WorldWideScience

Sample records for monoclinic phase formation

  1. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  2. About lamination upper and convexification lower bounds on the free energy of monoclinic shape memory alloys in the context of T 3-configurations and R-phase formation

    Science.gov (United States)

    Fechte-Heinen, R.; Schlömerkemper, A.

    2016-11-01

    This work is concerned with different estimates of the quasiconvexification of multi-well energy landscapes of NiTi shape memory alloys, which models the overall behavior of the material. Within the setting of the geometrically linear theory of elasticity, we consider a formula of the quasiconvexification which involves the so-called energy of mixing.We are interested in lower and upper bounds on the energy of mixing in order to get a better understanding of the quasiconvexification. The lower bound on the energy of mixing is obtained by convexification; it is also called Sachs or Reuß lower bound. The upper bound on the energy of mixing is based on second-order lamination. In particular, we are interested in the difference between the lower and upper bounds. Our numerical simulations show that the difference is in fact of the order of 1% and less in martensitic NiTi, even though both bounds on the energy of mixing were rather expected to differ more significantly. Hence, in various circumstances it may be justified to simply work with the convexification of the multi-well energy, which is relatively easy to deal with, or with the lamination upper bound, which always corresponds to a physically realistic microstructure, as an estimate of the quasiconvexification. In order to obtain a potentially large difference between upper and lower bound, we consider the bounds along paths in strain space which involve incompatible strains. In monoclinic shape memory alloys, three-tuples of pairwise incompatible strains play a special role since they form so-called T 3-configurations, originally discussed in a stress-free setting. In this work, we therefore consider in particular numerical simulations along paths in strain space which are related to these T 3-configurations. Interestingly, we observe that the second-order lamination upper bound along such paths is related to the geometry of the T 3-configurations. In addition to the purely martensitic regime, we also consider

  3. Dynamic Heterogeneity In The Monoclinic Phase Of CCl$_4$

    CERN Document Server

    Caballero, Nirvana B; Carignano, Marcelo; Serra, Pablo

    2016-01-01

    Carbon tetrachloride (CCl$_4$) is one of the simplest compounds having a translationally stable monoclinic phase while exhibiting a rich rotational dynamics below 226 K. Recent nuclear quadrupolar resonance (NQR) experiments revealed that the dynamics of CCl$_4$ is similar to that of the other members of the isostructural series CBr$_{n}$Cl$_{4-n}$, suggesting that the universal relaxation features of canonical glasses such as $\\alpha$- and $\\beta$-relaxation are also present in non-glass formers. Using molecular dynamics (MD) simulations we studied the rotational dynamics in the monoclinic phase of CCl$_4$. The molecules undergo $C3$ type jump-like rotations around each one of the four C-Cl bonds. The rotational dynamics is very well described with a master equation using as the only input the rotational rates measured from the simulated trajectories. It is found that the heterogeneous dynamics emerges from faster and slower modes associated with different rotational axes, which have fixed orientations relat...

  4. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    Science.gov (United States)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for

  5. THE MONOCLINIC PHASE IN PZT: NEW LIGHT ON MORPHOTROPIC PHASE BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    NOHEDA,B.; GONZALO,J.A.; GUO,R.; PARK,S.E.; CROSS,L.E.; COX,D.E.; SHIRANE,G.

    2000-03-09

    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a result, an unexpected monoclinic phase has been found to exist in between the well-known tetragonal and rhombohedral PZT phases. A detailed structural analysis, together with the investigation of the field effect in this region of compositions, have led to an important advance in understanding the mechanisms responsible for the physical properties of PZT as well as other piezoelectric materials with similar morphotropic phase boundaries.

  6. Formation energies of intrinsic point defects in monoclinic VO2 studied by first-principles calculations

    Science.gov (United States)

    Cui, Yuanyuan; Liu, Bin; Chen, Lanli; Luo, Hongjie; Gao, Yanfeng

    2016-10-01

    VO2 is an attractive candidate for intelligent windows and thermal sensors. There are challenges for developing VO2-based devices, since the properties of monoclinic VO2 are very sensitive to its intrinsic point defects. In this work, the formation energies of the intrinsic point defects in monoclinic VO2 were studied through the first-principles calculations. Vacancies, interstitials, as well as antisites at various charge states were taken into consideration, and the finite-size supercell correction scheme was adopted as the charge correction scheme. Our calculation results show that the oxygen interstitial and oxygen vacancy are the most abundant intrinsic defects in the oxygen rich and oxygen deficient condition, respectively, indicating a consistency with the experimental results. The calculation results suggest that the oxygen interstitial or oxygen vacancy is correlated with the charge localization, which can introduce holes or electrons as free carriers and subsequently narrow the band gap of monoclinic VO2. These calculations and interpretations concerning the intrinsic point defects would be helpful for developing VO2-based devices through defect modifications.

  7. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO 2 Nanowires

    KAUST Repository

    Asayesh-Ardakani, Hasti

    2015-10-12

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WVO nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  8. Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam

    Science.gov (United States)

    Li, Zejun; Wu, Jiajing; Hu, Zhenpeng; Lin, Yue; Chen, Qi; Guo, Yuqiao; Liu, Yuhua; Zhao, Yingcheng; Peng, Jing; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-06-01

    In correlated systems, intermediate states usually appear transiently across phase transitions even at the femtosecond scale. It therefore remains an open question how to determine these intermediate states--a critical issue for understanding the origin of their correlated behaviour. Here we report a surface coordination route to successfully stabilize and directly image an intermediate state in the metal-insulator transition of vanadium dioxide. As a prototype metal-insulator transition material, we capture an unusual metal-like monoclinic phase at room temperature that has long been predicted. Coordinate bonding of L-ascorbic acid molecules with vanadium dioxide nanobeams induces charge-carrier density reorganization and stabilizes metallic monoclinic vanadium dioxide, unravelling orbital-selective Mott correlation for gap opening of the vanadium dioxide metal-insulator transition. Our study contributes to completing phase-evolution pathways in the metal-insulator transition process, and we anticipate that coordination chemistry may be a powerful tool for engineering properties of low-dimensional correlated solids.

  9. The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent?

    CERN Document Server

    Kisi, E H; Forrester, J S; Howard, C J

    2003-01-01

    Lead zinc niobate-lead titanate (PZN-PT) single crystals show very large piezoelectric strains for electric fields applied along the unit cell edges e.g. [001] sub R. It has been widely reported that this effect is caused by an electric field induced phase transition from rhombohedral (R3m) to monoclinic (Cm or Pm) symmetry in an essentially continuous manner. Group theoretical analysis using the computer program ISOTROPY indicates phase transitions between R3m and Cm (or Pm) must be discontinuous under Landau theory. An analysis of the symmetry of a strained unit cell in R3m and a simple expansion of the piezoelectric strain equation indicate that the piezoelectric distortion due to an electric field along a cell edge in rhombohedral perovskite-based ferroelectrics is intrinsically monoclinic (Cm), even for infinitesimal electric fields. PZN-PT crystals have up to nine times the elastic compliance of other piezoelectric perovskites and it might be expected that the piezoelectric strains are also very large. ...

  10. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3

    NARCIS (Netherlands)

    Noheda, B.; Cox, D.E.; Shirane, G.; Guo, R.; Jones, B.; Cross, L.E.

    2000-01-01

    Recent structural studies of ferroelectric PbZr1-xTixO3 (PZT) with x=0.48, have revealed a monoclinic phase in the vicinity of the morphotropic phase boundary (MPB), previously regarded as the boundary separating the rhombohedral and tetragonal regions of the PZT phase diagram. In the present paper,

  11. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    Science.gov (United States)

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10(6) cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUTZT (936.4 ± 120.9(b) ) and AUT + MZE (867.2 ± 49.3(b) ) groups presented significantly higher values (p autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  12. Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties.

    Science.gov (United States)

    Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2006-02-16

    Bismuth vanadate (BiVO(4)) nanosheets have been hydrothermally synthesized in the presence of sodium dodecyl benzene sulfonate (SDBS) as a morphology-directing template. The nanosheets were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) equipped with an X-ray energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), IR spectroscopy, transmission electron microscopy (TEM), and high-resolution TEM (HR-TEM). The BiVO(4) nanosheets had a monoclinic structure, were ca. 10-40 nm thick, and showed a preferred (010) surface orientation. The formation mechanism and the effects of reaction temperature and time on the products were investigated. UV-visible diffuse reflection spectra indicated that the BiVO(4) nanosheets had outstanding spectral selectivity and improved color properties compared with the corresponding bulk materials. Furthermore, the nanosheets showed good visible photocatalytic activities as determined by degradation of N,N,N',N'-tetraethylated rhodamine (RB) under solar irradiation.

  13. KINETIC STUDY OF SELECTIVE GAS-PHASE OXIDATION OF ISOPROPANOL TO ACETONE USING MONOCLINIC ZRO2 AS A CATALYST

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2015-08-01

    Full Text Available Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68% and selectivity (100% for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.

  14. Identification of monoclinic θ-phase dispersoids in a 6061 aluminium alloy

    Science.gov (United States)

    Buchanan, Karl; Ribis, Joël; Garnier, Jérôme; Colas, Kimberly

    2016-04-01

    Intermetallic dispersoids play an important role in controlling the 6xxx alloy series' grain distribution and increasing the alloy's toughness. The dispersoid distribution in a 6061 aluminium alloy (Al-Mg-Si) was analysed by transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The dispersoids had three unique crystal structures: simple cubic ?, body-centred cubic ? and monoclinic (C2/m). While the SC and BCC dispersoids have been well characterized in the literature, a detailed analysis of monoclinic dispersoids has not been presented. Therefore, the current work discusses the chemical composition, crystal structure and morphology of the monoclinic dispersoids.

  15. Stress-induced VO{sub 2} films with M2 monoclinic phase stable at room temperature grown by inductively coupled plasma-assisted reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio; Watanabe, Tomo [School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Sakai, Joe [GREMAN, UMR 7347 CNRS, Universite Francois Rabelais de Tours, Parc de Grandmont 37200 Tours (France)

    2012-04-01

    We report on growth of VO{sub 2} films with M2 monoclinic phase stable at room temperature under atmospheric pressure. The films were grown on quartz glass and Si substrates by using an inductively coupled plasma-assisted reactive sputtering method. XRD-sin{sup 2}{Psi} measurements revealed that the films with M2 phase are under compressive stress in contrast to tensile stress of films with M1 phase. Scanning electron microscopy observations revealed characteristic crystal grain aspects with formation of periodical twin structure of M2 phase. Structural phase transition from M2 to tetragonal phases, accompanied by a resistance change, was confirmed to occur as the temperature rises. Growth of VO{sub 2} films composed of M2 phase crystalline is of strong interest for clarifying nature of Mott transition of strongly correlated materials.

  16. Influence of downsizing of zeolite crystals on the orthorhombic ↔ monoclinic phase transition in pure silica MFI-type

    Science.gov (United States)

    Kabalan, Ihab; Michelin, Laure; Rigolet, Séverinne; Marichal, Claire; Daou, T. Jean; Lebeau, Bénédicte; Paillaud, Jean-Louis

    2016-08-01

    The impact of crystal size on the transition orthorhombic ↔ monoclinic phase in MFI-type purely silica zeolites is investigated between 293 and 473 K using 29Si MAS NMR and powder X-ray diffraction. Three silicalite-1 zeolites are synthesized: a material constituted of micron-sized crystals, pseudospherical nanometer-sized crystals and hierarchical porous zeolites with a mesoporous network created by the use of a gemini-type diquaternary ammonium surfactant giving nanosheet zeolites. Our results show for the first time that the orthorhombic ↔ monoclinic phase transition already known for micron-sized particles also occurs in nanometer-sized zeolite crystals whereas our data suggest that the extreme downsizing of the zeolite crystal to one unit cell in thickness leads to an extinction of the phase transition.

  17. Crystalline and magnetic ordering in the monoclinic phase of the layered perovskite PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Achiwa, N.

    1994-01-01

    of 1/3b*, and below 39 K PAMC is an antiferromagnet with a small ferromagnetic component. The temperature dependence of the monoclinic angle alpha depends on the mosaicity of the crystal which increases with the number of 'cooling cycles'. The satellite reflections do not have any contribution from...... the magnetic ordering, but their intensity has abrupt changes that coincide with changes in either the nuclear or the magnetic ordering parameter. Magnetoelastic effects seem to influence the ordering of the crystal....

  18. High pressure monoclinic phases of Sb{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.M.; Poffo, C.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Polian, A.; Gauthier, M. [Physique des Milieux Denses, IMPMC, CNRS-UMR 7590, Universite Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2012-09-15

    The effect of pressure on nanostructured rhombohedral {alpha}-Sb{sub 2}Te{sub 3} (phase I) was investigated using X-ray diffraction (XRD) and Raman spectroscopy (RS) up to 19.2 and 25.5 GPa, respectively. XRD patterns showed two new high pressure phases (named phases II and III). From a Rietveld refinement of XRD patterns of {alpha}-Sb{sub 2}Te{sub 3}, the unit cell volume as a function of pressure was obtained and the values were fitted to a Birch-Murnaghan equation of state (BM-EOS). The best fit was obtained for bulk modulus B{sub 0}=36.1{+-}0.9 GPa and its derivative B{sub 0}{sup Prime }=6.2{+-}0.4 (not fixed). Using the refined structural data for {alpha}-Sb{sub 2}Te{sub 3}, for pressures up to 9.8 GPa, changes in the angle of succession [Te-Sb-Te-Sb-Te], in the interaromic distances of Sb and Te atoms belonging to this angle of succession and in the interatomic distances of atoms located on the c axis were examined. This analysis revealed an electronic topological transition (ETT) along the a and c axes at close to 3.7 GPa. From the RS spectra, the full widths at half maximum (FWHM) of the Raman active modes of {alpha}-Sb{sub 2}Te{sub 3} were plotted as functions of pressure and showed an ETT along the a and c axes at close to 3.2 GPa. The XRD patterns of phases II and III were well reproduced assuming {beta}-Bi{sub 2}Te{sub 3} and {gamma}-Bi{sub 2}Te{sub 3} structures similar to those reported in the literature for {alpha}-Bi{sub 2}Te{sub 3}.

  19. Growth of orthorhombic and tetragonal modifications of TlInS{sub 2} from its monoclinic phase

    Energy Technology Data Exchange (ETDEWEB)

    Alekperov, O.Z.; Ibragimov, G.B.; Axundov, I.A.; Nadjafov, A.I.; Fakix, A.R. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2009-05-15

    Orthorhombic (O) and tetragonal (T) modifications of TlInS{sub 2} were grown by sulfur vapor annealing of monoclinic (M) crystals. Lattice parameters and syngony of the grown crystals were determined from X-ray investigations (Laue, Weissenberg, rocking crystal and powder diffractions). The lattice parameters a =6.88 A, b=14.04 A, c=4.02 A, Z=4 and a=b=7.76 A, c=26.6 A, Z=20 as well as space groups (SG), P2{sub 1}2{sub 1}2{sub 1} and P4{sub 1}2{sub 1}2 were ascribed to O and T modifications, correspondingly. The transition of M-crystals to O- or T-phase takes place through the intermediate disordered state of M-phase in which the unit packets with c{approx}15 A are randomly positioned along the c-axis. From photoconductivity (PC) edge it was found that the band gap of O-TlInS{sub 2} (E{sub g}=2.52{+-}0.01 eV) is slightly higher whereas that of T-TlInS{sub 2} (E{sub g}=1.87{+-}0.01 eV) is noticeably lower than the band gap of M-TlInS{sub 2}. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution

    Science.gov (United States)

    Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-05-01

    The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.

  1. Strong Bilayer Coupling Induced by the Symmetry Breaking in the Monoclinic Phase of BiS2-Based Superconductors

    Science.gov (United States)

    Ochi, Masayuki; Akashi, Ryosuke; Kuroki, Kazuhiko

    2016-09-01

    We perform first-principles band structure calculations for the tetragonal and monoclinic structures of LaO0.5F0.5BiS2. We find that the Bi 6px,y bands on two BiS2 layers exhibit a sizable splitting at the X = (π ,0,0) and several other k-points for the monoclinic structure. We show that this feature originates from the inter-BiS2 layer coupling strongly enhanced by the symmetry breaking of the crystal structure. The Fermi surface also shows a large splitting and becomes anisotropic with respect to the kx- and ky-directions in the monoclinic structure, whereas it remains almost flat with respect to the kz-direction.

  2. Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study.

    Science.gov (United States)

    Cerón, María Luisa; Herrera, Barbara; Araya, Paulo; Gracia, Francisco; Toro-Labbé, Alejandro

    2013-07-01

    We present a theoretical study of the water gas shift reaction taking place on zirconia surfaces modeled by monoclinic and tetragonal clusters. In order to understand the charge transfer between the active species, in this work we analyze the influence of the geometry of monoclinic and tetragonal zirconia using reactivity descriptors such as electronic chemical potential (μ), charge transfer (ΔN) and molecular hardness (η). We have found that the most preferred surface is tetragonal zirconia (tZrO2) indicating also that low charge transfer systems will generate less stable intermediates, that will allow to facilitate desorption process.

  3. A novel monoclinic phase of impurity-doped CaGa2S4 as a phosphor with high emission intensity

    Directory of Open Access Journals (Sweden)

    Akihiro Suzuki

    2012-06-01

    Full Text Available In the solid-state synthesis of impurity-doped CaGa2S4, calcium tetrathiodigallate(III, a novel phosphor material (denominated as the X-phase, with monoclinic symmetry in the space group P21/a, has been discovered. Its emission intensity is higher than that of the known orthorhombic polymorph of CaGa2S4 crystallizing in the space group Fddd. The asymmetric unit of the monoclinic phase consists of two Ca, four Ga and eight S sites. Each of the Ca and Ga atoms is surrounded by seven and four sulfide ions, respectively, thereby sharing each of the sulfur sites with the nearest neighbours. In contrast, the corresponding sites in the orthorhombic phase are surrounded by eight and four S atoms, respectively. The photoluminescence peaks from Mn2+ and Ce3+ in the doped X-phase, both of which are supposed to replace Ca2+ ions, have been observed to shift towards the high energy side in comparison with those in the orthorhombic phase. This suggests that the crystal field around the Mn2+ and Ce3+ ions in the X-phase is weaker than that in the orthorhombic phase.

  4. Analysis of tetragonal to monoclinic phase transformation caused by accelerated artificial aging and the effects of microstructure in stabilized zirconia

    Science.gov (United States)

    Lucas, Thomas J.

    This investigation addresses the issue that yttria stabilized zirconia is being used as a dental biomaterial without substantial evidence of its long-term viability. Furthermore, stabilized zirconia (SZ) undergoes low temperature degradation (LTD), which can lead to roughening of the surface. A rougher exterior can lead to increased wear of the antagonist in the oral environment. Despite the LTD concerns, SZ is now widely used in restorative dentistry, including full contour crowns. A comparison of aging methods to determine the role of artificial aging on inducing the transformation has not been extensively studied. Therefore, simulations of the transformation process were investigated by comparing different methods of accelerated aging. The rejected null hypothesis is that the temperature of aging treatment will not affect the time required to cause measurable monoclinic transformation of yttria stabilized zirconia. The transformation of SZ starts at the surface and progresses inward; however, it is unclear whether the progression is constant for different aging conditions. This investigation analyzed the depth of transformation as a function of aging conditions for stabilized zirconia in the top 5-6 mum from the surface. The rejected null hypothesis is that the transformation amount is constant throughout the first six micrometers from the surface. The effects of grain size on the amount of monoclinic transformation were also investigated. This study aimed to determine if the grain size of partially stabilized zirconia affects the amount of monoclinic transformation, surface roughness, and property degradation due to aging. The rejected null hypothesis is that the grain size will not affect the amount of monoclinic transformation, thus have no effect on surface roughening or property degradation. The final part of this study addresses the wear of enamel when opposing zirconia by observing how grain size and aging affected the wear rate of an enamel antagonist

  5. Comment on ``Monoclinic phase of PbZr0.52Ti0.48O3 ceramics: Raman and phenomenological thermodynamic studies''

    Science.gov (United States)

    Frantti, J.; Lappalainen, J.; Lantto, V.; Nishio, S.; Kakihana, M.

    2001-05-01

    Recently, Souza Filho et al. [A. G. Souza Filho, K. C. V. Lima, A. P. Ayala, I. Guedes, P. T. C. Freire, J. Mendes Filho, E. B. Araujo, and J. A. Eiras, Phys. Rev. B 61, 14 283 (2000)] reported a phase transition between monoclinic and tetragonal phases as a function of temperature in a PbZr0.52Ti0.48O3 ceramic sample, observed by Raman spectroscopy. We show that their observation has no relation to the phase transition and the anomaly they interpreted as an indication of a phase transition was due to the erroneous curve fit procedure, which predicts a clearly observable phase transition for all tetragonal lead-zirconate-titanate ceramics, including lead titanate. A more appropriate way to study this phase transition phenomena by Raman spectroscopy is discussed.

  6. Control of Y₂O₃ phase and its nanostructure formation through a very high energy mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K., E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of); Park, E.K.; Park, J.J.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-05-01

    The formation behavior of Y₂O₃ ceramic particles was studied by employing a very high energy ball milling (milling energy: ~165 kJ/g·hit, milling speed: 1000 rpm). Both the XRD and HRTEM studies revealed that the high impact strain energy generated during the milling caused a drastic phase transition from the original C-type cubic (space group Ia3, a=10.58 Å) to the metastable B-type monoclinic (space group C2/m, a=13.89 Å), finally followed by a partial solid-state amorphization. The cubic phase was difficult to be reduced down to smaller than 10 nm, while the monoclinic phase was stabilized at sizes smaller than 10 nm with a mean crystallite size of 7.57 nm. Consequently, the existence of Y₂O₃ at a nanoscale smaller than 10 nm is possible by forming metastable monoclinic crystals, which are strain-induced. - Graphical abstract: The fig shows the solid-state phase formation of Y₂O₃ by very high energy input into the particles during milling: ordered body-centered cubic phase (space group Ia3, a=10.58 Å) nanocrystalline monoclinic phase (space group C2/m, a=13.89 Å) disordered monoclinic phase partial amorphous phase. The formation of Y₂O₃ smaller than 10 nm was strongly dependent on whether the phase transition from cubic to monoclinic occurred. Highlights: • This paper analyses very high energy milling behavior of coarse Y₂O₃ particles. • A drastic phase transition from cubic to monoclinic occurred with a partial amorphization. • An existence of Y₂O₃ smaller than 10 nm is possible by forming strain-induced monoclinic crystals.

  7. Orientation relationships between icosahedral clusters in hexagonal MgZn2 and monoclinic Mg4Zn7 phases in Mg-Zn(-Y) alloys

    Science.gov (United States)

    Rosalie, Julian M.; Somekawa, Hidetoshi; Singh, Alok; Mukai, Toshiji

    2011-07-01

    Intermetallic precipitates formed in heat-treated and aged Mg-Zn and Mg-Zn-Y alloys have been investigated via electron microscopy. Coarse spheroidal precipitates formed on deformation twin boundaries contained domains belonging to either the MgZn2 hexagonal Laves phase or the monoclinic Mg4Zn7 phase. Both phases are structurally related to the quasi-crystalline phase formed in Mg-Zn-Y alloys, containing icosahedrally coordinated zinc atoms arranged as a series of broad rhombohedral units. This rhombohedral arrangement was also visible in intragranular precipitates where local regions with the structures of hexagonal MgZn2 and Mg4Zn7 were found. The orientation adopted by the MgZn2 and Mg4Zn7 phases in twin-boundary and intragranular precipitates was such that the icosahedral clusters were aligned similarly. These results highlight the close structural similarities between the precipitates of the Mg-Zn-Y alloy system.

  8. Cubic-to-monoclinic phase transition during the epitaxial growth of crystalline Gd2O3 films on Ge(001) substrates

    Science.gov (United States)

    Molle, Alessandro; Wiemer, Claudia; Bhuiyan, Md. Nurul Kabir; Tallarida, Grazia; Fanciulli, Marco; Pavia, Giuseppe

    2007-05-01

    Thin crystalline films of Gd2O3 are grown on an atomically flat Ge(001) surface by molecular beam epitaxy and are characterized in situ by reflection high energy electron diffraction and x-ray photoelectron spectroscopy, and ex situ by x-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy. The first stage of the growth corresponds to a cubic (110) structure, with two equiprobable, 90° rotated, in-plane domains. Increasing the thickness of the films, a phase transition from cubic (110) to monoclinic (100) oriented crystallites is observed which keeps the in-plane domain rotation, as evidenced by XRD and AFM.

  9. Triclinic-monoclinic-orthorhombic (T-M-O) structural transitions in phase diagram of FeVO4-CrVO4 solid solutions

    Science.gov (United States)

    Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.

    2017-09-01

    Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions

  10. Orthorhombic-to-monoclinic phase transition of Ta2NiSe5 induced by the Bose-Einstein condensation of excitons

    Science.gov (United States)

    Kaneko, T.; Toriyama, T.; Konishi, T.; Ohta, Y.

    2013-01-01

    Using the band structure calculation and mean-field analysis of the derived three-chain Hubbard model with phonon degrees of freedom, we discuss the origin of the orthorhombic-to-monoclinic phase transition of the layered chalcogenide Ta2NiSe5. We show that the Bose-Einstein condensation of excitonic electron-hole pairs cooperatively induces the instability of the phonon mode at momentum q→0 in the quasi-one-dimensional Ta-NiSe-Ta chain, resulting in the structural phase transition of the system. The calculated single-particle spectra reproduce the deformation of the band structure observed in the angle-resolved photoemission spectroscopy experiment.

  11. Novel monoclinic zirconolite in Bi{sub 2}O{sub 3}–CuO–Ta{sub 2}O{sub 5} ternary system: Phase equilibria, structural and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Chon, M.P. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Mechanical and Material Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zainal, Z.; Taufiq Yap, Y.H.; Tan, P.Y. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-04-01

    Highlights: • Novel BCT monoclinic zirconolite phase was prepared through solid state reaction. • Comprehensive study of reaction mechanism was performed by careful firing control. • Qualitative structural and phase analyses were conducted. • Electrical response in broad range of temperature and frequency was investigated. - Abstract: Synthesis of novel monoclinic zirconolite, Bi{sub 1.92}Cu{sub 0.08}(Cu{sub 0.3}Ta{sub 0.7}){sub 2}O{sub 7.06} (β-BCT) using solid state reaction had been finalised at the firing temperature of 900 °C over 24 h. The X–ray diffraction pattern of β-BCT was fully indexed on a monoclinic symmetry, space group, C2/c with lattice constants, a = 13.1052 (8), b = 7.6749 (5), c = 12.162 (6), α = γ = 90° and β = 101.32° (1), respectively. The reaction mechanism study indicated phase formation was greatly influenced by the reaction between intermediate bismuth tantalate binary phases and CuO at elevated temperatures. β-BCT was thermally stable up to a temperature of 900 °C and contained spherulite grains with sizes ranging from 1 to 14 μm. Electrical properties of this material were characterised over a broad temperature range covering temperatures from 10 K to 874 K. At the temperature of 304 K, two semicircles were discernible in complex Cole–Cole plot showing an insulating grain boundary with C{sub gb} = 6.63 × 10{sup −9} F cm{sup −1} and a bulk response capacitance, C{sub b} = 6.74 × 10{sup −12} F cm{sup −1}. The Power law frequency-dependent ac conductivity of β-BCT was apparent in three frequency regimes; a low–frequency plateau regime, a high-frequency plateau regime and a dispersive regime taking place in the temperature range of 220–576 K. The frequency-dependent ac conductivity of β-BCT with increasing temperature was attributed to the thermal activated electrical conduction mechanism within the structure.

  12. Solvent effect in monoclinic to hexagonal phase transformation in LaPO{sub 4}:RE (RE=Dy{sup 3+}, Sm{sup 3+}) nanoparticles: Photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Phaomei, Ganngam [Department of Chemistry, Manipur University, Manipur 795003 (India); Rameshwor Singh, W., E-mail: dr.rmsingh@yahoo.co.i [Department of Chemistry, Manipur University, Manipur 795003 (India); Ningthoujam, R.S., E-mail: rsn@barc.gov.i [Chemistry Division, Bhabha Atomic Research Center, Mumbai 400085 (India)

    2011-06-15

    Nanosized phosphor materials, LaPO{sub 4}:RE (RE=Dy{sup 3+}, Sm{sup 3+}) have been synthesized using water, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and mixed solvents at a relatively low temperature of 150 {sup o}C. X-ray diffraction (XRD) study reveals that as-prepared nanoparticles prepared in DMSO and EG are well crystalline and correspond to monoclinic phase. In the mixed water-DMSO or water-EG solvents, XRD patterns are in good agreement with hexagonal phase, but transformed to monoclinic phase at higher temperature of 900 {sup o}C. TEM images show well-dispersed and rice-shaped nanoparticles of diameter 5-10 nm, length of 13-37 nm for Dy{sup 3+}-doped LaPO{sub 4} and diameter of 25-35 nm, length of 73-82 nm for Sm{sup 3+}-doped LaPO{sub 4}. Dy{sup 3+}-doped LaPO{sub 4} shows two prominent emission peaks at 480 and 572 nm corresponding to {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 13/2} (electric dipole) transitions, respectively. Similarly, for Sm{sup 3+}-doped LaPO{sub 4}, three prominent emission peaks at 561, 597 and 641 nm were observed corresponding to {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} (magnetic dipole) and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} (electric dipole) transitions, respectively. The luminescence intensity of the sample prepared in EG is more than that of DMSO or mixed solvents. Enhancement of luminescence is also observed after heat-treatment at 900 {sup o}C due to removal of quencher such as water, organic moiety and surface defects/dangling bonds. The samples are re-dispersible in polar solvent and can be incorporated in polymer film. - Research highlights: Nanomaterials. Optical properties. Luminescence materials.

  13. Monoclinic zirconia distributions in plasma-sprayed thermal barrier coatings

    Science.gov (United States)

    Lance, M. J.; Haynes, J. A.; Ferber, M. K.; Cannon, W. R.

    2000-03-01

    Phase composition in an air plasma-sprayed Y2O3-stabilized ZrO2 (YSZ) top coating of a thermal barrier coating (TBC) system was characterized. Both the bulk phase content and localized pockets of monoclinic zirconia were measured with Raman spectroscopy. The starting powder consisted of ˜15 vol.% monoclinic zirconia, which decreased to ˜2 vol.% in the as-sprayed coating. Monoclinic zirconia was concentrated in porous pockets that were evenly distributed throughout the TBC. The pockets resulted from the presence of unmelted granules in the starting powder. The potential effect of the distributed monoclinic pockets on TBC performance is discussed.

  14. Monoclinic-to-orthorhombic phase transition of the hexamethylenetetramine-2-methylbenzoic acid (1/2) cocrystal with temperature-dependent dynamic molecular disorder.

    Science.gov (United States)

    Chia, Tze Shyang; Quah, Ching Kheng

    2016-12-01

    As a function of temperature, the hexamethylenetetramine-2-methylbenzoic acid (1/2) cocrystal, C6H12N4·2C8H8O2, undergoes a reversible structural phase transition. The orthorhombic high-temperature phase in the space group Pccn has been studied in the temperature range between 165 and 300 K. At 164 K, a t2 phase transition to the monoclinic subgroup P21/c space group occurs; the resulting twinned low-temperature phase was investigated in the temperature range between 164 and 100 K. The domains in the pseudomerohedral twin are related by a twofold rotation corresponding to the matrix (100/0-10/00-1. Systematic absence violations represent a sensitive criterium for the decision about the correct space-group assignment at each temperature. The fractional volume contributions of the minor twin domain in the low-temperature phase increases in the order 0.259 (2) → 0.318 (2) → 0.336 (2) → 0.341 (3) as the temperature increases in the order 150 → 160 → 163 → 164 K. The transformation occurs between the nonpolar point group mmm and the nonpolar point group 2/m, and corresponds to a ferroelastic transition or to a t2 structural phase transition. The asymmetric unit of the low-temperature phase consists of two hexamethylenetetramine molecules and four molecules of 2-methylbenzoic acid; it is smaller by a factor of 2 in the high-temperature phase and contains two half molecules of hexamethylenetetramine, which sit across twofold axes, and two molecules of the organic acid. In both phases, the hexamethylenetetramine residue and two benzoic acid molecules form a three-molecule aggregate; the low-temperature phase contains two of these aggregates in general positions, whereas they are situated on a crystallographic twofold axis in the high-temperature phase. In both phases, one of these three-molecule aggregates is disordered. For this disordered unit, the ratio between the major and minor conformer increases upon cooling from

  15. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  16. Proton ordering in tetragonal and monoclinic H2O ice

    CERN Document Server

    Yen, Fei; Berlie, Adam; Liu, Xiaodi; Goncharov, Alexander F

    2015-01-01

    H2O ice remains one of the most enigmatic materials as its phase diagram reveals up to sixteen solid phases. While the crystal structure of these phases has been determined, the phase boundaries and mechanisms of formation of the proton-ordered phases remain unclear. From high precision measurements of the complex dielectric constant, we probe directly the degree of ordering of the protons in H2O tetragonal ice III and monoclinic ice V down to 80 K. A broadened first-order phase transition is found to occur near 202 K we attribute to a quenched disorder of the protons which causes a continuous disordering of the protons during cooling and metastable behavior. At 126 K the protons in ice III become fully ordered, and for the case of ice V becoming fully ordered at 113 K forming ice XIII. Two triple points are proposed to exist: one at 0.35 GPa and 126 K where ices III, IX and V coexist; and another at 0.35 GPa and 113 K where ices V, IX and XIII coexist. Our findings unravel the underlying mechanism driving th...

  17. Gas-Phase Infrared; JCAMP Format

    Science.gov (United States)

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  18. Dielectric frame, Sellmeier equations, and phase-matching properties of the monoclinic acentric crystal GdCasub>4sub>O(BOsub>3sub>)sub>3sub>.

    Science.gov (United States)

    Guo, Feng; Segonds, Patricia; Ménaert, Bertrand; Debray, Jerôme; Aka, Gerard; Loiseau, Pascal; Boulanger, Benoît

    2016-11-15

    We directly measured the phase-matching properties of the biaxial GdCasub>4sub>O(BOsub>3sub>)sub>3sub> (GdCOB) crystal using the sphere method. We studied second-harmonic generation and difference frequency generation in two principal planes of the crystal. All these data allowed us to refine the Sellmeier equations of the three principal refractive indices. These equations are valid over the entire transparency range of GdCOB and then could be used to calculate the tuning curves of infrared optical parametric generation.

  19. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  20. Phase Formation Behavior in Ultrathin Iron Oxide.

    Science.gov (United States)

    Jõgi, Indrek; Jacobsson, T Jesper; Fondell, Mattis; Wätjen, Timo; Carlsson, Jan-Otto; Boman, Mats; Edvinsson, Tomas

    2015-11-17

    Nanostructured iron oxides, and especially hematite, are interesting for a wide range of applications ranging from gas sensors to renewable solar hydrogen production. A promising method for deposition of low-dimensional films is atomic layer deposition (ALD). Although a potent technique, ALD of ultrathin films is critically sensitive to the substrate and temperature conditions where initial formation of islands and crystallites influences the properties of the films. In this work, deposition at the border of the ALD window forming a hybrid ALD/pulsed CVD (pCVD) deposition is utilized to obtain a deposition less sensitive to the substrate. A thorough analysis of iron oxide phases formation on two different substrates, Si(100) and SiO2, was performed. Films between 3 and 50 nm were deposited and analyzed with diffraction techniques, high-resolution Raman spectroscopy, and optical spectroscopy. Below 10 nm nominal film thickness, island formation and phase dependent particle crystallization impose constraints for deposition of phase pure iron oxides on non-lattice-matching substrates. Films between 10 and 20 nm thickness on SiO2 could effectively be recrystallized into hematite whereas for the corresponding films on Si(100), no recrystallization occurred. For films thicker than 20 nm, phase pure hematite can be formed directly with ALD/pCVD with very low influence of the substrate on either Si or SiO2. For more lattice matched substrates such as SnO2:F, Raman spectroscopy indicated formation of the hematite phase already for films with 3 nm nominal thickness and clearly for 6 nm films. Analysis of the optical properties corroborated the analysis and showed a quantum confined blue-shift of the absorption edge for the thinnest films.

  1. Semiclassical TEM image formation in phase space

    Energy Technology Data Exchange (ETDEWEB)

    Lubk, Axel; Röder, Falk

    2015-04-15

    Current developments in TEM such as high-resolution imaging at low acceleration voltages and large fields of view, the ever larger capabilities of hardware aberration correction and the systematic shaping of electron beams require accurate descriptions of TEM imaging in terms of wave optics. Since full quantum mechanic solutions have not yet been established for, e.g., the theory of aberrations, we are exploring semiclassical image formation in the TEM from the perspective of quantum mechanical phase space, here. Firstly, we use two well-known semiclassical approximations, Miller's semiclassical algebra and the frozen Gaussian method, for describing the wave optical generalization of arbitrary geometric aberrations, including nonisoplanatic and slope aberrations. Secondly, we demonstrate that the Wigner function representation of phase space is well suited to also describe incoherent aberrations as well as the ramifications of partial coherence due to the emission process at the electron source. We identify a close relationship between classical phase space and Wigner function distortions due to aberrations as well as classical brightness and quantum mechanical purity. - Highlights: • We discuss several semiclassical approximations to describe image formation in the TEM. • We provide laws how aberrations modify quantum mechanical phase space. • We exhibit the close relation between quantum mechanical purity and axial brightness.

  2. Solid State Synthesis and Properties of Monoclinic Celsian

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Monoclinic celsian of Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS-1) and B(0.85)Sr(O.15)Al2Si2O8 (BSAS-2) compositions have been synthesized from metal carbonates and oxides by solid state reaction. A mixture of BaCO3, SrCO3, Al2O3, and SiO2 powders was precalcined at approx. 900-940 C to decompose the carbonates followed by hot pressing at approx. 1300 C. The hot pressed BSAS-1 material was almost fully dense and contained the monoclinic celsian phase, with complete absence of the undesirable hexacelsian as indicated by x-ray diffraction. In contrast, a small fraction of hexacelsian was still present in hot pressed BSAS-2. However, on further heat treatment at 1200 C for 24 h, the hexacelsian phase was completely eliminated. The average linear thermal expansion coefficients of BSAS-1 and BSAS-2 compositions, having the monoclinic celsian phase, were measured to be 5.28 x 10(exp -6)/deg C and 5.15 x 10(exp -6)/deg C, respectively from room temperature to 1200 C. The hot pressed BSAS-1 celsian showed room temperature flexural strength of 131 MPa, elastic modulus of 96 GPa and was stable in air up to temperatures as high as approx. 1500 C.

  3. Semiclassical TEM image formation in phase space.

    Science.gov (United States)

    Lubk, Axel; Röder, Falk

    2015-04-01

    Current developments in TEM such as high-resolution imaging at low acceleration voltages and large fields of view, the ever larger capabilities of hardware aberration correction and the systematic shaping of electron beams require accurate descriptions of TEM imaging in terms of wave optics. Since full quantum mechanic solutions have not yet been established for, e.g., the theory of aberrations, we are exploring semiclassical image formation in the TEM from the perspective of quantum mechanical phase space, here. Firstly, we use two well-known semiclassical approximations, Miller's semiclassical algebra and the frozen Gaussian method, for describing the wave optical generalization of arbitrary geometric aberrations, including nonisoplanatic and slope aberrations. Secondly, we demonstrate that the Wigner function representation of phase space is well suited to also describe incoherent aberrations as well as the ramifications of partial coherence due to the emission process at the electron source. We identify a close relationship between classical phase space and Wigner function distortions due to aberrations as well as classical brightness and quantum mechanical purity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis of monoclinic zinc diphosphide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mowles, T.A.

    1978-05-01

    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  5. Monoclinic high-pressure polymorph of AlOOH predicted from first principles

    Science.gov (United States)

    Zhong, Xin; Hermann, Andreas; Wang, Yanchao; Ma, Yanming

    2016-12-01

    Aluminum oxide hydroxide, AlOOH, is a prototypical hydrous mineral in the geonomy. The study of the high-pressure phase evolution of AlOOH is of fundamental importance in helping to understand the role of hydrous minerals in the water storage and transport in Earth, as in other planets. Here, we have systematically investigated the high-pressure phase diagram of AlOOH up to 550 GPa using the efficient crystal structure analysis by particle swarm optimization (CALYPSO) algorithm in conjunction with first principles calculations. We predict a peculiar monoclinic phase (space group P 21/c , 16 atoms/cell, Z =4 ) as the most stable phase for AlOOH above 340 GPa. The occurrence of this new phase results in the breakup of symmetric linear O-H-O hydrogen bonds into asymmetric, bent O-H-O linkages and in sevenfold coordinated metal cations. The new P 21/c phase turns out to be a universal high-pressure phase in group 13 oxide hydroxides, and stable for both compressed GaOOH and InOOH. The formation of the new phase in all compounds is favored by volume reduction due to denser packing.

  6. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The results of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.

  7. Strain phase separation: Formation of ferroelastic domain structures

    Science.gov (United States)

    Xue, Fei; Li, Yongjun; Gu, Yijia; Zhang, Jinxing; Chen, Long-Qing

    2016-12-01

    Phase decomposition is a well-known process leading to the formation of two-phase mixtures. Here we show that a strain imposed on a ferroelastic crystal promotes the formation of mixed phases and domains, i.e., strain phase separation with local strains determined by a common tangent construction on the free energy versus strain curves. It is demonstrated that a domain structure can be understood using the concepts of domain/phase rule, lever rule, and coherent and incoherent strain phase separation, in a complete analogy to phase decomposition. The proposed strain phase separation model is validated using phase-field simulations and experimental observations of PbTi O3 and BiFe O3 thin films as examples. The proposed model provides a simple tool to guide and design domain structures of ferroelastic systems.

  8. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  9. 2,3-Dibromo-3-phenylpropanoic acid: a monoclinic polymorph

    Directory of Open Access Journals (Sweden)

    Trent R. Howard

    2016-11-01

    Full Text Available Bromination of trans-cinnamic acid resulted in the formation of 2,3-dibromo-3-phenylpropanoic acid, C9H8Br2O2. Crystallization from ethanol–water (1:1 gave crystals of different shapes. One is in the form of rods, that crystallized as the orthorhombic polymorph (Pnma, and whose structure has been described [Thong et al. (2008. Acta Cryst. E64, o1946]. The other are thin plate-like crystals which are the monoclinic polymorph (P21/n. The structure of this monoclinic polymorph is similar to that of the orthorhombic polymorph; here the aliphatic C atoms are disordered over three sets of sites (occupancy ratio 0.5:0.25:0.25. In the crystal, molecules are linked by pairs of O—H...O hydrogen bonds, forming inversion dimers with an R22(8 ring motif. The dimers are linked by weak C—H...Br hydrogen bonds, forming chains propagating along the a-axis direction.

  10. Analysis of phase formation in multi-component alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, R.; Hari Kumar, K.C. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India); Murty, B.S., E-mail: murty@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CALPHAD approach appears to predict BCC phase formation more accurately than FCC phase formation. Black-Right-Pointing-Pointer Solid solution is favored when the {Delta}S{sub config}/{Delta}S{sub fusion} > 1 for equiatomic alloys. Black-Right-Pointing-Pointer Solid solution is favored when the {Delta}S{sub config}/{Delta}S{sub fusion} > 1.2 for non-equiatomic alloys. Black-Right-Pointing-Pointer BCC phase is favored when atomic size difference is larger, as reflected by a higher value of {Delta}S{sub {sigma}}/k. Black-Right-Pointing-Pointer FCC and BCC phase formation appears to be governed mainly by {Delta}H{sub mix} and {Delta}S{sub {sigma}}/k, respectively. - Abstract: An attempt has been made to predict phase formation using a CALPHAD-based approach for a large number of compositions that are known to form FCC, BCC and a mixture of FCC and BCC phases. The stable phase is assumed to be the first phase that is formed upon cooling from liquid state with the highest driving force. The driving force for other phases at the transition for various compositions is also presented. A comparison between the parametric approach of phase prediction by study of thermodynamic and topological parameters on one hand and the CALPHAD approach on the other is also presented. CALPHAD approach appears to predict BCC phase formation much more accurately than the FCC phase formation. The results indicate that solid solution formation in multicomponent alloys is favored when the ratio of {Delta}S{sub config}/{Delta}S{sub fusion} is greater than 1 and 1.2 for equiatomic and non-equiatomic alloys, respectively. The results also point out that BCC phase is favored when the atomic size difference is larger, which is reflected by a higher value of {Delta}S{sub {sigma}}/k. Formation of FCC phase appears to be governed mainly by {Delta}H{sub mix}, while BCC phase governed by {Delta}S{sub {sigma}}/k, which is representative of strain in the structure.

  11. Phase behavior and structure formation of hairy-rod supramolecules

    NARCIS (Netherlands)

    Subbotin, A; Stepanyan, R; Knaapila, M; Ikkala, O; ten Brinke, G

    2003-01-01

    Phase behavior and microstructure formation of rod and coil molecules, which can associate to form hairy-rod polymeric supramolecules, are addressed theoretically. Association induces considerable compatibility enhancement between the rod and coil molecules and various microscopically ordered struct

  12. Co-phasing the planet formation imager

    Science.gov (United States)

    Petrov, Romain G.; Boskri, Abdelkarim; Elhalkouj, Thami; Monnier, John; Ireland, Michael; Kraus, Stefan

    2016-08-01

    The Planet Formation Imager (PFI) is a project for a very large optical interferometer intended to obtain images of the planet formation process at scales as small as the Hill sphere of giant exoplanets. Its main science instruments will work in the thermal infrared but it will be cophased in the near infrared, where it requires also some capacity for scientific imaging. PFI imaging and resolution specifications imply an array of 12 to 20 apertures and baselines up to a few kilometers cophased at near infrared coherent magnitudes as large as 10. This paper discusses various cophasing architectures and the corresponding minimum diameter of individual apertures, which is the dominant element of PFI cost estimates. From a global analysis of the possible combinations of pairwise fringe sensors, we show that conventional approaches used in current interferometers imply the use of prohibitively large telescopes and we indicate the innovative strategies that would allow building PFI with affordable apertures smaller than 2 m in diameter. The approach with the best potential appears to be Hierarchical Fringe Tracking based on "two beams spatial filters" that cophase pairs of neighboring telescopes with all the efficiency of a two telescopes fringe tracker and transmit most of the flux as if it was produced by an unique single mode aperture to cophase pairs of pairs and then pairs of groups of apertures. We consider also the adaptation to PFI of more conventional approaches such as a combination of GRAVITY like fringe trackers or single or multiple chains of 2T fringe trackers.

  13. Soliton formation in the FFLO phase

    Science.gov (United States)

    Croitoru, M. D.; Buzdin, A. I.

    2016-12-01

    There is increasing body of experimental evidences of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in quasi-low-dimensional organic and heavy-fermion superconductors. The emergence of the FFLO phase has been demonstrated mainly based on a thermodynamic quantity or microscopically with spin polarization distribution that exhibit anomalies within the superconducting state in the presence of the in-plane magnetic field. However, the direct observation of superconducting order parameter modulation is so far (still) missing. Within the quasiclassical approach and Ginzburg-Landau formalism we study how the orbital effect of the in-plane field influences the FFLO instability in quasi-one-dimensional superconductors with a sufficiently weak interlayer coupling locking the magnetic flux to Josephson-type vortices. By making use of the continuum limit approximation of the Frenkel-Kontorova model for competing periodicities, we find and characterize the locking behavior of the modulation wave vector, when it remains equal to the magnetic length through some range of values of the external field.

  14. Seismic Data Interpretation: A Case Study of Southern Sindh Monocline, Lower Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Shabeer Ahmed Abbasi

    2015-04-01

    Full Text Available The Sindh monocline in Lower Indus Basin is an important oil and gas producing area of Pakistan where a large number of oil, gas and condensate fields have been discovered from structural traps. This research involves the interpretation of stratigraphic and structural styles of Sindh Monocline using 2D (Two-Dimensional seismic reflection and well log. Four reflectors of different formations have been marked and were named as Reflector-1 as of Khadro Formation, Reflector-2 as Upper Goru Member, Reflector-3 as Lower Goru Formation and Reflector-4 as Chiltan Limestone. The average depth of Khadro Formation was marked at 449.0m, Upper Goru Member at 968m, Lower Goru Formation at 1938m and Chiltan Limestone at 2943m. Faults were marked on seismic sections which collectively form horsts and grabens which is the evidence of extensional tectonic in the area. Seismic interpretation was carried out through window based Kingdom Software

  15. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  16. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L.

    1997-10-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. It is important to understand the mechanism by which alteration phases affect glass corrosion behavior and the glass dissolution rate to reliably predict whether or not similar effects will occur in a disposal environment and the impact of phase formation on the long-term performance of waste glass. While solid state transformation of a glass to thermodynamically more stable phases in kinetically prohibitive, contact by water provides an energetically favorable pathway for this transformation to occur by a dissolution-reprecipitation mechanism. The kinetics of the transformation depends on the dissolution kinetics of the glass and the precipitation kinetics of the alteration phases. The rates of these two processes are linked primarily through the solution activity of orthosilicic acid (and perhaps also that of an aluminum-bearing species).

  17. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Trigo, Mariano [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reis, David A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Photon Science and Applied Physics, Stanford University, Stanford, California 94305 (United States); Andrea Artioli, Gianluca; Malavasi, Lorenzo [Dipartimento di Chimica, Sezione di Chimica Fisica, INSTM (UdR Pavia), Università di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  18. 2-(4-Fluorobenzylidenepropanedinitrile: monoclinic polymorph

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Agrody

    2013-04-01

    Full Text Available The title compound, C10H5FN2, is a monoclinic (P21/c polymorph of the previously reported triclinic (P-1 form [Antipin et al. (2003. J. Mol. Struct. 650, 1–20]. The 13 non-H atoms in the title polymorph are almost coplanar (r.m.s. deviation = 0.020 Å; a small twist between the fluorobenzene and dinitrile groups [C—C—C—C torsion angle = 175.49 (16°] is evident in the triclinic polymorph. In the crystal, C—H...N interactions lead to supramolecular layers parallel to (-101; these are connected by C—F...π interactions.

