WorldWideScience

Sample records for monoclinic pseudowollastonite-type structure

  1. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite

    Directory of Open Access Journals (Sweden)

    Reséndiz-Hernández, P. J.

    2014-10-01

    Full Text Available Silica aerogel and hybrid silica aerogel/pseudowollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS using also methanol (MeOH and pseudowollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF for 7 and 14 days. The hybrid silica aerogel/pseudowollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity.Se sintetizaron aerogel de sílice y aerogel híbrido de sílice/partículas de pseudowollastonita por hidrólisis controlada de tetraetoxisilano (TEOS usando metanol (MeOH y partículas de pseudowollastonita. Los geles obtenidos se secaron utilizando un novedoso proceso basado en una presión de secado ambiental. Hexano y hexametil-disilazano fueron los solventes usados para modificar químicamente la superficie. Para evaluar la bioactividad, los aerogeles con y sin partículas de pseudowollastonita se sumergieron en un fluido fisiológico simulado (SBF por 7 y 14 días. El aerogel híbrido de sílice/partículas de pseudowollastonita mostró más alta bioactividad que la observada por el aerogel solo. Sin embargo, en ambos casos, se

  2. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    International Nuclear Information System (INIS)

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  3. Electron diffraction and resistivity measurements on the one-dimensional orthorhombic and monoclinic structures of TaS3

    International Nuclear Information System (INIS)

    Roucau, C.; Ayroles, R.; Monceau, P.

    1980-01-01

    Electron diffraction patterns are obtained of the orthorhombic and monoclinic structures of TaS 3 . For the orthorhombic structure one set of superlattice spots is observed at (l+-0.5)a*, (m+-0.125)b*, (n+-0.25)c* below 210 K. For the monoclinic structure two sets of superlattice spots are observed, the first one at la*, (m+-0.253)b*, nc* below 240 K, the second one at (l+-0.5)a*, (m+-0.245)b*, (n+-0.5)c* below 160 K. Diffuse scattering lines are present for the two structures. Resistivity measurements are performed on crystals with the two structures which show strong increase of the resistivity indicating metal-semiconducting transitions at the same temperatures where the superlattice spots appear. These transitions are interpreted as successive Peierls transitions on the different types of chains of TaS 3 . Also electron diffraction patterns are shown of NbSe 3 at very low temperatures where the two charge density waves that occur at 145 and 59 K are formed. A comparison is given between TaS 3 and NbSe 3 . (author)

  4. Structural, mechanical, and electronic properties of monoclinic N{sub 2}H{sub 5}N{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Jun, Liu; Fu-Sheng, Liu, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu (China); Zheng-Tang, Liu [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, (China)

    2015-08-15

    Structural, elastic, mechanical, and electronic properties of monoclinic N{sub 2}H{sub 5}N{sub 3} at zero and high pressure have been investigated using the plane-wave ultrasoft pseudopotential method within the density-functional theory (DFT). The pressure dependences of structural parameters, elastic constants, mechanical properties, band gaps, and density of states of monoclinic N{sub 2}H{sub 5}N{sub 3} have been calculated and discussed. The obtained results show that monoclinic N{sub 2}H{sub 5}N{sub 3} is unstable at pressures exceeding the value 126.1 GPa. The ratio of B/G and the Cauchy’s pressure indicate that monoclinic N{sub 2}H{sub 5}N{sub 3} behaves in ductile nature with pressure ranging from 0 to 200 GPa. (author)

  5. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  6. Magnetic ordering in the monoclinic structure of Nd5Si1.45Ge2.55 and Pr5Si1.5Ge2.5 studied by means of neutron powder diffraction

    International Nuclear Information System (INIS)

    Magen, C; Ritter, C; Morellon, L; Algarabel, P A; Ibarra, M R

    2004-01-01

    The compounds Nd 5 Si 1.45 Ge 2.55 and Pr 5 Si 1.5 Ge 2.5 have been investigated by means of magnetization measurements and neutron powder diffraction techniques. These alloys present a room-temperature monoclinic Gd 5 Si 2 Ge 2 -type crystallographic structure and, on cooling, both systems order ferromagnetically, at T C = 56 and 32 K, respectively, from a high-temperature paramagnetic to a low-temperature complex canted ferromagnetic state. The monoclinic crystallographic structure remains unchanged upon cooling down to 4 K, demonstrating the existence of a monoclinic ferromagnetic phase, and the possibility of a full decoupling of magnetic and crystallographic degrees of freedom in the 5:4 lanthanide intermetallic compounds

  7. Crystallite size effect on the monoclinic deformation of the bcc crystal structure of chromium

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.; Wardecki, D.; Sławiński, W. A.; Playford, H. Y.; Hempelmann, R.; Bukowski, M.

    2018-02-01

    The modulated spin density wave magnetic orderings observed in chromium suggests that the crystal structure of chromium cannot be described by the cubic space group Im 3 bar m. Our experimental studies of polycrystalline and nanocrystalline chromium by synchrotron radiation (SR) and neutron powder diffraction show a hkl-dependent Bragg peak broadening which can be interpreted by the low-symmetry monoclinic space group P21 / n instead of the high symmetry cubic space group Im 3 bar m. The monoclinic angle is βm = 90.05(1)° and 90.29(1)° for polycrystalline Cr and nanocrystalline Cr, respectively. The relative monoclinic distortion observed in chromium is 5 times larger than those reported for several oxides: BiFeO3, α-Fe2O3, Cr2O3 and calcite. The symmetry of the magnetic transverse spin density wave (TSDW) and the longitudinal spin density wave (LSDW) observed in Cr are described by using the superspace groups P21 / n(0 β 0) 00 and P 21‧ /n‧(0 β 0) 00, respectively. These superspace groups describe both the magnetic modulations and the atomic position modulations reported in the literature. The monoclinic symmetry of chromium is a robust effect which is observed in the paramagnetic as well as in the TSDW and LSDW phases.

  8. Order parameters for symmetry-breaking structural transitions: The tetragonal-monoclinic transition in ZrO2

    Science.gov (United States)

    Thomas, John C.; Van der Ven, Anton

    2017-10-01

    Group/subgroup structural phase transitions are exploited in a wide variety of technologies, including those that rely on shape-memory behavior and on transformation toughening. Here, we introduce an approach to identify symmetry-adapted strain and shuffle order parameters for any group/subgroup structural transition between a high-symmetry parent phase and its symmetrically equivalent low-symmetry product phases. We show that symmetry-adapted atomic shuffle order parameters can be determined by the diagonalization of an orbital covariance matrix, formed by taking the covariance among the atomic displacement vectors of all symmetrically equivalent product phase variants. We use this approach to analyze the technologically important tetragonal to monoclinic structural phase transformation of ZrO2. We explore the energy landscapes, as calculated with density functional theory, along distinct paths that connect m ZrO2 to t ZrO2 and to other m ZrO2 variants. The calculations indicate favorable pairs of variants and reveal intermediate structures likely to exist at coherent twin boundaries and having relatively low deformation energy. We identify crystallographic features of the monoclinic ZrO2 variant that make it very sensitive to shape changing strains.

  9. Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature.

    Science.gov (United States)

    Kim, Seungwook; Lee, Ju-Hyuck; Lee, Jaeyeon; Kim, Sang-Woo; Kim, Myung Hwa; Park, Sungnam; Chung, Haegeun; Kim, Yong-Il; Kim, Woong

    2013-01-09

    We report the synthesis of KNbO(3) nanowires (NWs) with a monoclinic phase, a phase not observed in bulk KNbO(3) materials. The monoclinic NWs can be synthesized via a hydrothermal method using metallic Nb as a precursor. The NWs are metastable, and thermal treatment at ∼450 °C changed the monoclinic phase into the orthorhombic phase, which is the most stable phase of KNbO(3) at room temperature. Furthermore, we fabricated energy-harvesting nanogenerators by vertically aligning the NWs on SrTiO(3) substrates. The monoclinic NWs showed significantly better energy conversion characteristics than orthorhombic NWs. Moreover, the frequency-doubling efficiency of the monoclinic NWs was ∼3 times higher than that of orthorhombic NWs. This work may contribute to the synthesis of materials with new crystalline structures and hence improve the properties of the materials for various applications.

  10. A monoclinic polymorph of theophylline

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2011-12-01

    Full Text Available A monoclinic polymorph of theophylline, C7H8N4O2, has been obtained from a chloroform/methanol mixture by evaporation under ambient conditions. The new polymorph crystallizes with two molecules in the asymmetric unit. The structure features intermolecular N—H...O hydrogen bonds, resulting in the formation of dimers between two crystallographically different molecules; each molecule acts as both donor and acceptor.

  11. Crystal structure of a new monoclinic polymorph of N-(4-methylphenyl-3-nitropyridin-2-amine

    Directory of Open Access Journals (Sweden)

    Aina Mardia Akhmad Aznan

    2014-08-01

    Full Text Available The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z′ = 4 of the previously reported monoclinic (P21/c, with Z′ = 2 form [Akhmad Aznan et al. (2010. Acta Cryst. E66, o2400]. Four independent molecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intramolecular amine–nitro N—H...O hydrogen bond. The differences between molecules relate to the dihedral angles between the rings which range from 2.92 (19 to 26.24 (19°. The geometry-optimized structure [B3LYP level of theory and 6–311 g+(d,p basis set] has the same features except that the entire molecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C—H...O, C—H...π, nitro-N—O...π and π–π interactions [inter-centroid distances = 3.649 (2–3.916 (2 Å].

  12. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  13. Structural modifications of ultra-high molecular weight polyethylene (UHMWPE) processed in attritor type mill

    International Nuclear Information System (INIS)

    Gabriel, Melina C.; Carvalho, Benjamim de M.; Pinheiro, Luis A.; Cintho, Osvaldo M.; Capocchi, Jose D.T.; Kubaski, Evaldo T.

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a polyethylene that has a high melt viscosity, hence its processing becomes very difficult. High-energy mechanical milling provides physical and chemical changes in polymers that have been studied recently. In order to study these changes in UHMWPE, powder of this polymer was mechanical milled in attritor type mill with a ball-to-powder weight ratio of 40:1 for 8 hours, varying the rotation speed: 200, 300, 400, 500 e 600 rpm. The polymer was characterized by scanning electron microscopy (SEM) and xray diffraction (XRD). From the XRD results it was noted that as the rotation speed increased the monoclinic phase also increased up to 500 rpm. For 600 rpm, the amount of monoclinic phase apparently decreased. At this rotation speed, the deformation rate probably increased the process temperature, allowing the monoclinic phase to return to its initial structural orthorhombic form. (author)

  14. A first principles study of structural stability, electronic structure and mechanical properties of beryllium alanate BeAlH{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Priyanga, G. Sudha; Cinthia, A. Jemmy [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu 628003 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203 (India)

    2015-06-24

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of BeAlH{sub 5} for monoclinic crystal structures with two different types of space group namely P2{sub 1} and C{sub 2}/c. Among the considered structures monoclinic (P2{sub 1}) phase is found to be the most stable at ambient condition. The structural phase transition from monoclinic (P2{sub 1}) to monoclinic (C{sub 2}/c) phase is observed in BeAlH{sub 5}. The electronic structure reveals that this compound is insulator. The calculated elastic constants indicate that this material is mechanically stable at ambient condition.

  15. Evidence for photo-induced monoclinic metallic VO2 under high pressure

    International Nuclear Information System (INIS)

    Hsieh, Wen-Pin; Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-01

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M 1 )-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M 1 ) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions

  16. Crystal structure of a new monoclinic polymorph of N-(4-methyl-phen-yl)-3-nitro-pyridin-2-amine.

    Science.gov (United States)

    Aznan, Aina Mardia Akhmad; Abdullah, Zanariah; Lee, Vannajan Sanghiran; Tiekink, Edward R T

    2014-08-01

    The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z' = 4) of the previously reported monoclinic (P21/c, with Z' = 2) form [Akhmad Aznan et al. (2010 ▶). Acta Cryst. E66, o2400]. Four independent mol-ecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intra-molecular amine-nitro N-H⋯O hydrogen bond. The differences between mol-ecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6-311 g+(d,p) basis set] has the same features except that the entire mol-ecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C-H⋯O, C-H⋯π, nitro-N-O⋯π and π-π inter-actions [inter-centroid distances = 3.649 (2)-3.916 (2) Å].

  17. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    Science.gov (United States)

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  18. Monoclinic mixed crystals of halogenomethanes CBr4-nCln (n = 0, ..., 4)

    International Nuclear Information System (INIS)

    Negrier, Philippe; Tamarit, Josep Ll.; Barrio, Maria; Pardo, Luis C.; Mondieig, Denise

    2007-01-01

    On the basis of the isostructural relationship between the low-temperature monoclinic (C2/c, Z = 32) phases of the halogenomethane CBr 4-n Cl n (n = 0, ..., 4), a set of mixed crystals has been analysed by means of high-resolution X-ray powder diffraction. It is shown that the monoclinic structure of pure and mixed crystals does not depend of the particularities of the dipolar (or dipole induced) interactions of the pure compound, neither on the composition of the mixed crystal, but on the relative content of the halogen atoms which controls the size of the molecule or the average molecule for the case of mixed crystals

  19. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Trigo, Mariano [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reis, David A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Photon Science and Applied Physics, Stanford University, Stanford, California 94305 (United States); Andrea Artioli, Gianluca; Malavasi, Lorenzo [Dipartimento di Chimica, Sezione di Chimica Fisica, INSTM (UdR Pavia), Università di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  20. Crystalline and magnetic ordering in the monoclinic phase of the layered perovskite PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Achiwa, N.

    1994-01-01

    A single-crystal elastic neutron scattering experiment between 4.2 and 115 K has been performed on the low-temperature monoclinic zeta phase of the layered perovskite bis(propylammonium) manganesetetrachloride (PAMC). The crystalline structure is commensurately modulated, with a modulation vector...

  1. KINETIC STUDY OF SELECTIVE GAS-PHASE OXIDATION OF ISOPROPANOL TO ACETONE USING MONOCLINIC ZRO2 AS A CATALYST

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2015-08-01

    Full Text Available Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68% and selectivity (100% for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.

  2. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO 2 Nanowires

    KAUST Repository

    Asayesh-Ardakani, Hasti

    2015-10-12

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WVO nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  3. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO 2 Nanowires

    KAUST Repository

    Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M.; Zhu, Yihan; Phillips, Patrick J.; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke Bin; Klie, Robert F.; Banerjee, Sarbajit; Odegard, Gregory M.; Shahbazian-Yassar, Reza

    2015-01-01

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WVO nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  4. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  5. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires.

    Science.gov (United States)

    Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M; Zhu, Yihan; Phillips, Patrick J; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke-Bin; Klie, Robert F; Banerjee, Sarbajit; Odegard, Gregory M; Shahbazian-Yassar, Reza

    2015-11-11

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  6. Room Temperature Monoclinic Phase in BaTiO3 Single Crystals

    Science.gov (United States)

    Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman

    2010-03-01

    BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.

  7. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  8. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  9. A new molybdenum trioxide hydrate MoO3.1/3H2O and a new monoclinic form of MoO3

    International Nuclear Information System (INIS)

    Harb, F.; Gerand, B.; Nowogrocki, G.; Figlarz, M.

    1986-01-01

    A new hydrate of molybdenum trioxide MoO 3 .1/3H 2 O has been obtained by hydrothermal treatment at 110 0 C of either aqueous suspensions of MoO 3 .2H 2 O or aqueous molybdic acid solutions. The hydrate crystallizes in the orthorhombic system, lattice parameters are given; a structural model is proposed by comparison with the isostructural WO 3 .1/3H 2 O phase. The dehydration of MoO 3 .1/3H 2 O leads to a new anhydrous molybdenum trioxide, monoclinic, the structure of which is of ReO 3 type [fr

  10. Novel monoclinic zirconolite in Bi2O3–CuO–Ta2O5 ternary system: Phase equilibria, structural and electrical properties

    International Nuclear Information System (INIS)

    Tan, K.B.; Chon, M.P.; Khaw, C.C.; Zainal, Z.; Taufiq Yap, Y.H.; Tan, P.Y.

    2014-01-01

    Highlights: • Novel BCT monoclinic zirconolite phase was prepared through solid state reaction. • Comprehensive study of reaction mechanism was performed by careful firing control. • Qualitative structural and phase analyses were conducted. • Electrical response in broad range of temperature and frequency was investigated. - Abstract: Synthesis of novel monoclinic zirconolite, Bi 1.92 Cu 0.08 (Cu 0.3 Ta 0.7 ) 2 O 7.06 (β-BCT) using solid state reaction had been finalised at the firing temperature of 900 °C over 24 h. The X–ray diffraction pattern of β-BCT was fully indexed on a monoclinic symmetry, space group, C2/c with lattice constants, a = 13.1052 (8), b = 7.6749 (5), c = 12.162 (6), α = γ = 90° and β = 101.32° (1), respectively. The reaction mechanism study indicated phase formation was greatly influenced by the reaction between intermediate bismuth tantalate binary phases and CuO at elevated temperatures. β-BCT was thermally stable up to a temperature of 900 °C and contained spherulite grains with sizes ranging from 1 to 14 μm. Electrical properties of this material were characterised over a broad temperature range covering temperatures from 10 K to 874 K. At the temperature of 304 K, two semicircles were discernible in complex Cole–Cole plot showing an insulating grain boundary with C gb = 6.63 × 10 −9 F cm −1 and a bulk response capacitance, C b = 6.74 × 10 −12 F cm −1 . The Power law frequency-dependent ac conductivity of β-BCT was apparent in three frequency regimes; a low–frequency plateau regime, a high-frequency plateau regime and a dispersive regime taking place in the temperature range of 220–576 K. The frequency-dependent ac conductivity of β-BCT with increasing temperature was attributed to the thermal activated electrical conduction mechanism within the structure

  11. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  12. Infrared studies of the monoclinic-tetragonal phase transition in Pb(Zr,Ti)O3 ceramics

    International Nuclear Information System (INIS)

    Guarany, C A; Pelaio, L H Z; Araujo, E B; Yukimitu, K; Moraes, J C S; Eiras, J A

    2003-01-01

    Recently, the observation of a new monoclinic phase in the PbZr 1-x Ti x O 3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic → tetragonal phase transition in PbZr 0.50 Ti 0.50 O 3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm -1 . The four possible ν 1 -stretching modes (Ti-O and Zr-O stretch) in the BO 6 octahedron in the ABO 3 structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode ν 1 -(Zr-O) remains practically unaltered, while both intermediate ν 1 -(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency ν 1 -(Ti-O) and ν 1 -(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic → tetragonal phase transition in PbZr 0.50 Ti 0.50 O 3 ceramics

  13. Nanoscale monoclinic domains in epitaxial SrRuO3 thin films deposited by pulsed laser deposition

    Science.gov (United States)

    Ghica, C.; Negrea, R. F.; Nistor, L. C.; Chirila, C. F.; Pintilie, L.

    2014-07-01

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO3 layers used as bottom electrodes in multiferroic coatings onto SrTiO3 substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO3 thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO3 orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence of structurally disordered nanometric domains in the SrRuO3 bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (-4% ÷ -5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO6 octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO3 structure.

  14. Some properties of tetravalent actinide phosphates of M1M42(PO4)3 type and peculiarities of their structure

    International Nuclear Information System (INIS)

    Burnaeva, A.A.; Volkov, Yu.F.; Kryukova, A.I.; Skiba, O.V.; Spiryakov, V.I.; Korshunov, I.A.; Samojlova, T.K.

    1987-01-01

    Generalizing analysis of data on crystallographic and IR spectral properties of double phosphates of actinide and alkali elements of M (1) M 2 (4) (PO 4 ) 3 type is conducted. It is shown, that Li - , Na - , K - , Rb - , CsTh 2 (PO 4 ) 3 , Li - , Na - , KU 2 (PO 4 ) 3 , NaNp 2 (PO 4 ) 3 compounds crystallize in a monoclinic type structure and form an isostructural phosphate series. It is ascertained, that in rubidium-uranium, uranium-cesium systems double salt formation is not observed. Plutonium-sodium phosphate has a rhombic-type structure, which points out to the existence of a morphotropic transition in NaM 2 4 (PO 4 ) 3 phosphate series at the Np-Pu boundary. Some regularities of structure and effect of M 1 and M 4 nature on the double phosphate structure are revealed

  15. A sodium gadolinium phosphate with two different types of tunnel structure: Synthesis, crystal structure, and optical properties of Na3GdP2O8

    International Nuclear Information System (INIS)

    Fang, M.; Cheng, W.-D.; Zhang, H.; Zhao, D.; Zhang, W.-L.; Yang, S.-L.

    2008-01-01

    A sodium gadolinium phosphate crystal, Na 3 GdP 2 O 8 , has been synthesized by a high-temperature solution reaction, and it exhibits a new structural family of the alkali-metal-rare-earth phosphate system. Although many compounds with formula M 3 LnP 2 O 8 have been reported, but they were shown to be orthorhombic [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] rather than monoclinic as shown in this paper. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group C2/c and the cell parameters: a=27.55 (25), b=5.312 (4), c=13.935(11) A, β=91.30(1) o , and V=2038.80 A 3 , Z=4. Its structure features a three-dimensional GdP 2 O 8 3- anionic framework with two different types of interesting tunnels at where Na atoms are located by different manners. The framework is constructed by Gd polyhedra and isolated PO 4 tetrahedra. It is different from the structure of K 3 NdP 2 O 8 [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] with space group P2 1 /m that shows only one type of tunnel. The emission spectrum and the absorption spectrum of the compound have been investigated. Additionally, the calculations of band structure, density of states, dielectric constants, and refractive indexes have been also performed with the density functional theory method. The obtained results tend to support the experimental data. - Graphical abstract: Projection of the structure of Na 3 GdP 2 O 8 with a unit cell edge along the b-axis. The Na-O bonds are omitted for clarity

  16. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for ... Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients. Proc. Indian Acad. Sci. ...... In contrast, for C < 0, the angle of reflec- tion is less than the angle of ...

  17. Nucleation in stress-induced tetragonal-monoclinic transformation of constrained zirconia

    International Nuclear Information System (INIS)

    Chan, S.K.

    1992-08-01

    A theory for stress-induced tetragonal→monoclinic transformation of constrained zirconia is presented based on the assumption that when forcibly strained to a regime of absolute instability where the free energy density of the tetragonal phase has a negative curvature, the constrained tetragonal zirconia becomes unstable with respect to the development of a modulated strain pattern that will evolve into a band of twin monoclinic domains. The temperature range for such an instability, the critical size of the inclusion, the corresponding critical strain, and the periodicity of the modulation are derived in terms of parameters that can be related to the elastic stiffness coefficients of various orders of the inclusion and the shear modulus of the host matrix. An entirely different mechanism is suggested for the reverse monoclinic→tetragonal transformation because the monoclinic phase is metastable when the extrinsic stress is removed. Estimates for the parameters are inferred from a variety of experimental data for pure zirconia and the numerical values for the predicted physical quantities are obtained

  18. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Christopher B. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herbrych, Jacek W. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, Adriana [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a TS higher than the temperature TN where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ12 between the monoclinic lattice strain and an orbital-nematic order parameter with B2g symmetry. Monte Carlo simulations show that with increasing ˜λ12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.

  19. The monoclinic superstructure of the M2Pt6Al15 series (M=Ca, Sc, Y, La, Lu)

    International Nuclear Information System (INIS)

    Radzieowski, Mathis; Stegemann, Frank; Hoffmann, Rolf-Dieter; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The five ternary intermetallic compounds M 2 Pt 6 Al 15 (M=Ca, Sc, Y, La, Lu) were prepared from the elements by arc-melting. The crystal structure was determined via single crystal X-ray diffraction. The title compounds crystallize in a superstructure of the RE 0.67 Pt 2 Al 5 type structure (P6 3 /mmc) in the monoclinic crystal system with space group P12 1 /m1 (Sc 2 Pt 6 Al 15 : a=734.19(2), b=1628.96(10), c=734.19(2) pm, β=119.999(3) ; wR=0.0356, 3034 F 2 values, 68 variables). The superstructure can be derived by the superspace formalism using (3+2)D or (3+1)D interpretations of the diffraction data. The structural relation to the subcell structure is discussed on the basis of a group-subgroup scheme. In the crystal structure strongly bonded [Pt 2 Al 4 ] δ- slabs are alternatingly stacked with ordered layers containing M atoms and Al 3 triangles.

  20. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe4O7.0: Magnetism and transport

    International Nuclear Information System (INIS)

    Duffort, V.; Sarkar, T.; Caignaert, V.; Pralong, V.; Raveau, B.; Avdeev, M.; Cervellino, A.; Waerenborgh, J.C.; Tsipis, E.V.

    2013-01-01

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe 4 O 7.0 by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T S =180 K, a magnetic transition is observed below T N =95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k 1 =(0,0,½), shows that one iron Fe2 exhibits a larger magnetic moment than the three others, suggesting a possible charge ordering according to the formula YBaFe 3+ Fe 3 2+ O 7.0 . The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T S =180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe 4 O 7 . Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe 4 O 7 were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K

  1. Pressure induced structural phase transition in SnS—An ab initio study

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The structural behaviour of SnS under pressure has been investigated by first principle density functional ... tural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the ... is achieved by performing the electronic structure and total energy calculation ...

  2. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  3. Structural, electronic and optical properties of monoclinic Na2Ti3O7 from density functional theory calculations: A comparison with XRD and optical absorption measurements

    International Nuclear Information System (INIS)

    Araújo-Filho, Adailton A.; Silva, Fábio L.R.; Righi, Ariete; Silva, Mauricélio B. da; Silva, Bruno P.; Caetano, Ewerton W.S.; Freire, Valder N.

    2017-01-01

    Powder samples of bulk monoclinic sodium trititanate Na 2 Ti 3 O 7 were prepared carefully by solid state reaction, and its monoclinic P2 1 /m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as E g =3.51±0.01 eV employing UV–Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA, respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=−0.06 Å, Δb=0.02 Å, and Δc=−0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na 2 Ti 3 O 7 optical absorption and complex dielectric function. - Graphical abstract: Monoclinic sodium trititanate Na2Ti3O7 was characterized by experiment and dispersion-corrected DFT calculations. An indirect gap of 3.5 eV is predicted, with heavy electrons and anisotropic holes ruling its conductivity. - Highlights: • Monoclinic Na2Ti3O7 was characterized by experiment (XRD, SEM, UV–Vis spectroscopy). • DFT GGA+TS optimized geometry and optoelectronic properties were

  4. Novel monoclinic zirconolite in Bi{sub 2}O{sub 3}–CuO–Ta{sub 2}O{sub 5} ternary system: Phase equilibria, structural and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Chon, M.P. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Mechanical and Material Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zainal, Z.; Taufiq Yap, Y.H.; Tan, P.Y. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-04-01

    Highlights: • Novel BCT monoclinic zirconolite phase was prepared through solid state reaction. • Comprehensive study of reaction mechanism was performed by careful firing control. • Qualitative structural and phase analyses were conducted. • Electrical response in broad range of temperature and frequency was investigated. - Abstract: Synthesis of novel monoclinic zirconolite, Bi{sub 1.92}Cu{sub 0.08}(Cu{sub 0.3}Ta{sub 0.7}){sub 2}O{sub 7.06} (β-BCT) using solid state reaction had been finalised at the firing temperature of 900 °C over 24 h. The X–ray diffraction pattern of β-BCT was fully indexed on a monoclinic symmetry, space group, C2/c with lattice constants, a = 13.1052 (8), b = 7.6749 (5), c = 12.162 (6), α = γ = 90° and β = 101.32° (1), respectively. The reaction mechanism study indicated phase formation was greatly influenced by the reaction between intermediate bismuth tantalate binary phases and CuO at elevated temperatures. β-BCT was thermally stable up to a temperature of 900 °C and contained spherulite grains with sizes ranging from 1 to 14 μm. Electrical properties of this material were characterised over a broad temperature range covering temperatures from 10 K to 874 K. At the temperature of 304 K, two semicircles were discernible in complex Cole–Cole plot showing an insulating grain boundary with C{sub gb} = 6.63 × 10{sup −9} F cm{sup −1} and a bulk response capacitance, C{sub b} = 6.74 × 10{sup −12} F cm{sup −1}. The Power law frequency-dependent ac conductivity of β-BCT was apparent in three frequency regimes; a low–frequency plateau regime, a high-frequency plateau regime and a dispersive regime taking place in the temperature range of 220–576 K. The frequency-dependent ac conductivity of β-BCT with increasing temperature was attributed to the thermal activated electrical conduction mechanism within the structure.

  5. 2-(4-Fluorobenzylidenepropanedinitrile: monoclinic polymorph

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Agrody

    2013-04-01

    Full Text Available The title compound, C10H5FN2, is a monoclinic (P21/c polymorph of the previously reported triclinic (P-1 form [Antipin et al. (2003. J. Mol. Struct. 650, 1–20]. The 13 non-H atoms in the title polymorph are almost coplanar (r.m.s. deviation = 0.020 Å; a small twist between the fluorobenzene and dinitrile groups [C—C—C—C torsion angle = 175.49 (16°] is evident in the triclinic polymorph. In the crystal, C—H...N interactions lead to supramolecular layers parallel to (-101; these are connected by C—F...π interactions.

  6. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    Science.gov (United States)

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  7. In situ TEM observation of the growth and decomposition of monoclinic W18O49 nanowires

    International Nuclear Information System (INIS)

    Chen, C L; Mori, H

    2009-01-01

    The growth of monoclinic W 18 O 49 nanowires by heat treatment of a tungsten filament at ∼873 K and the decomposition of these nanowires under 200 keV electron irradiation at ∼1023 K have been investigated using in situ transmission electron microscopy (TEM). In situ TEM observation of the growth confirmed the vapor-solid growth mechanism of the monoclinic W 18 O 49 nanowires. In situ irradiation experiments revealed the formation of metallic bcc tungsten from monoclinic W 18 O 49 nanowires under 200 keV electron irradiation.

  8. Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions

    International Nuclear Information System (INIS)

    Benyagoub, Abdenacer

    2005-01-01

    Recent results demonstrated that defect formation or amorphization are not the only structural changes induced by swift heavy ions in crystalline materials and that under certain circumstances crystalline-to-crystalline phase transitions can also occur. For instance, it was found that both zirconia and hafnia transform from the monoclinic to the tetragonal phase with a kinetics involving a double ion impact process. In order to understand the origin of this ion-beam induced phase transition, the behavior of these twin oxides was analyzed and compared. In fact, the likeness of these materials offered the unique opportunity to impose drastic constraints on the possible models proposed to explain the creation of atomic displacements in the wake of swift heavy ions. This comparison clearly suggests that the thermal spike is the most appropriate process which governs the transition from the monoclinic to the tetragonal phase in zirconia and hafnia

  9. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    International Nuclear Information System (INIS)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong; Chen, Rong

    2013-01-01

    Graphical abstract: Monoclinic BiVO 4 with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: ► BiVO 4 nanostructures were prepared by microwave and ultrasonic wave combined method. ► BiVO 4 nanostructures could be modulated by varying the solvent and pH value. ► Different BiVO 4 nanostructures exhibited different photocatalytic activities. ► The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO 4 ) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO 4 products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO 4 were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO 4 nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO 4 nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  10. SIMS study of oxygen diffusion in monoclinic HfO2

    Science.gov (United States)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  11. Spectroscopic studies of dynamically compacted monoclinic ZrO2

    NARCIS (Netherlands)

    Maczka, M.; Lutz, E.T.G.; Verbeek, H.J.; Oskam, K.; Meijerink, A.; Hanuza, J.; Stuivinga, M.E.C.

    1999-01-01

    The properties of dynamically compacted monoclinic zirconia have been studied by X-ray powder diffraction, IR, Raman, EPR and luminescence spectroscopy. Compaction introduces a large number of defects into the sample, which leads to a broadening of the X-ray lines, and IR and Raman bands. Besides,

  12. Study of the cubic - to - monoclinic transformation in magnesia partially stabilized zirconia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1988-01-01

    The transformation of the cubic phase to the stable monoclinic phase in ZrO 2 : 3%MgO quenched from 1450 0 C to RT has been studied by X-ray diffractometry in order to explain the thermal hysteresis in the electrical conductivity. The monoclinic-to-cubic ratio has been measured for samples annealed in the 500 0 C-1000 0 C temperature range. The results show that the decrease in the cubic phase content is the main responsible for the thermal hysteresis in the electrical conductivity of the magnesia partially stabilized zirconia solid electrolytes. (author) [pt

  13. Structure of bayerite-based lithium-aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry.

    Science.gov (United States)

    Britto, Sylvia; Kamath, P Vishnu

    2009-12-21

    The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.

  14. Crystal structure of CsTb(PO3)4 compound

    International Nuclear Information System (INIS)

    Palkina, K.K.; Maksimova, S.I.; Kuznetsov, V.G.; Chibiskova, N.T.

    1978-01-01

    The X-ray structural study of compounds of the CsLn(PO 3 ) 4 series has been made. Found is the presence of two structural types for CsPr(PO 3 ) 4 (cubic and monoclinic modifications), one type for CsNd(PO 3 ) 4 (cubic modification) and for CsTb(PO 3 ) 4 (monoclinic modification). For the CsTb(PO 3 ) 4 monocrystal the lattice parameters are determined: a=7.032 +- 0.001; b=8.705 +- 0.001; c=9.051 +- 0.001 A; α=90 deg, β=90 deg, γ=100 deg, Z=2, V=545.68 A 3 , dsub(exp)=3.70 g/cm 3 . The structure character is presented as infinite chains of (PO 4 ) tetrahedrons, stretched along the ''C'' period. Tb and Cs atoms are rounded by 8 atoms of oxygen. Tb polyhedron are irregular octaapexes or strongly deformed tetragonal antiprisms. Tb-Tb shortest distance is 6.59 A

  15. Growth kinetics of tetragonal and monoclinic ZrO2 crystallites in 3 mol% yttria partially stabilized ZrO2 (3Y-PSZ) precursor powder

    International Nuclear Information System (INIS)

    Kuo, Chih-Wei; Lee, Kuen-Chan; Yen, Feng-Lin; Shen, Yun-Hwei; Lee, Huey-Er; Wen, Shaw-Bing; Wang, Moo-Chin; Stack, Margaret Mary

    2014-01-01

    Highlights: • The crystalline structures were composed of tetragonal and monoclinic ZrO 2 . • Growth kinetics of t-ZrO 2 in the 3Y-PSZ precursor powder is described as: D te 2 =(4.57±0.55)t 0.12±0.02 exp(-((24.79±0.38)×10 3 )/(RT) ). • Growth kinetics of m-ZrO 2 in the 3Y-PSZ precursor powder is described as: D m 2 =(4.40±1.63)t 0.17±0.08 exp(-((66.47±3.97)×10 3 )/(RT) ). - Abstract: The growth kinetics of tetragonal and monoclinic ZrO 2 crystallites in 3 mol% yttria partially stabilized ZrO 2 (3Y-PSZ) precursor powder has been investigated using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) specific surface area analysis, transmission electron microscopy (TEM) and high resolution TEM (HRTEM). After calcination of the 3Y-PSZ precursor powder between 773 and 1073 K for 2 h, the crystalline structures were composed of tetragonal and monoclinic ZrO 2 as the primary and secondary phases, respectively. When the 3Y-PSZ precursor powder was calcined at 773 K for 2 h, the BET specific surface area was 97.13 m 2 /g, which is equivalent to a particle size of 10.30 nm. The crystallite sizes determined via XRD and BET agreed well, indicating that the powder was virtually non-agglomerated. The growth kinetics of tetragonal and monoclinic ZrO 2 crystallite isothermal growth in the 3Y-PSZ precursor powder are described by: D te 2 =(4.57±0.55)t 0.12±0.02 exp(-((24.79±0.38)×10 3 )/(RT) ) and D m 2 =(4.40±1.63)t 0.17±0.08 exp(-((66.47±3.97)×10 3 )/(RT) ), respectively, for 773K≤T≤1073K. D te and D m denote the crystallite size of tetragonal and monoclinic ZrO 2 at time t and temperature T, respectively

  16. Structural, electronic and optical properties of monoclinic Na{sub 2}Ti{sub 3}O{sub 7} from density functional theory calculations: A comparison with XRD and optical absorption measurements

    Energy Technology Data Exchange (ETDEWEB)

    Araújo-Filho, Adailton A. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Silva, Fábio L.R.; Righi, Ariete [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Silva, Mauricélio B. da; Silva, Bruno P. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Caetano, Ewerton W.S., E-mail: ewcaetano@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Freire, Valder N. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil)

    2017-06-15

    Powder samples of bulk monoclinic sodium trititanate Na{sub 2}Ti{sub 3}O{sub 7} were prepared carefully by solid state reaction, and its monoclinic P2{sub 1}/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as E{sub g}=3.51±0.01 eV employing UV–Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA, respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=−0.06 Å, Δb=0.02 Å, and Δc=−0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na{sub 2}Ti{sub 3}O{sub 7} optical absorption and complex dielectric function. - Graphical abstract: Monoclinic sodium trititanate Na2Ti3O7 was characterized by experiment and dispersion-corrected DFT calculations. An indirect gap of 3.5 eV is predicted, with heavy electrons and anisotropic holes ruling its conductivity. - Highlights: • Monoclinic Na2Ti3O7 was characterized by experiment (XRD, SEM, UV–Vis spectroscopy). • DFT GGA+TS optimized geometry and

  17. The monoclinic polymorph of dimethylarsinic acid

    Directory of Open Access Journals (Sweden)

    Richard Betz

    2011-08-01

    Full Text Available The title compound, C2H7AsO2 or [As(CH32O(OH], is an organic derivative of arsinic acid, and is also known by its trivial name cacodylic acid. In contrast to the first polymorph (triclinic, space group Poverline{1}, Z = 2, the current study revealed monoclinic symmetry (space group C2/c, Z = 8 for the second polymorph. The configuration of the tetrahedral molecule shows approximate Cs symmetry. Strong O—H...O hydrogen bonds connect the molecules to infinite zigzag chains along [010], which are further connected by weak intermolecular C—H...O contacts into a three-dimensional network.

  18. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  19. The monoclinic superstructure of the M{sub 2}Pt{sub 6}Al{sub 15} series (M=Ca, Sc, Y, La, Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Stegemann, Frank; Hoffmann, Rolf-Dieter [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Oldenburg Univ. (Germany). Inst. fuer Chemie

    2017-07-01

    The five ternary intermetallic compounds M{sub 2}Pt{sub 6}Al{sub 15} (M=Ca, Sc, Y, La, Lu) were prepared from the elements by arc-melting. The crystal structure was determined via single crystal X-ray diffraction. The title compounds crystallize in a superstructure of the RE{sub 0.67}Pt{sub 2}Al{sub 5} type structure (P6{sub 3}/mmc) in the monoclinic crystal system with space group P12{sub 1}/m1 (Sc{sub 2}Pt{sub 6}Al{sub 15}: a=734.19(2), b=1628.96(10), c=734.19(2) pm, β=119.999(3) ; wR=0.0356, 3034 F{sup 2} values, 68 variables). The superstructure can be derived by the superspace formalism using (3+2)D or (3+1)D interpretations of the diffraction data. The structural relation to the subcell structure is discussed on the basis of a group-subgroup scheme. In the crystal structure strongly bonded [Pt{sub 2}Al{sub 4}]{sup δ-} slabs are alternatingly stacked with ordered layers containing M atoms and Al{sub 3} triangles.

  20. Evidence for monoclinic distortion in the ground state phase of underdoped La_1_._9_5Sr_0_._0_5CuO_4: A single crystal neutron diffraction study

    International Nuclear Information System (INIS)

    Singh, Anar; Schefer, Jürg; Frontzek, Matthias; Sura, Ravi; Conder, Kazimierz; Sibille, Romain F.; Ceretti, Monica; Paulus, Werner

    2016-01-01

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La_1_._9_5Sr_0_._0_5CuO_4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La_1_._9_5Sr_0_._0_5CuO_4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way; however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.

  1. Effects of monoclinic symmetry on the properties of biaxial liquid crystals

    Science.gov (United States)

    Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff

    2018-04-01

    Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

  2. Characterization of a Diamond Ground Y-TZP and Reversion of the Tetragonal to Monoclinic Transformation.

    Science.gov (United States)

    Candido, L M; Fais, Lmg; Ferreira, E B; Antonio, S G; Pinelli, Lap

    To characterize the surface of an yttria-stabilized zirconia (Y-TZP) ceramic after diamond grinding in terms of its crystalline phase, morphology, mean roughness (Ra), and wettability as well as to determine a thermal treatment to reverse the resulting tetragonal to monoclinic (t-m) transformation. Y-TZP specimens were distributed into different groups according to the actions (or no action) of grinding and irrigation. Grinding was accomplished using a diamond stone at a low speed. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, goniometry, and profilometry. In situ high-temperature XRD was used to determine an annealing temperature to reverse the t-m transformation. Ra was submitted to the Kruskal-Wallis test, followed by the Dunn test (α=0.05). The volume fraction of the monoclinic phase and contact angle were submitted to one-way analysis of variance, followed by the Tukey test (α=0.05). Monoclinic zirconia was observed on the surface of samples after dry and wet grinding with a diamond stone. The volume fraction of the monoclinic phase was smaller on the dry ground samples (3.6%±0.3%) than on the wet ground samples (5.6%±0.3%). High-temperature XRD showed reversion of the t-m phase transformation, which started at 700°C and completed at 800°C in a conventional oven. Grinding with a diamond stone partially transformed the crystalline phase on the surface of a Y-TZP ceramic from tetragonal to monoclinic zirconia while simultaneously increasing the surface roughness and wettability. The t-m transformation could be reversed by heat treatment at 800°C or 900°C for 60 minutes or 1000°C for 30 minutes.

  3. Static deformation of two welded monoclinic elastic half-spaces due ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined strike-slip fault situated in one of the half-spaces is studied analytically and numerically. Closed- form algebraic expressions for the displacement at any point of the medium are obtained. The variation of the displacement at the ...

  4. Calculation of magnetization curves and probability distribution for monoclinic and uniaxial systems

    International Nuclear Information System (INIS)

    Sobh, Hala A.; Aly, Samy H.; Yehia, Sherif

    2013-01-01

    We present the application of a simple classical statistical mechanics-based model to selected monoclinic and hexagonal model systems. In this model, we treat the magnetization as a classical vector whose angular orientation is dictated by the laws of equilibrium classical statistical mechanics. We calculate for these anisotropic systems, the magnetization curves, energy landscapes and probability distribution for different sets of relevant parameters and magnetic fields of different strengths and directions. Our results demonstrate a correlation between the most probable orientation of the magnetization vector, the system's parameters, and the external magnetic field. -- Highlights: ► We calculate magnetization curves and probability angular distribution of the magnetization. ► The magnetization curves are consistent with probability results for the studied systems. ► Monoclinic and hexagonal systems behave differently due to their different anisotropies

  5. Molecular dynamics simulation and x-ray structural studies of mode-coupling in monoclinic K2ZnBr4

    International Nuclear Information System (INIS)

    Machida, Mitsuo; Itoh, Hideaki; Koyano, Nobumitsu

    2003-01-01

    The mode-coupling between the rotational and translational motions in the monoclinic K 2 ZnBr 4 was studied by the molecular dynamics simulation and X-ray structure analysis. In the structure analysis, the Fourier analysis indicates that, in the paraelectric phase, electron densities of the bromines Br1 and Br2 on the mirror plane are fairly elongated in the b direction, while the density of the bromine Br3 at the general position spreads more or less in the a direction. In the ferroelectric phase, the elongation is suppressed in particular for Br1 and Br2, and the densities of Br3 and Br4, which are equivalent each other in the paraelectric phase, are nearly isotropic. In addition, Br1 and Br2 displace in the b direction through the rotation of the ZnBr 4 2- ion about the a axis. In the simulation, the ZnBr 4 2- ions are treated as rigid-bodies. The trajectories of the bromines reproduce satisfactorily the characteristic feature of the Fourier maps. This means that the ZnBr 4 2- ions are approximately regarded as rigid-bodies even in the real K 2 ZnBr 4 . The mode-coupling analysis shows that, in the ZnBr 4 2- rigid-bodies, the rotational motion about the a axis and the translational motion in the b direction couple strongly. Moreover, the displacements of rotational and translational motions in the b direction are almost synchronous for Br1 and Br2, and almost asynchronous for Br3 and Br4. (author)

  6. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    Science.gov (United States)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  7. Determination of Stress Coefficient Terms in Cracked Solids for Monoclinic Materials with Plane Symmetry at x3 = 0

    Science.gov (United States)

    Yuan, F. G.

    1998-01-01

    Determination of all the coefficients in the crack tip field expansion for monoclinic materials under two-dimensional deformation is presented in this report. For monoclinic materials with a plane of material symmetry at x(sub 3) = 0, the in-plane deformation is decoupled from the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and third-order stress coefficients near the crack tip are evaluated first from path-independent line integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used respectively. Through the use of Stroh formalism in anisotropic elasticity, analytical expressions for all the coefficients including the stress intensity factors are derived in a compact form that has surprisingly simple structure in terms of the Barnett-Lothe tensors, L. The solution forms for degenerated materials, orthotropic, and isotropic materials are presented.

  8. Effect of boron oxide on the cubic-to-monoclinic phase transition in yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Florio, D.Z. de; Muccillo, R.

    2004-01-01

    Specimens of yttria fully stabilized zirconia with different amounts of boron oxide have been studied by X-ray diffraction at room temperature and at higher temperatures up to 1250 deg. C. A boron oxide-assisted cubic-to-monoclinic phase transformation was determined in the temperature range 800-1250 deg. C. In situ high temperature X-ray diffraction experiments gave evidences of the dependence of the phase transformation on the heating rate. The possibility of tuning the cubic-monoclinic phase ratio by suitable addition of boron oxide before pressing and sintering is proposed

  9. Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO.

    Science.gov (United States)

    Zhao, Yongguang; Zhuang, Shidong; Xu, Xiaodong; Xu, Jun; Yu, Haohai; Wang, Zhengping; Xu, Xinguang

    2014-02-10

    Multi-wavelength emissions have been demonstrated in many disordered laser crystals. Improving the emission controllability is crucial for their practical applications. However, it is difficult because the closely adjacent laser components cannot be effectively adjusted by the traditional resonator design. In this paper, the anisotropy of laser emission in a monoclinic, disordered crystal Nd:LuYSiO(5) (Nd:LYSO) is reported for the first time. By selecting crystal orientation, high power laser emission with different wavelengths and polarizations were obtained. For X-cut sample, 1076 nm single-wavelength laser output reached 7.56 W, which will be a useful light source for detecting carbonyl-hemoglobin and nitrite after frequency doubling. For Y- and Z-cut samples, 1076, 1079 nm dual-wavelength laser output reached 10.3 W and 7.61 W, with parallel and orthogonal polarizations, respectively, which are convenient to be used as the generation sources of 0.78 THz wave by type-I or type-II difference frequency. The output characteristic is well explained by a theoretical analysis on the stimulated emission cross-section. The present work reveals that the intrinsic anisotropy in disordered laser crystal can be utilized to elevate the emission controllability. Accordantly, the material's application scopes can be extended.

  10. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  11. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  12. First principles study of LiAlO2: new dense monoclinic phase under high pressure

    Science.gov (United States)

    Liu, Guangtao; Liu, Hanyu

    2018-03-01

    In this work, we have systematically explored the crystal structures of LiAlO2 at high pressures using crystal structure prediction method in combination with the density functional theory calculations. Besides the reported α, β, γ, δ and ɛ-phases, here we propose a new monoclinic ζ-LiAlO2 (C2/m) structure, which becomes thermodynamically and dynamically stable above 27 GPa. It is found that the cation coordination number increases from 4 to 6 under compression. Consisting of the compact {LiO6} and {AlO6} octahedrons, the newly-discovered ζ-phase possesses a very high density. Further electronic calculations show that LiAlO2 is still an insulator up to 60 GPa, and its bandgap increases upon compression. The present study advances our understanding on the crystal structures and high-pressure phase transitions of LiAlO2 that may trigger applications in multiple areas of industry and provoke more related basic science research.

