. aeolicus, a putative component of fatty-acid synthase II, has been overexpressed, purified and crystallized. Diffraction data have been collected to 1.8 Å resolution. The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 Å and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative β-ketoacyl-acyl carrier protein reductase. Structure–function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family.

  16. Absorbed Doses and Risk Estimates of (211)At-MX35 F(ab')2 in Intraperitoneal Therapy of Ovarian Cancer Patients

    DEFF Research Database (Denmark)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    2015-01-01

    100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. CONCLUSION: Intraperitoneal (211)At-MX35 F(ab')2 treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective......, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective...... dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation...

  17. Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle.

    Science.gov (United States)

    Vick, Jacob E; Clomburg, James M; Blankschien, Matthew D; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-02-01

    We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the -oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782).While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a -oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled deltaffabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli.

  18. Initial volume of a drug before it reaches the volume of distribution: pharmacokinetics of F(ab')2 antivenoms and other drugs.

    Science.gov (United States)

    Sevcik, Carlos; Salazar, Victor; Díaz, Patricia; D'Suze, Gina

    2007-10-01

    Fast disappearance of F(ab')2 antivenoms from the plasma compartment [Sevcik et al., 2004. Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G's <