  19. Observation of spin glass behavior in monoclinic Li{sub 0.33}MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bie, Xiaofei; Wei, Yingjin; Liu, Lina [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Nikolowski, Kristian; Ehrenberg, Helmut [Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Chen, Hong [College of Physics, Beihua University, Jilin 132013 (China); Wang, Chunzhong; Chen, Gang [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Du, Fei, E-mail: dufei@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The structure of Li{sub 0.33}MnO{sub 2} has been refined with monoclinic phase (space group C2/m). Black-Right-Pointing-Pointer Spin glass has been confirmed by analyzing dc, ac, and time-dependence remanence. Black-Right-Pointing-Pointer Geometrical frustration combined random competition was suggested to be the main cause for spin glass formation. Black-Right-Pointing-Pointer In order to distinguish the spin glass from the superparamagnetism, ac susceptibility under different frequencies is studied. - Abstract: The structure and magnetic properties of Li{sub 0.33}MnO{sub 2} were studied by X-ray diffraction, dc and ac susceptibilities. Li{sub 0.33}MnO{sub 2} belongs to the monoclinic structure with two different Mn sites. The irreversibility and spin freezing behaviors are observed in the dc magnetization curves. The peaks of ac susceptibility display the dependences on the frequency. Both the magnetic relaxation effect and the corresponding analysis confirm a spin glass (SG) transition at low temperature. By evaluating the geometrical frustration parameter, we suggest the spin glass in Li{sub 0.33}MnO{sub 2} originate from the frustration effect combined with the competition among the Mn{sup 3+/4+}-O{sup 2-}-Mn{sup 3+/4+} exchange interaction.

  20. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shamah, A.M.; Ibrahim, S. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt); Hanna, F.F., E-mail: fariedhanna@yahoo.com [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2011-02-03

    Research highlights: > Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  1. Controlling nickel silicide phase formation by Si implantation damage

    Energy Technology Data Exchange (ETDEWEB)

    Guihard, M.; Turcotte-Tremblay, P. [Departement de Physique, Universite de Montreal, Montreal (Canada); Gaudet, S.; Coia, C. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Roorda, S. [Departement de Physique, Universite de Montreal, Montreal (Canada); Desjardins, P. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York (United States); Schiettekatte, F. [Departement de Physique, Universite de Montreal, Montreal (Canada)], E-mail: francois.schiettekatte@umontreal.ca

    2009-05-01

    In the context of fabrication process of contacts in CMOS integrated circuits, we studied the effect of implantation-induced damage on the Ni silicide phase formation sequence. The device layers of Silicon-on-insulator samples were implanted with 30 or 60 keV Si ions at several fluences up to amorphization. Next, 10 or 30 nm Ni layers were deposited. The monitoring of annealing treatments was achieved with time-resolved X-ray diffraction (XRD) technique. Rutherford Backscattering Spectrometry and pole figure XRD were also used to characterize some intermediate phase formations. We show the existence of an implantation threshold (1 ions/nm{sup 2}) from where the silicidation behaviour changes significantly, the formation temperature of the disilicide namely shifting abruptly from 800 to 450 deg. C. It is also found that the monosilicide formation onset temperature for the thinner Ni deposits increases linearly by about 30 deg. C with the amount of damage.

  2. Formative pluripotency: the executive phase in a developmental continuum.

    Science.gov (United States)

    Smith, Austin

    2017-02-01

    The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues.

  3. Multi-Phase Galaxy Formation and Quasar Absorption Systems

    OpenAIRE

    Maller, Ariyeh H.

    2005-01-01

    The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our...

  4. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Taoufyq, A. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Ezahri, M.; Benlhachemi, A.; Bakiz, B. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Villain, S.; Guinneton, F. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Gavarri, J.-R., E-mail: gavarri.jr@univ-tln.fr [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France)

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.

  5. Accretion disks before (?) the main planet formation phase

    NARCIS (Netherlands)

    Dominik, C.

    2009-01-01

    Protoplanetary disks are the sites of planet formation and therefore one of the foremost targets of future facilities in astronomy. In this review, I will discuss the main options for using JWST and concurrent facilities to study the early, gas-rich, massive phases of protoplanetary disks. We discus

  6. Sigma phase formation kinetics in stainless steel laminate composites

    Energy Technology Data Exchange (ETDEWEB)

    Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

    1994-12-31

    Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

  7. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.

    Science.gov (United States)

    Wang, Guocheng; Meng, Fanhao; Ding, Chuanxian; Chu, Paul K; Liu, Xuanyong

    2010-03-01

    A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti-6Al-4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30-50 nm in size. The bond strength between the coating and the Ti-6Al-4V substrate was 48.4 + or - 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements.

  8. Star formation and gas phase history of the cosmic web

    Science.gov (United States)

    Snedden, Ali; Coughlin, Jared; Phillips, Lara Arielle; Mathews, Grant; Suh, In-Saeng

    2016-01-01

    We present a new method of tracking and characterizing the environment in which galaxies and their associated circumgalactic medium evolve. We have developed a structure finding algorithm that uses the rate of change of the density gradient to self-consistently parse and follow the evolution of groups/clusters, filaments and voids in large-scale structure simulations. We use this to trace the complete evolution of the baryons in the gas phase and the star formation history within each structure in our simulated volume. We vary the structure measure threshold to probe the complex inner structure of star-forming regions in poor clusters, filaments and voids. We find that the majority of star formation occurs in cold, condensed gas in filaments at intermediate redshifts (z ˜ 3). We also show that much of the star formation above a redshift z = 3 occurs in low-contrast regions of filaments, but as the density contrast increases at lower redshift, star formation switches to the high-contrast regions, or inner parts, of filaments. Since filaments bridge the void and cluster regions, it suggests that the majority of star formation occurs in galaxies in intermediate density regions prior to the accretion on to groups/clusters. We find that both filaments and poor clusters are multiphase environments distinguishing themselves by different distributions of gas phases.

  9. Simulating the Phases of the Moon Shortly After Its Formation

    CERN Document Server

    Noordeh, Emil; Cuk, Matija

    2015-01-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars-sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its formation wherein the Moon develops a highly elliptical orbit with its major axis tangential to the Earth's orbit. This note describes these simulations and their pedagogical value.

  10. Phase formation during the carbothermic reduction of eudialyte concentrate

    Science.gov (United States)

    Krasikov, S. A.; Upolovnikova, A. G.; Sitnikova, O. A.; Ponomarenko, A. A.; Agafonov, S. N.; Zhidovinova, S. V.; Maiorov, D. V.

    2013-07-01

    The phase transformations of eudialyte concentrate during the carbothermic reduction in the temperature range 25-2000°C are studied by thermodynamic simulation, differential thermal analysis, and X-ray diffraction. As the temperature increases to 1500°C, the following phases are found to form sequentially: iron and manganese carbides, free iron, niobium carbide, iron silicides, silicon and titanium carbides, and free silicon. Strontium, yttrium, and uranium in the temperature range under study are not reduced and are retained in an oxide form, and insignificant reduction of zirconium oxides with the formation of carbide ZrC is possible only at temperatures above 1500°C.

  11. Nonlinear dynamic theory for photorefractive phase hologram formation

    Science.gov (United States)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  12. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    Science.gov (United States)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  13. Simulating the Phases of the Moon Shortly after Its Formation

    Science.gov (United States)

    Noordeh, Emil; Hall, Patrick; Cuk, Matija

    2014-01-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its…

  14. Phase separation dynamics during Myxococcus xanthus fruiting body formation

    Science.gov (United States)

    Liu, Guannan; Bahar, Fatmagul; Patch, Adam; Thutupalli, Shashi; Yllanes, David; Marchetti, M. Cristina; Welch, Roy; Shaevitz, Joshua

    Many living systems take advantage of collective behavior for group survival. We use the soil-dwelling bacterium Myxococcus xanthus as a model to study out-of-equilibrium phase separation during fruiting body formation. M. xanthus cells have the ability to glide on solid surfaces and reverse their direction periodically. When starved, M. xanthus cells aggregate together and form structures called fruiting bodies, inside of which cells sporulate to survive stressful conditions. We show that at high cell density the formation of fruiting bodies is a phase separation process. From experimental data that combines single-cell tracking, population-scale imaging, mutants, and drug applications, we construct the phase diagram of M. xanthus in the space of Péclet number and cell density. When wild type cells are starved, we find that they actively increase their Péclet number by modulating gliding speed and reversal frequency which induces a phase separation from a gas-like state to an aggregated fruiting body state.

  15. Changes in mobility of plastic crystal ethanol during its transformation into the monoclinic crystal state

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Alejandro, E-mail: alejandro.sanz@csic.es; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Puente-Orench, Inés [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Instituto de Ciencia de Materiales de Aragón, ICMA-CSIC, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Jiménez-Ruiz, Mónica [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)

    2014-02-07

    Transformation of deuterated ethanol from the plastic crystal phase into the monoclinic one is investigated by means of a singular setup combining simultaneously dielectric spectroscopy with neutron diffraction. We postulate that a dynamic transition from plastic crystal to supercooled liquid-like configuration through a deep reorganization of the hydrogen-bonding network must take place as a previous step of the crystallization process. Once these precursor regions are formed, subsequent crystalline nucleation and growth develop with time.

  16. Monoclinic deformation of calcite crystals at ambient conditions

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  17. What causes the Besnus transition in monoclinic pyrrhotite?

    Science.gov (United States)

    Gehring, A. U.; Koulialias, D.; Löffler, J. F.; Charilaou, M.

    2016-12-01

    Monoclinic 4C pyrrhotite (ideal formula Fe7S8) is a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials. Because of its low-temperature magnetic transition around 30 K also known as Besnus transition, this mineral phase is easily detectable in rock samples. An intrinsic origin of the Besnus transition due to a crystallographic change similar to that in the Verwey transition has generally been postulated (1). Although the physical properties of pyrrhotite have intensively been studied, the physics behind the pronounced change in magnetization at the low-temperature transition is still unresolved. To address this question we performed structural and magnetic analyses on a natural pyrrhotite single crystal (Fe6.6S8) from Auerbach, Germany (2,3). Chemical analysis, X-ray diffractometry and transmission electron microscopy show that this pyrrhotite consists of an intergrowth of 4C and an incommensurate 5C* superstructure that are polymorphs with different vacancy distributions. The occurrence of two superstructures is magnetically confirmed by symmetric inflection points in the hysteresis measurements above the transition at about 30 K. The disappearance of the inflection points and the associated change of the hysteresis parameters indicate that the two superstructures become embedded to form a unitary magnetic anisotropy system at the transition. This embedding of the 5C* into the 4C pyrrhotite at about 30 K is directly visible by the occurrence of additional 4-fold and 12-fold symmetry terms in magnetic anisotropy and anisotropic magnetic resistivity mesarurements, respectively. From this it follows that the Besnus transition in monoclinic pyrrhotite is an extrinsic magnetic phenomenon with respect to the 4C superstructure, i.e., a coupling effect, and therefore the physics behind it is in fact different from that of the well-known Verwey transition. (1) Rochette et al., The IRM Quarterly, 21, 1 (2011); (2) Charilaou et al., J

  18. Effect of secondary phase formation on the carbonation of olivine.

    Science.gov (United States)

    King, Helen E; Plümper, Oliver; Putnis, Andrew

    2010-08-15

    Large-scale olivine carbonation has been proposed as a potential method for sequestering CO(2) emissions. For in situ carbonation techniques, understanding the relationship between the formation of carbonate and other phases is important to predict the impact of possible passivating layers on the reaction. Therefore, we have conducted reactions of olivine with carbonated saline solutions in unstirred batch reactors. Altering the reaction conditions changed the Mg-carbonate morphology. We propose that this corresponded to changes in the ability of the system to precipitate hydromagnesite or magnesite. During high-temperature reactions (200 degrees C), an amorphous silica-enriched phase was precipitated that was transformed to lizardite as the reaction progressed. Hematite was also precipitated in the initial stages of these reactions but dissolved as the reaction proceeded. Comparison of the experimental observations with reaction models indicates that the reactions are governed by the interfacial fluid composition. The presence of a new Mg-silicate phase and the formation of secondary products at the olivine surface are likely to limit the extent of olivine to carbonate conversion.

  19. Investigation of the phase formation and dielectric properties of Bi{sub 7}Ta{sub 3}O{sub 18}

    Energy Technology Data Exchange (ETDEWEB)

    Chon, M.P. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Tan, K.B., E-mail: tankb@science.upm.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Mechanical and Material Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zainal, Z.; Taufiq Yap, Y.H. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Chen, S.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Tan, P.Y. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-03-25

    Highlights: • Synthesis condition of Bi{sub 7}TaO{sub 3}O{sub 18} had been determined. • Recombination of intermediate BiTaO{sub 4} and Bi{sub 3}TaO{sub 7} phases are required for the Bi{sub 7}TaO{sub 3}O{sub 18} phase formation. • Stable material as confirmed by thermal and structural analyses. • Typical ferroelectric showing high dielectric constants and low losses. • Resonance and thermal activated polarisation processes are responsible for the excellent dielectric characteristic. -- Abstract: Polycrystalline Bi{sub 7}Ta{sub 3}O{sub 18} was synthesised at the firing temperature of 950 °C over 18 h via conventional solid state method. It crystallised in a monoclinic system with space group C2/m, Z = 4 similar to that reported diffraction pattern in the Inorganic Crystal Structure Database (ICSD), 1-89-6647. The refined lattice parameters were a = 34.060 (3) Å, b = 7.618 (9) Å, c = 6.647 (6) Å with α = γ = 90° and β = 109.210 (7), respectively. The intermediate phase was predominantly in high-symmetry cubic structure below 800 °C and finally evolved into a low-symmetry monoclinic structured, Bi{sub 7}Ta{sub 3}O{sub 18} at 950 °C. The sample contained grains of various shapes with different orientations in the size ranging from 0.33–22.70 μm. The elemental analysis showed the sample had correct stoichiometry with negligible Bi{sub 2}O{sub 3} loss. Bi{sub 7}Ta{sub 3}O{sub 18} was thermally stable and it exhibited a relatively high relative permittivity, 241 and low dielectric loss, 0.004 at room temperature, ∼30 °C and frequency of 1 MHz.

  20. Defect Formation in First Order Phase Transitions with Damping

    CERN Document Server

    Ferrera, A

    1998-01-01

    Within the context of first order phase transitions in the early universe, we study the influence of a coupling between the (global U(1)) scalar driving the transition and the rest of the matter content of the theory. The effect of the coupling on the scalar is simulated by introducing a damping term in its equations of motion, as suggested by recent results in the electroweak phase transition. After a preceeding paper, in which we studied the influence that this coupling has in the dynamics of bubble collisions and topological defect formation, we proceed in this paper to quantify the impact of this new effects on the probability of defect creation per nucleating bubble.

  1. Investigating materials formation with liquid-phase and cryogenic TEM

    Science.gov (United States)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  2. Reflection of and SV waves at the free surface of a monoclinic elastic half-space

    Indian Academy of Sciences (India)

    Sarva Jit Singh; Sandhya Khurana

    2002-12-01

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, qP waves are not longitudinal and qSV waves are not transverse. Pure longitudinal and pure transverse waves can propagate only in certain specific directions. Closed-form expressions for the reflection coefficients of qP and qSV waves incident at the free surface of a homogeneous monoclinic elastic half-space are obtained. These expressions are used for studying numerically the variation of the reflection coefficients with the angle of incidence. The present analysis corrects some fundamental errors appearing in recent papers on the subject.

  3. Phase formation of Cu{sub 50−x}Co{sub x}Zr{sub 50} (x = 0–20 at.%) alloys: Influence of cooling rate

    Energy Technology Data Exchange (ETDEWEB)

    Javid, F.A., E-mail: f.a.javid@ifw-dresden.de [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, D-01062 Dresden (Germany); Mattern, N. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Samadi Khoshkhoo, M. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, D-01062 Dresden (Germany); Stoica, M.; Pauly, S. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Eckert, J. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, D-01062 Dresden (Germany)

    2014-03-25

    Highlights: • Pseudo-binary (Cu,Co)Zr phase diagram. • Stable and metastable phases of Cu–Co–Zr alloys. • Martensitic transformation. -- Abstract: The dependence of phase formation on quenching rate and the thermodynamical stability of Cu{sub 50−x}Co{sub x}Zr{sub 50} (x = 0–20) was investigated. It was found that cobalt decreases the glass forming ability of the alloys and changes the crystalline products of the system from Cu{sub 10}Zr{sub 7} + CuZr{sub 2} to a (Cu,Co)Zr phase with a B2 structure. The results indicate that for the melt-spun ribbons with at least 5 at.% Co, the glass crystallizes directly into B2 (Cu,Co)Zr, while in the case of bulk specimens, compositions with 0 ⩽ x < 5 of Co contain the monoclinic (Cu,Co)Zr phase as well as Cu{sub 10}Zr{sub 7} and CuZr{sub 2}, whereas for x ⩾ 10, the B2 (Cu,Co)Zr phase is the equilibrium phase at room temperature. Complete solubility of cobalt in B2 CuZr is indicated by the linear change of the lattice constant, which can be readily understood by Vegard’s law. Furthermore, increasing the cobalt content decreases the martensitic transformation temperatures. The phase formation in the ternary system is summarized in a pseudo-binary (Cu,Co)Zr phase diagram. The results are useful for designing new shape memory alloys, as well as bulk metallic glass composites with the addition of glass former elements.

  4. PRISMA—A formation flying project in implementation phase

    Science.gov (United States)

    Persson, Staffan; Veldman, Sytze; Bodin, Per

    2009-11-01

    The PRISMA project for autonomous formation flying and rendezvous has passed its critical design review in February-March 2007. The project comprises two satellites which are an in-orbit testbed for Guidance, Navigation and Control (GNC) algorithms and sensors for advanced formation flying and rendezvous. Several experiments involving GNC algorithms, sensors and thrusters will be performed during a 10 month mission with launch planned for the second half of 2009. The project is run by the Swedish Space Corporation (SSC) in close cooperation with the German Aerospace Center (DLR), the French Space Agency (CNES) and the Technical University of Denmark (DTU). Additionally, the project also will demonstrate flight worthiness of two novel motor technologies: one that uses environmentally clean and non-hazardous propellant, and one that consists of a microthruster system based on MEMS technology. The project will demonstrate autonomous formation flying and rendezvous based on several sensors—GPS, RF-based and vision based—with different objectives and in different combinations. The GPS-based onboard navigation system, contributed by DLR, offers relative orbit information in real-time in decimetre range. The RF-based navigation instrument intended for DARWIN, under CNES development, will be tested for the first time on PRISMA, both for instrument performance, but also in closed loop as main sensor for formation flying. Several rendezvous and proximity manoeuvre experiments will be demonstrated using only vision based sensor information coming from the modified star camera provided by DTU. Semi-autonomous operations ranging from 200 km to 1 m separation between the satellites will be demonstrated. With the project now in the verification phase particular attention is given to the specific formation flying and rendezvous functionality on instrument, GNC-software and system level.

  5. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  6. Phase separation like dynamics during Myxococcus xanthus fruiting body formation

    Science.gov (United States)

    Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua

    2015-03-01

    Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.

  7. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  8. Metastable monoclinic ZnMoO4: hydrothermal synthesis, optical properties and photocatalytic performance.

    Science.gov (United States)

    Lv, Li; Tong, Wenming; Zhang, Yanbing; Su, Yiguo; Wang, Xiaojing

    2011-11-01

    Metastable monoclinic ZnMoO4 was successfully synthesized via a hydrothermal route with variation of reaction temperatures and time at pH value of 5.7. Systematic sample characterizations were carried out, including X-ray powder diffraction, scanning electron microscopy, Fourier transformed infrared spectra, UV-visible diffuse reflectance spectra, and photoluminescence spectra. The results show that all as-prepared ZnMoO4 samples were demonstrated to crystallize in a pure-phase of monoclinic wolframite structure. All samples were formed in plate-like morphology. Six IR active vibrational bands were observed in the wave number range of 400-900 cm(-1). The band gap of as-prepared ZnMoO4 was estimated to be 2.86 eV by Tauc equation. Photoluminescence measurement indicates that as-prepared ZnMoO4 exhibits a broad blue-green emission under excitation wavelength of 280 nm at room temperature. Photocatalytic activity of as-prepared ZnMoO4 was examined by monitoring the degradation of methyl orange dye in an aqueous solution under UV radiation of 365 nm. The as-prepared ZnMoO4 obtained at 180 degrees C for 40 h showed the best photocatalytic activity with completing degradation of MO in irradiation time of 120 min. Consequently, monoclinic ZnMoO4 proved to be an efficient near visible light photocatalyst.

  9. Evaluation of physicochemical properties, and antimicrobial efficacy of monoclinic sulfur-nanocolloid

    Energy Technology Data Exchange (ETDEWEB)

    Roy Choudhury, Samrat, E-mail: samratroychoudhury@gmail.com [Indian Statistical Institute, Biological Sciences Division (India); Mandal, Amrita; Chakravorty, Dipankar [Indian Association for the Cultivation of Science (India); Gopal, Madhuban [Indian Agricultural Research Institute, Divisions of Agricultural Chemicals (India); Goswami, Arunava [Indian Statistical Institute, Biological Sciences Division (India)

    2013-04-15

    Stable nanocolloids of monoclinic sulfur ({beta}-SNPs) were prepared through 'water-in-oil microemulsion technique' at room temperature after suitable modifications of the surface. The morphology (rod shaped; {approx}50 nm in diameter) and allotropic nature (monoclinic) of the SNPs were investigated with Transmission Electron Microscopy and X-ray Diffraction technique. The surface modification, colloidal stability, and surface topology of {beta}-SNPs were evaluated with Fourier Transform Infrared Spectroscopy, zeta potential analysis, and Atomic Force Microscopy. Thermal decomposition pattern of these nanosized particles was determined by Thermo Gravimetric Analysis (TGA). {beta}-SNPs-colloids expressed excellent antimicrobial activities against a series of fungal and bacterial isolates with prominent deformities at their surface. In contrast, insignificant cytotoxicity was achieved against the human derived hepatoma (HepG2) cell line upon treatment with {beta}-SNPs. A simultaneous study was performed to determine the stock concentration of {beta}-SNP-colloids using a novel high phase liquid chromatographic method. Cumulative results of this study hence, elucidate the stabilization of nanosized monoclinic sulfur at room temperature and their potential antimicrobial efficacy over micron-sized sulfur.

  10. Non-laminate Microstructures in Monoclinic-I Martensite

    CERN Document Server

    Chenchiah, Isaac Vikram

    2012-01-01

    We study the symmetrised rank-one convex hull of monoclinic-I martensite (a twelve-variant material) in the context of geometrically-linear elasticity. We show that this hull is strictly larger than the symmetrised lamination convex hull by constructing sets of T3s, which are (non-trivial) symmetrised rank-one convex hulls of 3-tuples of pairwise incompatible strains. Moreover we construct a five-dimensional continuum of T3s and show that its intersection with the boundary of the symmetrised rank-one convex hull is four-dimensional. Along the way we show that there is another kind of monoclinic-I martensite with qualitatively different semi-convex hulls which, so far as we know, has not been experimentally observed. Our strategy is to combine understanding of the algebraic structure of symmetrised rank-one convex cones with knowledge of the faceting structure of the convex polytope formed by the strains.

  11. Non-Laminate Microstructures in Monoclinic-I Martensite

    Science.gov (United States)

    Chenchiah, Isaac Vikram; Schlömerkemper, Anja

    2013-01-01

    We study the symmetrised rank-one convex hull of monoclinic-I martensite (a twelve-variant material) in the context of geometrically-linear elasticity. We construct sets of T 3s, which are (non-trivial) symmetrised rank-one convex hulls of three-tuples of pairwise incompatible strains. In addition, we construct a fivedimensional continuum of T 3s and show that its intersection with the boundary of the symmetrised rank-one convex hull is four-dimensional.We also show that there is another kind of monoclinic-I martensite with qualitatively different semi-convex hulls which, as far as we know, has not been experimentally observed. Our strategy is to combine understanding of the algebraic structure of symmetrised rank-one convex cones with knowledge of the faceting structure of the convex polytope formed by the strains.

  12. Surface, optical characteristics and photocatalytic ability of Scheelite-type monoclinic Bi3FeMo2O12 nanoparticles

    Science.gov (United States)

    Nie, Xinming; Wulayin, Wumitijiang; Song, Tingting; Wu, Minxiao; Qiao, Xuebin

    2016-11-01

    Bi3FeMo2O12 nanoparticles with the Scheelite-type monoclinic structure were prepared by the Pechini synthesis. The Bi3FeMo2O12 nanoparticle has a size of about 50 nm. The phase formation and structural characteristic were studied by X-ray diffraction (XRD) patterns and Rietveld refinements. The Scheelite framework is characterized by a superstructure constructed by the ordered arrangement of Fe/Mo tetrahedral on the B sites. The surface characteristics of Bi3FeMo2O12 nanoparticles were studied by the measurements such as the scanning electron microscope (SEM), the transmission electron microscopy (TEM), and the N2-adsorption-desorption isotherm. Bi3FeMo2O12 nanoparticles present an efficient optical absorption in a wide wavelength region from UV to 540 nm. The band gap energy was decided to be 2.3 eV and characterized by a direct allowed electronic optical transition. The photocatalytic activity of Bi3FeMo2O12 nanoparticles was confirmed by the photodegradation of the rhodamine B (RhB) dye solution. The experiments indicate that the Scheelite-type molybdate could be a potential candidate of a visible-light-driven photocatalyst.

  13. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property.

    Science.gov (United States)

    Liu, Wei; Cao, Lixin; Su, Ge; Liu, Haisong; Wang, Xiangfei; Zhang, Lan

    2010-04-01

    Bismuth vanadate (BiVO(4)) spindle particles with monoclinic scheelite structure have been successfully synthesized via a facile sonochemical method. The as-prepared BiVO(4) photocatalyst exhibited a hollow interior structure constructed from the self-assembly of cone shape primary nanocrystals. A possible oriented attachment growth mechanism has been proposed based on the results of time-dependent experiments, which indicates the formation of spindle particles is mainly attributed to the phase transformation procedure induced by ultrasound irradiation. A series of morphology evolutions of BiVO(4) from compact microspheres, to hollow microspheres, and then to spindle particles have been arrested in the process of sonochemical treatment. Optical absorption experiments revealed the BiVO(4) spindle had strong absorption in the visible light region. A much higher photocatalytic activity of these spindle particles was found in comparison with the SSR-BiVO(4) material for degradation of rhodamine-B under visible light irradiation, which may be ascribed to its special single-crystalline nanostructure.

  14. Phase formation in the (1-y)BiFeO3-yBiScO3 system under ambient and high pressure

    Science.gov (United States)

    Salak, A. N.; Khalyavin, D. D.; Pushkarev, A. V.; Radyush, Yu. V.; Olekhnovich, N. M.; Shilin, A. D.; Rubanik, V. V.

    2017-03-01

    Formation and thermal stability of perovskite phases in the BiFe1-yScyO3 system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO3) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO3-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi2O3. Single-phase perovskite ceramics of the BiFe1-yScyO3 composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2ap×√2ap×2√3ap superstructure (ap 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2ap×4ap×2√2ap) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6ap×√2ap×√6ap) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe1-yScyO3 phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively.

  15. Study of magnetic and magnetocaloric properties of monoclinic and triclinic spin chain CoV2O6

    Science.gov (United States)

    Nandi, Moumita; Mandal, Prabhat

    We have investigated magnetic and magnetocaloric properties of both monoclinic and triclinic phases of CoV2O6 from magnetization and heat capacity measurements. Conventional and inverse magnetocaloric effects have been observed in both phases of CoV2O6. For a field change from 0 to 7 T, maximum values of magnetic entropy change and adiabatic temperature change reach 11.8 J kg-1 K-1 and 9.5 K respectively for monoclinic CoV2O6 while the corresponding values reach 12.1 J kg-1 K-1 and 13.1 K for triclinic CoVO6. Particularly for triclinic CoVO6, the magnetocaloric parameters are quite large in low or moderate field range. Apart from this, we have constructed magnetic phase diagram of monoclinic CoV2O6 where field-induced complex magnetic phases appear below a certain critical temperature 6 K when external magnetic field is applied along crystallographic easy axis.

  16. Formation of ζ phase in Cu-Ge peritectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rapid growth behavior of ζ phase has been investigated in the undercooling experiments of Cu-14%Ge, Cu-15%Ge, Cu-18.5%Ge and Cu-22%Ge alloys. Alloys of the four compositions obtain the maximum undercoolings of 202 K(0.17TL), 245 K(0.20TL), 223 K(0.20TL) and 176 K(0.17TL), respectively. As the content of Ge increases, the microstructural transition of "α(Cu) dendrite + ζ peritectic phase → ζ peritectic phase → ζ dendrite + (ε+ζ ) eutectic" takes place in the alloy at small undercooling, while the microstructural transition of "fragmented α (Cu) dendrite +ζperitectic phase → ζ peritectic phase → ζ dendrite + ε phase" happens in the alloy at large undercooling. EDS analysis of the Ge content in ζ peritectic phase indicates that undercooling enlarges the solid solubility of α dendrite, which leads to a decrease in the Ge content in ζ phase as undercooling increases. In the Cu-18.5%Ge alloy composed of ζ peritectic phase, the Ge content in ζ phase increases when undercooling increases, which is due to the restraint of the Ge enrichment on the grain boundaries by high undercooling effect.

  17. Batteries: encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries (adv. Mater. 45/2013).

    Science.gov (United States)

    Moon, San; Jung, Young Hwa; Jung, Wook Ki; Jung, Dae Soo; Choi, Jang Wook; Kim, Do Kyung

    2013-12-03

    On page 6547 Do Kyung Kim, Jang Wook Choi and co-workers describe a highly aligned and carbon-encapsulated sulfur cathode synthesized with an AAO template that exhibits a high and long cycle life, and the best rate capability based on the complete encapsulation of sulfur (physical) and implementation of the monoclinic sulfur phase (chemical). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Formation of porous crystals via viscoelastic phase separation

    Science.gov (United States)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  19. Leading Formative Assessment Change: A 3-Phase Approach

    Science.gov (United States)

    Northwest Evaluation Association, 2016

    2016-01-01

    If you are seeking greater student engagement and growth, you need to integrate high-impact formative assessment practices into daily instruction. Read the final article in our five-part series to find advice aimed at leaders determined to bring classroom formative assessment practices district wide. Learn: (1) what you MUST consider when…

  20. Prediction of Phase Formation in Nanoscale Sn-Ag-Cu Solder Alloy

    Science.gov (United States)

    Wu, Min; Lv, Bailin

    2016-01-01

    In a dynamic nonequilibrium process, the effective heat of formation allows the heat of formation to be calculated as a function of concentrations of the reacting atoms. In this work, we used the effective heat of formation rule to predict the formation and size of compound phases in a nanoscale Sn-Ag-Cu lead-free solder. We calculated the formation enthalpy and effective formation enthalpy of compounds in the Sn-Ag, Sn-Cu, and Ag-Cu systems by using the Miedema model and effective heat of formation. Our results show that, considering the surface effect of the nanoparticle, the effective heat of formation rule successfully predicts the phase formation and sizes of Ag3Sn and Cu6Sn5 compounds, which agrees well with experimental data.

  1. Control of structure formation in phase-separating systems

    NARCIS (Netherlands)

    Singh, A.; Mukherjee, A.; Vermeulen, H.M.; Barkema, G.T.; Puri, S.

    2011-01-01

    In this paper, we study the evolution of phase-separating binary mixtures which are subjected to alternate cooling and heating cycles. An initially homogeneous mixture is rapidly quenched to a temperature T1 phase separation for a whil

  2. Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure

    Science.gov (United States)

    Jackson, J.C.; Horton, J.W.; Chou, I.-Ming; Belkin, H.E.

    2011-01-01

    X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02-1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.

  3. Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.R.; Richardson, T.J.; Rubin, M.D.; Wang, L-W.

    2001-10-01

    Ab initio total-energy density functional theory is used to investigate the low temperature (LT) monoclinic form of Mg2NiH4. The calculated minimum energy geometry of LT Mg2NiH4 is close to that determined from neutron diffraction data, and the NiH4 complex is close to a regular tetrahedron. The enthalpies of the phase change to high temperature (HT) pseudo-cubic Mg2NiH4 and of hydrogen absorption by Mg2Ni are calculated and compared with experimental values. LT Mg2NiH4 is found to be a semiconductor with an indirect band gap of 1.4 eV. The optical dielectric function of LT Mg2NiH4 differs somewhat from that of the HT phase. A calculated thin film transmittance spectrum is consistent with an experimental spectrum.

  4. ''Stabilization of monoclinic SrAl{sub 2}O{sub 4} through the formation of solid solutions of the type SrAl{sub 2-x}B{sub x}O{sub 4}''

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, M.; Cordoncillo, E.; Escribano, P.; Carda, J.B. [Universitat Jaume I, Castellon (Spain). Dept. de Quimica Inorganica; Vallet-Regi, M. [Dept. de Quimica Inorganica y Bioinorganica, Univ. Complutense (UCM), Madrid (Spain)

    2002-07-01

    The aim of this work is to study the synthesis conditions for preparing SrAl{sub 2}O{sub 4} at low temperature and its stabilization as a monoclinic form by synthesis of solid solutions of the type SrAl{sub 2-x}B{sub x}O{sub 4} (x = 0, 0.1, 0.2, 0.3). The addition of boron can reduce the synthesis temperature of SrAl{sub 2}O{sub 4} because it can provide a liquid medium and increase the diffusion rate and also it can replace the Al (III) ions in the tetrahedral sites of the structure and the distortions caused because of its low ionic radius compared to the aluminium one, could explain the observed reduction in synthesis temperature. (orig.)

  5. Phonon instability and pressure-induced isostructural semiconductor-semimetal transition of monoclinic V O2

    Science.gov (United States)

    He, Huabing; Gao, Heng; Wu, Wei; Cao, Shixun; Hong, Jiawang; Yu, Dehong; Deng, Guochu; Gao, Yanfeng; Zhang, Peihong; Luo, Hongjie; Ren, Wei

    2016-11-01

    Recent experiments have revealed an intriguing pressure-induced isostructural transition of the low temperature monoclinic V O2 and hinted to the existence of a new metallization mechanism in this system. The physics behind this isostructural phase transition and the metallization remains unresolved. In this work, we show that the isostructural transition is a result of pressure-induced instability of a phonon mode that relates to a CaC l2 -type of rotation of the oxygen octahedra, which alleviates, but does not completely remove, the dimerization and zigzagging arrangement of V atoms in the M1 phase. This phonon mode shows an increasing softening with pressure, ultimately leading to an isostructural phase transition characterized by the degree of the rotation of the oxygen octahedra. We also find that this phase transition is accompanied by an anisotropic compression, in excellent agreement with experiments. More interestingly, in addition to the experimentally identified M1' phase, we find a closely related M1 '' phase, which is nearly degenerate with the M1 ' phase. Unlike the M1 ' phase, which has a nearly pressure-independent electronic band gap, the gap of the M1 '' drops quickly at high pressures and vanishes at a theoretical pressure of about 40 GPa.

  6. Variable defect structures cause the magnetic low-temperature transition in natural monoclinic pyrrhotite

    Science.gov (United States)

    Koulialias, D.; Kind, J.; Charilaou, M.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.

    2016-02-01

    Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8) is a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials. Because of its low-temperature magnetic transition around 30 K also known as Besnus transition, which is considered to be an intrinsic property, this mineral phase is easily detectable in natural samples. Although the physical properties of pyrrhotite have intensively been studied, the mechanism behind the pronounced change in magnetization at the low-temperature transition is still debated. Here we report magnetization experiments on a pyrrhotite crystal (Fe6.6S8) that consists of a 4C and an incommensurate 5C* superstructure that are different in their defect structure. The occurrence of two superstructures is magnetically confirmed by symmetric inflection points in hysteresis measurements above the transition at about 30 K. The disappearance of the inflection points and the associated change of the hysteresis parameters indicate that the two superstructures become strongly coupled to form a unitary magnetic anisotropy system at the transition. From this it follows that the Besnus transition in monoclinic pyrrhotite is an extrinsic magnetic phenomenon with respect to the 4C superstructure and therefore the physics behind it is in fact different from that of the well-known Verwey transition.

  7. Wavelength preserved phase erasure and PSK to conventional OOK data format conversion based on phase sensitive amplification

    Science.gov (United States)

    Yu, Kan; Yang, Weili; Yu, Yu

    2016-10-01

    In this paper, a phase erasure and format conversion of phase-shift keying (PSK) to conventional on-off keying (OOK) is proposed and demonstrated theoretically and experimentally. Using a single-pump nondegenerate phase sensitive amplification process in a highly nonlinear fiber, the 0 and 1-bits of the PSK signal obtain different gains through amplification and de-amplification. As a result, the modulation information is transferred onto the amplitude. With an optimized input power difference between the signal and idler, the signal phase information is erased with wavelength preservation after the PSA. The output constellation and eye diagrams show an effective phase erasure and format conversion of PSK to conventional OOK. The error vector magnitude is utilized to evaluate the scheme performance. The proposed scheme provides the flexibility and resiliency for future photonic networks.

  8. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.

    Science.gov (United States)

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji

    2009-01-01

    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.

  9. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO(3) quantum dots and gas-sensing enhancement by surface oxygen vacancies.

    Science.gov (United States)

    Epifani, Mauro; Comini, Elisabetta; Díaz, Raül; Andreu, Teresa; Genç, Aziz; Arbiol, Jordi; Siciliano, Pietro; Faglia, Guido; Morante, Joan R

    2014-10-01

    We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 °C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 °C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 °C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics.

  10. FORMATION OF MANGANESE SILICIDE THIN FILMS BY SOLID PHASE REACTION

    Institute of Scientific and Technical Information of China (English)

    E.Q. Xie; W.W. Wang; N. Jiang; D.Y. He

    2002-01-01

    Manganese silicide MnSi2-x thin films have been prepared on n-type silicon substratesthrough solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spec-troscopy and the four-point probe technique. The results show that two manganese sili-cides have been formed sequentially via the reaction of thin layer Mn with Si substrateat different irradiation annealing stages, i.e., MnSi at 450℃ and MnSi1.73 at 550℃.MnSi1.73 phase exhibits preferred growth after irradiation with infrared. In situ four-point probe measurements of sheet resistance during infrared irradiation annealingshow that nucleation of MnSi and phase transformation of MnSi to MnSi1. 73 occur at410℃ and 530℃, respectively; the MnSi phase shows metallic behavior, while MnSi1.73exhibits semiconducting behavior. Characteristic phonon bands of MnSi2-x silicides,which can be used for phase identification along with conventional XRD techniques,have been observed by FTIR spectroscopy.

  11. Comparing gas-phase and grain-catalyzed H2 formation

    CERN Document Server

    Glover, S C O

    2003-01-01

    Because H2 formation on dust grain surfaces completely dominates gas-phase H2 formation in local molecular clouds, it is often assumed that gas-phase formation is never important. In fact, it is the dominant mechanism in a number of cases. In this paper, I briefly summarize the chemistry of gas-phase H2 formation, and show that it dominates for dust-to-gas ratios less than a critical value D_cr. I also show that D_cr is simple to calculate for any given astrophysical situation, and illustrate this with a number of examples, ranging from H2 formation in warm atomic gas in the Milky Way to the formation of protogalaxies at high redshift.

  12. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  13. Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate.

    Science.gov (United States)

    Ptak, Maciej; Mączka, Mirosław; Gągor, Anna; Sieradzki, Adam; Stroppa, Alessandro; Di Sante, Domenico; Perez-Mato, Juan Manuel; Macalik, Lucyna

    2016-02-14

    We report the synthesis, single crystal X-ray diffraction, and thermal, dielectric, Raman and infrared studies of a novel heterometallic formate [C2H5NH3][Na0.5Fe0.5(HCOO)3] (EtANaFe). The thermal studies show that EtANaFe undergoes a second-order phase transition at about 360 K. X-ray diffraction data revealed that the high-temperature structure is monoclinic, space group P2(1)/n, with dynamically disordered ethylammonium (EtA(+)) cations. EtANaFe possesses a polar low-temperature structure with the space group Pn and, in principle, is ferroelectric below 360 K. Dielectric data show that the reciprocal of the real part of dielectric permittivity above and below the phase transition temperature follows the Curie-Weiss, as expected for a ferroelectric phase transition. Based on theoretical calculations, we estimated the polarization as (0.2, 0, 0.8) μC cm(-2), i.e., lying within the ac plane. The obtained data also indicate that the driving force of the phase transition is ordering of EtA(+) cations. However, this ordering is accompanied by significant distortion of the metal formate framework.

  14. Synthesis and characterization of monoclinic TiO2 nanosheets

    Institute of Scientific and Technical Information of China (English)

    WU Yu; XU Boqing

    2005-01-01

    A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air calcining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150―200℃, and then by washing with hydrochloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400―500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180―200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.

  15. Low-temperature magnetic properties of monoclinic pyrrhotite with particular relevance to the Besnus transition

    Science.gov (United States)

    Volk, Michael W. R.; Gilder, Stuart A.; Feinberg, Joshua M.

    2016-12-01

    Monoclinic pyrrhotite (Fe7S8) owes its ferrimagnetism to an ordered array of Fe vacancies. Its magnetic properties change markedly around 30 K, in what is known as the Besnus transition. Plausible explanations for the Besnus transition are either due to changes in crystalline anisotropy from a transformation in crystal symmetry or from the establishment of a two-phase system with magnetic interaction between the two phases. To help resolve this discrepancy, we measured hysteresis loops every 5° and backfield curves every 10° in the basal plane of an oriented single crystal of monoclinic pyrrhotite at 300 K and every 2 K from 50 K through the Besnus transition until 20 K. Between 50 and 30 K, hysteresis loops possess double inflections between crystallographic a-axes and only a single inflection parallel to the a-axes. Magnetization energy calculations and relative differences of the loops show a sixfold symmetry in this temperature range. We propose that the inflections stem from magnetic axis switching, which is both field and temperature dependent, in a manner somewhat analogous to an isotropic point where magnetocrystalline constants change their sign. The Besnus transition is best characterized by changes in magnetic remanence and coercivity over a 6° temperature span (28-34 K) with a maximum rate of change at 30 K. A surprising yet puzzling finding is that the coercivity ratio becomes less than unity below the transition when fourfold symmetry arises. Because the changes in magnetic parameters are linked to the crystal structure, we conclude the Besnus transition owes its origin to a distortion of the crystallographic axes below 30 K rather than an apparition of a two-phase system. An isothermal magnetization of natural pyrrhotite cycled from room temperature to successively lower temperatures through the Besnus transition decreases 2-4 times less than equivalent grain sizes of magnetite, with less than a 10 per cent loss in remanence between 300 and 150 K

  16. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    measurements, tensile tests and hole-expansion tests. The initial microstructure and the deformed microstructure were characterized by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In situ tensile tests in a SEM were applied for direct observation of the void formation...

  17. Polymer fullerene solution phase behaviour and film formation pathways.

    Science.gov (United States)

    Dattani, Rajeev; Cabral, João T

    2015-04-28

    We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

  18. New signals of quark-gluon-hadron mixed phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, K.A.; Sagun, V.V.; Ivanytskyi, A.I.; Zinovjev, G.M. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Oliinychenko, D.R. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Goethe University, FIAS, Frankfurt am Main (Germany); Ilgenfritz, E.M. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Nikonov, E.G. [JINR, Laboratory for Information Technologies, Dubna (Russian Federation); Taranenko, A.V. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-08-15

    Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out at the center-of-mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center-of-mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low-energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low-energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high-energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations. (orig.)

  19. Modeling quantitative phase image formation under tilted illuminations.

    Science.gov (United States)

    Bon, Pierre; Wattellier, Benoit; Monneret, Serge

    2012-05-15

    A generalized product-of-convolution model for simulation of quantitative phase microscopy of thick heterogeneous specimen under tilted plane-wave illumination is presented. Actual simulations are checked against a much more time-consuming commercial finite-difference time-domain method. Then modeled data are compared with experimental measurements that were made with a quadriwave lateral shearing interferometer.

  20. Nematic phase formation in suspensions of carbon nanotubes

    Science.gov (United States)

    Zakri, Cecile; Poulin, Philippe

    This chapter describes the chemical composition, phase behavior and structure of recently investigated carbon nanotube (CNT) based liquid crystals. Because nanotubes are long and thin rigid cylinders, their phase behavior shares several similarities with many other systems such as rigid polymers and rod-like particle suspensions. CNT liquid crystals are achieved in highly concentrated suspensions comprised of raw or chemically functionalized particles. But extreme aspect ratio, rigidity, high sensitivity to interactions, optical properties and structural features of CNTs make their liquid crystalline phases unique in several ways. In particular, the chapter discusses the importance of the CNT waviness on the phase ordering and the role of excess surfactant or biomolecules used to stabilize the CNTs. The unique resonant Raman scattering of CNT allows original and accurate measurements of order parameters at a micron-scale. Highly oriented nematic tactoids could even be characterized by polarized Raman microscopy. From a more applied point of view, nematic ordering is shown to be a route towards the processing of new materials such as anisotropic conductive films and high strength fibers made of oriented carbon nanotubes. Examples of functional materials and nanocomposites achieved from CNT liquid crystals are given.

  1. Phase transitions during fruiting body formation in Myxococcus xanthus

    CERN Document Server

    Thutupalli, Shashi; Bunyak, Filiz; Palaniappan, Kannappan; Shaevitz, Joshua W

    2014-01-01

    The formation of a collectively moving group benefits individuals within a population in a variety of ways such as ultra-sensitivity to perturbation, collective modes of feeding, and protection from environmental stress. While some collective groups use a single organizing principle, others can dynamically shift the behavior of the group by modifying the interaction rules at the individual level. The surface-dwelling bacterium Myxococcus xanthus forms dynamic collective groups both to feed on prey and to aggregate during times of starvation. The latter behavior, termed fruiting-body formation, involves a complex, coordinated series of density changes that ultimately lead to three-dimensional aggregates comprising hundreds of thousands of cells and spores. This multi-step developmental process most likely involves several different single-celled behaviors as the population condenses from a loose, two-dimensional sheet to a three-dimensional mound. Here, we use high-resolution microscopy and computer vision sof...

  2. Density functional theory insights into the structural stability and Li diffusion properties of monoclinic and orthorhombic Li2FeSiO4 cathodes

    Science.gov (United States)

    Lu, Xia; Chiu, Hsien-Chieh; Bevan, Kirk H.; Jiang, De-Tong; Zaghib, Karim; Demopoulos, George P.

    2016-06-01

    Lithium iron orthosilicate (Li2FeSiO4) is an important alternative cathode for next generation Li-ion batteries due to its high theoretical capacity (330 mA h/g). However, its development has faced great challenges arising from significant structural complexity, including the disordered arrangement/orientation of Fe/Si tetrahedra, polytypes and its poorly understood Li storage and transport properties. In this context, ab-initio calculations are employed to investigate the phase stability and Li diffusion profiles of both monoclinic (P21) and orthorhombic (Pmn21) Li2FeSiO4 orthosilicates. The calculations demonstrate that formation of Lisbnd Fe antisites can induce a metastability competition between both phases, with neither dominating across nearly the entire discharging profile from Li2FeSiO4 through to LiFeSiO4. Furthermore, structural instability is shown to be a serious concern at discharge concentrations below LiFeSiO4 (1 Li extraction) due to the shared occupation of Li donated electrons with oxygen 2p orbitals - rather than the hypothesized transition to a tetravalent Fe4+ state. This finding is further supported by diffusion calculations that have determined a high activation energy barrier towards fast charging and rapid phase transitions. In summary, these theoretical results provide critical and timely insight into the structural dynamics of lithium iron orthosilicate, in pursuit of high energy density cathodes.

  3. Fibril Formation and Phase Separation in Aqueous Cellulose Ethers

    Science.gov (United States)

    Maxwell, Amanda; Schmidt, Peter; McAllister, John; Lott, Joseph; Bates, Frank; Lodge, Timothy

    Aqueous solutions of many cellulose ethers are known to undergo thermoreversible gelation and phase separation upon heating to form turbid hydrogels, but the mechanism and resulting structures have not been well understood. Turbidity, light scattering and small-angle neutron scattering (SANS) are used to show that hydroxypropyl methylcellulose (HPMC) chains are dissolved in water below 50 °C and undergo phase separation at higher temperatures. At 70 °C, at sufficiently high concentrations in water, HPMC orders into fibrillar structures with a well-defined radius of 18 +/- 2 nm, as characterized by cryogenic transmission electron microscopy and SANS. The HPMC fibril structure is independent of concentration and heating rate. However, HPMC fibrils do not form a percolating network as readily as is seen in methylcellulose, resulting in a lower hot-gel modulus, as demonstrated by rheology.

  4. Formation of quasicrystalline phase in Al70-x Ga x Pd17Mn13 alloys

    Science.gov (United States)

    Yadav, T. P.; Singh, Devinder; Shahi, Rohit R.; Shaz, M. A.; Tiwari, R. S.; Srivastava, O. N.

    2011-07-01

    In the present investigation, the formation and stability of icosahedral phase in Al70- x Ga x Pd17Mn13 alloys has been explored using X-ray diffraction, scanning, transmission electron microscopy and energy dispersive X-ray analysis. Cast alloys and melt-spun ribbons with x = 2.5, 5, 7.5, 10, 12.5, 15 and 20 have been investigated. In both cases, the alloys up to 5 at% Ga exhibit the formation of pure icosahedral phase. However, for x ≥5 at% Ga content, the cast alloy exhibits the formation of multiphase material, consisting of an icosahedral phase along with AlPd-type B2 and ξ‧ crystalline (orthorhombic structure with unit cell a = 23.5 Å, b = 16.6 Å and c = 12.4 Å) phases. In the case of the melt spun ribbon for x = 5 at% Ga, only an icosahedral phase has been found, but for 15 > x > 5 at% Ga, an icosahedral phase is the majority phase with AlPd-type B2 phase being the minority component. For x = 15 at% Ga, a Al3Pd2-type hexagonal phase together with a small amount of quasicrystalline phase is formed. However, for x = 20, only a hexagonal Al3Pd2 phase results.