  13. Structural, electronic and optical properties of monoclinic Na2Ti3O7 from density functional theory calculations: A comparison with XRD and optical absorption measurements

    Science.gov (United States)

    Araújo-Filho, Adailton A.; Silva, Fábio L. R.; Righi, Ariete; da Silva, Mauricélio B.; Silva, Bruno P.; Caetano, Ewerton W. S.; Freire, Valder N.

    2017-06-01

    Powder samples of bulk monoclinic sodium trititanate Na2Ti3O7 were prepared carefully by solid state reaction, and its monoclinic P21/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as Eg=3.51±0.01 eV employing UV-Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA, respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=-0.06 Å, Δb=0.02 Å, and Δc=-0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na2Ti3O7 optical absorption and complex dielectric function.

  14. Growth kinetics of tetragonal and monoclinic ZrO{sub 2} crystallites in 3 mol% yttria partially stabilized ZrO{sub 2} (3Y-PSZ) precursor powder

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Chih-Wei [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Kuen-Chan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Yen, Feng-Lin, E-mail: flyen@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Shen, Yun-Hwei [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Huey-Er [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 807, Taiwan (China); Wen, Shaw-Bing [General Education Center, Meiho Institute of Technology, 23 Pingguang Road, Neipu, Pingtung 91202, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Stack, Margaret Mary [Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow (United Kingdom)

    2014-04-01

    Highlights: • The crystalline structures were composed of tetragonal and monoclinic ZrO{sub 2}. • Growth kinetics of t-ZrO{sub 2} in the 3Y-PSZ precursor powder is described as: D{sub te}{sup 2}=(4.57±0.55)t{sup 0.12±0.02}exp(-((24.79±0.38)×10{sup 3})/(RT) ). • Growth kinetics of m-ZrO{sub 2} in the 3Y-PSZ precursor powder is described as: D{sub m}{sup 2}=(4.40±1.63)t{sup 0.17±0.08}exp(-((66.47±3.97)×10{sup 3})/(RT) ). - Abstract: The growth kinetics of tetragonal and monoclinic ZrO{sub 2} crystallites in 3 mol% yttria partially stabilized ZrO{sub 2} (3Y-PSZ) precursor powder has been investigated using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) specific surface area analysis, transmission electron microscopy (TEM) and high resolution TEM (HRTEM). After calcination of the 3Y-PSZ precursor powder between 773 and 1073 K for 2 h, the crystalline structures were composed of tetragonal and monoclinic ZrO{sub 2} as the primary and secondary phases, respectively. When the 3Y-PSZ precursor powder was calcined at 773 K for 2 h, the BET specific surface area was 97.13 m{sup 2}/g, which is equivalent to a particle size of 10.30 nm. The crystallite sizes determined via XRD and BET agreed well, indicating that the powder was virtually non-agglomerated. The growth kinetics of tetragonal and monoclinic ZrO{sub 2} crystallite isothermal growth in the 3Y-PSZ precursor powder are described by: D{sub te}{sup 2}=(4.57±0.55)t{sup 0.12±0.02}exp(-((24.79±0.38)×10{sup 3})/(RT) ) and D{sub m}{sup 2}=(4.40±1.63)t{sup 0.17±0.08}exp(-((66.47±3.97)×10{sup 3})/(RT) ), respectively, for 773K≤T≤1073K. D{sub te} and D{sub m} denote the crystallite size of tetragonal and monoclinic ZrO{sub 2} at time t and temperature T, respectively.

  15. Temperature dependent emission characteristics of monoclinic YBO{sub 3}: Eu{sup 3+}/Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suchinder K., E-mail: suchindersharma@gmail.com [AMO-Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009 (India); Malik, M. Manzar [Department of Physics, Maulana Azad National Institute of Technology (MANIT), Bhopal (India)

    2016-05-15

    YBO{sub 3}:Eu{sup 3+}/Tb{sup 3+} phosphor samples synthesized by modified combustion method are studied in the present work using powder X-ray diffraction, UV–visible absorption spectroscopy, X-ray excited luminescence spectroscopy and optical parametric oscillator (OPO) based laser excited emission spectroscopy. The temperature dependence of luminescence emission is also studied. The structural analysis suggests that the samples possess monoclinic structure with C2/c space group. The emission maximum was excitation wavelength dependent and prominent emission was observed at 593 nm (241 nm excitation) and 613 nm (300 nm excitation) for YBO{sub 3}:Eu{sup 3+} samples. The prominent magnetic/ electric (593/613 nm) dipole-moment allowed transitions are attributed to the presence of Eu{sup 3+} at different sites. For YBO{sub 3}:Tb{sup 3+} phosphor, 543 nm emission was prominent and had no impact of the cite symmetry. The increase in PL intensity in Eu{sup 3+} doped samples above 225 K is associated with the carrier mobility. An energy level scheme showing the positions of the 4f and 5d energy levels of all divalent and trivalent lanthanide ions relative to the valence and conduction band of the YBO{sub 3} has been constructed opening the possibility of using YBO{sub 3} for other interesting applications. - Highlights: • Synthesis of YBO{sub 3} by modified combustion method using glycine as fuel. • Crystallization in monoclinic phase (rarely investigated). • Eu and Tb doping and investigation of temperature dependent PL. • VRBE diagram generated in YBO{sub 3} to develop new optical materials.

  16. CdWO4 polymorphs: Selective preparation, electronic structures, and photocatalytic activities

    International Nuclear Information System (INIS)

    Yan, Tingjiang; Li, Liping; Tong, Wenming; Zheng, Jing; Wang, Yunjian; Li, Guangshe

    2011-01-01

    This work explored the selective synthesis of polymorphs of CdWO 4 in either tetragonal or monoclinic phase by optimizing the experimental parameters. Systematic characterization indicated that both polymorphs possessed similar spherical morphologies but different structural building blocks. Electronic structures calculations for both polymorphs demonstrated the same constructions of conduction band or valence band, while the conduction band widths of both polymorphs were quite different. Both CdWO 4 polymorphs exhibited good photocatalytic activity for degradation of methyl orange under UV light irradiation. When comparing to some other well-known tungstate oxide materials, the photocatalytic activity was found to follow such a consequence, monoclinic CdWO 4 ∼monoclinic ZnWO 4 >tetragonal CdWO 4 >tetragonal CaWO 4 . The specific photocatalytic activity of monoclinic CdWO 4 was even higher than that of commercial TiO 2 photocatalyst (Degussa P25). The increased activity from the tetragonal CdWO 4 to the monoclinic was consistent with the trend of the decreased symmetry, and this could be explained in terms of the geometric structures and electronic structures for both polymorphs. -- Graphical abstract: Monoclinic CdWO 4 exhibited a much higher photocatalytic activity than the tetragonal form owing to the lower symmetry, more distorted geometric structure, and the dispersive band configuration. Display Omitted Research highlights: → Polymorphs of CdWO 4 in either tetragonal or monoclinic phase were selectively synthesized. → Both polymorphs possessed similar spherical morphologies, while the relevant structural building blocks were different. → Photocatalytic activities of CdWO 4 polymorphs depended strongly on the symmetry, geometric structure, as well as band configuration.

  17. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    Science.gov (United States)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  18. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    Science.gov (United States)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  19. A stretch-tunable plasmonic structure with a polarization-dependent response

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Shi, Lei

    2012-01-01

    Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of this plasmonic structure can be reconfigured from hexagonal to monoclinic, leading to resonance frequency shifts from 200 THz to 191 THz......-dependent response at the standard telecommunication band, and such tunable plasmonic structure might be exploited in realizing photonic devices such as sensors, switches and filters....

  20. Photo-, thermo- and optically stimulated luminescence of monoclinic zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Kiisk, Valter, E-mail: valter.kiisk@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Puust, Laurits; Utt, Kathriin; Maaroos, Aarne; Mändar, Hugo [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Viviani, Erica; Piccinelli, Fabio [Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Saar, Rando; Joost, Urmas; Sildos, Ilmo [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-06-15

    We carried out a careful photoluminescence (PL) and thermoluminescence (TL) characterization of nominally pure monoclinic ZrO{sub 2} nanopowders subject to oxidative vs reductive annealing (up to 1450 °C). The two kinds of studied zirconia (sol-gel-prepared vs commercial powder) exhibited virtually identical 490 nm PL emission band and 280 nm PL excitation band with slight, but clearly detectable variations in the spectral shape. The TL glow peaks, recorded over the temperature range −100 to 300 °C, showed an interplay depending on the type and treatment of sample. There is a strong evidence that the −35 and 205 °C glow peaks are due to oxygen vacancies whereas the 5 °C glow peak may relate to oxygen interstitials and the 110 °C glow peak to surface defects. Although a number of distinct glow peaks emerge, the material still seems to contain a quasi-continuous distribution of trap depths. In comparison to TL, we also demonstrate effective optically stimulated luminescence (OSL) from this polymorph of ZrO{sub 2} under red and NIR illumination at ~1 W/cm{sup 2}. All traps responsible for the principal TL peaks were also found to be OSL-active, which widens the applied importance of the material.

  1. Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Long-Gonzalez, D.; Lopez-Cuevas, J.; Gutierrez-Chavarria, C.A.; Pena, P.; Baudin, C.; Turrillas, X. [CINVESTAV, Coahuila (Mexico)

    2010-03-15

    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1-xSrxAl{sub 2}Si2O8 solid solutions, where x=0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850-1300{sup o}C. Fully monoclinic Celsian was obtained at 1200{sup o} C/5 h, for SrO contents of 0.25 {<=} x {<=} 0.75. However, an optimum SrO level of 0.25 {<=} x {<=} 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO{sub 2} present in it, which enhanced the Hexacelsian to Celsian conversion.

  2. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    Science.gov (United States)

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10 6 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUT ZT (936.4 ± 120.9 b ) and AUT + M ZE (867.2 ± 49.3 b ) groups presented significantly higher values (p autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  3. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy.

    Science.gov (United States)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting; Balic-Zunic, Tonci; Lin, Shan-Yang

    2009-02-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 517, 376 and 352/cm was similar to the Raman spectrum of monoclinic form of calcium pyrophosphate dihydrate (CPPD) crystal, but differed from the Raman spectrum of triclinic form of CPPD. An additional peak at 958/cm was also observed in the Raman spectrum of the calcified plaque, which was identical to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy.

  4. Er{sub 1.33}Pt{sub 3}Ga{sub 8}: A modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Iain W.H. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Gourdon, Olivier [Research and Development, ZS Pharma, Coppell, TX 75109 (United States); Bekins, Amy; Evans, Jess [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Treadwell, LaRico J. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Macaluso, Robin T., E-mail: robin.macaluso@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639 (United States)

    2016-10-15

    Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder of this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.

  5. Ab initio velocity-field curves in monoclinic β-Ga2O3

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  6. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, ...

  7. The coercive force of fine particles of monoclinic pyrrhotite (Fe7S8 ...

    African Journals Online (AJOL)

    The temperature dependence of coercive force (Hc) between 77 K and 600 K has been investigated for fine particles of monoclinic pyrrhotite (Fe7S8) of < 1 mm and 1- 30 mm particle sizes. The study has shown that Hc is strongly dependent on temperature, as temperature rises above room temperature (293 K) to near the ...

  8. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the MPB region of (1-x)Bi(Mg_1_/_2Ti_1_/_2)O_3_-_xPbTiO_3

    International Nuclear Information System (INIS)

    Upadhyay, A.; Singh, A.K.

    2016-01-01

    The results of the room temperature structural studies on (1-x)Bi(Mg_1_/_2Ti_1_/_2)O_3_-_xPbTiO_3 ceramics using Rietveld analysis of the powder X-ray diffraction data in the composition range 0.28≤x≤0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4mm) phases in the composition range 0.33≤x≤0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28≤x≤0.32. The structure for the compositions with x≥0.45 is found to be predominantly tetragonal with space group P4mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x=0.35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size. (author)

  9. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe2 (RE = Pr, Sm, Gd, Dy and Er)

    International Nuclear Information System (INIS)

    Esmaeili, Mehdi; Tseng, Yu-Chih; Mozharivskyj, Yurij

    2014-01-01

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe 2 phases. • Thermoelectric properties of the RECuSe 2 phases. • Temperature stability of the RECuSe 2 phases. - Abstract: The ternary RECuSe 2 phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2 1 /c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3 ¯ m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe 2 , DyCuSe 2 and ErCuSe 2 indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe 2 phases

  10. Characterization of monoclinic crystals in tablets by pattern-fitting procedure using X-ray powder diffraction data.

    Science.gov (United States)

    Yamamura, Shigeo; Momose, Yasunori

    2003-06-18

    The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.

  11. The tetragonal-monoclinic transformations of zirconia studied by small angle neutron scattering and differential thermal analysis

    International Nuclear Information System (INIS)

    Li, Z.; Epperson, J.E.; Fang, Y.; Chan, S.K.

    1992-08-01

    The tetragonal-monoclinic transformations of zirconia have been studied on pristine single crystals and on their cycled crystallites. Two complementary techniques have been used. Small angle neutron scattering experiments were carried out to monitor the degree of completion of a transformation under equilibrium conditions for collections of 20--30 large crystals using the total internal and external surface area as an indicator. Differential thermal analysis experiments were carried out on smaller single-domain crystals of different sizes individually during heating and cooling to measure the rates of latent heat absorption and emission. The investigation establishes the upper limit of stability of the monoclinic phase, the lower limit of stability of the tetragonal phase, and the coexistence temperature between the two phases. The characteristics of the transformations are also inferred from these experiments

  12. Structural phase transitions at high-temperature in double perovskite Sr{sub 2}GdRuO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia)

    2012-08-15

    The crystal structure evolution of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K{<=}T{<=}1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P2{sub 1}/n (no. 14) space group and the 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) A, b=5.82341(4) A, c=8.21939(7) A, V=278.11(6) A{sup 3} and angle {beta}=90.311(2){sup o}. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) A, b=5.82526(4) A, c=8.22486(1) A, V=278.56(2) A{sup 3} and angle {beta}=90.28(2){sup o}. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) A, c=8.27261(1) A, V=282.89(5) A{sup 3} and angle {beta}=90.02(9){sup o}. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.

  13. Ferroelasticity in palmierite-type(1  -  x)Pb3(PO4)2 - xPb3(AsO4)2

    Science.gov (United States)

    Bismayer, Ulli; Mihailova, Boriana; Angel, Ross

    2017-06-01

    Lead phosphate-arsenate Pb3(P1-x As x O4)2 undergoes an improper ferroelastic phase transition from a rhombohedral paraphase R\\bar{3}m to a monoclinic ferrophase C2/c leading to distinct twin boundary patterns. On cooling compounds with x larger than 0.8 undergo further transitions to monoclinic low-temperature phases, whereas the composition with x  =  0.8 shows order-parameter coupling phenomena. The transformation R\\bar{3}m -C2/c was described on the basis of a three-state Potts model and the existence of precursors of monoclinic clusters in the rhombohedral paraphase. The system is one of the best studied improper ferroelastics. Due to its two-mode phonon behaviour the solid solution exhibits multistep temperature- as well as pressure-driven structural transformations with different length and time scales. Relevant investigations and findings of this palmierite-type material have been made by Prof E K H Salje. Some of the most prominent results from x-ray diffraction, optical microscopy and Raman scattering are reviewed, and the potential implications for domain-wall structures and engineering are discussed.

  14. Co-existence of tetragonal and monoclinic phases and multiferroic properties for x ⩽ 0.30 in the (1 − x)Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–(x)BiFeO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subhash; Singh, Vikash [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307, Uttar Pradesh (India); Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Ranjan, Rajeev [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Dwivedi, R.K., E-mail: rk.dwivedi@jiit.ac.in [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307, Uttar Pradesh (India)

    2014-11-25

    Highlights: • Synthesis of (1 − x)PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}–(x)BiFeO{sub 3} with x ⩽ 0.30 by sol–gel method. • Structural phase transformation with x has been revealed by Rietveld analysis. • Raman analysis supports structural phase transition. • Occurrence of MC is a strong evidence of magneto-electric coupling. • Enhance magnetization is obtained in the dominant monoclinic phase for x ⩾0.15. - Abstract: Compositions with x ⩽ 0.30 in the system (1 − x)Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–(x)BiFeO{sub 3} were synthesized by sol–gel method. Rietveld analysis of X-ray diffraction data reveals tetragonal structure (P4mm) for x ⩽ 0.05 and monoclinic (Cm) phase along with the existence of tetragonal phase for 0.10 ⩽ x ⩽ 0.25 and monoclinic phase for x = 0.30. Transformation of E(2TO) and E + B1 vibrational modes in the range 210–250 cm{sup −1} (present for x ⩽ 0.25) into A′ + A″ modes at ∼236 cm{sup −1} for x = 0.30, and occurrence of new vibrational modes A′ and A″ in Raman spectra for x ⩾ 0.10 unambiguously support the presence of monoclinic phase. Occurrence of remnant polarisation and enhanced magnetization with concentration of BiFeO{sub 3} indicates superior multiferroic properties. Variation of magneto-capacitance with applied magnetic field is a strong evidence of magneto-electric multiferroic coupling in these materials.

  15. Structural transformations in Mn2NiGa due to residual stress

    International Nuclear Information System (INIS)

    Singh, Sanjay; Maniraj, M.; D'Souza, S. W.; Barman, S. R.; Ranjan, R.

    2010-01-01

    Powder x-ray diffraction study of Mn 2 NiGa ferromagnetic shape memory alloy shows the existence of a 7M monoclinic modulated structure at room temperature (RT). The structure of Mn 2 NiGa is found to be highly dependent on residual stress. For higher stress, the structure is tetragonal at RT, and for intermediate stress it is 7M monoclinic. However, only when the stress is considerably relaxed, the structure is cubic, as is expected at RT since the martensitic transition temperature is 230 K.

  16. A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2−2x/3)Nix(PO4)3/C

    International Nuclear Information System (INIS)

    Wang, Wenhui; Chen, Zhenyu; Zhang, Jiaolong; Dai, Changsong; Li, Jiajie; Ji, Dalong

    2013-01-01

    In order to synthesize pure derivative of rhombohedral Li 3 V 2 (PO 4 ) 3 (LVP), lithium-ion batteries materials Li 2.5 Na 0.5 V (2−2x/3) Ni x (PO 4 ) 3 /C (x = 0.03, 0.06, 0.09) and its control, monoclinic Li 3 V 2 (PO 4 ) 3 /C (LVP/C), were prepared by sol–gel method. The samples were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), Raman spectroscopy, and electrochemical methods. The XRD patterns of Li 2.5 Na 0.5 V (2−2x/3) Ni x (PO 4 ) 3 /C are in good agreement with that of rhombohedral LVP, which indicates that the Na + –Ni 2+ composite doping can change the structure of monoclinic LVP. All the composite doping samples displayed a single flat plateau at 3.7 V in the charge/discharge voltage profile, which is caused by transformation of multi-phase mechanism to single-phase mechanism. For Li 2.5 Na 0.5 V 1.98 Ni 0.03 (PO 4 ) 3 /C, a specific discharge capacity of 108 mAh g −1 was achieved at a 0.5 C charge rate and a 1 C discharge rate, and a 99.0% retention rate of the initial capacity was obtained after 50 cycles

  17. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Maria, E-mail: maria.p.orlova@gmail.com [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Khainakov, Sergey [Departamento de Química Física y Analítica, Universidad de Oviedo—CINN, 33006 Oviedo (Spain); Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Michailov, Dmitriy [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation); Perfler, Lukas [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Langes, Christoph [Institute of Pharmacy, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Kahlenberg, Volker [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Orlova, Albina [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation)

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  18. Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse dielectric function tensor of monoclinic yttrium orthosilicate

    Science.gov (United States)

    Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.

    2018-04-01

    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].

  19. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  20. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe{sub 2} (RE = Pr, Sm, Gd, Dy and Er)

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, Mehdi [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Tseng, Yu-Chih [CANMET Materials, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2014-10-15

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe{sub 2} phases. • Thermoelectric properties of the RECuSe{sub 2} phases. • Temperature stability of the RECuSe{sub 2} phases. - Abstract: The ternary RECuSe{sub 2} phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2{sub 1}/c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3{sup ¯}m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe{sub 2}, DyCuSe{sub 2} and ErCuSe{sub 2} indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe{sub 2} phases.

  1. Coexistence of different charge states in Ta-doped monoclinic HfO2: Theoretical and experimental approaches

    DEFF Research Database (Denmark)

    Taylor, M.A.; Alonso, R.E.; Errico, L.A.

    2010-01-01

    A combination of experiments and ab initio quantum-mechanical calculations has been applied to examine hyperfine interactions in Ta-doped hafnium dioxide. Although the properties of monoclinic HfO2 have been the subject of several earlier studies, some aspects remain open. In particular, time dif...

  2. Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure

    Science.gov (United States)

    Kataoka, Kunimitsu; Akimoto, Junji

    2016-02-01

    Polycrystalline sample of sodium titanium oxide Na2Ti4O9 with the tunnel-type structure was prepared by topotactic sodium extraction in air atmosphere from the as prepared Na3Ti4O9 sample. The starting Na3Ti4O9 compound was synthesized by solid state reaction at 1273 K in Ar atmosphere. The completeness of oxidation reaction from Na3Ti4O9 to Na2Ti4O9 was monitored by the change in color from dark blue to white, and was also confirmed by the Rietveld refinement using the powder X-ray diffraction data. The sodium deficient Na2Ti4O9 maintained the original Na2.08Ti4O9-type tunnel structure and had the monoclinic crystal system, space group C2/m, and the lattice parameters of a = 23.1698(3) Å, b = 2.9406(1) Å, c = 10.6038(2) Å, β = 102.422(3)°, and V = 705.57(2) Å3. The electrochemical measurements of thus obtained Na2Ti4O9 sample showed the reversible sodium insertion and extraction reactions at 1.1 V, 1.5 V, and 1.8 V vs. Na/Na+, and reversible lithium insertion and extraction reactions at around 1.4 V, 1.8 V, and 2.0 V vs. Li/Li+. The reversible capacity for the lithium cell was achieved to be 104 mAh g-1 at the 100th cycle.

  3. The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent?

    CERN Document Server

    Kisi, E H; Forrester, J S; Howard, C J

    2003-01-01

    Lead zinc niobate-lead titanate (PZN-PT) single crystals show very large piezoelectric strains for electric fields applied along the unit cell edges e.g. [001] sub R. It has been widely reported that this effect is caused by an electric field induced phase transition from rhombohedral (R3m) to monoclinic (Cm or Pm) symmetry in an essentially continuous manner. Group theoretical analysis using the computer program ISOTROPY indicates phase transitions between R3m and Cm (or Pm) must be discontinuous under Landau theory. An analysis of the symmetry of a strained unit cell in R3m and a simple expansion of the piezoelectric strain equation indicate that the piezoelectric distortion due to an electric field along a cell edge in rhombohedral perovskite-based ferroelectrics is intrinsically monoclinic (Cm), even for infinitesimal electric fields. PZN-PT crystals have up to nine times the elastic compliance of other piezoelectric perovskites and it might be expected that the piezoelectric strains are also very large. ...

  4. Fergusonite-type CeNbO{sub 4+δ}: Single crystal growth, symmetry revision and conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Ryan D. [Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP (United Kingdom); Pramana, Stevin S.; An, Tao; Wei, Fengxia; Kloc, Christian L. [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore); White, Andrew J.P. [Chemical Crystallography Laboratory, Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ (United Kingdom); Skinner, Stephen J. [Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP (United Kingdom); White, Timothy J. [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore); Baikie, Tom, E-mail: tbaikie@ntu.edu.sg [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore)

    2013-08-15

    Large fergusonite-type (ABO{sub 4}, A=Ce, B=Nb) oxide crystals, a prototype electrolyte composition for solid oxide fuel cells (SOFC), were prepared for the first time in a floating zone mirror furnace under air or argon atmospheres. While CeNbO{sub 4} grown in air contained CeNbO{sub 4.08} as a minor impurity that compromised structural analysis, the argon atmosphere yielded a single phase crystal of monoclinic CeNbO{sub 4}, as confirmed by selected area electron diffraction, powder and single crystal X-ray diffraction. The structure was determined in the standard space group setting C12/c1 (No. 15), rather than the commonly adopted I12/a1. AC impedance spectroscopy conducted under argon found that stoichiometric CeNbO{sub 4} single crystals showed lower conductivity compared to CeNbO{sub 4+δ} confirming interstitial oxygen can penetrate through fergusonite and is responsible for the higher conductivity associated with these oxides. - Graphical abstract: Large fergusonite-type CeNbO{sub 4} crystals were prepared for the first time in a floating zone mirror furnace. Crystal growth in an argon atmosphere yielded a single phase monoclinic CeNbO4, as confirmed by selected area electron diffraction, powder and single crystal X-ray diffraction. The structure was determined in the standard space group setting C12/c1 (No. 15), rather than the commonly adopted I12/a1. AC impedance spectroscopy found CeNbO{sub 4} single crystals showed lower conductivity compared to CeNbO{sub 4+δ} confirming interstitial oxygen can penetrate through fergusonite and is responsible for the higher conductivity associated with these oxides. Highlights: • Preparation of single crystals of CeNbO{sub 4} using a floating zone mirror furnace. • Correction to the crystal symmetry of the monoclinic form of CeNbO{sub 4}. • Report the conductivity of a single crystal of CeNbO{sub 4}.

  5. Synthesis by two methods and crystal structure determination of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martinez, Leticia M., E-mail: lettorresg@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Ruiz-Gomez, Miguel A. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Figueroa-Torres, M.Z.; Juarez-Ramirez, Isaias [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); and others

    2012-04-16

    Graphical abstract: The monoclinic (space group C2/c) structure of a new compound, Sm{sub 2}FeTaO{sub 7} shows an alternating Sm-O and Fe/Ta-O layers. In the Fe/Ta-O layer, Fe/Ta1 and Fe/Ta3 cations are coordinated by six oxygen atoms, forming irregular octahedral interconnected into a hexagonal tungsten bronze (HTB) type network. The HTB layer is a fundamental framework in the pyrohlore-related structure. Highlights: Black-Right-Pointing-Pointer Pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} prepared by solid state reaction and sol-gel. Black-Right-Pointing-Pointer Sm{sub 2}FeTaO{sub 7} crystallizes with a monoclinic crystal structure and space group C2/c. Black-Right-Pointing-Pointer The compound is synthesized by sol-gel at lower temperature and time than solid state. Black-Right-Pointing-Pointer Surface area of sol-gel Sm{sub 2}FeTaO{sub 7} is 10 times higher than that prepared by solid state. - Abstract: This paper reports on the synthesis of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} by both solid state reaction and sol-gel synthesis routes. Structural features were determined by X-ray powder diffraction and Rietveld refinement and were corroborated using Transmission Electron Microscopy (TEM). The results revealed that Sm{sub 2}FeTaO{sub 7} crystallized in the monoclinic system with space group C2/c and the following cell parameters: a = 13.1307(5) Angstrom-Sign , b = 7.5854(3) Angstrom-Sign , c = 11.6425(4) Angstrom-Sign and {beta} = 100.971(2) Degree-Sign . The monoclinic structure of Sm{sub 2}FeTaO{sub 7} showed an arrangement of alternating Sm-O and Fe/Ta-O layers and two types of irregular octahedra of Fe/Ta-O, which are interconnected into a hexagonal tungsten bronze (HTB)-type network. On the other hand, Sm{sub 2}FeTaO{sub 7} prepared by sol-gel was obtained with lower particle sizes than the solid state produced compound. The difference in particle size causes a difference of one order of magnitude in the specific surface area. In

  6. Crystal structure of bassetite and saleeite. New insight into autunite-group minerals

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Mees, Florias [Royal Museum for Central Africa, Tervuren (Belgium); Philippo, Simon [Musee National d' Histoire Naturelle, Luxembourg (Luxembourg). Section Mineralogie; Baijot, Maxime; Fontaine, Francois [Liege Univ. (Belgium). Dept. de Geologie

    2016-06-15

    The crystal structures of two autunite-group minerals have been solved recently. The crystal structure of bassetite, Fe{sup 2+}[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from the type locality in Cornwall, United Kingdom (Basset Mines) was solved for the first time. Bassetite is monoclinic, space group P2{sub 1}/n, a = 6.961(1), b = 20.039(2), c = 6.974(1) Aa and β = 90.46(1) . The crystal structure of saleeite, Mg[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from Shinkolobwe, Democratic Republic of Congo, was also solved. Saleeite is monoclinic, space group P2{sub 1}/n, a = 6.951(1), b = 19.942(1), c = 6.967(1) Aa and β = 90.58(1) . The crystal structure investigation of bassetite (R{sub 1} = 0.0658 for 1879 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) and saleeite (R{sub 1} = 0.0307 for 1990 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) confirms that both minerals are topologically identical and that bassetite contains ten water molecules per formula unit. Their structure contains autunite-type sheets, [(UO{sub 2})(PO{sub 4})]{sup -}, consisting of corner-sharing UO{sub 6} square bipyramids and PO{sub 4} tetrahedra. Iron and magnesium are surrounded by water molecules to form Fe(H{sub 2}O){sub 6} or Mg(H{sub 2}O){sub 6} octahedra located in interlayer, between the autunite-type sheets. Two isolated independent water molecules are also located in interlayer. Energy-dispersive X-ray spectroscopy analysis confirmed the chemical composition obtained from structure refinement. These new data prompt a re-assessment of minerals of the autunite and meta-autunite groups.

  7. Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia

    International Nuclear Information System (INIS)

    Boysen, H.; Frey, F.

    1991-01-01

    The tetragonal (t) to monoclinic (m) transformation in pure ZrO 2 was investigated by neutron powder diffraction at temperatures between 1900 K and room temperature. The results of a Rietveld analysis are compared with a previous investigation of the m → t transformation. The t → m transformation takes place near 1200 K (implaying a hysteresis of 300 K) and in a much smaller interval (about 150 K compared with about 600 K in the m → t case). There are no indications of a two-stage process as found for the m → t transformation. The structural parameters of the m phase depend only on temperature while those of the t phase differ at the same temperatures for the forward and reverse transformation. The temperature dependence of the lattice constants suggests an orientational relationship a t parallela m * and c t parallelb m . There are no macrostrains whereas the overall microstrain behaviour is similar in both cases, viz. the large microstrains present in both phases are released within the transformation regime. An analysis of temperature factors and diffuse background suggest dynamical disorder in the t phase and static disorder in the m phase. (orig.)

  8. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    Science.gov (United States)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  9. Structural systematics of rare earth complexes. III. Structural characterization of lanthanoid (III) picrate hydrates: gadolinium picrate dodecahydrate - an x-ray-induced phase modifications? - and some general aspects of structural chemistry of lanthanoid picrates

    International Nuclear Information System (INIS)

    Harrowfield, J.M.; Weimin, Lu; Brian, W.S.; White, A.H.

    1994-01-01

    In the course of the previous studies (Parts I and II), an unusual result was observed in the case of the structure determination of hydrated gadolinium(III) picrate. Midway through data collection, the monoclinic P2 1 /c phase modification (X-ray-induced?) to a similar cell more nearly resembling that of the La→Pr structure type recorded previously, with no loss of crystal integrity, and with useful data sets being obtained on both forms. Redetermination of the structure with a fresh sample yielded no reproduction of the anomaly. These results are recorded and discussed, together with an overview of the consequences of the data of Parts I-III in relation to those of other literature in the field. 13 refs., 4 tabs., 1 fig

  10. Structure determination of β- and γ-BaAlF 5 by X-ray and neutron powder diffraction: A model for the α → β γ transitions

    Science.gov (United States)

    Le Bail, Armel; Ferey, Gérard; Mercier, Anne-Marie; De Kozak, Ariel; Samouél, Maurice

    1990-12-01

    β-BaAlF 5 is monoclinic (space group {P2 1}/{n}): a = 5.1517(1), Å, b = 19.5666(4), Å, c = 7.5567(2), Å, β = 92.426(1)°, Z = 8. γ-BaAlF 5 is monoclinic (space group P2 1): a = 5.2584(1), Å, b = 9.7298(2), Å, c = 7.3701(2), Å, β = 90.875(1)°, Z = 4. Both structures are determined ab initio from X-ray powder data; final results are given from neutron powder data refinements ( RI = 0.038, RP = 0.072, and RWP = 0.087 and RI = 0.048, RP = 0.083, and RWP = 0.101 for the β and γ phases, respectively). Like α-BaAlF 5, the β and γ phases are built up from isolated infinite (AlF 5) 2 n- n chains with AlF 6 octahedra sharing corners in a cis-position. Close structural relationships are shown to exist between the BaAl cationic subnetwork of: α-BaAlF 5 and the CrB-type structure; β-BaAlF 5 and the SrAg-type; γ-BaAlF 5 and the FeB-type. The polymorphic transitions are proposed to be topotactic and a displacive mechanism is suggested.

  11. Electric-field-induced monoclinic phase in (Ba,Sr)TiO3 thin film

    International Nuclear Information System (INIS)

    Anokhin, A. S.; Yuzyuk, Yu. I.; Golovko, Yu. I.; Mukhortov, V. M.; El Marssi, M.

    2011-01-01

    We have studied electric-field-induced symmetry lowering in the tetragonal (001)-oriented heteroepitaxial (Ba 0.8 Sr 0.2 )TiO 3 thin film deposited on (001)MgO substrate. Polarized micro-Raman spectra were recorded from the film area in between two planar electrodes deposited on the film surface. Presence of c domains with polarization normal to the substrate was confirmed from polarized Raman study under zero field, while splitting and hardening of the E(TO) soft mode and polarization changes in the Raman spectra suggest monoclinic symmetry under external electric field.

  12. Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation

    International Nuclear Information System (INIS)

    Ai Zhihui; Huang Yu; Lee Shuncheng; Zhang Lizhi

    2011-01-01

    Research highlights: → We got the monoclinic α-Bi 2 O 3 powders after the calcinations of the plate-like (BiO) 2 CO 3 precursors at 500 deg. C for 4 h. → The synthetic α-Bi 2 O 3 showed high visible light photocatalytic activity for removal of NO and HCHO. - Abstract: The investigation was focused on the visible-light-driven photocatalytic removal of gaseous NO and HCHO at typical indoor air concentration over synthetic α-Bi 2 O 3 . Monoclinic α-Bi 2 O 3 was synthesized via calcination of hydrothermally prepared (BiO) 2 CO 3 precursor at 500 deg. C for 4 h. The synthetic α-Bi 2 O 3 samples were systematically characterized by XRD, SEM, FT-IR, and UV-vis diffuse reflectance spectra (DRS). The optical band gap energy of the resulting α-Bi 2 O 3 was estimated to be 2.72 eV from the UV-vis absorption spectra. Comparing with the commercial Bi 2 O 3 counterpart, the fabricated α-Bi 2 O 3 showed superior visible-light-induced photocatalytic activity on degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical indoor air concentration. No obvious deactivation of synthetic α-Bi 2 O 3 was observed during the prolonged photocatalytic reaction. This work suggests that the synthesized monoclinic α-Bi 2 O 3 with suitable band gap and high activity is promising photocatalyst for indoor air purification.

  13. Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography

    International Nuclear Information System (INIS)

    Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin; Barton, Bastian; Molina-Luna, Leopoldo; Neder, Reinhard B.; Kleebe, Hans-Joachim; Gesing, Thorsten M.; Schneider, Hartmut; Fischer, Reinhard X.

    2017-01-01

    The crystal structure and disorder phenomena of Al 4 B 2 O 9 , an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al 4 B 2 O 9 , prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO 6 octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al 4 B 2 O 9 studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.

  14. Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3

    Science.gov (United States)

    Mock, A.; VanDerslice, J.; Korlacki, R.; Woollam, J. A.; Schubert, M.

    2018-01-01

    We report on the temperature dependence of the dielectric tensor elements of n-type conductive β-Ga2O3 from 22 °C to 550 °C in the spectral range of 1.5 eV-6.4 eV. We present the temperature dependence of the excitonic and band-to-band transition energy parameters using a previously described eigendielectric summation approach [A. Mock et al., Phys. Rev. B 96, 245205 (2017)]. We utilize a Bose-Einstein analysis of the temperature dependence of the observed transition energies and reveal electron coupling with average phonon temperature in excellent agreement with the average over all longitudinal phonon plasmon coupled modes reported previously [M. Schubert et al., Phys. Rev. B 93, 125209 (2016)]. We also report a linear temperature dependence of the wavelength independent Cauchy expansion coefficient for the anisotropic below-band-gap monoclinic dielectric tensor elements.

  15. The crystal structure of jasrouxite, a Pb-Ag-As-Sb member of the lillianite homologous series

    DEFF Research Database (Denmark)

    Makovicky, Emil; Topa, Dan

    2014-01-01

    contain excess number of Ag sites. Unlike lillianite, the alternating (311)PbS slabs are non-equivalent and each of them has two types of differently occupied diagonal planes of atoms, always present in a 2:1 ratio. This results in triclinic symmetry with only small distortions from monoclinic metrics....... In both slab types lone electron pairs of As and Sb congregate in large micelles with elliptic cross-section. Among lillianite homologues, jasrouxite exhibits hitherto unseen complications of cation ordering, resulting from the presence of two distinct metalloids in the structure, oversubstitution by (Ag...

  16. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  17. Crystal structure of a novel cerium indide Ce{sub 6}Pt{sub 11}In{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Stepien-Damm, J.; Bukowski, Z.; Zaremba, V.I.; Pikul, A.P.; Kaczorowski, D

    2004-10-06

    The crystal structure of a new intermetallic compound Ce{sub 6}Pt{sub 11}In{sub 14} has been determined from single crystal X-ray data and was refined by a full-matrix least-squares method down to R{sub 1}=0.0497 for 1215 structure factors and 96 parameters. The unit cell is monoclinic, space group C2/m, Z=2 with the lattice parameters: a=22.729(5) A, b=4.3960(10) A, c=14.780(3) A and {beta}=118.35(3) deg. . It represents a new type of crystal structure of intermetallic compounds.

  18. The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent?

    International Nuclear Information System (INIS)

    Kisi, E H; Piltz, R O; Forrester, J S; Howard, C J

    2003-01-01

    Lead zinc niobate-lead titanate (PZN-PT) single crystals show very large piezoelectric strains for electric fields applied along the unit cell edges e.g. [001] R . It has been widely reported that this effect is caused by an electric field induced phase transition from rhombohedral (R3m) to monoclinic (Cm or Pm) symmetry in an essentially continuous manner. Group theoretical analysis using the computer program ISOTROPY indicates phase transitions between R3m and Cm (or Pm) must be discontinuous under Landau theory. An analysis of the symmetry of a strained unit cell in R3m and a simple expansion of the piezoelectric strain equation indicate that the piezoelectric distortion due to an electric field along a cell edge in rhombohedral perovskite-based ferroelectrics is intrinsically monoclinic (Cm), even for infinitesimal electric fields. PZN-PT crystals have up to nine times the elastic compliance of other piezoelectric perovskites and it might be expected that the piezoelectric strains are also very large. A field induced phase transition is therefore indistinguishable from the piezoelectric distortion and is neither sufficient nor necessary to understand the large piezoelectric response of PZN-PT

  19. Temperature-dependent index of refraction of monoclinic Ga2O3 single crystal.

    Science.gov (United States)

    Bhaumik, Indranil; Bhatt, R; Ganesamoorthy, S; Saxena, A; Karnal, A K; Gupta, P K; Sinha, A K; Deb, S K

    2011-11-01

    We present temperature-dependent refractive index along crystallographic b[010] and a direction perpendicular to (100)-plane for monoclinic phase (β) Ga(2)O(3) single crystal grown by the optical floating zone technique. The experimental results are consistent with the theoretical result of Litimein et al.1. Also, the Sellmeier equation for wavelengths in the range of 0.4-1.55 μm is formulated at different temperatures in the range of 30-175 °C. The thermal coefficient of refractive index in the above specified range is ~10(-5)/°C. © 2011 Optical Society of America

  20. Tetrakis(μ2-2,2-dimethylpropanoato-κ2O,O′bis[(pyridine-κNcopper(II]: a monoclinic polymorph

    Directory of Open Access Journals (Sweden)

    Lailatun Nazirah Ozair

    2010-05-01

    Full Text Available The structure of the dinuclear title complex, [Cu2(C5H9O24(C5H5N2], represents a monoclinic polymorph of the previously reported triclinic form [Blewett et al. (2006. Acta Cryst. E62, m420–m422]. Each carboxylate group is bidentate bridging and the distorted octahedral geometry about each CuII atom is completed by a pyridine N atom and the other Cu atom [Cu...Cu = 2.6139 (7 Å]. In the crystal, molecules are connected into supramolecular chains via π–π interactions formed by the pyridine rings [centroid–centroid distance = 3.552 (3 Å] and these are connected into a two-dimensional array in the ac plane by C—H...π contacts. One of the tert-butyl groups is disordered over two orientations in a 0.734 (6:0.266 (6 ratio.

  1. Crystal structure and phase transitions of sodium potassium niobate perovskites

    Science.gov (United States)

    Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.

    2009-02-01

    This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.

  2. Synthesis, structural, spectroscopic and thermoanalytical study of sol–gel derived SiO{sub 2}–CaO–P{sub 2}O{sub 5} gel and ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma 29, Aversa (CE) (Italy); Dell’Era, Alessandro [Department D.M.E., ‘Guglielmo Marconi’ University, via Plinio 44, Roma (Italy); Vecchio Ciprioti, Stefano, E-mail: stefano.vecchio@uniroma1.it [Department S.B.A.I., Sapienza University of Rome, via del Castro Laurenziano 7, Roma (Italy)

    2016-02-10

    Highlights: • Four different SiO{sub 2}–CaO–P{sub 2}O{sub 5} gel-glasses were synthesized by the sol–gel method. • FTIR, XRD, SEM-EDS and TG/DTA techniques were used to fully characterize the gels. • Integral isoconversional OFW method was used to study dehydration kinetics. • Appropriate temperatures of 600 and 1200 °C were chosen to thermally treat them. • All amorphous gels at 1200 °C crystallize as wollastonite and pseudowollastonite. - Abstract: In the present work bioactive powders of the ternary SiO{sub 2}·CaO·P{sub 2}O{sub 5} systems, which differ in the Ca/P molar ratio, were synthesized by means of a sol–gel route, using tetraethyl orthosilicate (TEOS, Si(OC{sub 2}H{sub 5}){sub 4}), calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}·4H{sub 2}O) and triethyl phosphate (TEP, OP(OC{sub 2}H{sub 5}){sub 3}) as precursors of SiO{sub 2}, CaO and P{sub 2}O{sub 5}, respectively. In order to investigate the influence of the relative amount of each phase (in this study: SiO{sub 2}, CaO and P{sub 2}O{sub 5}) the thermal properties of the synthesized gel-glass materials were studied as a function of the Ca/P molar ratio using thermogravimetric and differential thermal analysis (TG/DTA). After dehydration (in a single step), described from a kinetic point of view as a simple water evaporation without rupture of chemical bonds, all gels undergo a complex multi-step decomposition with endo and exothermic effects, followed by crystallization of calcium silicate phases at about 950 °C. Furthermore, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy, coupled with energy dispersive spectroscopy (SEM/EDS), allowed us to detect the chemical modifications induced by modifying the Ca/P molar ratio and the sintering. This process is obtained by thermal treatment of the gel-glass precursors after analyzing their thermal behavior in the temperature range 600–1000 °C, with the aim to convert them into

  3. RNi{sub 8}Si{sub 3} (R=Gd,Tb): Novel ternary ordered derivatives of the BaCd{sub 11} type

    Energy Technology Data Exchange (ETDEWEB)

    Pani, M., E-mail: marcella@chimica.unige.it [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Morozkin, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-2 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Provino, A.; Manfrinetti, P. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-01-15

    The title compounds have been synthesized and characterized both from the structural and magnetic point of view. Both crystallize in a new monoclinic structure strictly related to the tetragonal BaCd{sub 11} type. The structure was solved by means of X-ray single-crystal techniques for GdNi{sub 8}Si{sub 3} and confirmed for TbNi{sub 8}Si{sub 3} on powder data; the corresponding lattice parameters (obtained from Guinier powder patterns) are a=6.3259(2), b=13.7245(5), c=7.4949(3) Å, β=113.522(3)°, V{sub cell}=596.64(3) Å{sup 3} and a=6.3200(2), b=13.6987(4), c=7.4923(2) Å, β=113.494(2)°, V{sub cell}=594.88(2) Å{sup 3}. The symmetry relationship between the tI48-I4{sub 1}/amd BaCd{sub 11} aristotype and the new ordered mS48-C2/c GdNi{sub 8}Si{sub 3} derivative is described via the Bärnighausen formalism within the group theory. The large Gd–Gd (Tb–Tb) distances, mediated via Ni–Si network, likely lead to weak magnetic interactions. Low-field magnetization vs temperature measurements indicate weak and field-sensitive antiferromagnetic ground state, with ordering temperatures of 3 K in GdNi{sub 8}Si{sub 3} and about 2–3 K in TbNi{sub 8}Si{sub 3}. On the other hand, the isothermal field-dependent magnetization data show the presence of competing interactions in both compounds, with a field-induced ferromagnetic behavior for GdNi{sub 8}Si{sub 3} and a ferrimagnetic-like behavior in TbNi{sub 8}Si{sub 3} at the ordering temperature T{sub C/N} of about (or slightly higher than) 3K. The magnetocaloric effect, quantified in terms of isothermal magnetic entropy change ΔS{sub m}, has the maximum values of –19.8 J(kg K){sup −1} (at 4 K for 140 kOe field change) and −12.1 J(kg K){sup −1} (at 12 K for 140 kOe field change) in GdNi{sub 8}Si{sub 3} and TbNi{sub 8}Si{sub 3}, respectively. - Graphical abstract: GdNi{sub 8}Si{sub 3} and TbNi{sub 8}Si{sub 3} compounds are isostructural, and crystallize in a new monoclinic type strictly related to the tetragonal

  4. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting

    2009-01-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 5...... to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy....

  5. Neutron powder diffraction investigation on the crystal and magnetic structure of (Ho{sub 0.50+x}Ca{sub 0.50-x})(Mn{sub 1-x}Cr{sub x})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, A; Ferretti, M [SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Castellano, C [Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita degli Studi di Milano, Via C Venezian 21, 20133 Milano (Italy); Cimberle, M R; Masini, R [IMEM-CNR, Via Dodecaneso 33, 16146 Genova (Italy); Ritter, C, E-mail: alberto.martinelli@spin.cnr.it [Institute Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2011-10-19

    The crystal and magnetic structure of (Ho{sub 0.50+x}Ca{sub 0.50-x})(Mn{sub 1-x}Cr{sub x})O{sub 3} (x = 0.00, 0.01, 0.02, 0.03) has been investigated between 5 and 300 K by means of neutron powder diffraction followed by Rietveld refinement and dc magnetic measurements. During cooling an orthorhombic to monoclinic phase transition occurs on account of the charge and orbital ordering taking place in the Mn sub-lattice; at low temperature phase separation takes place and the main monoclinic phase coexists with a secondary orthorhombic phase, whose amount slightly increases with the increase of Cr content. Cr{sup 3+} is not involved in orbital ordering or superexchange interactions. The charge and magnetic ordering are decoupled: the Mn moments order according to a CE-type structure in all samples. (paper)

  6. Nd4Cu2O7: A copper(I) oxide with a novel cooperatively distorted T' type structure

    International Nuclear Information System (INIS)

    Pederzolli, D.R.; Attfield, J.P.