  5. 1-Nitro-4-(4-nitrophenoxybenzene: a second monoclinic polymorph

    Directory of Open Access Journals (Sweden)

    Arif Nadeem

    2013-12-01

    Full Text Available In the title compound, C12H8N2O5, the aromatic rings are inclined to one another by 56.14 (7°. The nitro groups are inclined by to the benzene rings to which they are attached by 3.86 (17 and 9.65 (15°. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming a three-dimensional structure. The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the molecule possesses twofold rotation symmetry. Two low-temperature structures of this polymorph (150 K and 100 K, respectively have been reported [Meciarova et al. (2004. Private Communication (refcode IXOGAD. CCDC, Cambridge, England, and Dey & Desiraju (2005. Chem. Commun. pp. 2486–2488].

  6. A monoclinic polymorph of 2-(4-nitrophenylacetic acid

    Directory of Open Access Journals (Sweden)

    Alan R. Kennedy

    2016-12-01

    Full Text Available A new monoclinic form of 4-nitrophenylacetic acid, C8H7NO4, (I, differs from the known orthorhombic form both in its molecular conformation and in its intermolecular contacts. The conformation is different as the plane of the carboxylic acid group in (I is more nearly perpendicular to the plane of the aromatic ring [dihedral angle = 86.9 (3°] than in the previous form (74.5°. Both polymorphs display hydrogen-bonded R22(8 carboxylic acid dimeric pairs, but in (I, neighbouring dimers interact through nitro–nitro N...O dipole–dipole contacts rather than the nitro–carbonyl contacts found in the orthorhombic form.

  7. Monoclinic polymorph of poly[aqua(μ4-hydrogen tartratosodium

    Directory of Open Access Journals (Sweden)

    Mohammad T. M. Al-Dajani

    2010-02-01

    Full Text Available A monoclinic polymorph of the title compound, [Na(C4H5O6(H2O]n, is reported and complements an orthorhombic form [Kubozono, Hirano, Nagasawa, Maeda & Kashino (1993. Bull. Chem. Soc. Jpn, 66, 2166–2173]. The asymmetric unit contains a hydrogen tartrate anion, an Na+ cation and a water molecule. The Na+ ion is surrounded by seven O atoms derived from one independent and three symmetry-related hydrogen tartrate anions, and a water molecule, forming a distorted pentagonal–bipyramidal geometry. Independent units are linked via a pair of intermolecular bifurcated O—H...O acceptor bonds, generating an R21(6 ring motif to form polymeric two-dimensional arrays parallel to the (100 plane. In the crystal packing, the arrays are linked by adjacent ring motifs, together with additional intermolecular O—H...O interactions, into a three-dimensional network.

  8. Microstructures in phase-inversion membranes. Part I. Formation of macrovoids

    NARCIS (Netherlands)

    Smolders, C.A.; Smolders, C.A.; Reuvers, A.J.; Reuvers, A.J.; Boom, R.M.; Boom, R.M.; Wienk, I.M.; Wienk, I.M.

    1992-01-01

    A new mechanism for the formation of macrovoids in phase-inversion membranes is proposed. It is based on the observed difference in type of demixing of a thin film of a polymer solution when immersed in a nonsolvent bath: delayed or instantaneous demixing. The explanation for macrovoid formation ass

  9. [Formation of the third phase and spectroscopic research of the loading organic phases in the gold extraction].

    Science.gov (United States)

    Jiang, Jian-zhun; Zhou, Wei-jin; Gao, Hong-cheng; Chen, Jing; Wu, Jin-guang

    2002-06-01

    The formation of the third phase during the gold extraction from cyanide solution by quaternary ammonium, tetradecyldimethylbenzylammonium chloride (TDMBAC) was studied by 198Au tracer method. The microstructure of the organic phases was investigated by FTIR, 31P-NMR. With the increasing of gold concentration, aggregations were formed in the gold-loaded organic phase. With the further increasing of gold concentration, the organic phase turned into two layers. Gold, water, and tri-n-butyl phosphate (TBP) were mainly in the down organic phase. In the down layer, distinct O-H stretching vibration peak was found by FTIR; the frequency of P=O stretching vibration shifted to the low frequency; 31P-NMR chemical shift was markedly shifted to the high frequency field. The radius of aggregation was measured by the dynamic laser scattering (DLS) method.

  10. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael;

    2014-01-01

    We propose a novel approach for all optical RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal using a simple phase filter implemented by a commercial optical waveshaper....

  11. Phase-field modeling of microstructural pattern formation in alloys and geological veins

    OpenAIRE

    Ankit, Kumar

    2016-01-01

    With the advent of high performance computing, the application areas of the phase-field method, traditionally used to numerically model the phase transformation in metals and alloys, have now spanned into geoscience. A systematic investigation of the two distinct scientific problems in consideration suggest a strong influence of interfacial energy on the natural and induced pattern formation in diffusion-controlled regime.

  12. Flow induced formation of dual-phase continuity in polymer blends and alloys

    DEFF Research Database (Denmark)

    Lyngaae-Jørgensen, Jørgen; Chtcherbakova, E.A.; Utracki, L.A.

    1997-01-01

    showed that an addition of block copolymer may narrow the volume fraction range where bi-continuous phase structures are formed. Both annealing in the molten stale and shearing history influence the measured phi(cr) for formation of bi-continuous phase structure in amorphous immiscible polymer blends....

  13. Pattern formation in a complex Swift-Hohenberg equation with phase bistability

    CERN Document Server

    de Valcárcel, Manuel Martínez-Quesada Germán J

    2016-01-01

    We study pattern formation in a complex Swift Hohenberg equation with phase-sensitive (parametric) gain. Such an equation serves as a universal order parameter equation describing the onset of spontaneous oscillations in extended systems submitted to a kind of forcing dubbed rocking when the instability is towards long wavelengths. Applications include two-level lasers and photorefractive oscillators. Under rocking, the original continuous phase symmetry of the system is replaced by a discrete one, so that phase bistability emerges. This leads to the spontaneous formation of phase-locked spatial structures like phase domains and dark-ring (phase-) cavity solitons. Stability of the homogeneous solutions is studied and numerical simulations are made covering all the dynamical regimes of the model, which turn out to be very rich. Formal derivations of the rocked complex Swift-Hohenberg equation, using multiple scale techniques, are given for the two-level laser and the photorefractive oscillator.

  14. Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification

    Science.gov (United States)

    Fu, J. W.; Yang, Y. S.; Guo, J. J.; Ma, J. C.; Tong, W. H.

    2008-12-01

    The formation and evolution of a two-phase coupled growth microstructure in AISI 304 stainless steel are investigated using a quenching method during directional solidification. It is found that the two-phase microstructure, which is composed of coupled growth of thin lathy delta ferrite (δ) and austenite (γ), forms from the melt first during solidification. As solidification proceeds, the retained liquid transforms into austenite directly. On cooling, the subsequent incomplete solid-state transformation from ferrite to austenite results in the disappearance of the thinner lathy delta ferrite, and the final two-phase coupled growth microstructure is formed. The formation mechanism of the two-phase coupled growth microstructure is analyzed theoretically based on the nucleation and constitutional undercooling (NCU) criterion. Transmission electron microscope (TEM) and EDS analyses were carried out to identify the phases and determine the phase composition, respectively.

  15. Formation of laves phase in a refractory austenitic steel due to long-term heating

    Science.gov (United States)

    Tarasenko, L. V.; Shal'kevich, A. B.

    2011-07-01

    Steels of the Fe - Cr - Ni -Mo - Nb - Al - C system are studied by methods of phase physicochemical analysis and electron microscopy with the aim to determine the causes of changes in mechanical properties after long-term heating at a temperature of 600 - 700°C. Grain-boundary formation of particles of a Laves phase is shown to cause decrease in the impact toughness and transformation of particles of γ'-phase under conditions of creep. The effect of alloying elements on the chemical composition of the multicomponent Laves phase is studied depending on the temperatures of hardening, aging, and subsequent heating. Concentration correspondence between the chemical composition of the austenite and the intermetallic tcp phase formed in aging is discovered. A computational scheme for predicting the possibility of formation of Laves phases in multicomponent alloys is suggested.

  16. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts

    Science.gov (United States)

    Zhao, R.; Lee, A. K. Y.; Soong, R.; Simpson, A. J.; Abbatt, J. P. D.

    2013-06-01

    The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs) via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR) spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW), where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  17. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP: potential atmospheric impacts

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2013-06-01

    Full Text Available The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS. Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW, where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  18. Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model

    Science.gov (United States)

    Choi, Young-Pil; Ha, Seung-Yeal; Jung, Sungeun; Kim, Yongduck

    2012-04-01

    We discuss the asymptotic formation and nonlinear orbital stability of phase-locked states arising from the ensemble of non-identical Kuramoto oscillators. We provide an explicit lower bound for a coupling strength on the formation of phase-locked states, which only depends on the diameters of natural frequencies and initial phase configurations. We show that, when the phases of non-identical oscillators are distributed over the half circle and the coupling strength is sufficiently large, the dynamics of Kuramoto oscillators exhibits two stages (transition and relaxation stages). In a transition stage, initial configurations shrink to configurations whose diameters are strictly less than {π}/{2} in a finite-time, and then the configurations tend to phase-locked states asymptotically. This improves previous results on the formation of phase-locked states by Chopra-Spong (2009) [26] and Ha-Ha-Kim (2010) [27] where their attention were focused only on the latter relaxation stage. We also show that the Kuramoto model is ℓ1-contractive in the sense that the ℓ1-distance along two smooth Kuramoto flows is less than or equal to that of initial configurations. In particular, when two initial configurations have the same averaged phases, the ℓ1-distance between them decays to zero exponentially fast. For the configurations with different phase averages, we use the method of average adjustment and translation-invariant of the Kuramoto model to show that one solution converges to the translation of the other solution exponentially fast. This establishes the orbital stability of the phase-locked states. Our stability analysis does not employ any standard linearization technique around the given phase-locked states, but instead, we use a robust ℓ1-metric functional as a Lyapunov functional. In the formation process of phase-locked states, we estimate the number of collisions between oscillators, and lower-upper bounds of the transversal phase differences.

  19. Formation of unequilibrated R chondrite chondrules and opaque phases

    Science.gov (United States)

    Miller, K. E.; Lauretta, D. S.; Connolly, H. C.; Berger, E. L.; Nagashima, K.; Domanik, K.

    2017-07-01

    Sulfide assemblages are commonly found in chondritic meteorites as small inclusions in the matrix or in association with chondrules. These assemblages are widely hypothesized to form through pre-accretionary corrosion of metal by H2S gas or through parent body processes. We report here on two unequilibrated R chondrite samples that contain large, chondrule-sized sulfide nodules in the matrix. Both samples are from Mount Prestrud (PRE) 95404. Chemical maps and spot and broad-beam electron microprobe analyses (EMPA) were used to assess the distribution, stoichiometry, and bulk composition of sulfide nodules and silicate chondrules in the clasts. Oxygen isotope data were collected via secondary ion mass spectrometry (SIMS) to assess the relationship of chondrules to other chondrite groups. Scanning electron microscopy (SEM), focused ion beam (FIB), and transmission electron microscopy (TEM) analyses were used to assess fine-scale features and identify crystal structures in sulfide assemblages. Thermodynamic models were used to assess the temperature, sulfur fugacity (fS2), total pressure, dust-to-gas ratio, and oxygen fugacity (fO2) conditions during sulfide nodule and chondrule formation. The unequilibrated clasts include a mixture of type I and type II chondrules, as well as non-porphyritic chondrules. Chondrule oxygen isotopes overlap with ordinary-chondrite chondrules. Sulfide nodules average 200 μm in diameter, have rounded shapes, and are primarily composed of pyrrhotite, pentlandite, and magnetite. Some are deformed around chondrules in a petrologic relationship similar in appearance to compound chondrules. Both nodules and sulfides in chondrules include phosphate inclusions and Cu-rich lamellae, which suggests a genetic relationship between sulfides in chondrules and in the matrix. Ni/Co ratios for matrix and chondrule sulfides are solar, while Fe and Ni are non-solar and inversely related. We hypothesize that sulfide nodules formed via pre-accretionary melt

  20. Relationship between Multi-Phase Formation and Molecular Structure for Liquid Crystal System

    Institute of Scientific and Technical Information of China (English)

    LI Zhenxin; MA Heng; LI Shipu

    2005-01-01

    A mechanical model of liquid crystals ( LCs ) was used to explain the phase formation and thermal properties. The LC phases in the model are micro-machine systems consisting of an ensemble of molecular rotors, and some dynamic parameters in a semi-experiment molecular orbit method. A novel explanation on the multi-phase formation of LC system is obtained. It is found that the value of the critical rotational velocity is a key parameter for the characterization of each homologous series. The dipole moment of the molecules was also discussed.

  1. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    Science.gov (United States)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  2. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels;

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  3. CDS Simulation and Pattern Formation of Phase Separation

    Institute of Scientific and Technical Information of China (English)

    ZhangjiLIU; MenCHENG; 等

    1998-01-01

    Several properties of the generation and evolution of phase separating patterns for binary material studied by CDS model are proposed.The main conclusions are(1) for alloys spinodal decomposition,the conceptions of “macro-pattern” and “micropattern” are posed by “black-and-white graph”and “gray-scale graph” respectively.We find that though the four forms of map f that represent the self-evolution of order parameter in a cell (lattice)are similar to each other in “macro-pattern”,there are evident differences in their micro-pattern,e.g.,some different fine netted sturctures in the black domain and the white domain are found by the micro-pattern.so that distinct mechanical and physical behaviors shall be obtained.(2) If the two constituteons of block copolymers are not symmetric (i.e.r≠0.5),a pattern called “grain-strip cross pattern is discovered,is the 0.43

  4. The Process of TiB2-Cu Composite Phase and Structure Formation during Combustion Synthesis

    Institute of Scientific and Technical Information of China (English)

    XU Qiang; ZHANG Xinghong; HAN Jiecai; PAN Wei

    2006-01-01

    The reaction process of combustion synthesis for TiB2- Cu was investigated in detail using combustion-wave arresting experiment, X-ray diffraction (XRD) analysis, SEM analysis and differential thermal analysis ( DTA ). The XRD analysis results for the different parts of the quenched specimen shaw that TiCux intermetallic phase firstly forms with the propagation of combustion wave, and then Ti1.87 B50 and Ti3 B4 metastable phases come forth due to the diffusion of B atoms and finally the stable TiB2 phase forms because of the continuous diffusion of B atoms. The formation of TiB2 phase is not completed by one step, but undergoes several transient processes. The process of reaction synthesis for Ti-B-Cu ternary system can be divided into three main stages: melting of Cu and Ti, and the formation of Cu- Ti melt and few TiCux , TiBx intermetallic phases; large numbers of TiCux intermetallic phases formation and some fine TiB2 particles precipitation; and the TiB2 particles coarsening and the stable TiB2 and Cu two phases formation in the final product.

  5. Electric field induced cubic to monoclinic phase transition in multiferroic 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Rishikesh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2014-10-20

    The results of x-ray diffraction studies on 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} solid solution poled at various electric fields are presented. After poling, significant value of planar electromechanical coupling coefficient (k{sub P}) is observed for this composition having cubic structure in unpoled state. The cubic structure of 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} transforms to monoclinic structure with space group Pm for the poling field ≥5 kV/cm. Large c-axis microscopic lattice strain (1.6%) is achieved at 30 kV/cm poling field. The variation of the c-axis strain and unit cell volume with poling field shows a drastic jump similar to that observed for strain versus electric field curve in (1 − x)Pb(Mg{sub 1/3}Nb{sub 2/3}) O{sub 3}-xPbTiO{sub 3} and (1 − x)Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3}.

  6. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    Science.gov (United States)

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  7. Unexpected origin of magnetism in monoclinic Nb12O29 from first-principles calculations

    NARCIS (Netherlands)

    Fang, C. M.; Van Huis, M. A.; Xu, Q.; Cava, R. J.; Zandbergen, H. W.

    2015-01-01

    Nb12O29 is a 4d transition metal oxide that occurs in two forms with different symmetries, monoclinic (m) and orthorhombic (o). The monoclinic form has unusual magnetic properties; below a temperature of 12 K, it exhibits both metallic conductivity and antiferromagnetic ordering. Here, first-princip

  8. Synthesis of Monoclinic Form of Gd2-xNaxCuO4 by Direct Precipitation from Molten Salt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new phase of Gd2-xNaxCuO4 was synthesized by direct precipitation from the mixture of Gd2O3 and CuO in the molten KOH/NaOH/KNO3 solution at temperature as low as 280° C. The resulting precipitate was characterized by using SEM, XRD, EDX, XPS and magnetic method. The XRD data indicate that the precipitated Gd2-xNaxCuO4 is monoclinic with lattice parameters a=8.6816(A), b=3.7233(A). C=6.0796(A), α =γ =90°, β =108.75° and V=186.1(A)3.

  9. Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

    Directory of Open Access Journals (Sweden)

    Sukumar Saha

    2011-01-01

    Full Text Available Dispersion of Love waves is studied in a fibre-reinforced layer resting on monoclinic half-space. The wave velocity equation has been obtained for a fiber-reinforced layer resting on monoclinic half space. Shear wave velocity ratio curve for Love waves has been shown graphically for fibre reinforced material layer resting on various monoclinic half-spaces. In a similar way, shear wave velocity ratio curve for Love waves has been plotted for an isotropic layer resting on various monoclinic half-spaces. From these curves, it has been observed that the curves are of similar type for a fibre reinforced layer resting on monoclinic half-spaces, and the shear wave velocity ratio ranges from 1.14 to 7.19, whereas for the case isotropic layer, this range varies from 1.0 to 2.19.

  10. Bis[2-(hydroxyiminomethylphenolato]nickel(II: a second monoclinic polymorph

    Directory of Open Access Journals (Sweden)

    Julia A. Rusanova

    2011-02-01

    Full Text Available The title compound, [Ni(C7H6NO22], (I, is a second monoclinic polymorph of the compound, (II, reported by Srivastava et al. [Acta Cryst. (1967, 22, 922] and Mereiter [Private communication (2002 CCDC refcode NISALO01]. The bond lengths and angles are similar in both structures. The molecule in both structures lies on a crystallographic inversion center and both have an internal hydrogen bond. The title compound crystallizes in the space group P21/c (Z = 2, whereas compound (II is in the space group P21/n (Z = 2 with a similar cell volume but different cell parameters. In both polymorphs, molecules are arranged in the layers but in contrast to the previously published compound (II where the dihedral angle between the layers is 86.3°, in the title polymorph the same dihedral angle is 29.4°. The structure of (I is stabilized by strong intramolecular O—H...O hydrogen bonding between the O—H group and the phenolate O atom.

  11. Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation

    CERN Document Server

    Taheri, Hossein; Wiesenfeld, Kurt; Adibi, Ali

    2014-01-01

    We propose a method for soliton formation in whispering-gallery-mode (WGM) resonators through input phase modulation. Our numerical simulations of a variant of the Lugiato-Lefever equation suggest that modulating the input phase at a frequency equal to the resonator free-spectral-range and at modest modulation depths provides a deterministic route towards soliton formation in WGM resonators without undergoing a chaotic phase. We show that the generated solitonic state is sustained when the modulation is turned off adiabatically. Our results support parametric seeding as a powerful means of control, besides input pump power and pump-resonance detuning, over frequency comb generation in WGM resonators. Our findings also help pave the path towards ultra-short pulse formation on a chip.

  12. Ar + induced interfacial mixing and phase formation in the Al/Cr system

    Science.gov (United States)

    Kim, H. K.; Kim, S. O.; Song, J. H.; Kim, K. W.; Woo, J. J.; Whang, C. N.; Smith, R. J.

    1991-07-01

    Evaporated Al/Cr bilayer thin films were irradiated by 80 keV Ar + at doses in the range from 1 × 10 15 to 2 × 10 16 Ar +/cm 2 at room temperature in order to investigate the Ar + induced interfacial mixing behavior and the phase formation and transition by Ar + bombardment. Ion bombardment induces intermixing across the Al/Cr interface and mixing variance increases with increasing ion dose. Cascade and thermal spike models are found to be not adequate for the ion beam mixing mechanism at room temperature in this system. The Al 13Cr 2 phase is formed as an initial phase by ion beam mixing and then transforms into the Al 11Cr 2 or Al 4Cr phases at subsequent ion bombardment. This result is discussed in terms of the enhanced atomic mobility and the thermodynamical driving force by introducing the concept of an effective heat of formation.

  13. Investigation of wing crack formation with a combined phase-field and experimental approach

    Science.gov (United States)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  14. Regularities of formation of ternary alloy phases between non-transition metals

    Institute of Scientific and Technical Information of China (English)

    姚莉秀; 陈瑞亮; 钦佩; 陈念贻; 陆文聪

    2000-01-01

    Using a four-parameter model based on extended Miedema’ s cellular model of alloy phases and pattern recognition methods, the regularities of formation of ternary intermetallic compounds between non-transition metals have been investigated. The criterion of formation can be expressed as some empirical functions of Φ (electronegativity), nws1/3( valence electron density in Wagn-er-Seitz cell), R (Pauling’s metallic radius) and Z (number of valence electrons in atom).

  15. Regularities of formation of ternary alloy phases between non-transition metals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using a four-parameter model based on extended Miedema's cellular model of alloy phases and pattern recognition methods, the regularities of formation of ternary intermetallic compounds between non-transition metals have been investigated. The criterion of formation can be expressed as some empirical functions of Ф (electronegativity), n1/3WS (valence electron density in Wagner-Seitz cell), R (Pauling's metallic radius) and Z (number of valence electrons in atom).

  16. Formation of complex organic molecules in cold objects: the role of gas phase reactions

    OpenAIRE

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-01-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm (>30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) ...

  17. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies.

    Science.gov (United States)

    Huang, Huang-Chiao; Nanda, Alisha; Rege, Kaushal

    2012-04-24

    Genetically engineered elastin-like polypeptides (ELP) can be interfaced with cetyltrimethyl ammonium bromide (CTAB)-stabilized gold nanorods (GNRs) resulting in the formation of stable dispersions (nanoassemblies). Increasing the dispersion temperature beyond the ELP transition temperature results in phase separation and formation of solid-phase ELP-GNR matrices (nanocomposites). Here, we investigated different physicochemical conditions that influence nanocomposite formation from temperature-induced phase separation of ELP-GNR nanoassemblies. The presence of cetyltrimethyl ammonium bromide (CTAB), used to template the formation of gold nanorods, plays a significant role in the phase separation behavior, with high concentrations of the surfactant leading to dramatic enhancements in ELP transition temperature. Nanocomposites could be generated at 37 °C in the presence of low CTAB concentrations (nanoassemblies leading to nanocomposites, but had minimal effect on nanocomposite maturation, which is a later-stage longer event. Finally, nanocomposites prepared in the presence of low CTAB concentrations demonstrated a superior photothermal response following laser irradiation compared to those generated using higher CTAB concentrations. Our results on understanding the formation of plasmonic/photothermal ELP-GNR nanocomposites have significant implications for tissue engineering, regenerative medicine, and drug delivery.

  18. Process Dynamics and Fractal Analysis of New Phase Formation in Thermal Processes

    Institute of Scientific and Technical Information of China (English)

    Wang J; Shen Z.W; Shen Z. Q

    2001-01-01

    Boiling and fouling are taken as typical examples of new phase formation process to be analyzed and discussed in this paper. The process dynamics of nucleate boiling is analyzed and its mechanism is discussed from the view point of self-organization. Fouling, which is a more complicated phenomenon of new phase formation, involves series of underlying processes. The morphology and fractal analysis of fouling on low-energy surface and that with fouling inhibitors are studied and discussed. It is suggested that considering the process dynamics, fractal analysis and self-organization, a new avenue of research should be found.

  19. Development of theory-based health messages: three-phase programme of formative research.

    Science.gov (United States)

    Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F Alexandra; Sheeran, Paschal

    2015-09-01

    Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions.

  20. Development of theory-based health messages: three-phase programme of formative research

    Science.gov (United States)

    Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F. Alexandra; Sheeran, Paschal

    2015-01-01

    Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions. PMID:24504361

  1. The self regulating star formation of gas rich dwarf galaxies in quiescent phase

    CERN Document Server

    Kobayashi, M A R; Kobayashi, Masakazu A.R.; Kamaya, Hideyuki

    2004-01-01

    The expected episodic or intermittent star formation histories (SFHs) of gas rich dwarf irregular galaxies (dIrrs) are the longstanding puzzles to understand their whole evolutional history. Solving this puzzle, we should grasp what physical mechanism causes the quiescent phase of star formation under the very gas rich condition after the first starburst phase. We consider that this quiescent phase is kept by lack of H2, which can be important coolant to generate the next generation of stars in the low-metal environment like dIrrs. Furthermore, in dIrrs, H2 formation through gas-phase reactions may dominate the one on dust-grain surfaces because their interstellar medium (ISM) are very plentiful and the typical dust-to-gas ratio of dIrrs (D_dIrrs = 1.31 x 10^-2 D_MW, where D_MW is its value for the local ISM) is on the same order with a critical value D_cr ~ 10^-2 D_MW. We show that the lack of H2 is mainly led by H- destruction when gas-phase H2 formation dominates since H- is important intermediary of gas-p...

  2. Follow up of the glassy phase formation as silicon oxide was added to Brownmillerite phase of Portland cement clinker

    Energy Technology Data Exchange (ETDEWEB)

    Hassaan, M. Y., E-mail: yousry@tedata.net.eg; Salem, S. M.; Ebrahim, F. M. [Al-Azhar University, Moessbauer Lab, Physics Department, Faculty of Science (Egypt)

    2009-01-15

    Brownmillerite phase is one of the four main phases of Portland cement clinker. It was prepared as pure C{sub 4}AF{sup 1} and C{sub 4}AF with different amount of SiO{sub 2}, (5, 10, 15, 20, 25, and 40 mol%) by addition. Pure C{sub 4}AF was prepared using CaO, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} according to the ratios 4:1:1. Each sample mixture was fired at 1,400 deg. C for 1 h then ground and introduced again to 1,400 deg. C for 1/2 h then quenched in air. The prepared samples were ground and measured using x-ray diffraction, scanning electron microscope, A.C. conductivity and Moessbauer spectroscopy. The results were correlated and discussed. The main finding is the formation of a glassy phase besides the C{sub 4}AF structure, in addition to the formation of the C{sub 2}S phase of cement clinker as SiO{sub 2} addition was upgraded. The electrical conductivity results showed that the 20 mol% SiO{sub 2} sample has the lowest ({sigma}) value.

  3. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    Science.gov (United States)

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  4. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  5. Influence of phase separation for surfactant driven pattern formation during ion beam erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, Hans; Zhang, Kun; Vetter, Ulrich; Bobes, Omar; Pape, Andre; Gehrke, Hans-Gregor; Broetzmann, Marc [II. Physikalisches Institut, Goettingen Univ. (Germany)

    2012-07-01

    We will present results on metal surfactant driven self-organized pattern formation on surfaces by ion beam erosion, with a focus on the role of phase separation for the initial steps of pattern formation. Si substrates were irradiated with 5 keV Xe ions at normal incidence and ion fluences up to 5.10{sup 17} Xe/cm{sup 2} under continuous deposition of surfactant atoms. In the absence of such surfactants uniform flat surfaces are obtained, while in the presence of Fe and Mo surfactants pronounced patterns like dots, combinations of dots and ripples with wavelengths around 100 nm are generated. The surfactant coverage and deposition direction determine the pattern type and the pattern orientation, respectively. A critical steady-state coverage for onset of dot formation and onset of ripple formation is in the range of 10{sup 15} and 5.10{sup 15} Xe/cm{sup 2}. The steady-state surface region consists of a thin amorphous metal silicide layer with high metal concentration in the ripple and dot regions. Pattern formation is explained by ion induced diffusion and phase separation of the initially flat amorphous silicide layer and subsequent ion beam erosion with composition dependent sputter yield. To investigate the role of initial phase separation we additionally compare the pattern formation for different other metal surfactants.

  6. Intermetallic phase formation in the system aluminium-gold studied by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Stefan; Maerz, Benjamin; Graff, Andreas; Petzold, Matthias [Fraunhofer Institut fuer Werkstoffmechanik Halle IWMH, Halle (Germany)

    2011-07-01

    In the system aluminium-gold 5 stable intermetallic phases (Al{sub 11}Au{sub 6}, AlAu, AlAu{sub 2}, Al{sub 3}Au{sub 8}, AlAu{sub 4}) exist. The combination of aluminium and gold is often used for wire bond interconnects in microelectronic devices. Intermetallic Al-Au phases are formed at the Al-Au bond interface of these interconnects and affect their reliability. To understand the possible failure mechanisms it is important to know which phases are involved and where they are located. In the study, two different sample types were used. To investigate phase formation in systems with excess of gold, Au wires were bonded on Al substrates. In contrast, Al wires were bonded on Au substrates to observe phase formation under excess of aluminium. After annealing at 150 C for different times, phase evolution was studied by EBSD. A metallographic preparation in combination with argon ion beam etching was developed to meet the requirements of the EBSD analysis. Pseudosymmetry, the similarity of diffraction patterns for different phases and the susceptibility to corrosion were specific challenges in this investigation. A precise phase differentiation with high spatial resolution was possible in most of the investigated cases. These results allow a better understanding of the Al-Au bonding mechanism as a function of the interface microstructure.

  7. Optical, structural and fluorescence properties of nanocrystalline cubic or monoclinic Eu:Lu{sub 2}O{sub 3} films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, C. [Laboratoire de Physico-Chimie des Materiaux Luminescents, CNRS-Universite Lyon1, 10, rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France)]. E-mail: martinet@pcml.univ-lyon1.fr; Pillonnet, A. [Laboratoire de Physico-Chimie des Materiaux Luminescents, CNRS-Universite Lyon1, 10, rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France); Lancok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague (Czech Republic); Garapon, C. [Laboratoire de Physico-Chimie des Materiaux Luminescents, CNRS-Universite Lyon1, 10, rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France)

    2007-10-15

    Eu{sup 3+}-doped lutetium oxide (Eu:Lu{sub 2}O{sub 3}) nanocrystalline films were grown on fused-silica substrates by pulsed laser deposition. Depending on deposition conditions (oxygen pressure, temperature and laser energy), the structure of the films changed from amorphous to crystalline and the cubic or monoclinic phases were obtained with varying preferential orientation and crystallite size. The monoclinic phase could be prepared for the first time at temperatures as low as 240 deg. C and in a narrow range of parameters. Although this phase has been previously reported for powder samples, it occurs only for high pressures and high temperatures preparation conditions. The refractive indices were measured by m-lines spectroscopy for both crystalline phases and their dispersion curve fitted by the Sellmeier expression. The specific Eu{sup 3+} fluorescence properties of the different phases, monoclinic and cubic, were registered and show modifications due to the disorder induced by the nanometric size of the crystallites, emphasised in particular by quasi-selective excitation in the charge transfer band.

  8. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP: potential atmospheric impacts

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2013-02-01

    Full Text Available The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear resonance (1H NMR spectroscopy and proton transfer reaction mass spectrometry (PTR-MS. Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water but may be present in the mM level in aerosol liquid water (ALW, where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  9. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  10. Energy of formation for AgIn liquid binary alloys along the line of phase separation

    CERN Document Server

    Bhuiyan, G M; Ziauddin-Ahmed, A Z

    2003-01-01

    We have investigated the energy of formation for AgIn liquid binary alloys along the solid-liquid phase separation line. A microscopic theory based on the first order perturbation has been applied. The interionic interaction and a reference liquid are the fundamental components of the theory. These are described by a local pseudopotential and the hard sphere liquids, respectively. The results of calculations reveal a characteristic feature that the energy of formation becomes minimum at the equiatomic composition, and thus indicates maximal mix-ability at this concentration. The energy of formation at a particular thermodynamic state that is at T 1173 K predicts the experimental trends fairly well.

  11. Three-phase heaters with common overburden sections for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J [Bellaire, TX

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  12. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis.

    Science.gov (United States)

    Ishii, I; Takada, H; Terao, K; Kakegawa, T; Igarashi, K; Hirose, S

    1994-11-01

    Bacillus subtilis 168M contained a large amount of spermidine during the logarithmic phase of growth, but the amount decreased drastically during the stationary phase. The extracts, prepared from B. subtilis cells harvested in the logarithmic phase, contained activity of arginine decarboxylase (ADC) rather than the activity of ornithine decarboxylase. In the presence of alpha-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of ADC, the amount of spermidine in B. subtilis during the logarithmic phase decreased to about 25% of the control cells. Under these conditions, spore formation of B. subtilis 168M delayed greatly without significant inhibition of cell growth. The decrease in spermidine content in the logarithmic phase rather than in the stationary phase was involved in the delay of sporulation. Electron microscopy of cells at 24 hrs. of culture confirmed the delay of spore formation by the decrease of spermidine content. Furthermore, the delay of sporulation was negated by the addition of spermidine. These data suggest that a large amount of spermidine existing during the logarithmic phase plays an important role in the sporulation of B. subtilis.

  13. Theory of the formation of P4132(P4332)-phase spinels

    Science.gov (United States)

    Talanov, V. M.; Talanov, M. V.; Shirokov, V. B.

    2016-03-01

    A group-theoretical, thermodynamic, and structural study of the formation of P4132( P4332) spinel modification has been performed. In particular, the occurrence of unique hyper-kagome atomic order is analyzed. The critical order parameter inducing a phase transition is established. It is shown that the calculated structure of the low-symmetry P4132( P4332) phase is formed as a result of displacements of atoms of all types and due to the cation and anion ordering. The problem of the occurrence of unique hyper-kagome atomic order in the structures of P4132( P4332) spinel modifications is considered theoretically. It is proven within the Landau theory of phase transitions that the P4132( P4332) phase can be formed from the high-symmetry Fd3 m phase with an ideal spinel structure only as a result of first-order phase transition. Therefore, the formation of hyper-kagome sublattice in the P4132( P4332) phase is accompanied by a significant transformation of the spinel structure.

  14. Formation of metastable phases during solidification of Al-3.2 wt% Mn

    Energy Technology Data Exchange (ETDEWEB)

    Khvan, Alexandra V.; Cheverikin, Vladimir V.; Dinsdale, Alan T. [Thermochemistry of Materials SRC, National University of Science and Technology MISIS, 4 Leninsky Prosp., 119049 Moscow (Russian Federation); Watson, Andy [Thermochemistry of Materials SRC, National University of Science and Technology MISIS, 4 Leninsky Prosp., 119049 Moscow (Russian Federation); Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, LS2 9JT Leeds (United Kingdom); Levchenko, Viktor V.; Zolotorevskiy, Vadim S. [Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology MISIS, 4 Leninsky Prosp., 119049 Moscow (Russian Federation)

    2015-02-15

    Highlights: • During rapid solidification of Al-Mn alloys, expected phases do not always form. • This has been verified in this study. • Calculations of phase equilibria using thermodynamics can help to explain this. • ‘Stable’ phases are shown to be kinetically inhibited from forming. - Abstract: The solidification of the technologically important Al-rich Al-Mn alloys has been studied both experimentally and by calculation of the phase equilibria. The results of previous experimental studies, which indicated that one or more stable intermetallic phases are suppressed on solidification from the liquid, have been confirmed. It was shown that it is important to consider the formation of Al{sub 11}Mn{sub 4} even though other intermetallic phases have a higher driving force for solidification. It is concluded that while an understanding of the thermodynamic properties of the phases is fundamental to modelling the formation of microstructure associated with solidification, it is necessary to take into account other effects such as the thermodynamic properties at interfaces and their effect on nucleation.

  15. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography.

    Science.gov (United States)

    Zhou, Ling; Danielson, Neil D

    2013-12-01

    The room temperature ionic liquid isopropylammonium formate (IPAF) is studied as a reversed phase HPLC mobile phase modifier for separation of native proteins using a polymeric column and the protein stability is compared to that using acetonitrile (MeCN) as the standard organic mobile phase modifier. A variety of important proteins with different numbers of subunits are investigated, including non-subunit proteins: albumin, and amyloglucosidase (AMY); a two subunit protein: thyroglobulin (THY); and four subunit proteins: glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). A significant enhancement in protein stability is observed in the chromatograms upon using IPAF as a mobile phase modifier. The first sharper peak at about 2min represented protein in primarily the native form and a second broader peak more retained at about 5-6min represented substantially denatured or possibly aggregated protein. The investigated proteins (except LDH) could maintain the native form within up to 50% IPAF, while a mobile phase, with as low as 10% MeCN, induced protein denaturation. The assay for pyruvate using LDH has further shown that enzymatic activity can be maintained up to 30% IPAF in water in contrast to no activity using 30% MeCN.

  16. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Ho [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  17. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Foraita, Sebastian D.; Fulton, John L.; Chase, Zizwe A.; Vjunov, Aleksei; Xu, Pinghong; Barath, Eszter; Camaioni, Donald M.; Zhao, Chen; Lercher, Johannes A.

    2015-02-02

    The effect of the physicochemical properties of ZrO2 phases on the activity of Ni/ZrO2 catalysts for hydrodeoxygenation of stearic acid are described. A synergistic interaction between Ni and ZrO2 support was found. The effect is greatest for the monoclinic phase of ZrO2.

  18. A comparison of methods to predict solid phase heats of formation of molecular energetic salts.

    Science.gov (United States)

    Byrd, Edward F C; Rice, Betsy M

    2009-01-01

    In this study a variety of methods were used to compute the energies for lattice enthalpies and gas phase heats of formation of the ionic constituents used in Born-Fajans-Haber cycles to produce solid phase heats of formation of molecular ionic energetic crystals. Several quantum mechanically based or empirical approaches to calculate either the heat of formation of the ionic constituents in the gas phase (deltaH(o)f(g)) or the lattice enthalpy (deltaH(o)Lattice) were evaluated. Solid phase heats of formation calculated from combinations of deltaH(o)f(g) and deltaH(o)Lattice determined through various approaches are compared with experimental values for a series of molecular energetic salts with 1:1, 2:1 and 2:2 charge ratios. Recommendations for combinations of deltaH(o)f(g) and deltaH(o)Lattice to produce best agreement with experiment are given, along with suggestions for improvements of the methods.

  19. Formation of residual NAPL in three-phase systems: Experiments and numerical simulations

    NARCIS (Netherlands)

    Hofstee, C.; Oostrom, M.

    2002-01-01

    The formation of residual, discontinuous nonaqueous phase liquids (NAPLs) in the vadose zone is a process that is not well understood. The simulators have conveniently implemented the Leverett concept (Leverett and Lewis, 1941) which states that in a water-wet porous media, when fluid wettabilities

  20. Numerical modeling of gas-phase kinetics in formation of secondary aerosol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three basic modules of gas-phase photochemical reactions involved in the formation of secondary aerosol are developed for modeling the concentration variation of precursors of aerosol, including ketone (RCOx), aldehyde (ALD), peroxyacetylnitrate (PAN), NO2, and SO2, followed by numerical solution for each of the modules. Reasonable trends of concentration variation of the precursors can be obtained from the proposed modules.

  1. Keeping a Step Ahead: formative phase of a workplace intervention trial to prevent obesity.

    Science.gov (United States)

    Zapka, Jane; Lemon, Stephenie C; Estabrook, Barbara B; Jolicoeur, Denise G

    2007-11-01

    Ecological interventions hold promise for promoting overweight and obesity prevention in worksites. Given the paucity of evaluative research in the hospital worksite setting, considerable formative work is required for successful implementation and evaluation. This paper describes the formative phases of Step Ahead, a site-randomized controlled trial of a multilevel intervention that promotes physical activity and healthy eating in six hospitals in central Massachusetts. The purpose of the formative research phase was to increase the feasibility, effectiveness, and likelihood of sustainability of the intervention. The Step Ahead ecological intervention approach targets change at the organization, interpersonal work environment, and individual levels. The intervention was developed using fundamental steps of intervention mapping and important tenets of participatory research. Formative research methods were used to engage leadership support and assistance and to develop an intervention plan that is both theoretically and practically grounded. This report uses observational data, program minutes and reports, and process tracking data. Leadership involvement (key informant interviews and advisory boards), employee focus groups and advisory boards, and quantitative environmental assessments cultivated participation and support. Determining multiple foci of change and designing measurable objectives and generic assessment tools to document progress are complex challenges encountered in planning phases. Multilevel trials in diverse organizations require flexibility and balance of theory application and practice-based perspectives to affect impact and outcome objectives. Formative research is an essential component.

  2. Small angle neutron scattering study of U(VI) third phase formation in HNO3/DHDECMP–-dodecane system

    Indian Academy of Sciences (India)

    K V Lohithakshan; V K Aswal; S K Aggarwal

    2008-11-01

    Small angle neutron scattering studies (SANS) were carried out to understand the formation of third phase in DHDECMP–dodecane–UO2(NO3)2/HNO3 system. It was observed that third phase formation takes place due to the formation of UO2(NO3)2. DHDECMP reverse micelles in the dodecane phase. SANS data obtained were interpreted with particle interaction model using Baxter sticky spheres model.

  3. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    Science.gov (United States)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  4. Multifunctional acid formation from the gas-phase ozonolysis of beta-pinene.

    Science.gov (United States)

    Ma, Yan; Marston, George

    2008-10-28

    The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3-acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.

  5. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  6. New thresholds for Primordial Black Hole formation during the QCD phase transition

    CERN Document Server

    Sobrinho, J L G; Gonçalves, A L

    2016-01-01

    Primordial Black Holes (PBHs) might have formed in the early Universe as a consequence of the collapse of density fluctuations with an amplitude above a critical value $\\delta_{c}$: the formation threshold. Although for a radiation-dominated Universe $\\delta_{c}$ remains constant, if the Universe experiences some dust-like phases (e.g. phase transitions) $\\delta_{c}$ might decrease, improving the chances of PBH formation. We studied the evolution of $\\delta_{c}$ during the QCD phase transition epoch within three different models: Bag Model (BM), Lattice Fit Model (LFM), and Crossover Model (CM). We found that the reduction on the background value of $\\delta_{c}$ can be as high as $77\\%$ (BM), which might imply a $\\sim10^{-10}$ probability of PBHs forming at the QCD epoch.

  7. Glycerol effects on the formation and rheology of hexagonal phase and related gel emulsion.

    Science.gov (United States)

    Alam, Mohammad Mydul; Aramaki, Kenji

    2009-08-15

    We have investigated the effects of glycerol on the formation and rheology of hexagonal phase (H(1)) and related O/H(1) gel emulsion in the water/C(12)EO(8)/dodecane system at 25 degrees C. It has been found that the aqueous solution of C(12)EO(8) forms H(1) phase, which could solubilize some amounts of dodecane. Beyond the solubilization limit, oil is separated and a two-phase region or H(1)+O phase appeared. Due to high viscosity of the H(1) phase, allows forming O/H(1) gel emulsion at the H(1)+O region. Rheological measurements (without glycerol) have shown that the rheogram of the H(1) phase does not change drastically with the addition of oil but the system is shifted to longer relaxation time. Simultaneously, the values of the absolute value(eta(*)) are found to increase with the addition of oil, which has been described with the neighboring micellar interaction. The rheogram of the O/H(1) gel emulsion shows gel type nature (G'>G'') but the viscosity monotonically decreases with increasing oil content, which could be due to the lower volume fraction of the continuous phase (H(1) phase). Addition of glycerol has brought an order-order transition or the microstructural transition from H(1)-lamellar (L(alpha)) phase, which is manifested from rheology and SAXS measurements. Viscosity of the O/H(1) gel emulsion also decreases with increasing glycerol content. Digital images show the physical appearance of the gel emulsion changes from turbid to transparent, which is depended on the glycerol concentration (since glycerol matches the refractive index of the H(1) phase and dodecane). Structural parameters of the H(1) phase have been evaluated with the help of Bohlin's model and found that the coordination number of the H(1) phase depends not only the oil and glycerol concentrations but also temperature.

  8. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    Science.gov (United States)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  9. The Effect of Sex and Menstrual Phase on Memory Formation during Nap.

    Science.gov (United States)

    Mednick, Sara C; Sattari, Negin; McDevitt, Elizabeth A; Panas, Dagmara; Niknazar, Mohammad; Ahmadi, Maryam; Naji, Mohsen; Baker, Fiona

    2017-09-16

    Memory formation can be influenced by sleep and sex hormones in both men and women, and by the menstrual cycle in women. Though many studies have shown that sleep benefits the consolidation of memories, it is not clear whether this effect differs between men and women in general or according to menstrual phase in women. The present study investigated the effect of sex and menstrual cycle on memory consolidation of face-name associations (FNA) following a daytime nap. Recognition memory was tested using a face-name paired associates task with a polysomnographic nap between morning and evening testing. Seventeen healthy women (age: 20.75 (1.98) years) were studied at two time points of their menstrual cycles, defined from self-report and separated by 2 weeks (perimenses: -5 days to + 6 days from the start of menses, and non-perimenses: outside of the perimenses phase) and compared with eighteen healthy men (age: 22.01 (2.91) years). Regardless of menstrual phase, women had better pre-nap performance than men. Further, menstrual phase affected post-nap memory consolidation, with women showing greater forgetting in their perimenses phase compared with their non-perimenses phase, and men. Interestingly, post-nap performance correlated with electrophysiological events during sleep (slow oscillations, spindles, and temporal coupling between the two), however, these correlations differed according to menstrual phase and sex. Men's performance improvement was associated with the temporal coupling of spindles and slow oscillations (i.e., spindle/SO coincidence) as well as spindles. Women, however, showed an association with slow oscillations during non-perimenses, whereas when they were in their perimenses phase of their cycle, women appeared to show an association only with sleep spindle events for consolidation. These findings add to the growing literature demonstrating sex and menstrual phase effects on memory formation during sleep. Copyright © 2017. Published by

  10. Structural and magnetic phase formation in nanophase brass–iron electron compounds

    Indian Academy of Sciences (India)

    A K Mishra; C Bansal

    2005-11-01

    Starting with Cu0.65Zn0.35 with an e/a ratio of 1.35 we studied the phase formation in nanophase (Cu0.65Zn0.35)1−Fe alloys in the concentration range 0.1 ≤ ≤ 0.7 to see the effect of altering the electron concentration. The evolution of bcc phase from the fcc phase as a function of Fe concentration was investigated by Mössbauer spectroscopy and X-ray diffraction. The grain size, lattice parameters, and average hyperfine magnetic field distributions were estimated for the nanophase alloys. The fcc phase was observed to persist up to 40 atomic per cent Fe substitutions, a mixed (fcc + bcc) phase region up to 70 atomic per cent Fe and bcc phase beyond 70 atomic per cent Fe. The magnetic state of the alloys changed from nonmagnetic for ≤ 0.3 to magnetically ordered state at room temperature for ≥ 0.33, which lies in the fcc phase region. The fcc phase alloys of Fe with non-magnetic metals have very low magnetic transition temperatures. However, in this system the room temperature state is unusually magnetic.

  11. THE VISCOELASTIC EFFECT ON THE FORMATION OF MESO-GLOBULAR PHASE OF DILUTE HETEROPOLYMER SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chi Wu

    2003-01-01

    Linear homopolymer chains in poor solvent exist either as individual crumpled single chain globules or as macroscopic precipitate, depending on whether the solution is in the one- or the two-phase region. However, linear heteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains if the degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate. The selfassembly of block copolymers in a selective solvent is typical of such examples. In practice, the formation of stable mesoglobules can be directly related to the formation of novel polymeric nanoparticles in solution. In this article, we will address the formation of mesoglobular phase not only on the basis of thermodynamics, but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanoparticles will be used to illustrate our discussion.

  12. THE VISCOELASTIC EFFECT ON THE FORMATION OF MESO—GLOBULAR PHASE OF DILUTE HETEROPOLYMER SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    ChiWu

    2003-01-01

    Linear Homopolymer chains in poor solvent exist either as individual crumpled single chain globules or as macroscopic precipitate,depending on whether the solution is in the one- or the two-phase region.However,linear heteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains if the degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate.The selfassembly of block copolymers in a selective solvent is typical of such examples.In practice,the formation of stable mesoglobules can be directly related to the formation of novel polymeric nanoparticles in solution.In this article,we will address the formation of mesoglobular phase not only on the basis of thermodynamics,but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanoparticles will be used to illustrate our discussion.

  13. The Inflow Signature toward Different Evolutionary Phases of Massive Star Formation

    Science.gov (United States)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae; Evans, Neal J., II

    2016-08-01

    We analyze both HCN J = 1-0 and HNC J = 1-0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motion in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.

  14. Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy

    Science.gov (United States)

    Idell, Y.; Levine, L. E.; Allen, A. J.; Zhang, F.; Campbell, C. E.; Olson, G. B.; Gong, J.; Snyder, D. R.; Deutchman, H. Z.

    2016-03-01

    An as-built and solutionized Ni-based superalloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy. Initially, each layer undergoes rapid solidification as it is melted by the laser; however, as the part is built, the underlying layers experience a variety of heating and cooling cycles that produce significant microsegregation of niobium which allows for the formation of the deleterious δ-phase. The as-built microstructure was characterized through Vickers hardness, optical microscopy, scanning and transmission electron microscopy, electron back-scattering diffraction, x-ray diffraction, and synchrotron x-ray microLaue diffraction. The isothermal formation and growth of the δ-phase were characterized using synchrotron-based in situ small angle and wide angle x-ray scattering experiments. These experimental results are compared with multicomponent diffusion simulations that predict the phase fraction and composition. The high residual stresses and unexpected formation of the δ-phase will require further annealing treatments to be designed so as to remove these deficiencies and obtain an optimized microstructure.

  15. Ion beam induced single phase nanocrystalline TiO{sub 2} formation

    Energy Technology Data Exchange (ETDEWEB)

    Rukade, Deepti A. [Department of Physics, University of Mumbai, Mumbai 400098 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Bhattacharyya, Varsha, E-mail: varsha.b1.physics@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India)

    2014-06-15

    Single phase TiO{sub 2} nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×10{sup 16} ions/cm{sup 2} to 1×10{sup 17} ions/cm{sup 2} in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO{sub 2}. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV–vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO{sub 2} rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  16. The inflow signature toward different evolutionary phases of massive star formation

    CERN Document Server

    Jin, Mihwa; Kim, Kee-Tae; Evans, Neal J

    2016-01-01

    We analyzed both HCN J=1-0 and HNC J=1-0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar object (HMPOs), and 54 ultra-compact HII regions (UCHIIs). The inflow asymmetry in HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in blue profile. In the case of HNC spectra, the prevalence of blue sources does not appear, excepting for IRDCs. We suggest that this line is not appropriate to trace inflow motion in evolved stages of massive star formation because the abundance of HNC decreases at high temperatures. This result spotlights the importance of considering chemistry in the dynamics study of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., the IRDC phase rather than in the later phases. Howeve...