    1998-01-01

    The crystal structure of Nd 4 Cu 2 O 7 (monoclinic, space group A2/m, a = 8.4493(2) angstrom, b = 3.7591(1) angstrom, C = 12.6006(5) angstrom, β = 109.576(4)degree, Z = 2) prepared by topotactic reduction of the high-T c superconductor parent phase Nd 2 CuO 4 , has been determined by Rietveld fitting of time-of-flight neutron powder diffraction data (R wp = 1.90%). A novel oxygen-vacancy-ordered arrangement of cooperatively distorted Cu 2 O 3 planes containing 2- and 4-coordinate Cu + sites is found

  7. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2014-11-15

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  8. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Science.gov (United States)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  9. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-01-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations

  10. Syntheses, structures, and photoluminescence of lanthanide coordination polymers based on 4-oxo-1,4-dihydro-2,6-pyridinedicarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jing; Li, Lei; Peng, Jing-Wei; Qiao, Wei-Wei; Sun, Mei-Mei [College of Chemistry, Tianjin Normal University, Tianjin (China); Gu, Wen [College of Chemistry, Nankai University, Tianjin (China)

    2018-03-15

    Investigating the coordination chemistry of H{sub 2}CDA (4-oxo-1,4-dihydro-2,6-pyridinedicarboxylic acid) with rare earth salts Ln(NO{sub 3}){sub 3} under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H{sub 2}CDA charged to its position isomer, enol type structure, H{sub 3}CAM (4-hydroxypyridine-2,6-dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H{sub 2}O){sub 3}]{sub n} [Ln = La (1), Pr, (2)] and {[Ln(CAM)(H_2O)_3].H_2O}{sub n} [Ln = Nd, (3), Sm, (4), Eu, (5), Y, (6)] were synthesized and characterized. The X-ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3-6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C{sub 2}/c space group, whereas 3-6 crystallize in the monoclinic system with space group P2{sub 1}/n. In the two kinds of structures, H{sub 3}CAM displays two different coordination modes. The Sm{sup III} and Eu{sup III} complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Structural, morphological, optical and photoluminescence properties of HfO2 thin films

    International Nuclear Information System (INIS)

    Ma, C.Y.; Wang, W.J.; Wang, J.; Miao, C.Y.; Li, S.L.; Zhang, Q.Y.

    2013-01-01

    Nanocrystalline monoclinic HfO 2 films with an average crystal size of 4.2–14.8 nm were sputter deposited under controlled temperatures and their structural characteristics and optical and photoluminescence properties have been evaluated. Structural investigations indicate that monoclinic HfO 2 films grown at higher temperatures above 400 °C are highly oriented along the (− 111) direction. The lattice expansion increases with diminishing HfO 2 crystalline size below 6.8 nm while maximum lattice expansion occurs with highly oriented monoclinic HfO 2 of crystalline size about 14.8 nm. The analysis of atomic force microscopy shows that the film growth at 600 °C can be attributed to the surface-diffusion-dominated growth. The intensity of the shoulderlike band that initiates at ∼ 5.7 eV and saturates at 5.94 eV shows continued increase with increasing crystalline size, which is intrinsic to nanocrystalline monoclinic HfO 2 films. Optical band gap varies in the range 5.40 ± 0.03–5.60 ± 0.03 eV and is slightly decreased with the increase in crystalline size. The luminescence band at 4.0 eV of HfO 2 films grown at room temperature can be ascribed to the vibronic transition of excited OH · radical while the emission at 3.2–3.3 eV for the films grown at all temperatures was attributed to the radiative recombination at impurity and/or defect centers. - Highlights: • Nanocrystalline monoclinic HfO 2 films were sputter deposited. • Structural, optical and photoluminescence properties were studied. • To analyze the scaling behavior using the power spectral density • Optical and photoluminescence properties strongly depend on film growth temperature

  12. Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates.

    Science.gov (United States)

    Marler, B; Wang, Y; Song, J; Gies, H

    2014-07-21

    Five different hydrous layer silicates (HLSs) containing fer layers (ferrierite-type layers) were obtained by hydrothermal syntheses from mixtures of silicic acid, water and tetraalkylammonium/tetraalkylphosphonium hydroxides. The organic cations had been added as structure directing agents (SDA). A characteristic feature of the structures is the presence of strong to medium strong hydrogen bonds between the terminal silanol/siloxy groups of neighbouring layers. The five-layered silicates differ chemically only with respect to the organic cations. Structurally, they differ with respect to the arrangement of the fer layers relative to each other, which is distinct for every SDA-fer-layer system. RUB-20 (containing tetramethylammonium) and RUB-40 (tetramethylphosphonium) are monoclinic with stacking sequence AAA and shift vectors between successive layers 1a0 + 0b0 + 0.19c0 and 1a0 + 0b0 + 0.24c0, respectively. RUB-36 (diethyldimethylammonium), RUB-38 (methyltriethylammonium) and RUB-48 (trimethylisopropylammonium) are orthorhombic with stacking sequence ABAB and shift vectors 0.5a0 + 0b0± 0.36c0, 0.5a0 + 0b0 + 0.5c0 and 0.5a0 + 0b0± 0.39c0, respectively. Unprecedented among the HLSs, two monoclinic materials are made up of fer layers which possess a significant amount of ordered defects within the layer. The ordered defects involve one particular Si-O-Si bridge which is, to a fraction of ca. 50%, hydrolyzed to form nests of two ≡Si-OH groups. When heated to 500-600 °C in air, the HLSs condense to form framework silicates. Although all layered precursors were moderately to well ordered, the resulting framework structures were of quite different crystallinity. The orthorhombic materials RUB-36, -38 and -48, general formula SDA4Si36O72(OH)4, which possess very strong hydrogen bonds (d[O···O] ≈ 2.4 Å), transform into a fairly or well ordered CDO-type silica zeolite RUB-37. The monoclinic materials RUB-20 and -40, general formula SDA2Si18O36(OH)2OH, possessing

  13. Synthesis and photoluminescence properties of Sm{sup 3+}substituted glaserite-type orthovanadates K{sub 3}Y[VO{sub 4}]{sub 2} with monoclinic structure

    Energy Technology Data Exchange (ETDEWEB)

    Duke John David, A., E-mail: dukejohndavid02@gmail.com [Voorhees College, Vellore, Tamil Nadu (India); Muhammad, G. Shakil [Islamiah College, Vaniyambadi, Tamil Nadu (India); Sivakumar, V. [National Institute of Technology (NIT), Rourkela (India)

    2016-09-15

    A novel phosphor of Glaserite type Orthovanadate K{sub 3}Y[VO{sub 4}]{sub 2} substituted with the trivalent rare-earth Sm{sup 3+} ions were synthesized by the conventional high temperature solid-state reaction method, their structural characterization and photoluminescent properties were investigated by X-ray diffraction and spectrofluorimetry. The phase-purity of glaserite structure in the synthesized compound was verified by XRD study. The morphology was measured by FESEM. Host lattice emits broad-band green color and it is originated from the [VO{sub 4}]{sup 3−}. Photoluminescence studies of Sm{sup 3+} activated samples show orange red emission. The charge transfer behaviours from [VO{sub 4}]{sup 3−} to Sm{sup 3+} ions (host to activator) in K{sub 3}Y{sub (1−x)}[VO{sub 4}]{sub 2}: {sub x}Sm{sup 3+} phosphors have been confirmed by photoluminescence and PL decay life time measurement. No concentration quenching was observed even for higher concentration of the dopant Sm{sup 3+} ions. The CIE chromaticity color coordinate values were calculated and it is very much closer to the NTSC standards. All the results clearly indicate that self-activated K{sub 3}Y{sub 1−x}[VO{sub 4}]{sub 2} with the rare earth {sub x}Sm{sup 3+} activated phosphors show great potential as a phosphor material for near-UV based white LEDs.

  14. Synthesis process and structural characterization of the Sr{sub 2}EuRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales (GFNM), Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 5997 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales (GFNM), Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 5997 (Colombia)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Crystal structure, surface morphology and composition of Sr{sub 2}EuRuO{sub 6} have been studied. Black-Right-Pointing-Pointer Sr{sub 2}EuRuO{sub 6} crystallize in a monoclinic perovskite-type structure in P2{sub 1}/n space group. Black-Right-Pointing-Pointer Ru{sup 5+} and Eu{sup 3+} ions are on the six coordinate M sites, Sr{sup 2+} is located in the A-site. Black-Right-Pointing-Pointer Scanning electron microscopy and Scherrer formula shows a particle size of D = 34.2 nm. Black-Right-Pointing-Pointer Activation energy Q through the Arrhenius plot for Sr{sub 2}EuRuO{sub 6} is close to 39.6 kJ/mol. - Abstract: The Sr{sub 2}EuRuO{sub 6} complex perovskite has been synthesized by the solid-state reaction method and the crystal structure, surface morphology and composition have been investigated. Results of powder X-ray diffraction measurements and Rietveld analysis show that this compound crystallizes in a monoclinic distorted perovskite-type structure, which belongs to the monoclinic P2{sub 1}/n (no. 14) space group, that corresponds to the (a{sup +}b{sup -}b{sup -}) tilt system on the Glazer notation. The structure presents an alternating distribution of the Ru{sup 5+} and Eu{sup 3+} ions on the six coordinate M sites, while the Sr{sup 2+} is located in the A-site of the Sr{sub 2}EuRuO{sub 6} complex perovskite, with lattice parameters a = 5.7996(5) Angstrom-Sign , b = 5.8960(7) Angstrom-Sign , c = 8.3234(6) Angstrom-Sign , angle {beta} = 90.234(7) Degree-Sign and V = 284.61(4) Angstrom-Sign {sup 3}. Morphological analysis of this material, performed by scanning electron microscopy (SEM), allows to establish the granular feature of compound with agglomerates from amongst Almost-Equal-To 1 to 3 {mu}m size, and by means of the Scherrer formula was calculated a particle size of D = 34.2 nm. Result suggests that crystal structure of the Sr{sub 2}EuRuO{sub 6} suffers grain size-induced polarization rotation, which produces a

  15. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  16. A new solid solution compound with the Sr{sub 21}Mn{sub 4}Sb{sub 18} structure type. Sr{sub 13}Eu{sub 8}Cd{sub 3}Mn{sub 1}Sb{sub 18}

    Energy Technology Data Exchange (ETDEWEB)

    Kunz Wille, Elizabeth L.; Cooley, Joya A.; Fettinger, James C.; Kazem, Nasrin; Kauzlarich, Susan M. [California Univ., Davis, CA (United States). Dept. of Chemistry

    2017-09-01

    The title compound with the nominal formula, Sr{sub 13}Eu{sub 8}Cd{sub 3}Mn{sub 1}Sb{sub 18}, was synthesized by Sn-flux. Structure refinement was based on single-crystal X-ray diffractometer data. Employing the exact composition, the formula is Sr{sub 13.23}Eu{sub 7.77}Cd{sub 3.12}Mn{sub 0.88}Sb{sub 18} for the solid solution Sr{sub 21-x}Eu{sub x}Cd{sub 4-y}Mn{sub y}Sb{sub 18}. This phase adopts the Sr{sub 21}Mn{sub 4}Sb{sub 18} type structure with site preferences for both Eu and Cd. The structure crystallizes in the monoclinic system in space group C2/m and Z=4: a=18.1522(11), b=17.3096(10), c=17.7691(10) Aa, β=91.9638(8) , 6632 F{sup 2} values, 216 variables, R1=0.0254 and wR2=0.0563. Site selectivity of the elements in this new compound will be discussed in relationship with the Sr{sub 21}Mn{sub 4}Sb{sub 18} type structure and other related structure types. Temperature dependent magnetic susceptibility data reveal Curie-Weiss paramagnetism with an experimental moment of 19.3 μ{sub B}/f.u. and a Weiss constant of 0.4 K. Magnetic ordering is seen at low temperatures, with a transition temperature of 3.5 K.

  17. Synthesis and characterization of monoclinic KGd(WO4)2 particles for non-cubic transparent ceramics

    Science.gov (United States)

    Thangaraju, D.; Durairajan, A.; Balaji, D.; Moorthy Babu, S.

    2013-02-01

    Monoclinic KGd(WO4)2 (KGW) particles were synthesized using polymeric metal complex sol-gel synthesis method. The derived particles were made as colloidal suspension form for better rotation of particles to have optimum response for applied magnetic field. The KGW fine particle suspension was prepared using electrostatic repulsion by electrolyte polymer. Prepared suspension was kept at 2 T and particles were settled using electrophoretic sedimentation using pH adjustment. The derived sediment was dried at 100 °C and the properties were characterized using XRD.

  18. Low-temperature structural phase transition in synthetic libethenite Cu2PO4OH

    International Nuclear Information System (INIS)

    Belik, Alexei A.; Naumov, Pance; Kim, Jungeun; Tsuda, Shunsuke

    2011-01-01

    Low-temperature structural properties of the synthetic mineral libethenite Cu 2 PO 4 OH were investigated by single-crystal X-ray diffraction, synchrotron X-ray powder diffraction, specific heat measurements, and Raman spectroscopy. A second-order structural phase transition from the Pnnm symmetry (a=8.0553(8) A, b=8.3750(9) A, c=5.8818(6) A at 180 K) to the P2 1 /n symmetry (a=8.0545(8) A, b=8.3622(9) A, c=5.8755(6) A, β=90.0012(15) at 120 K) was found at 160 K during cooling. At 120 K, the monoclinic angle is 90.0012(15) from single crystal X-ray data vs 90.083(1) from powder X-ray diffraction data. The P2 1 /n-to-Pnnm transition may be a general feature of the adamite-type compounds, M 2 XO 4 OH. - Graphical Abstract: Fragments of experimental synchrotron X-ray powder diffraction patterns of Cu 2 PO 4 OH between 100 and 280 K. Arrows show additional reflections that appear below 160 K in the monoclinic P2 1 /n phase. Highlights: → A low-temperature phase transition was found in the mineral libethenite Cu 2 PO 4 OH. → No magnetic anomalies and weak specific heat anomalies are detected. → Phase transition is of the second order. → Libethenite may exemplify a general feature of the adamite-type compounds.

  19. Crystal structure of the new ternary thorium indide Th{sub 4}Pd{sub 10}In{sub 21}

    Energy Technology Data Exchange (ETDEWEB)

    Hlukhyy, V.; Zaremba, V.; Stepien-Damm, J.; Troc, R

    2003-03-24

    The structure of Th{sub 4}Pd{sub 10}In{sub 21} was refined from single crystal X-ray diffraction data. The compound crystallizes in the monoclinic system, space group C2/m, mC70; with lattice parameters a=23.024(5) A, b=4.512(1) A, c=17.224(3) A, {beta}=124.57(3) deg. The crystal structure was refined using the SHELXL-97 program (R{sub 1}=0.0477, 2561 F{sup 2} values for 108 variables). This compound adopts the Ho{sub 4}Ni{sub 10}Ga{sub 21}-type structure. The crystal chemistry and relationships of this phase to other ones are briefly discussed.

  20. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO{sub 4}.0.667H{sub 2}O to the hexagonal LnPO{sub 4} (Ln = Nd, Sm, Gd, Eu and Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Mesbah, Adel, E-mail: adel.mesbah@cea.fr [ICSM, UMR 5257 CNRS – CEA – ENSCM – Université de Montpellier, Site de Marcoule - Bât 426, BP 17171, 30207 Bagnols/Cèze (France); Clavier, Nicolas [ICSM, UMR 5257 CNRS – CEA – ENSCM – Université de Montpellier, Site de Marcoule - Bât 426, BP 17171, 30207 Bagnols/Cèze (France); Elkaim, Erik [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Szenknect, Stéphanie; Dacheux, Nicolas [ICSM, UMR 5257 CNRS – CEA – ENSCM – Université de Montpellier, Site de Marcoule - Bât 426, BP 17171, 30207 Bagnols/Cèze (France)

    2017-05-15

    The dehydration process of the hydrated rhabdophane LnPO{sub 4}.0.667H{sub 2}O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO{sub 4}.0.667H{sub 2}O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å{sup 3}. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrous form, which crystallizes in the hexagonal P3{sub 1}21 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å{sup 3}. This study was extended to selected LnPO{sub 4}.0.667H{sub 2}O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO{sub 4}.0.5H{sub 2}O. - Graphical abstract: The dehydration process of the rhabdophane SmPO{sub 4}.0.667H{sub 2}O was studied over combination of in situ high resolution synchrotron powder diffraction and TGA techniques, a first dehydration was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2). Then above 220 °C, the anhydrous form of the rhabdophane SmPO{sub 4} was stabilized and crystallizes in the hexagonal P3{sub 1}21 space group. - Highlights: • In situ synchrotron powder diffraction was carried out during the dehydration of the rhabdopahe LnPO{sub 4}.0.667H{sub 2}O. • The heat of the rhabdophane LnPO{sub 4}.0.667H{sub 2}O leads to LnPO{sub 4}.0.5H{sub 2}O then to anhydrous rhabdophane LnPO{sub 4}. • LnPO{sub 4}.0.5H{sub 2}O (monoclinic, C2) and LnPO{sub 4} (Hexagonal, P3{sub 1}21) were solved over the use of direct methods.

  1. Structural, magnetic, and electronic properties of iron selenide Fe{sub 6-7}Se{sub 8} nanoparticles obtained by thermal decomposition in high-temperature organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, I. S., E-mail: lyubutinig@mail.ru, E-mail: crlin@mail.npue.edu.tw; Funtov, K. O.; Dmitrieva, T. V.; Starchikov, S. S. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Lin, Chun-Rong, E-mail: lyubutinig@mail.ru, E-mail: crlin@mail.npue.edu.tw [Department of Applied Physics, National Pingtung University of Education, Pingtung 90003, Taiwan (China); Siao, Yu-Jhan [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan (China); Chen, Mei-Li [Department of Electro-optical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan (China)

    2014-07-28

    Iron selenide nanoparticles with the NiAs-like crystal structure were synthesized by thermal decomposition of iron chloride and selenium powder in a high-temperature organic solvent. Depending on the time of the compound processing at 340 °C, the nanocrystals with monoclinic (M)-Fe{sub 3}Se{sub 4} or hexagonal (H)-Fe{sub 7}Se{sub 8} structures as well as a mixture of these two phases can be obtained. The magnetic behavior of the monoclinic and hexagonal phases is very different. The applied-field and temperature dependences of magnetization reveal a complicated transformation between ferrimagnetic (FRM) and antiferromagnetic (AFM) structures, which can be related to the spin rotation process connected with the redistribution of cation vacancies. From XRD and Mössbauer data, the 3c type superstructure of vacancy ordering was found in the hexagonal Fe{sub 7}Se{sub 8}. Redistribution of vacancies in Fe{sub 7}Se{sub 8} from random to ordered leads to the transformation of the magnetic structure from FRM to AFM. The Mössbauer data indicate that vacancies in the monoclinic Fe{sub 3}Se{sub 4} prefer to appear near the Fe{sup 3+} ions and stimulate the magnetic transition with the rotation of the Fe{sup 3+} magnetic moments. Unusually high coercive force H{sub c} was found in both (H) and (M) nanocrystals with the highest (“giant”) value of about 25 kOe in monoclinic Fe{sub 3}Se{sub 4}. This is explained by the strong surface magnetic anisotropy which is essentially larger than the core anisotropy. Such a large coercivity is rare for materials without rare earth or noble metal elements, and the Fe{sub 3}Se{sub 4}-based compounds can be the low-cost, nontoxic alternative materials for advanced magnets. In addition, an unusual effect of “switching” of magnetization in a field of 10 kOe was found in the Fe{sub 3}Se{sub 4} nanoparticles below 280 K, which can be important for applications.

  2. Elucidating structural order and disorder phenomena in mullite-type Al{sub 4}B{sub 2}O{sub 9} by automated electron diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haishuang; Krysiak, Yaşar [Institute of Inorganic Chemistry and Analytical Chemistry, Jakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, 55128 Mainz (Germany); Hoffmann, Kristin [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); Institute of Inorganic Chemistry and Crystallography, Leobener Str. NW2, University of Bremen, 28359 Bremen (Germany); Barton, Bastian [Institute of Inorganic Chemistry and Analytical Chemistry, Jakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, 55128 Mainz (Germany); Molina-Luna, Leopoldo [Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Neder, Reinhard B. [Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr.3, 91058 Erlangen (Germany); Kleebe, Hans-Joachim [Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Gesing, Thorsten M. [Institute of Inorganic Chemistry and Crystallography, Leobener Str. NW2, University of Bremen, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstr.1, University of Bremen, 28359 Bremen (Germany); Schneider, Hartmut [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); Fischer, Reinhard X. [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstr.1, University of Bremen, 28359 Bremen (Germany); and others

    2017-05-15

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.

  3. Relation between Kitaev magnetism and structure in α -RuCl3

    Science.gov (United States)

    Glamazda, A.; Lemmens, P.; Do, S.-H.; Kwon, Y. S.; Choi, K.-Y.

    2017-05-01

    Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material α -RuCl3 and its Heisenberg counterpart CrCl3. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only α -RuCl3 features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of 70 -170 K, we observe a hysteretic behavior of magnetic excitations as well. The stronger magnetic response in the rhombohedral compared to the monoclinic phase evidences a coupling between the crystallographic structure and low-energy magnetic response. Our results demonstrate that the Kitaev magnetism concomitant with fractionalized excitations is susceptible to small variations of bonding geometry.

  4. Rietveld refinement of magnetic structures from pulsed-neutron-source powder-diffraction data

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lawson, A.C.; Larson, A.C.; Von Dreele, R.B.; Goldstone, J.A.

    1994-01-01

    The General Structure Analysis System, GSAS, has recently been modified to include magnetic neutron- scattering cross-sections. Low-temperature diffraction data have been taken on the hexagonal noncollinear antiferromagnet UPdSn on both the HIPD and the NPD powder diffractometers ail LANSCE. The low-resolution data reveal that the magnetic structure has orthorhombic symmetry (magnetic space group P c m'c2 1 ) between 25K and 40K, and monoclinic symmetry (magnetic space group PC 1121 ) below 25K. The high-resolution data reveal that there are structural distortions with corresponding symmetry changes in each of these phases, to give chemical space groups Cmc2 1 and P2 1 , respectively, while the paramagnetic phase above 40K has space group P6 3 mc. Using GSAS, we have refined data sets from both diffractometers simultaneously, including both magnetic and structural cross-sections. Magnetoelastic coefficients for the distortions have been extracted and we have determined the sign of the coupling between the structural monoclinicity and the magnetic monoclinicity. The magnetic results from Rietveld refinement are in good agreement with model fitting to the integrated intensities of seven independent magnetic reflections and these, in turn, agree with measurements made on the same sample using the constant-wavelength reactor technique. Our results therefore validate, to some level, both the technique of using spallation sources for complicated magnetic structures and the specifics of the GSAS Rietveld code

  5. Impact of growth temperature on the crystal habits, forms and structures of VO2 nanocrystals

    International Nuclear Information System (INIS)

    Loeffler, Stefan; Auer, Erwin; Lugstein, Alois; Bertagnolli, Emmerich; Weil, Matthias

    2011-01-01

    We investigated the impact of the process temperature on the habits, forms and crystal structure of VO 2 nanocrystals grown by a vapor-transport method on (0001) quartz substrates. Four distinct growth regimes were discerned: orthorhombic nanowires, sheets, hemispheres, and nanowires with a monoclinic structure. The nanostructures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). I/V characterization of individual nanowires was enabled by Ti/Au contact formation via electron beam lithography and lift-off techniques. The expected metal-insulator transition (MIT) was found in monoclinic VO 2 nanowires. (orig.)

  6. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Triana, C.A.; Corredor, L.T.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2011-01-01

    Highlights: ► Crystal structure, thermal expansion and phase transitions at high-temperature of Sr 2 GdRuO 6 perovskite has been investigated. ► X-ray diffraction pattern at 298 K of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with P2 1 /n space group. ► Evolution of X-ray diffraction patterns at high-temperature shows that the Sr 2 GdRuO 6 perovskite suffers two-phase transitions. ► At 573 K the X-ray diffraction pattern of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with I2/m space group. ► At 1273 K the Sr 2 GdRuO 6 perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr 2 GdRuO 6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2 1 /n (no. 14) space group and 1:1 ordered arrangement of Ru 5+ and Gd 3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å 3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å 3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å 3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87) is characterized

  7. Piezo-optic and elasto-optic properties of monoclinic triglycine sulfate crystals.

    Science.gov (United States)

    Mytsyk, Bogdan; Demyanyshyn, Natalya; Erba, Alessandro; Shut, Viktor; Mozzharov, Sergey; Kost, Yaroslav; Mys, Oksana; Vlokh, Rostyslav

    2017-12-01

    For the first time, to the best of our knowledge, we have experimentally determined all of the components of the piezo-optic tensor for monoclinic crystals. This has been implemented on a specific example of triglycine sulfate crystals. Based on the results obtained, the complete elasto-optic tensor has been calculated. Acousto-optic figures of merit (AOFMs) have been estimated for the case of acousto-optic interaction occurring in the principal planes of the optical indicatrix ellipsoid and for geometries in which the highest elasto-optic coefficients are involved as effective parameters. It has been found that the highest AOFM value is equal to 6.8×10 -15   s 3 /kg for the case of isotropic acousto-optic interaction with quasi-longitudinal acoustic waves in the principal planes. This AOFM is higher than the corresponding values typical for canonic acousto-optic materials, which are transparent in the deep ultraviolet spectral range.

  8. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  9. Elastic behavior of MFI-type zeolites: 3 - Compressibility of silicalite and mutinaite

    Energy Technology Data Exchange (ETDEWEB)

    Quartieri, Simona, E-mail: squartieri@unime.it [Dipartimento di Scienze della Terra, Universita di Messina, Viale Ferdinando Stagno d' Alcontres 31, 98166 Messina S. Agata (Italy); Arletti, Rossella [Dipartimento di Scienze Mineralogiche e Petrologiche, Via Valperga Caluso 35, 10125 Torino (Italy); Vezzalini, Giovanna [Dipartimento di Scienze della Terra, Universita di Modena e Reggio Emilia, Via S. Eufemia 19, 41100 Modena (Italy); Di Renzo, Francesco [Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, 8 rue Ecole Normale, 34296 Montpellier (France); Dmitriev, Vladimir [Swiss-Norwegian Beam Line at ESRF, BP220, 38043 Grenoble Cedex (France)

    2012-07-15

    We report the results of an in-situ synchrotron X-ray powder diffraction study - performed using silicone oil as 'non-penetrating' pressure transmitting medium - of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2{sub 1}/n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K{sub 0}=18.2(2) and K{sub 0}=14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P{sub amb} and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites - which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents - show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: Black-Right-Pointing-Pointer X-ray powder

  10. The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB{sub 9}H{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hui, E-mail: hui.wu@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Tang, Wan Si [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Zhou, Wei [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Tarver, Jacob D. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); National Renewable Energy Laboratory, Golden, CO 80401 (United States); Stavila, Vitalie [Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94551 (United States); Brown, Craig M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Udovic, Terrence J., E-mail: udovic@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States)

    2016-11-15

    Two ordered phases of the novel solid superionic conductor sodium 1-carba-closo-decaborate (NaCB{sub 9}H{sub 10}) were identified via synchrotron x-ray powder diffraction in combination with first-principles calculations and neutron vibrational spectroscopy. A monoclinic packing of the large ellipsoidal CB{sub 9}H{sub 10}{sup −} anions prevails at the lowest temperatures, but a first-order transformation to a slightly modified orthorhombic packing is largely complete by 240 K. The CB{sub 9}H{sub 10}{sup −} anion orientational alignments and Na{sup +} cation interstitial sitings in both phases are arranged so as to minimize the cation proximities to the uniquely more positive C-bonded H atoms of the anions. These results provide valuable structural information pertinent to understanding the relatively low-temperature, entropy-driven, order-disorder phase transition for this compound. - Graphical abstract: Ordered monoclinic and orthorhombic NaCB{sub 9}H{sub 10} phases were determined by XRD and DFT computations and corroborated by neutron vibrational spectroscopy. - Highlights: • Two T-dependent ordered structures of Na(1-CB{sub 9}H{sub 10}) were determined by XRD. • The lower-T monoclinic to higher-T orthorhombic transition occurs from 210 to 240 K. • The main structural differences involve changes in the canting of the CB{sub 9}H{sub 10}{sup −} anions. • DFT and neutron vibrational spectroscopy corroborate the lower-T monoclinic structure. • The results are important for understanding the nature of this superionic conductor.

  11. Optical and magneto-optical properties of the monoclinic phase of the C{sub 70} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yaghobi, Mojtaba [Islamic Azad University, Ayatollah Amoli Branch, Amol (Iran, Islamic Republic of); Koohi, Ardavan, E-mail: m.yaghoubi@iauamol.ac.i [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2010-12-15

    Using the Hartree-Fock (HF) single-excitation configuration interaction (CI) model in conjunction with the local field method, the dielectric tensor, birefringence coefficient, circular dichroism, refractive index and effects of spatial dispersion on the dispersion relation for transverse normal polariton waves of the monoclinic phase of the C{sub 70} crystal are calculated. Our results indicate that the anisotropy of the C{sub 70} molecule remains in C{sub 70} solids. Also, our results on the effect of spatial dispersion, compared with the non-dispersive case, indicate that the coupling of the transverse electromagnetic field with the first and second excitonic states is very weak.

  12. Elastic behavior of MFI-type zeolites: 3 – Compressibility of silicalite and mutinaite

    International Nuclear Information System (INIS)

    Quartieri, Simona; Arletti, Rossella; Vezzalini, Giovanna; Di Renzo, Francesco; Dmitriev, Vladimir

    2012-01-01

    We report the results of an in-situ synchrotron X-ray powder diffraction study – performed using silicone oil as “non-penetrating” pressure transmitting medium – of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2 1 /n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K 0 =18.2(2) and K 0 =14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P amb and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites – which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents – show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: ► X-ray powder diffraction study of silicalite and mutinaite

  13. New mechanism of structuring associated with the quasi-merohedral twinning by an example of Ca{sub 1–x}La{sub x}F{sub 2+x} ordered solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, S. K., E-mail: maksimov-sk@comtv.ru [National Research University MIET (Laboratory of EMI) (Russian Federation); Maksimov, K. S., E-mail: kuros@rambler.ru [Institute VIMI FSUE (Russian Federation); Sukhov, N. D. [Moscow State University (Faculty of Physics) (Russian Federation); Lovygin, M. V. [National Research University MIET (Laboratory of EMI) (Russian Federation)

    2015-10-15

    Merohedry is considered an inseparable property of atomic structures, and uses for the refinement of structural data in a process of correct determination of structure of compounds. Transformation of faulty structures stimulated by decreasing of systemic cumulative energy leads to generation of merohedral twinning type. Ordering is accompanied by origin of antiphase domains. If ordering belongs to the CuAu type, it is accompanied by tetragonal distortions along different (100) directions. If a crystal consists of mosaic of nanodimensional antiphase domains, the conjugation of antiphase domains with different tetragonality leads to monoclinic distortions, at that, conjugated domains are distorted mirrorly. Similar system undergoes further transformation by means of quasi-merohedral twinning. As a result of quasi-merohedry, straight-lines of lattices with different monoclinic distortions are transformed into coherent lattice broken-lines providing minimization of the cumulative energy. Structuring is controlled by regularities of the self-organization. However stochasticity of ordering predetermines the origin areas where few domains with different tetragonality contact which leads to the origin of faulty fields braking regular passage of structuring. Resulting crystal has been found structurally non-uniform, furthermore structural non-uniformity permits identifying elements and stages of a process. However there is no precondition preventing arising the origin of homogenous states. Effect has been revealed in Ca{sub 1–x}La{sub x}F{sub 2+x} solid solution, but it can be expected that distortions of regular alternation of ions similar to antiphase domains can be obtained in non-equilibrium conditions in compounds and similar effect of the quasi-merohedry can falsify results of structural analysis.

  14. Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Insitute, Anushakti Nagar, Mumbai 400094 (India); Patwe, S. J. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sinha, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mishra, R. K.; Kumar, Amar; Kaushik, C. P. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-05-23

    Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometric analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.

  15. Synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yang; Zhuang, Yan; Guo, Sheng-Ping [Yangzhou Univ., Jiangsu (China). College of Chemistry and Chemical Engineering

    2017-03-01

    The synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5} are reported. It is synthesized by high-temperature solid-state reaction and crystallizes in the monoclinic space group P2{sub 1}/c (no. 14) with the unit cell parameters a=4.8860(5), b=7.5229(8), c=9.9587(10) Aa, and β=91.709(3) . Its crystal structure features a polyanion-type layer (GeBO{sub 5}){sup 3-} constructed by BO{sub 4} and GeO{sub 4} tetrahedra connected alternatingly. Eu{sup 3+} ions are located in cavities and are coordinated by eight O atoms. Various structures of the related compounds REMM'O{sub 5} (RE=rare earth metal; M=Si, Ge, and Sn; M'=B, Al, and Ga) are also discussed.

  16. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    Science.gov (United States)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  17. Peculiarities of structural transformations in zirconia nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, A., E-mail: a.k.vasilevskaya@gmail.com [Technical University, Saint-Petersburg State Institute of Technology (Russian Federation); Almjasheva, O. V. [Saint-Petersburg Electrotechnical University “LETI” (Russian Federation); Gusarov, V. V. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation)

    2016-07-15

    The transitions of metastable tetragonal phase as well as high-temperature tetragonal phase into the low-temperature monoclinic phase upon heating and cooling were thoroughly studied in zirconia nanoparticles. High-temperature X-ray diffraction, thermal analysis and Raman spectroscopy were used to provide the systematic approach to the investigation of zirconia nanoparticles thermal behavior. A phase transformation sequence in the ZrO{sub 2}–H{sub 2}O system was determined, and the mechanisms of tetragonal-to-monoclinic transition upon heating and cooling were suggested. Here, the phenomenon was found and described, which was determined as “self-powdering” of nanoparticles occurring during structural transition. This phenomenon was observed by in situ investigation of the evolution of crystalline nanoparticles from amorphous zirconium hydroxide during thermal treatment in air. The tetragonal-to-monoclinic phase transition, induced by cooling from the temperature of equilibrium of tetragonal zirconia (i.e., above 1170 °C), is accompanied by a significant crystallite size decrease (with corresponding 3–4 times decrease of crystallite volume). The experimental results facilitate applications of zirconia nanoparticles to obtain high-performance nanopowders for nanoceramics.

  18. Roentgenological structural types of the unaltered breast

    International Nuclear Information System (INIS)

    Kolganova, I.P.; Zal'tsman, I.N.

    1981-01-01

    The authors present a roentgenoanatomical analysis of normal breast specimens and mammograms of 324 healthy women aged 31 to 60. Four roentgenological structural types of the unaltered breast have been singled out: linear-reticular, lamellar-cellular, large focal, and a single polygonal shadow. These structural types were detected in age groups from 31 to 40, from 41 to 50, and from 51 to 60 with various frequency. Each type corresponds to a certain morphological and functional state of the breast. The frequency of the 2nd and 4th types decreases and of the 1st type increases with advancing age [ru

  19. Roentgenological structural types of the unaltered breast

    Energy Technology Data Exchange (ETDEWEB)

    Kolganova, I P; Zal' tsman, I N [Akademiya Meditsinskikh Nauk RSFSR, Moscow. Pervyj Moskovskij Meditsinskij Inst.

    1981-11-01

    The authors present a roentgenoanatomical analysis of normal breast specimens and mammograms of 324 healthy women aged 31 to 60. Four roentgenological structural types of the unaltered breast have been singled out: linear-reticular, lamellar-cellular, large focal, and a single polygonal shadow. These structural types were detected in age groups from 31 to 40, from 41 to 50, and from 51 to 60 with various frequency. Each type corresponds to a certain morphological and functional state of the breast. The frequency of the 2nd and 4th types decreases and of the 1st type increases with advancing age.

  20. Dielectric function and double absorption onset of monoclinic Cu2SnS3

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Chen, Rongzhen; Ettlinger, Rebecca Bolt

    2016-01-01

    In this work, we determine experimentally the dielectric function of monoclinic Cu2SnS3 (CTS) by spectroscopic ellipsometry from 0.7 to 5.9 eV. An experimental approach is proposed to overcome the challenges of extracting the dielectric function of Cu2SnS3 when grown on a glass/Mo substrate...... secondary phases, is not needed to explain such an absorption spectrum. Finally, we show that the absorption coefficient of CTS is particularly large in the near-band gap spectral region when compared to similar photovoltaic materials....

  1. Oxygen stoichiometry, superconductivity and structure of the Bi-2212 ceramics after thermal treatment in the inert atmosphere

    International Nuclear Information System (INIS)

    Bratukhin, P.V.; Aksenova, T.D.; Shavkin, S.V.; Komarov, A.O.; Voronkov, S.A.; Mozhaev, A.P.

    1993-01-01

    A complex study of the stoichiometry and superconducting properties has been performed as well as an X-ray structure analysis of Bi 1.6 Pb 0.4 Sr 2 Ca 1 Cu 2 O x ceramic samples after thermal treatment in the helium atmosphere. Annealing has been found to result in the reduction of the oxygen coefficient followed by the critical temperature rise and the decrease of the unit cell parameters which sharply distinguishes Bi2212 from Y123. Anisotropic widening of diffraction lines due to monoclinic distortions has been detected. Correlations between the monoclinic angle and the critical temperature have been disclosed. Structural changes in Bi2122 are 30-100 times smaller than in the Y123 structure under similar changes in T c

  2. NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2

    International Nuclear Information System (INIS)

    Lin, W.-H.; Cheng, C.; Hu, C.-C.; Teng, H.

    2006-01-01

    Perovskite-type NaTaO 3 derived from a sol-gel synthesis exhibited a larger surface area and a remarkably higher photocatalytic activity in water splitting than the solid-state synthesized NaTaO 3 . The sol-gel and solid-state NaTaO 3 had different crystalline structures of monoclinic P2/m and orthorhombic Pcmn, respectively. Diffuse reflectance spectra showed that the sol-gel specimen had a slightly larger band gap. The band structure analysis revealed an indirect band gap for the sol-gel NaTaO 3 , contrary to the direct band gap of the solid-state one. The difference in the electronic structure and surface area explained the higher photocatalytic activity of the sol-gel NaTaO 3

  3. Anomalous lattice compressibility of hexagonal Eu{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, K.A.; Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in

    2017-07-01

    Monoclinic Eu{sub 2}O{sub 3} was investigated in a Mao-Bell type diamond anvil cell using angle dispersive x-ray diffraction up to a pressure of 26 GPa. Pressure induced structural phase transition from monoclinic to hexagonal phase was observed at 4.3 GPa with 2% volume collapse. Birch –Murnaghan equation of state fit to the pressure volume data yielded a bulk modulus of 159(9) GPa and 165(6) GPa for the monoclinic and hexagonal phases respectively. Equation of state fitting to the structural parameters yielded an axial compressibility of β{sub a} > β{sub c} > β{sub b} for the parent monoclinic phase, showing the least compressibility along b axis. Contrary to the available reports, an anomalous lattice compressibility behavior is observed for the high pressure hexagonal phase, characterized by pronounced hardening of a axis above 15 GPa. The observed incompressible nature of the hexagonal a axis in the pressure range 15–25 GPa is found to be compensated by doubling the compressibility along the c axis. - Highlights: • Structural phase transition in Eu{sub 2}O{sub 3} from monoclinic to hexagonal phase. • Anomalous lattice compressibility in the hexagonal phase has reported first time. • Quantitative analysis of lattice compressibility.

  4. Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type

    International Nuclear Information System (INIS)

    Maltsev, A Ya

    2005-01-01

    We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system

  5. First-principles investigation of U doping in ZrO2

    International Nuclear Information System (INIS)

    Huang, H.W.; Pan, Y.; Yu, C.; Yang, J.; Wang, H.; Yi, W.; Peng, J.C.

    2014-01-01

    Highlights: • U-doped system with cubic structure is more stable than the monoclinic structure. • The elastic modulus of cubic structure is higher than the monoclinic structure. • U-doped weakens the resistance to shear deformation of ZrO 2 . • U-doped enhances the resistance to shape deformation for monoclinic structure. -- Abstract: The formation energies, elastic properties, Debye temperature and electronic structure of U-doped ZrO 2 within cubic and monoclinic structures are investigated by first-principles approach. The calculated formation energies show that the U-doped with cubic structure is more stable than that of monoclinic structure. The U-doped weakens the resistance to shear deformation whether cubic structure or monoclinic structure. However, the U-doped decreases the shape deformation of cubic structure in contrast to enhances the shape deformation for monoclinic structure. The Debye temperature of U-doped system is lower than the corresponding ZrO 2 . We found that the calculated electronic structure of these systems are consistent with the variation of formation energies

  6. In situ disordering of monoclinic titanium monoxide Ti5O5 studied by transmission electron microscope TEM.

    Science.gov (United States)

    Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S

    2017-09-07

    The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.

  7. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    2017-10-30

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG)2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP21lattice of hexagonal metric. The various twinning criteria give somewhat conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.

  8. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    Science.gov (United States)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  9. Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Pu; Li, Xing; Zhao, Ziyan; Wang, Mingshan; Fox, Thomas; Zhang, Qian; Zhou, Ying

    2016-01-01

    Highlights: • The residual precursor ions affect the charge/discharge performances of WO 3 . • Lithiated monoclinic WO 3 reveals the best discharge capacity. • Lithiation can enhance the conductivity of WO 3 . - Abstract: Suitable host structure for lithium insertion and extraction is crucial for lithium-ion batteries. Tungsten trioxides (WO 3 ) are particularly interesting materials for this purpose. In this work, the influences of structure and composition of WO 3 on the charge/discharge performances of Li-ion batteries are systematically investigated. Firstly, lithiated tungsten trioxides (Li-WO 3 ) are successfully synthesized by a hydrothermal method followed by annealing at different temperatures (200–600 °C). It is found that the hexagonal framework collapses and gradually transforms to the monoclinic phase due to the release of NH 4 + and NH 3 molecules. Unexpectedly, monoclinic WO 3 reveals better performances than that of hexagonal WO 3 . Among all the investigated samples, the lithiated WO 3 annealed at 500 °C exhibits the highest discharge capacity and cycle performance (703 mAh g −1 after 10 cycles). We believe that the Li + remained in the solid structure of WO 3 can lead to a more stable structure. In addition, Li + could inhibit the oxidation of W 5+ during the heat treatment process, which increases the electron conductivity of WO 3 . Our results indicate that the electrochemical properties of WO 3 are strongly related to the residual precursor and crystal structure.

  10. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  11. Raman spectroscopy study of the tetragonal-to-monoclinic transition in zirconium oxide scales and determination of overall oxygen diffusion by nuclear microanalysis of O18

    International Nuclear Information System (INIS)

    Godlewski, J.; Lambertin, M.; Gros, J.P.; Wadier, J.F.; Weidinger, H.

    1991-01-01

    This paper reports on two allotropic forms of zirconium oxide, monoclinic and tetragonal that have been identified in the scales formed on zirconium alloys. The transition from tetragonal to monoclinic has been followed by Z-ray measurements and Raman laser spectroscopy. Information on the average content of the tetragonal phase was obtained by X-ray diffraction, whereas Raman laser analyses on tapered sections revealed its distribution through the scale thickness. Oxidation exposures were made in an autoclave, using H 2 O 18 and D 2 O 18 to determine the overall diffusion coefficients. In particular, oxide scales have been studied on Zircaloy-4 with three different precipitate sizes, and on a Zr-1Nb alloy, after exposure in an autoclave for between 3 and 100 days. The specimens were analyzed in detail in the vicinity of the kinetics transition point, where the acceleration of corrosion occurs. Raman spectroscopy analyses enabled the crystallographic nature of the ZrO 2 to be determined. Close to the interface, the tetragonal phase content is about 40%, when after the transition the tetragonal phase is transformed into monoclinic. The O 18 diffusion treatment was carried out in an autoclave at 400 degrees C under pressure on specimens previously oxidized for between 3 and 100 days in natural water vapor pressure. The diffusion profiles were determined by nuclear microanalysis using the O 18 (p, α) → N 15 reaction. Based on these profiles, the volume and grain boundary diffusion coefficients were calculated for each material and for each oxidation time

  12. Structure of Co(2), Ni(2) and VO(2) complexes with 4-phenylthiosemicarbaziddiacetic acid

    International Nuclear Information System (INIS)

    Kravtsov, V.Kh.; Kipkovskij, Ya.; Bologa, O.A.; Lozan, V.I.; Simonov, Yu.A.; Gehrbehlehu, N.V.; Malinovskij, T.I.; AN Moldavskoj SSR, Kishinev

    1995-01-01

    Structure of complex compounds VO(2)(3) with 4-phyenylthiosemicarbaziddiacetic acid is determined through X-ray diffraction method. Monocrystal compounds are monoclinic, sp.gr. P2 1 /n (a=6.703(2), b=12.470(7), c=1695(6) A, γ=95.10(4) deg). The organic molecule in the complexes is expressed in form of twofold deprotonated tetradentate, ligand joining to metal according to the tripod type with application of donor atoms S, N, O, O and forming three metallocycles. The coordination surrounding of the central atom is supplemented by one oxygen vanadyl atom and one water molecule. 17 refs.; 4 figs.; 5 tabs

  13. Interspecies radioimmunoassay for the major structural proteins of primate type-D retroviruses

    International Nuclear Information System (INIS)

    Colcher, D.; Teramoto, Y.A.; Schlom, J.

    1977-01-01

    A competition radioimmunoassay has been developed in which type-D retroviruses from three primate species compete. The assay utilizes the major structural protein (36,000 daltons) of the endogenous squirrel monkey retrovirus and antisera directed against the major structural protein (27,000 daltons) of the Mason-Pfizer monkey virus isolated from rhesus monkeys. Purified preparations of both viruses grown in heterologous cells, as well as extracts of heterologous cells infected with squirrel monkey retrovirus or Mason-Pfizer monkey virus, compete completely in the assay. Addition of an endogenous virus of the langur monkey also results in complete blocking. No blocking in the assay is observed with type-C baboon viruses, woolly monkey virus, and gibbon virus. Various other type-C and type-B viruses also showed no reactivity. An interspecies assay has thus been developed that recognizes the type-D retroviruses from both Old World monkey (rhesus and langur) and New World monkey (squirrel) species

  14. The crystal structure of bøgvadite (Na2SrBa2Al4F20)

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2014-01-01

    The crystal structure of bøgvadite, Na2SrBa2Al4F20, has been solved and refined to a R1 factor of 4.4% from single-crystal data (MoKα X-ray diffraction, CCD area detector) on a sample from the cryolite deposit at Ivittuut, SW Greenland. Bøgvadite is monoclinic, P21/n space group, with unit cell...... parameters a= 7.134(1), b= 19.996(3) and c= 5.3440(8) Å, β = 90.02(1)o. A close proximity of the crystal structure to an orthorhombic symmetry and the presence of the two twin components in a nearly 1:1 ratio suggest that the investigated bøgvadite crystal has originally formed as a high......-temperature orthorhombic polymorph which on cooling transformed to the stable low temperature monoclinic structure. The bøgvadite crystal structure has groupings of cation-fluoride coordination polyhedra similar to those found in the crystal structures of the genetically closely associated minerals jarlite...

  15. Experimental and first principle study of the structure, electronic, optical and luminescence properties of M-type GdNbO4 phosphor

    Science.gov (United States)

    Ding, Shoujun; Zhang, Haotian; Zhang, Qingli; Chen, Yuanzhi; Dou, Renqin; Peng, Fang; Liu, Wenpeng; Sun, Dunlu

    2018-06-01

    In this work, GdNbO4 polycrystalline with monoclinic phase was prepared by traditional high-temperature solid-state reaction. Its structure was determined by X-ray diffraction and its unit cell parameters were obtained with Rietveld refinement method. Its luminescence properties (including absorbance, emission and luminescence lifetime) were investigated with experiment method and the CIE chromaticity coordinate was presented. Furthermore, a systematic theoretical calculation (including band gap, density of states and optical properties) based on the density function theory methods was performed on GdNbO4. Lastly, a comparison between experiment and calculated results was conducted. The calculated and experiment results obtained in this work can provide an essential understanding of GdNbO4 material.

  16. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  17. Structural studies of disordered Mg2NiH4 formed by mechanical grinding

    DEFF Research Database (Denmark)

    Rönnebro, Ewa; Jensen, Jens Oluf; Noréus, Dag

    1999-01-01

    The low temperature phase of Mg2NiH4 was mechanically ground in argon atmosphere. The ordered monoclinic structure was destroyed to form the disordered cubic structure, previously only found above 510 K. With a Guinier-Hagg X-ray camera the cell parameter was determined to be a=6.492(3) Angstrom....

  18. Coexistence of Cluster Structure and Mean-field-type Structure in Medium-weight Nuclei

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Horiuchi, Hisashi; Kimura, Masaaki

    2006-01-01

    We have studied the coexistence of cluster structure and mean-field-type structure in 20Ne and 40Ca using Antisymmetrized Molecular Dynamics (AMD) + Generator Coordinate Method (GCM). By energy variation with new constraint for clustering, we calculate cluster structure wave function. Superposing cluster structure wave functions and mean-field-type structure wave function, we found that 8Be-12C, α-36Ar and 12C-28Si cluster structure are important components of K π = 0 3 + band of 20Ne, that of normal deformed band of 40Ca and that of super deformed band of 40Ca, respectively

  19. On the structure of rare earth periodates of LnIO5x4H2O (Ln=Pr-Lu, Y)

    International Nuclear Information System (INIS)

    Shamraj, N.B.; Varfolomeev, M.B.; Saf'yanov, Yu.N.; Kuz'min, Eh.A.; Ilyukhin, V.V.; AN SSSR, Moscow. Inst. Kristallografii)

    1977-01-01

    The crystal structure of three representatives of an isotypic series of monoclinic periodates of rare earth elements in the series from Pr to Lu and Y was deciphered. The monoclinic cell for all LnIO 5 x4H 2 O contains Z=4 formula units. The architectural motif consists in layers of octahedra of IO 4 (OH) 2 and polyhedra of LnO 5 (H 2 O 3 ) parallel to the (100) plane. Adhesion between the layers is achieved through H-bonds

  20. Structure of the surface of the Paleozoic basement of the cis-Kopetdag trough in connection with the oil and gas content of the sedimentary cover

    Energy Technology Data Exchange (ETDEWEB)

    Odekov, O.A.; Mel' nik, N.M.; Tulaeva, S.V.

    1981-01-01

    Use of a complex of different methods permitted a new approach to the study of the nature of the surface of the Paleozoic basement. As a result of constructing models of the deep structure of the cis-Kopetdag trough and the Bakhardok monocline a new map of the major tectonic elements of the region has been developed and a map of the surface structure of the Paleozoic basement and a map of the Moho discontinuity have been compiled. The former gives a major new solution to many problems of the dep structure of the region: 1) in the zone of juncture of the cis-Kopetdag trough and the Bakhardok monocline a new positive structural element has been identified, called the Bakhardok-Kumbet buried superarch; 2) a completely new morphology of the western part of the Serakh connector has been given, within which two independent buried arches are identified, the Shatlyk and Tedzhenskii; 3) it has been established that the Izgantskii arch of the sedimentary cover corresponds to the Izgant uplifted block of the basement. These structural elements are described, methods for identifying them are outlined, and some principles of the variatin of the parameters of the geophysical fields are described. The prospects for the juncture zone are estimated as fairly high from the viewpoint of discovering different types of oil and gas deposits in the widest stratigraphic interval, from the Lower Jurassic to the Neokomian.

  1. High temperature-induced phase transitions in Sr{sub 2}GdRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Crystal structure, thermal expansion and phase transitions at high-temperature of Sr{sub 2}GdRuO{sub 6} perovskite has been investigated. Black-Right-Pointing-Pointer X-ray diffraction pattern at 298 K of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with P2{sub 1}/n space group. Black-Right-Pointing-Pointer Evolution of X-ray diffraction patterns at high-temperature shows that the Sr{sub 2}GdRuO{sub 6} perovskite suffers two-phase transitions. Black-Right-Pointing-Pointer At 573 K the X-ray diffraction pattern of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with I2/m space group. Black-Right-Pointing-Pointer At 1273 K the Sr{sub 2}GdRuO{sub 6} perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K {<=} T {<=} 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2{sub 1}/n (no. 14) space group and 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Angstrom-Sign , b =5.8234(1) Angstrom-Sign , c =8.2193(9) Angstrom-Sign , V = 278.11(2) Angstrom-Sign {sup 3} and angle {beta} = 90.310(5) Degree-Sign . The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Angstrom-Sign , b = 5.8326(3) Angstrom-Sign , c = 8.2449(2) Angstrom-Sign , V = 280.31(3) Angstrom-Sign {sup 3} and angle {beta} = 90.251(3) Degree-Sign . Close

  2. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  3. Structural characterization and catalytic properties of bis(1,1,3,3-tetramethylguanidinium) dichromate

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Ståhl, Kenny; Boghosian, Soghomon

    2011-01-01

    The structure of bis(1,1,3,3-tetramethylguanidinium) dichromate was determined from powder X-ray diffraction data. The compound crystallizes in the monoclinic system (space group P21/n) with a = 10.79714 (15) Å, b = 11.75844 (16) Å, c = 8.15097 (11) Å, β = 109.5248 (6)º. The structure consists of...

  4. Preparation, crystallography, magnetic and magnetothermal properties of Ce5SixGe4-x alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Rangarajan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    An investigation of the crystal structure and the phase relationships in the Ce5Si4-xGex system has been carried out. The crystal structures of the single phase intermetallics were characterized using X-ray powder diffraction and subsequent refinement employing the Rietveld analysis technique was performed. The intermetallic system was found to crystallize in three distinct crystal structures. The Ce5Si4-based solid solution extends from x = 0 to x = 2.15 and it was found to crystallize in the well-known Zr5Si4-type tetragonal structure. The germanium rich alloys, where 3.1 ≤} x ≤ 4, crystallized in the Sm5Ge4-type orthorhombic structure. The crystal structure of the intermediate phase, when 2.35 ≤ x ≤ 2.8, was found out to be of the Gd5Si2Ge2-type monoclinic structure. Microhardness tests were conducted on the samples in order to probe the trend in mechanical properties in this alloy system as a function of Ge concentration. The magnetic, thermal and magnetocaloric properties of the Ce5Si4-xGex alloy system have been investigated for x = 0, 1.0, 1.8, 2.5, 2.8, 3.5, 3.8 and 4.0. The phases with x = 0, 1.0 and 1.8 crystallize in the tetragonal Zr5Si4 structure and those with x = 2.5, 2.8 form in the Gd5Si2Ge2-type monoclinic structure. The alloys with x = 3.5, 3.8 and 4.0 crystallize in the Sm5Ge4-type orthorhombic structure. The Curie temperature of the tetragonal phases increases with increasing Ge content. The ordering temperatures of the monoclinic and orthorhombic phases remain nearly unaffected by the composition, with the Curie temperatures of the latter slightly higher than those of the former. All the alloys display evidence of antiferromagnetic interactions in the ground state. The orthorhombic and the

  5. Structure, luminescence, and dynamics of Eu2O3 nanoparticles in MCM-41

    International Nuclear Information System (INIS)

    Chen, Wei; Joly, Alan G.; Kowalchuk, George A.; Malm, Jan-Olle; Huang, Yining; Bovin, Jan-Olov

    2001-01-01

    The structure, luminescence spectroscopy, and lifetime decay dynamics of Eu2O3 nanoparticles formed in MCM-41 have been investigated. Both X-ray diffraction and high resolution transmission electron microscope observations indicate that Eu2O3 nanoparticles of monoclinic structure are formed inside channels of MCM-41 by heating at 140 C. However, heat treatment at 600 and 700 C causes migration of Eu2O3 from the MCM-41 channels forming nanoparticles of cubic structure outside of the MCM-41 channels. The feature of the hypersensitive 5D0? 7F2 emission profile of Eu3+ is used to follow the structural changes. Photoluminescence lifetimes show the existence of short (< 1 microsecond) and long (microsecond to millisecond) components for each sample. The fast decay is attributed to quenching by surface states of the nanoparticles or energy transfer to the MCM-41 while the longer time decays show the effects of concentration quenching. The monoclinic sample prepared at 140 C shows a higher luminescence intensity than the cubic samples or the bulk powder

  6. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    Science.gov (United States)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  7. The Gd14Ag51 structure type and its relation to some complex amalgam structures

    International Nuclear Information System (INIS)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin

    2015-01-01

    Highlights: • The Gd 14 Ag 51 structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd 14 Ag 51 shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE 14 Ag 51 structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd 14 Ag 51 structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd 14 Ag 51 ). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE 14 Ag 51 structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd 14 Ag 51 structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd 14 Ag 51 structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd 14 Ag 51 , the parent compound of this structure family

  8. Pressure-induced Td to 1T′ structural phase transition in WTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xuliang, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Li, Nana [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Pan, Xingchen [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Song, Fengqi; Wang, Baigeng [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439 (United States); Yang, Zhaorong, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zhang, Yuheng [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-07-15

    WTe{sub 2} is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe{sub 2}. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T′ with space group of P2{sub 1}/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ∼20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  9. Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion

    Energy Technology Data Exchange (ETDEWEB)

    Harding, T.P.

    1985-04-01

    Negative and positive flower structures and positive inverted structures imply specific modes of formation, and their distinctive characteristics make them important criteria for the identification of certain structural styles. A negative flower structure from the Andaman Sea consists of a shallow synform bounded by upward-spreading strands of a wrench fault that have mostly normal separations. Paralleling monoclines and oblique, en echelon normal faults flank the divergent wrench fault. A positive flower structure from the Ardmore basin, Oklahoma, consists of a shallow antiform displaced by the upward diverging strands of a wrench fault that have mostly reverse separations. En echelon folds are present on either side of this convergent wrench fault. Positive structural inversion at the Rambutan oil field, South Sumatra basin, has formed a shallow anticlinorium and has partly uplifted the underlying graben. Deeper fault segments bounding the graben have retained their normal fault profiles, but at shallow levels some of these faults have reverse separations.

  10. Rietveld refinement of the structures of 1.0 C-S-H and 1.5 C-S-H

    KAUST Repository

    Battocchio, Francesco

    2012-11-01

    Low-Q region Rietveld analyses were performed on C-S-H synchrotron XRD patterns, using the software MAUD. Two different crystal structures of tobermorite 11 Å were used as a starting model: monoclinic ordered Merlino tobermorite, and orthorhombic disordered Hamid tobermorite. Structural modifications were required to adapt the structures to the chemical composition and the different interlayer spacing of the C-S-H samples. Refinement of atomic positions was done by using special constraints called fragments that maintain interatomic distances and orientations within atomic polyhedra. Anisotropic crystallite size refinement showed that C-S-H has a nanocrystalline disordered structure with a preferred direction of elongation of the nanocrystallites in the plane of the Ca interlayer. The quality of the fit showed that the monoclinic structure gives a more adequate representation of C-S-H, whereas the disordered orthorhombic structure can be considered a more realistic model if the lack of long-range order of the silica chain along the c-direction is assumed. © 2012 Elsevier Ltd. All rights reserved.

  11. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  12. Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals

    International Nuclear Information System (INIS)

    Garvie, R.C.; Swain, M.V.

    1985-01-01

    End-point thermodynamic analyses were made of the tetragonal to monoclinic transformation (t -> m) occurring in ZrO 2 precipitates in a Ca-PSZ alloy and particles in Al 2 O 3 -ZrO 2 composites. Calculated plots of the reciprocal critical size for transformation temperature were in excellent agreement with experiment data for both systems. Contributions to the total free energy change included bulk chemical, dilatational and residual shear strain energies and also interfacial energies. The latter term consisted of contributions from the change in the chemical surface free energy, the presence of twin boundaries in the precipitate (particle) - matrix interfacial energy. The major impediment to the transformation was the shear strain energy which could not be reduced sufficiently by twinning alone. The t -> m reaction proceeded spontaneously when the energy barrier was reduced by the response of the particle - matrix interface. The response comprised loss of coherency and grain boundary microcracking for the Ca/PSZ and Al 2 O 3 -ZrO 2 alloys, respectively. These results are in accord with recent suggestions that either a stress-free strain or a free surface is a necessary condition for the initiation of a martensitic transformation. (author)

  13. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  14. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    International Nuclear Information System (INIS)

    Babelot, Carole

    2013-01-01

    The minor actinides (MA) neptunium, americium, and curium are mainly responsible for the long-term radiotoxicity of the High Active Waste (HAW) generated during the nuclear power operation. If these long-lived radionuclides are removed from the HAW by partitioning and converted by neutron fission (transmutation) into shorter-lived or stable elements, the remaining waste loses most of its long-term radiotoxicity. Thus, partitioning and transmutation (P and T) are considered as attractive options for reducing the burden on geological disposals. As an alternative, these separated MA can also be conditioned (P and C strategy) in specifically adapted ceramics to ensure their safe final disposal over long periods. At the moment, spent fuel elements are foreseen either for direct disposal in deep geological repositories or for reprocessing. The highly active liquid waste that is produced during reprocessing is conditioned industrially using a vitrification process before final disposal. Although the widely used borosilicate glasses meet most of the specifications needed, ceramic host matrices appear to be even more suitable in terms of resistance to corrosion. The development of new materials based on tailor-made highly specific ceramics with extremely stable behavior would make it possible to improve the final storage of long-lived high-level radiotoxic waste. In the framework of this PhD research project, monazite-type ceramics were chosen as promising host matrices for the conditioning of trivalent actinides. The focus on the monazite-type ceramics is justified by their properties such as high chemical durability. REPO 4 ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to contribute to the understanding of the alteration behavior of such ceramics under the repository conditions. REPO 4 (with RE = La, Eu) is prepared by hydrothermal synthesis at 200 C. Structural

  15. Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory

    Directory of Open Access Journals (Sweden)

    Falko Schmidt

    2017-01-01

    Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.

  16. Commensurate and incommensurate '5M' modulated crystal structures in Ni-Mn-Ga martensitic phases

    International Nuclear Information System (INIS)

    Righi, L.; Albertini, F.; Pareti, L.; Paoluzi, A.; Calestani, G.

    2007-01-01

    It is well known that the composition of ferromagnetic shape memory Ni-Mn-Ga Heusler alloys determines both temperature of martensitic transformations and the structure type of the product phase. In the present work we focused our attention on the structural study of the so-called '5M' modulated structure. In particular, the structure of Ni 1.95 Mn 1.19 Ga 0.86 martensitic phase is analysed by powder X-ray diffraction (PXRD) and compared with that of the stoichiometric Ni 2 MnGa martensite. The study of the diffraction data reveals the occurrence of commensurate (C) structural modulation in Ni 1.95 Mn 1.19 Ga 0.86 ; this contrasts with Ni 2 MnGa, where an incommensurate (IC) structural modulation was evident. The two phases also differ in the symmetry of the fundamental martensitic lattice. In fact, the incommensurate modulation is related to an orthorhombic basic structure, while the commensurate variant presents a monoclinic symmetry. The commensurate modulated structure has been investigated by using the superspace approach already adopted to solve the structure of Ni 2 MnGa martensite. The structure has been determined by Rietveld refinement of PXRD data

  17. Pressure-induced Td to 1T' structural phase transition in WTe2

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui; Chen, Xuliang; Li, Nana; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying; Pan, Xingchen; Song, Fengqi; Wang, Baigeng; Yang, Wenge; Yang, Zhaorong; Zhang, Yuheng (CIW); (Chinese Aca. Sci.); (CHPSTAR- China); (Nanjing)

    2016-11-21

    WTe2 is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe2. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T' with space group of P21/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ~20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  18. Structure of an inverted basin from subsurface and field data: the Late Jurassic-Early Cretaceous Maestrat Basin (Iberian Chain)

    Energy Technology Data Exchange (ETDEWEB)

    Nebot, M.; Guimera, J.

    2016-07-01

    The Maestrat Basin experienced two main rifting events: Late Permian-Late Triassic and Late Jurassic-Early Cretaceous, and was inverted during the Cenozoic Alpine orogeny. During the inversion, an E-W-trending, N-verging fold-and-thrust belt developed along its northern margin, detached in the Triassic evaporites, while southwards it also involved the Variscan basement. A structural study of the transition between these two areas is presented, using 2D seismic profiles, exploration wells and field data, to characterize its evolution during the Mesozoic extension and the Cenozoic contraction. The S-dipping Maestrat basement thrust traverses the Maestrat Basin from E to W; it is the result of the Cenozoic inversion of the lower segment–within the acoustic basement–of the Mesozoic extensional fault system that generated the Salzedella sub-basin. The syn-rift Lower Cretaceous rocks filling the Salzedella sub-basin thicken progressively northwards, from 350m to 1100m. During the inversion, a wide uplifted area –40km wide in the N-S direction– developed in the hanging wall of the Maestrat basement thrust. This uplifted area is limited to the North by the E-W-trending Calders monocline, whose limb is about 13km wide in its central part, dips about 5ºN, and generates a vertical tectonic step of 800-1200m. We interpreted the Calders monocline as a fault-bend fold; therefore, a flat-ramp-flat geometry is assumed in depth for the Maestrat basement thrust. The northern synformal hinge of the Calders monocline coincides with the transition from thick-skinned to thin-skinned areas. The vast uplifted area and the low-dip of the monocline suggest a very low-dip for the basement ramp, rooted in the upper crust. The Calders monocline narrows and disappears laterally, in coincidence with the outcrop of the Maestrat basement thrust. The evaporitic Middle Muschelkalk detachment conditioned the structural style. Salt structures are also related to it; they developed during the

  19. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

    Science.gov (United States)

    Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  20. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne E.; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, B G

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  1. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  2. Optimization of C20 isomers structure

    International Nuclear Information System (INIS)

    Ndjaka, J.M.B.; Charlier, J.C.

    2001-07-01

    We have performed geometry optimization of various possible planar and three-dimensional C 20 geometries. The planar structures considered include a linear chain, a monoclinic ring, and a bicyclic bow tie; while the three-dimensional geometric; consisted of a bowl or corranulene structure and a fullerene cage. In agreement with Wang et al MP2's calculations, our results predict the corranulene bowl to be the lowest energy structure. From the ground state geometry to the highest energy, considered C 20 structures, listed in increasing energy, are bowl, cage, bow tie, ring and chain. For the ring and bow tie isomers, the shape of the optimized structure deviates from that of the initial configuration; while the shape of the optimised bowl, cage and chain remain unchanged. (author)

  3. Rietveld refinement of the structures of 1.0 C-S-H and 1.5 C-S-H

    KAUST Repository

    Battocchio, Francesco; Monteiro, Paulo J.M.; Wenk, Hans-Rudolf

    2012-01-01

    Low-Q region Rietveld analyses were performed on C-S-H synchrotron XRD patterns, using the software MAUD. Two different crystal structures of tobermorite 11 Å were used as a starting model: monoclinic ordered Merlino tobermorite, and orthorhombic

  4. Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold coordinated copper

    NARCIS (Netherlands)

    Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; van Tendeloo, G.; Arenholz, E.; Jenkins, A.; Rijnders, Augustinus J.H.M.; Koster, Gertjan

    2014-01-01

    Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show

  5. An Owen-type value for games with two-level communication structures

    NARCIS (Netherlands)

    van den Brink, René; Khmelnitskaya, Anna Borisovna; van der Laan, Gerard

    We introduce an Owen-type value for games with two-level communication structure, which is a structure where the players are partitioned into a coalition structure such that there exists restricted communication between as well as within the a priori unions of the coalition structure. Both types of

  6. Monoclinic β-Li{sub 2}TiO{sub 3} nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Biranchi M., E-mail: biranchi.barc@gmail.com [Powder Metallurgy Division, Bhabha Atomic Research Centre, Vashi Complex, Navi Mumbai 400705 (India); Mohanty, Trupti; Prakash, Deep [Powder Metallurgy Division, Bhabha Atomic Research Centre, Vashi Complex, Navi Mumbai 400705 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sinha, P.K. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Vashi Complex, Navi Mumbai 400705 (India)

    2017-07-15

    Pure phase monoclinic nano-crystalline Li{sub 2}TiO{sub 3} powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li{sub 2}TiO{sub 3} powder has been obtained at slightly lower temperature (600–700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li{sub 2}TiO{sub 3} in the proposed method. The emergence of monoclinic Li{sub 2}TiO{sub 3} phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li{sub 2}TiO{sub 3} powder was calculated to be in the range of 15–80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li{sub 2}TiO{sub 3} powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li{sub 2}TiO{sub 3} powder compact attained about 98% of the theoretical density with fine grained (grain size: 2–3 μm) microstructure. It indicates excellent sinter-ability of Li{sub 2}TiO{sub 3} powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li{sub 2}TiO{sub 3}. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li{sub 2}TiO{sub 3}. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li{sub 2}TiO{sub 3} powder.

  7. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  8. Flux-mediated syntheses, structural characterization and low-temperature polymorphism of the p-type semiconductor Cu2Ta4O11

    Science.gov (United States)

    King, Nacole; Sullivan, Ian; Watkins-Curry, Pilanda; Chan, Julia Y.; Maggard, Paul A.

    2016-04-01

    A new low-temperature polymorph of the copper(I)-tantalate, α-Cu2Ta4O11, has been synthesized in a molten CuCl-flux reaction at 665 °C for 1 h and characterized by powder X-ray diffraction Rietveld refinements (space group Cc (#9), a=10.734(1) Å, b = 6.2506(3) Å, c=12.887(1) Å, β = 106.070(4)°). The α-Cu2Ta4O11 phase is a lower-symmetry monoclinic polymorph of the rhombohedral Cu2Ta4O11 structure (i.e., β-Cu2Ta4O11 space group R 3 ̅ c (#167), a = 6.2190(2) Å, c=37.107(1) Å), and related crystallographically by ahex=amono/√3, bhex=bmono, and chex=3cmonosinβmono. Its structure is similar to the rhombohedral β-Cu2Ta4O11 and is composed of single layers of highly-distorted and edge-shared TaO7 and TaO6 polyhedra alternating with layers of nearly linearly-coordinated Cu(I) cations and isolated TaO6 octahedra. Temperature dependent powder X-ray diffraction data show the α-Cu2Ta4O11 phase is relatively stable under vacuum at 223 K and 298 K, but reversibly transforms to β-Cu2Ta4O11 by at least 523 K and higher temperatures. The symmetry-lowering distortions from β-Cu2Ta4O11 to α-Cu2Ta4O11 arise from the out-of-center displacements of the Ta 5d0 cations in the TaO7 pentagonal bipyramids. The UV-vis diffuse reflectance spectrum of the monoclinic α-Cu2Ta4O11 shows an indirect bandgap transition of ∼2.6 eV, with the higher-energy direct transitions starting at ∼2.7 eV. Photoelectrochemical measurements on polycrystalline films of α-Cu2Ta4O11 show strong cathodic photocurrents of ∼1.5 mA/cm2 under AM 1.5 G solar irradiation.

  9. The Gd{sub 14}Ag{sub 51} structure type and its relation to some complex amalgam structures

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The Gd{sub 14}Ag{sub 51} structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd{sub 14}Ag{sub 51} shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE{sub 14}Ag{sub 51} structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd{sub 14}Ag{sub 51} structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd{sub 14}Ag{sub 51}). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE{sub 14}Ag{sub 51} structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd{sub 14}Ag{sub 51} structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd{sub 14}Ag{sub 51} structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd{sub 14}Ag{sub 51}, the parent compound of this structure family.

  10. Europium doping in monoclinic KYb(WO{sub 4}){sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Loiko, P.A. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades, c/ Marcellí Domingo, s/n., Tarragona, Spain E-43007 (Spain); Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk 220013 (Belarus); Vilejshikova, E.V. [Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk 220013 (Belarus); Mateos, X., E-mail: xavier.mateos@urv.cat [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades, c/ Marcellí Domingo, s/n., Tarragona, Spain E-43007 (Spain); Serres, J.M. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades, c/ Marcellí Domingo, s/n., Tarragona, Spain E-43007 (Spain); Dunina, E.B.; Kornienko, A.A. [Vitebsk State Technological University, 72 Moskovskaya Ave., Vitebsk 210035 (Belarus); Yumashev, K.V. [Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk 220013 (Belarus); Aguiló, M.; Díaz, F. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades, c/ Marcellí Domingo, s/n., Tarragona, Spain E-43007 (Spain)

    2017-03-15

    We report on a detailed spectroscopic study of Eu{sup 3+} ions in the monoclinic KYb(WO{sub 4}){sub 2} crystal. The polarized room and low-temperature absorption spectra are measured. The maximum σ{sub abs} corresponding to the {sup 7}F{sub 1} → {sup 5}D{sub 1} transition is 1.32×10{sup –20} cm{sup 2} at 534.2 nm with a bandwidth of 0.7 nm (for E||N{sub m}). The Stark sub-levels of the excited mulitplets are determined. A Judd-Ofelt analysis is applied to the Eu{sup 3+}:KYb(WO{sub 4}){sub 2} crystal to determine the probability of spontaneous transitions, radiative lifetimes and luminescence branching ratios. Within the strong configuration interaction (SCI) approximation, the intensity parameters are Ω{sub 2}=4.757, Ω{sub 4}=2.295, Ω{sub 6}=1.644 [10{sup –20} cm{sup 2}] and Δ{sub f}=50160 cm{sup –1}. The radiative lifetime of the {sup 5}D{sub 0} state is 351 µs. The maximum stimulated-emission cross-section corresponding to the {sup 7}F{sub 1} → {sup 5}D{sub 1} transition is 1.44×10{sup –20} cm{sup 2} at 703.2 nm (for E||N{sub m}). Under UV excitation, the Eu{sup 3+}:KYb(WO{sub 4}){sub 2} crystal provides intense red photoluminescence with CIE coordinates, x=0.675, y=0.325.

  11. Stochastic Fatigue Analysis of Jacket Type Offshore Structures

    DEFF Research Database (Denmark)

    Sigurdsson, Gudfinnur

    In this paper, a stochastic reliability assessment for jacket type offshore structures subjected to wave loads in deep water environments is outlined. In the reliability assessment, structural and loading uncertainties are taken into account by means of some stochastic variables. To estimate stat...... statistical measures of structural stress variations the modal spectral analysis method is applied....

  12. Structure and Optical Properties of Nanocrystalline Hafnium Oxide Thin Films (PostPrint)

    Science.gov (United States)

    2014-09-01

    sputter-deposition. A large band gap coupled with low absorption provide optical transparency over a broad range in the electromagnetic spectrum; HfO2...k) in the middle of the visible spec- trum, and C influences n(k) to a greater extent in shorter wave - lengths [31]. Note that this principle behind...Approved for publicnanocrystalline HfO2 films crystallize in monoclinic structure. Fur - thermore, increasing Ts results in improved structural order and

  13. Structures of ordered tungsten- or molybdenum-containing quaternary perovskite oxides

    International Nuclear Information System (INIS)

    Day, Bradley E.; Bley, Nicholas D.; Jones, Heather R.; McCullough, Ryan M.; Eng, Hank W.; Porter, Spencer H.; Woodward, Patrick M.; Barnes, Paris W.

    2012-01-01

    The room temperature crystal structures of six A 2 MMoO 6 and A 2 MWO 6 ordered double perovskites were determined from X-ray and neutron powder diffraction data. Ba 2 MgWO 6 and Ba 2 CaMoO 6 both adopt cubic symmetry (space group Fm3-bar m, tilt system a 0 a 0 a 0 ). Ba 2 CaWO 6 has nearly the same tolerance factor (t=0.972) as Ba 2 CaMoO 6 (t=0.974), yet it surprisingly crystallizes with I4/m symmetry indicative of out-of-phase rotations of the MO 6 octahedra about the c-axis (a 0 a 0 c − ). Sr 2 ZnMoO 6 (t=0.979) also adopts I4/m symmetry; whereas, Sr 2 ZnWO 6 (t=0.976) crystallizes with monoclinic symmetry (P2 1 /n) with out-of-phase octahedral tilting distortions about the a- and b-axes, and in-phase tilting about the c-axis (a − a − c + ). Ca 2 CaWO 6 (t=0.867) also has P2 1 /n symmetry with large tilting distortions about all three crystallographic axes and distorted CaO 6 octahedra. Analysis of 93 double perovskites and their crystal structures showed that while the type and magnitude of the octahedral tilting distortions are controlled primarily by the tolerance factor, the identity of the A-cation acts as the secondary structure directing factor. When A=Ba 2+ the boundary between cubic and tetragonal symmetries falls near t=0.97, whereas when A=Sr 2+ this boundary falls somewhere between t=1.018 and t=0.992. - Graphical abstract: A survey of the tolerance factor of 41 Mo/W- and 52 Nb/Ta-containing quaternary perovskites plotted as a function of the difference between the two six-coordinate M-cation ionic radii. Compounds with cubic symmetry are represented by diamonds, those with tetragonal symmetry are represented by squares, those with I2/m monoclinic symmetry are represented by ×, and those with P2 1 /n monoclinic symmetry are represented by triangles. White symbols represent compositions where A=Ba 2+ , gray symbols represent compositions where A=Sr 2+ , and black symbols represent where A=Ca 2+ . The filled circle represents rhombohedral Ba 2

  14. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases

    International Nuclear Information System (INIS)

    Zhang, Yang; Xue, Dezhen; Wu, Haijun; Ding, Xiangdong; Lookman, Turab; Ren, Xiaobing

    2014-01-01

    With a focus on local symmetry, the microstructural basis for high piezoelectric performance in PbMg 1/3 Nb 2/3 O 3 –xPbTiO 3 (PMN–PT) ceramics at the morphotropic phase boundary (MPB) composition was investigated by means of convergent-beam electron diffraction analysis and twin diffraction pattern analysis. The local structure was found to consist of coexisting (1 0 1)-type tetragonal nanotwins and (0 0 1)-type rhombohedral nanotwins. A phenomenological theory based on crystallography is proposed to show that such nanoscale coexistence can give rise to an average monoclinic structure through strain accommodation. The average monoclinic structures (Ma and Mc) vary with temperature and composition due to the dependence on temperature and composition of the lattice parameters. Based on in situ X-ray diffraction data, we demonstrate how the polarization rotates across the MPB region in PMN–PT ceramics with varying temperatures and compositions

  15. Relation between Kitaev magnetism and structure in $\\alpha$-RuCl$_3$

    OpenAIRE

    Glamazda, A.; Lemmens, P.; Do, S. -H.; Kwon, Y. S.; Choi, K. -Y.

    2017-01-01

    Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material $\\alpha$-RuCl$_3$ and its Heisenberg counterpart CrCl$_3$. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only $\\alpha$-RuCl$_3$ features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of $...

  16. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0-8.5 eV

    Science.gov (United States)

    Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M.

    2017-08-01

    The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10 K up to 300 K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.

  17. Application of extended-crystal diffraction techniques to the symmetry and structure analysis of 221-PbBiSrCaCuO

    International Nuclear Information System (INIS)

    Goodman, P.; Miller, P.

    1993-01-01

    The discovery of a series of layer-perovskite superconducting compounds by Maeda et al. (1988) presented a challenge for present day electron diffraction techniques, due to their common occurrence as mixed phases, and the existence of complex structural modulations of more than one type. Cowley's (1976) theory developed specifically for describing diffraction effects from layered crystals having a micro-domainal sub-structure seems particularly well suited to the task of solving these structures, while the technique of extended-crystal diffraction is shown here to be capable of providing data of sufficient precision for this analysis. The present study is made on the 221 compound of PbBiSrCaCuO. Using the above diffraction techniques it is shown that the true symmetry of the whole structure is orthorhombic, Amaa, and not monoclinic as previously assumed, and that the superlattice reflections arise as a result of a basic microdomainal constitution, rather than from a uniform and incommensurate modulation. 8 figs

  18. Interplay between crystal and magnetic structures in YFe{sub 2}(H{sub α}D{sub 1−α}){sub 4.2} compounds studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Boncour, V., E-mail: paulbon@icmpe.cnrs.fr [Université de Paris Est, ICMPE, CNRS-UPEC, UMR7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Guillot, M. [LNCMI, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Isnard, O. [CNRS, Institut Néel, 38042 Grenoble (France); Univ. Grenoble Alpes, Inst. Néel, 38042 Grenoble (France); Ouladdiaf, B. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Hoser, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Glienicker Str. 100, D-141 09 Berlin (Germany); Hansen, T. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Stuesser, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, Glienicker Str. 100, D-141 09 Berlin (Germany)

    2017-01-15

    We report a detailed magnetic structure investigation of YFe{sub 2}(H{sub α}D{sub 1−α}){sub 4.2} (α=0, 0.64, 1) compounds presenting a strong (H,D) isotope effect by neutron diffraction and Mössbauer spectroscopy analysis. They crystallize in the same monoclinic structure (Pc space group) with 8 inequivalent Fe sites having different H(D) environment. At low temperature, the compounds are ferromagnetic (FM) and show an easy magnetization axis perpendicular to the b axis and only slightly tilted away from the c axis. Upon heating, they display a first order transition from a ferromagnetic towards an antiferromagnetic (AFM) structure at T{sub M0} which is sensitive to the H/D isotope nature. The AFM cell is described by doubling the crystal cell along the monoclinic b axis. It presents an unusual coexistence of non magnetic Fe layer sandwiched by two thicker ferromagnetic Fe layers which are antiparallel to each other. This FM-AFM transition is driven by the loss of ordered moment on one Fe site (Fe7) through an itinerant electron metamagnetic (IEM) behaviour. The key role of the Fe7 position is assigned to both its hydrogen rich atomic environment and its geometric position. Above T{sub M0} a field induced metamagnetic transition is observed from the AFM towards the FM structure accompanied by a cell volume increase. Both thermal and magnetic field dependence of the magnetic structure are found strongly related to the anisotropic cell distortion induced by (H,D) order in interstitial sites. - Graphical abstract: Representation of the FM-AFM magnetic structures of YFe{sub 2}D{sub 4.2} deuteride. - Highlights: • YFe{sub 2}(H,D){sub 4.2} compounds undergoes a isotope sensitive FM-AFM transition at T{sub M0}. • The FM structure is formed of Fe moments perpendicular to the monoclinic b axis. • AFM structure is formed by antiparallel Fe layers separated by non-magnetic Fe layer. • One Fe site among eight loses its moment at T{sub M0} due to larger Fe

  19. Monoclinic Cc-phase stabilization in magnetically diluted lead free Na1/2Bi1/2TiO3—Evolution of spin glass like behavior with enhanced ferroelectric and dielectric properties

    Science.gov (United States)

    Thangavelu, Karthik; Asthana, Saket

    2015-09-01

    The effect of magnetic cation substitution on the phase stabilization, ferroelectric, dielectric and magnetic properties of a lead free Na0.5Bi0.5TiO3 (NBT) system prepared by O2 atmosphere solid state sintering were studied extensively. Cobalt (Co) was chosen as the magnetic cation to substitute at the Ti-site of NBT with optimized 2.5 mol%. Rietveld analysis of x-ray diffraction data favours the monoclinic Cc phase stabilization strongly rather than the parent R3c phase. FE-SEM micrograph supports the single phase characteristics without phase segregation at the grain boundaries. The stabilized Cc space group was explained based on the collective local distortion effects due to spin-orbit stabilization at Co3+ and Co2+ functional centres. The phonon mode changes as observed in the TiO6 octahedral modes also support the Cc phase stabilization. The major Co3+-ion presence was revealed from corresponding crystal field transitions observed through solid state diffuse reflectance spectroscopy. The enhanced spontaneous polarization (Ps) from ≅38 μC cm-2 to 45 μC cm-2 could be due to the easy rotation of polarization vector along the {(1\\bar{1}0)}{{pc}} in Cc phase. An increase in static dielectric response (ɛ) from ɛ ≅ 42 to 60 along with enhanced diffusivity from γ ≅ 1.53 to 1.75 was observed. Magneto-thermal irreversibility and their magnetic field dependent ZFC/FC curves suggest the possibility of a spin glass like behaviour below 50 K. The monoclinic Cc phase stabilization as confirmed from structural studies was well correlated with the observed ferroic properties in magnetically diluted NBT.

  20. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, Carole

    2013-07-01

    The minor actinides (MA) neptunium, americium, and curium are mainly responsible for the long-term radiotoxicity of the High Active Waste (HAW) generated during the nuclear power operation. If these long-lived radionuclides are removed from the HAW by partitioning and converted by neutron fission (transmutation) into shorter-lived or stable elements, the remaining waste loses most of its long-term radiotoxicity. Thus, partitioning and transmutation (P and T) are considered as attractive options for reducing the burden on geological disposals. As an alternative, these separated MA can also be conditioned (P and C strategy) in specifically adapted ceramics to ensure their safe final disposal over long periods. At the moment, spent fuel elements are foreseen either for direct disposal in deep geological repositories or for reprocessing. The highly active liquid waste that is produced during reprocessing is conditioned industrially using a vitrification process before final disposal. Although the widely used borosilicate glasses meet most of the specifications needed, ceramic host matrices appear to be even more suitable in terms of resistance to corrosion. The development of new materials based on tailor-made highly specific ceramics with extremely stable behavior would make it possible to improve the final storage of long-lived high-level radiotoxic waste. In the framework of this PhD research project, monazite-type ceramics were chosen as promising host matrices for the conditioning of trivalent actinides. The focus on the monazite-type ceramics is justified by their properties such as high chemical durability. REPO{sub 4} ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to contribute to the understanding of the alteration behavior of such ceramics under the repository conditions. REPO{sub 4} (with RE = La, Eu) is prepared by hydrothermal synthesis at 200 C

  1. Subaortic (Type 6 Muscular Band—Innocent Bystander or Pathologic Structure?

    Directory of Open Access Journals (Sweden)

    J Ker

    2010-08-01

    Full Text Available Intraventricular tendons are structures that was identified more than a hundred years ago. It has been suggested that they represent intracavitary radiations of the bundle of His and that they may be an isolated finding or be associated with structural cardiac abnormalities. Loukas et al divided these structures into five categories and recently a sixth type have been added. Various physiological disturbances have been observed due to the sixth type of tendon, such as ST segment elevation and right bundle branch block. It has been noted that this peculiar structure appears too thick to be called a tendon, thus the term band. This retrospective analysis analyzed the incidence of the thick, subaortic (type 6 muscular band in a cardiovascular clinic.

  2. Broken symmetry within crystallographic super-spaces: structural and dynamical aspects

    International Nuclear Information System (INIS)

    Mariette, Celine

    2013-01-01

    Aperiodic crystals have the property to possess long range order without translational symmetry. These crystals are described within the formalism of super-space crystallography. In this manuscript, we will focus on symmetry breaking which take place in such crystallographic super-space groups, considering the prototype family of n-alkane/urea. Studies performed by X-ray diffraction using synchrotron sources reveal multiple structural solutions implying or not changes of the dimension of the super-space. Once the characterization of the order parameter and of the symmetry breaking is done, we present the critical pre-transitional phenomena associated to phase transitions of group/subgroup types. Coherent neutron scattering and inelastic X-ray scattering allow a dynamical analysis of different kind of excitations in these materials (phonons, phasons). The inclusion compounds with short guest molecules (alkane C n H 2n+2 , n varying from 7 to 13) show at room temperature unidimensional 'liquid-like' phases. The dynamical disorder along the incommensurate direction of these materials generates new structural solutions at low temperature (inter-modulated monoclinic composite, commensurate lock-in). (author) [fr

  3. A monoclinic polymorph of (1E,5E)-1,5-bis-(2-hy-droxy-benzyl-idene)thio-carbono-hydrazide.

    Science.gov (United States)

    Schmitt, Bonell; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-08-01

    The title compound, C(15)H(14)N(4)O(2)S, is a derivative of thio-ureadihydrazide. In contrast to the previously reported polymorph (ortho-rhom-bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P2(1)/n, Z = 4). The mol-ecule shows non-crystallographic C(2) as well as approximate C(s) symmetry. Intra-molecular bifurcated O-H⋯(N,S) hydrogen bonds, are present. In the crystal, inter-molecular N-H⋯S hydrogen bonds and C-H⋯π contacts connect the mol-ecules into undulating chains along the b axis. The shortest centroid-centroid distance between two aromatic systems is 4.5285 (12) Å.

  4. Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

    Science.gov (United States)

    Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-01-01

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866

  5. Development, characteristics and comparative structural analysis of tensegrity type cable domes

    Directory of Open Access Journals (Sweden)

    Nenadović Aleksandra

    2010-01-01

    Full Text Available Tensegrity type cable domes are three-dimensional structural configurations, prestressed inside the perimeter compression ring, in which the continuous tension throughout the roof structure is made by continuous tension cables and discontinuous compression struts. These kinds of structures can be formed like spatially triangulated networks or like networks nontriangulated in space. This paper examines some effects of network geometry on the behaviour and structural efficiency of tensegrity type cable domes. In this paper the roof cover is considered non-interactive with the supporting structure, unlike rigidly clad tensegrity type cable domes. Since the main bearing elements of tensegrity type cable domes are prestressed cables, they show non-linear load deformation and rely upon geometric stiffness. A geometrically non-linear analysis of non-triangulated and triangulated structures for different load conditions was conducted employing a computer program based on the perturbation theory. The incrementally-iterative procedure, with an approximation of the stiffness matrix by combining the elastic and geometric stiffness matrix, allows detection of structural instabilities.

  6. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    Science.gov (United States)

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  7. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    OpenAIRE

    Qidi Xie; Bowen Li; Xin He; Mei Zhang; Yan Chen; Qingguang Zeng

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to ...

  8. Composition dependent room temperature structure, electric and magnetic properties in magnetoelectric Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3}−Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} solid-solutions

    Energy Technology Data Exchange (ETDEWEB)

    Matteppanavar, Shidaling [Department of Physics, Jnanabharathi Campus, Bangalore University, Bangalore, 560056 (India); Rayaprol, Sudhindra [UGC-DAE-Consortium for Scientific Research, Mumbai Centre, B A R C Campus, Mumbai, 400085 (India); Angadi, Basavaraj, E-mail: brangadi@gmail.com [Department of Physics, Jnanabharathi Campus, Bangalore University, Bangalore, 560056 (India); Sahoo, Balaram [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India)

    2016-08-25

    We report on the studies of room temperature (RT) crystal structure, electric and magnetic properties of (1−x) Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} – x Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} (PFN{sub 1−x} – PFW{sub x}) (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions through the measurements of X-ray diffraction, FTIR, scanning electron microscopy (SEM), Neutron diffraction, Raman, Magnetic, Mössbauer and ferroelectric measurements. FTIR spectra showed two main perovskite related transmission bands. The SEM analysis shows an average grain size of 2 μm for all the solid solutions. Rietveld refinement was performed on RT X-ray diffraction (XRD) and neutron diffraction (ND), which reveals, the monoclinic phase for x = 0.0 with space group Cm and Cubic phase for x = 1.0 with space group Pm-3m. In other words, increasing x, the samples exhibit a gradual phase transition from monoclinic to cubic. In addition, the Raman spectroscopy corroborates the change in structural symmetry from monoclinic (Cm) to cubic (Pm-3m) on varying x. The coexistence of both monoclinic and cubic symmetries was observed between x = 0.2–0.8. Magnetic measurements shows that, the magnetic phase transition from paramagnetic to antiferromagnetic (AFM) was observed at or above RT for x = 0.6 and above. The magnetic structure was refined using the propagation vector k = (½, ½, ½) and structure was found to be G-type antiferromagnetic. Magnetic properties (M-H loops) shows, a weak ferromagnetic behaviour with antiferromagnetic ordering at RT. At RT, x = 0.0–0.6 the samples exhibits disordered paramagnetic property but weakly coupled with antiferromagnetic domains. But, x = 0.8 and 1.0 samples show antiferromagnetic and they are weakly coupled with paramagnetic domains. The temperature dependent magnetization (M(T)) confirms, the augmentation of Néel temperature (T{sub N}) from 155 K to 350 K on increasing x. Mössbauer spectroscopy confirms superparamagnetic nature with the presence of

  9. Monoclinic form of (cyanato-κN{2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-κ4O,N,N′,O′}manganese(III

    Directory of Open Access Journals (Sweden)

    Daopeng Zhang

    2010-12-01

    Full Text Available The title compound, [Mn(C16H14N2O2(NCO], is a monoclinic polymorph of the previously published orthorhombic form [Lu et al. (2006. Inorg. Chem. 45, 3538–3548]. The MnIII ion is chelated by a tetradentate Schiff base ligand and coordinated by the N atom of a cyanate ligand in a distorted square-pyramidal arrangement. In the crystal, there are short intermolecular Mn...Ophenolate distances of 2.752 (3 Å between pairs of inversion-related molecules.

  10. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations

    KAUST Repository

    Harb, Moussab

    2015-01-01

    Using accurate first-principles quantum calculations based on DFT (including the perturbation theory DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we predict essential fundamental properties (such as bandgap, optical absorption coefficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit relatively high absorption efficiencies in the visible range, high dielectric constants, high charge carrier mobilities and much lower exciton binding energies than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties are found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices like Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications.

  11. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations

    KAUST Repository

    Harb, Moussab

    2015-08-26

    Using accurate first-principles quantum calculations based on DFT (including the perturbation theory DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we predict essential fundamental properties (such as bandgap, optical absorption coefficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit relatively high absorption efficiencies in the visible range, high dielectric constants, high charge carrier mobilities and much lower exciton binding energies than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties are found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices like Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications.

  12. A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings

    Science.gov (United States)

    Razak, S. M.; Kong, T. C.; Zainol, N. Z.; Adnan, A.; Azimi, M.

    2018-03-01

    Excessive lateral drift can contribute significantly towards crack formation, leading to structural damage. The structural damage will in turn reduce the capacity of the structure and weaken it from the intended design capacity. Generally, lateral drift is more pronounced in higher and longer structure, such as high rise buildings and bridges. A typical method employed to control lateral drift is structural bracing, which works by increasing stiffness and stability of structure. This paper reviews the influence of various types of structural bracing to structural performance of buildings. The history of structural bracing is visited and the differences between numerous structural bracing in term of suitability to different types of buildings and loading, mechanisms, technical details, advantages and limitations, and the overall effect on the structural behaviour and performance are dissected. Proper and efficient structural bracing is pertinent for each high rise building as this will lead towards safer, sustainable and more economical buildings, which are cheaper to maintain throughout the life of the buildings in the future.

  13. DFT insights into the electronic and optical properties of fluorine-doped monoclinic niobium pentoxide (B-Nb{sub 2}O{sub 5}:F)

    Energy Technology Data Exchange (ETDEWEB)

    El-Shazly, Tamer S.; Rehim, Sayed S.A. [Ain-Shams University, Chemistry Department, Faculty of Science, Cairo (Egypt); Hassan, Walid M.I. [Cairo University, Chemistry Department, Faculty of Science, Giza (Egypt); Allam, Nageh K. [American University in Cairo, Energy Materials Lab (EML), School of Sciences and Engineering, New Cairo (Egypt)

    2016-09-15

    We report on the effect of fluorine doping on the electronic structure and optical properties of monoclinic niobium pentoxide (B-Nb{sub 2}O{sub 5}) as revealed by the first principles calculations. Density functional theory (DFT) along with generalized gradient approximation (GGA) at the revised Perdew-Burke-Ernzerhof (PBEsol) exchange-correlation functional was used in this study. The band calculations revealed that the studied materials are indirect bandgap semiconductors, with bandgap energies of 2.67 and 2.28 eV for the undoped and F-doped B-Nb{sub 2}O{sub 5}, respectively. Upon doping B-Nb{sub 2}O{sub 5}, the Fermi level shifts towards the conduction band, allowing optical absorption in the visible region with enhanced transmittance in the wavelength range 400-1000 nm. The calculated static refractive index of the undoped B-Nb{sub 2}O{sub 5} is in good agreement with the reported experimental value, which is enhanced upon F-incorporation resulting in cladding properties for the F-doped B-Nb{sub 2}O{sub 5}. Also, the effective mass of free charge carriers increased upon F-doping. The enhanced properties were attributed to the effect of the excessive valent electron of the incorporated F atom. (orig.)

  14. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  15. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  16. Structural assessments of plate type support system for APR1400 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tung; Namgung, Ihn, E-mail: inamgung@kings.ac.kr

    2017-04-01

    Highlights: • This paper investigates plate-type support structure for the reactor vessel of the APR 1400. • The tall column supports of APR1400 reactor challenges in seismic and severe accident events. • A plate-type support of reactor vessel was proposed and evaluated based on ASME code. • The plate-type support was assessed to show its higher rigidity than column-type. - Abstract: This paper investigates an alternative form of support structure for the reactor vessel of the APR 1400. The current reactor vessel adopts a four-column support arrangement locating on the cold legs of the vessel. Although having been successfully designed, the tall column structure challenges in seismic events. In addition, for the mitigation of severe accident consequences, the columns inhibit ex-vessel coolant flow, hence the elimination of the support columns proposes extra safety advantages. A plate-type support was proposed and evaluated for the adequacy of meeting the structural stiffness by Finite Element Analysis (FEA) approach. ASME Boiler and Pressure Vessel Code was used to verify the design. The results, which cover thermal and static structural analysis, show stresses are within allowable limits in accordance with the design code. Even the heat conduction area is increased for the plate-type of support system, the results showed that the thermal stresses are within allowable limits. A comparison of natural frequencies and mode shapes for column support and plate-type support were presented as well which showed higher fundamental frequencies for the plate-type support system resulting in greater rigidity of the support system. From the outcome of this research, the plate-type support is proven to be an alternative to current APR column type support design.