  17. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    Energy Technology Data Exchange (ETDEWEB)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L., E-mail: klavsyuk@physics.msu.ru [Moscow State University (Russian Federation)

    2017-01-15

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  18. Hydride phase formation in LaMg{sub 2}Ni during H{sub 2} absorption

    Energy Technology Data Exchange (ETDEWEB)

    Di Chio, M.; Baricco, M. [Dipartimento di Chimica IFM and NIS/CNISM/INSTM, Universita di Torino, Via P.Giuria, 9 10125 Torino (Italy); Schiffini, L.; Enzo, S.; Cocco, G. [Dipartimento di Chimica and INSTM, Universita di Sassari, Via Vienna, 2 07100 Sassari (Italy)

    2008-02-15

    Hydrogen absorption and desorption properties in nanocrystalline LaMg{sub 2}Ni are presented. Nanostructured phases have been obtained by milling grain coarse ingot and by mechanically alloying the parent elements. The structural and hydriding properties were examined by X-ray diffraction, thermal analysis and thermal desorption measurements. Ball milling and mechanical alloying give a significant refinement of the microstructure. Reactive milling has been used for hydrogen absorption experiments. Hydrogenation by means of reactive milling at 300 K under a pressure of 0.4 MPa leads to the formation of a stable La-hydride phase together with an amorphous phase. Thermal desorption up to 983 K of hydrogenated samples leads again to parent LaMg{sub 2}Ni phase. (author)

  19. Switch effect of the nonquantized intrinsic spin Hall conductivity in monolayered monoclinic transition metal dichalcogenides

    Science.gov (United States)

    Lin, Xianqing; Ni, Jun

    2017-07-01

    First-principles calculations have been performed to study the intrinsic spin Hall effect (SHE) and its behavior under vertical electric field in monoclinic transition metal dichalcogenide monolayers (1T‧-MX2 with M  =  Mo, W and X  =  S, Se, Te). We find that the pristine systems exhibit nonquantized intrinsic spin Hall conductivity (SHC) due to the unconserved spin around the direct band gaps though they have nontrivial band topology. The unconserved spin is attributed to the band crossings at Fermi levels for systems without spin-orbit coupling and the distinct composition of the band states around the crossings. Despite the nonquantization of SHC, calculations with the hybrid functional predict SHC approaching the quantized value in W based systems, especially 1T‧-WTe2, which has been realized in experiments. More interesting, a sharp drop of SHC to almost zero in semiconducting systems induced by vertical electric field is observed at the topological phase transition point, suggesting that such systems exhibit a strong switch effect of SHC. In contrast, the switch effect is weak in semi-metallic systems, where the SHC decreases almost continuously with increasing field strength for the chemical potential around the Fermi levels. Our findings suggest potential applications of the pristine 1T‧-MX2 and those under vertical electric field in spintronics devices by utilizing the intrinsic SHE of their bulk states.

  20. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure

    Science.gov (United States)

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V.; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-09-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.

  1. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    Science.gov (United States)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  2. Importance of Aqueous-phase Secondary Organic Aerosol Formation from Aromatics in an Atmospheric Hydrocarbon Mixture

    Science.gov (United States)

    Parikh, H. M.; Carlton, A. G.; Vizuete, W.; Zhang, H.; Zhou, Y.; Chen, E.; Kamens, R. M.

    2010-12-01

    Two new secondary organic aerosol (SOA) modeling frameworks are developed, one based on an aromatic gas and particle-phase kinetic mechanism and another based on a parameterized SOA model used in conjunction with an underlying gas-phase mechanism, both of which simulate SOA formation through partitioning to two stable liquid phases: one hydrophilic containing particle aqueous-phase and the other hydrophobic comprising mainly organic components. The models were evaluated against outdoor smog chamber experiments with different combinations of initial toluene, o-xylene, p-xylene, toluene and xylene mixtures, NOx, non-SOA-forming hydrocarbon mixture, initial seed type, and humidity. Aerosol data for experiments with either ammonium sulfate or initial background seed particles, in the presence of an atmospheric hydrocarbon mixture, NOx and in sunlight under a dry atmosphere (RH = 6 to 10%) show reduced SOA formation when compared to experiments with similar initial gas and particle concentrations at higher relative humidities (RH = 40 to 90%). Both frameworks simulated reasonable fits to the total observed SOA concentrations under all conditions. For both dry and wet experiments with low initial seed, semi-volatile product partitioning in particle organic-phase is mass-transfer limited and is modeled using a dynamic gas-particle partitioning algorithm with accommodation coefficient as the primary pseudo-transport parameter. Further, the modeled SOA product distributions for both frameworks clearly show the importance of the contribution of aqueous-phase SOA particularly under conditions of low initial seed concentrations and high-humidity. For both models, under these conditions, aqueous-phase SOA from uptake of glyoxal, methylglyoxal and related polar products to particle water phase dominates as compared to the partitioning of semi-volatiles to particle organic phase. Interestingly, both the kinetic and parameterized SOA frameworks simulate similar amounts of aqueous-phase

  3. Phenomenological thermodynamics and the structure formation mechanism of the CuTi₂S₄ rhombohedral phase.

    Science.gov (United States)

    Talanov, Michail V; Shirokov, Vladimir B; Talanov, Valery M

    2016-04-21

    The theory of structural phase transition in CuTi2S4 is proposed. The symmetry of order parameters, thermodynamics and the mechanism of the atomic structure formation of the rhombohedral Cu-Ti-thiospinel have been studied. The critical order parameter inducing the phase transition has been found. Within the Landau theory of phase transitions, it is shown that the phase state may change from the high-symmetry cubic disordered Fd3[combining macron]m phase to the low-symmetry ordered rhombohedral R3[combining macron]m phase as a result of phase transition of the first order close to the second order. It is shown that the rhombohedral structure of CuTi2S4 is formed as a result of the displacements of all types of atoms and the ordering of Cu-atoms (1 : 1 order type in tetrahedral spinel sites), Ti-atoms (1 : 1 : 6 order type in octahedral spinel sites), and S-atoms (1 : 1 : 3 : 3 order type). The Cu- and Ti-atoms form metal nanoclusters which are named a "bunch" of dimers. The "bunch" of dimers in CuTi2S4 is a new type of self-organization of atoms in frustrated spinel-like structures. It is shown that Ti-atoms also form other types of metal nanoclusters: trimers and tetrahedra.

  4. Neutron diffraction observations of ferroelastic domain switching and tetragonal-to-monoclinic transformation in Ce-TZP

    Energy Technology Data Exchange (ETDEWEB)

    Kisi, E.H. [Univ. of Newcastle, Callaghan, New South Wales (Australia). Dept. of Mechanical Engineering; Kennedy, S.J.; Howard, C.J. [Australian Nuclear Science and Technology Organisation, Menai, New South Wales (Australia). Neutron Scattering Group

    1997-03-01

    In-situ neutron diffraction has been used to study the plastic deformation of a tetragonal zirconia polycrystal stabilized with 12 mol% ceria under compressive loads up to 1.6 GPa. The development of significant plastic strain in the ceramic has been found to be due to a combination of ferroelastic switching and the tetragonal-to-monoclinic phase transformation, both beginning at {approximately}1.2 GPa. Evidence of a strong coupling between the two phenomena is present. Both transitions are partially reversed on removal of the load. The linear elastic response of the a and c crystal axes of the parent tetragonal phase suggests that the ferroelastic switching occurs directly by a shear mechanism rather than via a cubic intermediate state. Anisotropic distortion of the tetragonal unit cell, as the critical stress is approached, gives some insight into the shear transformation mechanisms.

  5. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  6. Structural phase transition in perovskite metal-formate frameworks: a Potts-type model with dipolar interactions.

    Science.gov (United States)

    Šimėnas, Mantas; Balčiūnas, Sergejus; Ma Combining Cedilla Czka, Mirosław; Banys, Jūras; Tornau, Evaldas E

    2016-07-21

    We propose a combined experimental and numerical study to describe an order-disorder structural phase transition in perovskite-based [(CH3)2NH2][M(HCOO)3] (M = Zn(2+), Mn(2+), Fe(2+), Co(2+) and Ni(2+)) dense metal-organic frameworks (MOFs). The three-fold degenerate orientation of the molecular (CH3)2NH2(+) (DMA(+)) cation implies a selection of the statistical three-state model of the Potts type. It is constructed on a simple cubic lattice where each lattice point can be occupied by a DMA(+) cation in one of the available states. In our model the main interaction is the nearest-neighbor Potts-type interaction, which effectively accounts for the H-bonding between DMA(+) cations and M(HCOO)3(-) cages. The model is modified by accounting for the dipolar interactions which are evaluated for the real monoclinic lattice using density functional theory. We employ the Monte Carlo method to numerically study the model. The calculations are supplemented with the experimental measurements of electric polarization. The obtained results indicate that the three-state Potts model correctly describes the phase transition order in these MOFs, while dipolar interactions are necessary to obtain better agreement with the experimental polarization. We show that in our model with substantial dipolar interactions the ground state changes from uniform to the layers with alternating polarization directions.

  7. Formation of Nanoscale Intermetallic Phases in Ni Surface Layer at High Intensity Implantation of Al Ions

    Institute of Scientific and Technical Information of China (English)

    I.A.Bozhko; S.V.Fortuna; I.A.Kurzina; I.B.Stepanov; E.V.Kozlov; Yu.P. Sharkeev

    2004-01-01

    The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source "Raduga-5". It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3Al, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-Al phase diagram.

  8. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  9. Mild oxide-hydrothermal synthesis of different aspect ratios of monoclinic BiVO{sub 4} nanorods tuned by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fengqiang; Wu, Qingsheng; Ma, Jie; Chen, Yijun [Department of Chemistry, Tongji University, Shanghai (China)

    2009-01-15

    The monoclinic scheelite BiVO{sub 4} nanocrystals were easily prepared via an oxide-hydrothermal synthesis (OHS) method directly utilizing bulk-phase materials of V{sub 2}O{sub 5} and Bi{sub 2}O{sub 3} as precursor. In the presence of PEG 4000, the reactions were performed in the mild temperature range from 130 C to 200 C. The products were characterized with FTIR, XRD, TEM and UV-vis DRS. These data clearly demonstrated that monoclinic scheelite structure BiVO{sub 4} could be synthesized by the feasible OHS route. The aspect ratios of nanorods were increased with the synthesized temperature. The as-prepared BiVO{sub 4} showed high photocatalytic activity, which was demonstrated by degradation of methylene blue (MB) solution under visible-light irradiation ({lambda}>420 nm). A growth mechanism of bismuth vanadate was proposed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Atomic scale analysis of phase formation and diffusion kinetics in Ag/Al multilayer thin films

    Science.gov (United States)

    Aboulfadl, Hisham; Gallino, Isabella; Busch, Ralf; Mücklich, Frank

    2016-11-01

    Thin films generally exhibit unusual kinetics leading to chemical reactions far from equilibrium conditions. Binary metallic multilayer thin films with miscible elements show some similar behaviors with respect to interdiffusion and phase formation mechanisms. Interfacial density, lattice defects, internal stresses, layer morphologies and deposition conditions strongly control the mass transport between the individual layers. In the present work, Ag/Al multilayer thin films are used as a simple model system, in which the effects of the sputtering power and the bilayer period thickness on the interdiffusion and film reactions are investigated. Multilayers deposited by DC magnetron sputtering undergo calorimetric and microstructural analyses. In particular, atom probe tomography is extensively used to provide quantitative information on concentration gradients, grain boundary segregations, and reaction mechanisms. The magnitude of interdiffusion was found to be inversely proportional to the period thickness for the films deposited under the same conditions, and was reduced using low sputtering power. Both the local segregation at grain boundaries as well as pronounced non-equilibrium supersaturation effects play crucial roles during the early stages of the film reactions. For multilayers with small periods of 10 nm supersaturation of the Al layers with Ag precedes the polymorphic nucleation and growth of the hcp γ-Ag2Al phase. In larger periods the γ phase formation is triggered at junctions between grain boundaries and layers interfaces, where the pathway to heterogeneous nucleation is local supersaturation. Other Ag-rich phases also form as intermediate phases due to asymmetric diffusion rates of parent phases in the γ phase during annealing.

  11. SURVIVAL OF INTERSTELLAR MOLECULES TO PRESTELLAR DENSE CORE COLLAPSE AND EARLY PHASES OF DISK FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Hincelin, U. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Wakelam, V.; Hersant, F.; Guilloteau, S. [University of Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Commerçon, B., E-mail: ugo.hincelin@virginia.edu [Laboratoire de radioastronomie, LERMA, Observatoire de Paris, Ecole Normale Supérieure (UMR 8112 CNRS), 24 rue Lhomond, F-75231 Paris Cedex 05 (France)

    2013-09-20

    An outstanding question of astrobiology is the link between the chemical composition of planets, comets, and other solar system bodies and the molecules formed in the interstellar medium. Understanding the chemical and physical evolution of the matter leading to the formation of protoplanetary disks is an important step for this. We provide some new clues to this long-standing problem using three-dimensional chemical simulations of the early phases of disk formation: we interfaced the full gas-grain chemical model Nautilus with the radiation-magnetohydrodynamic model RAMSES, for different configurations and intensities of the magnetic field. Our results show that the chemical content (gas and ices) is globally conserved during the collapsing process, from the parent molecular cloud to the young disk surrounding the first Larson core. A qualitative comparison with cometary composition suggests that comets are constituted of different phases, some molecules being direct tracers of interstellar chemistry, while others, including complex molecules, seem to have been formed in disks, where higher densities and temperatures allow for an active grain surface chemistry. The latter phase, and its connection with the formation of the first Larson core, remains to be modeled.

  12. Formation of asymmetrical structured silica controlled by a phase separation process and implication for biosilicification.

    Directory of Open Access Journals (Sweden)

    Jia-Yuan Shi

    Full Text Available Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH34 as silica precursor, phospholipid (PL and dodecylamine (DA were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM, transmission electron microscope (TEM, X-ray diffraction (XRD, thermogravimetric and differential thermal analysis (TG-DTA, infrared spectra (IR, and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines, phospholipids (e.g., silicalemma and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification.

  13. Effect of Al doping on phase formation and thermal stability of iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Mukul, E-mail: mgupta@csr.res.in [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Pandey, Nidhi [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Horisberger, Michael [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stahn, Jochen [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-11-25

    In the present work, we systematically studied the effect of Al doping on the phase formation of iron nitride (Fe–N) thin films. Fe–N thin films with different concentration of Al (Al = 0, 2, 3, 6, and 12 at.%) were deposited using dc magnetron sputtering by varying the nitrogen partial pressure between 0 and 100%. The structural and magnetic properties of the films were studied using x-ray diffraction and polarized neutron reflectivity. It was observed that at the lowest doping level (2 at.% of Al), nitrogen rich non-magnetic Fe–N phase gets formed at a lower nitrogen partial pressure as compared to the un-doped sample. Interestingly, we observed that as Al doping is increased beyond 3 at.%, nitrogen rich non-magnetic Fe–N phase appears at higher nitrogen partial pressure as compared to un-doped sample. The thermal stability of films were also investigated. Un-doped Fe–N films deposited at 10% nitrogen partial pressure possess poor thermal stability. Doping of Al at 2 at.% improves it marginally, whereas, for 3, 6 and 12 at.% Al doping, it shows significant improvement. The obtained results have been explained in terms of thermodynamics of Fe–N and Al–N. - Highlights: • Doping effects of Al on Fe–N phase formation is studied. • Phase formation shows a non-monotonic behavior with Al doping. • Low doping levels of Al enhance and high levels retard the nitridation process. • Al doping beyond 3 at.% improve thermal stability of Fe–N films.

  14. Complex Organic Molecules Formation in Space Through Gas Phase Reactions: A Theoretical Approach

    Science.gov (United States)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2017-02-01

    Chemistry in the interstellar medium (ISM) is capable of producing complex organic molecules (COMs) of great importance to astrobiology. Gas phase and grain surface chemistry almost certainly both contribute to COM formation. Amino acids as building blocks of proteins are some of the most interesting COMs. The simplest one, glycine, has been characterized in meteorites and comets and, its conclusive detection in the ISM seems to be highly plausible. In this work, we analyze the gas phase reaction of glycine and {{{CH}}5}+ to establish the role of this process in the formation of alanine or other COMs in the ISM. Formation of protonated α- and β-alanine in spite of being exothermic processes is not viable under interstellar conditions because the different paths leading to these isomers present net activation energies. Nevertheless, glycine can evolve to protonated 1-imide-2, 2-propanediol, protonated amino acetone, protonated hydroxyacetone, and protonated propionic acid. However, formation of acetic acid and protonated methylamine is also a favorable process and therefore will be a competitive channel with the evolution of glycine to COMs.

  15. Phase formation and mechanical properties of Cu-Zr-Ti bulk metallic glass composites

    Science.gov (United States)

    Kim, Byoung Jin; Yun, Young Su; Kim, Won Tae; Kim, Do Hyang

    2016-11-01

    The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu50Zr50-xTix alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19' phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19'. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below 30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than 50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction.

  16. Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel

    Directory of Open Access Journals (Sweden)

    Gajendra Prasad Singh et al

    2008-01-01

    Full Text Available Direct current (DC glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N2:H2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe4N, and Fe3N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.

  17. Formation of complex organic molecules in cold objects: the role of gas phase reactions

    CERN Document Server

    Balucani, Nadia; Taquet, Vianney

    2015-01-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm (>30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain surface and gas phase chemistry. We propose here a new model to form DME and MF with gas phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthetized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairy well the observations towards L1544. It also...

  18. Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.

    Science.gov (United States)

    Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto

    2008-04-01

    Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N2:H2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe4N, and Fe3N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.

  19. Modulation Format Independent Joint Polarization and Phase Tracking for Coherent Receivers

    CERN Document Server

    Czegledi, Cristian B; Karlsson, Magnus; Johannisson, Pontus

    2016-01-01

    The state of polarization and the carrier phase drift dynamically during transmission in a random fashion in coherent optical fiber communications. The typical digital signal processing solution to mitigate these impairments consists of two separate blocks that track each phenomenon independently. Such algorithms have been developed without taking into account mathematical models describing the impairments. We study a blind, model-based tracking algorithm to compensate for these impairments. The algorithm dynamically recovers the carrier phase and state of polarization jointly for an arbitrary modulation format. Simulation results show the effectiveness of the proposed algorithm, having a fast convergence rate and an excellent tolerance to phase noise and dynamic drift of the polarization. The computational complexity of the algorithm is lower compared to state-of-the-art algorithms at similar or better performance, which makes it a strong candidate for future optical systems.

  20. Monoclinic 122-Type BaIr2Ge2 with a Channel Framework: A Structural Connection between Clathrate and Layered Compounds

    Directory of Open Access Journals (Sweden)

    Xin Gui

    2017-07-01

    Full Text Available A new 122-type phase, monoclinic BaIr2Ge2 is successfully synthesized by arc melting; X-ray diffraction and scanning electron microscopy are used to purify the phase and determine its crystal structure. BaIr2Ge2 adopts a clathrate-like channel framework structure of the monoclinic BaRh2Si2-type, with space group P21/c. Structural comparisons of clathrate, ThCr2Si2, CaBe2Ge2, and BaRh2Si2 structure types indicate that BaIr2Ge2 can be considered as an intermediate between clathrate and layered compounds. Magnetic measurements show it to be diamagnetic and non-superconducting down to 1.8 K. Different from many layered or clathrate compounds, monoclinic BaIr2Ge2 displays a metallic resistivity. Electronic structure calculations performed for BaIr2Ge2 support its observed structural stability and physical properties.

  1. A new monoclinic polymorph of 3-diethylamino-4-(4-methoxyphenyl-1,1-dioxo-4H-1λ6,2-thiazete-4-carbonitrile

    Directory of Open Access Journals (Sweden)

    Ahmed M. Orlando

    2010-08-01

    Full Text Available A new monoclinic form of the title compound, C14H17N3O3S, has been found upon slow crystallization from water. Another monoclinic form of the compound was obtained previously from a mixture of dichloromethane and diethyl ether [Clerici et al. (2002. Tetrahedron, 58, 5173–5178]. Both phases crystallize in space group P21/n with one molecule in the asymmetric unit. The formally single exocyclic C—N bond that connects the –NEt2 unit with the thiazete ring is considerably shorter than the adjacent, formally double, endocyclic C=N bond. This is likely to be due to the extended conjugated system between the electron-donor diethylammine fragment and the electron-withdrawing sulfonyl group. In the newly discovered polymorph, the methoxy group is rotated by almost 180° around the phenyl–OCH3 bond, resulting in a different molecular conformation.

  2. Role of Disclinations and Nanocrystalline State in the Formation of Quasicrystalline Phases on Mechanical Alloying of Cu-Fe Powders

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation.

  3. FORMATION REGULARITIES OF PHASE COMPOSITION, STRUCTURE AND PROPERTIES DURING MECHANICAL ALLOYING OF BINARY ALUMINUM COMPOSITES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The paper presents investigation results pertaining to  ascertainment of formation regularities of phase composition and structure during mechanical alloying of binary aluminium composites/substances. The invetigations have been executed while applying a wide range of methods, devices and equipment used in modern material science. The obtained data complement each other. It has been established that presence of oxide and hydro-oxide films on aluminium powder  and introduction of surface-active substance in the composite have significant effect on mechanically and thermally activated phase transformations and properties of semi-finished products.  Higher fatty acids have been used as a surface active substance.The mechanism of mechanically activated solid solution formation has been identified. Its essence is  a formation of  specific quasi-solutions at the initial stage of processing. Mechanical and chemical interaction between components during formation of other phases has taken place along with dissolution  in aluminium while processing powder composites. Granule basis is formed according to the dynamic recrystallization mechanism and possess submicrocrystal structural type with the granule dimension basis less than 100 nm and the grains are divided in block size of not more than 20 nm with oxide inclusions of 10–20 nm size.All the compounds  with the addition of  surface-active substances including aluminium powder without alloying elements obtained by processing in mechanic reactor are disperse hardened. In some cases disperse hardening is accompanied by dispersive and solid solution hardnening process. Complex hardening predetermines a high temperature of recrystallization in mechanically alloyed compounds,  its value exceeds 400 °C.

  4. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.

    Science.gov (United States)

    Portugal, Steven J; Hubel, Tatjana Y; Fritz, Johannes; Heese, Stefanie; Trobe, Daniela; Voelkl, Bernhard; Hailes, Stephen; Wilson, Alan M; Usherwood, James R

    2014-01-16

    Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.

  5. Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2

    Science.gov (United States)

    Kim, Sera; Kim, Jung Ho; Kim, Dohyun; Hwang, Geunwoo; Baik, Jaeyoon; Yang, Heejun; Cho, Suyeon

    2017-06-01

    Monoclinic group 6 transition metal dichalcogenides (TMDs) have been extensively studied for their intriguing 2D physics (e.g. spin Hall insulator) as well as for ohmic homojunction contacts in 2D device applications. A critical prerequisite for those applications is thickness control of the monoclinic 2D materials, which allows subtle engineering of the topological states or electronic bandgaps. Local thickness control enables the realization of clean homojunctions between different electronic states, and novel device operation in a single material. However, conventional fabrication processes, including chemical methods, typically produce non-homogeneous and relatively thick monoclinic TMDs, due to their distorted octahedral structures. Here, we report on a post-patterning technique using laser-irradiation to fabricate homojunctions between two different thickness areas in monoclinic MoTe2. A thickness-dependent electronic change from a metallic to semiconducting state, resulting in an electronic homojunction, was realized by the optical patterning of pristine MoTe2 flakes, and a pre-patterned device channel of monoclinic MoTe2 with a thickness-resolution of 5 nm. Our work provides insight on an optical post-process method for controlling thickness, as a promising approach for fabricating impurity-free 2D TMDs homojunction devices.

  6. Interstellar Cloud Formation through Aggregation of Cold Blobs in a Two-Phase Gas Mixture

    Science.gov (United States)

    Kamaya, Hideyuki

    1997-05-01

    We propose a new formation scenario for interstellar clouds through the aggregation of dense cold blobs (phase II [PII]), which drift in a diffuse warm medium (phase I [PI]). We examine how important it is that there exist numerous PII blobs when the properties of such a two-phase flow are studied. First, we solve a one-dimensional shock-tube problem and find that the shock wave in the mixture is considerably damped because of the drag force between the two phases. This is because the PII blobs are left behind the shock front, since their inertia is larger than that of PI, thus suppressing large spatial variations of PI gas via the drag force. The PII blobs thus play the role of anchors. Therefore, mass aggregation by shocks may be ineffective in a two-phase medium. However, the PII blobs can still aggregate through a kind of fluid dynamical instability. We next suppose that the PI gas is accelerated upward by shocks against downward gravity, while the PII blobs are at rest because of balance between the drag force due to PI and gravity. If we put a positive perturbation in the number density of PII blobs, the upward PI flow above the perturbation is decelerated by the enhanced drag force, and the velocity difference between PI and PII is thereby reduced. Then the PII blobs above the perturbation are accelerated downward, since the gravity on PII now dominates the reduced drag force. As a result, the blobs will fall onto this perturbed region, and this region becomes denser and denser. This is the mechanism of the instability. Therefore, we expect efficient cloud formation by this instability in spiral arms, even when galactic shocks are extremely damped.

  7. An elementary reaction kinetic model of the gas-phase formation of polychlorinated dibenzofurans from chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Dellinger, B.; Khachatryan, L. [Louisiana State Univ., Baton Rouge, LA (United States); Asatryan, R. [State Medical Univ., Yerevan (Armenia)

    2004-09-15

    Combustion and thermal processes are generally recognized as the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F or simply ''dioxins'') in the environment. A previously developed, simple mechanism of gas-phase formation of PCDD from chlorinated phenols suggested that the gas-phase formation pathway was too slow to account for concentrations of PCDD observed in full-scale combustors. As a result, most research on formation of PCDD/F in combustion sources focused on surface-mediated formation. In this manuscript, we report the development of a modified model for the purely gas-phase formation of polychlorinated dibenzofurans (PCDFs) that is based on the experimentally observed formation of PCDF from the oxidation of 2,4,6-trichlorophenol (TCP) in the presence of hexane.

  8. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    Science.gov (United States)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  9. The influence of phosphorous pentoxide on the phase composition and formation of Portland clinker

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, T., E-mail: stanek@vustah.cz [Research Institute of Building Materials, Hnevkovskeho 65, 617 00 Brno (Czech Republic); Sulovsky, P., E-mail: sulovsky@sci.muni.cz [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2009-07-15

    The influence of phosphorous pentoxide (P{sub 2}O{sub 5}) on the phase composition and formation of Portland clinker was studied in laboratory conditions. Phosphorous pentoxide in the form of calcium phosphate was added to common cement-making raw meal in graded quantities up to 5 wt.%. The raw meal properties were studied by thermal analysis. The development of clinker formation by burning for periods ranging from 20 s to 30 min in a special semi-automatic oven with a manipulator was followed using light optical microscopy. The phase composition of clinkers burnt to equilibrium was quantified by the optical point counting method. The entry of P{sub 2}O{sub 5} into clinker minerals was determined by electron microprobe analyses. The laboratory tests show that at 0.7 wt.% of P{sub 2}O{sub 5} in the clinker the alite (Ca{sub 3}SiO{sub 5}) content decreases and belite (Ca{sub 2}SiO{sub 4}) content increases. At a P{sub 2}O{sub 5} content of 4.5 wt.% alite formation was totally blocked and the resulting clinker contained free lime in equilibrium with belite.

  10. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-04-01

    Terrestrial vegetation releases a great variety of volatile organic compounds (VOC) into the atmosphere. Monoterpenes, like myrcene, contribute significantly to this global biogenic VOC emission. In the atmosphere, monoterpenes rapidly undergo oxidation reactions by OH radicals (mainly during the daytime), NO3 radicals (mainly during the nighttime) and O3 to form multifunctional oxidation products. The products of these reactions are likely to be of low volatility and hence might lead to secondary organic aerosol (SOA) formation. In the present study, we report results from a series of chamber experiments performed in the LEAK chamber at TROPOS in which the gas-phase products and SOA yields obtained from myrcene O3 reactions with and without an OH radical scavenger as well as from the myrcene OH radical reaction in the presence of NOx have been measured. During the experiments the consumption of myrcene as well as the formation of gas-phase products was monitored using a proton transfer reaction mass spectrometer (PTR-MS). Ozone concentration was measured by an O3 monitor and the mixing ratios of nitrogen oxides were measured by a NOx monitor. Particle size distributions between 3-900 nm were monitored every 11 min using a differential mobility particle sizer (DMPS) system. In addition to the products observed by means of the PTR-MS by their m/z values, an identification of carbonylic compounds by their DNPH derivatives was performed. Beside low molecular mass products the formation of 4-vinyl-4-pentenal with a yield of 55 % in myrcene ozonolysis has been observed. The further oxidation of this major first generation product lead to the formation of two dicarbonylic products with m/z 113 and to SOA formation. The influence of the continuing oxidation of 4-vinyl-4-pentenal on SOA formation will be discussed in detail. The emergence of the gas-phase product hydroxyacetone as direct result of the myrcene ozone reaction will be mooted, because hydroxyacetone seems to

  11. LAWS OF FORMATION MOVEMENT PATTERNS MANAGEMENT BODY IN PHASE OF FLIGHT IN ATHLETES

    Directory of Open Access Journals (Sweden)

    A. V. Razuvanova

    2016-01-01

    Full Text Available Materials and methods. Regularities of movement patterns in the body control the flight phase of the athletes on the example of the long jump were studied by methods of Motion Tracking and electromyography. The findings suggest that a significant difference of motor stereotypes underlying the performance of motor actions – the long jump – in different skill athletes.Results. In the initial phase (phase jumping differences between the groups are small - repulsion athletes perform in a similar manner, a core group of athletes with a more efficient use of the reserve of the work of the knee. The nature of the work the leg muscles in athletes of both groups in this phase is also not different. However, the further execution of motor actions in athletes of both groups occurs in different ways. Athletes of the control group did not perform virtually control the body in flight phase. This is evidenced primarily high tone muscles in the arms, back and neck throughout the flight phase. Movements are performed only in the knee and hip joints, and already in the phase of “hang-up” – the highest point of the flight path - these movements have focused on the preparation for landing.Conclusions. Athletes of the main group in the flight phase involve the full range of movements - flexion and extension are performed as in the shoulder and elbow joints, as well as in the neck and spine joints. All these movements are designed to increase the range of jumps - this contributes to the removal of the legs forward, and giving the body angular acceleration by the movement of legs and head. Preparation for landing is made directly before contact with the surface, but the very nature of the phase of flight allows the athlete to use the inertia of motion of the body as much as possible to lengthen the jump and thus facilitate shock absorption and retention of balance upon landing.Formation movement patterns in the body control the flight phase of the athletes

  12. Monoclinic β-Li2TiO3: Neutron diffraction study and estimation of Li diffusion pathways

    Science.gov (United States)

    Monchak, M.; Dolotko, O.; Mühlbauer, M. J.; Baran, V.; Senyshyn, A.; Ehrenberg, H.

    2016-11-01

    A neutron powder diffraction study on lithium titanate Li2TiO3 was performed at low temperatures. The monoclinic β-phase has been found to be stable over the whole investigated range of temperatures (4 K-300 K). A smooth and nonlinear increase of the lattice parameters has been observed upon heating and correlated to the behavior of interatomic distances. Lithium diffusion pathways in Li2TiO3 were estimated theoretically on the basis of the obtained structural data using bond-valence modeling. Experimentally diffusion pathways were evaluated by analysis of the negative nuclear scattering densities at 1073 K, which were reconstructed using a maximum entropy method. Although the bond-valence mismatch map indicated a possible Li diffusion either in ab plane or along c direction, analysis of the experimental data revealed that Li migration is thermodynamically less feasible in latter case.

  13. Formation of Austenite During Intercritical Annealing of Dual-Phase Steels

    Science.gov (United States)

    Speich, G. R.; Demarest, V. A.; Miller, R. L.

    1981-08-01

    The formation of austenite during intercritical annealing at temperatures between 740 and 900 °C was studied in a series of 1.5 pct manganese steels containing 0.06 to 0.20 pct carbon and with a ferrite-pearlite starting microstructure, typical of most dual-phase steels. Austenite formation was separated into three stages: (1) very rapid growth of austenite into pearlite until pearlite dissolution is complete; (2) slower growth of austenite into ferrite at a rate that is controlled by carbon diffusion in austenite at high temperatures (~85O °C), and by manganese diffusion in ferrite (or along grain boundaries) at low temperatures (~750 °C); and (3) very slow final equilibration of ferrite and austenite at a rate that is controlled by manganese diffusion in austenite. Diffusion models for the various steps were analyzed and compared with experimental results.

  14. Formation of PAHs and Carbonaceous Solids in Gas-Phase Condensation Experiments

    CERN Document Server

    Jäger, C; Jansa, I Llamas; Henning, T; Huisken, F

    2009-01-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs), that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile 3-5 ring systems. At condensation temperatures higher than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot AGB stars or W...

  15. Measuring the efficiency of ice formation in mixed-phase clouds over Europe with Cloudnet

    Science.gov (United States)

    Bühl, Johannes; Engelmann, Ronny; Ansmann, Albert; Patric, Seifert

    2016-04-01

    Mixed-phase clouds play an important role in current weather and climate research. The complex interaction between aerosols, clouds and dynamics taking place within these clouds is still not understood. The unknown impact of ice formation on cloud lifetime and precipitation evolution introduces large uncertainties into numeric weather prediction and climate projections. In the framework of the BACCHUS project, we have evaluated combined remote sensing data gathered at different European Cloudnet sites (Leipzig, Lindenberg, Potenza and Mace-Head) to study the relation between ice and liquid water in mixed-phase cloud layers. In this way, we can quantify the efficiency of ice production within these clouds. The study also allows contrasting marine (Potenza and Mace-Head) and continental sites (Leipzig and Lindenberg). We derive liquid and ice water content together with vertical motions of ice particles falling through cloud base. The ice mass flux is quantified by combining measurements of ice water content and particle fall velocity. The efficiency of heterogeneous ice formation and its impact on cloud lifetime is estimated for different cloud-top temperatures by relating the ice mass flux and the liquid water content at cloud top. Cloud radar measurements of polarization and fall velocity yield, that ice crystals formed in cloud layers with a geometrical thickness of less than 350 m are mostly pristine when they fall out of the cloud. A difference of four orders of magnitude in ice formation efficiency in mixed-phase cloud layers is found over the cloud-top-temperature range from -40 to 0 °C.

  16. A Massive Galaxy in its Core Formation Phase Three Billion Years After the Big Bang

    CERN Document Server

    Nelson, Erica; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z=2.3. GOODS-N-774 has a stellar mass of 1.0x10^11 Msun, a half-light radius of 1.0 kpc, and a star formation rate of 90[+45-20]Msun/yr. The star forming gas has a velocity dispersion 317+-30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z~2 and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavil...

  17. Bridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation

    CERN Document Server

    Dapp, Wolf B; Kunz, Matthew W

    2011-01-01

    Context: Ideal MHD simulations have revealed catastrophic magnetic braking (MB) in the protostellar phase, which prevents the formation of a centrifugal disk around a nascent protostar. Aims: We determine if non-ideal MHD, including the effects of ambipolar diffusion and Ohmic dissipation determined from a detailed chemical network model, allows for disk formation at the earliest stages of star formation (SF). Methods: We employ the axisymmetric thin-disk approximation in order to resolve a dynamic range of 9 orders of magnitude in length and 16 in density, while also calculating partial ionization using up to 19 species in a detailed chemical equilibrium model. MB is applied using a steady-state approximation, and a barotropic relation is used to capture the thermal evolution. Results: We resolve the formation of the first and second cores, with expansion waves at the periphery of each, a magnetic diffusion shock, and prestellar infall profiles at larger radii. Power-law profiles in each region can be unders...

  18. The general mechanisms of Cu cluster formation in the processes of condensation from the gas phase

    Indian Academy of Sciences (India)

    I V Chepkasov; Yu Ya Gafner; S L Gafner; S P Bardakhanov

    2015-06-01

    Technological applications of metallic clusters impose very strict requirements for particle size, shape, structure and defect density. Such geometrical characteristics of nanoparticles are mainly determined by the process of their growth. This work represents the basic mechanisms of cluster formation from the gas phase that has been studied on the example of copper. The process of Cu nanoclusters synthesis has been studied by the moleculardynamics method based on tight-binding potentials. It has been shown that depending on the size and temperature of the initial nanoclusters the process of nanoparticle formation can pass through different basic scenarios. The general conditions of different types of particles formation have been defined and clear dependence of the cluster shape from collision temperature of initial conglomerates has been shown. The simulation results demonstrate a very good agreement with the available experimental data. Thus, it has been shown that depending on the specific application of the synthesized particles or in electronics, where particles of a small size with a spherical shape are required, or in catalytic reactions, where the main factor of effectiveness is the maximum surface area with the help of temperature of the system it is possible to get the realization of a certain frequency of this or that scenario of the shape formation of nanocrystalline particles.

  19. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    Science.gov (United States)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  20. Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2004-12-01

    We could form lattice-shaped polymer walls in a liquid crystal (LC) layer through the thermal phase separation of an LC/polystyrene solution between substrates with polyimide films etched by short-wavelength ultraviolet irradiation using a photomask. The LC wetting difference between the polyimide and substrate surfaces caused the coalescence of growing LC droplets on patterned polyimide films with the progress of phase separation. Consequently, polymer walls were formed on substrate surface areas without polyimide films. The shape of the polymer wall formed became sharp with the use of rubbed polyimide films because the nucleation of growing LC droplets concentrated on the patterned polyimide films. It is thought that the increase in the alignment order of LC molecules in the solution near the rubbed polyimide films promotes the formation of LC molecular aggregation, which becomes the growth nuclei of LC droplets.

  1. Halo formation in three-dimensional bunches with various phase space distributions

    Science.gov (United States)

    Fedotov, A. V.; Gluckstern, R. L.; Kurennoy, S. S.; Ryne, R. D.

    1999-01-01

    A realistic treatment of halo formation must take into account 3D beam bunches and 6D phase space distributions. We recently constructed, analytically and numerically, a new class of self-consistent 6D phase space stationary distributions, which allowed us to study the halo development mechanism without being obscured by the effect of beam redistribution. In this paper we consider nonstationary distributions and study how the halo characteristics compare with those obtained using the stationary distribution. We then discuss the effect of redistribution on the halo development mechanism. In contrast to bunches with a large aspect ratio, we find that the effect of coupling between the r and z planes is especially important as the bunch shape becomes more spherical.

  2. Entropy landscape of phase formation associated with quantum criticality in Sr3Ru2O7.

    Science.gov (United States)

    Rost, A W; Perry, R S; Mercure, J-F; Mackenzie, A P; Grigera, S A

    2009-09-11

    Low-temperature phase transitions and the associated quantum critical points are a major field of research, but one in which experimental information about thermodynamics is sparse. Thermodynamic information is vital for the understanding of quantum many-body problems. We show that combining measurements of the magnetocaloric effect and specific heat allows a comprehensive study of the entropy of a system. We present a quantitative measurement of the entropic landscape of Sr3Ru2O7, a quantum critical system in which magnetic field is used as a tuning parameter. This allows us to track the development of the entropy as the quantum critical point is approached and to study the thermodynamic consequences of the formation of a novel electronic liquid crystalline phase in its vicinity.

  3. Oxidation Control and Non-equilibrium Phase Formation in Cu-Cr Alloys during Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    Xiaolong CUI; Lai WANG; Min QI

    2001-01-01

    Using X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and optical microscopy, phase transformation of Cu-Cr alloys with various compositions during mechanical alloying process has been investigated. Besides the formation of supersaturated solid solution, the results show that a kind of amorphous oxide formed in the process,and the addition of carbon has obviously effect on the suppression of oxidation and the deoxidization of oxide. The reactive milling has a remarkable effect on the behavior of oxidation.

  4. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  5. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    Science.gov (United States)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  6. Interdigitated lamella and bicontinuous cubic phases formation from natural cyclic surfactin and its linear derivative.

    Science.gov (United States)

    Imura, Tomohiro; Ikeda, Shintaro; Aburai, Kenichi; Taira, Toshiaki; Kitamoto, Dai

    2013-01-01

    The lyotropic phase behavior of the cyclic form surfactin (CS) produced by Bacillus subtilis and its linear derivative in aqueous solution was evaluated for the first time by using polarized light microscopy and small-angle X-ray scattering (SAXS). By polarized light microscopy, the aqueous solutions of CS at the concentrations above 50 wt% were optically anisotropic and gave mosaic textures, suggesting the formation of lamella structures, while those of the linear surfactin (LS) were optically isotropic and no distinctive textures were observed. SAXS diffractograms of the CS solution above 50 wt% clearly gave the three peaks whose spacing ratio of 1: 2: 3, indicating the presence of the lamellar (L(α)) phase, while those of the LS solution gave multiple peaks whose spacing ratios of √2: √3: √4: √6: √8, confirming the bicontinuous cubic (V₂) phase of the symmetry Pn3m. It was also found that the lamellar phase with CS was composed of not ordinary bilayer but interdigitated bilayer with the unusual packing of the acyl chain region. These results clearly demonstrated that the cyclic peptide structure plays a key role in regulating their self-assembly, and naturally occurring CS is likely to form lamellar structure by balancing bulky peptide headgroups with interdigitated packing of their acyl chains.

  7. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  8. Petrology of Karoo volcanic rocks in the southern Lebombo monocline, Mozambique

    Science.gov (United States)

    Melluso, Leone; Cucciniello, Ciro; Petrone, Chiara M.; Lustrino, Michele; Morra, Vincenzo; Tiepolo, Massimo; Vasconcelos, Lopo

    2008-11-01

    The Karoo volcanic sequence in the southern Lebombo monocline in Mozambique contains different silicic units in the form of pyroclastic rocks, and two different basalt types. The silicic units in the lower part of the Lebombo sequence are formed by a lower unit of dacites and rhyolites (67-80 wt.% SiO 2) with high Ba (990-2500 ppm), Zr (800-1100 ppm) and Y (130-240 ppm), which are part of the Jozini-Mbuluzi Formation, followed by a second unit, interlayered with the Movene basalts, of high-SiO 2 rhyolites (76-78 wt.%; the Sica Beds Formation), with low Sr (19-54 ppm), Zr (340-480 ppm) and Ba (330-850 ppm) plus rare quartz-trachytes (64-66 wt.% SiO 2), with high Nb and Rb contents (240-250 and 370-381 ppm, respectively), and relatively low Zr (450-460 ppm). The mafic rocks found at the top of the sequence are basalts and ferrobasalts belonging to the Movene Formation. The basalts have roughly flat mantle-normalized incompatible element patterns, with abundances of the most incompatible elements not higher than 25 times primitive mantle. The ferrobasalt has TiO 2 ˜ 4.7 wt.%, Fe 2O 3t = 16 wt.%, and high Y (100 ppm), Zr (420 ppm) and Ba (1000 ppm). The Movene basalts have initial (at 180 Ma) 87Sr/ 86Sr = 0.7052-0.7054 and 143Nd/ 144Nd = 0.51232, and the Movene ferrobasalt has even lower 87Sr/ 86Sr (0.70377) and higher 143Nd/ 144Nd (0.51259). The silicic rocks show a modest range of initial Sr-( 87Sr/ 86Sr = 0.70470-0.70648) and Nd-( 143Nd/ 144Nd = 0.51223-0.51243) isotope ratios. The less evolved dacites could have been formed after crystal fractionation of oxide-rich gabbroic cumulates from mafic parental magmas, whereas the most silica-rich rhyolites could have been formed after fractional crystallization of feldspars, pyroxenes, oxides, zircon and apatite from a parental dacite magma. The composition of the Movene basalts imply different feeding systems from those of the underlying Sabie River basalts.

  9. Influence of the Heterogeneous Nucleation Sites on the Kinetics of Intermetallic Phase Formation in Aged Duplex Stainless Steel

    Science.gov (United States)

    Melo, Elis Almeida; Magnabosco, Rodrigo

    2017-09-01

    The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.

  10. Surface, optical characteristics and photocatalytic ability of Scheelite-type monoclinic Bi{sub 3}FeMo{sub 2}O{sub 12} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Xinming, E-mail: nxinming@jsnu.edu.cn; Wulayin, Wumitijiang; Song, Tingting; Wu, Minxiao; Qiao, Xuebin, E-mail: qiaoxb@jsnu.edu.cn

    2016-11-30

    Highlights: • Scheelite-type photocatalyst Bi{sub 3}FeMo{sub 2}O{sub 12} with B-superstructure was developed. • Bi{sub 3}FeMo{sub 2}O{sub 12} has high efficient optical absorption in visible wavelength region. • The narrow band energy 2.3 eV was characterized by direct allowed type. • It presents efficient photodegradation on RhB dye solution driven by visible-light. - Abstract: Bi{sub 3}FeMo{sub 2}O{sub 12} nanoparticles with the Scheelite-type monoclinic structure were prepared by the Pechini synthesis. The Bi{sub 3}FeMo{sub 2}O{sub 12} nanoparticle has a size of about 50 nm. The phase formation and structural characteristic were studied by X-ray diffraction (XRD) patterns and Rietveld refinements. The Scheelite framework is characterized by a superstructure constructed by the ordered arrangement of Fe/Mo tetrahedral on the B sites. The surface characteristics of Bi{sub 3}FeMo{sub 2}O{sub 12} nanoparticles were studied by the measurements such as the scanning electron microscope (SEM), the transmission electron microscopy (TEM), and the N{sub 2}-adsorption–desorption isotherm. Bi{sub 3}FeMo{sub 2}O{sub 12} nanoparticles present an efficient optical absorption in a wide wavelength region from UV to 540 nm. The band gap energy was decided to be 2.3 eV and characterized by a direct allowed electronic optical transition. The photocatalytic activity of Bi{sub 3}FeMo{sub 2}O{sub 12} nanoparticles was confirmed by the photodegradation of the rhodamine B (RhB) dye solution. The experiments indicate that the Scheelite-type molybdate could be a potential candidate of a visible-light-driven photocatalyst.

  11. Comparative X-ray diffraction study of the crystalline microstructure of tetragonal and monoclinic vanadium-zirconium dioxide solid solutions produced from gel precursors

    Energy Technology Data Exchange (ETDEWEB)

    Kojdecki, Marek Andrzej [Wojskowa Akademia Techniczna, Warszawa (Poland). Inst. Matematyki i Kryptologii; Ruiz de Sola, Esther; Alarcon, Javier [Valencia Univ., Burjasot (Spain). Dept. de Quimica Inorganica; Serrano, Francisco Javier; Amigo, Jose Maria [Valencia Univ., Burjasot (Spain). Dept. de Geologia

    2009-04-15

    The microstructural characteristics of solid solutions, prepared by heating dried gel precursors with nominal compositions V{sub x}Zr{sub 1-x}O{sub 2} (0{<=}x{<=}0.1) at 723 and 1573 K, were determined from X-ray diffraction patterns. The crystalline microstructure of the resulting specimens, characterized by a prevalent crystallite shape, a volume-weighted crystallite size distribution and a second-order lattice strain distribution, was found to depend on the vanadium content. A characteristic feature of all size distributions was their bimodality, explained as a result of transformations between tetragonal and monoclinic phases during thermal treatment. A comparative study of the microstructure of both zirconia phases has been carried out, enabling reconstruction of a probable course of crystallization of both pure and vanadium-doped zirconias: on heating a sample, nucleation and the early growth stages involve crystallites of both phases; then on annealing and cooling, the crystallites of one phase transform into the other, depending on the thermal treatment temperature. Each logarithmic normal component of the crystallite size distribution of the resulting phase can be attributed to one of these processes. The limit of solubility of vanadium in tetragonal and monoclinic zirconia is estimated from the microstructural characteristics. (orig.)

  12. The formation of very wide binaries during the star cluster dissolution phase

    CERN Document Server

    Kouwenhoven, M B N; Parker, Richard J; Davies, M B; Malmberg, D; Kroupa, P

    2010-01-01

    Over the past few decades, numerous wide (>1000 au) binaries in the Galactic field and halo have been discovered. Their existence cannot be explained by the process of star formation or by dynamical interactions in the field, and their origin has long been a mystery. We explain the origin of these wide binaries by formation during the dissolution phase of young star clusters: an initially unbound pair of stars may form a binary when their distance in phase-space is small. Using N-body simulations, we find that the resulting wide binary fraction in the semi-major axis range 1000 au - 0.1 pc for individual clusters is 1-30%, depending on the initial conditions. The existence of numerous wide binaries in the field is consistent with observational evidence that most clusters start out with a large degree of substructure. The wide binary fraction decreases strongly with increasing cluster mass, and the semi-major axis of the newly formed binaries is determined by the initial cluster size. The resulting eccentricit...

  13. Electrochemical formation process and phase control of Mg-Li-Ce alloys in molten chlorides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; HAN Wei; ZHANG Milin; ZHU Fengyan; XUE Yun; ZHANG Zhijian

    2013-01-01

    An electrochemical approach for the preparation of Mg-Li-Ce alloys by co-reduction of Mg,Li and Ce on a molybdenum electrode in KCl-LiCl-MgCl2-CeCl3 melts at 873 K was investigated.Cyclic voltammograms (CVs) and square wave voltammograms indicated that the underpotential deposition (UPD) of cerium on pre-deposited magnesium led to the formation of Mg-Ce alloys at electrode potentials around-1.87 V.The order of electrode reactions was as follows:discharge of Mg(Ⅱ) to Mg-metal,UPD of Ce on the surface of pre-deposited Mg with formation of Mg-Ce alloys,discharge of Ce(Ⅲ) to Ce-metal and after that the discharge of Li+ with the deposition of Mg-Li-Ce alloys,which was investigated by CVs,chronoamperometry,chronopotentiometry and open circuit chronopotentiometry.X-ray diffraction (XRD) illuminated that Mg-Li-Ce alloys with different phases were obtained via galvanostatic electrolysis by different current densities.The microstructures of Mg-Li-Ce alloys were characterized by optical microscopy (OM) and scanning electron microscopy (SEM),respectively.The analysis of energy dispersive spectrometry (EDS) showed that Ce existed at grain boundaries to restrain the grain growth.The compositions and the average grain sizes of Mg-Li-Ce alloys could be obtained controllably corresponding with the phase structures of the XRD patterns.