  17. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor

    Science.gov (United States)

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-01

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca0.82La0.18Fe0.96Ni0.04As2 with bulk superconductivity below Tc=22 K . A two-dimensional spin resonance mode is found around E =11 meV , where the resonance energy is almost temperature independent and linearly scales with Tc along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4 p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the kz dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  18. Synthesis and Properties of Layered-Structured Mn5O8 Nanorods

    DEFF Research Database (Denmark)

    Gao, Tao; Norby, Poul; Krumeich, Frank

    2010-01-01

    Mn5O8 nanorods were prepared by a topotactic conversion of γ-MnOOH nanorod precursors in nitrogen at 400 °C. The as-prepared Mn5O8 nanorods crystallized in a monoclinic structure (space group C2/m) with unit cell dimensions a = 10.3784(2) Å, b = 5.7337(7) Å, c = 4.8668(6) Å, and β = 109.491(6)°, ...

  19. On polymorphism of dysprosium trichloride

    International Nuclear Information System (INIS)

    Zakiryanova, Irina D.; Khokhlov, Vladimir A.; Salyulev, Alexander B.; Korzun, Iraida V.

    2015-01-01

    For the first time, the structure of crystalline DyCl 3 over a wide temperature range from room temperature to melting point was studied by Raman spectroscopy. The phonon modes (cm -1 ) of dysprosium trichloride (monoclinic crystal lattice of AlCl 3 type, Z = 4, CN = 6) at room temperature are 257 (A 1g ), 201 (E g ), 112 (E g ), 88 (A 1g ), and 63 (E g ). The monoclinic structure of the crystalline DyCl 3 C 2h 3 symmetry was found to remain constant over the studied temperature range. No polymorphic transformation in the solid state was detected. Gravimetry, calorimetry, and mass spectrometry have been used in addition to support the conclusions made on the basis of Raman spectroscopic data.

  20. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus Emanuel; Liu, Xiang-Yu; Skjørringe, Tina

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, ......Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu...

  1. High-pressure investigations of lanthanoid oxoarsenates. I. Single crystals of scheelite-type Ln[AsO{sub 4}] phases with Ln = La-Nd from monazite-type precursors

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Sebastian J.; Ledderboge, Florian; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2016-08-01

    Transparent single crystals of the scheelite-type Ln[AsO{sub 4}] phases with Ln = La-Nd are obtained by the pressure-induced monazite-to-scheelite type phase transition in a Walker-type module under high-pressure and high-temperature conditions of 11 GPa at 1100-1300 C. Coinciding with this transition, there is an increase in density and a reduction in molar volume of about 4.5 % for the scheelite-type phases (tetragonal, I4{sub 1}/a) for La[AsO{sub 4}] (a = 516.92(4), c = 1186.1(9) pm), Ce[AsO{sub 4}] (a = 514.60(1), c = 1175.44(2) pm), Pr[AsO{sub 4}] (a = 512.63(4), c = 1168.25(9) pm), and Nd[AsO{sub 4}] (a = 510.46(4), c = 1160.32(11) pm) as compared to the well-known monazite-type phases (monoclinic, P2{sub 1}/n). Surprisingly enough, the scheelite-type oxoarsenates(V) exhibit a lower coordination number for the Ln{sup 3+} cations (CN = 8 versus CN = 8 + 1), whereas the isolated tetrahedral [AsO{sub 4}]{sup 3-} anions (d(As-O) = 168.9-169.3 pm for the scheelites as compared to d(As-O) = 167.1-169.9 pm for the monazites) remain almost unchanged. So the densification must occur because of the loss of two edge-connections of the involved [LnO{sub 8+1}]{sup 15-} polyhedra with the [AsO{sub 4}]{sup 3-} tetrahedra in the monazite- resulting in exclusively vertex connected [LnO{sub 8}]{sup 13-} and [AsO{sub 4}]{sup 3-} units in the scheelite-type structure.

  2. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  3. Monoclinic superstructure of Pr{sub 3}Rh{sub 4}Ge{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Vosswinkel, Daniel; Hoffmann, Rolf-Dieter; Greiwe, Magnus; Eul, Matthias; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2016-07-01

    Pr{sub 3}Rh{sub 4}Ge{sub 4} was synthesized by melting of the elements in an arc-melting furnace followed by annealing in a sealed tantalum ampoule in a muffle furnace. Structure refinement was based on temperature dependent single-crystal X-ray diffractometer data. At ambient temperature Pr{sub 3}Rh{sub 4}Ge{sub 4} adopts the U{sub 3}Ni{sub 4}Si{sub 4} type structure with strongly enhanced anisotropic displacement parameters for Rh1. Below 230 K additional reflections start to appear and at 110 K the structure could be described with the (3+1)D superspace group I2/m(α0γ)00; α=1/2, γ=1/2; (Z=2). This commensurately modulated structure could be refined with 1448 F{sup 2} values, 39 variables and residuals of wR=0.0417 for the main reflections and wR=0.1520 for the satellites of 1{sup st} order, [a=408.36(2), b=421.12(3) and c=2504.4(2) pm]. The commensurate description could be transformed to a 3D supercell with space group A2/m and Z=4: a=816.72(2), b=421.12(3), c=2537.5(1) pm, β=99.26(1) , 1448 F{sup 2} values, 69 variables and wR=0.0499. The relation of the U{sub 3}Ni{sub 4}Si{sub 4} type structure, the (3+1)D modulated and the 3D supercell is discussed on the basis of a group-subgroup scheme. Temperature dependent magnetic susceptibility data reveal Curie-Weiss paramagnetism with an experimental moment of 3.72(2) μ{sub B}/Pr atom and a Weiss constant of -12.6(5) K. No magnetic ordering is evident down to 3 K.

  4. Ag{sub 3}PO{sub 4} nanocrystals deposited on monoclinic olive-like BiVO{sub 4} with efficient photodegradation of organic dyes under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingshuai, E-mail: chen-jshuai@ahu.edu.cn; Jiang, Liang-Liang; Liu, Xing-Pei; Mao, Chang-Jie, E-mail: maochangjie@sina.com; Song, Ji-Ming; Niu, Helin; Zhang, Shengyi [Anhui University, School of Chemistry and Chemical Engineering (China)

    2017-05-15

    Olive-like BiVO{sub 4} microstructures with lengths of 600–1000 nm and widths of 300–600 nm have been synthesized via a facile and additive-free solvothermal method. Studies find that the type of solvent plays an important role in the morphology of the final products. Furthermore, Ag{sub 3}PO{sub 4} nanocrystals are successfully deposited on monoclinic olive-like BiVO{sub 4} via in situ precipitation method. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectra, and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of the catalysts are evaluated by degradation of rhodamine B (RhB) and methylene blue (MB) under visible light (≥420 nm) irradiation. The experimental results suggest that catalytic activity of the composite photocatalysts is greatly influenced by the loading level of Ag{sub 3}PO{sub 4}. The molar ratio of 0.8:1.0 Ag{sub 3}PO{sub 4}-loaded BiVO{sub 4} exhibits higher photocatalytic activity in both the decolorization of RhB and MB than that of individual BiVO{sub 4} and P25. The observed improvement in photocatalytic activity is associated with the extended absorption in the visible light region resulting from the Ag{sub 3}PO{sub 4} nanoparticles, and the effective separation of photogenerated carriers at the Ag{sub 3}PO{sub 4}/BiVO{sub 4} interfaces through the formation of heterojunction structure. The study provides a general and effective method in the fabrication of composite with sound heterojunctions that may show a variety of applications.

  5. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    Science.gov (United States)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  6. The crystal structures of three pyrazine-2,5-dicarboxamides: three-dimensional supramolecular structures

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-05-01

    Full Text Available The complete molecules of the title compounds, N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (I, 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C20H20N6O2 (II, and N2,N5-bis(pyridin-4-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (III, are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7° in (I, 75.83 (8° in (II and by 82.71 (6° in (III. In the crystal of (I, molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II, molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1 plane. As in (I, the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III, molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1 Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008, 11, 1–4]. The molecular structures of the two polymorphs are compared.

  7. Tuning the pure monoclinic phase of WO3 and WO3-Ag nanostructures for non-enzymatic glucose sensing application with theoretical insight from electronic structure simulations

    Science.gov (United States)

    Ponnusamy, Rajeswari; Gangan, Abhijeet; Chakraborty, Brahmananda; Sekhar Rout, Chandra

    2018-01-01

    Here, we report the controlled hydrothermal synthesis and tuning of the pure monoclinic phase of WO3 and WO3-Ag nanostructures. Comparative electrochemical nonenzymatic glucose sensing properties of WO3 and WO3-Ag were investigated by cyclic voltammetry and chronoamperometric tests. We observed enhanced glucose sensing performance of WO3-Ag porous spheres as compared to bare WO3 nanoslabs. The sensitivity of the pure WO3 nanoslabs is 11.1 μA μM-1 cm-2 whereas WO3-Ag porous spheres exhibit sensitivity of 23.3 μA μM-1 cm-2. The WO3-Ag porous spheres exhibited a good linear range (5-375 μM) with excellent anti-interference property. Our experimental observations are qualitatively supported by density functional theory simulations through investigation of bonding and charge transfer mechanism of glucose on WO3 and Ag doped WO3. As the binding energy of glucose is more on the Ag doped WO3 (100) surface compared to the bare WO3 (100) surface and the Ag doped WO3 (100) surface becomes more conducting due to enhancement of density of states near the Fermi level, we can infer that Ag doped WO3 exhibits a better charge transfer media compared to bare WO3 resulting in enhanced glucose sensitivity in consistency with our experimental data.

  8. Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO_2

    International Nuclear Information System (INIS)

    Wan, Meinan; Xiong, Mo; Li, Neng; Liu, Baoshun; Wang, Shuo; Ching, Wai-Yim; Zhao, Xiujian

    2017-01-01

    Highlights: • N-doped VO_2(M1) thin films have been synthesized by annealing in NH_3 atmosphere. • The phase purity, microstructure and optical property of VO_2 thin film can be regulated by NH_3 concentration. • First-principles calculations have been carried out to study the mechanism of N-doping on energy band structures of VO_2(M1). • The energy band gaps of VO_2(M1) are tuned by substitution N-doping or interstitial N-doping. - Abstract: Research on monoclinic (M1) phase of VO_2 has attracted a great of interest for smart coating applications due to its exceptional thermochromic property. Herein, we report the results using a novel approach to synthesize N-doped VO_2(M1) thin films with high purity by heat treatment in NH_3 atmosphere. The N dopant in the film can be regulated by varying NH_3 concentration during the annealing process. We find that the N atoms are located at the interstitial sites or substitute oxygen atoms, and the V-N bonds in the VO_2 thin films increase with NH_3 concentration. The metal to insulator transition (MIT) temperature (τ_c_,_h) of the VO_2 thin film is effectively reduced from 80.0 to 62.9 °C, while the solar modulation efficiency (ΔT_s_o_l) and the modulation efficiency at 2000 nm (ΔT_2_0_0_0_n_m) are 7.36% and 55.6% respectively. The band gap of N-doped VO_2 thin films related to MIT (E_g_1) is estimated to be as low as 0.18–0.25 eV whereas the band gap associated with the visible transparency (E_g_2) is about 1.50–1.58 eV. Based on the highly accurate first-principles calculations, the E_g_1 of VO_2 (M1) is reduced after substituted or interstitial N-doping, while the E_g_2 alters with the mode of N-doping, which is excellent agreement with experimental measurement.

  9. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  10. Structure and stability of BaTiSi₂O₇.

    Science.gov (United States)

    Viani, Alberto; Palermo, Andrea; Zanardi, Stefano; Demitri, Nicola; Petrícek, Václav; Varini, Federico; Belluso, Elena; Ståhl, Kenny; Gualtieri, Alessandro Francesco

    2015-04-01

    Due to their optical, photo-luminescence (PL), and afterglow properties, barium titanosilicates are compounds of great interest for functional materials and light-emitting devices. Among them, BaTiSi2O7 (BTS2) is certainly one of the most intriguing; it displays peculiar properties (e.g. PL orange emission) whose exhaustive explanation has been hampered to date by the lack of a structure model. In this work, BTS2 and the related compound BaTiSi4O11 (BTS4) were synthesized through conventional solid-state reaction methods. BTS2 invariably shows complex twinning patterns. Thus, its structure solution and Rietveld structure refinement were attempted using synchrotron powder diffraction. BTS2 was found to be an intergrowth of monoclinic and triclinic crystals. The monoclinic phase has the space group P21/n and unit cell a = 7.9836 (3), b = 10.0084 (4), c = 7.4795 (3) Å, and β = 100.321 (3)°, whereas the triclinic phase has the space group P\\bar 1 and unit cell a = 7.99385 (4), b = 10.01017 (5), c = 7.47514 (3) Å, α = 90.084 (8), β = 100.368 (8) and γ = 89.937 (9)°. These lattices can be seen as a distortion of that of tetragonal synthetic β-BaVSi2O7 with Ti in place of V. The structure models obtained from this study confirm the presence of fivefold coordinated Ti atoms in a distorted pyramidal configuration. The proposed solution supports existing theories for the explanation of the PL orange colour in BTS2.

  11. A novel rare earth zinc germanide, Y b{sub 2}Zn{sub 3}Ge{sub 3.1}; crystal structure and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Grytsiv, A [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringerstrasse 42, A-1090 Vienna (Austria); Kaczorowski, D [W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P-50-950 Wroclaw, PO Box 1410 (Poland); Rogl, P [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringerstrasse 42, A-1090 Vienna (Austria); Tran, V [W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P-50-950 Wroclaw, PO Box 1410 (Poland); Godart, C [CNRS-UPR209, ISCSA, 2-8 rue Henri Dunant, F94320 Thiais (France); Gofryk, K [W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P-50-950 Wroclaw, PO Box 1410 (Poland); Giester, G [Institut fuer Mineralogie und Kristallographie, Universitaet Wien, Althanstrasse 14, A-1090 Vienna (Austria)

    2005-01-19

    A novel ternary structure type has been determined from single crystals of Y b{sub 2}Zn{sub 3}Ge{sub 3.1} grownfrom zinc flux solvent. Y b{sub 2}Zn{sub 3}Ge{sub 3.1} crystallizes in a novel monoclinic structure type (a = 1.5804(2) nm, b 0.429 70(1) nm, c = 1.1524(1) nm; {beta} = 126.14(1) deg.) with space group C 2/m,Z = 4. The large ytterbium atoms are at the centres of pentagonal pyramids formed by Zn/Ge atoms. Zinc atoms are centred in distorted triangular prisms and polyhedra around germanium atoms are related to octahedra. The void at the centre of the Zn octahedra is only partially (20%) filled by Ge atoms. There are two positions for Yb atoms in the unit cell, which contain ions with valency slightly higher than 2+, as evidenced by x-ray absorption spectroscopy and bulk magnetic measurements. The compound exhibits metallic-like electrical conductivity, and its Seebeck coefficient shows a temperature variation characteristic of metals, being, however, fairly enhanced, as expected for intermediate valence systems.

  12. Structure of sodium perbromate monohydrate

    International Nuclear Information System (INIS)

    Blackburn, A.C.; Gallucci, J.C.; Gerkin, R.E.; Reppart, W.J.

    1992-01-01

    NaBrO 4 .H 2 O, M r =184.90, monoclinic, C2/c, a=15.7575(19), b=5.7373(15), c=11.3390(19) A, β=111.193(10)deg. In this structure, there are two inequivalent Na ions, each coordinated by six O atoms. In each of the two types of distorted octahedra, there are three inequivalent Na-O distances; the average Na(1)-O and Na(2)-O distances are 2.379(10) and 2.405(23) A, respectively. The perbromate ion in this structure displays very nearly regular tetrahedral geometry, although it is subject to no symmetry constraints; the average observed Br-O distance is 1.601(4) A, while the average observed O-Br-O angle is 109.5(9)deg. These values agree well with previously reported values. The perbromate ion, but neither of the sodium coordination polyhedra, shows rigid-body behavior. The average rigid-body corrected Br-O distance in the perbromate ion is 1.624(3) A. Refinement of the two inequivalent H atoms permitted detailed analysis of the hydrogen bonding, which is slightly different from that reported for the isomorphic sodium perchlorate monohydrate. Dynamic disordering of the H atoms as detailed by magnetic resonance methods for sodium perchlorate monohydrate is not clearly indicated in our X-ray study of sodium perbromate monohydrate. (orig./GSCH)

  13. X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus

    International Nuclear Information System (INIS)

    Levin, Elena J.; Elsen, Nathaniel L.; Seder, Kory D.; McCoy, Jason G.; Fox, Brian G.; Phillips Jr, George N.

    2008-01-01

    The X-ray crystal structure of a soluble Rieske ferredoxin from M. musculus was solved at 2.07 Å resolution, revealing an iron–sulfur cluster-binding domain with similar architecture to the Rieske-type domains of bacterial aromatic dioxygenases. The ferredoxin was also shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases. The 2.07 Å resolution X-ray crystal structure of a soluble Rieske-type ferredoxin from Mus musculus encoded by the gene Mm.266515 is reported. Although they are present as covalent domains in eukaryotic membrane oxidase complexes, soluble Rieske-type ferredoxins have not previously been observed in eukaryotes. The overall structure of the mouse Rieske-type ferredoxin is typical of this class of iron–sulfur proteins and consists of a larger partial β-barrel domain and a smaller domain containing Cys57, His59, Cys80 and His83 that binds the [2Fe–2S] cluster. The S atoms of the cluster are hydrogen-bonded by six backbone amide N atoms in a pattern typical of membrane-bound high-potential eukaryotic respiratory Rieske ferredoxins. However, phylogenetic analysis suggested that the mouse Rieske-type ferredoxin was more closely related to bacterial Rieske-type ferredoxins. Correspondingly, the structure revealed an extended loop most similar to that seen in Rieske-type ferredoxin subunits of bacterial aromatic dioxygenases, including the positioning of an aromatic side chain (Tyr85) between this loop and the [2Fe–2S] cluster. The mouse Rieske-type ferredoxin was shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases, although it was unable to serve as an electron donor for a bacterial monooxygenase complex. The human homolog of mouse Rieske-type ferredoxin was also cloned and purified. It behaved identically to mouse Rieske-type ferredoxin in all biochemical characterizations but did not crystallize. Based on its high sequence identity, the structure of the

  14. PROVIDING SERVICEABILITY OF STRUCTURAL BEARING TYPES FOR ROADWAY BRIDGES

    Directory of Open Access Journals (Sweden)

    R. I. Polyuga

    2010-03-01

    Full Text Available In the article the description of structural bearing types for roadway bridges and their classification is given. Special attention is paid to effective bearings with elastomeric materials – rubber, pot, spherical ones. Characteristic defects of structural bearings and demands of serviceability are noticed.

  15. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    International Nuclear Information System (INIS)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-01-01

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process

  16. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xiong, Wei [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Hongrong [College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081 (China); Huang, Xiaojun; Ji, Gang; Sun, Fei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Zheng, Congyi, E-mail: cctcc202@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Zhu, Ping, E-mail: zhup@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  17. Solid State Structure of Poly(9,9-dinonylfluorene)

    DEFF Research Database (Denmark)

    Torkkeli, Mika; Galbrecht, Frank; Scherf, Ullrich

    2015-01-01

    We report on X-ray diffraction and grazing-incidence X-ray diffraction data of poly(9,9-dinonylfluorene) (PF9) in bulk, thin films and in the 1% methylcyclohexane gel. We denote the main crystalline phase as alpha phase and propose that the unit cell is monoclinic (a = 29.31 angstrom, b = 23.......1 angstrom, and c = 16.7 angstrom). Structural analogues to other 9,9-di-n-alkyl-substituted polyfluorenes are discussed in terms of unit cell parameters and backbone geometry....

  18. Relationship Structures and Semantic Type Assignments of the UMLS Enriched Semantic Network

    Science.gov (United States)

    Zhang, Li; Halper, Michael; Perl, Yehoshua; Geller, James; Cimino, James J.

    2005-01-01

    Objective: The Enriched Semantic Network (ESN) was introduced as an extension of the Unified Medical Language System (UMLS) Semantic Network (SN). Its multiple subsumption configuration and concomitant multiple inheritance make the ESN's relationship structures and semantic type assignments different from those of the SN. A technique for deriving the relationship structures of the ESN's semantic types and an automated technique for deriving the ESN's semantic type assignments from those of the SN are presented. Design: The technique to derive the ESN's relationship structures finds all newly inherited relationships in the ESN. All such relationships are audited for semantic validity, and the blocking mechanism is used to block invalid relationships. The mapping technique to derive the ESN's semantic type assignments uses current SN semantic type assignments and preserves nonredundant categorizations, while preventing new redundant categorizations. Results: Among the 426 newly inherited relationships, 326 are deemed valid. Seven blockings are applied to avoid inheritance of the 100 invalid relationships. Sixteen semantic types have different relationship structures in the ESN as compared to those in the SN. The mapping of semantic type assignments from the SN to the ESN avoids the generation of 26,950 redundant categorizations. The resulting ESN contains 138 semantic types, 149 IS-A links, 7,303 relationships, and 1,013,876 semantic type assignments. Conclusion: The ESN's multiple inheritance provides more complete relationship structures than in the SN. The ESN's semantic type assignments avoid the existing redundant categorizations appearing in the SN and prevent new ones that might arise due to multiple parents. Compared to the SN, the ESN provides a more accurate unifying semantic abstraction of the UMLS Metathesaurus. PMID:16049233

  19. Structure of a fibronectin type III-like module from Clostridium thermocellum

    International Nuclear Information System (INIS)

    Alahuhta, Markus; Xu, Qi; Brunecky, Roman; Adney, William S.; Ding, Shi-You; Himmel, Michael E.; Lunin, Vladimir V.

    2010-01-01

    The 1.6 Å resolution structure of a fibronectin type III-like module from Clostridium thermocellum with two molecules in the asymmetric unit is reported. The 1.6 Å resolution structure of a fibronectin type III-like module from Clostridium thermocellum with two molecules in the asymmetric unit is reported. The crystals used for data collection belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 35.43, b = 45.73, c = 107.72 Å, and the structure was refined to an R factor of 0.166. Structural comparisons found over 800 similar structures in the Protein Data Bank. The broad range of different proteins or protein domains with high structural similarity makes it especially demanding to classify these proteins. Previous studies of fibronectin type III-like modules have indicated that they might function as ligand-binding modules, as a compact form of peptide linkers or spacers between other domains, as cellulose-disrupting modules or as proteins that help large enzyme complexes remain soluble

  20. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    Science.gov (United States)

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  1. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    Science.gov (United States)

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  2. Crystal structure of Fe2TiO5

    International Nuclear Information System (INIS)

    Shiojiri, M.; Sekimoto, S.; Maeda, T.; Ikeda, Y.; Iwauchi, K.

    1984-01-01

    The crystal structure of metal pseudobrookite, Fe 2 TiO 5 , is determined from high-resolution electron microscopy images observed and their computer simulated images, with the aid of electron diffraction and X-ray powder diffraction. The new structure has a monoclinic unit, containing eight molecules, with a = 2.223, b = 0.373, c = 0.980 nm, and β = 116.2 0 . The Fe, Ti, and O atoms occupy the positions (4c), +-(u, 0, w; 1/2 + u, 1/2, w), of C 2 3 (C2). The most probable parameters u and w, of Fe(1 to 4), Ti(1, 2), and O(1 to 10) are given. (author)

  3. Analysis of the zirconia structure by 'ab initio' and Rietveld methods

    International Nuclear Information System (INIS)

    Bechepeche, A.P.; Nasar, R.S.; Longo, E.; Treu Junior, O.; Varela, J.A.

    1995-01-01

    The zirconia was doped with 0,113 mol of Mg O e 0,005 mol of Ti O 2 , and it was calcined in 1550 d eg C and it was analyzed by XRD. The results shows that pure zirconia contains 96,19% of monoclinic phase and 3,18% of cubic. However, the doping magnesia stabilizes the zirconia in 17,24 of monoclinic; 29,63 of tetragonal and 53,13% of cubic phase. The addition of titanium in zirconia gives 25,85% of tetragonal phase and 37,66% of cubic, and this shows the no stabilizing action of this transition metal. By the other side, the results with ab-initio calculating shows the same tendency resulting in the next values of total energy: pure zirconia - monoclinic -11.316,86ua; tetragonal -8742,09 ua and cubic -8742,80 ua and Zr O 2 Ti O 2 system - monoclinic -9463,02 ua, tetragonal -9459,39 ua and cubic -9459,97 ua (author)

  4. Synthesis and structural and thermodynamical characterization of hollandite type material intended for the specific containment of cesium; Synthese et caracterisation de ceramiques de type hollandite destinees au conditionnement specifique du cecium

    Energy Technology Data Exchange (ETDEWEB)

    Leinekugel-Le-Cocq-Errien, A.Y

    2005-09-15

    This thesis deals with the characterization of the Ba{sub 1}Cs{sub 0.28}Fe{sub 0.82}Al{sub 1.46}Ti{sub 5.72}O{sub 16} hollandite envisaged for Cs containment. Techniques used are essentially classical powder XRD or synchrotron radiation at the absorption threshold of Ba and Cs, TEM and high-temperature calorimetry. Two syntheses have been studied: an alcoxide route and a dry route. After sintering, both routes lead to an incommensurate modulated tetragonal hollandite structure (space group: I4/m(00{gamma})00) with a modulation vector distribution. Before sintering, the material obtained by the alcoxide route is composed of three phases: a tetragonal hollandite like above, a monoclinic Ba-free hollandite and a weak-coherence-length phase containing only Ba. On contrary, the dry route already leads to the tetragonal hollandite at this step of the synthesis. High temperature oxide melt solution calorimetry was used to derive standard enthalpy of formation of hollandite to deduce its free enthalpy of formation. (author)

  5. High-pressure U3O8 with the fluorite-type structure

    International Nuclear Information System (INIS)

    Zhang, F.X.; Lang, M.; Wang, J.W.; Li, W.X.; Sun, K.; Prakapenka, V.; Ewing, R.C.

    2014-01-01

    A new high-pressure phase of U 3 O 8 , which has a fluorite-type structure, forms at pressures greater than ∼8.1 GPa that was confirmed by in situ x-ray diffraction (XRD) measurements. The fluorite-type U 3 O 8 is stable at pressures at least up to ∼40 GPa and temperatures to 1700 K, and quenchable to ambient conditions. Based on the XRD analysis, there is a huge volume collapse (>20%) for U 3 O 8 during the phase transition and the quenched high-pressure phase is 28% denser than the initial orthorhombic phase at ambient conditions. The high-pressure phase has a very low compressibility comparing with the starting orthorhombic phase. - Graphical abstract: α-U 3 O 8 is in a layered structure with orthorhombic symmetry, at high pressures, it transformed to a fluorite-type cubic structure. There are a lot of defects in the cubic structure, and it is a new kind of hyperstoichiometric uranium oxide, which is stable at ambient conditions. - Highlights: • A new fluorite-type high-pressure phase was found in hyperstoichometric UO 2 +x (x∼0.8). • The new high-pressure structure is quenchable to ambient conditions. • Pressure driven phase transition in orthorhombic U 3 O 8 was first found

  6. Crystal Structure and Superconductivity of PH 3 at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanyu [Geophysical; Department; Li, Yinwei [School; Gao, Guoying [State; Tse, John S. [Department; State; Naumov, Ivan I. [Geophysical

    2016-02-04

    We have performed a systematic structure search on solid PH3 at high pressures using the particle swarm optimization method. At 100–200 GPa, the search led to two structures which along with others have P–P bonds. These structures are structurally and chemically distinct from those predicted for the high-pressure superconducting H2S phase, which has a different topology (i.e., does not contain S–S bonds). Phonon and electron–phonon coupling calculations indicate that both structures are dynamically stable and superconducting. The pressure dependence and critical temperature for the monoclinic (C2/m) phase of 83 K at 200 GPa are in excellent agreement with a recent experimental report.

  7. Changes in the internal structure of the human crystalline lens with diabetes mellitus type 1 and type 2

    NARCIS (Netherlands)

    Wiemer, N.G.M.; Dubbelman, M.; Hermans, E.A.; Ringens, P.J.; Polak, B.C.P.

    2008-01-01

    Purpose: To investigate the effect of diabetes mellitus (DM) type 1 and type 2 on the internal structure of the lens. Design: Observational cross-sectional study. Participants and Controls: One hundred seven patients with DM type 1, 106 patients with DM type 2, and 75 healthy control subjects.

  8. On polymorphism of dysprosium trichloride

    Energy Technology Data Exchange (ETDEWEB)

    Zakiryanova, Irina D.; Khokhlov, Vladimir A.; Salyulev, Alexander B.; Korzun, Iraida V. [RAS Ural Branch, Ekaterinburg (Russian Federation). Institute of High-Temperature Electrochemistry

    2015-07-01

    For the first time, the structure of crystalline DyCl{sub 3} over a wide temperature range from room temperature to melting point was studied by Raman spectroscopy. The phonon modes (cm{sup -1}) of dysprosium trichloride (monoclinic crystal lattice of AlCl{sub 3} type, Z = 4, CN = 6) at room temperature are 257 (A{sub 1g}), 201 (E{sub g}), 112 (E{sub g}), 88 (A{sub 1g}), and 63 (E{sub g}). The monoclinic structure of the crystalline DyCl{sub 3} C{sub 2h}{sup 3} symmetry was found to remain constant over the studied temperature range. No polymorphic transformation in the solid state was detected. Gravimetry, calorimetry, and mass spectrometry have been used in addition to support the conclusions made on the basis of Raman spectroscopic data.

  9. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  10. Co-linear spin configurations in corundum-type structures

    International Nuclear Information System (INIS)

    Bertaut, F.

    1961-01-01

    The colinear magnetic configurations possible in corundum-type structures (α-Fe 2 O 3 ; Cr 2 O 3 ) are solutions of a matrices problem. Their regions of stability are bounded by inequality relationships between exchange integrals. (author) [fr

  11. Crystal structure of 4-RbHo(PO3)4, 4-RbTm(PO3)4 and 4-CsEr(PO3)4

    International Nuclear Information System (INIS)

    Maksimova, S.I.; Palkina, K.K.; Chibiskova, N.T.

    1982-01-01

    X-ray structural study of 4-RbLn(PO 3 ) 4 (Ln=Mo, Tm) and 4-CsEr(PO 3 ) 4 is carried out. The compounds are crystallized in monoclinic crystal system, sp. gr P2 1 /n. Parameters of their unit cell, atom coordinates, anisotropic heat parameters, interatomic distances and valent angles are given. 4-RbHo(PO 3 ) 4 , 4-RbTm(PO 3 ) 4 , 4-CsEr(PO 3 ) 4 are isostructural to previously studied TlNd(PO 3 ) and 4-RbNd(PO 3 ) 4 . Using as an example the structural type 4-M 1 Ln(PO 3 ) 4 it is shown that the change of the shortest distances Ln-Ln, M 1 -M 1 and M 1 -Ln, as well as of degree of polymorphous chain corrugation to a higher extent depends on rare earth atom dimensions, than on monovalent metal ion dimensions [ru

  12. The crystal structures of three pyrazine-2,5-dicarb-oxamides: three-dimensional supra-molecular structures.

    Science.gov (United States)

    Cati, Dilovan S; Stoeckli-Evans, Helen

    2017-05-01

    The complete mol-ecules of the title compounds, N 2 , N 5 -bis-(pyridin-2-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (I), 3,6-dimethyl- N 2 , N 5 -bis-(pyridin-2-yl-meth-yl)pyrazine-2,5-dicarboxamide, C 20 H 20 N 6 O 2 (II), and N 2 , N 5 -bis-(pyridin-4-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each mol-ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), mol-ecules are linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (II), mol-ecules are also linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (III), mol-ecules are again linked by N-H⋯N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π-π inter-actions [inter-centroid distance = 3.739 (1) Å]. The sheets are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. Compound (I) crystallizes in the monoclinic space group P 2 1 / c . Another monoclinic polymorph, space group C 2/ c , has been reported on by Cockriel et al. [ Inorg. Chem. Commun. (2008), 11 , 1-4]. The mol-ecular structures of the two polymorphs are compared.

  13. Soil structure interactions of eastern U.S. type earthquakes

    International Nuclear Information System (INIS)

    Chang Chen; Serhan, S.

    1991-01-01

    Two types of earthquakes have occurred in the eastern US in the past. One of them was the infrequent major events such as the 1811-1812 New Madrid Earthquakes, or the 1886 Charleston Earthquake. The other type was the frequent shallow earthquakes with high frequency, short duration and high accelerations. Two eastern US nuclear power plants, V.C Summer and Perry, went through extensive licensing effort to obtain fuel load licenses after this type of earthquake was recorded on sites and exceeded the design bases beyond 10 hertz region. This paper discusses the soil-structure interactions of the latter type of earthquakes

  14. Type III radio bursts in a flaming structure

    International Nuclear Information System (INIS)

    Karlicky, M.; Tlamicha, A.

    1977-01-01

    An interpretation is presented of the burst of 3.7.1974. The slowly drifting, fine structure in this type III burst is evidence of the existence of very fast, spatially extensive processes in the corona. The concept is presented of a rapidly varying, magnetohydrodynamically unstable, flaming structure of the magnetic field and, using this model, the intensities were computed of the magnetic field at certain altitudes and at two moments differing by 1.4 s. (author)

  15. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  16. Factors controlling crystallization of miserite glass-ceramic.

    Science.gov (United States)

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins

    Directory of Open Access Journals (Sweden)

    Xiaoyao Yang

    2017-07-01

    Full Text Available Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A chymotrypsin-like 2A, (B Parechovirus-like 2A, (C hepatitis-A-virus-like 2A, (D Aphthovirus-like 2A, and (E 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.

  18. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-10-18

    (Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.

  19. Evaluation of soil-structure interaction for structures subjected to earthquake loading with different types of foundation

    Directory of Open Access Journals (Sweden)

    Elwi Mohammed

    2018-01-01

    Full Text Available However though the structures are supported on soil, most of the designers do not consider the soil structure interaction and its subsequent effect on structure during an earthquake. Different soil properties can affect seismic waves as they pass through a soil layer. When a structure is subjected to an earthquake excitation, it interacts the foundation and soil, and thus changes the motion of the ground. It means that the movement of the whole ground structure system is influenced by type of soil as well as by the type of structure. Tall buildings are supposed to be of engineered construction in sense that they might have been analyzed and designed to meet the provision of relevant codes of practice and building bye-laws. IS 1893: 2002 “Criteria for Earthquake Resistant Design of Structures” gives response spectrum for different types of soil such as hard, medium and soft. An attempt has been made in this paper to study the effect of Soil-structure interaction on multi storeyed buildings with various foundation systems. Also to study the response of buildings subjected to seismic forces with Rigid and Flexible foundations. Multi storeyed buildings with fixed and flexible support subjected to seismic forces were analyzed under different soil conditions like hard, medium and soft. The buildings were analyzed by Response spectrum method using software SAP2000. The response of building frames such as Lateral deflection, Story drift, Base shear, Axial force and Column moment values for all building frames were presented in this paper.

  20. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    Science.gov (United States)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  1. The influence of charge transfers effects in monazite-type LaVO{sub 4} and perovskite-type LaVO{sub 3} prepared by sol-gel acrylamide polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Pérez, G., E-mail: guillermo.herrera@cimav.edu.mx [CONACYT Research Fellow. Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua 31136, Chihuahua (Mexico); Jiménez-Mier, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Mexico D. F (Mexico); Yang, W.-L. [The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Reyes-Rojas, A.; Fuentes-Cobas, L.E. [Department of Physics of Materials Department. Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua 31136, Chihuahua (Mexico)

    2016-08-15

    Highlights: • We elucidate the electronic structure through the vanadium L{sub 2,3} edge in LaVO{sub 4} by XAS. • The interpretation of XAS spectrum was performed by the multiplet calculation. • Our results suggest that LaVO{sub 4} can be considered in the charge transfer regime. - Abstract: Core-hole spectroscopy such as X-ray absorption spectroscopy (XAS) is useful to determine the electronic structure of strongly correlated and strongly hybridized compounds such as vanadates. Monazite-type LaVO{sub 4} and perovskite-type LaVO{sub 3} are good candidates to elucidate the electronic structure through the vanadium L{sub 2,3} edge. LaVO{sub 4} was prepared by sol-gel acrylamide polymerization and solid-state reaction. LaVO{sub 3} was obtained by reduction of LaVO{sub 4} using Zr as gatherer. Monoclinic crystal phase for LaVO{sub 4} and orthorhombic crystal phase for LaVO{sub 3} were confirmed by the Rietveld refinement of X-ray diffraction patterns. XAS comparison between Vanadium L{sub 2,3} edge confirms the presence of V{sup 5+} for the monazite and V{sup 3+} for the orthorhombic perovskite. Multiplet calculations including crystal field and charge transfer effects (CTM) were performed in order to elucidate the tetragonal (D{sub 4h} symmetry) parameters Dq, Ds and Dt, the charge transfer energy Δ, and d-d Coulomb repulsion energy U parameters. CTM confirms for LaVO{sub 3} the strong V 3d–O 2p hybridization with a significant contribution of covalent character due to the delocalization of 3d electrons. For LaVO{sub 4} this work suggest the reclassification of this band insulator as charge transfer insulator that shows a significant contribution of ionic character.

  2. Crystal structure, hydrogen bonding, and sup 8 sup 1 Br NQR of low-temperature phase of 4-aminopyridinium tetrabromoantimonate (3)

    CERN Document Server

    Hashimoto, M; Fuess, H; Svoboda, I; Ehrenberg, H

    2003-01-01

    The crystal structure of the low-temperature phase (LTP) of the title compound was determined at 220 K (monoclinic, P2 sub 1 sub / sub c). The 4-aminopyridinium cations (4-NH sub 2 C sub 5 H sub 4 NH sup +) were found to be ordered in LTP, while being severely disordered in the room-temperature phase (monoclinic, C2/c). The tetrabromoantimonate anions (SbBr sub 4 sup -) were incorporated into the infinite polyanion chains of irregular SbBr sub 6 octahedra with two-edges sharing. The trans-Br-Sb-Br moiety in the SbBr sub 4 sup - anion was approximately symmetric differing from the asymmetric Br-Sb centre dot centre dot centre dot Br moiety found in LTP of pyridinium tetrabromoantimonate (3). The N-H moieties in both of the pyridine ring and the amino (-NH sub 2) group participate in the formation of N-H centre dot centre dot centre dot Br hydrogen bonds. It was shown that the sup 8 sup 1 Br NQR spectrum of LTP is closely related to the anion structure and the hydrogen bonds. The distinctive anion structures, a...

  3. Near-atomic resolution analysis of BipD, a component of the type III secretion system of Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Pal, M.; Erskine, P. T.; Gill, R. S.; Wood, S. P.; Cooper, J. B.

    2010-01-01

    The type III secretion system needle-tip protein BipD has been crystallized in a form that diffracts X-rays to 1.5 Å resolution and the structure has been refined to an R factor of 16.1% and an R free of 19.8% at this resolution. The putative antiparallel dimer interface that was observed in earlier structures is conserved. Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5 Å resolution and the structure was refined to an R factor of 16.1% and an R free of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form

  4. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  5. The Cryoelectron Microscopy Structure of the Type 1 Chaperone-Usher Pilus Rod.

    Science.gov (United States)

    Hospenthal, Manuela K; Zyla, Dawid; Costa, Tiago R D; Redzej, Adam; Giese, Christoph; Lillington, James; Glockshuber, Rudi; Waksman, Gabriel

    2017-12-05

    Adhesive chaperone-usher pili are long, supramolecular protein fibers displayed on the surface of many bacterial pathogens. The type 1 and P pili of uropathogenic Escherichia coli (UPEC) play important roles during urinary tract colonization, mediating attachment to the bladder and kidney, respectively. The biomechanical properties of the helical pilus rods allow them to reversibly uncoil in response to flow-induced forces, allowing UPEC to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2-Å resolution cryo-EM structure of the type 1 pilus rod, which together with the previous P pilus rod structure rationalizes the remarkable "spring-like" properties of chaperone-usher pili. The cryo-EM structure of the type 1 pilus rod differs in its helical parameters from the structure determined previously by a hybrid approach. We provide evidence that these structural differences originate from different quaternary structures of pili assembled in vivo and in vitro. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Structural, vibrational, and gasochromic properties of porous WO sub 3 films templated with a sol-gel organic-inorganic hybrid

    CERN Document Server

    Opara-Krasovec, U; Orel, B; Grdadolnik, J; Drazic, G

    2002-01-01

    The structure and the gasochromic properties of sol-gel-derived WO sub 3 films with a monoclinic structure (m-WO sub 3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO sub 3 grains is modified by the addition of an organic-inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500 sup o C) of WO sub 3 /ICS- IPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO sub 3 grains, whereas energy-dispersive x-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO sub 3 /ICS-PPG film ...

  7. Microstructural, structural and optical properties of nanoparticles of PbO-CrO3 pigment synthesized by a soft route

    Directory of Open Access Journals (Sweden)

    V. D. Araújo

    2015-03-01

    Full Text Available PbCrO4 and Pb2CrO5 particles were synthesized by the polymeric precursor method. Structural and microstructural properties of the particles were characterized by scanning electron microscopy with field emission gun, X-ray diffraction, and Raman spectroscopy techniques. The diffuse reflectance technique was employed to study the optical properties in the 400-700 nm range. The optical bandgap of the samples was obtained indirectly. Colorimetric coordinates L*, a*, b* were calculated for the pigment powders as a function of the heat treatment (400-700 ºC. The powders displayed colors ranging from green to red. X-ray diffraction patterns showed the presence of monoclinic PbCrO4 phase in green samples, while red powders had a monoclinic Pb2CrO5 phase structure. The Raman spectra of the PbCrO4 and Pb2CrO5 powders were in good agreement with those reported in the literature. The synthesized compounds can be used as green and red pigments with high thermal stability.

  8. Structure of V-type ATPase from Clostridium fervidus by electron microscopy

    NARCIS (Netherlands)

    Boekema, EJ; Ubbink-Kok, T; Lolkema, JS; Brisson, A; Konings, WN

    F-type and V-type ATPases couple synthesis or hydrolysis of ATP to the translocation of H+ or Na+ across biological membranes and have similarities in structure and mechanism. In both types of enzymes three main parts can be distinguished: headpiece, membrane-bound piece and stalk region. We report

  9. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario Nunes, Sayonara [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP (Brazil); Wang, Chun-Hai; So, Karwei; Evans, John S.O. [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Evans, Ivana Radosavljević, E-mail: ivana.radosavljevic@durham.ac.uk [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.

  10. Structural transition in lanthanum gallate and transformation of the fine structure of the EPR spectrum of a Gd3+ impurity center

    Science.gov (United States)

    Vazhenin, V. A.; Guseva, V. B.; Fokin, A. V.; Potapov, A. P.; Artyomov, M. Yu.

    2011-04-01

    Abrupt changes in resonance positions, hysteretic temperature behavior, and coexistence of phases, which indicate a first-order phase transition, have been revealed from measurements of temperature dependences of the EPR spectra of Gd3+ and Mn4+ centers in the vicinity of the structural transition of lanthanum gallate. The transformation of monoclinic Gd3+ centers into trigonal Gd3+ centers upon the phase transition has been used to estimate the adequacy of two approximations of the superposition model for parameters of the zero-field splitting of the ground state.

  11. Structure and evolution of the Horse Heaven Hills in South-Central Washington

    International Nuclear Information System (INIS)

    Hagood, M.C.

    1986-03-01

    The purpose of this study is to describe the structure and evolution of the Horse Heaven Hills uplift at its abrupt structural transition. This was achieved by: (1) delineating the structure within the two trends as they approach the intersection; (2) determining the timing and location of uplift within each trend; (3) comparing and contrasting Miocene vertical growth rates along folds within both trends; and (4) imposing constraints for tectonic models that pertain to the genesis of the Horse Heaven Hills uplift. These objectives can only be fulfilled if the stratigraphy of the area is first delineated. Data from this study suggest that tectonic models that directly or indirectly pertain to the origin of the Horse Heaven Hills uplift may be constrained by: (1) the predominance of monoclinal or near-monoclinal fold geometries and reverse faults along both the northwest and northeast trends; (2) preliminary data which suggest clockwise rotation has occurred along folds of both trends; (3) folds along both trends developing simultaneously and at similar rates (at least during Wanapum and Saddle Mountains time); (4) folds along the northwest trend of the Horse Heaven Hills uplift being genetically related to and forming simultaneously with at least certain folds along the Rattlesnake-Wallula structural alignment; (5) the uplift developing simultaneously with the north-northwest-trending Hog Ranch-Naneum Ridge anticline as well as other Yakima folds during at least Columbia River Basalt Group time. It is proposed that folds of both trends of the Horse Heaven Hills uplift were generated by the same tectonic processes

  12. Electron effective mass in Sn-doped monoclinic single crystal β-gallium oxide determined by mid-infrared optical Hall effect

    Science.gov (United States)

    Knight, Sean; Mock, Alyssa; Korlacki, Rafał; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2018-01-01

    The isotropic average conduction band minimum electron effective mass in Sn-doped monoclinic single crystal β-Ga2O3 is experimentally determined by the mid-infrared optical Hall effect to be (0.284 ± 0.013)m0 combining investigations on (010) and ( 2 ¯01 ) surface cuts. This result falls within the broad range of values predicted by theoretical calculations for undoped β-Ga2O3. The result is also comparable to recent density functional calculations using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional, which predict an average effective mass of 0.267m0. Within our uncertainty limits, we detect no anisotropy for the electron effective mass, which is consistent with most previous theoretical calculations. We discuss upper limits for possible anisotropy of the electron effective mass parameter from our experimental uncertainty limits, and we compare our findings with recent theoretical results.

  13. Post accelerator of the IH type structure

    International Nuclear Information System (INIS)

    Chen Ming

    2002-01-01

    The principle, structure, adjustment of the gap voltage, beam dynamic, RF system and the bunchers of the post-accelerator with Interdigital-H type structure, which was developed by the author and Technical University Munich in four years, is described. The energy of ions with mass of three was increased from 340 keV to 1.74 MeV, when resonant frequency of 84.2 MHz and input RF power of 3 kW. The effective shunt impedance reached to 408 MΩ/m. The commissioning was succeeded with H 3 + ion beams. The output energy of H 3 + ion beams reached the design value. The two harmonic double drift buncher used by the IH structure bunches the beam to the bunches with the width of 360 ps. Then the acceptance of the IH structure is increased to 240 degree. Its shunt impedance is three times higher than former single gap bunchers used by TUM and the length of the buncher system is one fifth of former one only because the use of λ/4 coaxial cavities with double gaps

  14. Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao

    2005-01-01

    The title new neodymium(III) selenate-selenite was obtained by hydrothermal reactions of neodymium(III) oxide, H 2 SeO 4 and 1,10-phenanthroline at 140 o C. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group C2/c with cell parameters of a = 12.258(2) A, b 7.1024(15) A, c = 13.391(3) A, β = 104.250(2) o . The structure of Nd 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 is isomorphous with that of Er 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 , which was refined in the monoclinic space group C2 with the disordered selenate group. It features an ordered 3D network with channels along b-axis. The selenate or selenite groups alone can form a 2D layer with the Nd(III) ions. IR spectrum, TGA and luminescent studies have also been performed

  15. Gd5(SixGe1−x)4 system – updated phase diagram

    International Nuclear Information System (INIS)

    Melikhov, Yevgen; Hadimani, R.L.; Raghunathan, Arun

    2015-01-01

    Gd 5 (Si x Ge 1−x ) 4 for 0.41monoclinic and paramagnetic at higher temperature, and shows a first order magnetic-structural phase transition between the two. In this range, the magnetic moment vs. magnetic field (MH) isotherms measured just above the first order transition temperature carry information about all magnetic and structural transitions. Here, the Curie–Weiss law was applied to the paramagnetic portions of the MH isotherms which allowed identification of the second order magnetic phase transition temperature of the monoclinic phase, a region where the second order transition does not occur due to the existence of the first order transition. The calculated second order phase transition temperatures of the monoclinic phase were added to the existing phase diagram. The completed magnetic-structural phase diagram carries now all the information including the magnetic transition temperatures of both monoclinic and orthorhombic phases. It was also found that the magnetic transition temperature of the monoclinic phase and the first order transition temperature are interrelated. - Highlights: • Magnetocaloric Gd 5 (Si x Ge 1−x ) 4 for 0.41monoclinic phase. • Curie–Weiss law and Arrott Plot technique were used to analyse M vs. H isotherms. • Second order phase transition temperatures of the monoclinic phase were estimated. • Magnetic-structural phase diagram Gd 5 (Si x Ge 1−x ) 4 for 0.41

  16. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  17. Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory

    Science.gov (United States)

    Zatsepin, D. A.; Boukhvalov, D. W.; Zatsepin, A. F.; Kuznetsova, Yu. A.; Mashkovtsev, M. A.; Rychkov, V. N.; Shur, V. Ya.; Esin, A. A.; Kurmaev, E. Z.