  14. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  15. Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Directory of Open Access Journals (Sweden)

    A. W. H. Chan

    2007-05-01

    Full Text Available The distinguishing mechanism of formation of secondary organic aerosol (SOA is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics, of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  16. Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Directory of Open Access Journals (Sweden)

    A. W. H. Chan

    2007-08-01

    Full Text Available The distinguishing mechanism of formation of secondary organic aerosol (SOA is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics, of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  17. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  18. Decomposition of BN and formation of Nd2Fe14BNx phase prepared by mechanical alloying

    Science.gov (United States)

    Liu, W.; Zhang, Z. D.; Sun, X. K.; He, J. F.; Zhao, X. G.

    1999-07-01

    The decomposition of pyrolytic boron nitride (p-BN) during milling is studied as a function of the milling time. It has been found that the p-BN compound can be partially decomposed by milling until an amorphous p-BN phase is formed so that the content of nitrogen in the p-BN system will not continue to be changed by the milling process. Furthermore, the structure and magnetic properties of Nd2Fe14BNx-based alloys prepared by mechanical alloying using either p-BN or milled p-BN as starting material have been investigated. The Nd2Fe14BNx phase with x up to 0.25 coexists with some amounts of NdN, the Nd-rich phase and icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/>-Fe. A pre-milling process of p-BN favours the formation of the Nd2Fe14BNx phase. The magnetic properties of Nd16Fe76B8Nx alloys prepared by using milled p-BN are better than those made of non-milled p-BN. The Curie temperature of the Nd2Fe14BN0.25 phase is 335 °C, which is slightly higher than that of the Nd2Fe14B compound. A coercivity higher than 20 kOe is achieved for Nd2Fe14BNx-based alloys by adding excess Nd, which is close to the value of Nd16Fe76B8 prepared by using pure B.

  19. Difference in the luminescence properties of orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}:Ln (Ln = Tb{sup 3+} and Dy{sup 3+})

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Adish; Shah, Alpa; Sudarsan, V., E-mail: vsudar@barc.gov.in; Vatsa, R.K.; Jain, V.K., E-mail: jainvk@barc.gov.in

    2015-04-15

    Highlights: • Improved emission colour purity with orthorhombic form of Y{sub 2}GeO{sub 5}. • Non-stationary quenching exists in orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}:Tb. • Ion pair formation and cross relaxation quenching operating for Y{sub 2}GeO{sub 5}:Dy samples. - Abstract: The luminescence properties of Tb{sup 3+} and Dy{sup 3+} doped orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5} are significantly different. Orthorhombic Y{sub 2}GeO{sub 5} doped with Tb{sup 3+} and Dy{sup 3+} ions gives bright green and blue emission upon UV light excitation with CIE coordinates (0.25, 0.46) and (0.25, 0.24), respectively. The monoclinic Y{sub 2}GeO{sub 5} doped with these ions exhibits light green and yellowish white emissions, respectively. This has been attributed to the differences in crystallographic environments around Y{sup 3+} ions in orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}. Quantum yield of emission for orthorhombic Y{sub 2}GeO{sub 5}:Tb (∼29%) is significantly higher than that of the monoclinic Y{sub 2}GeO{sub 5}:Tb (∼14%). Lifetime values corresponding to {sup 4}F{sub 9/2} level of Dy{sup 3+} ions in both monoclinic and orthorhombic forms of Y{sub 2}GeO{sub 5} follow an opposite trend with respect to {sup 5}D{sub 4} level of Tb{sup 3+} ions. This is attributed to difference in the concentration quenching mechanism operating for Tb{sup 3+} and Dy{sup 3+} ions.

  20. Estimation of Gibbs Free Energy of Formation of Sialon (O‘—and X—Phases

    Institute of Scientific and Technical Information of China (English)

    WENHongjine; LIWenchao

    1999-01-01

    Based on introducing the quasi-parabolid rule,which indicates the relation of Gibbs free energy of formation of compounds and its compostitions,the Gibbs free energes of formation of Sialons (O'-and X-phases) were estimated.

  1. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    Science.gov (United States)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  2. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Science.gov (United States)

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-01-01

    Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773

  3. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Directory of Open Access Journals (Sweden)

    Hennessy Bryan T

    2008-12-01

    Full Text Available Abstract Background Reverse Phase Protein Arrays (RPPA are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML. RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  4. Secondary Organic Aerosol formation from the gas-phase reaction of catechol with ozone

    Science.gov (United States)

    Coeur-Tourneur, C.; Tomas, A.; Guilloteau, A.; Henry, F.; Ledoux, F.; Visez, N.; Riffault, V.; Wenger, J. C.; Bedjanian, Y.; Foulon, V.

    2009-04-01

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers (at the LPCA in France and at the CRAC in Ireland). Aerosol production was monitored using a scanning mobility particle sizer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm-3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The aerosol yields determined in the LPCA and CRAC smog chambers were comparable and were also in accordance with those determined in a previous study performed in EUPHORE (EUropean PHOto REactor, Spain).

  5. Two phase formation of massive elliptical galaxies : study through cross-correlation including spatial effect

    CERN Document Server

    Modak, Soumita; Chattopadhyay, Asis Kumar

    2016-01-01

    Formation mechanism of present day population of elliptical galaxies have been revisited in the context of hierarchical cosmological models accompanied by accretion and minor mergers through cross correlation function including spatial effect. The present work investigates the formation and evolution of several components of nearby massive early type galaxies (ETGs) through cross-correlation in the spatial coordinates, right ascension and declination (RA, DEC) and mass-size parameter space with high redshift $(0.5\\leq z\\leq2.7)$ ETGs. It is found that innermost components of nearby ETGs are highly correlated with ETGs in the redshift range $(2\\leq z\\leq2.7)$ known as 'red nuggets'. The intermediate and outermost parts have moderate correlations with ETGs in the redshift range $(0.5\\leq z\\leq0.75)$. The quantitative measures are highly consistent with the two phase formation scenario of massive nearby early type galaxies as suggested by various authors and resolves the conflict raised in a previous work sugges...

  6. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.

    Science.gov (United States)

    Palasek, Stacey A; Cox, Zachary J; Collins, Jonathan M

    2007-03-01

    Microwave energy represents an efficient manner to accelerate both the deprotection and coupling reactions in 9-fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). Typical SPPS side reactions including racemization and aspartimide formation can occur with microwave energy but can easily be controlled by routine use of optimized methods. Cysteine, histidine, and aspartic acid were susceptible to racemization during microwave SPPS of a model 20mer peptide containing all 20 natural amino acids. Lowering the microwave coupling temperature from 80 degrees C to 50 degrees C limited racemization of histidine and cysteine. Additionally, coupling of both histidine and cysteine can be performed conventionally while the rest of the peptide is synthesized using microwave without any deleterious effect, as racemization during the coupling reaction was limited to the activated ester state of the amino acids up to 80 degrees C. Use of the hindered amine, collidine, in the coupling reaction also minimized formation of D-cysteine. Aspartimide formation and subsequent racemization of aspartic acid was reduced by the addition of HOBt to the deprotection solution and/or use of piperazine in place of piperidine.

  7. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    Science.gov (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  8. EFFECT OF Nb ELEMENT CONTENT IN U-Zr ALLOY ON HARDNESS, MICROSTRUCTURE AND PHASE FORMATION

    Directory of Open Access Journals (Sweden)

    Masrukan Masrukan

    2015-07-01

    Full Text Available EFFECT OF Nb ELEMENT CONTENT IN U-Zr-Nb ALLOY ON HARDNESS, MICROSTRUCTURE AND PHASE FORMATION. Experiments to determine the effect of Nb element in the U-Zr alloys on hardness, microstructure and phase formation has been done. The addition of Nb element would effect the hardness, microstructure and phase which formed. The U-Zr-Nb alloy was made with the variation of Nb 2%, 5% and 8% by melting in an electric arc melting furnace that equipped with water cooling and the argon atmosphere. The U-Zr-Nb alloy to be cut divided to some testing, such as hardness test, microstructure, and phase analysis. Hardness testing was done by Vickers hardness testing equipment, microstructure by an optical microscope, and diffraction pattern by XRD and phase analysis was done by GSAS. Hardness testing results showed that the addition of 2% to 5% Nb element in U-Zr alloys will increased in hardness, but the addition of Nb element over 5% the hardness was decreased. Observations the microstructure showed that the addition of 2% to 5%Nb element, grains were formed from fine into coarse. Phase analysis for diffraction pattern showed that the phase changed from αU and γU (Zr,Nbat 2% Nb to be αU, γU (Zr,Nb and δ1 (UZr2 phase at 5% and 8% Nb. Phase changes was followed by changes in its compositions. The composition of αU at 2% Nb was 40% increased to 81% at 5% Nb and decreased to 3.9% at 8% Nb. The composition of γU decreased from 59,86% to 14,91% with increased Nb from 2% to 5% and further increased to 52,74% at 8% Nb.   PENGARUH KADAR UNSUR Nb PADA PADUAN U-Zr-Nb TERHADAP SIFAT MEKANIK, MIKROSTRUKTUR DAN PEMBENTUKAN FASA. Percobaan untuk mengtahui pengaruh kadar Nb pada paduan U-Zr-Nb terhadap sifat mekanik, mikrostruktur dan pembentukan fasa telah dilakukan. Penambahan unsur Nb diduga akan mempengaruhi sifat mekanik, mikrosruktur, ketahanan korosi dan fasa yang terbentuk. Penambahan unsur Nb ke dalam paduan U-Zr dimaksudkan untuk memperluas daerah fasa gamma

  9. Formation of liquid crystalline phases in aqueous suspensions of platelet-like tripalmitin nanoparticles

    Science.gov (United States)

    Schmiele, Martin; Gehrer, Simone; Westermann, Martin; Steiniger, Frank; Unruh, Tobias

    2014-06-01

    Suspensions of platelet-like shaped tripalmitin nanocrystals stabilized by the pure lecithin DLPC and the lecithin blend S100, respectively, have been studied by small-angle x-ray scattering (SAXS) and optical observation of their birefringence at different tripalmitin (PPP) concentrations φPPP. It could be demonstrated that the platelets of these potential drug delivery systems start to form a liquid crystalline phase already at pharmaceutically relevant concentrations φPPP of less than 10 wt. %. The details of this liquid crystalline phase are described here for the first time. As in a previous study [A. Illing et al., Pharm. Res. 21, 592 (2004)] some platelets are found to self-assemble into lamellar stacks above a critical tripalmitin concentration \\varphi _{PPP}^{st} of 4 wt. %. In this study another critical concentration \\varphi _{PPP}^{lc}≈ 7 wt. % for DLPC and \\varphi _{PPP}^{lc}≈ 9 wt. % for S100 stabilized dispersions, respectively, has been observed. \\varphi _{PPP}^{lc} describes the transition from a phase of randomly oriented stacked lamellae and remaining non-assembled individual platelets to a phase in which the stacks and non-assembled platelets exhibit an overall preferred orientation. A careful analysis of the experimental data indicates that for concentrations above \\varphi _{PPP}^{lc} the stacked lamellae start to coalesce to rather small liquid crystalline domains of nematically ordered stacks. These liquid crystalline domains can be individually very differently oriented but possess an overall preferred orientation over macroscopic length scales which becomes successively more expressed when further increasing φPPP. The lower critical concentration for the formation of liquid crystalline domains of the DLPC-stabilized suspension compared to \\varphi _{PPP}^{lc} of the S100-stabilized suspension can be explained by a larger aspect ratio of the corresponding tripalmitin platelets. A geometrical model based on the excluded volumes of

  10. Axion field and the quark nugget's formation at the QCD phase transition

    CERN Document Server

    Liang, Xunyu

    2016-01-01

    We study a testable dark matter (DM) model outside of the standard WIMP paradigm in which the observed ratio $\\Omega_{\\rm dark} \\simeq \\Omega_{\\rm visible}$ for visible and dark matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible) are formed at the QCD phase transition and both are proportional to $\\Lambda_{\\rm QCD}$. Instead of conventional "baryogenesis" mechanism we advocate a paradigm when the "baryogenesis" is actually a charge separation process which always occur in the presence of the $\\cal{CP}$ odd axion field $a(x)$. In this scenario the global baryon number of the Universe remains zero, while the unobserved anti-baryon charge is hidden in form of heavy nuggets, similar to Witten's strangelets and compromise the DM of the Universe. We argue that the nuggets will be inevitably produced during the QCD phase transition as a result of Kibble-Zurek mechanism on formation of the topological defects during a phase transition. Relev...

  11. Dune formation in dilute phase pneumatic transport system: PIV & PTV based analysis

    Science.gov (United States)

    Jhalani, Sumit; Patankar, Atharva; Makawana, Ajay; Bose, Manaswita

    2017-06-01

    Flow of gas-solid mixture through horizontal conveying section show a large variety of phenomena and is broadly classified into dilute and dense unstable regimes. Different types of instabilities are observed in the dense phase flow and are widely studied in literature; however, clustering instabilities are observed in the very dilute regime of flow with volume fraction 0.001. A recent study has shown that regular, stable dune shaped clusters are formed in a small regime of the dilute phase of conveying. The dunes become unstable as the superficial gas velocity is decreased before it finally leads to the dense mode of conveying. The motivation of the current work is to investigate the velocity distribution on the surface of the stable and unstable dunes and thereby understand the cause behind the formation of the dunes in the conveying section. To that end, particle image and tracking velocimetry techniques are employed with the specific objective to determine the volume fraction and the velocity profile of the solid phase on the stable dune surface. A drastic change in the solid fraction within a few particle diameters from the dune surface suggests that PTV is more appropriate in the bulk whereas PIV is suitable for near surface investigation.

  12. Efficient channel waveguide lasers in monoclinic double tungstates: towards further integration with on-chip mirrors

    NARCIS (Netherlands)

    van Dalfsen, Koop; van Wolferen, Hendricus A.G.M.; Dijkstra, Mindert; Aravazhi, S.; Bernhardi, Edward; García Blanco, Sonia Maria; Pollnau, Markus

    2012-01-01

    By varying the thulium concentration in the range of 1.5 – 8.0 at.% in thulium- gadolinium-lutetium-yttrium-co-doped monoclinic double tungstate channel waveguides, a maximum laser slope efficiency of 70% with respect to the absorbed pump power was obtained. Further integration of these channel

  13. X-ray Bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval.

    Science.gov (United States)

    Vagovič, P; Svéda, L; Cecilia, A; Hamann, E; Pelliccia, D; Gimenez, E N; Korytár, D; Pavlov, K M; Zápražný, Z; Zuber, M; Koenig, T; Olbinado, M; Yashiro, W; Momose, A; Fiederle, M; Baumbach, T

    2014-09-01

    We present the theoretical description of the image formation with the in-line germanium Bragg Magnifier Microscope (BMM) and the first successful phase retrieval of X-ray holograms recorded with this imaging system. The conditions under which the BMM acts as a linear shift invariant system are theoretically explained and supported by the experiment. Such an approach simplifies the mathematical treatment of the image formation and reconstruction as complicated propagation of the wavefront onto inclined planes can be avoided. Quantitative phase retrieval is demonstrated using a test sample and a proof of concept phase imaging of a spider leg is also presented.

  14. The Study of Kinetics of Diffusion and Phase Formation in the Layered Iron-Beryllium System

    Science.gov (United States)

    Kuterbekov, K. A.; Nurkenov, S. A.; Kislitsin, S. B.; Kuketayev, T. A.; Nurakhmetov, T. N.

    2017-02-01

    The methods of Mössbauer spectroscopy with X-ray phase analysis and Rutherford backscattering of protons were used to study the kinetics of diffusion and phase transformations in the layered iron-beryllium system. For the first time, the authors suggested and implemented a method for retardation of diffusion and phase formation processes in the layered iron-beryllium system using the barrier layer. It was established that the barrier layer limits the zone of beryllium dissolution in the area of implanted layer. The impact of the barrier layer on kinetics of thermally induced processes of diffusion and phase transformations in the layered Fe-Be system was determined using the example of Fe (10 μm): O+ - Be (0.7 μm) - 57Fe (0.1 μm). The authors suggested and implemented a method for recovery of the distribution function of the admixture atom concentration in the solid matrix-admixture solution on the basis of the X-ray diffraction data. The kinetics of mutual diffusion was determined for Fe and Be atoms in the α-Fe(Be) solution for both sides of the layered systems with a barrier layer and without it using the suggested method for recovery of the distribution function of the Be atom concentration. It was established that for the system without a barrier layer, the share of iron atoms ends at tann 5 h on the coating side and at tann 7.5 h on the iron side, while for the barrier layer case - at tann 20 h on the coating side and at tann 40 h on the iron side.

  15. Axion field and the quark nugget's formation at the QCD phase transition

    Science.gov (United States)

    Liang, Xunyu; Zhitnitsky, Ariel

    2016-10-01

    We study a testable dark-matter (DM) model outside of the standard weakly interacting massive particle paradigm in which the observed ratio Ωdark≃Ωvisible for visible and dark-matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible) are formed at the QCD phase transition and both are proportional to ΛQCD. Instead of the conventional "baryogenesis" mechanism, we advocate a paradigm when the "baryogenesis" is actually a charge separation process which always occurs in the presence of the C P odd axion field a (x ). In this scenario, the global baryon number of the Universe remains zero, while the unobserved antibaryon charge is hidden in the form of heavy nuggets, similar to Witten's strangelets and compromise the DM of the Universe. In the present work, we study in great detail a possible formation mechanism of such macroscopically large heavy objects. We argue that the nuggets will be inevitably produced during the QCD phase transition as a result of Kibble-Zurek mechanism on formation of the topological defects during a phase transition. Relevant topological defects in our scenario are the closed bubbles made of the NDW=1 axion domain walls. These bubbles, in general, accrete the baryon (or antibaryon) charge, which eventually results in the formation of the nuggets and antinuggets carrying a huge baryon (antibaryon) charge. A typical size and the baryon charge of these macroscopically large objects are mainly determined by the axion mass ma. However, the main consequence of the model, Ωdark≈Ωvisible, is insensitive to the axion mass which may assume any value within the observationally allowed window 10-6 eV ≲ma≲10-3 eV . We also estimate the baryon-to-entropy ratio η ≡nB/nγ˜10-10 within this scenario. Finally, we comment on implications of these results to the axion search experiments, including the microwave cavity and the Orpheus experiments.

  16. Template-assisted mineral formation via an amorphous liquid phase precursor route

    Science.gov (United States)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was

  17. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    CERN Document Server

    Telford, O Grace; Skillman, Evan D; Conroy, Charlie

    2016-01-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of S/N cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. (2013) for ~130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these abundance ...

  18. Laser-driven formation of a high-pressure phase in amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Salleo, Alberto; Taylor, Seth T.; Martin, Michael C.; Panero, Wendy R.; Jeanloz, Raymond; Genin, Francois Y.; Sands, Timothy

    2002-05-31

    A combination of electron diffraction and infrared reflectance measurements shows that synthetic silica transforms partially into stishovite under high-intensity (GW/cm2) laser irradiation, probably by the formation of a dense ionized plasma above the silica surface. During the transformation the silicon coordination changes from four-fold to six-fold and the silicon-oxygen bond changes from mostly covalent to mostly ionic, such that optical properties of the transformed material differ significantly from those of the original glass. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics applications such as inertial confinement fusion.

  19. Factors influencing ice formation and growth in simulations of a mixed-phase wave cloud

    Directory of Open Access Journals (Sweden)

    C. Dearden

    2012-10-01

    Full Text Available In this paper, numerical simulations of an orographically induced wave cloud sampled in-situ during the ICE-L (Ice in Clouds Experiment - Layer clouds field campaign are performed and compared directly against the available observations along various straight and level flight paths. The simulations are based on a detailed mixed-phase bin microphysics model embedded within a 1-D column framework with the latest parameterizations for heterogeneous ice nucleation and an adaptive treatment of ice crystal growth based on the evolution of crystal habit. The study focuses on the second of two clouds sampled on 16th November 2007, the in-situ data from which exhibits some interesting and more complex microphysics than other flights from the campaign. The model is used to demonstrate the importance of both heterogeneous and homogeneous nucleation in explaining the in-situ observations of ice crystal concentration and habit, and how the ability to isolate the influence of both nucleation mechanisms helps when quantifying active IN concentrations. The aspect ratio and density of the simulated ice crystals is shown to evolve in a manner consistent with the in-situ observations along the flight track, particularly during the transition from the mixed-phase region of the cloud to the ice tail dominated by homogeneous nucleation. Some additional model runs are also performed to explore how changes in IN concentration and the value of the deposition coefficient for ice affect the competition between heterogeneous and homogeneous ice formation in the wave cloud, where the Factorial Method is used to isolate and quantify the effect of such non-linear interactions. The findings from this analysis show that the effect on homogeneous freezing rates is small, suggesting that any competition between the microphysical variables is largely overshadowed by the strong dynamical forcing of the cloud in the early stages of ice formation.

  20. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability.

    Science.gov (United States)

    Lo, T S; Karma, A; Plapp, M

    2001-03-01

    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/v(p)), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/v(p) is large enough for both phases to be morphologically stable, the formation of the microstructure becomes controlled by a subtle interplay between the nucleation and growth of the two solid phases. The structures that have been observed in this regime (in small samples where convection effects are suppressed) include alternate layers (bands) of the parent and peritectic phases perpendicular to the growth direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1 (1995)], as well as partially filled bands (islands), where the peritectic phase does not fully cover the parent phase which grows continuously. We develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to explore the formation of these structures. Simulations of this model shed light on the morphology transition from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth morphology that one might expect to observe in large samples under purely diffusive growth conditions.

  1. Monoclinic Hydroxyapatite Nanoplates Hybrid Composite with Improved Compressive Strength, and Porosity for Bone Defect Repair: Biomimetic Synthesis and Characterization.

    Science.gov (United States)

    Xue, Bo; Farghaly, Ahmed A; Guo, Zhenzhao; Zhao, Pengg; Li, Hong; Zhou, Changren; Li, Lihua

    2016-03-01

    Calcium phosphate cement (CPC) has been used for bone restoration despite its intrinsic fragile property. In order to enhance the CPC mechanical properties, biopolymers were introduced as filler to prepare CPC based cements. Chitosan/tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA) based cement for bone repair has been prepared in the study. Solidification of the prepared cement was carried out in a simulate body fluid at 37 degrees C. The introduction of chitosan improved the mechanical performance of the as-prepared CPC hybrid nanocomposite. FTIR, SEM, TEM, HRTEM, XRD, and SAED were used to characterize the CPC nanocomposite. Data simulations have been performed to assist in determining the crystalline phase/s in the CPC hybrid nanocomposite. Based on the SAED, HRTEM measurements and data simulations, a monoclinic phase of hydroxyapatite (HAP) with a plate-like structure was obtained in the CPC system, which is believed to be responsible for the observed enhancement in CPC mechanical properties. The obtained composite has a biocompatibility comparable to that of commercial sample.

  2. Prebiotic molecules formation through the gas-phase reaction between HNO and CH2CHOH2+

    Science.gov (United States)

    Redondo, Pilar; Martínez, Henar; Largo, Antonio; Barrientos, Carmen

    2017-07-01

    Context. Knowing how the molecules that are present in the ISM can evolve to more complex ones is an interesting topic in interstellar chemistry. The study of possible reactions between detected species can help to understand the evolution in complexity of the interstellar matter and also allows knowing the formation of new molecules which could be candidates to be detected. We focus our attention on two molecules detected in space, vinyl alcohol (CH2CHOH) and azanone (HNO). Aims: We aim to carry out a theoretical study of the ion-molecule reaction between protonated vinyl alcohol and azanone. The viability of formation of complex organic molecules (COMs) from these reactants is expected to provide some insight into the formation of prebiotic species through gas phase reactions. Methods: The reaction of protonated vinyl alcohol with azanone has been theoretically studied by using ab initio methods. Stationary points on the potential energy surface (PES) were characterized at the second-order Moller-Plesset level in conjunction with the aug-cc-pVTZ (correlation-consistent polarized valence triple-zeta) basis set. In addition, the electronic energies were refined by means of single-point calculations at the CCSD(T) level (coupled cluster single and double excitation model augmented with a non-iterative treatment of triple excitations) with the same basis set. Results: From a thermodynamic point of view, twelve products, composed of carbon, oxygen, nitrogen, and hydrogen which could be precursors in the formation of more complex biological molecules, can be obtained from this reaction. Among these, we focus especially on ionized glycine and two of its isomers. The analysis of the PES shows that only formation of cis- and trans-O-protonated imine acetaldehyde, CH2NHCOH+ and, CHNHCHOH+, are viable under interstellar conditions. Conclusions: The reaction of protonated vinyl alcohol with azanone can evolve in the interstellar medium to more complex organic molecules of

  3. Formation of zirconia polymorphs under hydrothermal conditions

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yanqing(郑燕青); SHl; Erwei(施尔畏); Li; Wenjun(李汶军); CHEN; Zhizhan(陈之战); ZHONG; Weizhuo(仲维卓); HUXingfang(胡行方)

    2002-01-01

    Using zirconium oxychloride solution as precursor, monoclinic zirconia crystallites withnarrow distribution of nanosize were obtained in the hydrothermal reaction. However, when thereaction was in weak acidic medium or base medium, whether directly using the colloidal precipi-tate prepared from zirconium salt solutions with base solution as precursor added, or using theprecipitate after filtrating, washing and drying treatments as precursor, the product of the hydro-thermal reaction was the mixture of both monoclinic and tetragonal polymorphs. As the pH of themedium rises, the content of tetragonal phase in the product, the morphologies and size of thecrystallites all change. There are three types of formation mechanisms under hydrothermal condi-tion, which can be called as saturation-precipitation mechanism in homogeneous solution, dissolu-tion-crystallization mechanism and in-situ crystallization mechanism, respectively. The formationmechanism of crystallites varies with different hydrothermal conditions, such as the states of theprecursor and the pH of the medium, which lead to changes in the phases, morphologies andsizes of the resulting crystallites.

  4. Unveiling the Role of CNTs on the Phase Formation of 1D Ferroelectrics

    KAUST Repository

    Mahajan, Amit

    2015-05-21

    Carbon nanotubes (CNTs) have the potential to act as templates or bottom electrodes for three dimension (3D) capacitor arrays, which utilise one dimension (1D) ferroelectric nanostructures to increase memory size and density. However, growing a ferroelectric on the surface of CNTs is non-trivial. Here, we demonstrate that multi-walled (MW) CNTs decrease the time and temperature for formation of lead zirconium titanate Pb(Zr1-xTix)O3 (PZT) by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs/PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNT/PZT synthesised at 500 ºC for 1 h was proved. Although further work is required to prove the concept of 3D capacitor arrays, our result suggests that it is feasible to utilise MWCNTs as templates/electrodes for the formation of 1D PZT nano ferroelectrics.

  5. Austenite phase formation in rapidly solidified Fe-Cr-Mn-C steels

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.R.; Davies, H.A.; Rainforth, W.M.

    1999-12-10

    Steels having compositions (wt%) 0.05--0.5C, 12.5--20Cr, 8--25Mn and 0--0.51N have been chill-block melt-spun to ribbons in order to investigate systematically, by X-ray diffractometry and electron microscopy, the effects of rapid solidification and of solute concentrations on the formation of the austenite phase. The austenite is most easily formed at (wt%) 16Cr--8Mn for 0.3C ribbons while {alpha}{prime}-martensite or {epsilon}-martensite was observed at lower concentrations of Cr or Mn and {alpha}-ferrite appeared for Cr {gt} 18 wt%. The volume fraction of austenite in the steel ribbons studied was found, by multiple regression analysis, to obey the equation {gamma}(%) = 94 + 26.8C + Mn x (8.4 {minus} 0.08Mn {minus} 0.44Cr) {minus} (Cr {minus} 17.7){sup 2}. Thus, the effect of Mn on {gamma} formation followed a non-linear function, containing an interaction term including the Cr and Mn contents, and first- and second-order terms involving the Mn concentration. This indicates the ranges over when Mn is a {gamma}-former or an {alpha}-former. Iso-austenitic lines, constructed on the basis of this new equation, are nearly orthogonal to those in the Schaeffler diagram for Cr-Mn steels so that use of the latter for prediction of the austenite content in the present case would be inappropriate.

  6. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel

    2013-03-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  7. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Science.gov (United States)

    Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-01

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn't cause the gas bubble alignment, and fast 1-D migration of interstitials along directions in the body-centered cubic U matrix causes the gas bubble alignment along directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  8. Primordial black hole formation in the matter-dominated phase of the Universe

    CERN Document Server

    Harada, Tomohiro; Kohri, Kazunori; Nakao, Ken-ichi; Jhingan, Sanjay

    2016-01-01

    We investigate primordial black hole formation in the matter-dominated phase of the Universe, where nonspherical effects in gravitational collapse play a crucial role. This is in contrast to the black hole formation in a radiation-dominated era. We apply the Zel'dovich approximation, Thorne's hoop conjecture, and Doroshkevich's probability distribution and subsequently derive the production probability $\\beta_{0}$ of primordial black holes. The numerical result obtained is applicable even if the density fluctuation $\\sigma$ at horizon entry is of the order of unity. For $\\sigma\\ll 1$, we find a semi-analytic formula $\\beta_{0}\\simeq 0.05556 \\sigma^{5}$, which is comparable with the Khlopov-Polnarev formula. We find that the production probability in the matter-dominated era is much larger than that in the radiation-dominated era for $\\sigma\\lesssim 0.05$, while they are comparable with each other for $\\sigma\\gtrsim 0.05$. We also discuss how $\\sigma$ can be written in terms of primordial curvature perturbatio...

  9. Influence of powder pre-annealing on the phase formation and critical current of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.;

    2004-01-01

    the precursor with Ca2PbO4 phase (tape T1) had lower transformation rate of 2223 phase than tapes fabricated using the precursor with 3321 phase (tape T2). SEM results show that a large fraction of secondary phases with big particle size was formed in the tape T1 during the subsequent sintering, which might......The influence of precursor powders with different lead-rich phases, such as Ca2PbO4 and Pb-3(Sr,Bi)(3)Ca2CuOy (3 3 2 1), on the phase formation and critical current of Bi-2223/Ag tapes has been studied. Three precursors with different phase assemblages were prepared and used to make the tapes...

  10. Microtwin formation in the {alpha} phase of duplex titanium alloys affected by strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hsiang; Wu, Shu-Ming [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei Ning Road, Keelung 20224, Taiwan (China); Kao, Fang-Hsin [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wang, Shing-Hoa, E-mail: shwang@ntou.edu.tw [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei Ning Road, Keelung 20224, Taiwan (China); Yang, Jer-Ren [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yang, Chia-Chih [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei Ning Road, Keelung 20224, Taiwan (China); Chiou, Chuan-Sheng [Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (China)

    2011-03-15

    Research highlights: {yields} The long and dense twins in {alpha} phase of SP700 alloy occurring at lower strain rates promote a good ductility. {yields} The deformation in SP700 alloy changed to micro twins-controlled mechanism in {alpha} as the strain rate decreases. {yields} The material has time to redistribute the deformed strain between {alpha} and {beta} as the strain rate decreases. - Abstract: The effect of tensile strain rate on deformation microstructure was investigated in Ti-6-4 (Ti-6Al-4V) and SP700 (Ti-4.5Al-3V-2Mo-2Fe) of the duplex titanium alloys. Below a strain rate of 10{sup -2} s{sup -1}, Ti-6-4 alloy had a higher ultimate tensile strength than SP700 alloy. However, the yield strength of SP700 was consistently greater than Ti-6-4 at different strain rates. The ductility of SP700 alloy associated with twin formation (especially at the slow strain rate of 10{sup -4} s{sup -1}), always exceeded that of Ti-6-4 alloy at different strain rates. It is caused by a large quantity of deformation twins took place in the {alpha} phase of SP700 due to the lower stacking fault energy by the {beta} stabilizer of molybdenum alloying. In addition, the local deformation more was imposed on the {alpha} grains from the surrounding {beta}-rich grains by redistributing strain as the strain rate decreased in SP700 duplex alloy.

  11. Austenite formation during intercritical annealing in C-Mn cold-rolled dual phase steel

    Institute of Scientific and Technical Information of China (English)

    李声慈; 康永林; 朱国明; 邝霜

    2015-01-01

    Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite. Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.

  12. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.

    Science.gov (United States)

    Sopcak, T; Medvecky, L; Giretova, M; Kovalcikova, A; Stulajterova, R; Durisin, J

    2016-08-10

    Self-setting simple calcium silicate/brushite (B) biocements with various Ca/P ratios were prepared by mutual mixing of both monocalcium silicate hydrate (CSH) or β-wollastonite (woll) powders with B and the addition of 2 wt% NaH2PO4 solution as a hardening liquid. The phase composition of the final composites and the texture of the surface calcium phosphate/silica layer were controlled by the starting Ca/P ratio in composites and the pH during setting. It was verified that the presence of continuous bone-like calcium phosphate coating on the surface of the samples was not essential for in vitro osteoblast proliferation. The nanocrystalline calcium deficient hydroxyapatite and amorphous silica were found as the main setting products in composite mixtures with a Ca/P ratio close to the region of the formation of deficient hydroxyapatite-like calcium phosphates. No CSH phase with a lower Ca/Si ratio was identified after transformation. The results confirmed a small effect of the monocalcium silicate addition on the compressive strength (CS) of cements up to 30 wt% (around 20-25 MPa) and a significant rise of the value in 50 woll/B cement (65 MPa). The final setting times of the cement composites varied between 5 and 43 min depending on the P/L ratio and the type of monocalcium silicate phase in the cement mixture. 10CSH/B and 50 woll/B cements with different textures but free of both the needle-like and perpendicularly-oriented hydroxyapatite particles on the surface of the samples had low cytotoxicity.

  13. On the orthorhombic phase in ZrO2-based alloys

    Science.gov (United States)

    Heuer, A. H.; Lanteri, V.; Chaim, R.; Lee, R.-R.; Farmer, S. C.

    1989-01-01

    During TEM observation, a tetragonal (t) to orthorhombic (o) phase transformation often occurs in thin portions of ZrO2-containing foils. This transformation is stress-induced and in some senses artifactual, in that the reaction product is actually a high-pressure phase, relative to monoclinic (m) ZrO2, that can form from metastable t-ZrO2 in the TEM because its density is intermediate between t- and m-ZrO2. Examples of the formation of o-ZrO2 in a number of different systems are given.

  14. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    Science.gov (United States)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  15. Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode.

    Science.gov (United States)

    Zhou, Bin; Qu, Jiuhui; Zhao, Xu; Liu, Huijuan

    2011-01-01

    Monoclinic bismuth vanadate (BiVO4) thin film was fabricated on indium-tin oxide glass from an amorphous heteronuclear complex via dip-coating. After annealation at 400, 500, and 600 degrees C, the thin films were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The BiVO4 particles on the ITO glass surface had a monoclinic structure. The UV-Visible diffuse reflection spectra showed the BiVO4 thin film had photoabsorption properties, with a band gap around 2.5 eV. In addition, the thin film showed high visible photocatalytic activities towards 2,4-dichlorophenol and Bisphenol A degradation under visible light irradiation (lambda > 420 nm). Over 90% of the two organic pollutants were removed in 5 hr. A possible degradation mechanism of 2,4-dichlorophenol were also studied.

  16. Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode

    Institute of Scientific and Technical Information of China (English)

    Bin Zhou; Jiuhui Qu; Xu Zhao; Huijuan Liu

    2011-01-01

    Monoclinic bismuth vanadate (BiVO4) thin film was fabricated on indium-tin oxide glass from an amorphous heteronuclear complex via dip-coating.After annealation at 400, 500, and 600℃, the thin films were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry.The BiVO4 particles on the ITO glass surface had a monoclinic structure.The UV-Visible diffuse reflection spectra showed the BiVO4 thin film had photoabsorption properties, with a band gap around 2.5 eV.In addition, the thin film showed high visible photocatalytic activities towards 2,4-dichiorophenol and Bisphenol A degradation under visible light irradiation (λ.> 420 nm).Over 90% of the two organic pollutants were removed in 5 hr.A possible degradation mechanism of 2,4-dichlorophenol were also studied.

  17. Thermodynamic Analysis of the Formation of In-situ Reinforced Phases In Cast AI-4.5Cu Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Yanfeng; ZHOU Jing'en; DONG Shengquan; YANG Tong

    2008-01-01

    The thermodynamic analysis of the formation of in-situ reinforced phases in (TiB2+Al3Ti)/Al-4.5Cu composites prepared by mixed salts reaction was conducted, and heat changes of mixed salts system were analyzed by differential thermal analysis (DTA). The results show that although TiB2 possesses the strongest formation ability in Al-Ti-B ternary system, [Ti] is relatively excessive in the in-situ reaction and it combines with Al to form Al3Ti phase. The reinforced phases are TiB2 and Al3Ti in the produced composites due to the reaction taking place to form reinforced phase with the addition of mixed salts into Al-4.5Cu melt between 900℃ and 1032℃.

  18. Phase segregation through transient network formation in a binary particle suspension in simple shear: Application to dough

    Science.gov (United States)

    van Opheusden, Joost H. J.; Molenaar, J.

    2014-04-01

    In this paper we describe a viscoelastic type of phase separation in a simulated binary fluid with a sticky and an inert component, without any external gradients. Phase segregation under simple shear occurs due to transient network formation of the sticky component, expelling the inert particles from the network. When model parameters are adjusted to reduce network formation and rearrangement, the segregation effect is significantly smaller or absent. The behavior is independent of shear rate; segregation increases mainly with shear strain. The model is applied to wheat dough. Recent experiments have shown that prolonged shear flow of wheat dough can even give macroscopic segregation.

  19. Araçatuba Formation: palustrine deposits from the initial sedimentation phase of the Bauru Basin

    Directory of Open Access Journals (Sweden)

    Luiz A. Fernandes

    2003-06-01

    Full Text Available The Bauru Basin (Upper Cretaceous accumulated an essentially sandy continental sedimentary sequence. In a first desertic phase the basaltic substratum was covered by a widespread and homogeneous aeolian sand unit with minor loess intercalations. The substratum relief favored the formation of an endorheic drainage system under semi-arid climate, a process that started the development of the Araçatuba Paleoswamp. The palustrine deposits (Araçatuba Formation comprise siltstone and tipically greenish gray narrow tabular strata of sandstone cemented by carbonate. Moulds and gypsite and dolomite pseudomorphs were identified. The moulds seem to be genetically associated with desiccation cracks, root marks and climbing ripple lamination levels, that, on the whole, indicate calm shallow saline waters undergoing phases of subaerial exposition. At the boundaries of the study area, sand units may exhibit sigmoidal features and convolute bedding structure, which is characteristic of marginal deltaic deposits. The Araçatuba Formation is enclosed in and later overlaid by the aeolian deposits of the Vale do Rio do Peixe Formation.A Bacia Bauru (Cretáceo Superior, acumulou uma seqüência sedimentar continental essencialmente arenosa. Numa fase inicial desértica, o seu substrato basáltico foi soterrado por extensa e monótona cobertura de areias eólicas com intercalações subordinadas de depósitos de loesse. O relevo original do substrato favoreceu a formação de uma drenagem regional endorrêica, sob clima semi-árido, propiciando assim condições de formação do Paleopantanal Araçatuba. Os depósitos paludiais (Formação Araçatuba constituem estratos tabulares de siltitos e arenitos de cor cinza claro esverdeado típica, eventualmente cimentados por carbonato de cálcio. Moldes e pseudomorfos de cristais de gipsita e dolomita foram identificados na unidade. Aparentemente, estão associados com gretas de ressecação, marcas de raízes e

  20. Enthalpy of formation of quasicrystalline phase and ternary solid solutions in the Al-Fe-Cu system

    Institute of Scientific and Technical Information of China (English)

    I.A. Tomilin; S.D. Kaloshkin; V. V. Tcherdyntsev

    2006-01-01

    Standard enthalpies of formation of quasicrystalline phase and the ternary solid solutions in the Al-Fe-Cu system and the intermetallic compound FeAl were determined by the means of solution calorimetry. The quasicrystalline phase was prepared using two different methods. The first method (Ⅰ) consisted of ball milling the mixture of powders of pure aluminum copper and iron in a planetary mill with subsequent compacting by hot pressing and annealing. The second method (Ⅱ) consisted of arc melting of the components in argon atmosphere followed by annealing. The latter method was used for preparing the compound FeAl and the solid solutions. The phases were identified using the XRD method. The enthalpy of the formation was determined for the quasicrystalline phase of the composition Al62Cu25.5Fe12.5 and the ternary BCC solid solutions Al35Cu14Fe51, Al40Cu17Fe43, and Al50.4Cu19.6Fe30. The measured enthalpy of formation of the intermetallic com pound FeAl is in good agreement with the earlier published data. The enthaipies of formation of the quasicrystalline phases prepared using two different methods are close to each other, namely, -22.7±3.4 (method Ⅰ) and -21.3±2.1 (method Ⅱ)k J/mol.

  1. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K. V.; Rödel, Jürgen; Xing, Xianran

    2017-07-01

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic MA structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic MB , rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  2. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  3. Neutral interstellar medium phases and star formation tracers in dwarf galaxies

    Science.gov (United States)

    Cigan, Phillip Johnathan

    Dwarf galaxies present interesting observational challenges for the studies of various galaxy properties: despite their abundance and proximity to the Milky Way, they typically have very low surface brightnesses and small physical sizes. Until now, only the extreme variety of dwarfs --- those undergoing strong bouts of star formation --- have been observed in the FIR, due to observational difficulties. However, this population does not represent the majority of dwarfs, which have only moderate star formation rates and extremely low metallicity (the fraction of heavy elements to hydrogen). The advent of the Herschel Space Telescope, with its superior resolution and sensitivity over previous generations of telescopes, has made it possible to measure FIR spectral lines and broadband continuum in normal dwarf galaxies, expanding the scope of studies beyond the brighter, but more extreme, varieties. The general goal of my research was to study the conditions in the interstellar media (ISM) of typical dwarf galaxies. The LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, TheHI Nearby Galaxy Survey) project aims to unravel many mysteries of nearby dwarfs using a suite of multi-wavelength data, and the new additions from Herschel help provide insight into the physics of these systems. I reduced and analyzed FIR fine-structure spectral line data for the LITTLE THINGS sample to study the different phases of the ISM, as well as FIR photometry data to access the dust properties and infrared continuum emission in these systems. The FIR spectral lines are diagnostics for the conditions in the ISM of galaxies, telling us about heating efficiency, the fraction of gas that resides in photodissociation regions (PDRs), abundance of highly ionized gas from massive stars, and other physical descriptions. The photometric continuum observations enable the modeling of interstellar dust properties -- dust plays an important role in shielding and cooling molecular clouds which

  4. Factors controlling phase formation of novel Sr-based Y-type hexagonal ferrite nanoparticles

    Science.gov (United States)

    Tholkappiyan, R.; Vishista, K.; Hamed, Fathalla

    2017-02-01

    New Sr-based Y-type nanocrystalline hexagonal ferrites with a nominal chemical composition of Sr 2Mg 2Fe 12 O 22 (Sr 2Y) were prepared by autocombustion from mixtures of Sr(NO 3) 2, Mg(NO 3) 2ṡ6H 2O and Fe(NO 3) 3ṡ9H 2O. The newly prepared Sr 2Y nanocrystalline particles were characterized by powder X-ray diffraction (XRD). A well crystalline phase of Sr 2Y with hexagonal crystal structure was observed. Fourier transform infrared spectroscopy (FTIR) studies revealed the information about the positions of the ions and their bonds within the lattice structure of the Sr 2Y. The chemical elements and their oxidation states in the Sr 2Y hexaferrites were determined using X-ray photoelectron spectroscopy (XPS). The XRD, FTIR and XPS studies confirmed the formation of Sr 2Mg 2Fe 12 O 22 hexaferrites. The morphology and porosity of the prepared Sr 2Y nanocrystalline Sr 2Y hexaferrite particles were studied by field emission scanning electron microscopy. The magnetic properties of Sr 2Y hexaferrites showed dependence on the methods of preparation conditions and calcination treatments. The values of coercivity, saturation magnetization and retentivity were in the range of 21.33-19.66 kA m -1, 42.44- 38.72 emu g -1 and 10.05-13.19 emu g -1 respectively.

  5. Factors controlling phase formation of novel Sr-based Y-type hexagonal ferrite nanoparticles

    Indian Academy of Sciences (India)

    R THOLKAPPIYAN; K VISHISTA; FATHALLA HAMED

    2017-02-01

    New Sr-based Y-type nanocrystalline hexagonal ferrites with a nominal chemical composition of Sr$_2$Mg$_2$Fe$_{12}$O$_{22}$ (Sr$_2$Y) were prepared by autocombustion from mixtures of Sr(NO$_3$)$_2$, Mg(NO$_3$ )$_2$·6H$_2$O and Fe(NO$_3$)$_3$·9H$_2$O. The newly prepared Sr$_2$Y nanocrystalline particles were characterized by powder X-ray diffraction (XRD). A well crystalline phase of Sr$_2$Y with hexagonal crystal structure was observed. Fourier transform infrared spectroscopy (FTIR) studies revealed the information about the positions of the ions and their bonds within the lattice structure of the Sr2Y. The chemical elements and their oxidation states in the Sr$_2$Y hexaferriteswere determined using X-ray photoelectron spectroscopy (XPS). The XRD, FTIR and XPS studies confirmed the formation of Sr$_2$Mg$_2$Fe$_{12}$O$_{22}$ hexaferrites. The morphology and porosity of the prepared Sr$_2$Y nanocrystalline Sr$_2$Y hexaferrite particles were studied by field emission scanning electron microscopy. The magnetic properties of Sr$_2$Y hexaferrites showed dependence on the methods of preparation conditions and calcination treatments. The values of coercivity, saturation magnetization and retentivity were in the range of 21.33–19.66 kA m$^{−1}$, 42.44–38.72 emu g$^{−1}$ and 10.05–13.19 emu g$^{−1}$ respectively.

  6. Measurement of Throughput Variation Across A Large Format Volume-Phase Holographic Grating

    CERN Document Server

    Tamura, N; Sharples, R M; Robertson, D J; Allington-Smith, J R; Tamura, Naoyuki; Murray, Graham J.; Sharples, Ray M.; Robertson, David J.

    2005-01-01

    In this paper, we report measurements of diffraction efficiency and angular dispersion for a large format (~ 25 cm diameter) Volume-Phase Holographic (VPH) grating optimized for near-infrared wavelengths (0.9 -- 1.8 micron). The aim of this experiment is to see whether optical characteristics vary significantly across the grating. We sampled three positions in the grating aperture with a separation of 5 cm between each. A 2 cm diameter beam is used to illuminate the grating. At each position, throughput and diffraction angle were measured at several wavelengths. It is found that whilst the relationship between diffraction angle and wavelength is nearly the same at the three positions, the throughputs vary by up to ~ 10\\% from position to position. We explore the origin of the throughput variation by comparing the data with predictions from coupled-wave analysis. We find that it can be explained by a combination of small variations over the grating aperture in gelatin depth and/or refractive index modulation a...

  7. On the study of phase formation and critical current density in superconducting MgB2

    Indian Academy of Sciences (India)

    Suchitra Rajput; Sujeet Chaudhary; Subhash C Kashyap; Pankaj Srivastava

    2006-06-01

    Superconducting bulk MgB2 samples have been synthesized by employing sintering technique without using any additional process steps, generally undertaken in view of the substantial loss of magnesium, during heat treatment. Starting with Mg rich powders having different atomic ratios of Mg : B, as against the nominally required Mg : B = 1 : 2 ratio, we have obtained superconducting MgB2 samples of different characteristics. The effect of excess Mg in the starting mixture and processing temperature on the phase-formation, transition temperature (C) and critical current density (C) have been investigated by electrical transport and a.c. susceptibility measurements. The X-ray diffraction and X-ray photoelectron spectroscopic analyses of MgB2 bulk samples have been carried out to understand the role of excess Mg and the effect of processing temperature. It is established that MgB2 samples with high critical current density can be synthesized from a Mg rich powder having Mg : B in 2 : 2 ratio, at temperatures around 790°C. Critical current density has been found to vary systematically with processing temperature.

  8. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Senor, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-08

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along $\\langle$110$\\rangle$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $\\langle$110$\\rangle$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  9. Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2.

    Science.gov (United States)

    Liu, Chongming; Nishshanka, Upul; Attygalle, Athula B

    2016-05-01

    The anilide anion (m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion (m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion (m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective "cooling" gas and reduces the internal energy of reactant ions.

  10. Formation of titanium dioxide core-shell microcapsules through a binary-phase spray technique.

    Science.gov (United States)

    Bergek, Jonatan; Elgh, Björn; Palmqvist, Anders E C; Nordstierna, Lars

    2017-09-13

    Core-shell microcapsules consisting of a titanium dioxide shell and a hydrophobic solvent core have been prepared with diameters of a few micrometers and a narrow size distribution using a simple and fast airbrush technique. These microcapsules were prepared at room temperature in a single-step process in which an oil with a dissolved titanium alkoxide precursor was forced together with an aqueous solution, containing a surface-active polymer, through a narrow spray nozzle using a nitrogen gas propellant. Several different parameters of chemical, physical, and processing origin were investigated to find an optimal recipe. Two different alkanes, one ketone, and four alcohols were tested and evaluated as core materials, alone or together with the antifungal biocide 2-n-octyl-4-isothiazolin-3-one (OIT). Long-chain alcohols were found suitable as core oil due to their low solubility in water and surface activity. The addition of the surface-active polymers in the water phase was important in aiding the formation and stabilization of the titanium dioxide shell. An impressive loading of 50 wt% of the semi-hydrophobic OIT was possible to encapsulate using this simple and applicable procedure.

  11. Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2

    Science.gov (United States)

    Liu, Chongming; Nishshanka, Upul; Attygalle, Athula B.

    2016-05-01

    The anilide anion ( m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion ( m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion ( m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective "cooling" gas and reduces the internal energy of reactant ions.