    2018-04-01

    The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ∼21 nm in size plus a cubic phase admixture of only 2 at.% composed of primary edge-boundary nanoparticles ∼15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd…Osbnd OH] and [Gd…Osbnd O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5р - O 2s core-like levels in the valence band structures. The origin of [Gd…Osbnd OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.

  18. High-pressure synthesis and single-crystal structure elucidation of the indium oxide-borate In{sub 4}O{sub 2}B{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Teresa S.; Vitzthum, Daniela; Heymann, Gunter; Huppertz, Hubert [Department of General, Inorganic and Theoretical Chemistry, Centre of Chemistry and Biomedicine (CCB), Leopold-Franzens-University Innsbruck (Austria)

    2017-12-29

    The indium oxide-borate In{sub 4}O{sub 2}B{sub 2}O{sub 7} was synthesized under high-pressure/high-temperature conditions at 12.5 GPa/1420 K using a Walker-type multianvil apparatus. Single-crystal X-ray structure elucidation showed edge-sharing OIn{sub 4} tetrahedra and B{sub 2}O{sub 7} units building up the oxide-borate. It crystallizes with Z = 8 in the monoclinic space group P2{sub 1}/n (no. 14) with a = 1016.54(3), b = 964.55(3), c = 1382.66(4) pm, and β = 109.7(1) . The compound was also characterized by powder X-ray diffraction and vibrational spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Characteristic analysis on the deformation behaviour of shell-like lattice structures subjected to follower forces; Judo kaju wo ukeru kosa arch kozo no daihenkei kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, N.; Okada, K. [Kyushu University, Fukuoka (Japan); Fujii, M. [Namura Shipbuilding Co. Ltd., Osaka (Japan); Shiraki, M. [Toyota Motor Corp., Aichi (Japan)

    1998-09-04

    The deformation mechanisms of submerged shell-like lattice structures with membrane are in principle of a non-conservative nature since the follower type hydrostatic pressure. In the region of large deformations, especially in the case of geometrically deep shell-like lattice structures, the system could be much more accurately defined in a mono-clinically convected coordinate description than the conventional spatial description. Also, a complete analysis of a non-conservative system requires a criterion since the system can have multiple ranges of stability and instability involving buckling and snapping. This paper presents the development of the governing equations for the finite deformations of shell-like lattices defined in a mono-clincally convected coordinate description and applies the same to different cases of lattice deformations. The validity of the formulations is verified for finite deformation. The examples of some geometrically special shell-like lattice structures are presented as well to show the feasibility of the present formulation. 5 refs., 11 figs.

  20. Synthesis and crystal structure of lithium beryllium deuteride Li2BeD4.

    Science.gov (United States)

    Bulychev, Boris M; Shpanchenko, Roman V; Antipov, Evgeny V; Sheptyakov, Denis V; Bushmeleva, Svetlana N; Balagurov, Anatoly M

    2004-10-04

    Single-phase ternary deuteride Li(2)BeD(4) was synthesized by a high-pressure high-temperature technique from LiD and BeD(2). The crystal structure of Li(2)BeD(4) was solved from X-ray and neutron powder diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c with lattice parameters a = 7.06228(9) A, b = 8.3378(1) A, c = 8.3465(1) A, beta =93.577(1) degrees, and Z = 8. Its structure contains isolated BeD(4) tetrahedra and Li atoms that are located in the structure interstices. Li(2)BeD(4) does not undergo any structural phase transitions at temperatures down to 8 K.

  1. On the Use of Dynamical Diffraction Theory To Refine Crystal Structure from Electron Diffraction Data: Application to KLa5O5(VO4)2, a Material with Promising Luminescent Properties.

    Science.gov (United States)

    Colmont, Marie; Palatinus, Lukas; Huvé, Marielle; Kabbour, Houria; Saitzek, Sébastien; Djelal, Nora; Roussel, Pascal

    2016-03-07

    A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and β = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

  2. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa.

    Science.gov (United States)

    Salih, Osman; He, Shaoda; Planamente, Sara; Stach, Lasse; MacDonald, James T; Manoli, Eleni; Scheres, Sjors H W; Filloux, Alain; Freemont, Paul S

    2018-02-06

    Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The crystal structures of jaguéite, Cu2Pd3Se4, and chrisstanleyite, Ag2Pd3Se4

    DEFF Research Database (Denmark)

    Topa, Dan; Makovicky, Emil; Balic Zunic, Tonci

    2006-01-01

    equipped with a CCD area-detector. The crystal structure of chrisstanleyite, ideally Ag2Pd3Se4, monoclinic a 5.676(2), b 10.342(4), c 6.341(2) Å, ß 114.996(4)º, space group P21/c, has been solved by direct methods and refi ned to an R1 index of 8.3% for 1203 unique refl ections measured with MoK X......The crystal structure of jaguéite, ideally Cu2Pd3Se4, monoclinic, a 5.672(5), b 9.909(9), c 6.264(6) Å, ß 115.40(2)º, space group P21/c, has been solved by direct methods and refi ned to an R1 index of 5.52% for 956 unique refl ections measured with MoK X-radiation on a P-4 Bruker diffractometer......(Ag)-Pd2 system of metal-metal bonds, help to stabilize the open-work structure composed of PdSe4 squares....

  4. The indentification of Jueluotage V-type structure in Xinjiang and its orderness

    International Nuclear Information System (INIS)

    Fang Maolong; Sun Wenpeng; Cai Wenbo; Xu Daoyi

    2005-01-01

    Based on the interpretation of satellite image and field checking in Jueluotage area, Xinjiang, it is thought that the sublatitudinal arc fault zones have been formed since Mesozoic through the evolution of the NWW-trending and NEE-trending faults occurring in pre-Mesozoic time. These three sets of faults comprise the Jueluotage 'V-type structure' formed by the NW-trending structural stress field and drastically activated since Neocene. The Jueluotage V-type structure is expressed in time as an ordered process, and in space as an ordered arrangement and an ordered evolution direction, and characterizes the Information Ordered Series (IOS) of the evolution process of fault structure. (authors)

  5. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  6. NH4In(SeO4)2x4H2O crystal structure interpretation

    International Nuclear Information System (INIS)

    Soldatov, E.A.; Kuz'min, Eh.A.; Ilyukhin, V.V.

    1979-01-01

    The rhomb method has been applied to interpret the structure of monoclinic ammonium indium selenate NH 4 In(SeO 4 ) 2 x4H 2 O the elementary cell of which contains Z=4 formula units (a=10.728, b=9.434, c=11.086 A, γ=101.58). The space group is P2 1 /b. The structure foundation is composed of [In(SeO 4 ) 2 x2H 2 O] 1- mixed layers parallel to (100). ''Free'' H 2 O molecules and NH 4 + cations are situated between the layers

  7. Structural motifs of diiodine complexes with amides and thioamides.

    Science.gov (United States)

    Parigoridi, Ioanna-Efpraxia; Corban, Ghada J; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Kostakis, George; Psycharis, Vassilis; Raptopoulou, Catherine P; Kubicki, Maciej

    2008-10-14

    The reaction of 2-pyrimidone hydrochloride ([C(4)H(5)N(2)O](+)[Cl](-) or [PMOH(2)](+)[Cl](-)) with diiodine in a dichloromethane-methanol solution resulted in the formation of ([C(4)H(5)N(2)O](+))(2)[I(2)Cl(2)](2-) (1) complex. The compound was characterized by elemental analysis, FT-IR, DTA-TG and conductivity titrations. The crystal structure of 1 was also determined by X-ray diffraction at 294(1) K. Compound 1 is monoclinic, space group P2(1)/n, consisting of two cationic [PMOH(2)](+) species and a [I(2)Cl(2)](2-) counter dianion. The cation is in its keto form. Direct reaction of thiazolidine-2-thione (tzdtH), with diiodine in dichloromethane solution, on the other hand, led to the formation of a crystalline solid which contained two complexes of formulae [(tzdtH)(2)I](+)[I(3)](-).2I(2) (2) and [(tzdtH)I(2)](2).I(2) (2a) in a ratio of 90 to 10%. Complex 2a was characterized by X-ray analysis at 180(2) K. Compound is monoclinic, space group C2/c and contains two units of [(tzdtH)I(2)] "spoke" structures. Compound 1, as well as the known species iodonium salt [(tzdtH)(2)I](+)[I(3)](-).2I(2) (2) and the charge transfer (CT) iodine complexes of formulae [(bztzdtH)I(2)] (3) and [(bztzdtH)I(2)].I(2) (4) (bztzdtH = 2-mercaptobenzothiazole) with "spoke" and extended "spoke" structures respectively, were tested for their oxidizing activity towards 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone.

  8. Crystal structure of [NEt3H]2[TaOF5

    International Nuclear Information System (INIS)

    Furmanova, N.G.; Verin, I.A.; Zanin, I.E.; Zozulin, A.N.; Il'in, E.G.

    1991-01-01

    By means of isothermal evaporation of triethylammonium oxofluorotantalate solution crystals are grown and studied by the methods of 19 F NMR spectrocopy and X-ray diffraction analysis. The crystals grown are monoclinic, a=9.926, b=7.906, c=11.657 A, β=90.83 deg, Z=2, sp. gr. P2 1 /n. The structure is composed of [TaOF 5 ] 2- anions and [NEt 3 H] + cations bound with the anions by H-bonds. Only the Van der Waals interaction is realized between the complexes

  9. Structural inheritance in cast 30KhGNM-type steel

    International Nuclear Information System (INIS)

    Sadovskij, V.D.; Bershtejn, L.I.; Mel'nikova, A.A.; Polyakova, A.M.; Schastlivtsev, V.M.

    1980-01-01

    Structural inheritance in the cast 30KhGNM-type steel depending on the heating rate and the temperature of preliminary tempering is investigated. When eating the cast steel with a beinite structure at the rate of 1-150 deg/min, the restoration of austenite grain and the following recrystallization due to the phase cold work, are observed. Slow heating from room temperature or preliminary tempering hinder grain restoration during heating. A non-monotonous effect of tempering temperature on the structural inheritance is established which can be connected with the kinetics of decomposition of residual austenite in steel

  10. Filamentary structures of the cosmic web and the nonlinear Schroedinger type equation

    International Nuclear Information System (INIS)

    Tigrak, E; Weygaert, R van de; Jones, B J T

    2011-01-01

    We show that the filamentary type structures of the cosmic web can be modeled as solitonic waves by solving the reaction diffusion system which is the hydrodynamical analogous of the nonlinear Schroedinger type equation. We find the analytical solution of this system by applying the Hirota direct method which produces the dissipative soliton solutions to formulate the dynamical evolution of the nonlinear structure formation.

  11. Interaction of covalent hydrides of transition metals with Lewis acids. Molecular and crystalline structures of (eta5-CΛ5HΛ5)Λ2Mo(μ-HΛ2)FeIΛ2xNCHΛ3C and (eta5-CΛ5HΛ5)Λ2Mo(μ-HΛ2)CoBrΛ2xNCHΛ3C

    International Nuclear Information System (INIS)

    Bel'skij, V.K.; Bulychev, B.M.; Aripovskij, A.V.

    1985-01-01

    Using the methods of X-ray structural and IR spectroscopy analyses the structure of the complexes of molybdenocene dihydride with halides of iron triad has been investigated. (eta 5 -C 5 H 5 ) 2 Mo(μ-H 2 )CoBr 2 xNCH 3 C is crystallized in monoclinic cell with the parameters: a=7.821(1), b=12488(2), c=16.275(3)A, γ=105.74(1), sp. gr. P2 1 /n, Z=4. (eta 5 -C 5 H 5 ) 2 xMo(μ-H 2 )FeI 2 xNCH 3 C is crystallized in triclinic cell with the parameters: a=8.572(2), b=8.067(2), c=12496(3)A, α=87.72(2). β=90.82(2), γ=71.22(2), sp.gr. P anti 1, Z=2. The conclusion is made, that the structural type of bimetallic complexes of a sipilar type is determined by the ratio of iron triad halide acidity, halogen atom nucleophility and solvent basicity

  12. Seismic verification methods for structures and equipment of VVER-type and RBMK-type NPPs (summary of experiences)

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    The main verification methods for structures and equipment of already existing VVER-type and RBMK-type NPPs are briefly described. The following aspects are discussed: fundamental seismic safety assessment principles for VVER/RBMK-type NPPs (seismic safety assessment procedure, typical work plan for seismic safety assessment of existing NPPs, SMA (HCLPF) calculations, modified GIP (GIP-VVER) procedure, similarity of VVER/RBMK equipment to that included in the SQUG databases and seismic interactions

  13. Reverse engineering of wörner type drilling machine structure.

    Science.gov (United States)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  14. Structure of cadmium chloride complex with thiosemicarbazide Cd(NH2CSNHNH2)Cl2xH2O

    International Nuclear Information System (INIS)

    Gusev, A.I.; Chuklanova, E.B.; Murzubraimov, B.; Toktomamatov, A.

    1985-01-01

    The X-ray diffraction investigation of crystal and molecular structures of cadmium chloride complex with thiosemicarbaride is performed. Crystals are monoclinic with unit cell parameters: a=10.121(2), b=13.927(2), c=6.894(1) A, β=124.13(1) deg, Z=4, Cc sp. gr. The crystal structure consists of [Cd(NH 2 CSNHxNH 2 )Cl 2 ]n polymer chains and crystallization water molecules located between these chains. The cadmium coordination number equals 6, coordination polyhedron - tetragonal bipyramid

  15. X-Ray Diffraction and μ-Raman Investigation of the Monoclinic-Orthorhombic Phase Transition in Th1-xUx(C2O4)2. 2H2O Solid Solutions

    International Nuclear Information System (INIS)

    Clavier, N.; Dacheux, N.; Clavier, N.; Hingant, N.; Dacheux, N.; Barre, N.; Rivenet, M.; Obbade, S.; Abraham, F.

    2010-01-01

    A complete Th 1-x U x (C 2 O 4 ) 2 . 2H 2 O solid solution was prepared by mild hydrothermal synthesis from a mixture of hydrochloric solutions containing cations and oxalic acid. The crystal structure has been solved from twinned single crystals for x=0, 0. 5, and 1 with monoclinic symmetry, space group C2/c, leading to unit cell parameters of a ≅ to 10. 5 Angstroms, b ≅ 8. 5 Angstrom, and c ≅ 9. 6 Angstrom. The crystal structure consists of a two-dimensional arrangement of actinide centers connected through bis-bidentate oxalate ions forming squares. The actinide metal is coordinated by eight oxygen atoms from four oxalate entities and two water oxygen atoms forming a bi-capped square anti-prism. The connection between the layers is assumed by hydrogen bonds between the water molecules and the oxygen of oxalate of an adjacent layer. Under these conditions, the unit cell contains two independent oxalate ions. From high-temperature μ-Raman and X-ray diffraction studies, the compounds were found to undergo a transition to an orthorhombic form (space group Ccca). The major differences in the structural arrangement concern the symmetry of uranium, which decreases from C2 to D2, leading to a unique oxalate group. Consequently, the ν s (C-O) double band observed in the Raman spectra recorded at room temperature turned into a singlet. This transformation was then used to make the phase transition temperature more precise as a function of the uranium content of the sample. (authors)

  16. New types of organizational structures of accounting departments and their development

    OpenAIRE

    Шигун, Марія Михайлівна

    2015-01-01

    Development directions of new types of organizational structures of accounting departments, emergence of which has been caused by present-day conditions of keeping economics relationships, have been researched, as well as peculiarity of complex hierarchical and adaptive structures has been disclosed.

  17. A Low Cost Structurally Optimized Design for Diverse Filter Types

    Science.gov (United States)

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image

  18. Synthesis and structural investigation of new Co1-xNixTeO4 (x = 0, 0.2, 0.5, 0.8 and 1) compounds

    Science.gov (United States)

    Patel, Akhilesh K.; Singh, Harishchandra; Suresh, K. G.

    2018-05-01

    The new polycrystalline compounds Co1-xNixTeO4 (x = 0, 0.2, 0.5, 0.8 and 1) were prepared by sol-gel method and their structural properties have been studied. Structural investigation through Rietveld method shows monoclinic structure with space group P21/c for all compounds. All compounds polyhedral structure found to be in octahedral form with cations (M) at the center and six oxygen atoms at corner of octahedral structure. The lattice parameters variation with Ni substitution are found to be decreasing with Ni substitution.

  19. Robust structural optimization using Gauss-type quadrature formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  20. Robust structural optimization using Gauss-type quadrature formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chen, Shikui; Chen, Wei [Northwestern University, Illinois (United States)

    2009-07-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  1. Robust Structural Optimization Using Gauss-type Quadrature Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-08-15

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  2. Robust Structural Optimization Using Gauss-type Quadrature Formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty

  3. Mixed-valent perovskites of the type Ba/sub 3/Bsup(III)PtRuO/sub 9/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Ehmann, A; Herrmann, M [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-08-01

    Compounds of type Ba/sub 3/Bsup(III)PtRuO/sub 9/ - with a mean oxydation state of the noble metals of +4.5 - crystallize with Bsup(III) = Gd-Lu, Y in a variant of hexagonal BaTiO/sub 3/ type with ordered cationic distribution. Intensity calculations on powder data of Ba/sub 3/YPtRuO/sub 9/ (a = 5.88/sub 8/; c = 14.7/sub 0/ A) gave in the space group P6/sub 3//mmc (sequence (hcc)/sub 2/) a refined, intensity related R' value of 5.9%. With Bsup(III) = Eu the lattice is monoclinic and for Bsup(III) = Sm, Nd, La triclinic distorted.

  4. Step-driven surface segregation and ordering during Si-Ge MBE growth

    International Nuclear Information System (INIS)

    Jesson, D.E.; Pennycook, S.J.; Baribeau, J.M.; Houghton, D.C.

    1992-06-01

    An important role of type S B step edges in determining the as-grown microstructure of Si-Ge superlattices and alloys is implicated from direct Z-contrast images of as-grown structures. A variety of different ordered phase variants can arise at each Si on Ge interface as a result of vertical segregation during superlattice growth. A new monoclinic-ordered structure is predicted to arise as a result of lateral segregation during alloy growth

  5. Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 eV

    Directory of Open Access Journals (Sweden)

    C. Sturm

    2015-10-01

    Full Text Available The dielectric tensor of Ga2O3 in the monoclinic (β phase was determined by generalized spectroscopic ellipsometry in a wide spectral range from 0.5 eV to 8.5 eV as well as by density functional theory calculations combined with many-body perturbation theory including quasiparticle and excitonic effects. The dielectric tensors obtained by both methods are in excellent agreement with each other and the observed transitions in the dielectric function are assigned to the corresponding valence bands. It is shown that the off-diagonal element of the dielectric tensor reaches values up to |εxz| ≈ 0.30 and cannot be neglected. Even in the transparent spectral range where it is quite small (|εxz| < 0.02 it causes a rotation of the dielectric axes around the symmetry axis of up to 20°.

  6. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  7. Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells

    International Nuclear Information System (INIS)

    Rodriguez V, I.; Gaggero S, L.M.

    2004-01-01

    We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs

  8. Synthesis and crystal structure of Pb(Bipy)2B12H12

    International Nuclear Information System (INIS)

    Lagun, V.L.; Orlova, A.M.; Katser, S.B.; Solntsev, K.A.; Kuznetsov, N.T.

    1994-01-01

    Lead complex with B 12 H 12 2- anion and 2,2' bipyridine-lead(2) dodecahydro-closo-dodecaborate di(2,2' bipyridine) is synthesized and characterized by IF, UV and NMR spectrography methods. According to roentgen-structural analysis the crystals belong to monoclinic syngony, sp.gr. C2/m,a=17.872(4), b=18.672(5), c=9.228(7)A, β=109.11(4), V=2910(2)A 3 , Z=4. The structure consists of Pb 2 (Bipy) 4 (B 12 H 12 ) 2 dimeric units. The Pb-B distances are within the limits of 3.313-3.514A. 11 refs.; 2 figs.; 2 tabs

  9. Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Meinan; Xiong, Mo [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China); Li, Neng, E-mail: lineng@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China); Liu, Baoshun; Wang, Shuo [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China); Ching, Wai-Yim [Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Zhao, Xiujian, E-mail: opluse@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China)

    2017-07-15

    Highlights: • N-doped VO{sub 2}(M1) thin films have been synthesized by annealing in NH{sub 3} atmosphere. • The phase purity, microstructure and optical property of VO{sub 2} thin film can be regulated by NH{sub 3} concentration. • First-principles calculations have been carried out to study the mechanism of N-doping on energy band structures of VO{sub 2}(M1). • The energy band gaps of VO{sub 2}(M1) are tuned by substitution N-doping or interstitial N-doping. - Abstract: Research on monoclinic (M1) phase of VO{sub 2} has attracted a great of interest for smart coating applications due to its exceptional thermochromic property. Herein, we report the results using a novel approach to synthesize N-doped VO{sub 2}(M1) thin films with high purity by heat treatment in NH{sub 3} atmosphere. The N dopant in the film can be regulated by varying NH{sub 3} concentration during the annealing process. We find that the N atoms are located at the interstitial sites or substitute oxygen atoms, and the V-N bonds in the VO{sub 2} thin films increase with NH{sub 3} concentration. The metal to insulator transition (MIT) temperature (τ{sub c,h}) of the VO{sub 2} thin film is effectively reduced from 80.0 to 62.9 °C, while the solar modulation efficiency (ΔT{sub sol}) and the modulation efficiency at 2000 nm (ΔT{sub 2000nm}) are 7.36% and 55.6% respectively. The band gap of N-doped VO{sub 2} thin films related to MIT (E{sub g1}) is estimated to be as low as 0.18–0.25 eV whereas the band gap associated with the visible transparency (E{sub g2}) is about 1.50–1.58 eV. Based on the highly accurate first-principles calculations, the E{sub g1} of VO{sub 2} (M1) is reduced after substituted or interstitial N-doping, while the E{sub g2} alters with the mode of N-doping, which is excellent agreement with experimental measurement.

  10. X-Ray diffraction and mu-Raman investigation of the monoclinic-orthorhombic phase transition in Th(1-x)U(x)(C(2)O(4))(2).2H(2)O solid solutions.

    Science.gov (United States)

    Clavier, Nicolas; Hingant, Nina; Rivenet, Murielle; Obbade, Saïd; Dacheux, Nicolas; Barré, Nicole; Abraham, Francis

    2010-02-15

    A complete Th(1-x)U(x)(C(2)O(4))(2).2H(2)O solid solution was prepared by mild hydrothermal synthesis from a mixture of hydrochloric solutions containing cations and oxalic acid. The crystal structure has been solved from twinned single crystals for x = 0, 0.5, and 1 with monoclinic symmetry, space group C2/c, leading to unit cell parameters of a approximately 10.5 A, b approximately 8.5 A, and c approximately 9.6 A. The crystal structure consists of a two-dimensional arrangement of actinide centers connected through bis-bidentate oxalate ions forming squares. The actinide metal is coordinated by eight oxygen atoms from four oxalate entities and two water oxygen atoms forming a bicapped square antiprism. The connection between the layers is assumed by hydrogen bonds between the water molecules and the oxygen of oxalate of an adjacent layer. Under these conditions, the unit cell contains two independent oxalate ions. From high-temperature mu-Raman and X-ray diffraction studies, the compounds were found to undergo a transition to an orthorhombic form (space group Ccca). The major differences in the structural arrangement concern the symmetry of uranium, which decreases from C2 to D2, leading to a unique oxalate group. Consequently, the nu(s)(C-O) double band observed in the Raman spectra recorded at room temperature turned into a singlet. This transformation was then used to make the phase transition temperature more precise as a function of the uranium content of the sample.

  11. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  12. An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    胡志强; 刘毅; 王晋

    2016-01-01

    An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.

  13. A Study of the Types of Organizational Structure in Venezuelan University Institutes

    Directory of Open Access Journals (Sweden)

    Rafael Antonio Pertuz Belloso

    2013-12-01

    Full Text Available This study aimed at identifying the type of organizational structure of Venezuelan university institutes. It is a field investigation of a descriptive nature with a non-experimental transactional field design. We worked with a population sample consisting of a director, assistant directors, academic assistant directors and eighty-eight teachers from technological institutes in Cabimas and Maracaibo in Venezuela. A survey, in the form of a questionnaire, was used as the data collection technique, which included 24 items, validated by 5 experts, with Cronbach Alpha reliability of 0.93. The data analysis technique utilized was the percentage frequency distribution. The results indicated the coexistence of bureaucratic structural typologies; departmental and simple. An implementation of a structural migration strategy to the implementation of a matrix-type structure is recommended.

  14. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  15. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  16. The crystal structures and powder diffraction patterns of the uranium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.L. (State Univ. of New York, Alfred, NY (USA). Inst. of Ceramic Superconductivity); Nichols, M.C.; Boehme, D.R. (Sandia National Labs., Livermore, CA (USA))

    1990-10-03

    A critical review of all of the reported structures and powder diffraction patterns in the uranium telluride system has been undertaken. Structures that are correct: Cubic -- UTe: no experimental pattern exists. Retain calculated 15--865. Cubic --U{sub 3}Te{sub 4}: retain the poor quality 12--610 but adopt the pattern calculated here. Cubic U{sub 2}Te{sub 3}: no experimental pattern exists. Adopt pattern calculated here. Orthorhombic UTe{sub 2}: Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Orthorhombic {beta}UTe{sub 3}: Adopt pattern calculated here. Orthorhombic UTe{sub 5}: Adopt the new pattern of Boehme et al. Structures in need of refinement: Orthorhombic U{sub 2}Te{sub 3}:Adopt pattern calculated here over 34--807. Hexagonal U{sub 7}Te{sub 12}: Adopt pattern calculated here but retain 24--1368. Orthorhombic UTe{sub 1.78}: Adopt pattern calculated here and retain our modified 21--1404 reported for U{sub 4}Te{sub 7}. Orthorhombic UTe{sub 2.5}: Adopt pattern calculated here. Orthorhombic UTe{sub 3.4}: Accept recent pattern of Boehme et al. Phases for which no structures or reliable patterns exist: Orthorhombic U{sub 3}Te{sub 4}: no published pattern. Tetragonal U{sub 3}Te{sub 5}: three patterns 21--1407, 34--766 and 34--896 exit but all are of very poor quality. Phases which probably do not exist: Tetragonal UTe{sub 1.78}, Tetragonal UTe{sub 2}, Cubic UTe{sub 2} U{sub 3}Te{sub 7}(21--1402), U{sub 3}Te{sub 8}(21--1406).

  17. Crystal structure of Cs3H(SeO4)2 (T=295 K) and its changes in phase transformations

    International Nuclear Information System (INIS)

    Merinov, B.V.; Bolotina, N.B.; Baranov, A.I.; Shuvalov, L.A.

    1988-01-01

    Crystal structure of Cs 3 H(SeO 4 ) 2 3 phase at T=295 K is decoded by X-ray diffraction data. Monoclinic cell parameters are improved: a=10.903(3), b=6.390(8), c=8.452(2)A, β=112.46(1) deg, V=544 A 3 , Z=2, sp. gr. C2/m. Structural peculiarities of 3↔2↔1 phase transitions in Cs 3 H(SeO 4 ) 2 and proton conductivity mechanism in superionic phase are considered

  18. Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph

    International Nuclear Information System (INIS)

    Errandonea, D.; García-Domene, B.; Gomis, O.; Santamaría-Perez, D.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S. N.; Tyagi, A. K.; Popescu, C.

    2015-01-01

    We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO 4 . Room-temperature pressure-volume equations of state are reported. BiPO 4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO 4 . On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO 4 . Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study

  19. Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties

    Science.gov (United States)

    Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling

    2014-01-01

    Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These

  20. Magnesium hexafluoridozirconates MgZrF{sub 6}.5H{sub 2}O, MgZrF{sub 6}.2H{sub 2}O, and MgZrF{sub 6}. Structures, phase transitions, and internal mobility of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, Andrey V.; Gaivoronskaya, Kseniya A.; Slobodyuk, Arseny B.; Didenko, Nina A. [Institute of Chemistry, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2017-12-04

    The MgZrF{sub 6}.nH{sub 2}O (n = 5, 2 and 0) compounds were studied by the methods of X-ray diffraction and {sup 19}F, MAS {sup 19}F, and {sup 1}H NMR spectroscopy. At room temperature, the compound MgZrF{sub 6}.5H{sub 2}O has a monoclinic C-centered unit cell and is composed of isolated chains of edge-sharing ZrF{sub 8} dodecahedra reinforced with MgF{sub 2}(H{sub 2}O){sub 4} octahedra and uncoordinated H{sub 2}O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic <-> two-domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF{sub 6}.2H{sub 2}O comprises a three-dimensional framework consisting of chains of edge-sharing ZrF{sub 8} dodecahedra linked to each other through MgF{sub 4}(H{sub 2}O){sub 2} octahedra. The compound MgZrF{sub 6} belongs to the NaSbF{sub 6} type and is built from regular ZrF{sub 6} and MgF{sub 6} octahedra linked into a three-dimensional framework through linear Zr-F-Mg bridges. The peaks in {sup 19}F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable-temperature {sup 1}H NMR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    International Nuclear Information System (INIS)

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-01-01

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III H PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III H and such PGDHs structures having this type are reported for the first time

  2. Topotactic reduction and phase transitions in (T,T′ La1.8Pr0.2CuO4

    Directory of Open Access Journals (Sweden)

    M.I. Houchati

    2017-05-01

    The X-ray powder diffraction data have revealed that this cuprate is crystallized with the so-called “pseudo-S” type structure, showing a monoclinic symmetry and space group A2/m. Concerning the EPR measurements, they have shown the presence of Cu2+ cation and a hyperfine structure suggesting a pronounced hybridization of the copper–oxygen bond. Finally, X-ray diffraction has demonstrated that the obtained La1.8Pr0.2CuO3.5, heated in oxygen at 420 °C, turns topotactically into La1.8Pr0.2CuO4 with a T′-type structure (I4/mmm.

  3. Left ventricular structure and function in black normotensive type 2 ...

    African Journals Online (AJOL)

    Keywords: Black normotensive patients, left ventricular function, type 2 DM. Résumé ... sickle cell disease and structural heart disease were excluded ... Pulmonary venous flow (PVF) velocity ... had abnormal ECG pattern compared with 30%.

  4. Investigation of the crystal structure of a basic bismuth(III) nitrate with the composition [Bi6O4(OH)(4)](0.54(1))[Bi6O5(OH)(3)](0.46(1))(NO3)(5.54(1))

    DEFF Research Database (Denmark)

    Christensen, Axel Norlund; Lebech, Bente

    2012-01-01

    A basic bismuth(III) nitrate with the composition [Bi6O4(OH)(4)](0.5)[Bi6O5(OH)(3)](0.5)(NO3)(5.5) formed in a slow crystal growth mode has an ordered crystal structure with the monoclinic space group P2(1) and lattice parameters a = 15.850(3), b = 14.986(3), c = 18.230(4) angstrom, beta = 107...... a trigonal R (3) over bar cell with a = 15.1865(1) and c = 15.8416(1) angstrom (hexagonal setting). In a Rietveld type structure model refinement with a total of 28 atom sites (4 Bi, 3 N, 15 O and 6 H), the composition of this sample is determined to be [Bi6O4(OH)(4)](0.54(1))[Bi6O5(OH)(3)](0.46(1))(NO3)(5.54(1))....

  5. Synthesis and Crystal Structure of 1-Chloro-2-methyl-4-nitrobenzene

    Directory of Open Access Journals (Sweden)

    Jim Simpson

    2012-03-01

    Full Text Available The title compound (3 was prepared from 4-chloroaniline in good yield on successive oxidation and methylation and its crystal and molecular structure is reported. The compound crystallizes in the monoclinic space group P 21/n with unit cell dimensions a = 13.5698(8, b = 3.7195 (3, c = 13.5967 (8 Å, ß = 91.703(3 °, V = 685.96 (10 Å3. The molecule is essentially planar with a dihedral angle of 6.2(3 ° between the nitro group and the phenyl ring. The crystal structure is stabilised by π...π contacts between adjacent benzene rings together with C–H...O hydrogen bonds and close Cl...O contacts.

  6. Effect of sintering on structure and mechanical properties of alumina-15 vol% zirconia nanocomposite compacts

    International Nuclear Information System (INIS)

    Maneshian, Mohammad H.; Banerjee, Malay K.

    2010-01-01

    The sintering and densification behavior of high energy ball milled (HEBM-ed) alumina-15 vol% zirconia nanocomposite were carried out and the probable tetragonal to monoclinic phase transformation of ZrO 2 during sintering was investigated. Evolution of microstructure resulting from sintering was followed up by means of scanning electron microscopy (SEM) on polished samples, and the degree of phase transformation was determined by quantitative X-ray analysis (XRD). Moreover, synergetic effect of milling time and dopant composition on properties such as relative density, hardness, and fracture toughness was studied. The results have shown that mechanical properties of the composites were strongly dependent on the dopant content, structure and the fraction of tetragonal to monoclinic induced by HEBM and subsequent sintering. The extent of retention of t-ZrO 2 depends on the balance of magnitude of the strain energy arising from HEBM and releasing from sintering. In fact, compacts with aggressive HEBM history showed improved fracture toughness. Also it is shown the homogeneous microstructure obtained by HEBM and subsequent sintering promotes better densification.

  7. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  8. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  9. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  10. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  11. The research of structural features of astralens - nanodimensional carbon particles of fulleroid type

    International Nuclear Information System (INIS)

    Ponomarev, A.N.; Nikitin, V.A.; Rybalko, V.V.

    2006-01-01

    The article is focused on the research of structural features of astralens - nanodimensional carbonic particles of fulleroid type. Astralens are perspective nanomodificators of properties of materials of different types. The potentials os astralens as modificators depend on their characteristic structural features, and in the first place, on the distribution of nanoparticles by sizes. The typical dimensions of astralens are determined to be within the range of 15-75 nm [ru

  12. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated....... The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now...

  13. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    Science.gov (United States)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  14. X-ray structural study of Nd[N(CN)2]3x2OP(NMe2)3

    International Nuclear Information System (INIS)

    Kapshuk, A.A.; Skopenko, V.V.

    1985-01-01

    The results of X-ray structure study of Nd(N(CN) 2 ) 3 x2OP(NMe) 2 ) 3 are presented. The crystals are monoclinic: a=12,787(6), b=17.731(9), c=15.302(5) A, γ=114.84(3) deg, Z=4, sp.gr. p2 1 /n. The structure is formed of infinite corrugated netting consisting of neodymium atoms, coordinating two OP(NMe 2 ) 3 molecules, and three bidentate-bridge dicyanamide groups. Neodymium coordination number is 8, coordination polyhedron is a distorted twocapped trigonal prism. Certain aspects of crystal chemistry of dicyanamide complexes are discussed

  15. Dowel-type fastener connections in timber structures subjected to short-term loading

    DEFF Research Database (Denmark)

    Lauritzen Jensen, J.

    Design of dowel-type fastener connections in framed timber structures usually involves a two-step analysis: determination of the distribution of the sectional forces, and design of the eccentrically loaded connections. This report presents an integrated model for design of framed timber structures...

  16. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  17. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  18. Infrared spectroscopy study of structural changes in glass-forming salol.

    Science.gov (United States)

    Baran, J; Davydova, N A

    2010-03-01

    We report the investigation of glass-forming salol upon different courses of the temperature changes from liquid to glass state and back using FT-IR spectroscopy measurements in the wide spectral and temperature ranges. The formation of the ordered clusters in supercooled liquid salol has been observed at 250 K. When the temperature is decreased further to 11 K these ordered clusters become an element of the glass structure. With increasing temperature to 270 K through the glass transition noticeable evolutions of the IR spectrum occurs up till the ordered clusters are developed into crystal. So produced crystal melts in the temperature range 300-310 K, that corresponds to the melting temperature of the metastable phase (Tmelt=302 K) . Thus, the crystalline structure of the ordered clusters corresponds to the structure of metastable phase and is monoclinic.

  19. Crystal structure of cobalt hydroxide carbonate Co2CO3(OH)2: density functional theory and X-ray diffraction investigation.

    Science.gov (United States)

    González-López, Jorge; Cockcroft, Jeremy K; Fernández-González, Ángeles; Jimenez, Amalia; Grau-Crespo, Ricardo

    2017-10-01

    The cobalt carbonate hydroxide Co 2 CO 3 (OH) 2 is a technologically important solid which is used as a precursor for the synthesis of cobalt oxides in a wide range of applications. It also has relevance as a potential immobilizer of the toxic element cobalt in the natural environment, but its detailed crystal structure is so far unknown. The structure of Co 2 CO 3 (OH) 2 has now been investigated using density functional theory (DFT) simulations and powder X-ray diffraction (PXRD) measurements on samples synthesized via deposition from aqueous solution. Two possible monoclinic phases are considered, with closely related but symmetrically different crystal structures, based on those of the minerals malachite [Cu 2 CO 3 (OH) 2 ] and rosasite [Cu 1.5 Zn 0.5 CO 3 (OH) 2 ], as well as an orthorhombic phase that can be seen as a common parent structure for the two monoclinic phases, and a triclinic phase with the structure of the mineral kolwezite [Cu 1.34 Co 0.66 CO 3 (OH) 2 ]. The DFT simulations predict that the rosasite-like and malachite-like phases are two different local minima of the potential energy landscape for Co 2 CO 3 (OH) 2 and are practically degenerate in energy, while the orthorhombic and triclinic structures are unstable and experience barrierless transformations to the malachite phase upon relaxation. The best fit to the PXRD data is obtained using a rosasite model [monoclinic with space group P112 1 /n and cell parameters a = 3.1408 (4) Å, b = 12.2914 (17) Å, c = 9.3311 (16) Å and γ = 82.299 (16)°]. However, some features of the PXRD pattern are still not well accounted for by this refinement and the residual parameters are relatively poor. The relationship between the rosasite and malachite phases of Co 2 CO 3 (OH) 2 is discussed and it is shown that they can be seen as polytypes. Based on the similar calculated stabilities of these two polytypes, it is speculated that some level of stacking disorder could account for the poor

  20. Structural and functional salivary disorders in type 2 diabetic patients.

    Science.gov (United States)

    Carda, Carmen; Mosquera-Lloreda, Nezly; Salom, Lucas; Gomez de Ferraris, Maria Elsa; Peydró, Amando

    2006-07-01

    Diabetes mellitus type 2 is the most common metabolic disorder and it causes an important morbimortality. The structural modifications in the parotid gland (sialosis) had already been described in these patients and could result in variations in the salivary composition, as well as an increase in periodontal and dental pathology. To compare the biochemical findings in the saliva and to correlate these biochemical disturbances with the morphologic findings previously described. Clinical information were gathered about 33 patients, 17 had type 2 diabetes. Samples of whole saliva were obtained for biochemical analysis and serum samples to determine metabolic control. In the diabetics saliva we found urea and total proteins increased and reduced levels of microalbumina. Salivary glucose was only augmented in patients with poor metabolic control. Clinical symptoms of xerostomia were present in 76,4% and dental and periodontal disease in 100%. The parotid gland was characterised by the presence of small acini, lipid intracytoplasmic droplets, as well as adipose stroma infiltration. The acinar cytoqueratins expression was heterogeneous and very positive in the hyperplasic ducts. These biochemical disorders in the saliva of the type 2 diabetic patients would be related with the structural changes previously observed in parotid glands.

  1. The Types of Argument Structure Used by Hillary Clinton in the CNN Democratic Presidential Debate

    Directory of Open Access Journals (Sweden)

    Anggie Angeline

    2009-01-01

    Full Text Available This qualitative research was conducted to examine the types of argument structure by Hillary Clinton in part one of the CNN Democratic Presidential Debate since Hillary, who had a great deal of experiences in political parties, was supposed to be able to construct convincing arguments that had good argument structures. The theories used to analyze were Bierman and Assali’s (1996, King’s (n.d. and Stanlick’s (2003. The findings showed that there were five types of argument structure used: serial, linked, convergent, divergent, and hybrid argument structures. The linked argument structure was the argument structure used the most frequently in Hillary’s utterances in the debate, while the divergent was the least one. Thus, it could be concluded that Hillary’s speech in the Presidential Debate was quite interesting since she could combine all the five types of argument structure, though the frequency of using them was not the same and it seems that linked argument structure was the most effective strategy for her in arguing about the politic, economy, and social issues.

  2. Structure of a Kunitz-type potato cathepsin D inhibitor

    Czech Academy of Sciences Publication Activity Database

    Guo, J.; Erskine, P. T.; Coker, A. R.; Wood, S. P.; Cooper, J. B.; Mareš, Michael; Baudyš, Miroslav

    2015-01-01

    Roč. 192, č. 3 (2015), s. 554-560 ISSN 1047-8477 R&D Projects: GA ČR GA15-18929S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : potato cathepsin D inhibitor * Kunitz-type protease inhibitor * protein X-ray structure * reactive-site loop * docking Subject RIV: CE - Biochemistry Impact factor: 2.570, year: 2015

  3. Structure and thermal stability of nanostructured iron-doped zirconia prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Poulsen, Finn Willy; Mørup, Steen

    1999-01-01

    % alpha-Fe2O3. The unit-cell volume of the cubic ZrO2 phase decreases with increasing iron content. During heating hte cubic-to-tetragonal transition occurs at approximately 827 degrees C and the tetragonal-to-monoclinic transition seems to be absent at temperatures below 950 degrees C. During cooling...... the tetragonal-to-monoclinic transition occurs at 900-1100 degrees C....

  4. Hydrothermal synthesis, structures and optical properties of A2Zn3(SeO3)4·XH2O (A=Li, Na, K; X=2 or 0)

    Science.gov (United States)

    Liu, Yunsheng; Mei, Dajiang; Xu, Jingli; Wu, Yuandong

    2015-12-01

    New alkali metal zinc selenites, A2Zn3(SeO3)4·XH2O (A=Li, Na, K; X=2 or 0) were prepared through hydrothermal reactions. Li2Zn3(SeO3)4·2H2O (1) crystallizes in the monoclinic space group P21/c with lattice parameters a=8.123(4), b=9.139(4), c=7.938(3) Å, β=112.838(9)°. Na2Zn3(SeO3)4·2H2O (2) crystallizes in the monoclinic space group C2/c with lattice parameters a=15.7940(18), b=6.5744(8), c=14.6787(17) Å, β=107.396(3)°. K2Zn3(SeO3)4 (3) crystallizes in the monoclinic space group C2/c with lattice parameters a=11.3584(12), b=8.6091(9), c=13.6816(14) Å, β=93.456(2)°. The anionic structures are composed of [Zn3O12]18- sheets, chains, and "isolated" units in compound 1, 2, 3, respectively, and trigonal pyramids SeO32-. The compounds were characterized by the solid state UV-vis-NIR diffuse reflectance spectroscopy, infrared spectra and thermogravimetric analysis.

  5. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  6. Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformations

    Directory of Open Access Journals (Sweden)

    Schlömerkemper Anja

    2015-01-01

    Full Text Available A major open problem in the mathematical analysis of martensitic phase transformations is the derivation of explicit formulae for the set of recoverable strains and for the relaxed energy of the system. These are governed by the mathematical notion of quasiconvexity. Here we focus on bounds on these quasiconvex hulls and envelopes in the setting of geometrically-linear elasticity. Firstly, we will present mathematical results on triples of transformation strains. This yields further insight into the quasiconvex hull of the twelve transformation strains in cubic-to-monoclinic phase transformations. Secondly, we consider bounds on the energy of such materials based on the so-called energy of mixing thus obtaining a lamination upper bound on the quasiconvex envelope of the energy. Here we present a new algorithm that yields improved upper bounds and allows us to relate numerical results for the lamination upper bound on the energy with theoretical inner bounds on the quasiconvex hull of triples of transformation strains.

  7. Structural study of chloryl fluoride in its three states

    International Nuclear Information System (INIS)

    Tantot, Georges

    1974-01-01

    This research thesis reports the study of the ClO 2 F chloryl fluoride molecule in its three physical states by using different methods, and by highlighting the structural aspect. Observations confirm the pyramidal structure of the compound in its three states. The structure of the single solid phase is partially elucidated in terms of four-molecule monoclinic cell. In the liquid phase, the author shows the existence of a phenomenon of association which seems to be related with a partial local order phenomenon. This phenomenon is also characterized. The interaction force is compared for various compounds (ClO 3 F and ClO 2 F, ClF 3 and BrF 3 , ClF 5 and BrF 5 , BrF 5 and IF 5 ). It appears that interactions do not have an electrostatic origin, but are based on a partial overlapping of two molecular orbitals [fr

  8. Sol-gel synthesis, structure and photoluminescence properties of nanocrystalline Lu{sub 2}MoO{sub 6}:Eu

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huaiyong; Yang, Hyun Kyoung [Department of Physics, Pukyong National University, 599-1 Nam-Gu, Daeyeon 3 Dong, Busan 608-737 (Korea, Republic of); Jeong, Jung Hyun, E-mail: jhjeong@pknu.ac.kr [Department of Physics, Pukyong National University, 599-1 Nam-Gu, Daeyeon 3 Dong, Busan 608-737 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung Soo [Department of Electronic Material Engineering, Silla University, Busan 617-736 (Korea, Republic of)

    2011-09-15

    Highlights: {yields} Monoclinic-structural Lu{sub 2}MoO{sub 6} has strong absorption of near-UV light. {yields} The absorbed energy can be transferred from MoO{sub 5} groups to doped Eu{sup 3+} and luminescence. {yields} The absorption edge and the peak of the MoO{sub 5} excitation band shift in reverse ways. {yields} The decline of the crystallinity and the introduced defect respond for the variation. -- Abstract: In this paper, we reported the obtention of Eu{sup 3+} ion doped Lu{sub 2}MoO{sub 6} powders synthesized by a sol-gel method, and followed by annealing at different temperatures. The structure and photoluminescence properties of these powders were investigated. The X-ray diffraction pattern suggests that Lu{sub 2}MoO{sub 6} powder has a monoclinic structure. It was observed that the UV-visible and photoluminescence spectra of Lu{sub 2}MoO{sub 6}:Eu nanocrystallines varied systematically with the calcination temperature. The near-UV absorption edge shifts to long wavelength direction with the decreasing of the calcination temperature, while the peak of MoO{sub 5} excitation band shifts in an opposite way. The decline of the crystallinity and the introduced lattice defect were considered to respond for these variations. Additionally, due to the efficient red light emission under near-UV light excitation, the powder can be a candidate as red phosphor for white-light-emitting diodes.

  9. Structure of tetrapotassium copper cyclo-triphosphate tetrahydrate

    International Nuclear Information System (INIS)

    Durif, A.; Averbuch-Pouchot, M.T.

    1987-01-01

    CuK 4 (P 3 O 9 ) 2 .4H 2 O, M r =765.84, monoclinic, P2 1 /a, a=8.510(5), b=14.303(8); c=8.487(5) A, β=96.51(2) 0 , V=1026(2) A 3 , Z=2, D x =2.478 Mg m -3 , λ(AgKα)=0.5608A, μ=1.272 mm -1 , F(000)=758, T=293 K, final R=0.028 for 2336 independent reflexions. The crystal structure is built up by double layers of KO n polyhedra alternating with layers of CuO 6 octahedra, both perpendicular to the c axis. The phosphoric anion P 3 O 9 is a trimeric ring. (orig.)

  10. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I

    2000-01-01

    Structure model type and trabecular thickness are important characteristics in describing cancellous bone architecture. It has been qualitatively observed that a radical change of trabeculae from plate-like to rod-like occurs in aging, bone remodeling, and osteoporosis. Thickness of trabeculae has...... traditionally been measured using model-based histomorphometric methods on two-dimensional (2-D) sections. However, no quantitative study has been published based on three-dimensional (3-D) methods on the age-related changes in structure model type and trabecular thickness for human peripheral (tibial......, structure model type and trabecular thickness were quantified by means of novel 3-D methods. Structure model type was assessed by calculating the structure model index (SMI). The SMI was quantified based on a differential analysis of the triangulated bone surface of a structure. This technique allows...

  11. X-ray characteristics and thermal transformations of double diphosphates MLnP2O7 (M-K, Rb, Cs; Ln-REE of yttrium subgroup)

    International Nuclear Information System (INIS)

    Anisimova, N.Yu.; Chudinova, N.N.; Trunov, V.K.; AN SSSR, Moscow

    1993-01-01

    Results on studying double diphosphates of rare earth metals with K, Rb and Cs are studied by methods of X-ray analysis, high-temperature roentgenography and DTA. Double diphosphates of rare earth and alkali metals are crystallized in three structural types: monoclinic, rhombic and hexagonal, whereby rhombic form by heating inversely transforms into hexagonal one. MLnP 2 O 7 thermal transformations are studied

  12. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  13. Crystal structure of RbCe(SeO4)2 · 5H2O

    International Nuclear Information System (INIS)

    Ovanesyan, S.M.; Iskhakova, L.D.; Trunov, V.K.

    1987-01-01

    RbTR(SeO 4 ) 2 x5H 2 O TR=La-Pr are synthesized. Crystal structure of RbCe(SeO 4 ) 2 x5H 2 O is studied. Monoclinic unit parameters are: a=7,200(2), b=8,723(1), c=19,258(6) A, Β=90,88(2), ρ (calc) =3,304 sp.gr. P2 1 /c. Within the structure the Ce nine vertex cages are united by Se(1)- and Se(2)-tetrahedrons in (Ce(SeO 4 ) 2 (H 2 O) 5 ) 2 ∞ n- layers. Some crystal structure regularities of the laminated MTR(EO 4 ) 2 xnH 2 O (M=NH 4 ,K,Rb,Cs; TR=La-Ln, E=S,Se) are considered

  14. Modeling of Semiconductors and Correlated Oxides with Point Defects by First Principles Methods

    KAUST Repository

    Wang, Hao

    2014-01-01

    Point defects in silicon, vanadium dioxide, and doped ceria are investigated by density functional theory. Defects involving vacancies and interstitial oxygen and carbon in silicon are after formed in outer space and significantly affect device performances. The screened hybrid functional by Heyd-Scuseria-Ernzerhof is used to calculate formation energies, binding energies, and electronic structures of the defective systems because standard density functional theory underestimates the bang gap of silicon. The results indicate for the A-center a −2 charge state. Tin is proposed to be an effective dopant to suppress the formation of A-centers. For the total energy difference between the A- and B-type carbon related G-centers we find close agreement with the experiment. The results indicate that the C-type G-center is more stable than both the A- and B-types. The electronic structures of the monoclinic and rutile phases of vanadium dioxide are also studied using the Heyd-Scuseria-Ernzerhof functional. The ground states of the pure phases obtained by calculations including spin polarization disagree with the experimental observations that the monoclinic phase should not be magnetic, the rutile phase should be metallic, and the monoclinic phase should have a lower total energy than the rutile phase. By tuning the Hartree-Fock fraction α to 10% the agreement with experiments is improved in terms of band gaps and relative energies of the phases. A calculation scheme is proposed to simulate the relationship between the transition temperature of the metal-insulator transition and the dopant concentration in tungsten doped vanadium dioxide. We achieve good agreement with the experimental situation. 18.75% and 25% yttrium, lanthanum, praseodymium, samarium, and gadolinium doped ceria supercells generated by the special quasirandom structure approach are employed to investigate the impact of doping on the O diffusion. The experimental behavior of the conductivity for the

  15. Modeling of Semiconductors and Correlated Oxides with Point Defects by First Principles Methods

    KAUST Repository

    Wang, Hao

    2014-06-15

    Point defects in silicon, vanadium dioxide, and doped ceria are investigated by density functional theory. Defects involving vacancies and interstitial oxygen and carbon in silicon are after formed in outer space and significantly affect device performances. The screened hybrid functional by Heyd-Scuseria-Ernzerhof is used to calculate formation energies, binding energies, and electronic structures of the defective systems because standard density functional theory underestimates the bang gap of silicon. The results indicate for the A-center a −2 charge state. Tin is proposed to be an effective dopant to suppress the formation of A-centers. For the total energy difference between the A- and B-type carbon related G-centers we find close agreement with the experiment. The results indicate that the C-type G-center is more stable than both the A- and B-types. The electronic structures of the monoclinic and rutile phases of vanadium dioxide are also studied using the Heyd-Scuseria-Ernzerhof functional. The ground states of the pure phases obtained by calculations including spin polarization disagree with the experimental observations that the monoclinic phase should not be magnetic, the rutile phase should be metallic, and the monoclinic phase should have a lower total energy than the rutile phase. By tuning the Hartree-Fock fraction α to 10% the agreement with experiments is improved in terms of band gaps and relative energies of the phases. A calculation scheme is proposed to simulate the relationship between the transition temperature of the metal-insulator transition and the dopant concentration in tungsten doped vanadium dioxide. We achieve good agreement with the experimental situation. 18.75% and 25% yttrium, lanthanum, praseodymium, samarium, and gadolinium doped ceria supercells generated by the special quasirandom structure approach are employed to investigate the impact of doping on the O diffusion. The experimental behavior of the conductivity for the

  16. Investigation on structural, Mössbauer and ferroelectric properties of (1−x)PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}–(x)BiFeO{sub 3} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Dadami, Sunanda T.; Matteppanavar, Shidaling; Shivaraja, I. [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Rayaprol, Sudhindra [UGC-DAE-Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Angadi, Basavaraj, E-mail: brangadi@gmail.com [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Sahoo, Balaram [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2016-11-15

    In this study, (1−x)PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}(PFN)–(x)BiFeO{sub 3}(BFO) multiferroic solid solutions with x=0.0, 0.1, 0.2, 0.3 and 0.4 were synthesized through single step solid state reaction method and characterized thoroughly through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FTIR), Raman, Mössbauer spectroscopy and ferroelectric studies. The room temperature (RT) XRD studies confirmed the formation of single phase with negligible amount of secondary phases (x=0.2 and 0.4). The zoomed XRD patterns of (1−x)PFN–(x)BFO solid solutions showed the clear structural phase transition from monoclinic (Cm) to rhombohedral (R3c) at x=0.4. The Raman spectra of the (1−x)PFN–(x)BFO solid solutions showed the composition dependent phase transition from monoclinic (Cm) to rhombohedral (R3c). With increasing x in PFN, the modes related monoclinic symmetry changes to those of rhombohedral symmetry. The RT Mössbauer spectroscopy results evidenced the existence of composition dependent phase transition from paramagnetic to weak antiferromagnetic ordering and weak antiferromagnetic to antiferromagnetic ordering. The Mössbauer spectroscopy showed paramagnetic behavior with a doublet for x=0.0, 0.1 and 0.2 are shows the weak antiferromagnetic with paramagnetic ordering. For x=0.3 and 0.4 shows the sextet pattern and it is a clear evidence of antiferromagnetism. The ferroelectric (P–E) loops at RT indicate the presence of small polarization, as the x concentration increases in PFN, the remnant polarization and coercive field were decreased, which may due to the increase in the conductivity and leaky behavior of the samples. - Highlights: • Structural, Mössbauer, ferroelectric studies on (1−x)PFN–xBiFeO{sub 3} multiferroics. • Composition dependent changes in crystallographic and magnetic structure. • System exhibits phase transition from monoclinic to rhombohedral with x. • Supporting results from Raman

  17. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  18. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  19. Tritellurides of comples cations: Synthesis and crystal structure of (Ba(en)/sub 3/)Te/sub 3/ and (Ba(en)/sub 4,5/)Te/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Zagler, R; Eisenmann, B; Schaefer, H

    1987-02-01

    The two title compounds have been prepared by reaction of appropriate mixtures of the elements in ethylenediamine. The structures have been determined on the basis of single crystal data. (Ba(en)/sub 3/Te/sub 3/ crystallizes in the monoclinic system, space group P2/sub 1/c with a = 918.0(4), b = 1203.7(6), c = 1639,9(6) pm, ..beta.. = 93.4(1)/sup 0/. In the structure there are bent tritelluride anions Te/sub 3//sup 2 -/ (bond lengths 273,9-278,5 pm, bond angle (105.7/sup 0/). The Ba/sup 2 +/ cations are six coordinate by the bidentate ligand ethylenediamine. (Ba(en)/sub 4,5/)Te/sub 3/ crystallizes in the monoclinic system, space group Cc with a = 1752.8(6), b = 938.9(4), c = 3041.7(8) pm, ..beta.. = 91.3(1)/sup 0/. In this structure the bond lengths in the TE/sub 3//sup 2 -/ anions are shorter (272.1-273.1 pm, bond angles 110.9-112.2/sup 0/). The cations are coordinated by four bidentate ligands, and are connected into pairs by a further ethylenediamine molecule. The resulting dinuclear (Ba(en)/sub 4/)en(Ba(en)/sub 4/)/sup 4 +/ units have the Ba/sup 2 +/ cations in CN 9.

  20. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas.

    Science.gov (United States)

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-05

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  1. Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea

    Directory of Open Access Journals (Sweden)

    Ataf A. Altaf

    2015-01-01

    Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β  ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.

  2. Crystal structure, IR and Mössbauer spectroscopy and magnetic properties of KZnFe(PO{sub 4}){sub 2} related to the zeolite-ABW-like compounds

    Energy Technology Data Exchange (ETDEWEB)

    Badri, Abdessalem [UR Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, Monastir 5019 (Tunisia); Hidouri, Mourad, E-mail: mourad_hidouri@yahoo.fr [UR Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, Monastir 5019 (Tunisia); Wattiaux, Alain [Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux I, 87 Avenue du Dr. A. Schweitzer, Pessac-Cedex 33608 (France); López, María Luisa; Veiga, María Luisa [Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040 (Spain); Amara, Mongi Ben [UR Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, Monastir 5019 (Tunisia)

    2014-07-01

    Highlights: • The reported structure of KZnFe(PO{sub 4}){sub 2} is closely related to the zeolite ABW-type. • The structure is described in detail. • The IR and Mössbauer spectroscopy results are reported. • The magnetic properties are developed. - Abstract: The new iron phosphate KZnFe(PO{sub 4}){sub 2} has been synthesized by flux method and solid state reaction, and characterized by X-ray diffraction, IR, Mössbauer spectroscopy and magnetic susceptibility. This compound crystallizes in the monoclinic space group C2/c with the cell parameters: a = 13.514(4) Å, b = 13.273(6) Å, c = 8.742(3) Å and β = 100.07(2)°. It displays strong similarities with the phosphates KCoAl(PO{sub 4}){sub 2} and NaCoPO{sub 4} and features some analogies with the zeolite-ABW structural type. 3D framework is built up by a corner-sharing between MO{sub 4} (M = 0.5 Zn + 0.5 Fe) and PO{sub 4} tetrahedra. The K{sup +} ions are found within crossing tunnels perpendicular to the (1 0 0), (0 1 0) and (0 0 1) planes, delimited by this framework. A Mössbauer study confirmed the presence of Fe{sup 3+} ions in a tetrahedral environment. Magnetic measurements revealed an antiferromagnetic behavior with T{sub N} = 8.5 K.

  3. A monoclinic polymorph of (1E,5E)-1,5-bis­(2-hy­droxy­benzyl­idene)thio­carbono­hydrazide

    Science.gov (United States)

    Schmitt, Bonell; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-01-01

    The title compound, C15H14N4O2S, is a derivative of thio­ureadihydrazide. In contrast to the previously reported polymorph (ortho­rhom­bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P21/n, Z = 4). The mol­ecule shows non-crystallographic C 2 as well as approximate C s symmetry. Intra­molecular bifurcated O—H⋯(N,S) hydrogen bonds, are present. In the crystal, inter­molecular N—H⋯S hydrogen bonds and C—H⋯π contacts connect the mol­ecules into undulating chains along the b axis. The shortest centroid–centroid distance between two aromatic systems is 4.5285 (12) Å. PMID:22091213

  4. Interference enhanced thermoelectricity in quinoid type structures

    Energy Technology Data Exchange (ETDEWEB)

    Strange, M., E-mail: strange@chem.ku.dk; Solomon, G. C. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); Seldenthuis, J. S.; Verzijl, C. J. O.; Thijssen, J. M. [Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft (Netherlands)

    2015-02-28

    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical interacting model Hamiltonian describing the π-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdrawing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S{sup 2}G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.

  5. Mixed sodium nickel-manganese sulfates: Crystal structure relationships between hydrates and anhydrous salts

    Energy Technology Data Exchange (ETDEWEB)

    Marinova, Delyana M.; Zhecheva, Ekaterina N.; Kukeva, Rositsa R.; Markov, Pavel V. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Nihtianova, Diana D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Stoyanova, Radostina K., E-mail: radstoy@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2017-06-15

    The present contribution provides new structural and spectroscopic data on the formation of solid solutions between hydrated and dehydrated sulfate salts of sodium-nickel and sodium-manganese in a whole concentration range: Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·yH{sub 2}O, 0≤ x≤1.0. Using powder XRD, electron paramagnetic resonance spectroscopy (EPR), IR and Raman spectroscopy it has been found that double sodium-nickel and sodium-manganese salts form solid solutions Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·4H{sub 2}O with a blödite-type of structure within a broad concentration range of 0≤x≤0.49, while the manganese rich compositions Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·2H{sub 2}O (0.97≤x≤1.0) crystallize in the kröhnkite-type of structure. The Ni-based blödites Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·4H{sub 2}O dehydrate between 140 and 260 °C into anhydrous salts Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}, 0≤ x≤0.44, with a structure where Ni{sub 1−x}Mn{sub x}O{sub 6} octahedra are bridged into pairs by edge- and corner sharing SO{sub 4}{sup 2−} groups. Both TEM and EPR methods show that the Ni{sup 2+} and Mn{sup 2+} ions are homogenously distributed over three crystallographic positions of the large monoclinic cell. The dehydration of the kröhnkite phase Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·2H{sub 2}O yields the alluaudite phase Na{sub 2+δ}Mn{sub 2-δ/2}(SO{sub 4}){sub 3}, where the Na-to-Mn ratio decreases and all Ni{sup 2+} dopants are released from the structure. The process of the dehydration is discussed in terms of structural aspects taking into account the distortion degree of the Ni,MnO{sub 6} and SO{sub 4} polyhedra. - Graphical abstract: Thermal dehydration of the blödite phase Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·4H{sub 2}O (0≤ x≤0.49) yields nickel-manganese sulfates Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2} (0≤ x≤0.44) with

  6. The crystal structure of scandium dyhydrate triglycolate

    International Nuclear Information System (INIS)

    Dukareva, L.M.; Antishkina, A.S.; Porai-Koshits, M.A.; Ostrikova, V.N.; Arkhangel'skij, I.V.; Amanov, A.Z.

    1978-01-01

    The structure of colorless crystals of scandium glycolate dehydrate Sc(CH 2 OHCOO) 3 x2H 2 O, synthesized at the chemical department of MSU has been investigated. Parameters of the monoclinic lattice are determined according to roentgenograms of swing and Kforograms and are specified using the DRON-1 diffractor: a=14.624-+0.005 A; b=13.052-+0.003 A; c=5.730+-0.003 A; γ=96.26 deg+-0.01 deg; rhosub(exper.)=1.09 g/cm 3 ; Z=4; Sp.=P 2/b. Experimental photographic data are obtained using the KFOR chamber. Scannings of the layer lines h anti Ko-h anti K4, containing 742 independent reflexes are taken. Deciphering of the structure is carried out by means of analysis of the Paterson functions distribution and conventional and differential electron densities. Description of the system is presented

  7. Determination of a new structure type in the Sc-Fe-Ge-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Brgoch, Jakoah [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ran, Sheng [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thimmaiah, Srinivasa [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Canfield, Paul C. [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Miller, Gordon J., E-mail: gmiller@iastate.edu [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer A new structure type with the composition Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)}. Black-Right-Pointing-Pointer Crystallizes in the space group Immm (No. 71, oI144). Black-Right-Pointing-Pointer Sample obtained using a reactive Sn flux. Black-Right-Pointing-Pointer Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc-Fe-Ge-Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)} and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) A, b = 13.467(3) A, and c = 30.003(6) A. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc-Ge as well as Fe-Sn and Fe-Ge contacts can be assigned to this new structure type.

  8. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    . The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now......Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated...... be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well...

  9. Structural studies on a non-toxic homologue of type II RIPs from ...

    Indian Academy of Sciences (India)

    Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. MS accepted http://www.ias.ac.in/jbiosci. THYAGESHWAR CHANDRAN, ALOK SHARMA and M VIJAYAN. J. Biosci. 40(5), October 2015, 929–941, © Indian Academy of ...

  10. Crystal structures of the double perovskites Ba2Sr1-x Ca x WO6

    International Nuclear Information System (INIS)

    Fu, W.T.; Akerboom, S.; IJdo, D.J.W.

    2007-01-01

    Structures of the double perovskites Ba 2 Sr 1- x Ca x WO 6 have been studied by the profile analysis of X-ray diffraction data. The end members, Ba 2 SrWO 6 and Ba 2 CaWO 6 , have the space group I2/m (tilt system a 0 b - b - ) and Fm3-barm (tilt system a 0 a 0 a 0 ), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3-bar phase (tilt system a - a - a - ) instead of the tetragonal I4/m phase (tilt system a 0 a 0 c - ). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba 2 MM'O 6 -type double perovskites, and disagrees with a recent proposal that the formation of the π-bonding, e.g., d 0 -ion, determines the tetragonal symmetry in preference to the rhombohedral one. - Graphical abstract: Enlarged sections showing the evolution of the basic (222) and (400) reflections in Ba 2 Sr 1- x Ca x WO 6 . Tick marks below are the positions of Bragg's reflections calculated using the space groups I2/m (x=0), R3-bar (x=0.25, 0.5 and 0.75) and Fm3-barm (x=1), respectively

  11. A study of new rare-earth metal group-13 chalcohalides. Structures, chemistry, and optical properties

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Van Calcar, P.M.

    1998-01-01

    Full text: Several new quaternary compounds from the rare-earth metal group-13 chalcohalide family have been prepared from alkaline earth halide flux reactions of binary and elemental starting materials. One compound, for example, Ca 2 La 6G a 2 S 1 4 , crystallizes as needles in an hexagonal cell while another, more disordered structure, La 11 Ga 19 Cl 6 S 42 , crystallizes as monoclinic plates. The former is a condensed structure with channels that contain the alkaline earth element while the latter forms a layered structure containing rare-earth halide clusters within interlayer galleries. These compounds are new members of a family of rare-earth metal main-group chalcogenides which show promise as electroluminescent materials. Structural and spectroscopic studies of these and related compounds will be discussed

  12. Foot Type Biomechanics Part 2: are structure and anthropometrics related to function?

    Science.gov (United States)

    Mootanah, Rajshree; Song, Jinsup; Lenhoff, Mark W; Hafer, Jocelyn F; Backus, Sherry I; Gagnon, David; Deland, Jonathan T; Hillstrom, Howard J

    2013-03-01

    Many foot pathologies are associated with specific foot types. If foot structure and function are related, measurement of either could assist with differential diagnosis of pedal pathologies. Biomechanical measures of foot structure and function are related in asymptomatic healthy individuals. Sixty-one healthy subjects' left feet were stratified into cavus (n=12), rectus (n=27) and planus (n=22) foot types. Foot structure was assessed by malleolar valgus index, arch height index, and arch height flexibility. Anthropometrics (height and weight), age, and walking speed were measured. Foot function was assessed by center of pressure excursion index, peak plantar pressure, maximum force, and gait pattern parameters. Foot structure and anthropometric variables were entered into stepwise linear regression models to identify predictors of function. Measures of foot structure and anthropometrics explained 10-37% of the model variance (adjusted R(2)) for gait pattern parameters. When walking speed was included, the adjusted R(2) increased to 45-77% but foot structure was no longer a factor. Foot structure and anthropometrics predicted 7-47% of the model variance for plantar pressure and 16-64% for maximum force parameters. All multivariate models were significant (pFoot structure and function are related in asymptomatic healthy individuals. The structural parameters employed are basic measurements that do not require ionizing radiation and could be used in a clinical setting. Further research is needed to identify additional predictive parameters (plantar soft tissue characteristics, skeletal alignment, and neuromuscular control) and to include individuals with pathology. Copyright © 2012. Published by Elsevier B.V.

  13. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    Science.gov (United States)

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  14. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  15. Of the crystal chemistry of Ruddlesden-Porter type structures in high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Dwivedi, A.; Cormack, A.N.

    1990-01-01

    This paper reports on atomistic computer simulation employed to examine the energetics and crystal chemistry of some Ruddlesden-Popper type oxide superconductors. Similar structural patterns have been noticed in the superconducting oxides. The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is similar in many respects to that seen in the system Sr-Ti-O. However, there are some significant differences, for example, the rocksalt and perovskite blocks in the new superconducting compounds are not necessarily electrically neutral unlike in the Sr-Ti-O system and this may well lead to significant differences in their structural chemistry

  16. Applied and theoretical study of textural and structural evolution of pure and doped zircon powders

    International Nuclear Information System (INIS)

    Methivier, A.

    1992-02-01

    Using different preparation methods, undoped zircon constituted of quadratic and monoclinic phases, and quadratic phase zircon doped with lanthanum, magnesium or silicon were obtained and characterized. An applied kinetic study of the influence of the gaseous phase, and of the doping on pre-sintering shows an accelerating effect of water vapour, an important stabilization effect of lanthanum or silicon additions and a little effect of magnesium additions. This kinetic study leads to a model giving two parallel types of matter transport: one using water vapour catalytic effect, and the other oxygen diffusion

  17. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  18. Phase transformation and spectroscopic adjustment of Gd{sub 2}O{sub 3}:Eu{sup 3+} synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zijun; Wang, Pei; Zhong, Jiuping, E-mail: zhongjp@mail.sysu.edu.cn; Liang, Hongbin; Wang, Jing

    2014-08-01

    The microcrystalline Gd{sub 2}O{sub 3}:Eu{sup 3+} phosphors were synthesized by the hydrothermal method with post annealing treatment. The powder X-ray diffraction (XRD) indicated the phase transformation from cubic to monoclinic occurred at about 1673 K. The morphologies and sizes were characterized by scanning electron microscopy (SEM). It was found that the morphology of Gd{sub 2}O{sub 3}:Eu{sup 3+} was altered from nanorod to microparticle as the phase changed from cubic to monoclinic. In order to evaluate the effects of sites and phases on luminescence behaviors, the photoluminescence (PL) properties of both phases were investigated. Dominant red emission was observed due to an efficient energy transfer among the sites as well as the strong excitation of O{sup 2−}–Eu{sup 3+} charge transfer band. It was calculated that the monoclinic structure has a higher degree of distortion. More importantly, the phase transformation resulted in the red shift of the strongest emission peak of Eu{sup 3+} from 610.5 to 622.5 nm, closer to the optical transmission window for bioimaging. - Highlights: • Raising annealing temperature induces phase transformation from cubic to monoclinic. • Different phases and sites lead to distinct photoluminescence properties. • Monoclinic structure has higher degree of distortion and it is calculated. • Monoclinic phase emitting at longer wavelength is proposed for bioimaging.

  19. Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation

    OpenAIRE

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; Davidowski, Stephen K.; Baggetto, Lo?c; Zhao, Ran; Cheng, Qian; Yarger, Jeffery L.; Veith, Gabriel M.; Ellis?Terrell, Carol; Miller, Michael A.; Chan, Kwai S.; Chan, Candace K.

    2015-01-01

    Silicon clathrates contain cage?like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on Ba8Al y Si46?y as the anode material for lithium?ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X?ray diffraction shows no discernible structural or volume changes even after electrochemical insertion of 44 Li (?1 Li/Si) into the clathrate structure. The observed properties ...

  20. Radioheliograph observations of a pulsating structure associated with a moving type IV burst

    International Nuclear Information System (INIS)

    Pick, M.; Trottet, G.

    1978-01-01

    Observations of a pulsating structure with the Mark II Nancay Radioheliograph are reported. These fluctuations are found to occur early in the development of a moving type IV burst. It is confirmed that the source of these fluctuations is of small extent and that it is embedded in the moving type IV continuum, plausibly at the top of an expanding arch. The observations suggest that the pulsating structure consists of recurrent enhanced pulses (mean recurrency time 1.7 s) followed by trains of periodic pulses (mean periodicity 0.37 s). The intensity of the mean enhanced pulses has a damping time of about 5 s. It is shown that previous interpretation of the pulsating structure by Rosenberg (1970) cannot account for the present observations. (Auth.)

  1. Chemical and Hydrostatic Pressure in Natrolites: Pressure Induced Hydration of an Aluminogermanate Natrolite

    International Nuclear Information System (INIS)

    Lee, Y.; Kao, C.; Seoung, D.H.; Bai, J.; Kao, C.C.; Parise, J.B.; Vogt, T.

    2010-01-01

    The ambient structure and pressure-induced structural changes of a synthetic sodium aluminogermanate with a natrolite (NAT) framework topology (Na-AlGe-NAT) were characterized by using Rietveld refinements of high-resolution synchrotron X-ray powder diffraction data at ambient and high pressures. Unlike a previously established model for Na 8 Al 8 Ge 12 O 40 · 8H 2 O based on a single-crystal study, the ambient structure of the Na-AlGe-NAT is found to adopt a monoclinic space group Cc (or Fd) with a ca. 6% expanded unit cell. The refined ambient structure of Na 8 Al 8 Ge 12 O 40 · 12H 2 O indicates an increased water content of 50%, compared to the single-crystal structure. The unit-cell volume and water-content relationships observed between the two Na-AlGe-NAT structures at ambient conditions with 8 and 12 H 2 O respectively seem to mirror the ones found under hydrostatic pressure between the Na 8 Al 8 Ge 12 O 40 · 8H 2 O and the parantrolite phase Na 8 Al 8 Ge 12 O 40 · 12H 2 O. Under hydrostatic pressures mediated by a pore-penetrating alcohol and water mixture, the monoclinic Na-AlGe-NAT exhibits a gradual decrease of the unit-cell volume up to ca. 2.0 GPa, where the unit-cell volume then contracts abruptly by ca. 4.6%. This is in marked contrast to what is observed in the Na-AlSi-NAT and Na-GaSi-NAT systems, where one observes a pressure-induced hydration and volume expansion due to the auxetic nature of the frameworks. Above 2 GPa, the monoclinic phase of Na-AlGe-NAT transforms into a tetragonal structure with the unit-cell composition of Na 8 Al 8 Ge 12 O 40 · 16H 2 O, revealing pressure-induced hydration and a unit cell volume contraction. Unlike in the Na-Al,Si-paranatrolite phase, however, the sodium cations in the Na-AlGe-NAT maintain a 6-fold coordination in the monoclinic structure and only become 7-fold coordinated at higher pressures in the tetragonal structure. When comparing the pressure-induced hydration in the observed natrolite-type

  2. Structure of dichloro(4-hydroxy-L-proline)cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Yasuhiko; Inomata, Yoshie; Takeuchi, Toshio [Jochi Univ., Tokyo (Japan). Faculty of Science and Technology; Shimoi, Mamoru; Ouchi, Akira

    1982-10-01

    An X-ray diffraction study of the title complex has been carried out. The crystal is monoclinic, with the space group P2/sub 1/; Z = 2; a = 8.196(4), b = 7.275(3), c = 7.740(4) A, beta = 103.73(4)/sup 0/. Full-matrix least-squares refinements have led to the final R value of 0.030. The structure consists of one-demensional polymers bridged by chlorine atoms and a carboxyl group. Four chlorine atoms coordinate to a cadmium atom and form a square plane. The planes extend in the direction of the b axis like an infinite folding screen, sharing opposite edges. From the trough positions in the zigzag structure, the carboxyl oxygen atoms of 4-hydroxy-L-proline coordinate forkedly to two cadmium atoms. The ligand is a switter ion in the complex.

  3. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH2)3]CdI3 and [4-ClC6H5NH3]3CdBr5

    International Nuclear Information System (INIS)

    Gesing, Thorsten M.; Lork, Enno; Terao, Hiromitsu; Ishihara, Hideta

    2016-01-01

    The crystal structures of [C(NH 2 ) 3 ]CdI 3 (1) and [4-ClC 6 H 5 NH 3 ] 3 CdBr 5 (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2 1 /c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI 4 ] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr 6 ] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three 127 I (m = ±1/2 <-> m = ±3/2), five 81 Br, and three 35 Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd 5 I 16 ] 6- for 1 and [Cd 3 Br 16 ] 10- for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  4. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    Science.gov (United States)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  5. Effect of Different Structure Type Traffic On Railway Line Capacity

    Directory of Open Access Journals (Sweden)

    Gleba Radosław

    2017-04-01

    Full Text Available The article points to methods of analyzing railway traffic conditions based on two parameters: capacity and delay of trains. The impact of the differentiated railway type structure on the capacity of the railway line was presented. Particular attention has been paid to the assessment of commonly used simplifications in analyzes.

  6. Synthesis and crystal structure of Cd2SbBr2

    International Nuclear Information System (INIS)

    Reshetova, L.N.; Shevel'kov, A.V.; Popovkin, B.A.

    1999-01-01

    A new cadmium antimonidobromide, i.e. Cd 2 SbBr 2 , has been synthesized by the standard ampoule method. The compound is crystallized in monoclinic system of sp. gr. P2 1 :a=8.244 (1), b=9.920(1), c=8.492(1) A, Β=116.80(1) deg. Binuclear anions of Sb 2 4- (Sb-Sb 2.78 A), octahedrically surrounded by six cadmium atoms, are a basic specific feature of the structure. Octahedrons of Sb 2 Cd 6 , by collectivizing the equatorial vertices. form layers, the alternation mode of which is similar to the one described for cadmium and mercury arsenidochlorides

  7. Production, purification, crystallization and structure determination of H-1 Parvovirus

    International Nuclear Information System (INIS)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert; Agbandje-McKenna, Mavis

    2012-01-01

    The production, purification, crystallization and crystallographic analysis of H-1 Parvovirus, a gene-therapy vector, are reported. Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Å resolution using synchrotron radiation. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 255.4, b = 350.4, c = 271.6 Å, β = 90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined

  8. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T.; Rubinstein, John L.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases. PMID:27532044

  9. Growth of equilibrium structures built from a large number of distinct component types.

    Science.gov (United States)

    Hedges, Lester O; Mannige, Ranjan V; Whitelam, Stephen

    2014-09-14

    We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.

  10. Spiral chain structure of high pressure selenium-II' and sulfur-II from powder x-ray diffraction

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami; Yamada, Takahiro; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Le Bihan, Tristan

    2004-01-01

    The structure of high pressure phases, selenium-II ' (Se-II ' ) and sulfur-II (S-II), for α-Se 8 (monoclinic Se-I) and α-S 8 (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II ' and S-II were found to be isostructural and to belong to the tetragonal space group I4 1 /acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4 1 and 4 3 screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemical bonds of the phases are also discussed from the interatomic distances that were obtained

  11. Impact of type 2 diabetes and duration of type 2 diabetes on cardiac structure and function

    DEFF Research Database (Denmark)

    Jørgensen, Peter G; Jensen, Magnus T; Mogelvang, Rasmus

    2016-01-01

    BACKGROUND: Contemporary treatment of type 2 diabetes (T2D) has improved patient outcome and may also have affected myocardial structure and function. We aimed to describe the effect of T2D and T2D duration on cardiac structure and function in a large outpatient population. METHODS: We performed...... comprehensive echocardiography on a representative sample of 1004 persons including a representative sample of 770 patients with T2D without known heart disease and 234 age- and sex-matched controls. RESULTS: T2D was associated with increased left ventricular (LV) wall thicknesses and decreased LV internal...... dysfunction persisted after multivariable adjustment (P=0.013). CONCLUSIONS: In patients with T2D, LV structural and functional alterations persist and are accentuated with increasing diabetes duration despite reductions in overall risk of cardiovascular disease in this patient population....

  12. The Two Fundamental H-Bond Types in Acid Salts Displayed in the Dimorphs of Potassium Hydrogen Tartronate

    OpenAIRE

    Kroon, Jan; Kanters, Jan A.

    1982-01-01

    At ambient temperature the acid potassium salt of tartronic acid crystallizes in two forms. The a. form is monoclinic, space group P21/n with a= 7.356, b = 8.116, c = 9.197 A, fJ = 94.81° and Z = 4. The fJ form is also monclinic, space group P21/c with. a= 6.532, b = 9.248, c = 9.505, fJ = 99.74° and Z = 4. The a. and ~ structures were solved by Patterson and Fourier methods and refined to R = 0.047 with 1129 and 1204 observed diffractometer data respectively. The fundame...

  13. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  14. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    Slottje, C.

    1982-01-01

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  15. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure

    Energy Technology Data Exchange (ETDEWEB)

    Korasick, David A. [Department of Biochemistry, University of Missouri, Columbia MO USA; Singh, Harkewal [Department of Chemistry, University of Missouri, Columbia MO USA; Pemberton, Travis A. [Department of Chemistry, University of Missouri, Columbia MO USA; Luo, Min [Department of Chemistry, University of Missouri, Columbia MO USA; Dhatwalia, Richa [Department of Chemistry, University of Missouri, Columbia MO USA; Tanner, John J. [Department of Biochemistry, University of Missouri, Columbia MO USA; Department of Chemistry, University of Missouri, Columbia MO USA

    2017-08-01

    Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain architecture consisting of N-terminal proline dehydrogenase and C-terminal l-glutamate-γ-semialdehyde dehydrogenase modules. Type A PutAs form domain-swapped dimers, and in one case (Bradyrhizobium japonicum PutA), two of the dimers assemble into a ring-shaped tetramer. Whereas the dimer has a clear role in substrate channeling, the functional significance of the tetramer is unknown. To address this question, we performed structural studies of four-type A PutAs from two clades of the PutA tree. The crystal structure of Bdellovibrio bacteriovorus PutA covalently inactivated by N-propargylglycine revealed a fold and substrate-channeling tunnel similar to other PutAs. Small-angle X-ray scattering (SAXS) and analytical ultracentrifugation indicated that Bdellovibrio PutA is dimeric in solution, in contrast to the prediction from crystal packing of a stable tetrameric assembly. SAXS studies of two other type A PutAs from separate clades also suggested that the dimer predominates in solution. To assess whether the tetramer of B. japonicum PutA is necessary for catalytic function, a hot spot disruption mutant that cleanly produces dimeric protein was generated. The dimeric variant exhibited kinetic parameters similar to the wild-type enzyme. These results implicate the domain-swapped dimer as the core structural and functional unit of type A PutAs.

  16. Structure and organization of heteromeric AMPA-type glutamate receptors.

    Science.gov (United States)

    Herguedas, Beatriz; García-Nafría, Javier; Cais, Ondrej; Fernández-Leiro, Rafael; Krieger, James; Ho, Hinze; Greger, Ingo H

    2016-04-29

    AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling. Copyright © 2016, American Association for the Advancement of Science.

  17. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.

    1991-01-01

    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  18. UNIFIED CONTROL STRUCTURE OF MULTI-TYPE INTERIOR PERMANENT MAGNET MOTOR

    Directory of Open Access Journals (Sweden)

    M. NORHISAM

    2015-03-01

    Full Text Available This paper presents the control strategy structure to extract the speed torque characteristic for the newly designed three phase Multi Type Interior Permanent Magnet Motor. The proposed structure with the driving circuits exhibit the performance of torque characteristics of the stepper motor and brushless motor with independent coil winding per phase especially used as an in-wheel motor in agricultural applications. Brushless Direct Current motors exhibit characteristics of generating high torque at high speed while the Permanent Magnet Stepper motors has characteristic of generating high torque at low speed. The typical characteristics of the above two are integrated in the proposed structure with a complex control structure that handle the switching complexity and speed control in real time. Thus, a specially designed driving system is essential to drive and control this special motor. The evaluation of the motor mechanical characteristics when applying load torque is also presented. The result determines the practical torque range applicable for each motor configuration and as combined machine.

  19. Types of architectural structures and the use of smart materials

    Science.gov (United States)

    Tavşan, Cengiz; Sipahi, Serkan

    2017-07-01

    about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.

  20. Crystal and electronic structure of (N-CH3-2,2'-bipyridinium)(dodecahydro-dicarba-nido-undecaborate)

    International Nuclear Information System (INIS)

    Il'inchik, E.A.; Polyanskaya, T.M.; Volkov, V.V.

    2007-01-01

    The compound (N-CH 3 -2,2'-bipyridinium)(dodecahydro-dicarba-nido-undecaborate) is synthesized, and its structure is determined. The compound is characterized by IR, 11 B, 14 N NMR and X-ray photoelectron spectroscopy methods. Crystallographic data are: C 13 H 23 B 9 N 2 , M=304.62, monoclinic lattice, space group P2 1 /c, a=11.840(4), b=10.051(3), c=15.573(6) A, β=102.43(3) Deg, V=1809.8(10) A 3 , Z=4, d cal =1.118 g/cm 3 , R=0.0607 [ru

  1. Numerical analysis and comparison of three types of herringbone frame structure for highway subgrade slopes protection

    Science.gov (United States)

    Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli

    2018-04-01

    In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.

  2. Relationship between the structural stability with the types and land uses in southeastern Spain

    International Nuclear Information System (INIS)

    Marin Sanleandro, P.; Sanchez Navarro, A.; Delgado Iniesta, M. J.; Fernandez-Delgado Juarez, M.

    2009-01-01

    Structural stability is one of the most important physical properties and is proposed as an indicator of quality. The aim of this study is to see the possible relationship between this property with soil types and uses of them. In this paper we have selected the Mazarron area based on their environmental characteristics and has taken forty-one topsoil samples, after analysis and study of the relationship between its structural stability with soil types and uses of same, we find a closer relationship in the case of uses that type, so that the natural soil as the percentage of stable aggregates close to 75%, while in soils anthropized this value reaches 44 %. (Author) 6 refs

  3. Structural and electrochemical characterization of calcium cobaltites (Ca{sub 3}Co{sub 4}O{sub 9}) obtained by the modified Pechini Method; Caracterizacao estrutural e eletroquimica de cobaltita de calcio (Ca{sub 3}Co{sub 4}O{sub 9}) obtida pelo Metodo Pechini modificado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.M.; Aquino, F. de M.; Macedo, D. A. de, E-mail: rinaldo_mendesa@hotmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2016-07-01

    This work deals with the synthesis and characterization of calcium cobaltite (Ca{sub 3}Co{sub 4}O{sub 9}, C349), a p-type semiconductor with high Seebeck coefficient (S), high electrical conductivity and low thermal conductivity that has emerged as thermoelectric material. The synthesis method used to obtain the compound C349 uses commercial gelatin as complexing and polymerizing agent. The obtained material was characterized by X-ray diffraction with Rietveld refinement of the diffraction data. The results indicated that the modified Pechini method using gelatin allows to obtain powders of calcium cobaltite (with monoclinic structure) associated with a small content (2% by volume) of Co{sub 3}O{sub 4} with cubic structure. Impedance spectroscopy measurements in air indicated that the composite C349/Co{sub 3}O{sub 4} is a promising material for use as solid oxide fuel cell cathode.(author)

  4. Structure and Composition of Protein Bodies from Wild-Type and High-Lysine Barley Endosperm

    DEFF Research Database (Denmark)

    Ingversen, J.

    1975-01-01

    Protein bodies were isolated from 13 and 28 day old endosperms of barley mutant 1508 and its wild type, Bomi barley. The fine structure of the isolated protein bodies was determined by electron microscopy, and the proteins present in the preparations characterized by amino-acid analysis and SDS......-polyacrylamidegel electrophoresis. Sections through pellets of isolated protein bodies from both the mutant and the wild type revealed protein body structures corresponding with those observed in sections through the intact starchy endosperms. The majority of the wild-type protein bodies was homogeneous spheres accompanied...... that the wild-type protein bodies contained large amounts of prolamines (the storage protein group which is soluble in 55 % isopropanol) and some glutelins (the storage proteins soluble in dilute alkali), whereas the mutant protein bodies have glutelin as the major component and little prolamines...

  5. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  6. Development of a nano structured system based on zirconia and Co nanoparticles for thermoluminescent applications: sensor of gamma and UV radiation

    International Nuclear Information System (INIS)

    Villa S, G.

    2014-01-01

    Powders of zirconium IV oxide as well as systems composed of zirconia nano crystals and cobalt nanoparticles (ZrO 2 :NPCo) with dimensions of nanometers were synthesized by the sol-gel method. Zirconia and ZrO 2 :NPCo systems have crystalline structure tetragonal or monoclinic is the heat treatment was to 500 and 1000 degrees Celsius respectively. The characterization of the synthesized materials consisted of a morphological and structural analysis, the information obtained was correlated to its thermoluminescent response induced by gamma and ultraviolet radiation. Thermoluminescent behavior was analyzed on different concentrations of cobalt nanoparticles incorporated during the synthesis process of the zirconium oxide. The monoclinic structure has the highest sensitivity thermoluminescent induced by ultraviolet and gamma radiation. Moreover, the thermoluminescence intensity decreased considerably in ZrO 2 :NPCo systems and was induced the growth of a glow peak at 280 degrees Celsius. In most of the materials analyzed the relation of the thermoluminescence intensity depending the time of irradiation with ultraviolet light showed the saturation of the traps in the material after 60 s of irradiation. Using gamma radiation is observed a behavior linear in the applied dose range between 0.25 Gy and 450 Gy. The growth of a glow peak at 280 degrees Celsius is the most important change in the thermoluminescence characteristics of zirconia. The ZrO 2 :NPCo systems can be used in the development of thermoluminescent dosimeters for detecting gamma radiation fields mainly. (Author)

  7. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors.

    Science.gov (United States)

    Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2013-11-01

    A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    Science.gov (United States)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  9. AC impedance spectroscopy of NASICON type Na3Fe2(PO4)3 ceramic

    Science.gov (United States)

    Mandal, Biswajit; Thakur, A. K.

    2018-05-01

    Super ionic conductors (e.g.; A3M2(XO4)3, A=Li, Na) have received attention in applied research due to their interesting electrochemical property and inherently high ionic conductivity [1]. However, structural and compatibility requirements for fast ion transport is stringent and it plays a crucial role. In A3M2(XO4)3, a suitable cage formation in the crystal framework due to corner sharing arrangement of XO4 tetrahedra and MO6 octahedra creates voids that acts as host/guest site for cation transport. In this work, we report Nasicon structure Na3Fe2(PO4)3 (NFP) prepared via sol-gel route mediated by citric acid. Structural analysis confirmed that NFP sample belongs to monoclinic crystal structure having Cc space group (S. G. No 9) with lattice parameters, a=15.106 Å, b=8.722 Å, c=8.775 Å and β=124.96°. Electrical properties of the prepared sample have been studied by AC impedance spectroscopy technique. The AC conductivity results indicated typical signature of ionically conducting system.

  10. Magnetically frustrated double perovskites: synthesis, structural properties, and magnetic order of Sr{sub 2}BOsO{sub 6} (B = Y, In, Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Avijit Kumar; Sarapulova, Angelina; Adler, Peter; Kanungo, Sudipta; Mikhailova, Daria; Schnelle, Walter; Hu, Zhiwei; Kuo, Changyang; Yan, Binghai; Felser, Claudia; Tjeng, Liu Hao [Max-Planck-Institut fuer Chemische Physik fester Stoffe,Dresden (Germany); Reehuis, Manfred [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Siruguri, Vasudeva; Rayaprol, Sudhindra [UGC-DAE Consortium for Scientific Research (CSR), Mumbai Centre, Mumbai (India); Soo, Yunlian [Department of Physics, National Tsing Hua University, Hsinchu (China); Jansen, Martin [Max-Planck-Institut fuer Chemische Physik fester Stoffe,Dresden (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2015-02-15

    Double perovskites Sr{sub 2}BOsO{sub 6} (B = Y, In, and Sc) were prepared from the respective binary metal oxides, and their structural, magnetic, and electronic properties were investigated. At room temperature all these compounds crystallize in the monoclinic space group P2{sub 1}/n. They contain magnetic osmium (Os{sup 5+}, t{sub 2g}{sup 3}) ions and are antiferromagnetic insulators with Neel temperatures T{sub N} = 53 K, 26 K, and 92 K for B = Y, In, and Sc, respectively. Powder neutron diffraction studies on Sr{sub 2}YOsO{sub 6} and Sr{sub 2}InOsO{sub 6} showed that the crystal structures remain unchanged down to 3 K. The Y and In compounds feature a type I antiferromagnetic spin structure with ordered Os moments of 1.91 μ{sub B} and 1.77 μ{sub B}, respectively. The trend in T{sub N} does not simply follow the development of the lattice parameters, which suggests that d{sup 0} compared to d{sup 10} ions on the B site favor a somewhat different balance of exchange interactions in the frustrated Os{sup 5+} fcc-like lattice. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and Its Complexes with Moxalactam and Imipenem.

    Science.gov (United States)

    Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria; Mangani, Stefano; Docquier, Jean-Denis

    2016-12-01

    BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower K m values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Trinuclear Lanthanoid Complexes of 1,3,5-Triamino-1,3,5-trideoxy-cis-inositol with a Unique, Sandwich-Type Cage Structure(1).

    Science.gov (United States)

    Hedinger, Roman; Ghisletta, Michele; Hegetschweiler, Kaspar; Tóth, Eva; Merbach, André E.; Sessoli, Roberta; Gatteschi, Dante; Gramlich, Volker

    1998-12-28

    A variety of trinuclear complexes [M(3)(H(-)(3)L)(2)](3+) [M = Y, La, Eu, Gd, Dy; L = 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci)] was prepared as solid materials of the composition M(3)(H(-)(3)L)(2)X(3).pH(2)O.qEtOH (X = Cl, NO(3); 2.5 structures of [La(3)(H(-)(3)taci)(2)(H(2)O)(4)Cl]Cl(2).3H(2)O and [Gd(3)(H(-)(3)taci)(2)(H(2)O)(6)]Cl(3).3H(2)O were elucidated by single-crystal X-ray diffraction studies. The La complex crystallizes in the orthorhombic space group Pbca, a = 17.10(2) Å, b = 16.20(4) Å, c = 20.25(4) Å, Z = 8 for C(12)Cl(3)H(38)La(3)N(6)O(13). The Gd complex crystallizes in the monoclinic space group P2(1)/n, a = 10.294(3) Å, b = 15.494(5) Å, c = 19.994(6) Å, beta = 95.36(2) degrees, Z = 4 for C(12)Cl(3)Gd(3)H(42)N(6)O(15). The two complexes exhibited a unique, sandwich-type cage structure, where the two triply deprotonated taci ligands encapsulate an equilateral triangle of the three metal centers. The metal cations are coordinated to the equatorial, terminal amino groups and are bridged by the axial &mgr;(2)-alkoxo groups. The coordination spheres are completed by additional peripheral ligands such as H(2)O or Cl(-) counterions. The coordination number of the metal cations is 8. Magnetic susceptibility measurements of the Gd complex revealed very weak antiferromagnetic coupling interactions between the three Gd centers. Complex formation and species distribution in aqueous solution was investigated by potentiometry and pD-dependent NMR spectroscopy. An exclusive formation of the [Eu(3)(H(-)(3)taci)(2)](3+) unit in solution was found in the range 7

  13. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics.