  12. Two-phase equilibrium and molecular hydrogen formation in damped Lyman-alpha systems

    CERN Document Server

    Liszt, H S

    2002-01-01

    Molecular hydrogen is quite underabundant in damped Lyman-alpha systems at high redshift, when compared to the interstellar medium near the Sun. This has been interpreted as implying that the gas in damped Lyman-alpha systems is warm. like the nearby neutral intercloud medium, rather than cool, as in the clouds which give rise to most H I absorption in the Milky Way. Other lines of evidence suggest that the gas in damped Lyman-alpha systems -- in whole or part -- is actually cool; spectroscopy of neutral and ionized carbon, discussed here, shows that the damped Lyman-alpha systems observed at lower redshift z $$ 2.8 are warm (though not devoid of H2). To interpret the observations of carbon and hydrogen we constructed detailed numerical models of H2 formation under the conditions of two-phase thermal equilibrium, like those which account for conditions near the Sun, but with varying metallicity, dust-gas ratio, $etc$. We find that the low metallicity of damped Lyman-alpha systems is enough to suppress H2 form...

  13. A study about dimers formation of formic acid in gas phase and in the valence region

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, M.S. [Universidade Federal do Reconcavo da Bahia (UFRB), Amargosa, BA (Brazil); Prudente, F.V.; Marinho, R.R.T.; Nascimento, E.M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: Study of simple pre-biotic molecules takes great importance for understanding about complex organic molecules formation like amino acids, proteins and nucleobases within the DNA and RNA. A hypothesis for the appearance of nucleobases is that they could have been synthesized from simpler organic composites contained in interstellar medium (ISM), meteorites and asteroids. Lots of experiments have demonstrated that it is possible to produce complex pre-biotic molecules from simpler molecules under environments that simulate the ISM. Thus, we have performed a theoretical and experimental study about photoionization and photofragmentation processes of simple pre-biotic molecules that are important in the synthesis of complex biomolecules. In this work particularly, we performed photoionization and photofragmentation process of formic acid-D2 (CDOOD) in order to verify if some molecular fragmentations coming from dimers that could be formed before ionization region at TOF mass spectrometer. Experimentally, we measured these molecules mass spectra in gaseous phase. These spectra were got as function of pressures in experimental chamber, temperature samples and photon energy, in the vacuum ultraviolet region, between 11 and 20 eV. These data had been obtained in the Brazilian Laboratory of Synchrotron Light, by using mass spectrometer of flight time. The mass spectra had been obtained by using the photoelectron photoion coincidence technique, PEPICO. For a better understanding of experimental results, we have made a theoretical analysis of the photofragmentation by using Density Functional Theory. (author)

  14. Thermodynamic Aspects of the Formation of Sulfate Minerals from Hot Gaseous Phase

    Science.gov (United States)

    Giere, R.; Majzlan, J.

    2006-12-01

    Minerals may form by solid-state reactions or by dissolution and precipitation from a fluid phase, be it magma, aqueous medium, or gas. The latter phase was traditionally not considered as important as the other ones, although it may be essential in some geological environments. Components of minerals (e.g., sulfur) are commonly transported by hot gases in volcanoes. Others may form in burning coal dumps or by burning fossil fuels for energy production. We have identified a number of minerals which precipitated from the hot gases escaping into the atmosphere from the smoke stack of a coal-fired power plant. This power plant uses coal or a mixture of coal and used tires to produce electricity. The phases identified by TEM are anglesite (PbSO4), gunningite (ZnSO4?H2O), anhydrite (CaSO4), and yavapaiite (KFe(SO4)2). In addition to these crystalline phases, amorphous sulfate materials and soot have been identified. All these materials were captured by filtering the escaping gases beyond the last filters intended to remove any particles from the gas stream. Therefore, they must have formed by precipitation from the hot gas and may present a significant pollution load in the vicinity of power plants. Verhulst et al. (1996) have shown that several metals are most likely transported as chloride complexes in the gas phase. Their assumption correlates well with the finding that the chloride-richer coal+tire mixture increases considerably amounts of emitted metals. Using thermodynamic data for these and other sulfate minerals, we are trying to understand and model the precipitation process of these minerals from hot gases at ambient pressures. In this contribution, we focus on the mineral mikasaite (trigonal Fe2(SO4)3). This mineral has been reported only from burning coal dumps (Miura et al. 1994). Using acid-solution calorimetry, we have determined the enthalpy of formation of mikasaite from elements at T = 298.15 K. We have further estimated the standard entropy of this

  15. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  16. Mechanism of Phase Transformation and Formation of Barium Hexaferrite Doped with Rare-Earths in Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    甘树才; 洪广言; 张军; 车平; 唐娟

    2003-01-01

    The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and γ-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.

  17. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    Science.gov (United States)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  18. Cement Formation:A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker

    OpenAIRE

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledgeabout the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in ...

  19. (Bi,Pb)2Sr2Ca2Cu3Ox phase formation in a silver-sheathed multifilament tape

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Wang, W.G.; Kindl, B.

    2000-01-01

    The 2223 formation is studied on tape samples air-quenched from the annealing temperature. The morphology, dimension and distribution of 2223 phase at the early stage of annealing are revealed by SEM on a scale of several grains. Based on this observation a tentative model of nucleation...

  20. Formation process,microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint

    Institute of Scientific and Technical Information of China (English)

    孙大谦; 刘卫红; 贾树盛; 邱小明

    2004-01-01

    The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium-based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al2Cu and MgAl2O4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al2 Cu brittle phase and promoting homogenization of joint.

  1. Phase transitions during formation of Ag nanoparticles on In{sub 2}S{sub 3} precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Fu, Yanpeng; Dittrich, Thomas; Sáez-Araoz, Rodrigo; Schmid, Martina; Hinrichs, Volker; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2015-09-01

    Phase transitions have been investigated for silver deposition onto In{sub 2}S{sub 3} precursor layers by spray chemical vapor deposition from a trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe{sub 3})) solution. The formation of Ag nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the formation of AgIn{sub 5}S{sub 8}. The increase of the diameter of Ag NPs was accompanied by the evolution of orthorhombic AgInS{sub 2}. The formation of Ag{sub 2}S at the interface between Ag NPs and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated charge separation and electronic transitions in the ranges of corresponding band gaps. The phase transition approach is aimed to be applied for the formation of plasmonic nanostructures on top of extremely thin semiconducting layers. - Highlights: • Silver nanoparticles were deposited onto In{sub 2}S{sub 3} precursor layer by spray pyrolysis. • The silver nanoparticle size and density could be controlled by deposition time. • Phase transitions during deposition and material properties were investigated. • The layers still show semiconducting properties after phase transitions. • Plasmonic absorption enhancement has been demonstrated.

  2. Thermodynamics of phase formation and heavy quasiparticles in Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Andreas W.; Bruin, Jan A.N.; Tian, Demian; Mackenzie, Andrew P. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Grigera, Santiago A. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, UNLP-CONICET, La Plata 1900 (Argentina); Perry, Robin S. [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH93JZ (United Kingdom); Raghu, Sri [Department of Physics and Astronomy, Rice University, Houston, Texas, 77005 (United States); Kivelson, Steve A. [Department of Physics, Stanford University, Stanford, California, 94305 (United States)

    2012-07-01

    The itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} has motivated a wide range of experimental and theoretical work in recent years because of the discovery of an unusual low temperature phase which is forming in the vicinity of a proposed quantum critical point. A major challenge is the investigation of the thermodynamic properties of both this unusual phase and the fluctuations associated with the quantum critical point. Here we report on new specific heat measurements extending previous work to the wider phase diagram. Our results shed light on two important aspects of the system. First we discuss the entropic details of the formation of heavy quasiparticles as a function of temperature in this compound relevant for a wide class of materials. Secondly we present thermodynamic evidence for the anomalous low temperature phase forming directly out of the critical high temperature phase.

  3. Formation of FeMo2B2 phase in boron containing 9Cr-1.5Mo ferritic steels

    Institute of Scientific and Technical Information of China (English)

    JUNG Woo-Sang; HONG Suk-Woo; SONG Sang-Min; SOOK-In Kwun; CHUNG Soon-Hyo

    2006-01-01

    The segregation and diffusion of boron during heat treatments were studied.The influence of boron contents, aging time and applied stress on FeMo2B2 formation was also studied.Finally, the effects of boron contents and FeMo2B2 formation on the high temperature strength were studied.Boron atoms were segregated to prior austenite grain boundary during normalizing treatment.And these boron atoms were slowly diffused into the grain interior during tempering and aging at 700 ℃.The FeMo2B2 phase was only formed after 1,000 h aging at 700 ℃ in alloy containing 196 ppm boron.The formation of FeMo2B2 phase is accelerated by the applied stress.It was expected that the formation of FeMo2B2 is closely related to the redistribution of boron atoms.The tensile strengths at 700 ℃ are increased with the increase of boron contents.However, the formation of FeMo2B2 phase results in lower tensile strength.

  4. Crystalline phase of Y2O3:Eu particles generated in a substrate-free flame process

    Institute of Scientific and Technical Information of China (English)

    Bing Guo; Hoon Yim; Wonjoong Hwang; Matt Nowell; Zhiping Luo

    2011-01-01

    In this study, factors affecting the crystal structure of flame-synthesized Y2O3:Eu particles were investigated, especially the particle size effect and its interaction with Eu doping concentration. Polydisperse Y2O3:Eu (size range 200nm to 3 μm) powder samples with Eu doping concentrations from 2.5 mol% to 25 mol% were generated in either H2/air or H2/O2 substrate-free flames. The crystal structure of the powder samples was determined by powder X-ray diffraction (XRD),which was complemented by photoluminescence (PL) measurements. Single particle crystal structure was determined by single particle selected area electron diffraction (SAED),and for the first time,by electron backscatter diffraction (EBSD).H2/air flames resulted in cubic phase Y2O3:Eu particles with hollow morphology and irregular shapes.Particles from H2/O2 flames had dense and spherical morphology; samples with lower Eu doping concentrations had mixed cubic/monoclinic phases: samples with the highest Eu doping concentrations were phase-pure monoclinic. For samples generated from H2/O2 flames,a particle size effect and its interaction with Eu doping concentration were found: particles smaller than a critical diameter had the monoclinic phase,and this critical diameter increased with increasing Eu doping concentration. These findings suggest that the formation of monoclinic Y2O3:Eu is inevitable when extremely hot substrate-free flames are used,because typical flame-synthesized Y2O3:Eu particle sizes are well below the critical diameter.However,it may be possible to generate particles with dense,spherical morphology and the desired cubic structure by using a moderately high flame temperature that enables fast sintering without melting the particles.

  5. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation.

    Science.gov (United States)

    Szczepanski, Caroline R; Stansbury, Jeffrey W

    2015-07-23

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm(2)), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm(2)) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus.

  6. Coordinate-Invariant Lyddane-Sachs-Teller Relationship for Polar Vibrations in Materials with Monoclinic and Triclinic Crystal Systems.

    Science.gov (United States)

    Schubert, Mathias

    2016-11-18

    A coordinate-invariant generalization of the Lyddane-Sachs-Teller relation is presented for polar vibrations in materials with monoclinic and triclinic crystal systems. The generalization is derived from an eigendielectric displacement vector summation approach, which is equivalent to the microscopic Born-Huang description of polar lattice vibrations in the harmonic approximation. An expression for a general oscillator strength is also described for materials with monoclinic and triclinic crystal systems. A generalized factorized form of the dielectric response characteristic for monoclinic and triclinic materials is proposed. The generalized Lyddane-Sachs-Teller relation is found valid for monoclinic β-Ga_{2}O_{3}, where accurate experimental data became available recently from a comprehensive generalized ellipsometry investigation [Phys. Rev. B 93, 125209 (2016)]. Data for triclinic crystal systems can be measured by generalized ellipsometry as well, and are anticipated to become available soon and results can be compared with the generalized relations presented here.

  7. Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 1 Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K.; Edwards, T. B.; Reamer, I.A.; Workman, R. J.

    2005-09-30

    Although it is well known that the addition of Al{sub 2}O{sub 3} to borosilicate glasses enhances the durability of the waste form (through creation of network-forming tetrahedral Na+-[AlO{sub 4/2}]{sup -} pairs), the combination of high Al{sub 2}O{sub 3} and Na{sub 2}O can lead to the formation of nepheline (NaAlSiO{sub 4})--which can negatively impact durability. Given the projected high concentration of Al{sub 2}O{sub 3} in SB4 (Lilliston 2005) and the potential use of a high Na{sub 2}O based frit to improve melt rate and a high Na{sub 2}O sludge due to settling problems, the potential formation of nepheline in various SB4 systems continues to be assessed. Twelve SB4-based glasses were fabricated and their durabilities (via the Product Consistency Test [PCT]) measured to assess the potential for nepheline formation and its potential negative impact on durability. In terms of ''acceptability'', the results indicate that all of the study glasses produced are acceptable with respect to durability as defined by the PCT (normalized boron release values for all nepheline (NEPH) glasses were much lower than that of the Environmental Assessment (EA) glass (16.695 g/L)). The most durable glass is NEPH-04 (quenched) with a normalized boron release (NL [B]) of 0.61 g/L, while the least durable glass is NEPH-01 centerline canister cooled (ccc) with an NL [B] of 2.47 g/L (based on the measured composition). In terms of predictability, most of the study glasses are predictable by the {Delta}G{sub p} model. Those that are not predictable (i.e., they fall outside of the prediction limits) actually fall below the prediction interval (i.e., they are over predicted by the model) suggesting the model is conservative. The Phase 1 PCT results suggest that for those glasses prone to nepheline formation (using the 0.62 value developed by Li et al. (2003) as a guide), a statistically significant difference in PCT response was observed for the two heat treatments but

  8. Formation of a lamellar phase : Rearrangement of amphiphiles from the bulk isotropic phase into a lamellar fashion

    NARCIS (Netherlands)

    Sein, A; Engberts, JBFN

    1996-01-01

    The dynamics of the formation of a lyotropic lamellar arrangement. of surfactant molecules has been studied by means of a contact experiment. Technical grade dodecylbenzenesulfonic acid (HDoBS) was brought into contact with water or an aqueous solution containing sodium hydroxide or sodium hydroxide

  9. Formation of macroporous gel morphology by phase separation in the silica sol-gel system containing nonionic surfactant

    Institute of Scientific and Technical Information of China (English)

    Junsheng Wu; Xiaogang Li; Wei Du; Hua Chen

    2005-01-01

    The phase separation and gel formation behavior in an alkoxy-derived silica sol-gel system containing Ci6EOi5 has been investigated. Various gel morphologies similar to other sol-gel systems containing organic additives were obtained by changing the preparation conditions. Micrometer-range interconnected porous gels were obtained by freezing transitional structures of phase separation in the sol-gel process. The dependence of the resulting gel morphology on several important reaction parameters such as the starting composition, reaction temperature and acid catalyst concentration was studied in detail. The experimental results indicate that the gel morphology is mainly determined by the time relation between the onset of phase separation and gel formation.

  10. Nucleation and Growth of MOCVD Grown (Cr, Zn)O Films – Uniform Doping vs. Secondary Phase Formation

    Energy Technology Data Exchange (ETDEWEB)

    Saraf, Laxmikant V.; Engelhard, Mark H.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Wang, Chong M.; Heald, Steve M.; McCready, David E.; Lea, Alan S.; Baer, Donald R.; Chambers, Scott A.

    2007-01-17

    We report a detailed study of chromium solubility and secondary phase formation in MOCVD grown (Cr, Zn)O-based films on silicon (100). Simultaneous deposition of 0.15M Cr(TMHD) and 0.025M Zn(TMHD) based precursors in an oxidizing environment with a flow ratio of 1:10 resulted in secondary phase formation rather than uniform Cr doping. Based on several surface and micro-structural techniques, we have identified nano-crystalline ZnCr2O4 and disordered Cr2O3 as the secondary Cr-containing phases that nucleate. Analysis suggests that ZnCr2O4 crystallites are dispersed throughout the film and that disordered Cr2O3 layer may form at the interface. These results reveal a strong tendency for Cr to exist in octahedral, rather than tetrahedral coordination.

  11. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  12. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum

    Science.gov (United States)

    Ding, Bangfu; Han, Chao; Zheng, Lirong; Zhang, Junying; Wang, Rongming; Tang, Zilong

    2015-01-01

    The effect of isovalent lanthanum (La) doping on the monoclinic Y2WO6 photoluminescence was studied. Introducing the non-activated La3+ into Y2WO6 brings new excitation bands from violet to visible regions and strong near-infrared emission, while the bands position and intensity depend on the doping concentration. It is interesting to find that doping La3+ into Y2WO6 promotes the oxygen vacancy formation according to the first-principle calculation, Raman spectrum, and synchrotron radiation analysis. Through the Rietveld refinement and X-ray photoelectron spectroscopy results, La3+ is found to mainly occupy the Y2 (2f) site in low-concentration doped samples. With increasing doping concentration, the La3+ occupation number at the Y3 (4g) site increases faster than those at the Y1 (2e) and Y2 (2f) sites. When La3+ occupies different Y sites, the localized energy states caused by the oxygen vacancy pair change their position in the forbidden band, inducing the variation of the excitation and emission bands. This research proposes a feasible method to tune the oxygen vacancy emission, eliminating the challenge of precisely controlling the calcination atmosphere. PMID:25821078

  13. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation.

    Science.gov (United States)

    Liu, Wei; Yu, Yaqin; Cao, Lixin; Su, Ge; Liu, Xiaoyun; Zhang, Lan; Wang, Yonggang

    2010-09-15

    Monoclinic structured spindly bismuth vanadate microtubes were fabricated on a large scale by a simple ionothermal treatment in the environment-friendly green solvent of urea/choline chloride. The as-prepared samples were characterized by XRD, SEM, TEM, IR and their photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. As-obtained BiVO(4) microtubes exhibit the spindly shape with a side length of ca. 800 nm and a wall thickness of ca. 100 nm. The opening of these microtubes presents a saw-toothed structure, which is seldom in other tube-shaped materials. The formation mechanism of the spindly microtubes is ascribed to the complex cooperation of the reaction-crystallization process controlled by BiOCl and the nucleation-growth process of nanosheets induced by solvent molecules attached on the surface of microtubes. Such spindly microtubes exhibit much higher visible-light photocatalytic activity than that of bulk BiVO(4) prepared by solid-state reaction, possibly resulting from their large surface area and improved crystallinity.

  14. Template-Free Synthesis of Monoclinic BiVO4 with Porous Structure and Its High Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Pengyu Dong

    2016-08-01

    Full Text Available Monoclinic BiVO4 photocatalysts with porous structures were synthesized by a two-step approach without assistance of any templates. The as-prepared samples were characterized by X-ray diffraction pattern (XRD, scanning electron microscopy (SEM, Brunauer–Emmett–Teller (BET, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS, photocurrent responses, and electrochemical impedance spectra (EIS. It is found that the as-prepared BiVO4 samples had a porous structure with aperture diameter of 50–300 nm. Moreover, the BET specific surface area of the porous BiVO4-200 °C sample reaches up to 5.69 m2/g, which is much higher than that of the sample of BiVO4 particles without porous structure. Furthermore, a possible formation mechanism of BiVO4 with porous structure was proposed. With methylene blue (MB as a model compound, the photocatalytic oxidation of organic contaminants in aqueous solution was investigated under visible light irradiation. It is found that the porous BiVO4-200 °C sample exhibits the best photocatalytic activity, and the photocatalytic rate constant is about three times of that of the sample of BiVO4 particles without porous structure. In addition, the photocurrent responses and electrochemical impedance spectra strongly support this conclusion.

  15. A Raman study of the nanocrystallite size effect on the pressure temperature phase diagram of zirconia grown by zirconium-based alloys oxidation

    Science.gov (United States)

    Bouvier, P.; Godlewski, J.; Lucazeau, G.

    2002-02-01

    The pressure-temperature phase diagrams of different zirconia samples prepared by oxidation of Zircaloy-4 and Zr-1%Nb-0.12O alloys were monitored by Raman spectrometry from 0.1 MPa to 12 GPa and from 300 to 640 K. These new diagrams show that the monoclinic-tetragonal equilibrium line is strongly downshifted in temperature compared to literature measurements performed on usual polycrystalline zirconia. In addition, the monoclinic-orthorhombic equilibrium line is slightly shifted to higher pressure (i.e. 6 GPa). The crystallite sizes smaller than 30 nm, are thought to be responsible for these equilibrium line displacements. The tetragonal phase obtained in temperature under high pressure can be quenched at room temperature, if the pressure is maintained, and it is destabilised and transforms completely into monoclinic phase if the pressure is released. These results confirm that coupled effects of stress, temperature and nanosized grain are responsible for the formation of the tetragonal phase near the metal/oxide interface during the oxidation of zirconium-based alloys.

  16. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    Science.gov (United States)

    Im, Y.; Jang, M.; Beardsley, R. L.

    2014-04-01

    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene (135-TMB) under various concentrations of NOx and SO2 using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-to-carbon (O : C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (αi,j) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the αi,j matrix as a function of NOx improved the evaluation of NOx effects on aromatic SOA. The total amount of organic matter (OMT) is predicted by two modules in the UNIPAR model: OMP by a partitioning process and OMAR by aerosol-phase reactions. The OMAR module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NOx concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions.

  17. Experimental study of Gas Phase Formation and Evolution in Low fO2 Planetary Basalts.

    Science.gov (United States)

    Rutherford, M. J.; Wetzel, D. T.; Saal, A. E.; Hauri, E. H.

    2012-12-01

    The existence of a gas phase in planetary basaltic magmas is demonstrated by the ubiquitous presence of vesicles in returned lunar samples and meteorites as well as basalts from Earth and Mars. Additionally, formation of the fine-grained glass bead deposits during eruption of lunar picritic glasses required a large gas-bubble volume (> 90%) at the time of eruption/fragmentation. Up to 100-200 ppm levels of H, S, Cl and F still remain as diffusion-loss profiles in individual lunar glass beads SIMS (1), and higher volatile concentrations occur in olivine melt inclusions (2). The composition and origin of such volcanic gases were investigated by experiments on a volatile (C-O-H-S-Cl-F)-bearing picritic glass composition as a function of fO2 near iron-wustite (IW). The C-O-H species dissolved in gas-saturated basaltic melt above IW-0.5 are carbonate, OH and H2O with 100 to 10,000 ppm H2O in the sample; below IW-0.5, the C-species present (Raman and FTIR) are Fe(CO)5 (iron pentacarbonyl) and lesser CH4 [3]. The change in melt speciation in part reflects a change in calculated speciation in the coexisting gas [4]. The carbon solubility in these experimental melts increases linearly with increasing pressure; the more oxidized glasses contain 32-620 ppm C for pressures of 98 to 980 MPa, the reduced glasses contain 8-240 ppm C for pressures between 36 and 900 MPa. Thus, the C solubility of the more reduced Fe-carbonyl and CH4 is about one-half that of carbonate at the same pressure, and indicates the carrying capacity for C in reduced (i.e., lunar) magmas is much lower than it is in present day terrestrial magmas. Varioles up to 200 um in diameter formed in some experiments with higher dissolved water contents (1%); they have radiating crystalline textures (olivine, glass and poorly crystallized graphite) initiated at a central nucleation site. A sharp peak in the variole Ramen spectra indicates methane as well as CO is released during variole formation and a reaction such

  18. Pure monoclinic La(1-x)Eu(x)PO₄ micro-/nano-structures: fast synthesis, shape evolution and optical properties.

    Science.gov (United States)

    Chen, Huanhuan; Ni, Yonghong; Ma, Xiang; Hong, Jianming

    2014-08-15

    Rare-earth-doped LaPO4 crystals have been attracting considerable interest. In this work, we reported the fast syntheses of LaPO4 and Eu-doped LaPO4 crystals via a simple oil-bath route, employing La(NO3)3 and KH2PO4 as the original reactants, Eu2O3 as the dopant. The reaction was carried out in ethylene glycol system at 120°C for 30 min without any assistance of surfactants or templates. X-ray powder diffraction analyses showed that pure monoclinic LaPO4 form was obtained in the system without Eu(3+) ions, and the above phase was not changed after integrating Eu(3+) ions into LaPO4 matrix. However, electron microscopy observations discovered that the integration of Eu(3+) ions into LaPO4 matrix obviously changed the morphology and size of the final La(1-x)Eu(x)PO4 crystals. With the increase in Eu(3+) amount from 0 to 0.35, the shape of the final product varied from homogeneous egg-like nanospheroids, to irregular grains with microscales, and to homogeneous microspheroids. Also, the Eu(3+) ion content in La(1-x)Eu(x)PO4 markedly affected the photoluminescence properties of the final product. When x=0.2, the product exhibited the strongest PL emission.

  19. Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light.

    Science.gov (United States)

    Li, Fuhua; Kang, Yapu; Chen, Min; Liu, Guoguang; Lv, Wenying; Yao, Kun; Chen, Ping; Huang, Haoping

    2016-05-01

    Characterized as by X-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectra techniques, BiVO4 photocatalyst was hydrothermally synthesized. The photocatalytic degradation mechanisms of ibuprofen (IBP) were evaluated in aqueous media via BiVO4. Results demonstrated that the prepared photocatalyst corresponded to phase-pure monoclinic scheelite BiVO4. The synthesized BiVO4 showed superior photocatalytic properties under the irradiation of visible-light. The photocatalytic degradation rate of IBP decreased with an increase in the initial IBP concentration. The degradation process followed first-order kinetics model. At an IBP concentration of 10 mg L(-1), while a BiVO4 concentration of 5.0 g L(-1) with pH value of 4.5, the rate of IBP degradation was obtained as 90% after 25 min. The photocatalytic degradation of IBP was primarily accomplished via the generation of superoxide radical (O2(•-)) and hydroxyl radicals ((•)OH). During the process of degradation, part of the (•)OH was converted from the O2(•-). The direct oxidation of holes (h(+)) made a minimal contribution to the degradation of IBP.

  20. Monoclinic structure of hydroxylpyromorphite Pb10(PO4)6(OH)2 - hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series

    Science.gov (United States)

    Giera, Alicja; Manecki, Maciej; Borkiewicz, Olaf; Zelek, Sylwia; Rakovan, John; Bajda, Tomasz; Marchlewski, Tomasz

    2016-04-01

    Seven samples of hydroxyl analogues of pyromorphite-mimetite solid solutions series were synthesized from aqueous solutions at 80° C in a computer-controlled chemistate: 200 mL aqueous solutions of 0.05M Pb(NO3)2 and 0.03M KH2AsO4 and/or KH2PO4 were dosed with a 0.25 mL/min rate to a glass beaker, which initially contained 100 mL of distilled water. Constant pH of 8 was maintained using 2M KOH. The syntheses yielded homogeneous fine-grained white precipitates composition of which was close to theoretical Pb10[(PO4)6-x(AsO4)x](OH)2, where x = 0, 1, 2, 3, 4, 5, 6. High-resolution powder X-ray diffraction data were obtained in transmission geometry at the beamline 11-BM at the Advanced Photon Source (Argonne National Laboratory in Illinois, USA). The structure Rietveld refinements based on starting parameters of either hexagonal hydroxylpyromorphite or monoclinic mimetite-M were performed using GSAS+EXPGUI software. Apatite usually crystallizes in the hexagonal crystal system with the space group P63/m. For the first time, however, the lowering of the hexagonal to monoclinic crystal symmetry was observed in the hydroxyl variety of pyromorphite-mimetite solid solution series. This is indicated by better fitting of the modeled monoclinic structure to the experimental data. The same is not the case for analogous calcium hydroxylapatite series Ca5(PO4)3OH - Ca5(AsO4)3OH (Lee et al. 2009). Systematical linear increase of unit cell parameters is observed with As substitution from a=9.88, b=19.75, and c=7.43 for Pb10(PO4)6(OH)2 to a=10.23, b=20.32, and c=7.51 for Pb10(AsO4)6(OH)2. A strong pseudohexagonal character (γ ≈ 120° and b ≈ 2a) of the analyzed monoclinic phases was established. This work is partially funded by AGH research grant no 11.11.140.319 and partially by Polish NCN grant No 2011/01/M/ST10/06999. Lee Y.J., Stephens P.W., Tang Y., Li W., Philips B.L., Parise J.B., Reeder R.J., 2009. Arsenate substitution in hydroxylapatite: Structural characterization

  1. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe{sub 4}O{sub 7.0}: Magnetism and transport

    Energy Technology Data Exchange (ETDEWEB)

    Duffort, V.; Sarkar, T. [CRISMAT, CNRS-ENSICAEN, 6 Bd Marechal Juin, 14050 Caen (France); Caignaert, V., E-mail: vincent.caignaert@ensicaen.fr [CRISMAT, CNRS-ENSICAEN, 6 Bd Marechal Juin, 14050 Caen (France); Pralong, V.; Raveau, B. [CRISMAT, CNRS-ENSICAEN, 6 Bd Marechal Juin, 14050 Caen (France); Avdeev, M. [Bragg Institute, Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia); Cervellino, A. [Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen (Switzerland); Waerenborgh, J.C.; Tsipis, E.V. [UCQR, IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, CFMC-UL, 2686-953 Sacavém (Portugal)

    2013-09-15

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe{sub 4}O{sub 7.0} by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T{sub S}=180 K, a magnetic transition is observed below T{sub N}=95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k{sub 1}=(0,0,½), shows that one iron Fe2 exhibits a larger magnetic moment than the three others, suggesting a possible charge ordering according to the formula YBaFe{sup 3+}Fe{sub 3}{sup 2+}O{sub 7.0}. The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T{sub S}=180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe{sub 4}O{sub 7}. Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe{sub 4}O{sub 7} were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice

  2. FOSSIL EVIDENCE FOR THE TWO-PHASE FORMATION OF ELLIPTICAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang Song [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Peng, Chien Y. [Giant Magellan Telescope Organization, 251 South Lake Avenue, Suite 300, Pasadena, CA 91101 (United States); Li Zhaoyu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States)

    2013-05-10

    Massive early-type galaxies (ETGs) have undergone dramatic structural evolution over the last 10 Gyr. A companion paper shows that nearby elliptical galaxies with M{sub *} {>=} 1.3 Multiplication-Sign 10{sup 11} M{sub Sun} generically contain three photometric subcomponents: a compact inner component with effective radius R{sub e} {approx}< 1 kpc, an intermediate-scale middle component with R{sub e} Almost-Equal-To 2.5 kpc, and an extended outer envelope with R{sub e} Almost-Equal-To 10 kpc. Here we attempt to relate these substructures with the properties of ETGs observed at higher redshifts. We find that a hypothetical structure formed from combining the inner and middle components of local ellipticals follows a strikingly tight stellar mass-size relation, one that resembles the distribution of ETGs at z Almost-Equal-To 1. Outside of the central kpc, the median stellar mass surface density profiles of this composite structure agree closest with those of massive galaxies that have similar cumulative number density at 1.5 < z < 2.0 within the uncertainty. We propose that the central substructures in nearby ellipticals are the evolutionary descendants of the ''red nuggets'' formed under highly dissipative (''wet'') conditions at high redshifts, as envisioned in the initial stages of the two-phase formation scenario recently advocated for massive galaxies. Subsequent accretion, plausibly through dissipationless (''dry'') minor mergers, builds the outer regions of the galaxy identified as the outer envelope in our decomposition. The large scatter exhibited by this component on the stellar mass-size plane testifies to the stochastic nature of the accretion events.

  3. Molecularly imprinted polymer grafted to porous polyethylene frits: a new selective solid-phase extraction format.

    Science.gov (United States)

    Barahona, Francisco; Turiel, Esther; Martín-Esteban, Antonio

    2011-10-07

    In this paper, a novel format for selective solid-phase extraction based on a molecularly imprinted polymer (MIP) is described. A small amount of MIP has been synthesized within the pores of commercial polyethylene (PE) frits and attached to its surface using benzophenone (BP), a photo-initiator capable to start the polymerisation from the surface of the support material. Key properties affecting the obtainment of a proper polymeric layer, such as polymerisation time and kind of cross-linker were optimised. The developed imprinted material has been applied as a selective sorbent for cleaning extracts of thiabendazole (TBZ), as model compound, from citrus samples. The use of different solvents for loading the analyte in the imprinted frits was investigated, as well as the binding capacity of the imprinted polymer. Imprinted frits showed good selectivity when loads were performed using toluene and a linear relationship was obtained for the target analyte up to 1000 ng of loaded analyte. Prepared composite material was applied to the SPE of TBZ in real samples extracts, showing an impressive clean-up ability. Calibrations showed good linearity in the concentration range of 0.05-5.00 μg g(-1), referred to the original solid sample, and the regression coefficients obtained were greater than 0.996. The calculated detection limit was 0.016 μg g(-1), low enough to satisfactory analysis of TBZ in real samples. RSDs at different spiking levels ranged below 15% in all the cases and imprinted frits were reusable without loss in their performance.

  4. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    Science.gov (United States)

    Liu, Tengyu; Li, Zijun; Chan, ManNin; Chan, Chak K.

    2017-06-01

    Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19-20 °C and 65-70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm-3 s, was 1. 35 ± 0. 30 µg min-1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc) of SOA was -1.51 to -0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.

  5. Formation and characteristics of aqueous two-phase systems formed by a cationic surfactant and a series of ionic liquids.

    Science.gov (United States)

    Wei, Xi-Lian; Wang, Xiu-Hong; Ping, A-Li; Du, Pan-Pan; Sun, De-Zhi; Zhang, Qing-Fu; Liu, Jie

    2013-11-15

    Aqueous two-phase systems (ATPS) were obtained in the aqueous mixtures of a cationic surfactant and a series of ionic liquids (ILs). The effects of IL structure, temperature and additives on the phase separation were systematically investigated. The microstructures of some ATPS were observed by freeze-fracture replication technique. Lyotropic liquid crystal was found in the bottom phase besides micelles under different conditions. Remarkably, both IL structure and additives profoundly affected the formation and properties of the ATPSs. The phase separation can be attributed to the existence of different aggregates and the cation-π interactions of the cationic surfactant with the ILs, which has a significant role in the formation of ATPS. The extraction capacity of the studied ATPS was also evaluated through their application in the extraction of two biosubstances. The results indicate that the ILs with BF4(-) as anion show much better extraction efficiencies than the corresponding ILs with Br(-) as anion do under the same conditions. l-Tryptophan was mainly distributed into the NPTAB-rich phase, while methylene blue and capsochrome were mainly in the IL-rich phase.

  6. Polytypic phase formation in DyAl3 by rapid solidification

    Science.gov (United States)

    Xu, Yan; Altounian, Z.; Muir, W. B.

    1991-01-01

    Amorphous ribbons of AlxDy100-x, 93≳x≳85, were obtained by melt spinning. During crystallization, in addition to Al, four different metastable crystalline phases of DyAl3 were observed. These phases are, in order of appearance, the high-pressure face-centered cubic phase, γ-DyAl3 and three polytypic rhombohedral phases, β-DyAl3, β'-DyAl3, and α'-DyAl3. It is the first time that the β' phase in rare-earth trialuminides and the α' phase in Dy-Al alloy system have been observed. It is shown that all these phases are associated with the polytypic packing of the hexagonal DyAl3 atomic layers. The relative stability of the phases is found to be related to the hexagonal to cubic stacking ratio in the structure.

  7. Effect of molecular weight of triglycerides on the formation and rheological behavior of cubic and hexagonal phase based gel emulsions.

    Science.gov (United States)

    Alam, Mohammad Mydul; Aramaki, Kenji

    2009-08-01

    The effect of triglyceride molecular weight on the formation and rheology of cubic (O/I(1)) and hexagonal (O/H(1)) phase based gel emulsions has been studied in water/C(12)EO(8) systems. It was found that the addition of TDG (1,2,3-tridecanoyl glycerol) in the micellar solution leads to the formation of the I(1) phase, which can solubilize some added oil. From SAXS data, it is revealed that the interlayer spacing (d) and the length of hydrophobic part (r(I)) increase with increasing TDG concentration in the I(1) phase, whereas the effective cross-sectional area (a(s)) decreases. After the oil solubilization limit, the d value remains nearly constant, indicating the I(1)+O phase appears. The high viscosity of the I(1) phase facilitates the formation of the O/I(1) gel emulsion. It has been observed that the formation and stability of the O/I(1) and O/H(1) gel emulsion is highly dependent on the molecular weight of triglycerides, namely, the high molecular weight triglycerides show better performance (formation and stability) compared to the low molecular weight triglycerides. The rheological behavior of the I(1) phase was found to change from viscoelastic to elastic nature with TDG content. The values of the complex viscosity, mid absolute value(eta*) show different trends at different fixed frequencies within the I(1) phase, whereas it decrease monotonically in the O/I(1) gel emulsions. The increasing values of the absolute value(eta*) (at lower frequency) could be due to the neighboring micellar interaction and decreasing values of the absolute value(eta*) in the O/I(1) gel emulsion could relate to the volume fraction of the I(1) phase in the system. It is also figured out that the rheological parameters (elastic modulus, viscous modulus, and absolute value(eta*)) of the O/I(1) the gel emulsion do not depend on the oil nature, whereas the O/H(1) gel emulsion shows oil nature dependency.

  8. Seismic transpressive basement faults and monocline development in a foreland basin (Eastern Guadalquivir, SE Spain)

    Science.gov (United States)

    Pedrera, A.; Ruiz-Constán, A.; Marín-Lechado, C.; Galindo-Zaldívar, J.; González, A.; Peláez, J. A.

    2013-12-01

    We examine the late Tortonian to present-day deformation of an active seismic sector of the eastern Iberian foreland basement of the Betic Cordillera, in southern Spain. Transpressive faults affecting Paleozoic basement offset up to Triassic rocks. Late Triassic clays and evaporites constitute a décollement level decoupling the basement rocks and a ~100 m thick cover of Jurassic carbonates. Monoclines trending NE-SW to ENE-WSW deform the Jurassic cover driven by the propagation of high-angle transpressive right-lateral basement faults. They favor the migration of clays and evaporites toward the propagated fault tip, i.e., the core of the anticline, resulting in fluid overpressure, fluid flow, and precipitation of fibrous gypsum parallel to a vertical σ3. The overall geometry of the studied monoclines, as well as the intense deformation within the clays and evaporites, reproduces three-layer discrete element models entailing a weak middle unit sandwiched between strong layers. Late Tortonian syn-folding sediments recorded the initial stages of the fault-propagation folding. Equivalent unexposed transpressive structures and associated monoclines reactivated under the present-day NW-SE convergence are recognized and analyzed in the Sabiote-Torreperogil region, using seismic reflection, gravity, and borehole data. A seismic series of more than 2100 low-magnitude earthquakes was recorded within a very limited area of the basement of this sector from October 2012 to May 2013. Seismic activity within a major NE-SW trending transpressive basement fault plane stimulated rupture along a subsidiary E-W (~N95°E) strike-slip relay fault. The biggest event (mbLg 3.9, MW 3.7) occurred at the junction between them in a transpressive relay sector.

  9. Correlative theoretical and experimental investigation of the formation of AlYB{sub 14} and competing phases

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Oliver, E-mail: hunold@mch.rwth-aachen.de; Chen, Yen-Ting; Music, Denis; Baben, Moritz to; Achenbach, Jan-Ole; Keuter, Philipp; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Persson, Per O. Å. [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Primetzhofer, Daniel [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden)

    2016-02-28

    The phase formation in the boron-rich section of the Al-Y-B system has been explored by a correlative theoretical and experimental research approach. The structure of coatings deposited via high power pulsed magnetron sputtering from a compound target was studied using elastic recoil detection analysis, electron energy loss spectroscopy spectrum imaging, as well as X-ray and electron diffraction data. The formation of AlYB{sub 14} together with the (Y,Al)B{sub 6} impurity phase, containing 1.8 at. % less B than AlYB{sub 14}, was observed at a growth temperature of 800 °C and hence 600 °C below the bulk synthesis temperature. Based on quantum mechanical calculations, we infer that minute compositional variations within the film may be responsible for the formation of both icosahedrally bonded AlYB{sub 14} and cubic (Y,Al)B{sub 6} phases. These findings are relevant for synthesis attempts of all boron rich icosahedrally bonded compounds with the space group: Imma that form ternary phases at similar compositions.

  10. A phase field study of stress effects on microstructure formation during laser-aided direct metal deposition process

    Science.gov (United States)

    Mirzade, Fikret K.

    2017-06-01

    We present a phase-field model for predicting elastic effects on microstructure evolution at the process of laser sintering with powder injection. We derive a system of governing equations describing coupling effects among phase variable, concentration, thermal and elastic displacement fields based on the principle of entropy production positiveness, in which thermal and concentration expansions, mechanical anisotropy effects, transformation dilatation, and strain dependency on phase transformation are considered. The microstructure model is coupled with a macroscopic thermodynamic model. Effects of thermo-capillary and thermo-gravitation convections are included. The possibility to describe the process of structure formation at the phase interface during the melt crystallization is discussed. This model enables prediction and visualization of grain structures during and after the laser sintering process.

  11. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting;

    2009-01-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 517...... to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy....

  12. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    Science.gov (United States)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  13. Theoretical Mechanistic and Kinetic Studies on Homogeneous Gas-Phase Formation of Polychlorinated Naphthalene from 2-Chlorophenol as Forerunner

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2015-10-01

    Full Text Available Polychlorinated naphthalenes (PCNs are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs and polychlorinated dibenzofurans (PCDFs in thermal and combustion procedures. Chlorophenols (CPs are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600–1200 K using canonical variational transition-state theory (CVT with small curvature tunneling contribution (SCT method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential.

  14. Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules

    Science.gov (United States)

    Ishikawa, Atsushi; Nakai, Hiromi

    2015-03-01

    The harmonic solvation model (HSM), which was recently developed for evaluating condensed-phase thermodynamics by quantum chemical calculations (Nakai and Ishikawa, 2014), was applied to formation and combustion reactions of simple organic molecules. The conventional ideal gas model (IGM) considerably overestimated the entropies of the liquid molecules. The HSM could significantly improve this overestimation; mean absolute deviations for the Gibbs energies of the formation and combustion reactions were (49.6, 26.7) for the IGM and (9.7, 5.4) for the HSM in kJ/mol.

  15. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  16. Study on the Formation and Precipitation Mechanism of Mn5Si3 Phase in the MBA-2 Brass Alloy

    Science.gov (United States)

    Li, Hang; Jie, Jinchuan; Zhang, Pengchao; Jia, Chunxu; Wang, Tongmin; Li, Tingju

    2016-06-01

    Mn5Si3 is an attractive dispersion in the special brass, owing to its high hardness and high wear resistance. In the present study, synchrotron X-ray radiography and rapid cooling were applied to investigate the formation mechanism of Mn5Si3 phase in the MBA-2 brass alloy. The primary Mn5Si3 phase is proved to exist stably in the alloy melt and nucleate from the melt at temperatures above 1373 K (1100 °C). In addition, the precipitation mechanism of Mn5Si3 phase is addressed systematically by the isothermal heat treatment. The Mn5Si3 particles are observed to precipitate from the matrix at temperatures above 1023 K (750 °C), and a crystallographic orientation relationship is found between the precipitated Mn5Si3 particle and β phase: (110)_{β } //(1overline{1} 00)_{{{{Mn}}5 {{Si}}3 }} and [overline{1} 11]_{β } //[11overline{2} overline{2} ]_{{{{Mn}}5 {{Si}}3 }} . However, the precipitation of Mn5Si3 phase is thermodynamically inhibited at lower temperatures, which can be ascribed to the increase in the Gibbs free energy of formation of Mn5Si3 with decreasing the temperature.

  17. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  18. Effect of the formation process of transient liquid phase (TLP) on the interface structure of TiAl joints

    Institute of Scientific and Technical Information of China (English)

    Huiping Duan; Jun Luo; Karl-Heinz Bohm; Mustafa Ko(c)ak

    2005-01-01

    TiAl has been joined employing the transient liquid phase (TLP) bonding with Ti combined with Cu, Ni or Fe foils. Experimental results showed that though the interface structures of the joints are quite different, all the joined zones are composed of five sublayers, i.e. two diffusion zones, two interfacial zones and an interlayer. It has been convinced that the formation process of the transient liquid phase controls the diffusion behavior of melting point depressant (MPD) Cu, Ni, and Fe atoms, which leads to form different interface structures of the joints.

  19. Formation of Omega-like Nanocrystalline in the Melt-Spun Nd85Al15 Alloy by Phase Transformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Microstructure and subsequent phase transformations on heating of the melt-spun Nd85Al15 alloy have been studied by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The melt-spunNds5Al15 alloy shows two-stage transformation processes as follows: amorphous+72 nm supersaturated bcc-Nd(Al)solid solution→7 nm omega-like phase→AlNd3+hexagonal Nd. The activation energies for the first and secondtransformation were found to be 100 k J/mol and 188 k J/mol, respectively. The formation mechanism of nanoscaleomega-like phase is discussed.

  20. Accurate Gas Phase Formation Enthalpies of Alloys and Refractories Decomposition Products

    KAUST Repository

    Minenkov, Yury

    2017-01-17

    Accurate gas phase formation enthalpies, ΔHf, of metal oxides and halides are critical for the prediction of the stability of high temperature materials used in the aerospace and nuclear industries. Unfortunately, the experimental ΔHf values of these compounds in the most used databases, such as the NIST-JANAF database, are often reported with large inaccuracy, while some other ΔHf values clearly differ from the value predicted by CCSD(T) methods. To address this point, in this work we systematically predicted the ΔHf values of a series of these compounds having a group 4, 6, or 14 metal. The ΔHf values in question were derived within a composite Feller-Dixon-Peterson (FDP) scheme based protocol that combines the DLPNO-CCSD(T) enthalpy of ad hoc designed reactions and the experimental ΔHf values of few reference complexes. In agreement with other theoretical studies, we predict the ΔHf values for TiOCl2, TiOF2, GeF2, and SnF4 to be significantly different from the values tabulated in NIST-JANAF and other sources, which suggests that the tabulated experimental values are inaccurate. Similarly, the predicted ΔHf values for HfCl2, HfBr2, HfI2, MoOF4, MoCl6, WOF4, WOCl4, GeO2, SnO2, PbBr4, PbI4, and PbO2 also clearly differ from the tabulated experimental values, again suggesting large inaccuracy in the experimental values. In the case when largely different experimental values are available, we point to the value that is in better agreement with our results. We expect the ΔHf values reported in this work to be quite accurate, and thus, they might be used in thermodynamic calculations, because the effects from core correlation, relativistic effects, and basis set incompleteness were included in the DLPNO-CCSD(T) calculations. T1 and T2 values were thoroughly monitored as indicators of the quality of the reference Hartree-Fock orbitals (T1) and potential multireference character of the systems (T2).

  1. Thermal relations leading to the formation of gaseous phase within the ice covering lakes and ponds

    Science.gov (United States)

    Hruba, J.; Kletetschka, G.

    2013-12-01

    When cutting the ice from the lakes and ponds gaseous phase displays often ubiquitous bubble textures along the ice thickness. The occurrence of bubbles (enclosures filled with the gas) in ice relates to a content of the dissolved gas in the lake/pond water prior to freezing over the surface. When water freezes, dissolved gases are rejected and redistributed at the ice-water interface, depending on the saturation ratio between the gas and water. If the concentration of dissolved gases surpasses a critical value (as freezing progresses), the water at the interface becomes supersaturated, and gas bubbles nucleate and grow to a visible size along the interface. The bubbles generated at the ice-water interface are either incorporated into the ice crystal as the water-ice interface advances, thus forming gas pores in the ice, or released from the interface. If there is incorporation or release is determined by several factors. The bubbles nucleated at the advancing ice-water interface may be characterized by concentration, shape, and size, which depend on growth rate of ice, the amount of gases dissolved in water, and the particulate content of water. Our work focused on the relation between growth rates of the ice and the occurrence of bubbles in the pond ice. We monitored the temperature of the ice formed under natural conditions over the pond Dolní Tušimy in Mokrovraty, Czech Republic. Distinct layers of gas bubbles were observed when the ice samples have been retrieved. These layers may relate to fast growth rates of ice. In this case the maximum growth rates were about 1 μm/s. The results were compared with similar work done (Bari and Hallett, 1974; Carte 1961; Yoshimura et al., 2008). This comparison showed distinction that may be due to different methods of ice formation (laboratory condition vs. natural conditions). References: Bari, S.A., Hallett, J. (1974): Nucleation and Growth of Bubbles at an Ice-Water Interface. Journal of Glaciology, Vol. 13, No. 69, p

  2. Formation of secondary phase at grain boundary of flash-sintered BaTiO3.

    Science.gov (United States)

    Uehashi, Akinori; Sasaki, Katsuhiro; Tokunaga, Tomoharu; Yoshida, Hidehiro; Yamamoto, Takahisa

    2014-11-01

    decrease with an increase in electric fields, which is very different from the case of ZrO2-3mol%Y2O3 and Y2O3 ceramics. This fact means that application of high electric fields does not effectively operate for enhancement of shrinkage rates in the case of BaTiO3. In contrast, only gradual current increment was observed at 25V/cm, which is categorized in field-assisted sintering (FAST) process. The density of the green compact at 25V/cm was more than 95%.To investigate the mechanism of the decrease in a total shrinkage with electric fields, the microstructure of flash-sintered compact was observed. As a result, it was found that discharge occurs during flash-sintering process, indicating that the input power due to high electric fields does not work effectively. A typical example of the microstructure near the discharge area is shown in Fig. 1. Fig. 1 is a TEM bright field image taken from BaTiO3 flash-sintered at 100V/cm. As seen in the image, the formation of a secondary phase along the grain boundary can be clearly seen. Diffractometric and EDS analysis have revealed that the secondary phase is BaTi4O9, one of compounds between BaO and TiO2 system. By discharging, grain boundaries partially melt and a part of Ba vaporizes to form BaTi4O9 with cooling. To investigate flash-sintering behaviors, it was concluded that FAST process play an important role to enhance the shrinklage rate in the case of BaTiO3.jmicro;63/suppl_1/i19/DFU048F1F1DFU048F1Fig. 1.TEM bright field image of a secondary phase and the electron diffraction pattern taken from the secondary phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. On the possible formation of Aurivillius phases in the oxide system Bi2O5–ZnO–Nb2O5

    Directory of Open Access Journals (Sweden)

    ALICE RUSU

    2004-01-01

    Full Text Available This paper presents results concerning the possible synthesis of double perovskite and Aurivillius phases in the BZN system. A crystal chemical criterion based on an elastic model for the structure was used in order to determine if the formation of layered bismuth compounds is favoured in the above system. The tempeature seems to be the decisive factor influencing Aurivillius phase formation.

  4. An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-02-01

    Full Text Available We demonstrate a novel approach to control β-phase content generated in poly(9,9-dioctylfluorene (PFO films. A very small amount of paraffin oil was used as the additive to the PFO solution in toluene. The β-phase fraction in the spin-coated PFO films can be modified from 0% to 20% simply by changing the volume percentage of paraffin oil in the mixed solution. Organic light emitting diodes (OLEDs and amplified spontaneous emission (ASE study confirmed low β-phase fraction promise better OLEDs device, while high β-phase fraction benefits ASE performance.