    Science.gov (United States)

    Walker, Amanda M; Yu, Peiqiang; Christensen, Colleen R; Christensen, David A; McKinnon, John J

    2009-08-12

    The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate and extent of rumen degradation.

  14. Stabilization of high-temperature antimony oxide with molybdenum incorporation. Structure of Mo-doped Sb2O4 by powder neutron diffraction and extended X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Teller, R.G.; Antonio, M.R.; Brazdil, J.F.; Mehicic, M.; Grasselli, R.K.

    1985-01-01

    It has been discovered that the presence of MoO 3 lowers the α-β transition in Sb 2 O 4 from 935 to 850 0 C with concurrent dissolution of Mo in the high-temperature (β) form. The structure of Mo-doped β-Sb 2 O 4 has been investigated by powder neutron diffraction, extended X-ray absorption fine structure (EXAFS) and Raman spectroscopies, and scanning-electron microscopy (SEM). Cell parameters: a = 12.0571 (12) A, b = 4.8335 (1) A, c = 5.3838 (6) A, β = 105.579 (5) 0 , monoclinic, space group C2/c, Z = 4. Combining the results of these techniques leads to the hypothesis that Mo is located interstitially within channels of electron density in the Sb 2 O 4 structure with concurrent vacancy of two Sb/sup III/ atoms. There is no apparent oxygen deficiency in the resulting structure. 25 references, 6 figures, 3 tables

  15. Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics

    Science.gov (United States)

    Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.

    2014-09-01

    Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.

  16. Growth and structure of a new photonic crystal: Chlorine substituted chalcone

    Energy Technology Data Exchange (ETDEWEB)

    Sarveshwara, H. P., E-mail: sarvesh.heggadde@gmail.com; Menezes, Anthoni Praveen [Department of Physics, Mangalore Institute Of Technology And Engineering (MITE), Moodabidri-574225 (India); Raghavendra, S.; Dharmaprakash, S. M. [Department of Studies in Physics, Mangalore University, Mangalore -575199 (India); A, Jayarama [Department of Physics, Sadguru Swami Nithyananda Institute of Technology (SSNIT), Kanhangad 671315 (India)

    2015-06-24

    A new organic photonic material 3-(2, 4-dichlorophenyl)-1-(2,5-dimethylthiophen-3-yl)propan-1-one(DMTP) has been synthesized and crystallised in acetone solution. The functional groups present in the new material were identified by FTIR spectroscopy. The material is optically transparent in the wavelength range of 400–1100 nm. The crystal structure of DMTP was determined by single crystal X-ray diffraction. The title compound crystallizes in monoclinic system with a centrosymmetric space group P2{sub 1}/c. The Z-scan study revealed that the optical limiting property exhibited by the DMTP molecule is based on the reverse saturable absorption phenomena.

  17. Na5NbO5 and Na5TaO5 phases

    International Nuclear Information System (INIS)

    Darriet, J.; Maazaz, A.; Bouloux, J.C.; Delmas, C.

    1982-01-01

    New ternary oxides of formulas Na 5 NbO 5 and Na 5 TaO 5 have been prepared. They crystallize in the monoclinic system (space group C2/c). The crystal structure of Na 5 NbO 5 has been determined. It derives from a NaCl-type structure by ordering of the cations and of the oxygen vacancies in the anionic sublattice, the corresponding formula being Nasub(5/6)Nbsub(1/6)Osub(5/6)vacant sub(1/6). Sodium and niobium have a distorted square-pyramidal surrounding. (author)

  18. Synthesis and Thermoelectric Properties in the 2D Ti1 ? x Nb x S3 Trichalcogenides

    OpenAIRE

    Misse, Patrick R. N.; Berthebaud, David; Lebedev, Oleg I.; Maignan, Antoine; Guilmeau, Emmanuel

    2015-01-01

    A solid solution of Ti1 ? x Nb x S3 composition (x = 0, 0.05, 0.07, 0.10) was synthesized by solid-liquid-vapor reaction followed by spark plasma sintering. The obtained compounds crystallize in the monoclinic ZrSe3 structure type. For the x = 0.07 sample, a mixture of both A and B variants of the MX3 structure is evidenced by transmission electron microscopy. This result contrasts with those of pristine TiS3, prepared within the same conditions, which crystallizes as a large majority of A va...

  19. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC{sub 2}N nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, T.; Azevedo, S. [Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitória da Conquista, Caixa Postal 3150, 45075-265 Vitória da Conquista, BA (Brazil)

    2017-04-15

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC{sub 2}N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities of the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons. - Highlights: • Small discrepancies between distinct bond lengths can influence the formation energy of the BC{sub 2}N nanoribbons. • The electronic behavior of the BC{sub 2}N chevron-type nanoribbons depends on the atomic arrangement and structural symmetries. • There is a strong correlation between the electronic and magnetic properties for the BC{sub 2}N structures.

  20. Shock modon: a new type of coherent structure in rotating shallow water.

    Science.gov (United States)

    Lahaye, Noé; Zeitlin, Vladimir

    2012-01-27

    We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.

  1. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  2. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  3. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients: a voxel-based morphometric study

    OpenAIRE

    Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun

    2014-01-01

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxe...

  4. Life Comparative Analysis of Energy Consumption and CO2 Emissions of Different Building Structural Frame Types

    Science.gov (United States)

    Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok

    2013-01-01

    The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO2 emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO2 emissions of input materials for each structural frame type. In addition, the CO2 emissions cost was measured using the trading price of CO2 emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO2 emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO2 emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future. PMID:24227998

  5. Life Comparative Analysis of Energy Consumption and CO2 Emissions of Different Building Structural Frame Types

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2013-01-01

    Full Text Available The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO2 emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC or steel (S structures. An input-output framework analysis was used to measure energy consumption and CO2 emissions of input materials for each structural frame type. In addition, the CO2 emissions cost was measured using the trading price of CO2 emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO2 emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO2 emissions cost of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future.

  6. Crystal structure stability and electronic properties of the layered nickelate La4Ni3O10

    Science.gov (United States)

    Puggioni, Danilo; Rondinelli, James M.

    2018-03-01

    We investigate the crystal structure and the electronic properties of the trilayer nickelate La4Ni3O10 by means of quantum-mechanical calculations in the framework of the density-functional theory. We find that, at low temperature, La4Ni3O10 undergoes a hitherto unreported structural phase transition and transforms to a new monoclinic P 21/a phase. This phase exhibits electronic properties in agreement with recent angle-resolved photoemission spectroscopy data reported in H. Li et al., [Nat. Commun. 8, 704 (2017), 10.1038/s41467-017-00777-0] and should be considered in models focused on explaining the observed ˜140 K metal-to-metal phase transition.

  7. Structural and dielectric characteristics of double perovskite La2(NiFe)1/2MnO6

    Science.gov (United States)

    Nasir, Mohd.; Kandasami, Asokan; Sen, Somaditya

    2018-05-01

    Recently, La2NiMnO6 has drawn significant interest because large magnetic field induced changes in dielectric properties makes this compound a promising material for potential spintronic device applications. In the present study, the structural and dielectric characteristics of sol-gel prepared La2(Ni1/2Fe1/2)MnO6 double perovskite ceramics were evaluated. La2(Ni1/2Fe1/2)MnO6 was crystallized in the monoclinic P21/n structure with ordered Ni2+/Fe2+ and Mn4+ cations. A giant dielectric constant with relaxor-like behavior was observed, which was attributed to the dipolar effects arising from hopping between Ni2+/Fe2+ and Mn4+ ions.

  8. Synthesis, crystal and supramolecular structure of rac-N-acetyl-2- thiohydantoin-asparagine

    Directory of Open Access Journals (Sweden)

    Gerzon E. Delgado

    2014-05-01

    Full Text Available The title compound, C7H9N3O3S, also known as rac-N-acetyl-5-propionamide-2-thioxo-imidazolidin-4-one, crystallize in the monoclinic system with space group P21/n (Nº14, Z=4, and unit cell parameters a= 9.338 (7 Å, b= 7.545 (5 Å, c= 13.212 (10 Å, E= 97.10 (2°, V= 932.8 (12 Å3. The acetyl group and the mean plane of the ureido group form an angle of 81.0 (2°. In the supramolecular structure, the molecules are joined by N--H···O hydrogen bonds into cyclic structures with graph-set R2 2(14 and R2 2(16, forming a three-dimensional network.

  9. Effect of Si/Ge ratio on resistivity and thermopower in Gd{sub 5}Si{sub x}Ge{sub 4-x} magnetocaloric compounds

    Energy Technology Data Exchange (ETDEWEB)

    Raj Kumar, D.M. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Manivel Raja, M., E-mail: mraja@dmrl.drdo.i [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Prabahar, K.; Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Poddar, Asok; Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Suresh, K.G. [Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2011-07-15

    The effect of Si/Ge ratio on resistivity and thermopower behavior has been investigated in the magnetocaloric ferromagnetic Gd{sub 5}Si{sub x}Ge{sub 4-x} compounds with x=1.7-2.3. Microstructural studies reveal the presence of Gd{sub 5}(Si,Ge){sub 4}-matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The x=1.7 and 2.0 samples display the presence of a first order structural transition from orthorhombic to monoclinic phase followed by a magnetic transition of the monoclinic phase. The alloys with x=2.2 and 2.3 display only magnetic transitions of the orthorhombic phase. A low temperature feature apparent in the AC susceptibility and resistivity data below 100 K reflects an antiferromagnetic transition of secondary phase(s) present in these compounds. The resistivity behavior study correlates with microstructural studies. A large change in thermopower of -8 {mu}V/K was obtained at the magneto-structural transition for the x=2 compound. - Research highlights: Effect of Si/Ge ratio on microstructure, magneto-structural transitions, resistivity ({rho}) and thermopower S(T) behaviour has been investigated in Gd{sub 5}Si{sub x}Ge{sub 4-x} compounds with x=1.7, 2.0, 2.2 and 2.3. Microstructural studies reveal the presence of a Gd{sub 5}(Si,Ge){sub 4} -matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The resistivity behaviour has shown good correlation with the microstructural studies. A large change in thermopower of -8{mu}V/K was obtained at the magneto-structural transition for the x=2 compound. The resistivity and change in thermopower values were high for the alloys with Si/Ge ratio {<=}1 compared to that of the alloys with Si/Ge ratio >1.

  10. Equipment and building structures ageing management for WWER type NPPs

    International Nuclear Information System (INIS)

    Mayboroda, O.

    2001-01-01

    This report presents the working group 'Equipment and building structures ageing management for WWER type NPPs' activities. The analysis of experience in ageing management, recommendations for regulatory guidelines on ageing management, investigation of case studies, definition suitable communication channels among regulators for ageing related data are given. Analyses of water chemistry, inspection data (safety margins criteria), plugging criteria, volume and time of ECT implementation in all WWER countries are presented. The results of Working group activity show that it is advisable to concentrate efforts on: set up the permanent communication channel among regulators, collection of regulatory criteria for WWER type NPP key components based on understanding of ageing mechanisms and data collection

  11. Observation of Current Structures at Type-III ELM Onset on EAST

    DEFF Research Database (Denmark)

    Yan, Ning; Naulin, Volker; Xu, G.

    structure. To verify the current characteristic of this structure, a mono-polar current filaments model was involved, which can reproduce same pattern commendably. Thus, current transport may dominant in transitional stage and plays an important role in the nonlinear development phase of ELM exhaustive......In far scrape-o layer (SOL), alternating negative and positive burst structures in ion saturation current were detected at the onset of each type-III edge localized mode (ELM) on EAST. Different from the fast streaming phenomenon reported previously, one subsequent positive burst structure appears...... every time in the early phase of ELM. It seems like a quick transitional stage between edge localized mode (MHD) phase and transport phase during the ELM. A pronounced sinusoidal pattern has been observed on the radial magnetic induction signal by Langmuir - magnetic probe, corresponding with almost...

  12. LaCu6-xAgx : A promising host of an elastic quantum critical point

    Science.gov (United States)

    Poudel, L.; Cruz, C. de la; Koehler, M. R.; McGuire, M. A.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2018-05-01

    Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P21 / c) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc = 0.225 . All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx .

  13. Tangshen Formula Attenuates Colonic Structure Remodeling in Type 2 Diabetic Rats

    DEFF Research Database (Denmark)

    Chen, Pengmin; Zhao, Jingbo; Zhang, Haojun

    2017-01-01

    Aim. This study investigated the effect and mechanism of the Chinese herbal medicine Tangshen Formula (TSF) on GI structure remodeling in the rat model of diabetes. Methods. Type 2 diabetic rats were used. Wet weight per unit length, layer thicknesses, levels of collagens I and III, nuclear factor...

  14. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase

    International Nuclear Information System (INIS)

    Porta, Jason; Kolar, Carol; Kozmin, Stanislav G.; Pavlov, Youri I.; Borgstahl, Gloria E. O.

    2006-01-01

    X-ray crystallographic analysis of human inosine triphosphate pyrophosphohydrolase provided the secondary structure and active-site structure at 1.6 Å resolution in an orthorhombic crystal form. The structure gives a framework for future structure–function studies employing site-directed mutagenesis and for the identification of substrate/product-binding sites. The structure of human inosine triphosphate pyrophosphohydrolase (ITPA) has been determined using diffraction data to 1.6 Å resolution. ITPA contributes to the accurate replication of DNA by cleansing cellular dNTP pools of mutagenic nucleotide purine analogs such as dITP or dXTP. A similar high-resolution unpublished structure has been deposited in the Protein Data Bank from a monoclinic and pseudo-merohedrally twinned crystal. Here, cocrystallization of ITPA with a molar ratio of XTP appears to have improved the crystals by eliminating twinning and resulted in an orthorhombic space group. However, there was no evidence for bound XTP in the structure. Comparison with substrate-bound NTPase from a thermophilic organism predicts the movement of residues within helix α1, the loop before α6 and helix α7 to cap off the active site when substrate is bound

  15. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate.

    Science.gov (United States)

    Mączka, Mirosław; Marinho Costa, Nathalia Leal; Gągor, Anna; Paraguassu, Waldeci; Sieradzki, Adam; Hanuza, Jerzy

    2016-05-18

    We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and β = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and β = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.

  16. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Structural study and crystallography of the major compound of anhydrous cement: tri-calcium silicate; Etude structurale et cristallographie du compose majoritaire du ciment anhydre: le silicate tricalcique

    Energy Technology Data Exchange (ETDEWEB)

    Noirfontaine, M.N. de

    2000-01-01

    Anhydrous (Portland) cement is mainly composed of a synthetic material, the clinker, whose major compound is tri-calcium silicate (Ca{sub 3}SiO{sub 5}), often referred as C{sub 3}S with the compact oxides notations, C = CaO et S = SiO{sub 2}. The polymorphism of C{sub 3}S, still not well known, is the main subject of the thesis. Various crystal structures (rhombohedral R, monoclinic M1, M2, M3 and triclinic T1, T2, T3) can be found, depending on temperature and impurities. The only known structures are T1, M1 and M3, involving large unit cells with an orientational disorder of silicate tetrahedra. The single crystal studies exhibit no clear relation between the various polymorphs. Starting from known results from literature single crystal experiments, we establish the metric and structural relations between the different structures. Averaged structures for the T1, M1 and M3 polymorphs are proposed, together with all the matrices of transformation between the unit cells. We also introduce new 1-D, 2-D, and 3-D structural units, which make easier the understanding of the structures of C{sub 3}S, with the result of a better description of the orientational disorder. The effects of impurities on the structure are discussed. In industrial clinkers, impurities stabilize mainly M1 and M3 monoclinic forms. We propose a space group (Pc) and two structural models (a superstructure and an approximate averaged structure) for the M1 form. All the models are validated on synthetic compounds (M3, M2, M1 et T1) and industrial clinkers analysed by X-Ray powder diffraction with Rietveld analysis. (author)

  18. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application

    Directory of Open Access Journals (Sweden)

    Cristina M. Prieto-Barajas

    2018-01-01

    Full Text Available Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.

  19. Structural barriers to coping with Type 1 Diabetes Mellitus in Ghana ...

    African Journals Online (AJOL)

    Structural barriers to coping with Type 1 Diabetes Mellitus in Ghana: Experiences of diabetic youth and their families. ... Methods: Qualitative study conducted with families with a child with T1DM, receiving care in the greater Accra area. Total of 17 individuals ... Social support networks need to be explored and strengthened.

  20. Synthesis and structure of alkaline earth and rare earth metal doped C70

    International Nuclear Information System (INIS)

    Takenobu, Taishi; Iwasa, Yoshihiro; Ito, Takayoshi; Mitani, Tadaoki

    2001-01-01

    We have investigated the structure sequence of alkaline earth (A=Ba, Sr) and rare earth metal (R=Eu) doped C 70 binary system. X-ray diffraction measurements revealed that there exist at least four stable phases at x=3, 4, 6, and 9 in A x C 70 and two stable phases at x=3, and 9 in R x C 70 . Among them, structural models are presented for Ba 4 C 70 , Sr 3 C 70 , and Eu 3 C 70 . Ba 4 C 70 takes an analogous structure to orthorhombic Ba 4 C 60 . Sr 3 C 70 and Eu 3 C 70 have monoclinic cell and their diffraction patterns are quite similar to that of Sm 3 C 70 , which involves a unique C 70 -metal-C 70 dimer structure. Preliminary results of Raman spectroscopy and magnetization measurement suggest the highly reduction state for A 9 C 70 and ferromagnetic interaction for Eu x C 70

  1. Structural study of α-Bi2O3 under pressure

    International Nuclear Information System (INIS)

    Pereira, A L J; Sans, J A; Manjón, F J; Errandonea, D; García-Domene, B; Miquel-Veyrat, A; Beltrán, A; Gracia, L; Gomis, O; Muñoz, A; Popescu, C

    2013-01-01

    An experimental and theoretical study of the structural properties of monoclinic bismuth oxide (α-Bi 2 O 3 ) under high pressures is here reported. Both synthetic and mineral bismite powder samples have been compressed up to 45 GPa and their equations of state have been determined with angle-dispersive x-ray diffraction measurements. Experimental results have been also compared with theoretical calculations which suggest the possibility of several phase transitions below 10 GPa. However, experiments reveal only a pressure-induced amorphization between 15 and 25 GPa, depending on sample quality and deviatoric stresses. The amorphous phase has been followed up to 45 GPa and its nature discussed. (paper)

  2. Type IIA orientifolds on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Danckaert, Thomas

    2010-11-15

    We investigate the possible supersymmetry-preserving orientifold projections of type IIA string theory on a six-dimensional background with SU(2)-structure. We find two categories of projections which preserve half of the low-energy supersymmetry, reducing the effective theory from an N=4 supergravity theory, to an N=2 supergravity. For these two cases, we impose the projection on the low-energy spectrum and reduce the effective N=4 supergravity action accordingly. We can identify the resulting gauged N=2 supergravity theory and bring the action into canonical form. We compute the scalar moduli spaces and characterize the gauged symmetries in terms of the geometry of these moduli spaces. Due to their origin in N=4 supergravity, which is a highly constrained theory, the moduli spaces are of a very simple form. We find that, for suitable background manifolds, isometries in all scalar sectors can become gauged. The obtained gaugings share many features with those of N=2 supergravities obtained previously from other G-structure compactifications. (orig.)

  3. Structure of the atmosphere of late-type stars

    International Nuclear Information System (INIS)

    Straume, Ya.I.

    1976-01-01

    A method of calculation of model atmospheres of late-type stars is described. The model atmospheres have been constructed for effective temperature Tsub(e)=2500, 3000, 3500, 4000, 4500 and 5785 K at solar chemical composition and surface gravities log g = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 based on LTE and a plane-parallel horizontally homogeneous structure. Opacity due to H, H - and H 2 - was taken into account. The equation of state includes 10 metals and H 2 , H 2 - and H 2 + molecules. The results are compared with those published elsewhere. A satisfactory agreement is obtained for Tsub(e) > 3000 K

  4. The thermodynamic and structural properties of metallocenes-type random ethylene copolymers

    International Nuclear Information System (INIS)

    Simanke, Adriane G.; Mauler, Raquel S.; Galland, Griselda B.; Alamo, Rufina G.

    2001-01-01

    The properties of a series of random ethylene copolymers prepared with the metallocenes catalytic system rac-Et[Ind] 2 ZrCl 2 /MAO were studied for a large variety of comonomer types. These include the classical 1-alkene type with length up to 10 carbons and those of the cyclic type such as cyclopentadiene and dicyclopentadiene. Under rapid crystallization, the melting temperatures of the newly synthesized copolymers followed the relation of model random copolymers indicating a behavior that conforms to that predicted by Flory's phase equilibrium theory. The molar entropy of fusion is not significantly altered by the comonomer type including the dicyclopentadiene type. All types of comonomers studied showed, for a fixed comonomer content, the same change in properties during annealing, except the ethylene 1-butenes. These latter copolymers and the hydrogenated poly butadiene showed a faster rate of change in thermal properties. This is consistent with a higher molecular diffusion for the butene comonomer than for the rest of comonomers analyzed. The properties of the inter lamellar region were also studied as a function of comonomer type and content following the variation of the amorphous halo extracted from the WAXS diffractograms. The observed systematic decrease in the peak scattering angle with increasing comonomer content indicates a variation of the intermolecular liquid structure. (author)

  5. Low-resolution structure of Drosophila translin

    Science.gov (United States)

    Kumar, Vinay; Gupta, Gagan D.

    2012-01-01

    Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579

  6. Structure- and oil type-based efficacy of emulsion adjuvants.

    Science.gov (United States)

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  7. Universal properties of type IIB and F-theory flux compactifications at large complex structure

    International Nuclear Information System (INIS)

    Marsh, M.C. David; Sousa, Kepa

    2016-01-01

    We consider flux compactifications of type IIB string theory and F-theory in which the respective superpotentials at large complex structure are dominated by cubic or quartic terms in the complex structure moduli. In this limit, the low-energy effective theory exhibits universal properties that are insensitive to the details of the compactification manifold or the flux configuration. Focussing on the complex structure and axio-dilaton sector, we show that there are no vacua in this region and the spectrum of the Hessian matrix is highly peaked and consists only of three distinct eigenvalues (0, 2m 3/2 2 and 8m 3/2 2 ), independently of the number of moduli. We briefly comment on how the inclusion of Kähler moduli affect these findings. Our results generalise those of Brodie & Marsh http://dx.doi.org/10.1007/JHEP01(2016)037, in which these universal properties were found in a subspace of the large complex structure limit of type IIB compactifications.

  8. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  9. Analysis of the zirconia structure by `ab initio` and Rietveld methods; Analise da estrutura da zirconia por metodos `Ab initio` e de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Bechepeche, A.P.; Nasar, R.S.; Longo, E. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Treu Junior, O.; Varela, J.A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1995-12-31

    The zirconia was doped with 0,113 mol of Mg O e 0,005 mol of Ti O{sub 2}, and it was calcined in 1550{sup d}eg C and it was analyzed by XRD. The results shows that pure zirconia contains 96,19% of monoclinic phase and 3,18% of cubic. However, the doping magnesia stabilizes the zirconia in 17,24 of monoclinic; 29,63 of tetragonal and 53,13% of cubic phase. The addition of titanium in zirconia gives 25,85% of tetragonal phase and 37,66% of cubic, and this shows the no stabilizing action of this transition metal. By the other side, the results with ab-initio calculating shows the same tendency resulting in the next values of total energy: pure zirconia - monoclinic -11.316,86ua; tetragonal -8742,09 ua and cubic -8742,80 ua and Zr O{sub 2} Ti O{sub 2} system - monoclinic -9463,02 ua, tetragonal -9459,39 ua and cubic -9459,97 ua (author) 3 figs., 2 tabs.

  10. Fine structure near the starting frequency of solar type III radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Benz, A.O.; Zlobec, P.; Jaeggi, M.

    1982-06-01

    We have systematically analyzed the period in time and frequency adjacent to the beginning of type III bursts digitally recorded at Bleien during the second half of 1980. A surprisingly high percentage (10%, possibly more than 20%) of the type III bursts show fine structure in the form of narrow-banded spikes of 0.05 s and less duration, which form clusters of relatively large bandwidth. These spikes are not totally polarized (contrary to claims in the literature) and they are uniformly distributed over the disk. Individual spikes often show highly variable polarization, which may even change sense. The average degree of polarization of the clouds has a wider distribution than that of the associated type III bursts, but generally the same sign. Spikes are considerably different from type I bursts.

  11. Structural, vibrational, and electrical properties of 1 T -TiT e2 under hydrostatic pressure: Experiments and theory

    Science.gov (United States)

    Rajaji, V.; Dutta, Utpal; Sreeparvathy, P. C.; Sarma, Saurav Ch.; Sorb, Y. A.; Joseph, B.; Sahoo, Subodha; Peter, Sebastian C.; Kanchana, V.; Narayana, Chandrabhas

    2018-02-01

    We report the structural, vibrational, and electrical transport properties up to ˜16 GPa of 1 T -TiT e2 , a prominent layered 2D system. We clearly show signatures of two isostructural transitions at ˜2 GPa and ˜4 GPa obtained from the minima in c /a ratio concomitant with the phonon linewidth anomalies of Eg and A1 g modes around the same pressures, providing a strong indication of unusual electron-phonon coupling associated with these transitions. Resistance measurements present nonlinear behavior over similar pressure ranges shedding light on the electronic origin of these pressure-driven isostructural transitions. These multiple indirect signatures of an electronic transition at ˜2 GPa and ˜4 GPa are discussed in connection with the recent theoretical proposal for 1 T -TiT e2 and also the possibility of an electronic topological transition from our electronic Fermi surface calculations. Between 4 GPa and ˜8 GPa , the c /a ratio shows a plateau suggesting a transformation from an anisotropic 2D layer to a quasi-3D crystal network. First-principles calculations suggest that the 2D to quasi-3D evolution without any structural phase transitions is mainly due to the increased interlayer Te-Te interactions (bridging) via the charge density overlap. In addition, we observed a first-order structural phase transition from the trigonal (P 3 ¯m 1 ) to monoclinic (C 2 /m ) phase at higher pressure regions. We estimate the start of this structural phase transition to be ˜8 GPa and also the coexistence of two phases [trigonal (P 3 ¯m 1 ) and monoclinic (C 2 /m )] was observed from ˜8 GPa to ˜16 GPa .

  12. Oxygen vacancies dependent phase transition of Y{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengfei; Zhang, Kan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Huang, Hao [Titanium Alloys Lab. Beijing Institute of Aeronautical Materials, Beijing 81-15 100095 (China); Wen, Mao, E-mail: Wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Li, Quan; Zhang, Wei; Hu, Chaoquan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Automotive Simulation and Control and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China)

    2017-07-15

    Highlights: • Oxygen vacancies for Y{sub 2}O{sub 3} films increase monotonously with increasing T{sub s}. • Oxygen vacancies can promote the nucleation of monoclinic phase. • That monoclinic phase with oxygen deficiency is not thermodynamic stable at high temperature. • Phase transition from monoclinic to oxygen defective occurs at high concentrations of oxygen vacancies. • High hardness just appears in Y{sub 2}O{sub 3} films with mixed phase configurations. - Abstract: Y{sub 2}O{sub 3} films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y{sub 2}O{sub 3}) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y{sub 2}O{sub 3} thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (T{sub s}), in which oxygen vacancies increase monotonously with increasing T{sub s}. For as-deposited Y{sub 2}O{sub 3} films, oxygen vacancies present at high T{sub s} can promote the nucleation of monoclinic phase, meanwhile, high T{sub s} can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high T{sub s}. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and

  13. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  14. Levels of Urinary Trypsin Inhibitor and Structure of Its Chondroitin Sulphate Moiety in Type 1 and Type 2 Diabetes

    Science.gov (United States)

    Ucciferri, Nadia; Idini, Michela; De Muro, Pierina

    2018-01-01

    Background Diabetes mellitus is a global health problem representing the fifth leading cause of mortality and a major risk factor for cardiovascular diseases. In the last years, we reported an association among urinary trypsin inhibitor (UTI), a small proteoglycan that plays pleiotropic roles in many inflammatory processes, and both type 1 and 2 diabetes and developed a method for its direct quantitation and structural characterization. Methods Urine from 39 patients affected by type 1 diabetes, 32 patients with type 2 diabetes, and 52 controls were analysed. UTI was separated from the main glycosaminoglycans physiologically present in urine by anion exchange chromatography, treated for chondroitin sulphate (CS) chain complete depolymerisation, and analysed for both UTI content and CS structure. UTI identification was performed by nano-LC-MS/MS analysis. Results We evidenced increased UTI levels, as well as reduced sulphation of its CS moiety in association with diabetes, regardless of both age and medium-term glycaemic control. Furthermore, no association between UTI and albumin excretion rate was found. Conclusions Evidences suggest that UTI levels are not directly correlated with renal function or, otherwise, that they may increase before the onset of renal impairment in diabetes, representing a potential marker for the underlying inflammatory condition. PMID:29541644

  15. Pool Structures: A New Type of Interaction Zones of Lithospheric Plate Flows

    Science.gov (United States)

    Garetskyi, R. G.; Leonov, M. G.

    2018-02-01

    Study of tectono-geodynamic clusters of the continental lithosphere (the Sloboda cluster of the East European Platform and the Pamir cluster of Central Asia) permitted identification of pool structures, which are a specific type of zone of intraplate interaction of rock masses.

  16. Structural study and physical properties of a new phosphate KCuFe(PO4)2

    International Nuclear Information System (INIS)

    Badri, Abdessalem; Hidouri, Mourad; Lopez, Maria Luisa; Pico, Carlos; Wattiaux, Alain; Ben Amara, Mongi

    2011-01-01

    Single crystals of a new phosphate KCuFe(PO 4 ) 2 have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P2 1 /n and its parameters are: a=7.958(3) A, b=9.931(2) A, c=9.039(2) A, β=115.59(3) o and Z=4. Its structure consists of FeO 6 octahedra sharing corners with Cu 2 O 8 units of edge-sharing CuO 5 polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K + ions are located. The Moessbauer spectroscopy results confirm the exclusive presence of octahedral Fe 3+ ions. The magnetic measurements show the compound to be antiferromagnetic with C m =5.71 emu K/mol and θ=-156.5 K. The derived experimental effective moment μ ex =6.76μ B is somewhat higher than the theoretical one of μ th =6.16μ B , calculated taking only into account the spin contribution for Fe 3+ and Cu 2+ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations. -- Graphical abstract: A projection along the [101] direction of the structure showing the six-edged tunnels, occupied by the K + ions. Display Omitted Highlights: → The reported structure is of a new type. → The structural model is supported by a Moessbauer spectroscopy study. → The magnetic susceptibility results are reported. → The electrical properties are discussed.

  17. Ab Initio Study of the Structure and Stability of High-Pressure Iron-Bearing Dolomite

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2016-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze, all of which often contain dolomite. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5-6 GPa in the temperature range of 800-1200 K [1]. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize high-pressure dolomite over single-cation carbonates above 35 GPa [2,3]. The structure and equation of state of high-pressure dolomite phases have been debated, creating a need for theoretical calculations. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), we have found a monoclinic phase with space group C2/c. The C2/c structure has a lower energy than previously reported dolomite structures at relevant pressures. It is possible that this phase is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. We calculate the equation of state of trigonal dolomite, dolomite III and monoclinic C2/c dolomite to 80 GPa with 0 and 50 mol% CaFe(CO3)2 and compare their enthalpies to single-carbonate assemblages. Although end-member C2/c CaMg(CO3)2 dolomite is not stable relative to single-cation carbonates, C2/c CaMg0.5Fe0.5(CO3)2 is preferred over single-cation carbonates at high pressures. Thus, iron-bearing C2/c dolomite may be an important host phase for carbon in slabs subducted into the lower mantle. [1] Shirasaka, M., et al. (2002) American Mineralogist, 87, 922-930. [2] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [3] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514.

  18. Crystal and molecular structure of neodymium (3) p-aminobenzoaate

    International Nuclear Information System (INIS)

    Khiyalov, M.S.; Amiraslanov, I.R.; Mamedov, Kh.S.; Movsumov, Eh.M.

    1981-01-01

    X-ray structural study (lambda MoKsub(α), automatic diffractometer, the method of heavy atom, anisotropic specification) of neodymium (3) n-aminobenzoate has been carried out. The crystals are monoclinic: a=9.882 (5), b=22.810 (12), c=9.851 (8)A, β=100.02 (5)deg, v=2186.59 A 3 , Z=4, sp. gr. P2 1 /n, R=0.046. The crystal structure of Nd(OOCC 6 H 4 NH 2 ) 3 xH 2 O consists of dimer-periodic layers alternating along the b axis. Surrounding of Nd atom in the chain is formed with four oxygen atoms of four carboxyl groups of bidentate-bridge and one carboxyl bidentate-cyclic ligands, one water molecule and N atom of ligand aminogroup from the neigbouring chain. The atom simultaneously bonds the neighbouring chains into continuous layer. The mean distances Nd-O, and Nd-N are equal to 2.45 and 2.74 A. An attempt to determine hydrogen atom coordinates has failed [ru

  19. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  20. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis, characterization and x-ray crystal structure of a dimethyltin (IV) dichloride complex of 2-acetylpyridine benzophenone azine

    International Nuclear Information System (INIS)

    Mustaffa Shamsuddin; Md Abu Affan; Ramli Atan

    1998-01-01

    Dimethyltin dichloride react with 2-ac ethylpyridine benzophenone azine (apba) in refluxing dry hexane to give (SnMe 2 Cl 2 (apba)) where the azine ligand acts as a bidentate N-N chelating ligand. The complex has been characterized by IR spectroscopy, 1 H and 13 C NMR spectroscopic data and elemental analyses. The crystal structure of the dimethyltin(IV) derivative has also been determined. Crystals are monoclinic with space group P2(1)/n with cell dimensions: a = 10.1819(3) Armstrong, b = 18.3113(5) Armstrong, c = 12.6451(4) Armstrong

  2. 1-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from X-ray powder diffraction using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Estevez H, O.; Duque, J. [Universidad de La Habana, Instituto de Ciencia y Tecnologia de Materiales, 10400 La Habana (Cuba); Rodriguez H, J. [UNAM, Instituto de Investigaciones en Materiales, 04510 Mexico D. F. (Mexico); Yee M, H., E-mail: oestevezh@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, 07738 Mexico D. F. (Mexico)

    2015-07-01

    1-Furoyl-3,3-diphenylthiourea (FDFT) was synthesized, and characterized by Ftir, {sup 1}H and {sup 13}C NMR and ab initio X-ray powder structure analysis. FDFT crystallizes in the monoclinic space group P2{sub 1} with a = 12.691(1), b = 6.026(2), c = 11.861(1) A, β = 117.95(2) and V = 801.5(3) A{sup 3}. The crystal structure has been determined from laboratory X-ray powder diffraction data using direct space global optimization strategy (simulated annealing) followed by the Rietveld refinement. The thiourea group makes a dihedral angle of 73.8(6) with the furoyl group. In the crystal structure, molecules are linked by van der Waals interactions, forming one-dimensional chains along the a axis. (Author)

  3. ONE OF THE MAIN NEOTECTONIC STRUCTURES IN THE NW CENTRAL ANATOLIA: BEYPAZARI BLIND THRUST ZONE AND RELATED FAULT-PROPAGATION FOLDS

    Directory of Open Access Journals (Sweden)

    Gürol SEYİTOĞLU

    2016-12-01

    Full Text Available This paper suggests that the structure known as "Beypazarı flexure / monocline" in the Turkish geology literature should be named as "Beypazarı fault-propagation folds". Beypazarı, Kilci and Başören blind thrusts together with Erenler back thrust constitute the Beypazarı Blind Thrust Zone which is an active neotectonic structure as indicated by earthquake activity. NW-SE contraction created by the interaction between the North Anatolian Fault Zone, the Kırıkkale-Erbaa Fault Zone and the Eskişehir Fault Zone produced the Eldivan-Elmadağ Pinched Crustal Wedge, the Abdüsselam Pinched Crustal Wedge and the Beypazarı Blind Thrust Zone. These structures take up the internal deformation of the Anatolian Plate.

  4. On the texture and crystal structure of the B19' martensite in single-crystal titanium nickelide

    International Nuclear Information System (INIS)

    Gundyrev, V.M.; Zel'dovich, V.I.

    2003-01-01

    The texture of the B19' martensite formed by cooling the Ti-51 at. % Ni alloy in the B2-phase monocrystal is studied. The positions of the (002), (111-bar), (020) and (111) planes of B19' martensite proceeding from the plane (110) of B2-phase relative to this plane are determined for this purpose. It is established that the obtained results may be described on the basis of the accepted monoclinic structure of the B19' martensite and earlier determined orientation ratios. However small deviation from the parallelism of the (020) B19' and (110)B2 planes is observed. Not less that 12 crystallographically equivalent orientations of the martensite crystals are realized by transforming the B2 phase monocrystal into the B19' martensite in the process of cooling in the irradiated volume of 1.5 x 0.01 mm. Realization of various martensite orientations is practically equally probable. Large self-accommodation crystal groups having limited number of orientations do not appear. It is shown that the martensite phases R and B19' are formed by the martensite transformations in the process of cooling. The B19' martensite has the set of the monoclinic angles from 90 p to 96.8 deg [ru

  5. Earthquake-proof support structures for the recycling pump in FBR type reactors

    International Nuclear Information System (INIS)

    Nakagawa, Masaki; Shigeta, Masayuki.

    1984-01-01

    Purpose: To improve the earthquake proofness of the recycling pump for use in FBR type reactors upon earthquake by reducing the vibration response of the pump. Constitution: The outer casing of a recycle pump suspended into liquid sodium is extended to the portion that penetrates a reactor core support structures. Support structures surrounding the outer side of the recycling pump are disposed with a gap not restraining the free thermal deformations of the recycling pump to the inside of the partition wall structures and the portion of the recycling pump penetrating the reator core support structures, to integrate the support structures with the reactor core support structures. Accordingly, there are no interferences between the recycling pump and the support structures with respect to the thermal deformations that change gradually with time. Upon vibrating under the rapidly changing external forces of earthquakes, however, the pressure resulted to the liquid in the gap due to the vibrations of the recycling pump is transmitted with no escape to the support structures, the recycling pump and the support structures integrally resist the vibrations thereby enabling to reduce the vibrations in the recycling pumps. (Horiuchi, T.)

  6. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  7. Comparative study on the effects of type 1 and type 2 diabetes on structural changes and hormonal output of the adrenal cortex in male Wistar rats

    Directory of Open Access Journals (Sweden)

    Elahi-Moghaddam Zohreh

    2013-01-01

    Full Text Available Abstract Introduction Diabetes is one of the most common endocrine disorders characterized by hyperglycemia due to defects in insulin secretion, insulin function, or both. Causing dysfunction in the body general metabolism, diabetes-induced chronic hyperglycemia leads to alterations in those endocrine glands involved in regulating the body metabolism. In this line, the present study has been conducted to investigate the effects of type 1 and type 2 diabetes on the structural changes and hormonal output of the adrenal cortex in male Wistar rat. Methods Eighteen male Wistar rats were divided into three groups including control, experimental type 1 diabetes (subcutaneous injection of 135 mg/kg alloxan and experimental type 2 diabetes (8 weeks treatment with drinking water containing 10% fructose. Two months after the induction of both types of diabetes, the level of blood biochemical factors (glucose, insulin, cortisol, triglycerides, cholesterol, LDL, and HDL were measured. Structural changes of the adrenal cortex were then evaluated, using stereological techniques. Results Serum biochemical analysis showed significant difference in the levels of glucose, triglycerides, insulin and cortisol in experimental groups, compared to the control. The results of structural alterations were also indicative of increase in adrenal cortex volume in both types of diabetes. Conclusion Probably through increasing HPA axis activity, type1 diabetes-induced hyperglycemia leads to adrenal hypertrophy and increase the hormonal output of adrenal gland.

  8. Ab initio electronic band structure study of III-VI layered semiconductors

    Science.gov (United States)

    Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés

    2013-08-01

    We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.

  9. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  10. Crystal structure of alluaudite-type Na4Co(MoO4)3.

    Science.gov (United States)

    Nasri, Rawia; Fakhar Bourguiba, Noura; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-09-01

    The title compound, tetra-sodium cobalt(II) tris-[molyb-date(IV)], was prepared by solid-state reactions. The structure is isotypic with Na3In2(AsO4)3 and Na3In2(PO4)3. The main structural feature is the presence of infinite chains of edge-sharing X 2O10 (X = Co/Na) dimers, which are linked by MoO4 tetra-hedra, forming a three-dimensional framework enclosing two types of hexa-gonal tunnels in which Na(+) cations reside. In this alluaudite structure, Co and Na atoms are located at the same general site with occupancies of 0.503 (5) and 0.497 (6), respectively. The other three Na and one of the two Mo atoms lie on special positions (site symmetries 2, -1, 2 and 2, respectively). The structure is compared with similar structures and other members of alluaudite family.

  11. Chemical consequences of radioactive decay. 1. Study of 249Cf ingrowth into crystalline 249BkBr3: a new crystalline phase of CfBr3

    International Nuclear Information System (INIS)

    Young, J.P.; Haire, R.G.; Peterson, J.R.; Ensor, D.D.; Fellows, R.L.

    1980-01-01

    Spectrophotometric and x-ray powder diffraction methods have been applied to a study of the ingrowth of californium-249 by β - decay of berkelium-249 in crystalline 249 BkBr 3 . It was found that the Cf daughter grows in with the same oxidation state and crystal structure as the parent. Thus, six-coordinate BkBr 3 (AlCl 3 -type monoclinic structure) generates six-coordinate CfBr 3 , and eight-coordinate BkBr 3 (PuBr 3 -type orthorhombic structure) generates eight-coordinate CfBr 3 , a previously unknown form of CfBr 3 . It was also found that the daughter Cf(III) in the BkBr 3 parent compound can be reduced to Cf(II) by treatment with H 2 , as it can in pure CfBr 3 . 5 figures

  12. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  13. Design study of an IHX support structure for a POOL-TYPE Sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2009-01-01

    The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity

  14. Study of disorder effects in La substituted Ca2FeMoO6 ferrimagnet using magnetic and transport measurements

    International Nuclear Information System (INIS)

    Muthuselvam, I. Panneer; Poddar, Asok; Bhowmik, R.N.

    2009-01-01

    We have substituted non-magnetic La in ferrimagnetic Ca 2-x La x FeMoO 6 double perovskite. The cell volume showed expansion with the increase of La substitution in monoclinic crystal structure and space group P2 I /n. Analysis of XRD spectrum indicated the increase of disorder in lattice structure. Surface structure of the material is modified from adhesive type for x = 0 sample to brittle type in La doped samples, suggesting the increase of grain boundary contributions. DC magnetization and ac susceptibility measurements showed reduction of magnetic moment, enhancement of T C , and cluster spin-glass phase in the ferromagnetic matrix. These experimental results confirmed the enhancement of magnetic disorder in La doped samples. The reduction of metallic nature in the compound provided additional support of enhanced disorder upon La doping in double perovskite structure.

  15. Structural change of Li{sub 1-x}Ni{sub 0.5}Mn{sub 0.5}O{sub 2} cathode materials for lithium-ion batteries by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arachi, Yoshinori; Tanaka, Minoru; Asai, Takeshi [Kansai Univ., Faculty of Engineering, Unit of Chemistry, Suita, Osaka (Japan); Kobayashi, Hironori [National Inst. of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan); Emura, Shuichi [Osaka Univ., ISIR, Ibaraki, Osaka (Japan); Nakata, Yoshiyuki [Iwakimeisei Univ., Faculty of Science and Engineering, Iwaki, Fukushima (Japan)

    2003-01-01

    Synchrotron X-ray diffraction and XAFS measurement have been employed to investigate structural change and the charging process of a layered LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} cathode material. The structure of charged Li{sub 1-x}Ni{sub 0.5}Mn{sub 0.5}O{sub 2} (x = 0.5), which corresponds to the composition for showing rechargeable capacity, was determined. The results showed that divalent nickel metal was oxidized to trivalent after charging, in association with the phase transition from hexagonal (R3-bar m) to monoclinic (C2/m) resulting from the ordering of cations in the layered structure. (author)

  16. Characterization of molecular associations involving L-ornithine and α-ketoglutaric acid: crystal structure of L-ornithinium α-ketoglutarate.

    Science.gov (United States)

    Allouchi, H; Céolin, R; Berthon, L; Tombret, F; Rietveld, I B

    2014-07-01

    The crystal structure of L-ornithinium α-ketoglutarate (C5H13N2O2, C5H5O5) has been solved by direct methods using single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group P21, unit cell parameters a=15.4326(3), b=5.2015(1), c=16.2067(3) Å and β=91.986(1)°, containing two independent pairs of molecular ions in the asymmetric unit. An extensive hydrogen-bond network and electrostatic charges due to proton transfer provide an important part of the cohesive energy of the crystal. The conformational versatility of L-ornithine and α-ketoglutaric acid is illustrated by the present results and crystal structures available from the Cambridge Structural Database. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Investigation of fluid-structure interaction with various types of junction coupling

    Science.gov (United States)

    Ahmadi, A.; Keramat, A.

    2010-10-01

    In this study of water hammer with fluid-structure interaction (FSI) the main aim was the investigation of junction coupling effects. Junction coupling effects were studied in various types of discrete points, such as pumps, valves and branches. The emphasis was placed on an unrestrained pump and branch in the system, and the associated relations were derived for modelling them. Proposed relations were considered as boundary conditions for the numerical modelling which was implemented using the finite element method for the structural equations and the method of characteristics for the hydraulic equations. The results can be used by engineers in finding where junction coupling is significant.

  18. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    International Nuclear Information System (INIS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V.; Knotko, A.V.; Garshev, A.V.; Yapaskurt, V.O.; Isnard, O.

    2014-01-01

    Novel RNi 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi 6 Si 6 -type structure for R=Y, Sm, Gd–Yb (tP52, space group P4 ¯ b2N 117) that are tetragonal derivative of NaZn 13 -type structure, like LaCo 9 Si 4 -type. The CeNi 6 Si 6 , GdNi 6 Si 6 , TbNi 6 Si 6 , DyNi 6 Si 6 and HoNi 6 Si 6 compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi 6 Si 6 does not follow Curie–Weiss law. The DyNi 6 Si 6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ B /f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi 6 Si 6 with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure and (Y, Sm, Gd–Yb) adopt the new YNi 6 Si 6 -type structure that are tetragonal derivative of NaZn 13 -type structure, like LaCo 9 Si 4 -type. The CeNi 6 Si 6 , GdNi 6 Si 6 , TbNi 6 Si 6 , DyNi 6 Si 6 and HoNi 6 Si 6 compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi 6 Si 6 with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure. • The new (Y, Sm, Gd–Yb)Ni 6 Si 6 compounds adopt the new YNi 6 Si 6 -type structure. • TbNi 6 Si 6 has square modulated c-collinear antiferromagnetic ordering below ∼10 K

  19. Electronic structure and p-type doping of ZnSnN2

    Science.gov (United States)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  20. A novel inorganic-organic compound: Synthesis and structural characterization of tin(II) phenylbis(phosphonate), Sn2(PO3C6H4PO3)

    International Nuclear Information System (INIS)

    Subbiah, Ayyappan; Bhuvanesh, Nattamai; Clearfield, Abraham

    2005-01-01

    A novel tin(II) phenylbis(phosphonate) compound has been synthesized hydrothermally and its structure has been determined by single crystal X-ray diffraction. The structure is monoclinic, space group P2 1 /c (no. 14), a=4.8094(4), b=16.2871(13), c=6.9107(6)A; β=106.292(6) o , V=519.59(7)A 3 , Z=2. The three-dimensional structure consists of 3-coordinated tin and 4-coordinated phosphorus double layers separated (pillared) by phenyl rings. These phenyl rings are placed 4.8A apart along the a-axis in the structure resulting in lower surface area (∼14m 2 /g). The porosity has been increased by replacing phenyl groups by methyl groups (∼31m 2 /g)