  5. Phase separation during silica gel formation followed by time-resolved SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Gommes, Cedric J. [Universite de Liege, Laboratoire de Genie Chimique, Bat B6a, Allee du 6 aout 3, B-4000 Sart Tilman Liege (Belgium)]. E-mail: cedric.gommes@ulg.ac.be; Blacher, Silvia [Universite de Liege, Laboratoire de Genie Chimique, Bat B6a, Allee du 6 aout 3, B-4000 Sart Tilman Liege (Belgium); Goderis, Bart [Katholieke Universiteit Leuven, Laboratorium voor Macromoleculaire Structuurchemie, Celestijnenlann 200F, B-3001 Heverlee (Belgium); Pirard, Jean-Paul [Universite de Liege, Laboratoire de Genie Chimique, Bat B6a, Allee du 6 aout 3, B-4000 Sart Tilman Liege (Belgium)

    2005-08-15

    Time-resolved small angle X-ray scattering data are collected during the formation of silica gels from the base catalyzed polymerization of tetraethoxysilane in ethanol with 3-(2-aminoethylamino)propyltrimethoxysilane and 3-aminopropyltriethoxysilane as additives. It is shown that a polymerization-induced spinodal demixing occurs during the gel formation.

  6. PHASE COHERENT STAR FORMATION PROCESSES IN THE DISKS OF GRAND DESIGN SPIRALS

    NARCIS (Netherlands)

    BECKMAN, JE; CEPA, J; KNAPEN, JH

    1991-01-01

    We show examples of a new technique we have devised to compare star formation efficiencies in the arms and discs of spirals. First results show striking evidence of the presence and influence of density wave systems of star formation in grand design galaxies.

  7. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α - iron under neutron irradiation

    Directory of Open Access Journals (Sweden)

    G. C. Lv

    2016-04-01

    Full Text Available In this paper, we employed both molecular statics and molecular dynamics simulation methods to investigate the role of vacancies in the formation and phase transition of Cu-rich precipitates in α-iron. The results indicated that vacancies promoted the diffusion of Cu atoms to form Cu-rich precipitates. After Cu-rich precipitates formed, they further trapped vacancies. The supersaturated vacancy concentration in the Cu-rich precipitate induced a shear strain, which triggered the phase transition from bcc to fcc structure by transforming the initial bcc (110 plane into fcc (111 plane. In addition, the formation of the fcc-twin structure and the stacking fault structure in the Cu-rich precipitates was observed in dynamics simulations.

  8. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α - iron under neutron irradiation

    Science.gov (United States)

    Lv, G. C.; Zhang, H.; He, X. F.; Yang, W.; Su, Y. J.

    2016-04-01

    In this paper, we employed both molecular statics and molecular dynamics simulation methods to investigate the role of vacancies in the formation and phase transition of Cu-rich precipitates in α-iron. The results indicated that vacancies promoted the diffusion of Cu atoms to form Cu-rich precipitates. After Cu-rich precipitates formed, they further trapped vacancies. The supersaturated vacancy concentration in the Cu-rich precipitate induced a shear strain, which triggered the phase transition from bcc to fcc structure by transforming the initial bcc (110) plane into fcc (111) plane. In addition, the formation of the fcc-twin structure and the stacking fault structure in the Cu-rich precipitates was observed in dynamics simulations.

  9. Effect of substrates on phase formation in PMN-PT 68/32 thin films by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Department of Physics, National Institute of Technology, Rourkela 769008 (India)], E-mail: pvn77@rediffmail.com; Sonia; Patel, R.K. [Department of Chemistry, National Institute of Technology, Rourkela 769008 (India); Prakash, C. [DRDO Bhawan, Rajaji Marg, New Delhi 110011 (India); Goel, T.C. [BITS Pilani-Goa Campus, Goa 403720 (India)

    2008-07-15

    PMN-PT 68/32 thin films have been prepared on Pt/Si, ITO coated glass, stainless steel and silicon substrates in the identical processing conditions by sol-gel process. Annealing temperature of 600 deg. C was ascertained by thermo gravimetric analysis (TGA) study of the dried sol-gel powder of PMNT-PT 68/32 composition. X-ray diffraction (XRD) study showed {approx}95% perovskite phase formation on Pt/Si and ITO coated glass substrates. SEM micrographs showed the formation of sub micron size grains on Pt/Si and ITO coated glass substrates. Diffuse phase transition with transition temperature (T{sub c}) {approx}190 deg. C was observed in 0.8 {mu}m thick PMN-PT 68/32 films deposited on Pt/Si and ITO coated glass substrates.

  10. EXTERNAL ACTION EFFECT ON THE STRUCTURE OF THE LIQUID PHASE, THE CRYSTALLIZATION PROCESS, STRUCTURE FORMATION OF COPPER

    Directory of Open Access Journals (Sweden)

    Mr. Eduard A. Dmitriev

    2016-09-01

    Full Text Available The paper presents the research results of a fluid phase overheating and alloying effect on cuprum mechanical characteristics. Careful analysis of poly-thermal cross-sections of electro-resistance proved that in order to obtain the maximum values of cuprum mechanical properties, it should be overheated 30 °С above the temperature threshold of abnormal electro-resistance change of a fluid phase (1320 °С. The paper presents the research results of the influence of thermal and thermo-high-speed treatment of cuprum melting on its structure, crystallization and structure formation processes. Regularities of structure change, crystallization parameters and structure formation depending on overheating and cooling rate of the melt are stated.

  11. Microstructure Formations in the Two-Phase Region of the Binary Peritectic Organic System TRIS-NPG

    Science.gov (United States)

    Mogeritsch, Johann; Ludwig, Andreas

    2012-01-01

    In order to prepare for an onboard experiment on the International Space Station (ISS), systematic directional solidification experiments with transparent hypoperitectic alloys were carried out at different solidification rates around the critical velocity for morphological stability of both solid phases. The investigations were done in the peritectic region of the binary transparent organic TRIS-NPG system where the formation of layered structures is expected to occur. The transparent appearance of the liquid and solid phase enables real time observations of the dynamic of pattern formation during solidification. The investigations show that frequently occurring nucleation events govern the peritectic solidification morphology which occurs at the limit of morphological stability. As a consequence, banded structures lead to coupled growth even if the lateral growth is much faster compared to the growth in pulling direction.

  12. Ab initio velocity-field curves in monoclinic β-Ga2O3

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  13. Crystal structure of a new monoclinic polymorph of N-(4-methylphenyl-3-nitropyridin-2-amine

    Directory of Open Access Journals (Sweden)

    Aina Mardia Akhmad Aznan

    2014-08-01

    Full Text Available The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z′ = 4 of the previously reported monoclinic (P21/c, with Z′ = 2 form [Akhmad Aznan et al. (2010. Acta Cryst. E66, o2400]. Four independent molecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intramolecular amine–nitro N—H...O hydrogen bond. The differences between molecules relate to the dihedral angles between the rings which range from 2.92 (19 to 26.24 (19°. The geometry-optimized structure [B3LYP level of theory and 6–311 g+(d,p basis set] has the same features except that the entire molecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C—H...O, C—H...π, nitro-N—O...π and π–π interactions [inter-centroid distances = 3.649 (2–3.916 (2 Å].

  14. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE Working in “Substrate Antagonism” Format

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2016-08-01

    Full Text Available The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD was on the order of 2.5 × 10−5 M.

  15. The Mechanism of 2-Furaldehyde Formation from d-Xylose Dehydration in the Gas Phase. A Tandem Mass Spectrometric Study

    Science.gov (United States)

    Ricci, Andreina; Piccolella, Simona; Pepi, Federico; Garzoli, Stefania; Giacomello, Pierluigi

    2013-07-01

    The mechanism of reactions occurring in solution can be investigated also in the gas phase by suited mass spectrometric techniques, which allow to highlight fundamental mechanistic features independent of the influence of the medium and to clarifying controversial hypotheses proposed in solution studies. In this work, we report a gas-phase study performed by electrospray triple stage quadrupole mass spectrometry (ESI-TSQ/MS) on the dehydration of d-xylose, leading mainly to the formation of 2-furaldehyde (2-FA). It is generally known in carbohydrate chemistry that the thermal acid catalyzed dehydration of pentoses leads to the formation of 2-FA, but several aspects on the solution-phase mechanism are controversial. Here, gaseous reactant ions corresponding to protonated xylose molecules obtained from ESI of a solution containing d-xylose and ammonium acetate as protonating reagent were allowed to undergo collisionally activated decomposition (CAD) into the triple stage quadrupole analyzer. The product ion mass spectra of protonated xylose are characterized by the presence of ionic intermediates arising from xylose dehydration, which were structurally characterized by their fragmentation patterns. As expected, the xylose triple dehydration leads to the formation of the ion at m/z 97, corresponding to protonated 2-FA. On the basis of mass spectrometric evidences, we demonstrated that in the gas phase, the formation of 2-FA involves protonation at the OH group bound to the C1 atom of the sugar, the first ionic intermediate being characterized by a cyclic structure. Finally, energy resolved product ion mass spectra allowed to obtain information on the energetic features of the d-xylose→2-FA conversion.

  16. Ageing behaviour of unary hydroxides in trivalent metal salt solutions: Formation of layered double hydroxide (LDH)-like phases

    Indian Academy of Sciences (India)

    Michael Rajamathi; P Vishnu Kamath

    2000-10-01

    The hydroxides of Mg, Ni, Cu and Zn transform into layered double hydroxide (LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of formation of LDH minerals in the earth’s crust.

  17. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  18. High-temperature- and high-pressure-induced formation of the Laves-phase compound XeS2

    Science.gov (United States)

    Yan, Xiaozhen; Chen, Yangmei; Xiang, Shikai; Kuang, Xiaoyu; Bi, Yan; Chen, Haiyan

    2016-06-01

    We explore the reactivity of xenon with sulfur under high pressure, using unbiased structure searching techniques combined with first-principles calculations, which identify a stable XeS2 compound crystallized in a Laves phase with hypercoordinated (16-fold) Xe at 191 GPa and 0 K. Taking the thermal effects into account, we find that increasing the temperature could further stabilize it. The formation of XeS2 is a consequence of pressure-induced charge transfer from Xe to S atoms and the delocalization of Xe 5 p and S 3 p electrons. Meanwhile, the stabilization into a Laves phase of XeS2 is the result of delocalized chemical bonding and the need for optimum structure packing. The present discussion of the formation mechanism in XeS2 is general, and conclusions can be used to understand the formation of other Laves-phase compounds and the Xe chemistry that allows closed-shell Xe to participate in chemical reactions.

  19. The α-Effect and Competing Mechanisms: The Gas-Phase Reactions of Microsolvated Anions with Methyl Formate

    Science.gov (United States)

    Thomsen, Ditte L.; Nichols, Charles M.; Reece, Jennifer N.; Hammerum, Steen; Bierbaum, Veronica M.

    2013-12-01

    The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase SN2 reactions of the microsolvated HOO-(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO-(H2O) with that of microsolvated normal alkoxy nucleophiles, RO-(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO-(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the SN2 and BAC2 reactivity compared with the unsolvated analogs. HOO-(H2O) reacts with methyl formate exclusively via the BAC2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the BAC2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the BAC2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.

  20. Polytypic phase formation in DyAl sub 3 by rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Altounian, Z.; Muir, W.B. (Centre for the Physics of Materials and the Department of Physics, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8, Canada (CA))

    1991-01-14

    Amorphous ribbons of Al{sub {ital x}}Dy{sub 100{minus}{ital x}}, 93{gt}{ital x}{gt}85, were obtained by melt spinning. During crystallization, in addition to Al, four different metastable crystalline phases of DyAl{sub 3} were observed. These phases are, in order of appearance, the high-pressure face-centered cubic phase, {gamma}-DyAl{sub 3} and three polytypic rhombohedral phases, {beta}-DyAl{sub 3}, {beta}{prime}-DyAl{sub 3}, and {alpha}{prime}-DyAl{sub 3}. It is the first time that the {beta}{prime} phase in rare-earth trialuminides and the {alpha}{prime} phase in Dy-Al alloy system have been observed. It is shown that all these phases are associated with the polytypic packing of the hexagonal DyAl{sub 3} atomic layers. The relative stability of the phases is found to be related to the hexagonal to cubic stacking ratio in the structure.

  1. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  2. Microscopic characterization of crystalline phases in waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Buck, E.C.; Dietz, N.L.; Wronkiewicz, D.J.; Bates, J.K. [Argonne National Lab., IL (United States); Millar, A. [Purdue Univ., West Lafayette, IN (United States)

    1995-07-01

    Transmission electron microscopy (TEM) has been used to determine the microstructure of crystalline phases present in zirconium- and titanium-bearing glass crystalline composite (GCC) waste forms. The GCC materials were found to contain spinels (maghemite), zirconolites, perovskites (CaTiO{sub 3}) and plagiociase feldspar (anorthite) mineral phases. The structure of the uranium and cerium-bearing monoclinic zirconolite was characterized by medium resolution TEM imaging and electron and X-ray diffraction (XRD). The phase was found to contain high levels of iron in comparison to Synroc-type zirconolites. Excess zirconium in zirconolite has resulted in martensitic baddeleyite (ZrO{sub 2}) formation. Anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}) was present as elongated crystallites within a calcium-rich aluminosilicate glass. Lead and iron-bearing anorthite lying along distinct precipitates were occasionally observed within the an crystallographic planes.

  3. Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.

    Science.gov (United States)

    Gao, Jing; Lebedev, Oleg I; Turner, Stuart; Li, Yong Feng; Lu, Yun Hao; Feng, Yuan Ping; Boullay, Philippe; Prellier, Wilfrid; van Tendeloo, Gustaaf; Wu, Tom

    2012-01-11

    Rational synthesis of nanowires via the vapor-liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.

  4. The mechanism of porosity formation during solvent-mediated phase transformations

    CERN Document Server

    Raufaste, Christophe; John, Timm; Meakin, Paul; Dysthe, Dag Kristian

    2010-01-01

    Solvent-mediated phase transformations often produce a porous product phase. We have studied replacement processes in the KBr-KCl-H2O system using both in situ and ex situ experiments. The replacement of a KBr crystal by a K(Br,Cl) solid solution in the presence of an aqueous solution is facilitated by the generation of a surprisingly stable, highly anisotropic and connected pore structure throughout the product phase. This pore structure ensures efficient transport from the bulk solution to the reacting KBr surface. The compositional profile of the K(Br,Cl) solid solution exhibits striking discontinuities across disc-like cavities in the product phase. Similar transformation mechanisms are probably important in controlling the rates of phase transformations in a variety of natural and man-made systems, on scales much larger than that of the crystals themselves.

  5. Gas-phase enthalpies of formation and enthalpies of sublimation of amino acids based on isodesmic reaction calculations.

    Science.gov (United States)

    Dorofeeva, Olga V; Ryzhova, Oxana N

    2014-05-15

    Accurate gas-phase enthalpies of formation (ΔfH298°) of 20 common α-amino acids, seven uncommon amino acids, and three small peptides were calculated by combining G4 theory calculations with an isodesmic reaction approach. The internal consistency over a set of ΔfH298°(g) values was achieved by sequential adjustment of their values through the isodesmic reactions. Four amino acids, alanine, β-alanine, sarcosine, and glycine, with reliable internally self-consistent experimental data, were chosen as the key reference compounds. These amino acids together with about 100 compounds with reliable experimental data (their accuracy was supported by G4 calculations) were used to estimate the enthalpies of formation of remaining amino acids. All of the amino acids with the previously established enthalpies of formation were later used as the reference species in the isodesmic reactions for the other amino acids. A systematic comparison was made of 14 experimentally determined enthalpies of formation with the results of calculations. The experimental enthalpies of formation for 10 amino acids were reproduced with good accuracy, but the experimental and calculated values for 4 compounds differed by 11–21 kJ/mol. For these species, the theoretical ΔfH298°(g) values were suggested as more reliable than the experimental values. On the basis of theoretical results, the recommended values for the gas-phase enthalpies of formation were also provided for amino acids for which the experimental ΔfH298°(g) were not available. The enthalpies of sublimation were evaluated for all compounds by taking into account the literature data on the solid-phase enthalpies of formation and the ΔfH298°(g) values recommended in our work. A special attention was paid to the accurate prediction of enthalpies of formation of amino acids from the atomization reactions. The problems associated with conformational flexibility of these compounds and harmonic treatment of low frequency torsional

  6. Massive Galaxies at High-z: Assembly Patterns, Structure & Dynamics in the Fast Phase of Galaxy Formation

    CERN Document Server

    Oñorbe, J; Domínguez-Tenreiro, R; Knebe, A; Serna, A

    2011-01-01

    Relaxed, massive galactic objects have been identified at redshifts z = 4;5; and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high mass end of the galaxy distribution at these high zs, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previ...

  7. Formation of Mg$_2$C$_3$ phase in N220 nanocarbon containing low carbon MgO-C composition

    Indian Academy of Sciences (India)

    SATYANANDA BEHERA; RITWIK SARKAR

    2017-09-01

    This paper reports a non-conventional microstructurewith sequicarbide (Mg$_2$C$_3$) formation in N220 nanocarboncontaining low carbon magnesia carbon composition having magnesium metal powder as antioxidant. 5 wt% graphitecontaining MgO-C refractory with and without 1 wt% N220 nanocarbon is studied and 2 wt% magnesium metal powder isused as the lone antioxidant. The compositions were mixed with powder and liquid resin binder, pressed uniaxially at 150MPa and cured at 220$^{\\circ}$C. Cured samples were coked at 1000$^{\\circ}$C for 2 h. Matrix of the coked samples was studied in detail for microstructural analysis phase content and formation of nail-shaped sequicarbide was found in the nanocarbon containing compositions. The in-situ sequicarbide formation has resulted in the strength of the batch.

  8. Role of Fe substitution and quenching rate on the formation of various quasicrystalline and related phases

    Indian Academy of Sciences (India)

    Varsha Khare; R S Tiwari; O N Srivastava

    2001-06-01

    We have investigated Fe substituted versions of the quasicrystalline (qc) alloy corresponding to Al65Cu20(Cr, Fe)15 with special reference to the possible occurrence of various quasicrystalline and related phases. Based on the explorations of various compositions it has been found that alloy compositions Al65Cu20Cr12Fe3 and Al65Cu20Cr9Fe6 exhibit interesting structural phases and features at different quenching rates. At higher quenching rates (wheel speed ∼ 25 m/sec) all the alloys exhibit icosahedral phase. For Al65Cu20Cr12Fe3 alloy, however, both the icosahedral and even the decagonal phases get formed at higher quenching rates. At higher quenching rate, alloy having Fe 3 at% exhibits two bcc phases, bccI ( = 8.9 Å) and bccII ( = 15.45 Å). The orientation relationships between icosahedral and crystalline phases are: Mirror plane ∥[001]bcc I and [351]bcc II, 5-fold ∥ [113]bcc II and 3-fold ∥ [110]bcc II. At lower quenching rate, the alloy having Fe 6 at% exhibits orthorhombic phase ( = 23.6 Å, = 12.4 Å, = 20.1 Å). Some prominent orientation relationships of the orthorhombic phase with decagonal phase have also been reported. At lower quenching rate (∼ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasiperiodic direction of the decagonal phase. For making the occurrence of the sheets of intensities intelligible, a model based on the rotation and shift of icosahedra has been put forward.

  9. Perfusion and diffusion MRI study detecting CBF disturbance and edema formation in the acute phase of cerebral contusion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamata, Tatsuro; Aoyama, Naoki; Mori, Tatsuro; Maeda, Takeshi; Katayama, Yoichi [Nihon Univ., Tokyo (Japan). School of Medicine

    1998-12-01

    In order to clarify the mechanisms underlying cerebral contusion-induced CBF disturbance and edema formation, echoplanar diffusion and perfusion images were obtained in the patients with cerebral contusion. In the acute phase within 48 hours post-trauma, the apparent diffusion coefficient (ADC) showed various levels with a tendency to increase in the central area of contusion (ADC ratio=1.06{+-}0.21). In contrast, the ADC was significantly reduced in the peripheral area of contusion (ADC ratio=0.87{+-}0.16). The ADC at 2 weeks post-trauma increased both in the central (ADC ratio=1.16{+-}0.26) and the peripheral area of contusion (ADC ratio=1.10{+-}0.26, p<0.05), as compared to those within 48 hours post-trauma. The perfusion images showed a wide spread CBF depression extending beyond the area of contusion observed on the T1 and T2 weighted images. These results indicate that; in the early phase of contusion-induced edema formation, cytotoxic edema is predominant, especially in the peripheral area of contusion, and vasogenic edema appears thereafter. The CBF depression may contribute such cytotoxic edema formation in the surrounding area of cerebral contusion. It is concluded that echo-planar diffusion and perfusion images are excellent technique to investigate the evolution of CBF disturbance and edema formation following traumatic brain injury. (author)

  10. Satellite Formation Flight Results from Phase 1 of the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Godine, Dominic

    2017-01-01

    This paper describes the underlying dynamics of formation flying in a high-eccentricity orbit such as that of the Magnetospheric Multiscale mission. The GPS-based results used for MMS navigation are summarized, as well as the procedures that are used to design the maneuvers used to place the spacecraft into a tetrahedron formation and then maintain it. The details of how to carry out these maneuvers are then discussed. Finally, the numerical results that have been obtained concerning formation flying for the MMS mission to date (e.g. tetrahedron sizes flown, maneuver execution error, fuel usage, etc.) are presented in detail.

  11. Self-formation of microporous polysulfone hollow fiber using a single nozzle spinneret and reduction of phase-inversion speed

    Science.gov (United States)

    Kim, Hyung Jin; Jang, Chang Sik; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This study proposed a simple fabrication technique for microporous hollow fibers whose inner channel was naturally formed because of a slow phase inversion speed. Conventionally, microporous hollow fibers have been fabricated by extruding a polymer solution through the outer nozzle and a bore liquid through the inner nozzle of a dual nozzle spinneret. Injecting a bore liquid played a key role for the formation of a hollow structure. In this study, the self-formation of a hollow structure of microporous fiber was developed using a single nozzle spinneret without a bore liquid. A sharp tip single nozzle spinneret of 200 µm in diameter was fabricated by the wetting effect of a liquid pre-polymer of polydimethylsiloxane, and polysulfone solution was extruded through the prepared single nozzle spinneret. The temperature of the coagulant bath was controlled in order to reduce the speed of phase change, because the phase-change speed depended on the temperature of the coagulant solution. An inner channel in the microporous fiber was successfully fabricated by reducing the phase-change speed and by increasing the solidification speed. The inner diameter of the microporous hollow fiber was decreased as the temperature of the coagulant bath was increased, and eventually the inner channel was not formed at the higher bath temperature rather than 25 °C.

  12. Influence of Homogenization and Micro/Nano Source of Starting Powders on Format Ion of the Single YAP Phase

    Directory of Open Access Journals (Sweden)

    Michalik D.

    2016-12-01

    Full Text Available Manufacturing high purity polycrystalline YAlO3 (YAP ceramics could replace monocrystalline YAP thus recently it is an interesting task for low cost producers of scintillators. The paper presents influence of different source of initial oxide powders (micro/nano powders of Y2O3 and Al2O3 and the method of their homogenization on the formation of a YAP phase. The solid state reaction method was used to prepare YAP powder or ceramic pellets. After preheating, all samples in the form of powders and pellets were heat-treated in the temperature range of 1050-1650 °C. DTA method was applied for examination of the phase crystallization in the tested system. X-ray diffraction method (XRD was used for characterization of the phase composition. X-ray microanalysis (EDS was used to control homogeneity in the small areas. Morphology of the resultant samples are presented on SEM pictures. The results show a significant influence of the starting powders on the homogeneity, purity and temperature of formation of the main phase.

  13. Phase-shift effect of amplitude spread function on spectrum and image formation in coherent Raman scattering microspectroscopy.

    Science.gov (United States)

    Fukutake, Naoki

    2016-03-01

    Coherent Raman scattering microspectroscopy, which includes coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microspectroscopy, permits label-free hyperspectral imaging. We report the theoretical study of the phase-shift effect of the impulse response function on the spectral and image-forming properties of coherent Raman scattering microspectroscopy. We show that the spectrum and image are influenced by not only the NA of objective for excitation (NA(ex)) but also that for signal collection (NA(col)), in association with the phase-shift effect. We discuss that, under the condition NA(ex)≠NA(col), both the spectrum and the image become deformed by the phase-shift effect, which can be applied to the direct measurement of the imaginary part of the nonlinear susceptibility in CARS spectroscopy. We point out that, even in SRS microscopy, the nonresonant background can contribute to the image formation and cause the artifact in the image.

  14. Autofocus Correction of Azimuth Phase Error and Residual Range Cell Migration in Spotlight SAR Polar Format Imagery

    CERN Document Server

    Mao, Xinhua; Zhu, Zhaoda

    2012-01-01

    Synthetic aperture radar (SAR) images are often blurred by phase perturbations induced by uncompensated sensor motion and /or unknown propagation effects caused by turbulent media. To get refocused images, autofocus proves to be useful post-processing technique applied to estimate and compensate the unknown phase errors. However, a severe drawback of the conventional autofocus algorithms is that they are only capable of removing one-dimensional azimuth phase errors (APE). As the resolution becomes finer, residual range cell migration (RCM), which makes the defocus inherently two-dimensional, becomes a new challenge. In this paper, correction of APE and residual RCM are presented in the framework of polar format algorithm (PFA). First, an insight into the underlying mathematical mechanism of polar reformatting is presented. Then based on this new formulation, the effect of polar reformatting on the uncompensated APE and residual RCM is investigated in detail. By using the derived analytical relationship betwee...

  15. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    CERN Document Server

    Garcia-Hernandez, D A

    2016-01-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge-up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  16. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  17. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    Science.gov (United States)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  18. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic com- pound may grow cooperatively within ternary eutectic microstructures, they sel- dom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of sol- ute solubility.

  19. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    Institute of Scientific and Technical Information of China (English)

    WANG WeiLi; DAI FuPing; WEI BingBo

    2007-01-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  20. Growth, stabilization and conversion of semi-metallic and semiconducting phases of MoTe2 monolayer by molecular-beam epitaxy

    OpenAIRE

    2016-01-01

    Monolayer (ML) transition-metal dichalcogenides exist in different phases, such as the hexagonal (2H) and distorted octahedral or monoclinic (1T') phases. The different structures show vastly different properties. For example, the 2H MoTe2 ML is a direct-gap semiconductor while 1T' MoTe2 is a semi-metal. It has been suggested that the formation energies between 2H and 1T' MoTe2 differ very little, so there is a high chance to tune the structures of MoTe2 and thereby to bring in new applicatio...

  1. Aggregation of Calcium Phosphate and Oxalate Phases in the Formation of Renal Stones

    OpenAIRE

    2014-01-01

    The majority of human kidney stones are comprised of multiple calcium oxalate monohydrate (COM) crystals encasing a calcium phosphate nucleus. The physiochemical mechanism of nephrolithiasis has not been well determined on the molecular level; this is crucial to the control and prevention of renal stone formation. This work investigates the role of phosphate ions on the formation of calcium oxalate stones; recent work has identified amorphous calcium phosphate (ACP) as a rapidly forming initi...

  2. Phase transitions in ferroelectric silicon doped hafnium oxide

    Science.gov (United States)

    Böscke, T. S.; Teichert, St.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T.

    2011-09-01

    We investigated phase transitions in ferroelectric silicon doped hafnium oxide (FE-Si:HfO2) by temperature dependent polarization and x-ray diffraction measurements. If heated under mechanical confinement, the orthorhombic ferroelectric phase reversibly transforms into a phase with antiferroelectric behavior. Without confinement, a transformation into a monoclinic/tetragonal phase mixture is observed during cooling. These results suggest the existence of a common higher symmetry parent phase to the orthorhombic and monoclinic phases, while transformation between these phases appears to be inhibited by an energy barrier.

  3. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.

    Science.gov (United States)

    Chang, Chun-Yu; Huang, Yu-Ching; Tsao, Cheng-Si; Su, Wei-Fang

    2016-10-12

    Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl2 and CH3NH3I in N,N-dimethylformamide, to a crystalline CH3NH3PbI3-xClx film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.

  4. Application of modified moments method for kinetics description of nano-, micro-particles formation in gas phase

    Science.gov (United States)

    Durov, A.; Deminsky, M.; Strelkova, M.; Potapkin, B. V.

    2004-05-01

    The description of dynamics of particles size distribution function (PDF) in processes of new phase formation is important task in various technologies. Moments method is one of modern approaches which meet demands of accuracy and moderate usage of computer resources. Modified moments method which permits one to describe correctly both particles growth (in results of nucleation, coagulation and surface reactions) and gasification is proposed and developed in this work. Proposed approach connect correctly balance between growing particles and chemical precursors in contrary to present state of art. This is important when rates of particle decomposition, gasification, combustion are compatible with the rate of particle growth. The model calculations were carried out to show that approach gives incorrect rate of soot formation in the mentioned above case. Modified method of moment was applied for simulation of hydrocarbons combustion and conversion. In particular steam reforming of methane was simulated in details. The processes of soot formation include polycyclic aromatic hydrocarbon (PAH) lumping mechanism, soot formation in results of PAH coagulation in three dimensional structures, coagulation of soot particles, soot particles growth and gasification due to surface chemistry. Chemical mechanism also includes the general chemistry of methane decomposition with PAH and soot precursors formation. The comparison of theoretical and experimental results demonstrates that developed approach can describe species concentration and PDF evolution adequately.

  5. Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks.

    Science.gov (United States)

    Shang, Ran; Xu, Guan-Cheng; Wang, Zhe-Ming; Gao, Song

    2014-01-20

    We present three Mg-formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] (1), [CH3CH2NH3][Mg(HCOO)3] (2) and [NH3(CH2)4NH3][Mg2(HCOO)6] (3). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature-dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure-property relationships are established. Compound 1 is a chiral Mg-formate framework with the NH4(+) cations located in the channels. Above 255 K, the NH4(+) cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non-compensated antipolarization. These lead to significant negative thermal expansion and a relaxor-like dielectric response. In perovskite 2, the orthorhombic phase below 374 K possesses ordered CH3CH2NH3(+) cations in the cubic cavities of the Mg-formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two-fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order-disorder transition of CH3CH2NH3(+). For niccolite 3, the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3](2+) in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations

  6. MECHANISMS OF PHASE FORMATION IN THE VITRIFICATION OF HIGH-FERROUS SAVANNAH RIVER SITE SB2 HLW SLUDGE SURROGATE - 9300

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2008-08-27

    Phase formation mechanisms associated with the vitrification of high-ferrous Savannah River Site (SRS) Sludge Batch 2 (SB2) high level waste surrogate were studied by infrared spectroscopy (IRS) and X-ray diffraction (XRD). Two mixtures at 50 wt% waste loading with commercially available Frit 320 (Li{sub 2}O - 8 wt %, B{sub 2}O{sub 3} - 8 wt %, Na{sub 2}O - 12 wt %, SiO{sub 2} - 72 wt %) and batch chemicals (LiOH {center_dot} H{sub 2}O, H{sub 3}BO{sub 3}, NaNO{sub 3}, SiO{sub 2}) to represent the frit formulation were prepared as slurries with a water content of {approx}50 wt%. The mixtures were air-dried at a temperature of 115 C and heat-treated at 500, 700, 900, 1000, 1100, 1200, and 1300 C for 1 hr at each temperature. Infrared spectra and XRD patterns of the products produced at each temperature were recorded. In both mixtures prepared using frit and batch chemicals to represent the frit, phase formation reactions were completed within the temperature range between 900 and 1000 C. However, residual quartz was still present in glass produced from the mixture with batch chemicals even at 1100 C. Although, the phase composition and structure of the glassy products obtained from both mixtures at temperatures over 1000 C were similar, the products obtained from the mixture using actual frit were more homogeneous than those from the mixture with batch chemicals. Thus, the use of frit rather than batch chemicals reduced the temperature range of phase formation and provided for production of higher quality glass.

  7. Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase.

    Science.gov (United States)

    Okada, Masahiro; Maeda, Hayata; Fujii, Syuji; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2012-06-26

    The influence of end groups of a polymer dissolved in an oil phase on the formation of a Pickering-type hydroxyapatite (HAp) nanoparticle-stabilized emulsion and on the morphology of HAp nanoparticle-coated microspheres prepared by evaporating solvent from the emulsion was investigated. Polystyrene (PS) molecules with varying end groups and molecular weights were used as model polymers. Although HAp nanoparticles alone could not function as a particulate emulsifier for stabilizing dichloromethane (oil) droplets, oil droplets could be stabilized with the aid of carboxyl end groups of the polymers dissolved in the oil phase. Lower-molecular-weight PS molecules containing carboxyl end groups formed small droplets and deflated microspheres, due to the higher concentration of carboxyl groups on the droplet/microsphere surface and hence stronger adsorption of the nanoparticles at the water/oil interface. In addition, Pickering-type suspension polymerization of styrene droplets stabilized by PS molecules containing carboxyl end groups successfully led to the formation of spherical HAp-coated microspheres.

  8. Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria

    Directory of Open Access Journals (Sweden)

    Bram eVivijs

    2015-02-01

    Full Text Available Two fermentation types exist in the Enterobacteriaceae family. Mixed-acid fermenters produce substantial amounts of lactate, formate, acetate and succinate, resulting in lethal medium acidification. On the other hand, 2,3-butanediol fermenters switch to the production of the neutral compounds acetoin and 2,3-butanediol and even deacidify the environment after an initial acidification phase, thereby avoiding cell death. We equipped three mixed-acid fermenters (Salmonella Typhimurium, S. Enteritidis and Shigella flexneri with the acetoin pathway from Serratia plymuthica to investigate the mechanisms of deacidification. Acetoin production caused attenuated acidification during exponential growth in all three bacteria, but stationary-phase deacidification was only observed in Escherichia coli and Salmonella, suggesting that it was not due to the consumption of protons accompanying acetoin production. To identify the mechanism, 34 transposon mutants of acetoin-producing E. coli that no longer deacidified the culture medium were isolated. The mutations mapped to 16 genes, all involved in formate metabolism. Formate is an end product of mixed-acid fermentation that can be converted to H2 and CO2 by the formate hydrogen lyase (FHL complex, a reaction that consumes protons and thus can explain medium deacidification. When hycE, encoding the large subunit of hydrogenase 3 that is part of the FHL complex, was deleted in acetoin-producing E. coli, deacidification capacity was lost. Metabolite analysis in E. coli showed that introduction of the acetoin pathway reduced lactate and acetate production, but increased glucose consumption and formate and ethanol production. Analysis of a hycE mutant in S. plymuthica confirmed that medium deacidification in this organism is also mediated by FHL. These findings improve our understanding of the physiology and function of fermentation pathways in Enterobacteriaceae.

  9. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    Science.gov (United States)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-06-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase (i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  10. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    Science.gov (United States)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  11. Synthesis of thermo-responsive polymers recycling aqueous two-phase systems and phase formation mechanism with partition of ε-polylysine.

    Science.gov (United States)

    Xu, Chengning; Dong, Wenying; Wan, Junfen; Cao, Xuejun

    2016-11-11

    Aqueous two-phase systems (ATPS) have the potential application in bioseparation and biocatalysis engineering. In this paper, a recyclable ATPS was developed by two thermo-responsive copolymers, PVBAm and PN. Copolymer PVBAm was copolymerized using N-vinylcaprolactam, Butyl methacrylate and Acrylamide as monomers, and PN was synthesized by N-isopropylacrylamide. The lower critical solution temperature (LCST) of PVBAm and PN were 45.0°C and 33.5°C, respectively. The recoveries of both polymers could achieve over 95.0%. The phase behavior and formation mechanism of PVBAm/PN ATPS was studied. Low-field nuclear magnetic resonance (LF-NMR) was applied in the phase-forming mechanism study in ATPS. In addition, combining the analysis results of surface tension, transmission electron microscopy and dynamic light scattering, the phase-forming of the PVBAm/PN ATPS was proved. The application was performed by partition of ε-polylysine in the 2% PVBAm/2% PN (w/w) ATPS. The results demonstrated that ε-polylysine was extracted into the PN-rich phase, the maximal partition coefficient (1/K) and extraction recovery of pure ε-polylysine were 6.87 and 96.36%, respectively, and 7.41 partition coefficient and 97.85% extraction recovery for ε-polylysine fermentation broth were obtained in the presence of 50mM (NH4)2SO4 at room temperature. And this method can effectively remove the most impurities from fermentation broth when (NH4)2SO4 exists in the ATPS. It is believed that the thermo-responsive recycling ATPS has a good application prospect in the field of bio-separation.

  12. Organic salts and aromatic substrates in two-component gel phase formation: the study of properties and release processes.

    Science.gov (United States)

    Vitale, Paola; D'Anna, Francesca; Marullo, Salvatore; Noto, Renato

    2015-09-07

    To identify gel phases able to act as confined reaction media or materials for the removal of organic pollutants, we studied two-component gel phases formed by naphthalenedisulfonate diimidazolium salts in the presence of some organic guests, in 1-propanol solution. Guests differing in π-surface area, bulkiness and electronic properties were taken into account. Soft materials obtained were investigated for their thermal stability, self-repairing ability and morphology. Furthermore, two-component gel phase formation was studied using resonance light scattering (RLS) measurements. Guest release processes from the gel phase were also studied. These processes were monitored as a function of time using both UV-vis and RLS measurements and considering important parameters such as the gelator concentration, the nature of extraction solvent and the extension of contact surface area between solvent and gel phase. Data collected shed light on the properties of the two-component gels and could represent a useful tool to better plan the application of these soft materials.

  13. Role of glyoxal in SOA formation from aromatic hydrocarbons: gas-phase reaction trumps reactive uptake

    Directory of Open Access Journals (Sweden)

    S. Nakao

    2011-11-01

    Full Text Available This study evaluates the significance of glyoxal acting as an intermediate species leading to SOA formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH42SO4 seed particles is observed; however, glyoxal did not partition to SOA or SOA coated aqueous seed during all aromatic hydrocarbon experiments (RH up to 80%. Glyoxal is found to only influence SOA formation by raising hydroxyl (OH radical concentrations. Four experimental approaches supporting this conclusion are presented in this paper: (1 increased SOA formation and decreased SOA volatility in the toluene + NOx photooxidation system with additional glyoxal was reproduced by matching OH radical concentrations through H2O2 addition; (2 glyoxal addition to SOA seed formed from toluene + NOx photooxidation did not increase observed SOA volume; (3 SOA formation from toluene + NOx photooxidation with and without deliquesced (NH42SO4 seed resulted in similar SOA growth, consistent with a coating of SOA preventing glyoxal uptake onto deliquesced (NH42SO4 seed; and (4 the fraction of a C4H9+ fragment (observed by Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer, HR-ToF-AMS from SOA formed by 2-tert-butylphenol (BP oxidation was unchanged in the presence of additional glyoxal despite enhanced SOA formation. This study suggests that glyoxal uptake onto aerosol is minor when the surface (and near-surface of aerosols are primarily composed of secondary organic compounds.

  14. Third phase formation in the extraction of Th(NO{sub 3}){sub 4} by Tri-sec-butyl phosphate. A comparison with Tri-n-butyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, Aditi; Suresh, A.; Sivaraman, N. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2017-06-01

    Earlier studies carried out in our laboratory indicated that Tri-sec-butyl phosphate (TsBP) is a potential extractant for U/Th separation. Also, the third phase formation tendency of TsBP is lower compared to its isomers, Tri-n-butyl-phosphate (TBP) and Tri-iso-butyl phosphate (TiBP). In this context, the extraction and third phase formation behaviour of 1.1 M solutions of TiBP and TsBP in n-dodecane in the extraction of Th(IV) from 1 M HNO{sub 3} at 303 K over a wide range of Th concentrations were investigated in the present study and the results are compared with the literature data on TBP system. Concentrations of Th(IV) and HNO{sub 3} loaded in the organic phase before third phase formation (biphasic region) as well as in third phase and diluent-rich phase after third phase formation (triphasic region) were measured as a function of equilibrium aqueous phase Th(IV) concentration. The density of loaded organic phase was also measured at various Th(IV) concentrations. The extraction profiles in the biphasic region indicated that extraction of Th(IV) by TBP is higher than that of TiBP which in turn is higher than that of TsBP. Extractant concentration in the diluent-rich phase and third phase was measured for the triphasic region.

  15. 1-Nitro-4-(4-nitro-phen-oxy)benzene: a second monoclinic polymorph.

    Science.gov (United States)

    Naz, Mehwish; Akhter, Zareen; McKee, Vickie; Nadeem, Arif

    2013-11-01

    In the title compound, C12H8N2O5, the aromatic rings are inclined to one another by 56.14 (7)°. The nitro groups are inclined by to the benzene rings to which they are attached by 3.86 (17) and 9.65 (15)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming a three-dimensional structure. The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the mol-ecule possesses twofold rotation symmetry. Two low-temperature structures of this polymorph (150 K and 100 K, respectively) have been reported [Meciarova et al. (2004). Private Communication (refcode IXOGAD). CCDC, Cambridge, England, and Dey & Desiraju (2005). Chem. Commun. pp. 2486-2488].

  16. Cubic or monoclinic Y 2O 3:Eu 3+ nanoparticles by one step flame spray pyrolysis

    Science.gov (United States)

    Camenzind, Adrian; Strobel, Reto; Pratsinis, Sotiris E.

    2005-11-01

    Continuous, single-step synthesis of monocrystalline Y 2O 3:Eu 3+ nanophosphor particles (10-25 nm in diameter and 5 wt% Eu) was achieved by flame spray pyrolysis (FSP). The effect of FSP process parameters on materials properties was investigated by X-ray diffraction (XRD), nitrogen adsorption (BET) and transmission electron microscopy (TEM). Photoluminescence (PL) emission were measured as well as the time-resolved PL-intensity decay. Controlled synthesis of monoclinic or cubic Y 2O 3:Eu 3+ nanoparticles was achieved without post-treatment by controlling the high temperature residence time of these particles. The cubic nanoparticles exhibited longer decay times but lower maximum PL intensity than commercial micron-sized bulk Y 2O 3:Eu 3+ phosphor powder.

  17. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4.

    Science.gov (United States)

    Zhao, Zongyan; Li, Zhaosheng; Zou, Zhigang

    2011-03-14

    Monoclinic clinobisvanite bismuth vanadate is an important material with wide applications. However, its electronic structure and optical properties are still not thoroughly understood. Density functional theory calculations were adopted in the present work, to comprehend the band structure, density of states, and projected wave function of BiVO(4). In particular, we put more emphasis upon the intrinsic relationship between its structure and properties. Based on the calculated results, its molecular-orbital bonding structure was proposed. And a significant phenomenon of optical anisotropy was observed in the visible-light region. Furthermore, it was found that its slightly distorted crystal structure enhances the lone-pair impact of Bi 6s states, leading to the special optical properties and excellent photocatalytic activities.

  18. A monoclinic polymorph of (1E,5E-1,5-bis(2-hydroxybenzylidenethiocarbonohydrazide

    Directory of Open Access Journals (Sweden)

    Bonell Schmitt

    2011-08-01

    Full Text Available The title compound, C15H14N4O2S, is a derivative of thioureadihydrazide. In contrast to the previously reported polymorph (orthorhombic, space group Pbca, Z = 8, the current study revealed monoclinic symmetry (space group P21/n, Z = 4. The molecule shows non-crystallographic C2 as well as approximate Cs symmetry. Intramolecular bifurcated O—H...(N,S hydrogen bonds, are present. In the crystal, intermolecular N—H...S hydrogen bonds and C—H...π contacts connect the molecules into undulating chains along the b axis. The shortest centroid–centroid distance between two aromatic systems is 4.5285 (12 Å.

  19. Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation.

    Science.gov (United States)

    Pereira, Kelly L; Hamilton, Jacqueline F; Rickard, Andrew R; Bloss, William J; Alam, Mohammed S; Camredon, Marie; Ward, Martyn W; Wyche, Kevin P; Muñoz, Amalia; Vera, Teresa; Vázquez, Mónica; Borrás, Esther; Ródenas, Milagros

    2015-11-17

    Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.

  20. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  1. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Science.gov (United States)

    Huynh, T. T. D.; Vayer, M.; Sauldubois, A.; Petit, A.; Semmar, N.

    2015-11-01

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm2). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  2. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  3. Formation of Minor Phases in a Nickel-Based Disk Superalloy

    Science.gov (United States)

    Gabb, T. P.; Garg, A.; Miller, D. R.; Sudbrack, C. K.; Hull, D. R.; Johnson, D.; Rogers, R. B.; Gayda, J.; Semiatin, S. L.

    2012-01-01

    The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approximate equilibrium. Additional heat treatments were also performed for shorter times, to then assess non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their transformation temperatures, lattice parameters, compositions, average sizes and total area fractions were determined, and compared to estimates of an existing phase prediction software package. Parameters measured at equilibrium sometimes agreed reasonably well with software model estimates, with potential for further improvements. Results for shorter times representing non-equilibrium indicated significant potential for further extension of the software to such conditions, which are more commonly observed during heat treatments and service at high temperatures for disk applications.

  4. Formation and interaction of multiple coherent phase space structures in plasma

    Science.gov (United States)

    Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu

    2017-06-01

    The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.

  5. Elastic stability and electronic structure of low energy tetragonal and monoclinic PdN2 and PtN2

    Institute of Scientific and Technical Information of China (English)

    Zhao Wen-Jie; Wang Yuan-Xu

    2009-01-01

    This paper studies the elastic and electronic structure properties of two new low-energy structures of PdN2 and PtN2 by first-principles calculations. It finds that tetragonal and monoclinic structures are more stable than a pyrite one. The always positive eigenvalues of the elastic constant matrix confirm that both the tetragonal and monoclinic structures are elastically stable. The origin of the low bulk modulus of the two structures is discussed. The results of the calculated density of states show that both of the two low-energy structures are metallic.

  6. Effect of phase transformation on texture formation in Ti-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Divinski, S.V.; Dnieprenko, V.N.; Ivasishin, O.M. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fiziki Metallov

    1998-03-15

    Variant selection during the {beta}{yields}{alpha} phase transformation in rolled Ti-64 alloy has been studied by comparing model and experimental textures. It has been shown that the {beta}{yields}{alpha} phase transformation during heat treatment of Ti-64 alloy can proceed without or with preferred selection of orientation relationship variants depending on the heat treatment employed. In the later case, the number of variants may be different in different texture components. Possible reasons for variant selection are discussed. (orig.) 12 refs.

  7. FORMATION AND MICROSTRUCTURE OF POLYETHYLENE MICROPOROUS MEMBRANES THROUGH THERMALLY INDUCED PHASE SEPARATION

    Institute of Scientific and Technical Information of China (English)

    LI Wenjun; YUAN Youxin; CABASSO,Israel

    1995-01-01

    Microporous membranes of low-high density polyethylene and their blends were prepared by thermally-induced phase separation of polymer/long-aliphatic chain alcohol (diluent)mixtures.The microstructures of this particular membrane, which depends on the diluent properties,polymer concentration and cooling rate, were observed by scanning electron microscopy."Beehive-type,"leafy-like, and lacy porous structure morphologies can be formed,depending on the blend composition and phase separation conditions, which were discussed by the polymer and diluent crystallization processes.

  8. Formation of Fermi surfaces and the appearance of liquid phases in holographic theories with hyperscaling violation

    CERN Document Server

    Kuang, Xiao-Mei; Wang, Bin; Wu, Jian-Pin

    2014-01-01

    We consider a holographic fermionic system in which the fermions are interacting with a U(1) gauge field in the presence of a dilaton field in the background of a charged black hole with hyperscaling violation. Using both analytical and numerical methods, we investigate the properties of the infrared and ultaviolet Green's functions of the holographic fermionic system. Studying the spectral functions of the system, we find that as the hyperscaling violation exponent is varied, the fermionic system possesses Fermi, non-Fermi, marginal-Fermi and log-oscillating liquid phases. Various liquid phases of the fermionic system with hyperscaling violation are also generated with the variation of the fermionic mass.

  9. Gel formation in suspensions of oppositely charged colloids: mechanism and relation the equilibrium phase diagram

    NARCIS (Netherlands)

    Sanz, E.; Leunissen, M.E.; Fortini, A.; van Blaaderen, A.; Dijkstra, M.

    2008-01-01

    We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phas

  10. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  11. Investigation of Cross-Phase Modulation in WDM Systems with NRZ and RZ Modulation Formats

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2000-01-01

    Our experimental and numerical results show that there is no large difference of XPM-induced intensity interferences between NRZ and RZ format with a duty cycle larger than a certain value in WDM systems of multi-span SMF or TW fibers....

  12. A solid-phase mechanism of shock-wave formation of dust particles of heavy metals

    Science.gov (United States)

    Lin, E. E.; Mikhailov, A. L.; Khvorostin, V. N.

    2016-08-01

    The possibility of formation of dust particles in solid as a result of shock-wave destruction of the initial crystalline material structure and subsequent coalescence of atomic clusters (nanoparticles), which leads to the aggregation of mesocrystalline particles (grains) in the shocked layer, is discussed.

  13. Phase 1 user instruction manual. A geological formation - drill string dynamic interaction finite element program (GEODYN)

    Energy Technology Data Exchange (ETDEWEB)

    Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.

    1984-06-01

    User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.

  14. Study of MgB{sub 2} phase formation by using XRD, SEM, thermal and magnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Erhan, E-mail: erhan.aksu@taek.gov.tr [Technology Department, Sarayköy Nuclear Research and Training Centre, Turkish Atomic Energy Authority, 06983 Ankara (Turkey)

    2013-03-05

    Highlights: ► Activation energy E{sub MgB2} was calculated from Kissinger formula. ► The single-step changes indicate the presence of a strong coupling between the grains of MgB{sub 2}. ► The onset temperature which is also called the transition temperature for superconductivity phase was found as T{sub c} = 38.7 K. ► Samples were produced by solid state reaction technique. -- Abstract: MgB{sub 2} phase formation of samples with stoichiometric ratio of 1:2, prepared by sintering at different nine temperature values (500–900 °C) for 1 h were determined and examined by X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) methods. In order to support the results obtained from the above measurements and analyses the Mg:B (1:2) powder was subject to thermal studies. In conjunction with this, the thermal behaviors of the non-sintered powder samples were also studied their characteristics via thermal analysis techniques including Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) simultaneously. During the thermal analyses, Mg:B (1:2) powder was placed in an Al{sub 2}O{sub 3} cup with a lid were investigated at different heating rates (5, 7.5, 10, and 15 °C/min) under high-purity Argon atmosphere. By analyzing the graphics gathered from the measurement results the effect of fundamental thermal events on MgB{sub 2} phase formation was deeply discussed by considering some data such as, crystallization, melting point, oxidation and evaporation, which can mainly be obtained from a usual thermal analysis technique. The peak temperatures of exothermic lines in DSC curves that indicate the formation of MgB{sub 2} were determined by derivative lines of the curves. With help of this information, the value of activation energy of MgB{sub 2} phase was found as E{sub MgB2} = 219.9 kJ/mol by Kissinger Method. Moreover, in order to study the superconductivity of the samples; the sample sintered at 900 °C which was showing a considerable single

  15. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt

    Science.gov (United States)

    Wimpenny, Josh; Gíslason, Sigurður R.; James, Rachael H.; Gannoun, Abdelmouhcine; Pogge Von Strandmann, Philip A. E.; Burton, Kevin W.

    2010-09-01

    This study presents lithium (Li) and magnesium (Mg) isotope data from experiments designed to assess the effects of dissolution of primary phases and the formation of secondary minerals during the weathering of basalt. Basalt glass and olivine dissolution experiments were performed in mixed through-flow reactors under controlled equilibrium conditions, at low pH (2-4) in order to keep solutions undersaturated (i.e. far-from equilibrium) and inhibit the formation of secondary minerals. Combined dissolution-precipitation experiments were performed at high pH (10 and 11) increasing the saturation state of the solutions (moving the system closer to equilibrium) and thereby promoting the formation of secondary minerals. At conditions far from equilibrium saturation state modelling and solution stoichiometry suggest that little secondary mineral formation has occurred. This is supported by the similarity of the dissolution rates of basalt glass and olivine obtained here compared to those of previous experiments. The δ 7Li isotope composition of the experimental solution is indistinguishable from that of the initial basalt glass or olivine indicating that little fractionation has occurred. In contrast, the same experimental solutions have light Mg isotope compositions relative to the primary phases, and the solution becomes progressively lighter with time. In the absence of any evidence for secondary mineral formation the most likely explanation for these light Mg isotope compositions is that there has been preferential loss of light Mg during primary phase dissolution. For the experiments undertaken at close to equilibrium conditions the results of saturation state modelling and changes in solution chemistry suggest that secondary mineral formation has occurred. X-ray diffraction (XRD) measurements of the reacted mineral products from these experiments confirm that the principal secondary phase that has formed is chrysotile. Lithium isotope ratios of the experimental

  16. Efficient formation of extended line intensity patterns using matched-filtering generalized phase contrast

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas;

    2013-01-01

    We demonstrate the efficient generation of line patterns using matched-filtering Generalized Phase Contrast (mGPC). So far, the main emphasis of mGPC light addressing has been on the creation of rapidly reconfigurable focused spots. This has recently been extended to encoding extended line patter...

  17. Across-phase biomass pyrolysis stoichiometry, energy balance, and product formation kinetics

    Science.gov (United States)

    Predictive correlations between reactions occurring in the gas-, liquid- and solid-phases are necessary to economically utilize the thermochemical conversion of agricultural wastes impacting the food, water, and energy nexus. On the basis of an empirical mass balance (99.7%), this study established...

  18. Photonic band-gap formation by optical-phase-mask lithography.

    Science.gov (United States)

    Chan, Timothy Y M; Toader, Ovidiu; John, Sajeev

    2006-04-01

    We demonstrate an approach for fabricating photonic crystals with large three-dimensional photonic band gaps (PBG's) using single-exposure, single-beam, optical interference lithography based on diffraction of light through an optical phase mask. The optical phase mask (OPM) consists of two orthogonally oriented binary gratings joined by a thin, solid layer of homogeneous material. Illuminating the phase mask with a normally incident beam produces a five-beam diffraction pattern which can be used to expose a suitable photoresist and produce a photonic crystal template. Optical-phase-mask Lithography (OPML) is a major simplification from the previously considered multibeam holographic lithography of photonic crystals. The diffracted five-beam intensity pattern exhibits isointensity surfaces corresponding to a diamondlike (face-centered-cubic) structure, with high intensity contrast. When the isointensity surfaces in the interference patterns define a silicon-air boundary in the resulting photonic crystal, with dielectric contrast 11.9 to 1, the optimized PBG is approximately 24% of the gap center frequency. The ideal index contrast for the OPM is in the range of 1.7-2.3. Below this range, the intensity contrast of the diffraction pattern becomes too weak. Above this range, the diffraction pattern may become too sensitive to structural imperfections of the OPM. When combined with recently demonstrated polymer-to-silicon replication methods, OPML provides a highly efficient approach, of unprecedented simplicity, for the mass production of large-scale three-dimensional photonic band-gap materials.

  19. Identification of Abnormal Phase and its Formation Mechanism in Synthesizing Chalcogenide Films

    Science.gov (United States)

    Liu, Kegao; Ji, Nianjing; Xu, Yong; Liu, Hong

    2016-09-01

    Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass (Na2OṡCaOṡ6SiO2) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5-2μm and show a preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.

  20. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation

    NARCIS (Netherlands)

    Heijkants, R. G. J. C.; van Calck, R. V.; van Tienen, T. G.; de Groot, J. H.; Pennings, A. J.; Buma, P.; Veth, R. P. H.; Schouten, A. J.

    2008-01-01

    Porous scaffolds have been made from two polyurethanes based on thermally induced phase separation of polymer dissolved in a DMSO/water mixture in combination with salt leaching. It is possible to obtain very porous foams with a very high interconnectivity. A major advantage of this method is that

  1. Effect of integral proteins in the phase stability of a lipid bilayer: Application to raft formation in cell membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2010-04-01

    The existence of lipid rafts is a controversial issue. The affinity of cholesterol for saturated lipids is manifested in macroscopic phase separation in model membranes, and is believed to be the thermodynamic driving force for raft formation. However, there is no clear reason to explain the small (nanometric) size of raft domains in cell membranes. In a recent paper Yethiraj and Weisshaar [Biophys. J. 93, 3113 (2007)] proposed that the effect of neutral integral membrane proteins may prevent from the formation of large lipid domains. In this paper we extend this approach by studying the effect of the protein size, as well as the lipid-protein interaction. Depending on these factors, two different mechanisms for nanodomain stabilization are shown to be possible for static proteins. The application of these results to a biological context is discussed.

  2. GAS PHASE SYNTHESIS OF (ISO)QUINOLINE AND ITS ROLE IN THE FORMATION OF NUCLEOBASES IN THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Dorian S. N.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mebel, Alexander M. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Tielens, Alexander G. G. M. [Leiden Observatory, University of Leiden, Leiden (Netherlands)

    2015-04-20

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellar shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.

  3. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2014-09-20

    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  4. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  5. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    Science.gov (United States)

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  6. Formation of PCDDs and PCDFs from methane-flame , Gas-phase by-products; soot deposits; and fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Wikstrom, E.; Touati, A.; Ryan, S.; Gullet, B.

    2002-07-01

    Simple methane or propane flame combustion at sooty conditions with hydrogen chloride (HCI) present, as well as numerous experiments conducted with only fly ash present as the source of carbon and chlorine (de novo synthesis) have shown significant formation of chlorinated compounds, such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). In a full-scale incinerator, both fly ash and flame products are present simultaneously, and the relative importance of the two carbon sources for the formation of PCDDs/Fs is still undetermined. An important question to be answered is whether PCDDs/Fs are formed through a series of reactions of gas-phase flame by-products formed at various concentrations depending on the equivalence ratio and/or from the carbon matrix present in flame soot and fly ash. Additionally, how important are catalytic reactions by metals present in the fly ash for the formation of PCDDs/Fs?. Experiments conducted in a laboratory scale reactor using a methane flame doped with chlorine and addition of fly ash in the flue gas provided answers to many of the important questions regarding the PCDDs/Fs formation mechanism during high-temperature processes. (Author)

  7. Phase evolution of(K,Na)NbO3 powder prepared by high temperature mixing under hydrothermal conditions

    Institute of Scientific and Technical Information of China (English)

    Lin Bai; Kongjun Zhu; Jinhao Qiu; Hongli Ji; Likui Su

    2010-01-01

    (Na,K)NbO3(KNN)powders were successfully prepared by high temperature mixing method(HTMM)under hydrothermal conditions to study the effect of reaction time on the formation of KNN for three K+/(K++Na+)ratios of 0.6,0.7 and 0.8.The products were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM)and selected area electron diffraction(SAED),to show the change of phase and morphology of the as-prepared particles with the K+/(K++Na+)molar ratio in the solution.Pure Na-rich KNN monoclinic phase and pure K-rich KNN orthorhombic phase could be obtained quickly after mixing the solutions at high temperature when the K+/(K++Na+)molar ratio was either 0.6 or 0.8.When the K+/(K++Na+)molar ratio was 0.7,however,the K-rich KNN orthorhombic phase grain formed first,followed by the Na-rich KNN monoclinic phase grain,with the two phases coexisting in the final product.

  8. RESEARCH OF INFLUENCE OF THE IRON CONTENT ON FORMATION OF IRON-BEARING PHASES IN FOUNDRY ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    V. I. Gorbachiova

    2013-01-01

    Full Text Available  The microstructure and microhardness of aluminum and silumin аК12 with iron content of 0 to 12 mas.% produced by sand casting and mol casting have been investigated. For the Al–Si–Fe and Al–Si–Fe–Mn systems the portions of the liquidus surfaces, which correspond to commercial silumin compositions, have been calculated using the updated thermodynamic model of the Al– Si–Fe system and COST–507 database. The area of primary crystallization of the iron-containing a and b phases is assessed for the commercial silumin. It has been proved that manganese promotes the formation of the iron-containing a-phase in the commercial silumin.

  9. submitter Comparison of microstructure, second phases and texture formation during melt processing of Bi-2212 mono- and multifilament wires

    CERN Document Server

    Kadar, J; Rikel, MO; Di Michiel, M; Huang, Y

    2016-01-01

    Based on simultaneous in situ high energy synchrotron micro-tomography and x-ray diffraction (XRD) measurements we compare the microstructural changes and the formation of second phases and texture during the processing of Bi-2212 round wires with 15 μm filament diameter (multifilament) and 650 μm filament diameter (monofilament) fabricated using identical Bi-2212 precursor. The monofilament tomograms show in unprecedented detail how the distributed porosity agglomerates well before Bi-2212 melting decomposition to form lenticular voids that completely interrupt the filament connectivity along the wire axis. When the Bi-2212 phase completely melts connectivity in the axial wire direction is established via the changes in the void morphology from the lenticular voids to bubbles that remain when Bi-2212 crystallises out of the melt. By measuring the attenuation of the monochromatic x-ray beam, the associated Bi-2212 mass density changes have been monitored during the entire heat cycle. The XRD results reveal ...

  10. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    Science.gov (United States)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  11. Positronium in a Liquid Phase: Formation, Bubble State and Chemical Reactions

    Directory of Open Access Journals (Sweden)

    Sergey V. Stepanov

    2012-01-01

    Full Text Available The present approach describes the e+ fate since its injection into a liquid until its annihilation. Several stages of the e+ evolution are discussed: (1 energy deposition and track structure of fast positrons: ionization slowing down, number of ion-electron pairs, typical sizes, thermalization, electrostatic interaction between e+ and the constituents of its blob, and effect of local heating; (2 positronium formation in condensed media: the Ore model, quasifree Ps state, intratrack mechanism of Ps formation; (3 fast intratrack diffusion-controlled reactions: Ps oxidation and ortho-paraconversion by radiolytic products, reaction rate constants, and interpretation of the PAL spectra in water at different temperatures; (4 Ps bubble models. Inner structure of positronium (wave function, energy contributions, relationship between the pick-off annihilation rate and the bubble radius.

  12. Simulating pasta phases by molecular dynamics and cold atoms --- Formation in supernovae and superfluid neutrons in neutron stars

    CERN Document Server

    Watanabe, Gentaro

    2010-01-01

    In dense stars such as collapsing cores of supernovae and neutron stars, nuclear "pasta" such as rod-like and slab-like nuclei are speculated to exist. However, whether or not they are actually formed in supernova cores is still unclear. Here we solve this problem by demonstrating that a lattice of rod-like nuclei is formed from a bcc lattice by compression. We also find that the formation process is triggered by an attractive force between nearest neighbor nuclei, which starts to act when their density profile overlaps, rather than the fission instability. We also discuss the connection between pasta phases in neutron star crusts and ultracold Fermi gases.

  13. Solid and liquid phase equilibria and solid-hydrate formation in binary mixtures of water with amines

    Institute of Scientific and Technical Information of China (English)

    车冠全; 彭文烈; 黄良恩; 古喜兰; 车飙

    1997-01-01

    Solid and liquid phase diagrams have been constructed for {water+triethylamine,or+N,N-dimethylformamide(DMF) or+N,N-dimethlacetamide (DMA)} Solid-hydrates form with the empirical formulae N(C2H5)3 3H2O,DMF 3H2O,DMF 2H2O,DMA 3H2O and (DMA)2 3H2O.All are congruently melting except the first which melts incongruently.The solid-hydrate formation is attributed to hydrogen bond.The results are compared with the references

  14. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  15. Formation of (HCOO-)(H2SO4) Anion Clusters: Violation of Gas Phase Acidity Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Wang, Xue-Bin; Valiev, Marat

    2017-08-23

    Sulfuric acid is commonly known to be a strong acid and, by all counts, should readily donate its proton to formate, which has much higher proton affinity. This conventional wisdom is challenged in this work, where temperature-dependent negative ion photoelectron spectroscopy (NIPES) and theoretical studies demonstrate the existence of (HCOO?)(H2SO4) pair at the energy slightly below the conventional (HCOOH)(HSO4?) structure. Analysis of quantum-mechanical calculations indicates that large proton affinity barrier (~36 kcal/mol), favoring proton transfer to formate, is offset by the gain in inter-molecular interaction energy between HCOO? and H2SO4 through the formation of two strong hydrogen bonds. However, this stabilization comes with severe entropic penalty, requiring the two species in the precise align-ment. As a result, the population of (HCOO?)(H2SO4) drops significantly at higher temperatures, rendering (HCOOH)(HSO4?) to be the dominant species. This phe-nomenon is consistent with the NIPES data, which shows depletion in the spectra assigned to (HCOO?)(H2SO4), and has also been verified by ab initio molecular dynamics simulations.

  16. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    Science.gov (United States)

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.

  17. A massive galaxy in its core formation phase three billion years after the Big Bang.

    Science.gov (United States)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  18. Dissipation of MeV ion energy in solids, structure formation and phase changes

    Science.gov (United States)

    Sen, P.; Aggarwal, G.; Tiwari, U.

    1998-12-01

    Instabilities arise out of dynamic events and can lead to nonequilibrium (self-organization) processes. Ion irradiation is by nature a nonequilibrium process and hence formation of structures, metastable or otherwise is to be expected. Recently, it has been theoretically predicted that metals under ion irradiation can lead to dissipative structure formation arising out of radiation damage and their subsequent annealing. The possibility of direct observation of such structures in metals under irradiation is however reduced due to nonavailability of a large concentration of defects (mainly point defects) at any point of time. In this experimental presentation we show that this can be overcome through the involvement of microstructural imperfections which rearrange during irradiation. Employing microstructurally impure specimens of Fe and Ni, it is shown that heavy ions dissipate their electronic energy to modify atomic arrangements at the microstructure. The increased concentration of defects (atomic rearrangements), amenable to statistical decay is shown to produce effects in the 4-probe resistivity measurements which we assign to dissipative structure formation.

  19. Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride).

    Science.gov (United States)

    Liu, Yi-Liao; Li, Ying; Xu, Jun-Ting; Fan, Zhi-Qiang

    2010-06-01

    Poly(vinylidene difluoride)/organically modified montmorillonite (PVDF/OMMT) composite nanofibers were prepared by electrospinning the solution of PVDF/OMMT precursor in DMF. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) show that in the bulk of the PVDF/OMMT precursor OMMT platelets are homogeneously dispersed in PVDF and can be both intercalated and exfoliated. It is found that the diameter of the PVDF/OMMT composite nanofibers is smaller than that of the neat PVDF fibers because the lower viscosity of PVDF/OMMT solution, which is attributed to the possible adsorption of PVDF chains on OMMT layers and thus reduction in number of entanglement. The crystal structure of the composite nanofibers was investigated using WAXD and Fourier transform infrared (FT-IR) and compared with that of thin film samples. The results show that the nonpolar alpha phase is completely absent in the electrospun PVDF/OMMT composite nanofibers, whereas it is still present in the neat PVDF electrospun fibers and in the thin films of PVDF/OMMT nanocomposites. The cooperative effect between electrospinning and nanoclay on formation of polar beta and gamma crystalline phases in PVDF is discussed. The IR result reveals that electrospinning induces formation of long trans conformation, whereas OMMT platelets can retard relaxation of PVDF chains and stabilize such conformation due to the possible interaction between the PVDF chains and OMMT layers. This cooperative effect leads to extinction of nonpolar alpha phase and enhances the polar beta and gamma phases in the electrospun PVDF/OMMT composite nanofibers.

  20. Using three-phase theory-based formative research to explore healthy eating in Australian truck drivers.

    Science.gov (United States)

    Vayro, Caitlin; Hamilton, Kyra

    2016-03-01

    In Australia, fruit and vegetable consumption is lower than recommended while discretionary foods (i.e., foods high in fat, sugar, and salt) are eaten in excess. Long-haul truck drivers are a group at risk of unhealthy eating but have received limited attention in the health literature. We aimed to examine long-haul truck drivers eating decisions in order to develop theory-based and empirically-driven health messages to improve their healthy food choices. Drawing on the Theory of Planned Behavior, three-phased formative research was conducted using self-report surveys. Phase 1 (N = 30, Mage = 39.53, SDage = 10.72) identified modal salient beliefs about fruit and vegetable (FV) intake and limiting discretionary choices (DC). There were nine behavioral and seven normative beliefs elicited for both FV and DC; while nine and five control beliefs were elicited for FV and DC, respectively. Phase 2 (N = 148, Mage = 44.23, SDage = 12.08) adopted a prospective design with one week follow-up to examine the predictors of FV and DC intention and behavior. A variety of behavioral and control beliefs were predictive of FV and DC intention and behavior. Normative beliefs were predictive of FV intention and behavior and DC intention only. Phase 3 (N = 20, Mage = 46.9, SDage = 12.85) elicited the reasons why each belief is held/solutions to negative beliefs, that could be used as health messages. In total, 40 reasons/solutions were identified: 26 for FV and 14 for DC. In summary, we found that specific behavioral, normative and control beliefs influenced FV and DC eating decisions. These results have implications for truck driver's health and provide formative research to inform future interventions to improve the food choices of a unique group who are at risk of unhealthy eating behaviors.

  1. Structural, optical and electrical properties of reactively sputtered CrxNy films: Nitrogen influence on the phase formation

    Directory of Open Access Journals (Sweden)

    Mirjana Novaković

    2017-03-01

    Full Text Available The properties of various CrxNy films grown by direct current (DC reactive sputtering process with different values of nitrogen partial pressures (0, 2×10-4, 3.5×10-4 and 5×10-4 mbar were studied. The structural analysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM, while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was produced. TEM analysis showed that at pN2 = 2×10-4 mbar the layer has dense microstructure. On the other hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or combined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are strongly dependent on the dominant phase formation (Cr, Cr2N, CrN during the deposition process. Finally, the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.

  2. INFLUENCE OF ALCOHOL-BASED NONSOLVENTS ON THE FORMATION AND MORPHOLOGY OF PVDF MEMBRANES IN PHASE INVERSION PROCESS

    Institute of Scientific and Technical Information of China (English)

    Dan-ying Zuo; Bao-ku Zhu; Jian-hua Cao; You-yi Xu

    2006-01-01

    Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes were investigated. The light scattering and light transmission measurements were used to characterize the equilibrium phase diagram and the gelation speed, respectively. The locations of the crystallization-induced gelation boundaries for various systems and precipitation processes were explained from the corresponding thermodynamic and kinetic parameters. It was found that the better affinity between alcohol-based nonsolvents and DMAc solvent caused the gelation boundaries further away from the PVDF-DMAc axis with the coagulation bath varying from water, methanol, ethanol to iso-propanol. Due to the lower exchange rate of DMAc and alcohols, the delayed demixing took place for the membrane-forming using alcohols as baths, and the delayed time became longer when the coagulation bath was changed from methanol, ethanol to iso-propanol.The characterization results of membranes indicate that the influence of nonsolvents on the phase diagram and the precipitation process are in agreement with those on the membrane morphology. The better thermodynamic stability and a low exchange diffusion rate of PVDF/DMAc/alcohols favor the liquid-solid phase separation in gelation process, and therefore yield the membranes with a porous upper surface, a particular bottom surface and symmetrical structure.

  3. Formation of H2-He Substellar Bodies in Cold Conditions: Gravitational Stability of Binary Mixtures in a Phase Transition

    CERN Document Server

    Füglistaler, Andreas

    2015-01-01

    Molecular clouds consist typically of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets, or even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense ISM conditions. The gravitational stability of fluid mixtures has been studied before, but not including a phase transition. We study the gravitational stability of binary fluid mixtures with special emphasis if one component is in a phase transition. The results are aimed at applications in molecular cloud conditions. We study the gravitational stability of van der Waals fluid mixtures using linearised analysis and examine virial equilibrium conditions using the Lennard-Jones inter-molecular potential. Then, combining the Lennard-Jones and gravitational potentials, the non-linear dynamics of fluid mixtures are studied using the molecular...

  4. Removal of Phosphorus in Silicon by the Formation of CaAl2Si2 Phase at the Solidification Interface

    Science.gov (United States)

    Sun, Liyuan; Wang, Zhi; Chen, Hang; Wang, Dong; Qian, Guoyu

    2017-02-01

    To fully understand the role of CaAl2Si2 phase in concentrating the non-metallic impurity phosphorus, an experiment of directional solidification of Al-70 at. pct Si alloy with extreme small lowering rate 0.05 mm min-1 was carried out. With good dynamic condition for the diffusion of impurity (Ca, Al, P) from silicon to the S/L interface, the CaAl2Si2 phase with 0.6-0.7 at. pct P was successfully observed by Electron Probe Micro Analyzer (EPMA), and its distribution character was originally presented. This impurity phase was widely detected in the refined sample but only at the interface of silicon crystal and Al-Si alloy which contributed to the deep removal of impurity P. The formation mechanism of CaAl2Si2-P phase was thus explored, in which the microsegregation and concentration of element P, Ca, Al in front of S/L interface were crucial. After acid leaching, the P content decreased from the original 23 ppm to below 5 ppm. Compared with normal solidification, a 16 pct higher removal efficiency of P was obtained in this study.

  5. Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, J.L., E-mail: jlendrino@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Arhammar, C. [Sandvik Tooling AB, R and D, Lerkrogsvaegen 13, 126 80 Stockholm (Sweden); Gutierrez, A. [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales Nicolas Cabrera, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Gago, R. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Horwat, D. [Institut Jean Lamour, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy (France); Soriano, L. [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales Nicolas Cabrera, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Fox-Rabinovich, G. [McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada); Martin y Marero, D. [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales Nicolas Cabrera, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Fundacion Parque Cientifico de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Guo, J. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala (Sweden); Andersson, J. [Angstrom Laboratory, Uppsala University, S-75121 Uppsala (Sweden)

    2011-09-15

    Thermal treatment of supersaturated Ti{sub 1-x}Al{sub x}N films (x {approx} 0.67) with a dominant ternary cubic-phase were performed in the 700-1000 {sup o}C range. Grazing incidence X-ray diffraction (GIXRD) shows that, for annealing temperatures up to 800 {sup o}C, the film structure undergoes the formation of coherent cubic AlN (c-AlN) and TiN (c-TiN) nanocrystallites via spinodal decomposition and, at higher temperatures ({>=}900 {sup o}C), GIXRD shows that the c-AlN phase transforms into the thermodynamically more stable hexagonal AlN (h-AlN). X-ray absorption near-edge structure (XANES) at the Ti K-edge is consistent with spinodal decomposition taking place at 800 deg. while Al K-edge and N K-edge XANES and X-ray emission data show the nucleation of the h-AlN phase at temperatures >800 deg. C, in agreement with the two-step decomposition process for rock-salt structured TiAlN, which was also supported by X-ray diffraction patterns and first-principle calculations. Further, the resonant inelastic X-ray scattering technique near the N K-edge revealed that N{sub 2} is formed as a consequence of the phase transformation process.

  6. Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air

    Directory of Open Access Journals (Sweden)

    Hsuan I Wang

    2012-01-01

    Full Text Available We demonstrate an effective method to prepare wurtzite phase ZnSe nanoparticles from zincblende ZnSe single crystal using femtosecond pulse laser ablation. The fabricated ZnSe nanoparticles are in spherical shape and uncontaminated while synthesized under ambient environment. By controlling the laser fluences, the average size of ZnSe nanoparticles can be varied from ~16 nm to ~22 nm in diameter. In Raman spectra, the surface phonon mode becomes dominant in the smaller average particle size with uniform size distribution. The interesting phase transition from the zinc blende structure of ZnSe single crystal to wurtzite structure of ZnSe nanoparticles may have been induced by the ultrahigh ablation pressure at the local area due to the sudden injection of high energy leading to solid-solid transition.

  7. Influence Intensive Plastic Deformation on Phase Formation Process in Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    V.I. Lysov

    2016-06-01

    Full Text Available The influence of intensive plastic deformation on structure and properties of amorphous alloys were investigated experimentally. Using highly sensitive dilatometer techniques shown that intensive plastic deformation of amorphous alloys leads to increased of thermal stability interval that can be explained by a shift of the phase equilibria in heterogeneous system: amorphous matrix - frozen crystallization centers. Thus there is a dissolution frozen crystallization centers present in the original sample that confirmed by electron researches.

  8. Peculiarities of high-temperature. beta. -phase formation during rapid heating of titanium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Oshkaderov, S.P. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1983-11-01

    In the framework of the diffusion mechanism of ..cap alpha..+..beta.. ..-->.. ..beta.. transformation the model for calculating interface location determining the degree of transformation and concentration of the formed ..beta..-phase during continuous heating under different rates in titanium alloys with ..beta..-isomorphous alloying elements is suggested. On the example of Ti-10% Mo alloy the comparison of calculation and experimental results of determining parameters of ..cap alpha..+..beta.. ..-->.. ..beta.. transformation is performed.

  9. Size-dependent hysteresis and phase formation kinetics during temperature cycling of metal nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Shirinyan, A S [Department of Physics, Kiev Taras Shevchenko National University, Academic Glushkova Avenue, 2, Building 1, Kiev 03680 (Ukraine); Bilogorodskyy, Y S [Department of Physics, Cherkasy B Khmelnytskiy National University, 81, Shevchenko Street, Cherkasy 18031 (Ukraine); Wilde, G [Institut fuer Materialphysik, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Strasse 10, 48149 Muenster (Germany); Schmelzer, J W P [Institut fuer Physik, Universitaet Rostock, Wismarsche Strasse 43-45, Rostock 18051 (Germany)

    2011-06-22

    We present a description of the evolution of a polymorphically transforming metal nanoparticle ensemble subjected to a temperature cycling with constant rates of temperature change. The calculations of the time dependence of the volume fraction of the new phase show the existence of size-dependent hysteresis and its main features. The statistical analysis makes it possible to introduce and determine the size-dependent superheating limit and supercooling limit.

  10. Creation and formation mechanism of new carbon phases constructed by amorphous carbon

    Science.gov (United States)

    Yao, Mingguang; Cui, Wen; Liu, Bingbing

    Our recent effort is focusing on the creation of new hard/superhard carbon phases constructed by disordered carbons or amorphous carbon clusters under high pressure. We showed that the pressure-induced amorphous hard carbon clusters from collapsed fullerenes can be used as building blocks (BBs) for constructing novel carbon structures. This new strategy has been verified by compressing a series of intercalated fullerides, pre-designed by selecting various dopants with special features. We demonstrate that the boundaries of the amorphous BBs are mediated by intercalated dopants and several new superhard materials have been prepared. We also found that the dopant-mediated BBs can be arranged in either ordered or disordered structures, both of which can be hard enough to indent the diamond anvils. The hardening mechanisms of the new phases have also been discussed. For the glassy carbon (GC) constructructed by disordered fullerene-like nanosized fragments, we also found that these disordered fragments can bond and the compressed GC transformed into a transparent superhard phase. Such pressure-induced transformation has been discovered to be driven by a novel mechanism (unpublished). By understanding the mechanisms we can clarify the controversial results on glassy carbon reported recently. The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 11474121, 51320105007).

  11. Atomic Structure and Phase Transformations in Pu Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A J; Cynn, H; Blobaum, K M; Wall, M A; Moore, K T; Evans, W J; Farber, D L; Jeffries, J R; Massalski, T B

    2008-04-28

    Plutonium and plutonium-based alloys containing Al or Ga exhibit numerous phases with crystal structures ranging from simple monoclinic to face-centered cubic. Only recently, however, has there been increased convergence in the actinides community on the details of the equilibrium form of the phase diagrams. Practically speaking, while the phase diagrams that represent the stability of the fcc {delta}-phase field at room temperature are generally applicable, it is also recognized that Pu and its alloys are never truly in thermodynamic equilibrium because of self-irradiation effects, primarily from the alpha decay of Pu isotopes. This article covers past and current research on several properties of Pu and Pu-(Al or Ga) alloys and their connections to the crystal structure and the microstructure. We review the consequences of radioactive decay, the recent advances in understanding the electronic structure, the current research on phase transformations and their relations to phase diagrams and phase stability, the nature of the isothermal martensitic {delta} {yields} {alpha}{prime} transformation, and the pressure-induced transformations in the {delta}-phase alloys. New data are also presented on the structures and phase transformations observed in these materials following the application of pressure, including the formation of transition phases.

  12. Application of RPR to Monoclinic and Triclinic Symmetries: Initial Results on Elasticity of Single-Crystal Diopside

    Science.gov (United States)

    Isaak, D. G.; Ohno, I.

    2001-12-01

    In past years, the rectangular parallelepiped resonance (RPR) method has been used to measure single-crystal elastic moduli, and their temperature dependences, of several materials important to geophysics. The high-temperature elastic properties of cubic, orthorhombic, tetragonal, and trigonal crystals, in addition to polycrystals, have all been studied with the RPR method. One feature of the RPR method is that, in principle, all the single-crystal elastic moduli (Cij) can be obtained from a single spectral sweep. However, no materials with crystal symmetry lower than orthorhombic symmetry have been reported in RPR studies. We extend the RPR theory to monoclinic and triclinic crystal symmetries. With these developments, we are able to compute single-crystal resonant spectra using a set of assumed Cij for right-rectangular parallelepiped monoclinic specimens cut along the b and c axes, or monoclinic specimens cut along known, but arbitrary, axes. We present initial results showing the comparison of calculated and measured resonance modes for single-crystal monoclinic diopside. Our measured resonance spectrum on chrome diopside is markedly more consistent with the spectrum calculated from the elasticity data of Collins and Brown (PCM, 26, 7-13, 1998) using a specimen that is 72% diopside than the end-member diopside elasticity data reported by Levien et al. (PCM, 4, 105-113, 1979).

  13. Coexistence of different charge states in Ta-doped monoclinic HfO2: Theoretical and experimental approaches

    DEFF Research Database (Denmark)

    Taylor, M.A.; Alonso, R.E.; Errico, L.A.

    2010-01-01

    A combination of experiments and ab initio quantum-mechanical calculations has been applied to examine hyperfine interactions in Ta-doped hafnium dioxide. Although the properties of monoclinic HfO2 have been the subject of several earlier studies, some aspects remain open. In particular, time dif...

  14. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. (Instytut Fizyki, Polska Akademia Nauk, Al. Lotnikow 32/46, PL-02668 Warszawa (Poland))

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  15. Phase modification and surface plasmon resonance of Au/WO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, R. Jolly; Kavitha, V.S. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India); Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686560, Kerala (India); Pillai, V.P. Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India)

    2016-08-30

    Highlights: • We have investigated the role of gold as catalyst and nucleation centers, for the crystallization and phase modification of tungsten oxide, in Au/WO{sub 3} matrix. • The phase change from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} is found to enhance with gold incorporation. • The surface plasmon resonance is observed in gold/tungsten oxide system with the appearance of an absorption band near the wavelength 604 nm. - Abstract: We report the action of gold as catalyst for the modification of phase from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} and nucleation centre for the formation of W{sub 18}O{sub 49} phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm{sup −1} in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm{sup −1}) can be used for sensing the quantity of gold in the Au/WO{sub 3} matrix.

  16. First-principles studies of phase transition and structural stability of SrC2 under pressure

    Science.gov (United States)

    Lu, Yi-Lin; Zhao, Hui

    2014-09-01

    Pressure-induced phase transitions in SrC2 are investigated using the first-principles plane wave pseudopotential method within the generalized gradient approximation. The phase transition from monoclinic phase (CaC2-II-type, space group C2/c) to trigonal (CaC2-VII-type, space group R\\bar {3}m) structure is predicted to occur at 10.4 GPa. The high-pressure phase is thermodynamic, mechanically and dynamically stable, as verified by the calculations of its formation energy, elastic stiffness constants and phonon dispersion. Further the electronic analysis predicates this high-pressure phase to be an insulator. When increasing pressure, the ionic bond between C and Sr is strengthened, as well is the covalent bond between C and C, however, the increase of the ionic interaction between Sr and C preponderates over that of the covalent bond interaction, so the gap is narrowed.

  17. Influence of cyclic dimer formation on the phase behavior of carboxylic acids.

    Science.gov (United States)

    Janecek, Jiri; Paricaud, Patrice

    2012-07-12

    A new thermodynamic approach based on the Sear and Jackson association theory for doubly bonded dimers [Mol. Phys.1994, 82, 1033] is proposed to describe the thermodynamic properties of carboxylic acids. The new model is able to simultaneously represent the vapor pressures, saturated densities, and vaporization enthalpies of the shortest acids and is in a much better agreement with experimental data than other approaches that do no consider the formation of cyclic dimers. The new model is applied to mixtures of carboxylic acids with nonassociating compounds, and a very good description of the vapor-liquid equilibria in mixtures of alkanes + carboxylic acids is obtained.

  18. THE INFLUENCE OF Β-PBO2 ON PZT PHASE FORMATION

    Directory of Open Access Journals (Sweden)

    H. Allal

    2015-07-01

    Full Text Available The reactional mechanism of the formation of solid solution lead-zircono-titanate PZT has been studied using β-PbO2, TiO2 and ZrO2 as starting materials. PZT ceramics were prepared by solid state reaction between oxides at different temperatures. After calcination samples are characterized by thermogravimetry (TGA, differential thermal analysis (DTA, differential scanning, Infrared spectroscopy and x-ray diffraction (XRD. Using lead dioxide (β-PbO2 allows PZT powder to be sintered at a temperature as low as 700°C.

  19. Off-resonance effects in (14)N NQR signals from the pulsed spin-locking (PSL) and three-pulse echo sequence; a study for monoclinic TNT.

    Science.gov (United States)

    Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie

    2015-10-01

    In NQR detection applications signal averaging by the summation of rapidly regenerated signals from multiple pulse sequences of the pulsed spin-locking (PSL) type is often used to improve sensitivity. It is important to characterise and if possible minimise PSL sequence off-resonance effects since they can make it difficult to optimise detection performance. We illustrate this with measurements of the variation of the decay time T2e and the amplitude of PSL signal trains with pulse spacing and excitation offset frequency for the 870 kHz ν+(14)N NQR line of monoclinic TNT under carefully stabilised temperature conditions. We have also carried out a similar study of signals from monoclinic TNT and 1H-1,2,3-triazole generated by a three-pulse echo sequence and the results are shown to agree well with a theoretical treatment appropriate to polycrystalline NQR samples such as TNT for which spin I=1, asymmetry parameter η≠0 and T1≫T2. Based on this theory we derive simple models for calculating TNT PSL signal trains and hence the pulse spacing and off-resonance dependence of signal amplitude and T2e which we compare to our experimental data. We discuss the influence of PSL echo summation on off-resonance effects in detected signal intensity and show how a phase-alternated multiple pulse sequence can be used in combination with the PSL sequence to eliminate variation in detection performance due to off-resonance effects.

  20. Formation and coalescence of strain localized regions in ferrite phase of DP600 steels under uniaxial tensile deformation

    Energy Technology Data Exchange (ETDEWEB)

    Alaie, A., E-mail: amir_alaie@yahoo.com [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Kadkhodapour, J. [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany); Ziaei Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Asadi Asadabad, M. [Materials Research School, Isfahan (Iran, Islamic Republic of); Schmauder, S. [Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany)

    2015-01-19

    In this study the key factors in the creation and coalescence of strain localization regions in dual-phase steels were investigated. An in-situ tensile setup was used to follow the microscopic deformation of ferrite phase inside the microstructure of DP600 steel. The test was continued until the specimen was very close to final failure. The captured scanning electron microscopy (SEM) micrographs enabled us to directly observe the evolution of deformation bands as a contour of strain distribution in the ferrite matrix. The image processing method was used to quantify the ferrite microscopic strains; the obtained strain maps were superimposed onto the SEM micrographs. The results revealed important deformational characteristics of the microstructure at the microscopic level. It was observed that despite the formation of slip bands inside the large grains during the early stages of deformation, the large ferrite grains did not contribute to the formation of high-strain bands until the final stages of severe necking. The behavior of voids and initial defects inside the localization bands was also studied. In the final stages of deformation, cracks were observed to preferentially propagate in the direction of local deformation bands and to coalescence with each other to form the final failure lines in the microstructure. It was observed that in the final stages of deformation, the defects or voids outside the deformation bands do not contribute to the final failure mechanisms and could be considered to be of minor importance.

  1. Differential roles of XRCC2 in S-phase RAD51 focus formation induced by DNA replication inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C; Liu, N

    2004-05-14

    RAD51 proteins accumulate in discrete nuclear foci in response to DNA damage. Previous studies demonstrated that human RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) are essential for the assembly of RAD51 foci induced by ionizing radiation and cross-linking agents. Here we report that XRCC2 also plays important roles in RAD51 focus formation induced by replication arrest during S-phase of cell cycle. In wild-type hamster V79 cells treated with hydroxyurea (HU), RAD51 protein form punctuate nuclear foci, accompanied by increased RAD51 protein level in both cytoplasmic and nuclear fractions, and increased association of RAD51 with chromatin. In contrast, xrcc2 hamster mutant irs1 cells are deficient in the formation of RAD51 foci after HU treatment, suggesting that the function of XRCC2 is required for the assembly of RAD51 at HU-induced stalled replication forks. Interestingly, we found that irs1 cells are able to form intact RAD51 foci in S-phase cells treated with thymidine (TR) or aphidicolin, although irs1 cells are hypersensitive to both HU and TR. Our findings suggest that there may be two distinct pathways (XRCC2-dependent or XRCC2-independent) involved in loading of RAD51 onto stalled replication forks, probably depending upon the structure of DNA lesions.

  2. Direct Observations of Sigma Phase Formation in Duplex Stainless Steels using In Situ Synchrotron X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J W; Palmer, T A; Specht, E D

    2006-07-03

    The formation and growth of sigma phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during 10 hr isothermal heat treatments at temperatures between 700 C and 850 C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. Differences between the calculated and measured amounts of sigma, ferrite and austenite suggest that the thermodynamic calculations underpredict the sigma dissolution temperature by approximately 50 C. The data were further analyzed using a modified Johnson-Mehl-Avrami (JMA) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. The change in the JMA exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high temperature value to room temperature.

  3. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    Science.gov (United States)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  4. The Phase-Formation Behavior of Composite Ceramic Powders Synthesized by Utilizing Rice Husk Ash from the Biomass Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Wenjie Yuan

    2015-01-01

    Full Text Available The development and utilization of biomass as a vital source of renewable energy were stimulated in order to reduce the global dependency on fossil fuels. A lot of rice husk ashes (RHA were generated as the waste after the rice husk as the main fuel was burnt in the biomass cogeneration plant. The phase-formation behavior of composite ceramic powders synthesized by using rice husk ash from the biomass cogeneration plant at the different carbon ratios and temperatures was investigated. The sequence of phase formation with the calcining temperatures ranging from 1773 K to 1853 K was followed by O′-Sialon→SiC + Si3N4→SiC in samples with C/SiO2  =  1 : 1–4 : 1. Ca-α-Sialon formed in samples with C/SiO2  =  5 : 1 and 6 : 1. The results highlighted that series of reactions happening sensitively depended on C/SiO2 and the temperature and demonstrated that the carbothermal nitridation provided an alternative for converting RHA waste into composite ceramic powders.

  5. Formation dynamics of femtosecond laser-induced phase objects in transparent materials

    Science.gov (United States)

    Mermillod-Blondin, A.; Rosenfeld, A.; Stoian, R.; Audouard, E.

    2012-01-01

    Ultrashort pulse lasers offer the possibility to structure the bulk of transparent materials on a microscale. As a result, the optical properties of the irradiated material are locally modified in a permanent fashion. Depending on the irradiation parameters, different types of laser-induced phase objects can be expected, from uniform voxels (that can exhibit higher or lower refractive index than the bulk) to self-organized nanoplanes. We study the physical mechanisms that lead to material restructuring, with a particular emphasis on events taking place on a sub picosecond to a microsecond timescale following laser excitation. Those timescales are particularly interesting as they correspond to the temporal distances between two consecutive laser pulses when performing multiple pulse irradiation: burst microprocessing usually involves picosecond separation times and high repetition rate systems operate in the MHz range. We employ a time-resolved microscopy technique based on a phase-contrast microscope setup extended into a pump-probe scheme. This methods enables a dynamic observation of the complex refractive index in the interaction region with a time resolution better than 300 fs. In optical transmission mode, the transient absorption coefficient can be measured for different illumination wavelengths (400 nm and 800 nm). The phase-contrast mode provides qualitative information about the real part of the transient refractive index. Based on the study of those transient optical properties, we observe the onset and relaxation of the laser-generated plasma into different channels such as defect creation, sample heating, and shockwave generation. The majority of our experiments were carried out with amorphous silica, but our method can be applied to the study of all transparent media.

  6. Synchrotron X-Ray Study of Novel Crystalline-B Phases in Heptyloxybenzylidene-Heptylaniline (70.7)

    DEFF Research Database (Denmark)

    Collet, J.; Sorensen, L. B.; Pershan, P. S.;

    1982-01-01

    This paper reports an x-ray diffraction study of structures and restacking transitions within the B phases of heptyloxybenzylidene-heptylaniline. The system evolves from a hexagonal close-packed structure, through intermediate orthorhombic and monoclinic phases, to a simple hexagonal structure. T....... The monoclinic phase has a temperature-dependent shear which transforms the system from orthorhombic to hexagonal. The latter three phases exhibit a single-q⃗ sinusoidal modulation of the molecular layers....

  7. Nanocrystalline Phase Formation inside Shear Bands of Pd-Cu-Si Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yang Shao

    2014-01-01

    Full Text Available Pd77.5Cu6Si16.5 metallic glass was prepared by fluxing treatment and water quenching method. To avoid possible artifacts, shear bands were created by indentation after TEM sample preparation. Bright field image, diffraction pattern, and the dark field image of TEM that covered the shear band region were presented. A few nanocrystalline phases were noticed inside the shear bands, which favored the plastic deformation ability and supported the explanation of mechanical deformation-induced crystallization.

  8. Irradiation-induced formation of nanocrystallites with C15 Laves phase structure in bcc iron.

    Science.gov (United States)

    Marinica, M-C; Willaime, F; Crocombette, J-P

    2012-01-13

    A three-dimensional periodic structure is proposed for self-interstitial clusters in body-centered-cubic metals, as opposed to the conventional two-dimensional loop morphology. The underlying crystal structure corresponds to the C15 Laves phase. Using density functional theory and interatomic potential calculations, we demonstrate that in α-iron these C15 aggregates are highly stable and immobile and that they exhibit large antiferromagnetic moments. They form directly in displacement cascades, and they can grow by capturing self-interstitials. They thus constitute an important new element to account for when predicting the microstructural evolution of iron base materials under irradiation.

  9. Plates soaking prior formation and its influence on positive active material phase composition and battery performance

    Energy Technology Data Exchange (ETDEWEB)

    Foudia, M.; Zerroual, L. [Laboratoire d' Energetique et Electrochimie du Solide (LEES), Universite Ferhat ABBAS Setif 19000 (Algeria); Matrakova, M. [Institute of Electrochemistry and Energy Systems (CLEPS), Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria)

    2009-06-01

    In the present work, we studied the behaviour of 3BS and lead oxide paste as a function of soaking time in two sulfuric acid solutions respectively with 1.05 and 1.20 g cm{sup -3} specific gravity. The study was based on X-ray diffraction analysis (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC) and chemical analysis. The results showed that during plates soaking, 3BS and PbO are converted to monobasic lead sulphate (1BS) and lead sulphate (PbSO{sub 4}). During plate formation in 1.05 s.g. H{sub 2}SO{sub 4} solution, these compounds are oxidized to PbO{sub 2}, the XRD patterns showed that the longer is the time of plates soaking prior formation the lower is {alpha}-PbO{sub 2} content in positive active material. On forming, PbSO{sub 4} crystals convert to {beta}-PbO{sub 2} whereas {alpha}-PbO{sub 2} is a result of 3BS oxidation. The capacity and cycle life of PAM decrease with soaking time, the concentration of the H{sub 2}SO{sub 4} solution during soaking exerts stronger influence than the duration of soaking. (author)

  10. A possible evidence of the hadron-quark-gluon mixed phase formation in nuclear collisions

    CERN Document Server

    Kizka, V A; Bugaev, K A; Oliinychenko, D R

    2015-01-01

    The performed systematic meta-analysis of the quality of data description (QDD) of existing event generators of nucleus-nucleus collisions allows us to extract a very important physical information. Our meta-analysis is dealing with the results of 10 event generators which describe data measured in the range of center of mass collision energies from 3.1 GeV to 17.3 GeV. It considers the mean deviation squared per number of experimental points obtained by these event generators, i.e. the QDD, as the results of independent meta-measurements. These generators and their QDDs are divided in two groups. The first group includes the generators which account for the quark-gluon plasma formation during nuclear collisions (QGP models), while the second group includes the generators which do not assume the QGP formation in such collisions (hadron gas models). Comparing the QDD of more than a hundred of different data sets of strange hadrons by two groups of models, we found two regions of the equal quality description o...

  11. Dynamics of the phase formation process upon the low temperature selenization of Cu/In-multilayer stacks

    Science.gov (United States)

    Oertel, M.; Ronning, C.

    2015-03-01

    Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe2 formation processes depending on the applied temperature. Already, at a heater temperature of 260 °C, the CuInSe2 formation can occur by the reaction of Cu2-xSe with In4Se3 and Se. At 340 °C, CuInSe2 is formed by the reaction of Cu2-xSe with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe2 side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe2 side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe2-absorber-layer at higher temperatures. The approach delivers a CuInSe2 absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe2-thin-film solar cell. A finished formation of CuInSe2 at low temperature was not observed in our experiments but is probably possible for longer dwell times.

  12. Dynamics of the phase formation process upon the low temperature selenization of Cu/In-multilayer stacks

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, M., E-mail: michael.oertel@uni-jena.de; Ronning, C. [Institute of Solid State Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-03-14

    Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe{sub 2} formation processes depending on the applied temperature. Already, at a heater temperature of 260 °C, the CuInSe{sub 2} formation can occur by the reaction of Cu{sub 2−x}Se with In{sub 4}Se{sub 3} and Se. At 340 °C, CuInSe{sub 2} is formed by the reaction of Cu{sub 2−x}Se with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe{sub 2} side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe{sub 2} side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe{sub 2}-absorber-layer at higher temperatures. The approach delivers a CuInSe{sub 2} absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe{sub 2}-thin-film solar cell. A finished formation of CuInSe{sub 2} at low temperature was not observed in our experiments but is probably

  13. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    Science.gov (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-09-01

    The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.

  14. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  15. Surface Phase Diagram and Alloy Formation for Antimony on Au(110)

    Energy Technology Data Exchange (ETDEWEB)

    Parihar,S.; Lyman, P.

    2008-01-01

    The authors have evaporated submonolayer to monolayer Sb films on the clean Au(110) surface and investigated the resultant Sb-induced reconstructions using low energy electron diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy, and surface x-ray diffraction. They discovered a sequence of reconstructions, namely, c(2x2), (sqrt(3)xsqrt(3))R54.7 , (((2 - 1)/(1 2))), and p(5x6), with increasing coverage of Sb. The well-known (2x1) reconstruction of the clean Au(110) surface changes to c(2x2) at an Sb coverage of theta[approximate]0.5 ML. At higher Sb coverages, there is a phase transition from c(2x2) to (sqrt(3)xsqrt(3))R54.7 , with the (sqrt(3)xsqrt(3))R54.7 pattern emerging at an Sb coverage of theta[approximate]0.7 ML. Upon further deposition, the superstructure spots of the (sqrt(3)xsqrt(3))R54.7 reconstruction each split into two, resulting in the (((2 - 1)/(1 2))) pattern at a coverage of theta[approximate]0.8 ML. Finally, an Sb/Au(110)-p(5x6) reconstruction emerges at coverages in excess of 1 ML. They have also studied the temperature dependence of the c(2x2) surface phase.

  16. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rachana [Institute of Engineering and Technology DAVV, Khandwa Road, Indore 452 017 (India); Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul, E-mail: mgupta@csr.res.in, E-mail: dr.mukul.gupta@gmail.com [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India)

    2015-09-15

    Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.

  17. A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications

    Energy Technology Data Exchange (ETDEWEB)

    Sorribas, M., E-mail: sorribas@ugr.es [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain); Adame, J.A. [‘El Arenosillo’ — Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130 (Spain); Olmo, F.J. [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain); Vilaplana, J.M.; Gil-Ojeda, M. [‘El Arenosillo’ — Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130 (Spain); Alados-Arboledas, L. [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain)

    2015-04-01

    New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O{sub 3}, SO{sub 2}, CO and NO{sub 2}) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2 ± 4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean