WorldWideScience

Sample records for monochrome images electronic

  1. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  2. Practical aspects of monochromators developed for transmission electron microscopy

    Science.gov (United States)

    Kimoto, Koji

    2014-01-01

    A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. PMID:25125333

  3. The development of a 200 kV monochromated field emission electron source

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Masaki, E-mail: mmukai@jeol.co.jp [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Kim, Judy S. [University of Oxford, Department of Materials, Parks Road, Oxford, OX1 3PH (United Kingdom); Omoto, Kazuya; Sawada, Hidetaka; Kimura, Atsushi; Ikeda, Akihiro; Zhou, Jun; Kaneyama, Toshikatsu [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Young, Neil P.; Warner, Jamie H.; Nellist, Peter D.; Kirkland, Angus I. [University of Oxford, Department of Materials, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2014-05-01

    We report the development of a monochromator for an intermediate-voltage aberration-corrected electron microscope suitable for operation in both STEM and TEM imaging modes. The monochromator consists of two Wien filters with a variable energy selecting slit located between them and is located prior to the accelerator. The second filter cancels the energy dispersion produced by the first filter and after energy selection forms a round monochromated, achromatic probe at the specimen plane. The ultimate achievable energy resolution has been measured as 36 meV at 200 kV and 26 meV at 80 kV. High-resolution Annular Dark Field STEM images recorded using a monochromated probe resolve Si–Si spacings of 135.8 pm using energy spreads of 218 meV at 200 kV and 217 meV at 80 kV respectively. In TEM mode an improvement in non-linear spatial resolution to 64 pm due to the reduction in the effects of partial temporal coherence has been demonstrated using broad beam illumination with an energy spread of 134 meV at 200 kV. - Highlights: • Monochromator for 200 kV aberration corrected TEM and STEM was developed. • Monochromator produces monochromated and achromatic probe at specimen plane. • Ultimate energy resolution was measured to be 36 meV at 200 kV and 26 meV at 80 kV. • Atomic resolution STEM images were recorded using monochromated electron probe. • Improvements of TEM resolution were confirmed using monochromated illumination.

  4. Resolution enhancement in transmission electron microscopy with 60-kV monochromated electron source

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Shigeyuki; Mukai, Masaki; Sawada, Hidetaka [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Suenaga, Kazutomo [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-01-04

    Transmission electron microscopy (TEM) at low accelerating voltages is useful to obtain images with low irradiation damage. For a low accelerating voltage, linear information transfer, which determines the resolution for observation of single-layered materials, is largely limited by defocus spread, which improves when a narrow energy spread is used in the electron source. In this study, we have evaluated the resolution of images obtained at 60 kV by TEM performed with a monochromated electron source. The defocus spread has been evaluated by comparing diffractogram tableaux from TEM images obtained under nonmonochromated and monochromated illumination. The information limits for different energy spreads were precisely measured by using diffractograms with a large beam tilt. The result shows that the information limit reaches 0.1 nm with an energy width of 0.10 eV. With this monochromated source and a higher-order aberration corrector, we have obtained images of single carbon atoms in a graphene sheet by TEM at 60 kV.

  5. Characterisation of a Sr-90 based electron monochromator

    CERN Document Server

    Arfaoui, S; CERN; Casella, C; ETH Zurich

    2015-01-01

    This note describes the characterisation of an energy filtered Sr-90 source to be used in laboratory studies that require Minimum Ionising Particles (MIP) with a kinetic energy of up to approx. 2 MeV. The energy calibration was performed with a LYSO scintillation crystal read out by a digital Silicon Photomultiplier (dSiPM). The LYSO/dSiPM set-up was pre-calibrated using a Na-22 source. After introducing the motivation behind the usage of such a device, this note presents the principle and design of the electron monochromator as well as its energy and momentum characterisation.

  6. Mirror monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  7. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.

    1998-04-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  8. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2010-01-01

    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr......The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance...

  9. Applying a Trochoidal Electron Monochromator in Dissociative Electron Attachment Scattering

    Science.gov (United States)

    Arreola, Esmeralda

    2016-03-01

    Since the pioneering work of Boudiaffa et al., it has been understood that electrons, even with energies near or below the ionization threshold, are capable of initiating strand-breaks in human DNA. This discovery raised important questions for cancer treatments, since sub-ionizing electrons are known to be the most copiously produced secondary product of radiation therapy. But even to date these factors are largely excluded from dosimetry calculations. This lack of inclusion is, at least in part, certainly due to the dearth of fundamental data describing low-energy electron interactions with nucleotide molecules that form the basis of DNA. Understanding of how such slow electrons are able to damage DNA remains incomplete, but the strongly peaked nature of Boudiaffa et al.'s data gives strong hints at resonantly driven collision processes. DNA damage is therefore most likely driven by ``dissociative electron attachment'' (DEA). DEA is a rather complicated process to model due to the coupling of electronic and nuclear degrees of freedom in the molecule. At the California State University Fullerton, we are currently commissioning a new spectrometer to study dissociation channels, reaction rates and orientation effects in DEA collisions between slow electrons and nucleotide molecules. At the meeting we will present design parameters and commissioning data for this new apparatus.

  10. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy

    Science.gov (United States)

    Zhan, W.; Granerød, C. S.; Venkatachalapathy, V.; Johansen, K. M. H.; Jensen, I. J. T.; Kuznetsov, A. Yu; Prytz, Ø.

    2017-03-01

    Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

  12. Liquid-crystal displays for medical imaging: a discussion of monochrome versus color

    Science.gov (United States)

    Wright, Steven L.; Samei, Ehsan

    2004-05-01

    A common view is that color displays cannot match the performance of monochrome displays, normally used for diagnostic x-ray imaging. This view is based largely on historical experience with cathode-ray tube (CRT) displays, and does not apply in the same way to liquid-crystal displays (LCDs). Recent advances in color LCD technology have considerably narrowed performance differences with monochrome LCDs for medical applications. The most significant performance advantage of monochrome LCDs is higher luminance, a concern for use under bright ambient conditions. LCD luminance is limited primarily by backlight design, yet to be optimized for color LCDs for medical applications. Monochrome LCDs have inherently higher contrast than color LCDs, but this is not a major advantage under most conditions. There is no practical difference in luminance precision between color and monochrome LCDs, with a slight theoretical advantage for color. Color LCDs can provide visualization and productivity enhancement for medical applications, using digital drive from standard commercial graphics cards. The desktop computer market for color LCDs far exceeds the medical monitor market, with an economy of scale. The performance-to-price ratio for color LCDs is much higher than monochrome, and warrants re-evaluation for medical applications.

  13. First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope.

    Science.gov (United States)

    Walther, T; Quandt, E; Stegmann, H; Thesen, A; Benner, G

    2006-01-01

    The first 200 kV scanning transmission electron microscope (STEM) with an imaging energy filter, a monochromator and a corrector for the spherical aberration (Cs-corrector) of the illumination system has been built and tested. The STEM/TEM concept with Koehler illumination allows to switch easily between STEM mode for analytical and TEM mode for high-resolution or in situ studies. The Cs-corrector allows the use of large illumination angles for retaining a sufficiently high beam current despite the intensity loss in the monochromator. With the monochromator on and a 3 microm slit in the dispersion plane that gives 0.26 eV full-width at half-maximum (FWHM) energy resolution we have obtained so far an electron beam smaller than 0.20 nm in diameter (FWHM as measured by scanning the spot quickly over the CCD) which contains 7 pA current and, according to simulations, should be around 0.12 nm in true size. A high-angle annular dark field (ADF) image with isotropic resolution better than 0.28 nm has been recorded with the monochromator in the above configuration and the Cs-corrector on. The beam current is still somewhat low for electron energy-loss spectroscopy (EELS) but is expected to increase substantially by optimising the condenser set-up and using a somewhat larger condenser aperture.

  14. First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Walther, T. [Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany)]. E-mail: walther@caesar.de; Quandt, E. [Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Stegmann, H. [Carl Zeiss Nano Technology Systems GmbH, Carl-Zeiss-Str. 56, D-73447 Oberkochen (Germany); Thesen, A. [Carl Zeiss Nano Technology Systems GmbH, Carl-Zeiss-Str. 56, D-73447 Oberkochen (Germany); Benner, G. [Carl Zeiss Nano Technology Systems GmbH, Carl-Zeiss-Str. 56, D-73447 Oberkochen (Germany)

    2006-10-15

    The first 200 kV scanning transmission electron microscope (STEM) with an imaging energy filter, a monochromator and a corrector for the spherical aberration (C {sub s}-corrector) of the illumination system has been built and tested. The STEM/TEM concept with Koehler illumination allows to switch easily between STEM mode for analytical and TEM mode for high-resolution or in situ studies. The C{sub s}-corrector allows the use of large illumination angles for retaining a sufficiently high beam current despite the intensity loss in the monochromator. With the monochromator on and a 3 {mu}m slit in the dispersion plane that gives 0.26 eV full-width at half-maximum (FWHM) energy resolution we have obtained so far an electron beam smaller than 0.20 nm in diameter (FWHM as measured by scanning the spot quickly over the CCD) which contains 7 pA current and, according to simulations, should be around 0.12 nm in true size. A high-angle annular dark field (ADF) image with isotropic resolution better than 0.28 nm has been recorded with the monochromator in the above configuration and the C {sub s}-corrector on. The beam current is still somewhat low for electron energy-loss spectroscopy (EELS) but is expected to increase substantially by optimising the condenser set-up and using a somewhat larger condenser aperture.

  15. Color Restoration of Monochrome Image Formatted by Y800

    National Research Council Canada - National Science Library

    Jun Luo; Rui Su; Ying Chen

    2013-01-01

    ...) directly, we design a Bayer mode color filter array start with specific pixels to satisfy the imaging condition and then we use bilinear interpolation algorithm to restore the color of original...

  16. A methodology for visually lossless JPEG2000 compression of monochrome stereo images.

    Science.gov (United States)

    Feng, Hsin-Chang; Marcellin, Michael W; Bilgin, Ali

    2015-02-01

    A methodology for visually lossless compression of monochrome stereoscopic 3D images is proposed. Visibility thresholds are measured for quantization distortion in JPEG2000. These thresholds are found to be functions of not only spatial frequency, but also of wavelet coefficient variance, as well as the gray level in both the left and right images. To avoid a daunting number of measurements during subjective experiments, a model for visibility thresholds is developed. The left image and right image of a stereo pair are then compressed jointly using the visibility thresholds obtained from the proposed model to ensure that quantization errors in each image are imperceptible to both eyes. This methodology is then demonstrated via a particular 3D stereoscopic display system with an associated viewing condition. The resulting images are visually lossless when displayed individually as 2D images, and also when displayed in stereoscopic 3D mode.

  17. Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter.

    Science.gov (United States)

    Latorre-Carmona, Pedro; Sánchez-Ortiga, Emilio; Xiao, Xiao; Pla, Filiberto; Martínez-Corral, Manuel; Navarro, Héctor; Saavedra, Genaro; Javidi, Bahram

    2012-11-01

    This paper presents an acquisition system and a procedure to capture 3D scenes in different spectral bands. The acquisition system is formed by a monochrome camera, and a Liquid Crystal Tunable Filter (LCTF) that allows to acquire images at different spectral bands in the [480, 680]nm wavelength interval. The Synthetic Aperture Integral Imaging acquisition technique is used to obtain the elemental images for each wavelength. These elemental images are used to computationally obtain the reconstruction planes of the 3D scene at different depth planes. The 3D profile of the acquired scene is also obtained using a minimization of the variance of the contribution of the elemental images at each image pixel. Experimental results show the viability to recover the 3D multispectral information of the scene. Integration of 3D and multispectral information could have important benefits in different areas, including skin cancer detection, remote sensing and pattern recognition, among others.

  18. Image-quality assessment of monochrome monitors for medical soft copy display

    Science.gov (United States)

    Weibrecht, Martin; Spekowius, Gerhard; Quadflieg, Peter; Blume, Hartwig R.

    1997-05-01

    Soft-copy presentation of medical images is becoming part of the medical routine as more and more health care facilities are converted to digital filmless hospital and radiological information management. To provide optimal image quality, display systems must be incorporated when assessing the overall system image quality. We developed a method to accomplish this. The proper working of the method is demonstrated with the analysis of four different monochrome monitors. We determined display functions and veiling glare with a high-performance photometer. Structure mottle of the CRT screens, point spread functions and images of stochastic structures were acquired by a scientific CCD camera. The images were analyzed with respect to signal transfer characteristics and noise power spectra. We determined the influence of the monitors on the detective quantum efficiency of a simulated digital x-ray imaging system. The method follows a physical approach; nevertheless, the results of the analysis are in good agreement with the subjective impression of human observers.

  19. A coded structured light system based on primary color stripe projection and monochrome imaging.

    Science.gov (United States)

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  20. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    Directory of Open Access Journals (Sweden)

    Armando Viviano Razionale

    2013-10-01

    Full Text Available Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  1. Diffraction imaging for in-situ characterization of double-crystal x-ray monochromators

    CERN Document Server

    Stoupin, Stanislav; Heald, Steve M; Brewe, Dale; Meron, Mati

    2015-01-01

    Imaging of the Bragg reflected x-ray beam is proposed and validated as an in-situ method for characterization of performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared to results of finite element analysis. The imaging method offers an additional insight on the local intrinsic crystal quality over the footprint of the incident x-ray beam.

  2. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy.

    Science.gov (United States)

    Miyata, Tomohiro; Fukuyama, Mao; Hibara, Akihide; Okunishi, Eiji; Mukai, Masaki; Mizoguchi, Teruyasu

    2014-10-01

    Investigations on the dynamic behavior of molecules in liquids at high spatial resolution are greatly desired because localized regions, such as solid-liquid interfaces or sites of reacting molecules, have assumed increasing importance with respect to improving material performance. In application to liquids, electron energy loss spectroscopy (EELS) observed with transmission electron microscopy (TEM) is a promising analytical technique with the appropriate resolutions. In this study, we obtained EELS spectra from an ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethyl-sulfonyl) imide (C2mim-TFSI), chosen as the sampled liquid, using monochromated scanning TEM (STEM). The molecular vibrational spectrum and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the liquid were investigated. The HOMO-LUMO gap measurement coincided with that obtained from the ultraviolet-visible spectrum. A shoulder in the spectrum observed ∼0.4 eV is believed to originate from the molecular vibration. From a separately performed infrared observation and first-principles calculations, we found that this shoulder coincided with the vibrational peak attributed to the C-H stretching vibration of the [C2mim(+)] cation. This study demonstrates that a vibrational peak for a liquid can be observed using monochromated STEM-EELS, and leads one to expect observations of chemical reactions or aids in the analysis of the dynamic behavior of molecules in liquid. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Development of a bent Laue beam-expanding double-crystal monochromator for biomedical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Mercedes, E-mail: mercedes.m@usask.ca [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); Samadi, Nazanin [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Belev, George [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan (Canada); Bassey, Bassey [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); Lewis, Rob [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Monash University, Clayton, Victoria 3800 (Australia); Aulakh, Gurpreet [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Chapman, Dean [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada)

    2014-03-13

    A bent Laue beam-expanding double-crystal monochromator was developed and tested at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The expander will reduce scanning time for micro-computed tomography and allow dynamic imaging that has not previously been possible at this beamline. The Biomedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source has produced some excellent biological imaging data. However, the disadvantage of a small vertical beam limits its usability in some applications. Micro-computed tomography (micro-CT) imaging requires multiple scans to produce a full projection, and certain dynamic imaging experiments are not possible. A larger vertical beam is desirable. It was cost-prohibitive to build a longer beamline that would have produced a large vertical beam. Instead, it was proposed to develop a beam expander that would create a beam appearing to originate at a source much farther away. This was accomplished using a bent Laue double-crystal monochromator in a non-dispersive divergent geometry. The design and implementation of this beam expander is presented along with results from the micro-CT and dynamic imaging tests conducted with this beam. Flux (photons per unit area per unit time) has been measured and found to be comparable with the existing flat Bragg double-crystal monochromator in use at BMIT. This increase in overall photon count is due to the enhanced bandwidth of the bent Laue configuration. Whilst the expanded beam quality is suitable for dynamic imaging and micro-CT, further work is required to improve its phase and coherence properties.

  4. Characterization of InGaN/GaN quantum well growth using monochromated valence electron energy loss spectroscopy

    OpenAIRE

    Palisaitis, J.; Lundskog, A.; Forsberg, U.; Janzén, E.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2014-01-01

    The early stages of InGaN/GaN quantum wells growth for In reduced conditions have been investigated for varying thickness and composition of the wells. The structures were studied by monochromated STEM–VEELS spectrum imaging at high spatial resolution. It is found that beyond a critical well thickness and composition, quantum dots (>20 nm) are formed inside the well. These are buried by compositionally graded InGaN, which is formed as GaN is grown while residual In is incorporated into the...

  5. A method for evaluating image quality of monochrome and color displays based on luminance by use of a commercially available color digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Tokurei, Shogo, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan and Department of Radiology, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Morishita, Junji, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan)

    2015-08-15

    Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signals for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors

  6. Electronic Imaging

    Science.gov (United States)

    1997-10-01

    08/154311 (Filed 1993). [6] M.I. Sezan and A.M. Tekalp, IEEE Trans. Acoust, Speech, Signal Proc. 38 (1990) 181. [7] G. Arfken , Mathematical methods ...has been to make contributions in imaS^JS^SV!^!^ SS22? ? ^ Tl:mS C°mbining °ptical ima^ Pn^ensors, and digtellmputers AAtSotUSTT mathematical ...or speckle-like psf. This novel method for controlled blurring appears to be useful in secure transmission and in image compression; and this psf

  7. HIRDLS monochromator calibration equipment

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Djotni, Karim; Whitney, John G.; Bracken, Justain N.; Wolfenden, Roger; Row, Frederick; Palmer, Christopher W. P.; Watkins, Robert E. J.; Knight, Rodney J.; Gray, Peter F.; Hammond, Geoffory

    2003-11-01

    A specially designed and built monochromator was developed for the spectral calibration of the HIRDLS instrument. The High Resolution Dynamics Limb Sounder (HIRDLS) is a precision infra-red remote sensing instrument with very tight requirements on the knowledge of the response to received radiation. A high performance, vacuum compatible monochromator, was developed with a wavelength range from 4 to 20 microns to encompass that of the HIRDLS instrument. The monochromator is integrated into a collimating system which is shared with a set of tiny broad band sources used for independent spatial response measurements (reported elsewhere). This paper describes the design and implementation of the monochromator and the performance obtained during the period of calibration of the HIRDLS instrument at Oxford University in 2002.

  8. Angular vibrations of cryogenically cooled double-crystal monochromators.

    Science.gov (United States)

    Sergueev, I; Döhrmann, R; Horbach, J; Heuer, J

    2016-09-01

    The effect of angular vibrations of the crystals in cryogenically cooled monochromators on the beam performance has been studied theoretically and experimentally. A simple relation between amplitude of the vibrations and size of the focused beam is developed. It is shown that the double-crystal monochromator vibrations affect not only the image size but also the image position along the optical axis. Several methods to measure vibrations with the X-ray beam are explained and analyzed. The methods have been applied to systematically study angular crystal vibrations at monochromators installed at the PETRA III light source. Characteristic values of the amplitudes of angular vibrations for different monochromators are presented.

  9. Calculations and surface quality measurements of high-asymmetry angle x-ray crystal monochromators for advanced x-ray imaging and metrological applications

    Science.gov (United States)

    Zápražný, Zdenko; Korytár, Dušan; Jergel, Matej; Šiffalovič, Peter; Dobročka, Edmund; Vagovič, Patrik; Ferrari, Claudio; Mikulík, Petr; Demydenko, Maksym; Mikloška, Marek

    2015-03-01

    We present the numerical optimization and the technological development progress of x-ray optics based on asymmetric germanium crystals. We show the results of several basic calculations of diffraction properties of germanium x-ray crystal monochromators and of an analyzer-based imaging method for various asymmetry factors using an x-ray energy range from 8 to 20 keV. The important parameter of highly asymmetric monochromators as image magnifiers or compressors is the crystal surface quality. We have applied several crystal surface finishing methods, including advanced nanomachining using single-point diamond turning (SPDT), conventional mechanical lapping, chemical polishing, and chemomechanical polishing, and we have evaluated these methods by means of atomic force microscopy, diffractometry, reciprocal space mapping, and others. Our goal is to exclude the chemical etching methods as the final processing technique because it causes surface undulations. The aim is to implement very precise deterministic methods with a control of surface roughness down to 0.1 nm. The smallest roughness (˜0.3 nm), best planarity, and absence of the subsurface damage were observed for the sample which was machined using an SPDT with a feed rate of 1 mm/min and was consequently polished using a fine polishing 15-min process with a solution containing SiO2 nanoparticles (20 nm).

  10. Conversion electron surface imaging

    CERN Document Server

    Irwin, G M; Wehner, A

    1999-01-01

    A method of imaging the Moessbauer absorption over the surface of a sample based on counting conversion electrons emitted from the surface following resonant absorption of gamma radiation is described. This Conversion Electron Surface Imaging (CESI) method is somewhat analogous to Magnetic Resonance Imaging (MRI), particularly chemical shift imaging, and similar tomographic reconstruction techniques are involved in extracting the image. The theory behind the technique and a prototype device is described, as well as the results of proof-of-principle experiments which demonstrate the function of the device. Eventually this same prototype device will be part of a system to determine the spatial variation of the Moessbauer spectrum over the surface of a sample. Applications include imaging of variations of surface properties of steels and other iron containing alloys, as well as other surfaces over which sup 5 sup 7 Fe has been deposited.

  11. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    Science.gov (United States)

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  12. Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope

    Science.gov (United States)

    Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka

    2016-10-01

    Transmission electron microscopy using low-energy electrons would be very useful for atomic resolution imaging of specimens that would be damaged at higher energies. However, the resolution at low voltages is degraded because of geometrical and chromatic aberrations. In the present study, we diminish the effect of these aberrations by using a delta-type corrector and a monochromator. The dominant residual aberration in a delta-type corrector, which is the sixth-order three-lobe aberration, is counterbalanced by other threefold aberrations. Defocus spread caused by chromatic aberration is reduced by using a monochromated beam with an energy spread of 0.05 eV. We obtain images of graphene and demonstrate atomic resolution at an ultralow accelerating voltage of 15 kV.

  13. Recognition of Monochrome Thermal Images of Synchronous Motor with the Application of Skeletonization and Classifier Based on Words

    Directory of Open Access Journals (Sweden)

    Glowacz A.

    2015-04-01

    Full Text Available Thermography is a technology that enables recognition of objects in the specific area. The goal of using thermographic techniques for ironworks is to diagnose electrical equipment. These techniques can be also use to increase safety and quality control in ironworks. Faulty equipment can be dangerous for engineers. Article describes the method of the recognition of imminent failure states of synchronous motor. Thermal images of the stator are used for an analysis of electrical machine. Researches of image processing techniques have been carried out for three states of motor. Proposed approach uses patterns recognition. Using of medial axis transformation and classifier based on words gave good results. In the future electrical machines and metallurgical equipment will use diagnostic systems based on recognition of thermal images.

  14. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressu...

  15. APS high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  16. Comparison of the commercial color LCD and the medical monochrome LCD using randomized object test patterns.

    Directory of Open Access Journals (Sweden)

    Jay Wu

    Full Text Available Workstations and electronic display devices in a picture archiving and communication system (PACS provide a convenient and efficient platform for medical diagnosis. The performance of display devices has to be verified to ensure that image quality is not degraded. In this study, we designed a set of randomized object test patterns (ROTPs consisting of randomly located spheres with various image characteristics to evaluate the performance of a 2.5 mega-pixel (MP commercial color LCD and a 3 MP diagnostic monochrome LCD in several aspects, including the contrast, resolution, point spread effect, and noise. The ROTPs were then merged into 120 abdominal CT images. Five radiologists were invited to review the CT images, and receiver operating characteristic (ROC analysis was carried out using a five-point rating scale. In the high background patterns of ROTPs, the sensitivity performance was comparable between both monitors in terms of contrast and resolution, whereas, in the low background patterns, the performance of the commercial color LCD was significantly poorer than that of the diagnostic monochrome LCD in all aspects. The average area under the ROC curve (AUC for reviewing abdominal CT images was 0.717±0.0200 and 0.740±0.0195 for the color monitor and the diagnostic monitor, respectively. The observation time (OT was 145±27.6 min and 127±19.3 min, respectively. No significant differences appeared in AUC (p = 0.265 and OT (p = 0.07. The overall results indicate that ROTPs can be implemented as a quality control tool to evaluate the intrinsic characteristics of display devices. Although there is still a gap in technology between different types of LCDs, commercial color LCDs could replace diagnostic monochrome LCDs as a platform for reviewing abdominal CT images after monitor calibration.

  17. Comparison of the commercial color LCD and the medical monochrome LCD using randomized object test patterns.

    Science.gov (United States)

    Wu, Jay; Wu, Tung H; Han, Rou P; Chang, Shu J; Shih, Cheng T; Sun, Jing Y; Hsu, Shih M

    2012-01-01

    Workstations and electronic display devices in a picture archiving and communication system (PACS) provide a convenient and efficient platform for medical diagnosis. The performance of display devices has to be verified to ensure that image quality is not degraded. In this study, we designed a set of randomized object test patterns (ROTPs) consisting of randomly located spheres with various image characteristics to evaluate the performance of a 2.5 mega-pixel (MP) commercial color LCD and a 3 MP diagnostic monochrome LCD in several aspects, including the contrast, resolution, point spread effect, and noise. The ROTPs were then merged into 120 abdominal CT images. Five radiologists were invited to review the CT images, and receiver operating characteristic (ROC) analysis was carried out using a five-point rating scale. In the high background patterns of ROTPs, the sensitivity performance was comparable between both monitors in terms of contrast and resolution, whereas, in the low background patterns, the performance of the commercial color LCD was significantly poorer than that of the diagnostic monochrome LCD in all aspects. The average area under the ROC curve (AUC) for reviewing abdominal CT images was 0.717±0.0200 and 0.740±0.0195 for the color monitor and the diagnostic monitor, respectively. The observation time (OT) was 145±27.6 min and 127±19.3 min, respectively. No significant differences appeared in AUC (p = 0.265) and OT (p = 0.07). The overall results indicate that ROTPs can be implemented as a quality control tool to evaluate the intrinsic characteristics of display devices. Although there is still a gap in technology between different types of LCDs, commercial color LCDs could replace diagnostic monochrome LCDs as a platform for reviewing abdominal CT images after monitor calibration.

  18. Electron Emission Projection Imager

    CERN Document Server

    Baturin, Stanislav S

    2016-01-01

    A new projection type imaging system is presented. The system can directly image the field emission site distribution on a cathode surface by making use of anode screens in the standard parallel plate configuration. The lateral spatial resolution of the projector is on the order of 1 {\\mu}m. The imaging sensitivity to the field emission current can be better than the current sensitivity of a typical electrometer, i.e. less than 1 nA.

  19. Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography.

    Science.gov (United States)

    Schröder, Rasmus R

    2015-09-01

    Macromolecular imaging and tomography of ice embedded samples has developed into a mature imaging technology, in structural biology today widely referred to simply as cryo electron microscopy.(1) While the pioneers of the technique struggled with ill-suited instruments, state-of-the-art cryo microscopes are now readily available and an increasing number of groups are producing excellent high-resolution structural data of macromolecular complexes, of cellular organelles, or the morphology of whole cells. Instrumentation developers, however, are offering yet more novel electron optical devices, such as energy filters and monochromators, aberration correctors or physical phase plates. Here we discuss how current instrumentation has already changed cryo EM, and how newly available instrumentation - often developed in other fields of electron microscopy - may further develop the use and applicability of cryo EM to the imaging of single isolated macromolecules of smaller size or molecules embedded in a crowded cellular environment.

  20. Imaging electron motion in graphene

    Science.gov (United States)

    Bhandari, Sagar; Westervelt, Robert M.

    2017-02-01

    A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group’s previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imaging techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz-1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.

  1. An independent survey of monochrome and color low light level TV cameras

    Science.gov (United States)

    Preece, Bradley L.; Tomkinson, David M.; Reynolds, Joseph P.

    2015-05-01

    Using the latest models from the U.S. Army Night Vision Electronic Sensors Directorate (NVESD), a survey of monochrome and color imaging systems at daylight and low light levels is conducted. Each camera system is evaluated and compared under several different assumptions, such as equivalent field of view with equal and variable f/#, common lens focal length and aperture, with high dynamic range comparisons and over several light levels. The modeling is done by use of the Targeting Task Performance (TTP) metric using the latest version of the Night Vision Integrated Performance Model (NV⁸IPM). The comparison is performed over the V parameter, the main output of the TTP metric. Probability of identification (PID) versus range predictions are a direct non-linear mapping of the V parameter as a function of range. Finally, a comparison between the performance of a Bayer-filtered color camera, the Bayer-filtered color camera with the IR block filter removed, and a monochrome version of the same camera is also conducted.

  2. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  3. Advances in imaging and electron physics

    CERN Document Server

    Hawkes, Peter W

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.

  4. Image Resolution in Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  5. Large monochromator systems at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Horbach, J., E-mail: Jan.Horbach@desy.de [Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Degenhardt, M.; Hahn, U.; Heuer, J.; Peters, H.B.; Schulte-Schrepping, H. [Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Donat, A.; Luedecke, H. [Deutsches Elektronen-Synchrotron Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2011-09-01

    For the beamlines of the new synchrotron radiation source PETRA III, fixed exit double crystal monochromators with specific features were developed. To achieve a compact arrangement of the canted undulator beamlines at Sectors 2 and 6, it is necessary to shift one of the two beamlines in vertical direction. This is done by Large Offset Monochromators (LOM). One of these monochromators (LOM500, installed at beamline P03) is cooled with liquid nitrogen as it accepts the white beam. LOM1250 (installed at beamline P08) accepts a monochromatic beam and therefore needs no cooling system. The challenge with this monochromator is its large beam offset by 1.25 m. The energy range in combination with this large vertical beam offset demands for a relative crystal movement of roughly 3 m along the beam direction. This is solved by translating each crystal by up to 1.5 m. LOM1250 is equipped with a laser-based stabilisation, which allows compensating the thermal drift of the mechanical components involved in the positioning of the crystals. This is done by piezo actors below the crystals using the laser beam position after passing each crystal as feedback. With this approach we provide a closed loop system without attenuation of the X-ray beam by position monitors. The third monochromator at beamline P06 shifts the beam only by 21 mm upwards but has a linear travel of one crystal by 3.9 m. This is due to its large energy range of 4.4-90 keV using multilayer crystals. The technical design and mechanical engineering issues of the three Large Monochromator Systems at beamlines P03, P06 and P08 are highlighted in this article.

  6. A novel generalized DCT-based JND profile based on an elaborate CM-JND model for variable block-sized transforms in monochrome images.

    Science.gov (United States)

    Bae, Sung-Ho; Kim, Munchurl

    2014-08-01

    In this paper, we propose a new DCT-based just noticeable difference (JND) profile incorporating the spatial contrast sensitivity function, the luminance adaptation effect, and the contrast masking (CM) effect. The proposed JND profile overcomes two limitations of conventional JND profiles: 1) the CM JND models in the conventional JND profiles employed simple texture complexity metrics, which are not often highly correlated with perceived complexity, especially for unstructured patterns. So, we proposed a new texture complexity metric that considers not only contrast intensity, but also structureness of image patterns, called the structural contrast index. We also newly found out that, as the structural contrast index of a background texture pattern increases, the modulation factors for CM-JND show a bandpass property in frequency. Based on this observation, a new CM-JND is modeled as a function of DCT frequency and the proposed structural contrast index, showing significantly high correlations with measured CM-JND values and 2) while the conventional DCT-based JND profiles are only applicable for specific transform block sizes, our proposed DCT-based JND profile is first designed to be applicable to any size of transform by deriving a new summation effect function, which can also be appropriately applied for quad-tree transform of high efficiency video coding. For the overall performance, the proposed DCT-based JND profile shows more tolerance for distortions with better perceptual quality than other JND profiles under comparison.

  7. Comparison of Color LCD and Medical-grade Monochrome LCD Displays in Diagnostic Radiology

    OpenAIRE

    2007-01-01

    In diagnostic radiology, medical-grade monochrome displays are usually recommended because of their higher luminance. Standard color displays can be used as a less expensive alternative, but have a lower luminance. The aim of the present study was to compare image quality for these two types of displays. Images of a CDRAD contrast-detail phantom were read by four radiologists using a 2-megapixel (MP) color display (143 cd/m2 maximum luminance) as well as 2-MP (295 cd/m2) and 3-MP monochrome d...

  8. Cascade self-seeding scheme with wake monochromator for narrow-bandwidth X-ray FELs

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    Three different approaches have been proposed so far for production of highly monochromatic X-rays from a baseline XFEL undulator: (i) single-bunch self-seeding scheme with a four crystal monochromator in Bragg reflection geometry; (ii) double-bunch self-seeding scheme with a four-crystal monochromator in Bragg reflection geometry; (iii) single-bunch self-seeding scheme with a wake monochromator. A unique element of the X-ray optical design of the last scheme is the monochromatization of X-rays using a single crystal in Bragg-transmission geometry. A great advantage of this method is that the monochromator introduces no path delay of X-rays. This fact eliminates the need for a long electron beam bypass, or for the creation of two precisely separated, identical electron bunches, as required in the other two self-seeding schemes. In its simplest configuration, the self-seeded XFEL consists of an input undulator and an output undulator separated by a monochromator. In some experimental situations this simplest t...

  9. Scanning Electron Microscopy Sample Preparation and Imaging.

    Science.gov (United States)

    Nguyen, Jenny Ngoc Tran; Harbison, Amanda M

    2017-01-01

    Scanning electron microscopes allow us to reach magnifications of 20-130,000× and resolve compositional and topographical images with intense detail. These images are created by bombarding a sample with electrons in a focused manner to generate a black and white image from the electrons that bounce off of the sample. The electrons are detected using positively charged detectors. Scanning electron microscopy permits three-dimensional imaging of desiccated specimens or wet cells and tissues by using variable pressure chambers. SEM ultrastructural analysis and intracellular imaging supplement light microscopy for molecular profiling of prokaryotes, plants, and mammals. This chapter demonstrates how to prepare and image samples that are (a) desiccated and conductive, (b) desiccated and nonconductive but coated with an electron conductive film using a gold sputter coater, and (c) wet and maintained in a hydrated state using a Deben Coolstage.

  10. ECE imaging of electron temperature and electron temperature fluctuations (invited)

    NARCIS (Netherlands)

    Deng, B.H.; Domier, C.W.; N C Luhmann Jr.,; Brower, D.L.; Cima, G.; Donne, A. J. H.; Oyevaar, T.; van de Pol, M.J.

    2001-01-01

    Electron cyclotron emission imaging (ECE imaging or ECEI) is a novel plasma diagnostic technique for the study of electron temperature profiles and fluctuations in magnetic fusion plasma devices. Instead of a single receiver located in the tokamak midplane as in conventional ECE radiometers, ECEI sy

  11. Monochromator design for the HADAS reflectometer in Jülich

    Science.gov (United States)

    Rücker, U.; Alefeld, B.; Kentzinger, E.; Brückel, Th

    2000-06-01

    A reflectometer with polarization analysis is being built on the basis of the HADAS spectrometer in the neutron guide hall at the research reactor FRJ-2 (DIDO) in Jülich. For obtaining the optimal flux at the sample position, the performances of several monochromator designs have been calculated, e.g. focusing mirrors, mosaic monochromator crystals and bent perfect crystal monochromators. Under the given geometrical limitations a double monochromator with bent perfect Si crystals and vertical focusing has the best performance.

  12. Effective temperature and exergy of monochromic blackbody radiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new parameter named monochromic effective temperature Tλ is proposed, which represents the thermodynamic quality of monochromic blackbody radiation. The exergy of the monochromic blackbody radiation is expressed by Tλ. The monochromic effective temperature equation is developed, which shows that the produci of Tλ and the wavelength is constant, which equals 5.33016×10-3 tion in photosynthesis can be explained by the results of this work.

  13. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  14. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    OpenAIRE

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav; Terentyev, Sergey A.; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Brandt van Driel, Tim; Williams, Garth J; Messerschmidt, Marc; Boutet, Sébastien

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transm...

  15. SUMS: synchronous undulator-monochromator scans at Synchrotron Soleil.

    Science.gov (United States)

    Izquierdo, Manuel; Hardion, Vincent; Renaud, Guillaume; Chapuis, Lilian; Millet, Raphael; Langlois, Florent; Marteau, Fabrice; Chauvet, Christian

    2012-07-01

    A strategy for performing synchronous undulator-monochromator scans (SUMS) compatible with the control system of Synchrotron Soleil has been developed. The implementation of the acquisition scheme has required the development of an electronic interface between the undulator and the beamline. The characterization of delays and jitters in the synchronous movement of various motor axes has motivated the development of a new electronic synchronization scheme among various axes, including the case when one of the axes is electronically accessible in `read-only' mode. A software prototype has been developed to allow the existing hard continuous software to work in user units. The complete strategy has been implemented and successfully tested at the TEMPO beamline.

  16. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  17. Electronic imaging fundamentals: basic theory.

    Science.gov (United States)

    Vizy, K N

    1983-01-01

    Introduction of the computer into the field of medical imaging, as typified by the extensive use of digital subtraction angiography (DSA), created an important need for a basic understanding of the principles of digital imaging. This paper reviews these fundamental principles, starting with the definition of images and the interaction of these images with television display systems, then continuing with a detailed description of the way in which imaging systems are specified. This work defines the basic terms and concepts that will be used throughout the contents of this issue.

  18. Imaging electronic quantum motion with light

    CERN Document Server

    Dixit, Gopal; Santra, Robin; 10.1073/pnas.1202226109

    2012-01-01

    Imaging the quantum motion of electrons not only in real-time, but also in real-space is essential to understand for example bond breaking and formation in molecules, and charge migration in peptides and biological systems. Time-resolved imaging interrogates the unfolding electronic motion in such systems. We find that scattering patterns, obtained by X-ray time-resolved imaging from an electronic wavepacket, encode spatial and temporal correlations that deviate substantially from the common notion of the instantaneous electronic density as the key quantity being probed. Surprisingly, the patterns provide an unusually visual manifestation of the quantum nature of light. This quantum nature becomes central only for non-stationary electronic states and has profound consequences for time-resolved imaging.

  19. The X-Ray Beam Imager for Transversal Profiling of Low-Emittance Electron Beam at the SPring-8

    CERN Document Server

    Takano, S; Ohkuma, H

    2005-01-01

    We have developed the X-ray beam imager (XBI) at the accelerator diagnostics beamline I of the SPring-8 to observe transverse profiles of small electron beam of a low-emittance synchrotron light source. The XBI is based on a single Fresnel zone plate (FZP) and an X-ray zooming tube (XZT). The electron beam moving in a bending magnet is imaged by the FZP. Monochromatic X-ray is selected by a double crystal monochromator to avoid the effect of chromatic aberration of the FZP. The X-ray images of the electron beam obtained are converted by the XZT to enlarged images in visible light. The XBI has achieved a superior 1 σ spatial resolution in the micron range, and a fast time resolution of 1 ms. It has also realized a vignetting-free field of view larger than 1.5 mm in diameter on the coordinates of the electron beam, which is not easily obtained by imaging optics using two FZPs. With the XBI, we have successfully measured the profiles of the small electron beam having low vertical emittance in the pm ra...

  20. Comparison of color LCD and medical-grade monochrome LCD displays in diagnostic radiology.

    Science.gov (United States)

    Geijer, Håkan; Geijer, Mats; Forsberg, Lillemor; Kheddache, Susanne; Sund, Patrik

    2007-06-01

    In diagnostic radiology, medical-grade monochrome displays are usually recommended because of their higher luminance. Standard color displays can be used as a less expensive alternative, but have a lower luminance. The aim of the present study was to compare image quality for these two types of displays. Images of a CDRAD contrast-detail phantom were read by four radiologists using a 2-megapixel (MP) color display (143 cd/m(2) maximum luminance) as well as 2-MP (295 cd/m(2)) and 3-MP monochrome displays. Thirty lumbar spine radiographs were also read by four radiologists using the color and the 2-MP monochrome display in a visual grading analysis (VGA). Very small differences were found between the displays when reading the CDRAD images. The VGA scores were -0.28 for the color and -0.25 for the monochrome display (p = 0.24; NS). It thus seems possible to use color displays in diagnostic radiology provided that grayscale adjustment is used.

  1. Merging of image data in electron crystallography.

    Science.gov (United States)

    Arheit, Marcel; Castaño-Diéz, Daniel; Thierry, Raphaël; Abeyrathne, Priyanka; Gipson, Bryant R; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to record images and diffraction patterns of frozen-hydrated 2D crystals. Each two-dimensional (2D) crystal is only imaged once, at one specific tilt angle, and the recorded images can be automatically processed with the 2dx/MRC software package. Processed image data from non-tilted and tilted 2D crystals then need to be merged into a 3D reconstruction of the membrane protein structure. We here describe the process of the 3D merging, using the 2dx software system.

  2. Electron accelerating unit for streak image tubes

    Indian Academy of Sciences (India)

    Fangke Zong; Qinlao Yang; Houzhi Cai; Li Gu; Xiang Li; Jingjin Zhang

    2015-12-01

    An electron accelerating unit is proposed for use in streak image tubes (SITs). An SIT with this new accelerating unit was simulated using the Monte Carlo method. The simulation results show that the accelerating unit improves both the spatial and temporal resolution. Compared to a traditional SIT, the transit time spread for electrons in the cathode-to-mesh region is reduced from 247 to 162 fs, the line width of the electron beam on the image surface is reduced from 42.7 to 26.1 m, and the temporal resolution is improved from 515 to 395 fs.

  3. 2D microwave imaging reflectometer electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. Monochromator-Based Absolute Calibration of Radiation Thermometers

    Science.gov (United States)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  5. New high-brightness monochrome monitor based on color CRT technology

    Science.gov (United States)

    Spekowius, Gerhard; Weibrecht, Martin; D'Adda, Carlo; Antonini, Antonio; Casale, Carlo; Blume, Hartwig R.

    1997-05-01

    With increasing availability of medical image communication infrastructures, medical images are more and more displayed as soft-copies rather than as hard-copies. Often however, the image viewing environment is characterized by high ambient light, such as in surgery rooms or offices illuminated by daylight. We are describing a very-high- brightness cathode-ray-tube (CRT) monitor which accommodates these viewing conditions without the typical deterioration in resolution due to electron focal spot blooming. The three guns of a standard color CRT are used to create a high brightness monochrome monitor. The CRT has no shadow-mask, and a homogeneous P45 phosphor layer has been deposited instead of the structured red-green-blue color phosphor screen. The electron spots of the three guns are dynamically matched by applying appropriate waveforms to four additional multiple magnetic fields around the gun assembly. We evaluated the image quality of the triple-gun CRT monitor concerning parameters which are especially relevant for medical imaging applications. We have measured characteristic curves, dynamic range, veiling glare, resolution, spot profiles, and screen noise. The monitor can provide a high luminance of more than 200 fL. Due to nearly perfect matching of the three spots, the resolution is mainly determined by the beam profile of a single gun and is remarkably high even at these high luminance values. The P45 phosphor shows very little structure noise, which is an advantage for medical desktop applications. Since all relevant monitor parameters are digitally controlled, the status of the monitor can be fully characterized at any time. This feature particularly facilitates the reproduction of brightness and contrast values and hence allows easy implementation of a display function standard or to return to a desired display function that has been found useful for a given application in the past.

  6. New method for spectrofluorometer monochromator wavelength calibration.

    Science.gov (United States)

    Paladini, A A; Erijman, L

    1988-09-01

    A method is presented for wavelength calibration of spectrofluorometer monochromators. It is based on the distortion that the characteristic absorption bands of glass filters (holmium or didymium oxide), commonly used for calibration of spectrophotometers, introduce in the emitted fluorescence of fluorophores like indole, diphenyl hexatriene, xylene or rhodamine 6G. Those filters or a well characterized absorber with sharp bands like benzene vapor can be used for the same purpose. The wavelength calibration accuracy obtained with this method is better than 0.1 nm, and requires no modification in the geometry of the spectrofluorometer sample compartment.

  7. Electron Paramagnetic Resonance Imaging: 1. CW-EPR Imaging

    Indian Academy of Sciences (India)

    2016-07-01

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the article covers aspects of CW(continuous wave) imaging with details of FT (pulsed FourierTransform)-EPR imaging covered in Part 2, to be publishedin the next issue of Resonance.

  8. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  9. Electron imaging with an EBSD detector

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Stuart I., E-mail: stuart.wright@ametek.com [EDAX, 392 East 12300 South, Suite H, Draper, UT 84020 (United States); Nowell, Matthew M. [EDAX, 392 East 12300 South, Suite H, Draper, UT 84020 (United States); Kloe, René de [EDAX, Ringbaan Noord 103, 5046 AA Tilburg (Netherlands); Camus, Patrick; Rampton, Travis [EDAX, 91 McKee Drive, Mahwah, NJ 07430 (United States)

    2015-01-15

    Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera—enough to result in a 5×5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5×5 array of images is formed by essentially using each pixel in the 5×5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). - Highlights: • The EBSD detector can be used as a set of multiple electron scattering detectors for microstructural imaging. • Extreme binning enables the use of the EBSD detector as an imaging detector with image collection times similar to slow scan SEM imaging. • Using an EBSD detector as an imaging detector provides images showing topographic, atomic density and orientation contrast or a mix of all three. • These images can collect prior to performing a scan, during a scan or through post-processing of patterns

  10. Spectroscopic Imaging of Strongly Correlated Electronic States

    Science.gov (United States)

    Yazdani, Ali; da Silva Neto, Eduardo H.; Aynajian, Pegor

    2016-03-01

    The study of correlated electronic systems from high-Tc cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.

  11. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  12. Imaging Cyclotron Orbits of Electrons in Graphene.

    Science.gov (United States)

    Bhandari, Sagar; Lee, Gil-Ho; Klales, Anna; Watanabe, Kenji; Taniguchi, Takashi; Heller, Eric; Kim, Philip; Westervelt, Robert M

    2016-03-09

    Electrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away. By tuning the magnetic field B and electron density n in the graphene layer, we observe magnetic focusing peaks. We use a cooled scanning gate microscope to image cyclotron trajectories in graphene at 4.2 K. The tip creates a local change in density that casts a shadow by deflecting electrons flowing nearby; an image of flow can be obtained by measuring the transmission between contacts as the tip is raster scanned across the sample. On the first magnetic focusing peak, we image a cyclotron orbit that extends from one contact to the other. In addition, we study the geometry of orbits deflected into the second point contact by the tip.

  13. Imaging molecular geometry with electron momentum spectroscopy

    Science.gov (United States)

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-12-01

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future.

  14. A MONTE CARLO SIMULATION OF SECONDARY ELECTRON AND BACKSCATTERED ELECTRON IMAGES IN SCANNING ELECTRON MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    H.M. Li; Z.J. Ding

    2005-01-01

    A new parallel Monte Carlo simulation method of secondary electron (SE) and backscattered electron images (BSE) of scanning electron microscopy (SEM) for a complex geometric structure has been developed. This paper describes briefly the simulation method and the modification to the conventional sampling method for the step length. Example simulation results have been obtained for several artificial structures.

  15. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar

    2015-10-15

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  16. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1998-01-01

    Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interations The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information

  17. Stress mitigation of x-ray beamline monochromators using topography test unit.

    Energy Technology Data Exchange (ETDEWEB)

    Maj, J.; Waldschmidt, G.; Baldo, P.; Macrander, A.; Koshelev, I.; Huang, R.; Maj, L.; Maj, A.; Univ. of Chicago; Northeastern Ohio Univ. Coll. of Medicine; Rosalind Franklin Univ. of Medicine and Science

    2007-01-01

    Silicon and diamond monochromators (crystals), often used in the Advanced Photon Source X-ray beamlines, require a good quality surface finish and stress-free installation to ensure optimal performance. The device used to mount the crystal has been shown to be ajor contributing source of stress. In this case, an adjustable mounting device is an effective method of reducing stresses and improve the rocking curve to levels much closer to ideal. Analysis by a topography test unit has been used to determine the distribution of stresses and to measure the rocking curve, as well as create CCD images of the crystal. This paper describes the process of measuring these stresses and manipulating the mounting device and crystal to create a substantially improved monochromator.

  18. Moessbauer-Fresnel zone plate as nuclear monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, T.M.; Alp, E.E.; Yun, W.B.

    1992-06-01

    Zone plates currently used in x-ray optics derive their focusing power from (a spatial variation of) the electronic refractive index -- that is, from the collective effect of electronic x-ray-scattering amplitudes. Nuclei also scatter x rays, and resonant nuclear-scattering amplitudes, particularly those associated with Moessbauer fluorescence, can dominate the refractive index for x-rays whose energies are very near the nuclear-resonance energy. A zone plate whose Fresnel zones are filled alternately with {sup 57}Fe and {sup 56}Fe ({sup 57}Fe has a nuclear resonance of natural width {Gamma} = 4.8 nano-eV at 14.413 keV; {sup 56}Fe has no such resonance) has a resonant focusing efficiency; it focuses only those x-rays whose energies are within several {Gamma} of resonance. When followed by an absorbing screen with a small pinhole, such a zone plate can function as a synchrotron-radiation monochromator with an energy resolution of a few parts in 10{sup 12}. The energy-dependent focusing efficiency and the resulting time-dependent response of a resonant zone plate are discussed.

  19. Imaging Electron Spectrometer (IES) Electron Preprocessor (EPP) Design

    Science.gov (United States)

    Fennell, J. F.; Osborn, J. V.; Christensen, John L. (Technical Monitor)

    2001-01-01

    The Aerospace Corporation developed the Electron PreProcessor (EPP) to support the Imaging Electron Spectrometer (IES) that is part of the RAPID experiment on the ESA/NASA CLUSTER mission. The purpose of the EPP is to collect raw data from the IES and perform processing and data compression on it before transferring it to the RAPID microprocessor system for formatting and transmission to the CLUSTER satellite data system. The report provides a short history of the RAPID and CLUSTER programs and describes the EPP design. Four EPP units were fabricated, tested, and delivered for the original CLUSTER program. These were destroyed during a launch failure. Four more EPP units were delivered for the CLUSTER II program. These were successfully launched and are operating nominally on orbit.

  20. The role of electronic media in shaping the country's image

    Directory of Open Access Journals (Sweden)

    Azel Zhanibek

    2011-07-01

    Full Text Available This article discusses the influence of electronic media in the country to external image of Kazakhstan. Special attention is paid to the experience of various countries in promoting the country's image by electronic media.

  1. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  2. A bent Laue-Laue monochromator for a synchrotron-based computed tomography system

    CERN Document Server

    Ren, B; Chapman, L D; Ivanov, I; Wu, X Y; Zhong, Z; Huang, X

    1999-01-01

    We designed and tested a two-crystal bent Laue-Laue monochromator for wide, fan-shaped synchrotron X-ray beams for the program multiple energy computed tomography (MECT) at the National Synchrotron Light Source (NSLS). MECT employs monochromatic X-ray beams from the NSLS's X17B superconducting wiggler beamline for computed tomography (CT) with an improved image quality. MECT uses a fixed horizontal fan-shaped beam with the subject's apparatus rotating around a vertical axis. The new monochromator uses two Czochralski-grown Si crystals, 0.7 and 1.4 mm thick, respectively, and with thick ribs on their upper and lower ends. The crystals are bent cylindrically, with the axis of the cylinder parallel to the fan beam, using 4-rod benders with two fixed rods and two movable ones. The bent-crystal feature of the monochromator resolved the difficulties we had had with the flat Laue-Laue design previously used in MECT, which included (a) inadequate beam intensity, (b) excessive fluctuations in beam intensity, and (c) i...

  3. Grating monochromator for soft X-ray self-seeding the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-02-15

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with FEL simulations, for the design of a self-seeding monochromator without exit slit. We show that, without exit slit, the self-seeding scheme is distinguished by the much needed experimental simplicity, and can practically give the same resolving power (about 7000) as with an exit slit. Wave optics is also naturally applicable to calculations of the self-seeding scheme efficiency, which include the monochromator transmittance and the effect of the mismatching between seed beam and electron beam. Simulations show that the FEL power reaches 1 TW and that the spectral density for a TW pulse is about two orders of magnitude higher than that for the SASE pulse at saturation.

  4. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    Science.gov (United States)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  5. Disposal of metal artifacts by monochrome virtual images generated by TC dual power planning in radiation therapy; Eliminacion de artefactos metalicos mediante imagenes virtuales nonocromaticas generadas mediante TC de energia dual para planificacion en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Perez, V.; Bartres Salido, A.; Arana Fernandez Moya, E.; Crispin Contreras, V.; Dolores Alemany, V. de los; Campo Sanmartin, V.; Moratal Perez, D.

    2015-07-01

    Using monochromatic high-energy virtual images reconstructed by a scanner TCED is viable for planning radiotherapy treatments and improves image quality. Such images using the DICOM standard, and have been successfully exported to the planning system XiO treatments. (Author)

  6. Towards understanding the influence of electron-gas interactions on imaging in an environmental TEM

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Boothroyd, Chris; Beleggia, Marco

    2011-01-01

    The latest generation of environmental transmission electron microscopes (ETEMs) incorporates aberration correction and monochromation, allowing studies of chemical reactions and growth processes with improved spatial and spectral resolution. These additions to the columns of commercial ETEMs have...... are confined to a thin (typically 50-200 μm thick) slab around the sample, but the electrons interact with the window material (e.g. C, SiN) as well as with the gas and the sample. In addition, the field of view is typically smaller than in a conventional TEM and a limited range of sample geometries can...

  7. Monochromator development at 4W1B beamline of BSRF

    Science.gov (United States)

    Xie, Yaning; Yan, Y.; Hu, T. D.; Liu, T.; Xian, D. C.

    2001-07-01

    The 4W1B is a X-ray monochromator beamline for XAFS at BSRF. During the upgrading phase, we have redesigned the monochromator to improve the performance of the beamline. It is a goniometer based, fixed exit double crystal monochromator. A mechanical linkage is employed to adjust the distance between the surfaces of the two crystals as the Bragg angle is changed to keep the outgoing beam direction constant. The whole mechanism is driven by only one stepping motor. The testing result shows that over the scanning range of 5-30°, the shift of outgoing beam position is less then 70 μm in the vertical direction. The basic principle, the mechanical realization, and the error analysis are discussed in detail. The performance and the testing results are also presented in this paper.

  8. Monochromator development at 4W1B beamiline of BSRF

    Institute of Scientific and Technical Information of China (English)

    YaningXie; Y.Yan; T.D.Hu; T.Liu; D.C.Xian

    2001-01-01

    The 4W1B is a X-ary monochromator beamline for XAFS at BSRF.During the upgrading phase,we have redsigned the monochromator to improve the performnce of beamline.It is a goniometer based,fixed exit double crystal monochromator.A mechanical linkage is employed to adjust the distance between the surfaces of the two crystals as the Bragg angle is changed to keep the outgoing beam direction constant.The whole mechanism is driven by only one stepping motor.The testing result shows that over the scanning range of 5-30°,the shift of outgoing beam position is less then 70μm in the vertical direction.The basic principle,the mechanical realization,and the error analysis are discussed in detail.The performance and the testing results are also presented in this paper.2001 Elsevier Science B.V.All rights reserved.

  9. The next generation of electron cyclotron emission imaging diagnostics (invited)

    NARCIS (Netherlands)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  10. The next generation of electron cyclotron emission imaging diagnostics (invited)

    NARCIS (Netherlands)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  11. Electron beam throughput from raster to imaging

    Science.gov (United States)

    Zywno, Marek

    2016-12-01

    Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.

  12. Electronic terahertz imaging for security applications

    Science.gov (United States)

    Trontelj, J.; Sešek, A.

    2016-02-01

    A sophisticated THz system with 3D imaging and narrow band spectroscopy capability is presented in the paper. The key system components are the THz source, THz detector/mixer array, scanning optics, and the signal processing unit. The system is all electronic and is portable. A battery operation option allows several hours of autonomy. The most important parameters of the THz source are output power, illumination beam size and directivity, frequency modulation range, and maximal modulation frequency. The low phase noise is also a very important parameter. Optimization of these parameters is discussed in the paper. The THz source is all solid state, composed of a phase-locked oscillator, an amplifier, and frequency multipliers. The most important element of the THz system is its sensor, which performs both signal detection and at the same time mixing of the LO signal and received signal from the target. The sensor is antenna coupled nanobolometer fabricated in a linear array of eight pixels. The sensors are suspended in the vacuum to achieve an excellent signal-to-noise ratio. The quadratic characteristic of the nano-bolometer extends over six decades allowing a large dynamic range and very high LO signal levels. The scanning mirror integrated into the system allows imaging of 1024 to 8162 pixels in the x and y dimensions that are expanded to the third dimension with a resolution of few micrometers.

  13. Imaging Cytoskeleton Components by Electron Microscopy

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  14. A hard X-ray laboratory for monochromator characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Since their installation at ILL during the 1970`s the ILL {gamma}-ray diffractometers have been intensively used in the development of neutron monochromators. However, the ageing of the sources and new developments in hard X-ray diffractometry lead to a decision at the end of 1995 to replace the existing {gamma}-ray laboratory with a hard X-ray laboratory, based on a 420 keV generator, making available in the long term several beam-lines for rapid characterisation of monochromator crystals. The facility is now installed and its characteristics and advantages are outlined. (author). 2 refs.

  15. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy.

    Science.gov (United States)

    Müller, E; Gerthsen, D

    2017-02-01

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin InxGa1-xAs layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion.

  16. Extension of self-seeding scheme with single crystal monochromator to lower energy < 5 keV as a way to generate multi-TW scale pulses at the European XFEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2012-01-01

    We propose a use of the self-seeding scheme with single crystal monochromator to produce high power, fully-coherent pulses for applications at a dedicated bio-imaging beamline at the European X-ray FEL in the photon energy range between 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection (pi-polarization) in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in the entire photon energy range. The present design assumes the use of a nominal electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The main application of the scheme proposed in this work is for single shot imaging of individual protein molecules.

  17. 基于虚拟仪器的彩色图像单色背景透明化处理%The transparent treatment research of color image with monochrome background which is based on the virtual instrument

    Institute of Scientific and Technical Information of China (English)

    陈晓龙; 陈万培; 刘时; 范冠杰

    2012-01-01

    In the application of synthetic images,it is necessary to achieve local transparent image processing. This thesis describes a method of image processing with the background color of monochromatic characters which is based on the virtual instrument technology. Decomposing every pixel of the color image into the red,green,blue three colors and then compare that with the extraction of characteristic points. And structuring new image mask by a new processing method of each pixel to achieve the purpose of the reconstruction of the original image, consequently finishing the background transparent process of the original color images. This method can be used to the image processing with relatively single background color and the characters of the big color difference . It works good.%在图片的合成应用中需要对图片进行局部的透明化处理.提出了通过虚拟仪器技术,对具有单色背景的彩色人物图像进行处理的一种算法研究.通过将彩色图像的每个像素点分解成RGB三基色后与提取的特征点比对,对每个像素点灰度值运算构建新的图像掩码集,来重构原图像,完成对原彩色图像背景的透明化处理过程.该方法可以应用与背景颜色较为单一并且与人物图像颜色差异性大的图片处理,效果显著.

  18. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1989-01-01

    The aim of this book is to present the theory of image and contrast formation and the analytical modes in transmission electron microscopy The principles of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal structure determination and imaging of lattice defects X-ray microanalysis and energy-loss spectroscopy are treated as analytical methods The second edition includes discussion of recent progress, especially in the areas of energy-loss spectroscopy, crystal-lattice imaging and reflection electron microscopy

  19. Composite germanium monochromators - results for the TriCS

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Fischer, S.; Boehm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Composite germanium monochromators are in the beginning of their application in neutron diffraction. We show here the importance of the permanent quality control with neutrons on the example of the 311 wafers which will be used on the single crystal diffractometer TriCS at SINQ. (author) 2 figs., 3 refs.

  20. Monochromator on a synchrotron undulator source for liquid surface studies

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Freund, A.K.

    1992-01-01

    a monochromator made of a beryllium mosaic crystal using the (002) reflection in Laue geometry placed in undulator beams of DORIS III at the Hamburger Synchrotronstrahlungslabor and of the European Synchrotron Radiation Facility. An analysis of the diffraction properties in terms of mosaic spread, heat load...

  1. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  2. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  3. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg-transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron b...

  4. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  5. Low energy electron microscopy imaging using Medipix2 detector

    NARCIS (Netherlands)

    Sikharulidze, I.; Gastel, van R.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, van der S.J.

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10–20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2

  6. A vacuum ultraviolet filtering monochromator for synchrotron-based spectroscopy

    Science.gov (United States)

    Janik, Ireneusz; Marin, Timothy W.

    2013-01-01

    We describe the design, characterization, and implementation of a vacuum ultraviolet (VUV) monochromator for use in filtering stray and scattered light from the principal monochromator output of the Stainless Steel Seya VUV synchrotron beam line at the Synchrotron Radiation Center, University of Wisconsin-Madison. We demonstrate a reduction of three orders of magnitude of stray and scattered light over the wavelength range 1400-2000 Å with minimal loss of light intensity, allowing for over six orders of magnitude of dynamic range in light detection. We suggest that a similar filtering scheme can be utilized in any variety of spectroscopic applications where a large dynamic range and low amount of background signal are of import, such as in transmittance experiments with very high optical density.

  7. Scanning transmission electron microscopy imaging dynamics at low accelerating voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Mizoguchi, T. [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    Motivated by the desire to minimize specimen damage in beam sensitive specimens, there has been a recent push toward using relatively low accelerating voltages (<100kV) in scanning transmission electron microscopy. To complement experimental efforts on this front, this paper seeks to explore the variations with accelerating voltage of the imaging dynamics, both of the channelling of the fast electron and of the inelastic interactions. High-angle annular-dark field, electron energy loss spectroscopic imaging and annular bright field imaging are all considered. -- Highlights: {yields} Both elastic and inelastic scattering in STEM are acceleration voltage dependent. {yields} HAADF, EELS and ABF imaging are assessed with a view to optimum imaging. {yields} Lower accelerating voltages improve STEM EELS contrast in very thin crystals. {yields} Higher accelerating voltages give better STEM EELS contrast in thicker crystals. {yields} At fixed resolution, higher accelerating voltage aids ABF imaging of light elements.

  8. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  9. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  10. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  11. Design and performance of the ALS double-crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.; Ryce, S.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new {open_quotes}Cowan type{close_quotes} double-crystal monochromator, based on the boomerang design used at NSLS beamline X-24A, has been developed for beamline 9.3.1 at the ALS, a windowless UHV beamline covering the 1-6 keV photon-energy range. Beamline 9.3.1 is designed to simultaneously achieve the goals of high energy resolution, high flux, and high brightness at the sample. The mechanical design has been simplified, and recent developments in technology have been included. Measured mechanical precision of the monochromator shows significant improvement over existing designs. In tests with x-rays at NSLS beamline X-23 A2, maximum deviations in the intensity of monochromatic light were just 7% during scans of several hundred eV in the vicinity of the Cr K edge (6 keV) with the monochromator operating without intensity feedback. Such precision is essential because of the high brightness of the ALS radiation and the overall length of beamline 9.3.1 (26 m).

  12. Low-voltage coherent electron imaging based on a single-atom electron

    OpenAIRE

    Chang, Wei-Tse; Lin, Chun-Yueh; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection are...

  13. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan)

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  14. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  15. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  16. Measuring the criticality of the `magic condition' for a beam-expanding monochromator.

    Science.gov (United States)

    Martinson, Mercedes; Chapman, Dean

    2016-11-01

    It has been established that for cylindrically bent crystals the optimal beam characteristics occur when the geometric and single-ray foci are matched. In the beam-expanding monochromator developed for the BioMedical Imaging and Therapy beamlines at the Canadian Light Source, it was unclear how critical this `magic condition' was for preserving the transverse coherence of the beam. A study was conducted to determine whether misalignments away from the ideal conditions would severely affect the transverse coherence of the beam, thereby limiting phase-based imaging techniques. The results were that the magic condition has enough flexibility to accommodate deviations of about ±1° or ±5 keV.

  17. [Multiple transmission electron microscopic image stitching based on sift features].

    Science.gov (United States)

    Li, Mu; Lu, Yanmeng; Han, Shuaihu; Wu, Zhuobin; Chen, Jiajing; Liu, Zhexing; Cao, Lei

    2015-08-01

    We proposed a new stitching method based on sift features to obtain an enlarged view of transmission electron microscopic (TEM) images with a high resolution. The sift features were extracted from the images, which were then combined with fitted polynomial correction field to correct the images, followed by image alignment based on the sift features. The image seams at the junction were finally removed by Poisson image editing to achieve seamless stitching, which was validated on 60 local glomerular TEM images with an image alignment error of 62.5 to 187.5 nm. Compared with 3 other stitching methods, the proposed method could effectively reduce image deformation and avoid artifacts to facilitate renal biopsy pathological diagnosis.

  18. Ultrafast Imaging of Electronic Motion in Atoms and Molecules

    Science.gov (United States)

    2016-01-12

    AFRL-AFOSR-VA-TR-2016-0045 Ultrafast Imaging of Electronic Motion in Atoms and Molecules Martin Centurion UNIVERSITY OF NEBRSKA Final Report 01/12...Ultrafast Imaging of Electronic Motion in Atoms and Molecules 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0149 5c. PROGRAM ELEMENT NUMBER 6...a gaseous target of atoms or molecules . An optical setup was designed and constructed to compensate for the blurring of the temporal resolution due

  19. High-speed cineradiography using electronic imaging

    Science.gov (United States)

    Lucero, Jacob P.; Fry, David A.; Gaskill, William E.; Henderson, R. L.; Crawford, Ted R.; Carey, N. E.

    1993-01-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 105/sec for up to five total images.

  20. High speed cineradiography using electronic imaging

    Science.gov (United States)

    Lucero, J. P.; Fry, D. A.; Gaskill, W. E.; Henderson, R. L.; Crawford, T. R.; Carey, N. E.

    1992-12-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 10(exp 5)/sec for up to five total images.

  1. Dosimetry with a fluoroscopic electronic portal imaging device

    NARCIS (Netherlands)

    K.L. Pasma (Kasper)

    1999-01-01

    textabstractechniques for dosimetric verification of radiotherapy treatments using a CCD camera based fluoroscopic electronic portal imaging device (EPID) are described. The dosimetric characteristics of the EPID were investigated and a method was developed to derive portal dose images (PDIs) from m

  2. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  3. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and measur......Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...

  4. Imaging the motion of electrons across semiconductor heterojunctions

    Science.gov (United States)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  5. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  6. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  7. Terahertz electronics for sensing and imaging applications

    Science.gov (United States)

    Shur, Michael

    2015-05-01

    Short channel field effect transistors can detect terahertz radiation. Such detection is enabled by the excitation of the plasma waves rectified due to the device nonlinearities. The resulting response has nanometer scale spatial resolution and can be modulated in the sub THz range. This technology could enable a variety of sensing, imaging, and wireless communication applications, including detection of biological and chemical hazardous agents, cancer detection, shortrange covert communications (in THz and sub-THz windows), and applications in radio astronomy. Field effect transistors implemented using III-V, III-N, Si, SiGe, and graphene have been used to detect THz radiation. Using silicon transistors in plasmonic regimes is especially appealing because of compatibility with standard readout silicon VLSI components.

  8. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  9. Monte Carlo simulation of secondary electron images for real sample structures in scanning electron microscopy.

    Science.gov (United States)

    Zhang, P; Wang, H Y; Li, Y G; Mao, S F; Ding, Z J

    2012-01-01

    Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.

  10. Vibrational stability of a cryocooled horizontal double-crystal monochromator

    Science.gov (United States)

    Kristiansen, Paw; Johansson, Ulf; Ursby, Thomas; Jensen, Brian Norsk

    2016-01-01

    The vibrational stability of a horizontally deflecting double-crystal monochromator (HDCM) is investigated. Inherently a HDCM will preserve the vertical beam stability better than a ‘normal’ vertical double-crystal monochromator as the vibrations of a HDCM will almost exclusively affect the horizontal stability. Here both the relative pitch vibration between the first and second crystal and the absolute pitch vibration of the second crystal are measured. All reported measurements are obtained under active cooling by means of flowing liquid nitrogen (LN2). It is found that it is favorable to circulate the LN2 at high pressures and low flow rates (up to 5.9 bar and down to 3 l min−1 is tested) to attain low vibrations. An absolute pitch stability of the second crystal of 18 nrad RMS, 2–2500 Hz, and a relative pitch stability between the two crystals of 25 nrad RMS, 1–2500 Hz, is obtained under cryocooling conditions that allow for 1516 W to be adsorbed by the LN2 before it vaporizes. PMID:27577758

  11. Imaging of magnetic and electric fields by electron microscopy.

    Science.gov (United States)

    Zweck, Josef

    2016-10-12

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained.

  12. Imaging of magnetic and electric fields by electron microscopy

    Science.gov (United States)

    Zweck, Josef

    2016-10-01

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained.

  13. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  14. The Application of Similar Image Retrieval in Electronic Commerce

    Science.gov (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  15. The Application of Similar Image Retrieval in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    YuPing Hu

    2014-01-01

    Full Text Available Traditional online shopping platform (OSP, which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers’ experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  16. The application of similar image retrieval in electronic commerce.

    Science.gov (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  17. The Spatial Distribution and Morphology of Supported Nanocatalysts using Rutherford-Scattered Electron Imaging

    Science.gov (United States)

    Gai, Pratibha; Midgley, Paul; Weyland, Matthew; Thomas, John; Boyes, Edward

    2003-03-01

    Back-scattered electron (BSE) imaging, combined with scanning transmission electron microscopic (STEM) high angle annular dark field (HAADF) imaging, both using Rutherford-scattered electrons, are ideal in recording images of supported nanocatalysts. The incoherent scattering process ensures that images are ideal for electron tomography and the reconstruction of three-dimensional (3D) nanocatalyst distribution such as Pd on carbon.

  18. Nanoscale microwave imaging with a single electron spin in diamond

    OpenAIRE

    Appel, Patrick; Ganzhorn, Marc; Neu, Elke; Maletinsky, Patrick

    2015-01-01

    We report on imaging of microwave (MW) magnetic fields using a magnetometer based on the electron spin of a nitrogen vacancy center in diamond. We quantitatively image the magnetic field generated by high frequency (GHz) MW current with nanoscale resolution using a scanning probe technique. We demonstrate a MW magnetic field sensitivity in the range of a few nT/$\\sqrt{\\text{Hz}}$, polarization selection and broadband capabilities under ambient conditions and thereby establish the nitrogen vac...

  19. Microcontroller-based servo for two-crystal X-ray monochromators.

    Science.gov (United States)

    Siddons, D P

    1998-05-01

    Microcontrollers have become increasingly easy to incorporate into instruments as the architectures and support tools have developed. The PIC series is particularly easy to use, and this paper describes a controller used to stabilize the output of a two-crystal X-ray monochromator at a given offset from its peak intensity position, as such monochromators are generally used.

  20. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.

    Science.gov (United States)

    Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía

    2016-08-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  1. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  2. Spatial Domain based Image Enhancement Techniques for Scanned Electron Microscope-SEM-images

    Directory of Open Access Journals (Sweden)

    Rakhi Chanana

    2011-07-01

    Full Text Available The growing need for efficiently processing and analyzing the information contained in digital images is a continuous challenge in order to apply image processing. Digital images are captured from different imaging media elements like cameras, scanned electron microscopes etc. While going through the imaging process, Images get distorted in various forms resulting in extreme dark or light areas. All these things lead to the loss of information. The goal in each case is to extract useful information. In that case, Image processing extracts useful information by applying various image enhancement and algorithms. In this paper, we have discussed a practical implementation of various enhancement methods for Scanned Electron Microscope (SEM images and their experimental results. SEM images lead to very dark and light areas in an image. While imaging the information in the front scene is not only the source of information but some scenes on the dark side can also have the useful information. Before processing any further we require to enhance such images and one of the enhancement techniques i.e. Histogram Statistics comes out to be an ideal approach.

  3. Imaging through flesh tissue using fs electronic holographic gating method

    Institute of Scientific and Technical Information of China (English)

    侯比学; 陈国夫; 郝志琦; 丰善; 王淑岩; 王屹山; 王国志

    1999-01-01

    The experimental results of imaging through flesh tissue using fs electronic holographic gating method is reported. In the experiment, Ti: sapphire mode-locked laser is used as light source, of which the repetition rate is 100 MHz, central wavelength 800 mn, duration of pulse 20 fs, output power 80 mW. Tissue is a 7 mm thick chicken slice, and the imaged object is a metal wire with diameter of 0.5 mm. A general CCD is used to record holograms and a clear image of metal wire is obtained. Several relevant problems are discussed.

  4. Simulation of scanning transmission electron microscope images on desktop computers

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: christian.dwyer@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2010-02-15

    Two independent strategies are presented for reducing the computation time of multislice simulations of scanning transmission electron microscope (STEM) images: (1) optimal probe sampling, and (2) the use of desktop graphics processing units. The first strategy is applicable to STEM images generated by elastic and/or inelastic scattering, and requires minimal effort for its implementation. Used together, these two strategies can reduce typical computation times from days to hours, allowing practical simulation of STEM images of general atomic structures on a desktop computer.

  5. Imaging detectors and electronics - A view of the future

    Energy Technology Data Exchange (ETDEWEB)

    Spieler, Helmuth

    2004-06-16

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  6. Study of time-lapse processing for dynamic hydrologic conditions. [electronic satellite image analysis console for Earth Resources Technology Satellites imagery

    Science.gov (United States)

    Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.

    1974-01-01

    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.

  7. In-situ metrology for the optimization of bent crystals used in hard-X-ray monochromators: Comparison between measurement and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, Muriel, E-mail: muriel.thomasset@synchrotron-soleil.f [Synchrotron SOLEIL, L' orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Moreno, Thierry; Capitanio, Blandine; Idir, Mourad [Synchrotron SOLEIL, L' orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Bucourt, Samuel [Imagine Optic, 18 rue Charles de Gaulle, Orsay 91400 (France)

    2010-05-01

    Crystal sagittal focusing is known as one of the most efficient way of focusing synchrotron X-ray radiation from bending magnet sources, thus delivering increases photon flux at the sample position. To optimize the performance of a sagittaly bent crystal inside a monochromator, it is necessary to have knowledge of its radius of curvature. However, this measurement is not very easy to obtain. Even though the use of the X-ray beam is the ultimate source for optimizing the system, it is still necessary to have a prior knowledge of the radius of curvature as a function of the motor bender positions to avoid any catastrophic failure. In this paper, we describe a simple, efficient and accurate method of measuring the radius of curvature of sagitally bent monochromator crystals at several bending magnet beamlines at synchrotron SOLEIL. To optimize the crystal bending inside these monochromators, we used a Shack-Hartmann sensor (HP 26) developed by the Imagine Optic Company (Orsay/France). This high accuracy two-dimensional metrology tool was originally designed to be installed on a Long Trace Profiler translation stage to measure the mirrors profiles. During a period where the SOLEIL synchrotron was in shutdown, this instrument was directly mounted inside the monochromator so that the radius of curvature could be measured in-situ. This method allows us to optimize the curvature and eliminate twist before bending strongly the crystal below radii of curvature of less than 2 m. The second step in the optimization process was to use the X-ray beam for the final adjustments of the bending system, where X-ray images are then used to analyse the residual defaults of the system. Using SpotX, a ray-tracing simulation tool, these errors can be fully analysed and a fully optimized system can then be obtained. Overall, five beamlines at synchrotron SOLEIL have used in this method to optimize their monochromators.

  8. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  9. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  11. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  12. Imaging domains in transmission electron microscopy (invited) (abstract)

    Science.gov (United States)

    Mishra, R. K.

    1987-04-01

    Magnetic domain walls and domains inside thin electron transparent specimens of ferromagnetic materials can be imaged using the Fresnel and Focault techniques in a transmission electron microscope. Combined with the diffraction, microstructural and microchemical capabilities of modern microscopes, Lorentz microscopy offers one of the most powerful tools to study structure-property relationships in magnetic materials. In addition, using this technique, it is possible to deduce the local magnetization distribution around inhomogeneities and complex Bloch and Néel walls. Lorentz images can be used to quantitatively measure domain wall thickness and estimate domain wall energy. With modified sample holders and pole pieces, one can study in situ domain wall motion and the interaction of domains with microstructural features such as second phases, grain boundaries, structural defects, etc. All these will be illustrated with examples of Lorentz images from soft and hard magnets with special emphasis on the Nd-Fe-B hard magnets. Finally, the limitations of the Lorentz imaging technique utilizing the deflected electron intensities will be outlined and a new technique which utilizes the phase changes in the electron beam as it passes through the material in a scanning transmission microscope will be reviewed.

  13. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  14. Three-dimensional volume imaging with electron microscopy toward connectome.

    Science.gov (United States)

    Ohno, Nobuhiko; Katoh, Mitsuhiko; Saitoh, Yurika; Saitoh, Sei; Ohno, Shinichi

    2015-02-01

    Ultrastructural analyses with electron microscopy have provided indispensable information to understand physiology and pathology of the nervous system. Recent advancement in imaging methodology paved the way for complete reconstruction of the neuronal connection map in the central nervous system, which is termed 'connectome' and would provide key insights to understand the functions of the brain. The critical advancement includes serial ultrastructural observation with scanning electron microscopy (SEM) instead of conventional serial sectioning transmission electron microscopy along with specific tissue preparation methods to increase heavy metal deposition for efficient SEM imaging. The advanced imaging methods using SEM have distinct advantages and disadvantages in multiple aspects, such as resolution and imaging speed, and should be selected depending on the observation conditions, such as target tissue sizes, required spatial resolution and necessity for re-observation. Dealing with the huge dataset remained to be a major obstacle, and automation in segmentation and 3D reconstruction would be critical to understand neuronal circuits in a larger volume of the brain. Future improvement in acquisition and analyses of the morphological data obtained with the advanced SEM imaging is awaited to elucidate the significance of whole connectome as the structural basis of the consciousness, intelligence and memory of a subject. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Image process in imaging through a scattering medium using fs electronic holography

    Institute of Scientific and Technical Information of China (English)

    侯比学; 陈国夫

    1999-01-01

    Aimed at imaging technology through scattering medium using fs electronic holography, a set of image process algorithm is put forward. This algorithm can be divided into three stages. First, every hologram is pre-processed, whose contrast is enhanced. Second, the first-order spatial spectrum is low-pass-filtered through a two-step process, so that high-frequency noise can be removed. Finally, many reconstructed images are ensemble-averaged. This stage can smooth random noise and is advantageous to restraining the speckle noise of image. The operation of this algorithm shows that all of processes in the three stages have obvious effects on improving image quality.

  16. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    CERN Document Server

    Zurbuchen, Mark A; Kohan, Sirus A; Leung, Belinda; Bouchard, Louis-S

    2015-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a subcellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable "zooming-in" to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of...

  17. Center for electron nanoscopy, DTU

    DEFF Research Database (Denmark)

    Horsewell, Andy; Somers, Marcel A. J.; Chorkendorff, Ib

    2006-01-01

    DTU has been given[1] the opportunity to create a world-class facility with a unique suite of 8 electron microscopes, preparation equipment and facilities for image analysis and interpretation; all to be placed in a purpose-built building. This opportunity comes at the beginning of a new era...... in which several dramatic advances have recently taken place on two fronts. The first is in the field of transmission electron microscopy, TEM: I) As a result of Cs correction and monochromators, high resolution TEM can achieve spatial resolutions of 0.7Å and spectroscopy resolutions of 0.1eV; II) Using...... front is in the field of scanning electron microscopy, SEM, which has already seen major advances due to field emission electron guns, FEG: I) Adding a focussed ion beam, so that specimen surface layers can be removed by controlled sputtering, a dual-beam FEGSEM FIB allows reconstruction...

  18. MACS low-background doubly focusing neutron monochromator

    CERN Document Server

    Smee, S A; Scharfstein, G A; Qiu, Y; Brand, P C; Anand, D K; Broholm, C L

    2002-01-01

    A novel doubly focusing neutron monochromator has been developed as part of the Multi-Analyzer Crystal Spectrometer (MACS) at the NIST Center for Neutron Research. The instrument utilizes a unique vertical focusing element that enables active vertical and horizontal focusing with a large, 357-crystal (1428 cm sup 2), array. The design significantly reduces the amount of structural material in the beam path as compared to similar instruments. Optical measurements verify the excellent focal performance of the device. Analytical and Monte Carlo simulations predict that, when mounted at the NIST cold-neutron source, the device should produce a monochromatic beam (DELTA E=0.2 meV) with flux phi>10 sup 8 n/cm sup 2 s. (orig.)

  19. Volume scanning electron microscopy for imaging biological ultrastructure.

    Science.gov (United States)

    Titze, Benjamin; Genoud, Christel

    2016-11-01

    Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre-scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error-prone manual tasks of cutting and handling large numbers of sections, and imaging them one-by-one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z-resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block-face electron microscopy (SBEM), focused ion beam SEM (FIB-SEM) and automated tape-collecting ultramicrotome SEM (ATUM-SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research.

  20. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    Science.gov (United States)

    Plimley, Brian Christopher

    Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron

  1. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    Science.gov (United States)

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  2. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    Institute of Scientific and Technical Information of China (English)

    Xu Xiao-Yuan; Wang Jun; Yu Yi; Wen Yi-Zhi; Yu Chang-Xuan; Liu Wan-Dong; Wan Bao-Nian; Gao Xiang; N. C. Luhmann; C. W. Domier; Jian Wang; Z. G. Xia; Zuowei Shen

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number kg is calculated to be about 1.58 cm-1, or keps ≈0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.

  3. Nanoscale microwave imaging with a single electron spin in diamond

    Science.gov (United States)

    Appel, Patrick; Ganzhorn, Marc; Neu, Elke; Maletinsky, Patrick

    2015-11-01

    We report on imaging of microwave (MW) magnetic fields using a magnetometer based on the electron spin of a nitrogen vacancy (NV) center in diamond. We quantitatively image the magnetic field generated by high frequency (GHz) MW current with nanoscale resolution using a scanning probe technique. Together with a shot noise limited MW magnetic field sensitivity of 680 nT Hz-1/2 our room temperature experiments establish the NV center as a versatile and high performance tool for MW imaging, which furthermore offers polarization selectivity and broadband capabilities. As a first application of this scanning MW detector, we image the MW stray field around a stripline structure and thereby locally determine the MW current density with a MW current sensitivity of a few nA Hz-1/2.

  4. Color Medical Image Analysis

    CERN Document Server

    Schaefer, Gerald

    2013-01-01

    Since the early 20th century, medical imaging has been dominated by monochrome imaging modalities such as x-ray, computed tomography, ultrasound, and magnetic resonance imaging. As a result, color information has been overlooked in medical image analysis applications. Recently, various medical imaging modalities that involve color information have been introduced. These include cervicography, dermoscopy, fundus photography, gastrointestinal endoscopy, microscopy, and wound photography. However, in comparison to monochrome images, the analysis of color images is a relatively unexplored area. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for monochrome images are often not directly applicable to multichannel images. The goal of this volume is to summarize the state-of-the-art in the utilization of color information in medical image analysis.

  5. Application of FFT Data from HREM images to Electron crystallography

    Directory of Open Access Journals (Sweden)

    Snag-Gil Lee

    2012-03-01

    Full Text Available We succesfully determined the 3D crystal structure of inorganic nano-crystalline material using fast fourier transform (FFT data from high-resolution electron microscopy (HREM images. For extracting the reliable structure information from nano-crystalline materials by HREM imaging, it is essential to minimize the dynamical scattering effects happend from interactions bewteen electrons and matters. To alleviate this restriction, we tried to solve the crystal structure by employing high voltage electron microscope (HVEM which has excellent tilting capability, atomic resolution as well as higher penetration power. First, the allowed sample thickness for CaMoO4 crystal was evaluated by examining the existence of forbidden reflections in FFT data of HREM images obtained at various sample thickness. The kinematical scattering conditions were satisfied up to a sample thickness of about 28.2 nm. Next, we tried to extract the crystallographic data and determine the atomic structure of CaMoO4 crystal by FFT analysis of HREM images obtained from 15 different zone axes. Consequently, its cell parameters and space group were a = 5.24(3 Å, c = 11.50(8 Å and I41/a (#88, respectively. These values were coincided with X-ray crystallography results within 0.002 ~ 0.080 Å. Finally, the atomic structure could be determined with an accuracy of 0.16 Å.

  6. Double-crystal monochromator as the first optical element in BESSRC-CAT beamlines (abstract)

    Science.gov (United States)

    Beno, Mark A.; Ramanathan, Mohan

    1996-09-01

    The first optical element in the BESSRC-CAT beamlines at the Advanced Photon Source will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator we have designed is a double-crystal, fixed-exit scheme with a constant offset designed for UHV operation, thereby allowing windowless operation of the beamlines. The crystals are mounted on a turntable with the first crystal at the center of rotation. A mechanical linkage is used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum-compatible Huber goniometer isolated from the main vacuum chamber. Rotary motion of the primary monochromator stage is accomplished by using two adjacent vacuum chambers connected only by the small annular opening around a hollow stainless steel shaft, which connects the Huber goniometer to the turntable on which the crystals are mounted. The design of the monochromator is such that it can accommodate both water and liquid nitrogen cooling for the crystal optics. The basic design for the monochromator linkage mechanism will be presented along with details of the monochromator chamber. The results of initial optical tests of the monochromator system using tilt sensors and a precision autocollimator will also be given.

  7. From the physics of secondary electron emission to image contrasts in scanning electron microscopy.

    Science.gov (United States)

    Cazaux, Jacques

    2012-01-01

    Image formation in scanning electron microscopy (SEM) is a combination of physical processes, electron emissions from the sample, and of a technical process related to the detection of a fraction of these electrons. For the present survey of image contrasts in SEM, simplified considerations in the physics of the secondary electron emission yield, δ, are combined with the effects of a partial collection of the emitted secondary electrons. Although some consideration is initially given to the architecture of modern SEM, the main attention is devoted to the material contrasts with the respective roles of the sub-surface and surface compositions of the sample, as well as with the roles of the field effects in the vacuum gap. The recent trends of energy filtering in normal SEM and the reduction of the incident energy to a few electron volts in very low-energy electron microscopy are also considered. For an understanding by the SEM community, the mathematical expressions are explained with simple physical arguments.

  8. Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni; Serkez, Svitozar; Tolkiehn, Martin

    2013-01-01

    We discuss the use of self-seeding schemes with wake monochromators to produce TW power, fully coherent pulses for applications at the dedicated bio-imaging bealine at the European X-ray FEL, a concept for an upgrade of the facility beyond the baseline previously proposed by the authors. We exploit the asymmetric and symmetric Bragg and Laue reflections (sigma polarization) in diamond crystal. Optimization of the bio-imaging beamline is performed with extensive start-to-end simulations, which also take into account effects such as the spatio-temporal coupling caused by the wake monochromator. The spatial shift is maximal in the range for small Bragg angles. A geometry with Bragg angles close to pi/2 would be a more advantageous option from this viewpoint, albeit with decrease of the spectral tunability. We show that it will be possible to cover the photon energy range from 3 keV to 13 keV by using four different planes of the same crystal with one rotational degree of freedom.

  9. Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Tolkiehn, Martin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-01-15

    We discuss the use of self-seeding schemes with wake monochromators to produce TW power, fully coherent pulses for applications at the dedicated bio-imaging beamline at the European X-ray FEL, a concept for an upgrade of the facility beyond the baseline previously proposed by the authors. We exploit the asymmetric and symmetric Bragg and Laue reflections (sigma polarization) in diamond crystal. Optimization of the bio-imaging beamline is performed with extensive start-to-end simulations, which also take into account effects such as the spatio-temporal coupling caused by the wake monochromator. The spatial shift is maximal in the range for small Bragg angles. A geometry with Bragg angles close to {pi}/2 would be a more advantageous option from this viewpoint, albeit with decrease of the spectral tunability. We show that it will be possible to cover the photon energy range from 3 keV to 13 keV by using four different planes of the same crystal with one rotational degree of freedom.

  10. Ultrafast Molecular Imaging by Laser Induced Electron Diffraction

    CERN Document Server

    Peters, Michel; Cornaggia, Christian; Saugout, Sébastien; Charron, Eric; Keller, Arne; Atabek, Osman

    2010-01-01

    We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the Laser Induced Electron Diffraction, LIED, technique [T. Zuo \\textit{et al.}, Chem. Phys. Lett. \\textbf{259}, 313 (1996)]. We present numerical results obtained for the CO$_2$ molecule using a single active electron model. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  11. Image simulations of kinked vortices for transmission electron microscopy

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, G.; Tonomura, A.

    2010-01-01

    We present an improved model of kinked vortices in high-Tc superconductors suitable for the interpretation of Fresnel or holographic observations carried out with a transmission electron microscope. A kinked vortex is composed of two displaced half-vortices, perpendicular to the film plane...... observations of high-Tc superconducting films, where the Fresnel contrast associated with some vortices showed a dumbbell like appearance. Here, we show that under suitable conditions the JV segment may reveal itself in Fresnel imaging or holographic phase mapping in a transmission electron microscope....

  12. Exploding and Imaging of Electron Bubbles in Liquid Helium

    Science.gov (United States)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2016-11-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  13. Electron Microscopy and Image Analysis for Selected Materials

    Science.gov (United States)

    Williams, George

    1999-01-01

    This particular project was completed in collaboration with the metallurgical diagnostics facility. The objective of this research had four major components. First, we required training in the operation of the environmental scanning electron microscope (ESEM) for imaging of selected materials including biological specimens. The types of materials range from cyanobacteria and diatoms to cloth, metals, sand, composites and other materials. Second, to obtain training in surface elemental analysis technology using energy dispersive x-ray (EDX) analysis, and in the preparation of x-ray maps of these same materials. Third, to provide training for the staff of the metallurgical diagnostics and failure analysis team in the area of image processing and image analysis technology using NIH Image software. Finally, we were to assist in the sample preparation, observing, imaging, and elemental analysis for Mr. Richard Hoover, one of NASA MSFC's solar physicists and Marshall's principal scientist for the agency-wide virtual Astrobiology Institute. These materials have been collected from various places around the world including the Fox Tunnel in Alaska, Siberia, Antarctica, ice core samples from near Lake Vostoc, thermal vents in the ocean floor, hot springs and many others. We were successful in our efforts to obtain high quality, high resolution images of various materials including selected biological ones. Surface analyses (EDX) and x-ray maps were easily prepared with this technology. We also discovered and used some applications for NIH Image software in the metallurgical diagnostics facility.

  14. Uniform spinning sampling gradient electron paramagnetic resonance imaging.

    Science.gov (United States)

    Johnson, David H; Ahmad, Rizwan; Liu, Yangping; Chen, Zhiyu; Samouilov, Alexandre; Zweier, Jay L

    2014-02-01

    To improve the quality and speed of electron paramagnetic resonance imaging (EPRI) acquisition by combining a uniform sampling distribution with spinning gradient acquisition. A uniform sampling distribution was derived for spinning gradient EPRI acquisition (uniform spinning sampling, USS) and compared to the existing (equilinear spinning sampling, ESS) acquisition strategy. Novel corrections were introduced to reduce artifacts in experimental data. Simulations demonstrated that USS puts an equal number of projections near each axis whereas ESS puts excessive projections at one axis, wasting acquisition time. Artifact corrections added to the magnetic gradient waveforms reduced noise and correlation between projections. USS images had higher SNR (85.9 ± 0.8 vs. 56.2 ± 0.8) and lower mean-squared error than ESS images. The quality of the USS images did not vary with the magnetic gradient orientation, in contrast to ESS images. The quality of rat heart images was improved using USS compared to that with ESS or traditional fast-scan acquisitions. A novel EPRI acquisition which combines spinning gradient acquisition with a uniform sampling distribution was developed. This USS spinning gradient acquisition offers superior SNR and reduced artifacts compared to prior methods enabling potential improvements in speed and quality of EPR imaging in biological applications. Copyright © 2013 Wiley Periodicals, Inc.

  15. Neuron Segmentation in Electron Microscopy Images Using Partial Differential Equations.

    Science.gov (United States)

    Jones, Cory; Sayedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2013-01-01

    In connectomics, neuroscientists seek to identify the synaptic connections between neurons. Segmentation of cell membranes using supervised learning algorithms on electron microscopy images of brain tissue is often done to assist in this effort. Here we present a partial differential equation with a novel growth term to improve the results of a supervised learning algorithm. We also introduce a new method for representing the resulting image that allows for a more dynamic thresholding to further improve the result. Using these two processes we are able to close small to medium sized gaps in the cell membrane detection and improve the Rand error by as much as 9% over the initial supervised segmentation.

  16. Quality assurance of electron beams using a Varian electronic portal imaging device.

    Science.gov (United States)

    Wang, Y; Heaton, R; Norrlinger, B; Islam, M

    2013-08-21

    The feasibility of utilizing an electronic portal imaging device (EPID) for the quality assurance of electron beams was investigated. This work was conducted on a Varian 2100iX machine equipped with an amorphous silicon (aS1000) portal imager. The linearity of the imager pixel response as a function of exposed dose was first confirmed. The short-term reproducibility of the EPID response to electron beams was verified. Low (6 MeV), medium (12 MeV) and high (20 MeV) energies were tested, each along with small (6 × 6 cm(2)), medium (10 × 10 cm(2)) and large (20 × 20 cm(2)) applicators. Acquired EPID images were analyzed using an in-house MATLAB code for radiation field size, penumbra, symmetry and flatness. Field sizes and penumbra values agreed with those from film dosimetry to within 1 mm. Field symmetry and flatness constancies were measured over a period of three weeks. The results indicate that EPID can be used for routine quality assurance of electron beams.

  17. Realisation of a novel crystal bender for a fast double crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Zaeper, R.; Richwin, M. E-mail: richwin@uni-wuppertal.de; Wollmann, R.; Luetzenkirchen-Hecht, D.; Frahm, R

    2001-07-21

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  18. Realisation of a novel crystal bender for a fast double crystal monochromator

    CERN Document Server

    Zaeper, R; Wollmann, R; Luetzenkirchen-Hecht, D; Frahm, R

    2001-01-01

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  19. Scanning electron microscopy: preparation and imaging for SEM.

    Science.gov (United States)

    Jones, Chris G

    2012-01-01

    Scanning electron microscopy (SEM) has been almost universally applied for the surface examination and characterization of both natural and man-made objects. Although an invasive technique, developments in electron microscopy over the years has given the microscopist a much clearer choice in how invasive the technique will be. With the advent of low vacuum SEM in the 1970s (The environmental cold stage, 1970) and environmental SEM in the late 1980s (J Microsc 160(pt. 1):9-19, 1989), it is now possible in some circumstances to examine samples without preparation. However, for the examination of biological tissue and cells it is still advisable to chemically fix, dehydrate, and coat samples for SEM imaging and analysis. This chapter aims to provide an overview of SEM as an imaging tool, and a general introduction to some of the methods applied for the preparation of samples.

  20. High resolution fluorescent bio-imaging with electron beam excitation.

    Science.gov (United States)

    Kawata, Yoshimasa; Nawa, Yasunori; Inami, Wataru

    2014-11-01

    We have developed electron beam excitation assisted (EXA) optical microscope[1-3], and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.Figure 1(a) shows schematic diagram of the proposed EXA microscope. An electron beam is focused on a luminescent film. A specimen is put on the luminescent film directly. The inset in Fig. 1(a) shows magnified image of the luminescent film and the specimen. Nanometric light source is excited in the luminescent film by the focused electron beam. The nanometric light source illuminates the specimen, and the scattered or transmitted radiation is detected with a photomultiplier tube (PMT). The light source is scanned by scanning of the focused electron beam in order to construct on image. Figure 1(b) shows a luminescence image of the cells acquired with the EXA microscope, and Fig. 1(c) shows a phase contrast microscope image. Cells were observed in culture solution without any treatments, such as fixation and drying. The shape of each cell was clearly recognized and some bright spots were observed in cells. We believe that the bright spots indicated with arrows were auto-fluorescence of intracellular granules and light- grey regions were auto-fluorescence of cell membranes. It is clearly demonstrated that the EXA microscope is useful tool for observation of living biological cells in physiological conditions.jmicro;63/suppl_1/i

  1. Reconstruction of images from radiofrequency electron paramagnetic resonance spectra.

    Science.gov (United States)

    Smith, C M; Stevens, A D

    1994-12-01

    This paper discusses methods for obtaining image reconstructions from electron paramagnetic resonance (EPR) spectra which constitute object projections. An automatic baselining technique is described which treats each spectrum consistently; rotating the non-horizontal baselines which are caused by stray magnetic effects onto the horizontal axis. The convolved backprojection method is described for both two- and three-dimensional reconstruction and the effect of cut-off frequency on the reconstruction is illustrated. A slower, indirect, iterative method, which does a non-linear fit to the projection data, is shown to give a far smoother reconstructed image when the method of maximum entropy is used to determine the value of the final residual sum of squares. Although this requires more computing time than the convolved backprojection method, it is more flexible and overcomes the problem of numerical instability encountered in deconvolution. Images from phantom samples in vitro are discussed. The spectral data for these have been accumulated quickly and have a low signal-to-noise ratio. The results show that as few as 16 spectra can still be processed to give an image. Artifacts in the image due to a small number of projections using the convolved backprojection reconstruction method can be removed by applying a threshold, i.e. only plotting contours higher than a given value. These artifacts are not present in an image which has been reconstructed by the maximum entropy technique. At present these techniques are being applied directly to in vivo studies.

  2. Low energy electron point source microscopy: beyond imaging.

    Science.gov (United States)

    Beyer, André; Gölzhäuser, Armin

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes.

  3. Architectures for Low-noise CMOS Electronic Imaging

    Science.gov (United States)

    Kawahito, Shoji

    This chapter discusses various types of signal readout architectures for CMOS image sensors, implementing ultra-low-noise conversion of photo-generated charge packets into digital output values. It is based on a detailed analysis of the different noise sources in a CMOS imager, the noise responses of column noise cancelling circuits using correlated double sampling (CDS) and correlated multiple sampling (CMS) techniques and a noiseless signal readout technique using a precise digitizer. Finally, a practical example for the design of a CMOS image sensor with single-photon resolution is presented, and the technological requirements for meeting the condition for room-temperature readout noise of significantly less than 1 electron are discussed.

  4. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    Science.gov (United States)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-09-02

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  5. Low-voltage coherent electron imaging based on a single-atom electron

    CERN Document Server

    Chang, Wei-Tse; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection area on the sample as well as the detection of high-angle diffracted patterns with a sufficient resolution. In this work, we propose several transmission-type schemes to achieve coherent imaging of thin materials (less than 5 nm thick) with atomic resolution at voltages lower than 10 kV. Experimental schemes of both lens-less and lens-containing designs are presented and the advantages and challenges of these schemes are discussed. Preliminary results based on a highly coherent single-atom electron source are presented. The ...

  6. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    Science.gov (United States)

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  7. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  8. A High-Efficiency Electron Momentum Spectrometer for Direct Imaging of Orbital Electron Density

    Institute of Scientific and Technical Information of China (English)

    REN Xue-Guang; NING Chuan-Gang; DENG Jing-Kang; ZHANG Shu-Feng; SU Guo-Lin; LI Bin; CHEN Xue-Jun

    2005-01-01

    @@ Direct three-dimensional images for orbital electron density are obtained by using our newly developed electron momentum spectrometer with simultaneous detection in energy and momentum, and the instruments resolutions of Aθ = ±0.7°, △φ = ±1.9°, △E = 1.2 eV, and △T = 2.0ns. The detection efficiency is about 100 times higher than conventional spectrometers. The design and performance of the apparatus are reported together with the experimental results on argon to show the extensive improvements in experimental resolutions, detection efficiency and versatility.

  9. Interlaboratory comparison of dicentric chromosome assay using electronically transmitted images.

    Science.gov (United States)

    García, O; Di Giorgio, M; Vallerga, M B; Radl, A; Taja, M R; Seoane, A; De Luca, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Pantelias, G; Terzoudi, G; Guerrero-Carbajal, C; Arceo Maldonado, C; Espinoza, M; Oliveros, N; Martínez-López, W; Di Tomaso, M V; Méndez-Acuña, L; Puig, R; Roy, L; Barquinero, J F

    2013-04-01

    The bottleneck in data acquisition during biological dosimetry based on a dicentric assay is the need to score dicentrics in a large number of lymphocytes. One way to increase the capacity of a given laboratory is to use the ability of skilled operators from other laboratories. This can be done using image analysis systems and distributing images all around the world. Two exercises were conducted to test the efficiency of such an approach involving 10 laboratories. During the first exercise (E1), the participant laboratories analysed the same images derived from cells exposed to 0.5 and 3 Gy; 100 images were sent to all participants for both doses. Whatever the dose, only about half of the cells were complete with well-spread metaphases suitable for analysis. A coefficient of variation (CV) on the standard deviation of ∼15 % was obtained for both doses. The trueness was better for 3 Gy (0.6 %) than for 0.5 Gy (37.8 %). The number of estimated doses classified as satisfactory according to the z-score was 3 at 0.5 Gy and 8 at 3 Gy for 10 dose estimations. In the second exercise, an emergency situation was tested, each laboratory was required to score a different set of 50 images in 2 d extracted from 500 downloaded images derived from cells exposed to 0.5 Gy. Then the remaining 450 images had to be scored within a week. Using 50 different images, the CV on the estimated doses (79.2 %) was not as good as in E1, probably associated to a lower number of cells analysed (50 vs. 100) or from the fact that laboratories analysed a different set of images. The trueness for the dose was better after scoring 500 cells (22.5 %) than after 50 cells (26.8 %). For the 10 dose estimations, the number of doses classified as satisfactory according to the z-score was 9, for both 50 and 500 cells. Overall, the results obtained support the feasibility of networking using electronically transmitted images. However, before its implementation some issues should be elucidated, such as the

  10. IMCA-CAT BM first monochromator crystal optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I.N.; Cimpoes, S.; Chrzas, J. [CSRRI, Illinois Institute of Technology, 3301 S. Dearborn Street, Chicago, Il 60616 (United States)

    1996-09-01

    The high heat load at the surfaces of the first x-ray optical elements at the APS requires special measures to be taken to more completely utilize the beam. A conceptually new design for such an element, proposed, realized, and tested by M. Hart and conveniently called {open_quote}{open_quote}matchbox,{close_quote}{close_quote} is to be implemented at the IMCA-CAT BM beamline as the first monochromator crystal. The requirements of the IMCA-CAT companies for the BM beamline dictate that an optimization of the design is made for a given x-ray energy range E=13 keV {plus_minus}1 keV. A modification of the original design to improve the vacuum compatibility of the device was made in collaboration with M. Hart. A FEA optimization of the geometry is made using the ALGOR and ABAQUS programs. Determination of the resulting slopes and the useful crystal surface after the best compensation of the thermal distortions are also made. The surface profile obtained by the FEA study was used to perform a ray-tracing analysis of the IMCA-CAT BM beamline. The results of the ray-tracing study will be presented. {copyright} {ital 1996 American Institute of Physics.}

  11. Statistical reconstruction algorithms for continuous wave electron spin resonance imaging

    Science.gov (United States)

    Kissos, Imry; Levit, Michael; Feuer, Arie; Blank, Aharon

    2013-06-01

    Electron spin resonance imaging (ESRI) is an important branch of ESR that deals with heterogeneous samples ranging from semiconductor materials to small live animals and even humans. ESRI can produce either spatial images (providing information about the spatially dependent radical concentration) or spectral-spatial images, where an extra dimension is added to describe the absorption spectrum of the sample (which can also be spatially dependent). The mapping of oxygen in biological samples, often referred to as oximetry, is a prime example of an ESRI application. ESRI suffers frequently from a low signal-to-noise ratio (SNR), which results in long acquisition times and poor image quality. A broader use of ESRI is hampered by this slow acquisition, which can also be an obstacle for many biological applications where conditions may change relatively quickly over time. The objective of this work is to develop an image reconstruction scheme for continuous wave (CW) ESRI that would make it possible to reduce the data acquisition time without degrading the reconstruction quality. This is achieved by adapting the so-called "statistical reconstruction" method, recently developed for other medical imaging modalities, to the specific case of CW ESRI. Our new algorithm accounts for unique ESRI aspects such as field modulation, spectral-spatial imaging, and possible limitation on the gradient magnitude (the so-called "limited angle" problem). The reconstruction method shows improved SNR and contrast recovery vs. commonly used back-projection-based methods, for a variety of simulated synthetic samples as well as in actual CW ESRI experiments.

  12. Suppression of COTR in electron beam imaging diagnosis at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Minjie

    2012-05-15

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  13. A novel low energy electron microscope for DNA sequencing and surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, M., E-mail: marian@electronoptica.com [Electron Optica Inc., 1000 Elwell Court #110, Palo Alto, CA 94303 (United States); Shadman, K. [Electron Optica Inc., 1000 Elwell Court #110, Palo Alto, CA 94303 (United States); Persson, H.H.J. [Stanford Genome Technology Center, Stanford University School of Medicine, 855 California Avenue, Palo Alto, CA 94304 (United States); N’Diaye, A.T. [Electron Optica Inc., 1000 Elwell Court #110, Palo Alto, CA 94303 (United States); NCEM, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Schmid, A.K. [NCEM, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Davis, R.W. [Stanford Genome Technology Center, Stanford University School of Medicine, 855 California Avenue, Palo Alto, CA 94304 (United States)

    2014-10-15

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  14. Comparison of coronary imaging between magnetic resonance imaging and electron beam computed tomography

    NARCIS (Netherlands)

    van Geuns, RJM; Oudkerk, M; Rensing, BJWM; Bongaerts, AHH; de Bruin, Hein G.; Wielopolski, PA; van Ooijen, P; de Feyter, PJ; Serruys, PW

    2002-01-01

    In 27 patients, we compared the diagnostic value of magnetic resonance imaging (MRI) and electron beam computed tomography (EBCT) for noninvasive detection of coronary artery stenosis using conventional coronary angiography as the "gold standard." The overall sensitivity and specificity for EBCT to

  15. Imaging and analysis of subsurface Cu interconnects by detecting backscattered electrons in the scanning electron microscope

    Science.gov (United States)

    Gignac, L. M.; Kawasaki, M.; Boettcher, S. H.; Wells, O. C.

    2005-06-01

    Cu -SiO2-SiNx interconnects that were located 0.65-2.7-μm below the surface of silicon-integrated circuits were imaged in a scanning electron microscope and a transmission electron microscope with a scanning attachment by detecting backscattered electrons (BSEs) with an incident electron-beam energy (Eo) in the range of 30-400keV. BSE images could be used to detect voids in subsurface Cu interconnects, even in regions covered with upper level Cu lines or vias. As Eo was increased from 30to400keV, structures could be seen as a result of atomic number (Z) contrast farther below the surface while structures closer to the surface had reduced Z contrast. The subsurface beam diameter was measured from BSE images as a function of Eo and depth below the surface. For all Eo, the subsurface beam diameter initially rapidly increased with SiO2 overlayer thickness but, for 150keV, a leveling off in the beam spread was seen for depths >1.7μm. Beam broadening affected whether the TaN /Ta liners that surrounded the Cu conductors could be seen at the edges of the lines; this contrast was observed only when the subsurface beam diameter was ⩽1.5× the liner thickness. The BSE information depth for imaging 0.2-μm-sized voids in subsurface Cu -SiO2-SiNx interconnect structures at 30 and 150keV was estimated to be 0.65 and 3μm, respectively.

  16. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  17. Infrared imaging diagnostics for intense pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao; Shen, Jie; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Zhang, Gaolong; Le, Xiaoyun, E-mail: xyle@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191 (China); Qu, Miao; Yan, Sha [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2015-08-15

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm{sup 2} and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  18. Infrared imaging diagnostics for intense pulsed electron beam.

    Science.gov (United States)

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm(2) and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  19. Free electron lifetime achievements in liquid Argon imaging TPC

    Energy Technology Data Exchange (ETDEWEB)

    Baibussinov, B; Ceolin, M Baldo; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Varanini, F; Ventura, S [INFN, Sezione di Padova via Marzolo 8, I-35131 Padova (Italy); Calligarich, E [INFN, Sezione di Pavia via Bassi 6, I-27100 Pavia (Italy); Rubbia, C, E-mail: Carlo.Rubbia@cern.c [Laboratori Nazionali del Gran Sasso dell' INFN I-67010 Assergi (Italy)

    2010-03-15

    A key feature for the success of the liquid Argon imaging TPC (LAr-TPC) technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be continuously kept at an exceptionally low level by filtering and recirculating liquid Argon. Improved purification techniques have been applied to a 120 liters LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to determine the free electron lifetime in liquid Argon against electro-negative impurities. The short path length here observed (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic ray muons at sea level as a function of the drift distance. A free electron lifetime of tau {approx} (21.4{sup +7.3}{sub -4.3}) ms, namely > 15.8 ms at 90% C.L. has been observed over several weeks under stable conditions, corresponding to a residual Oxygen equivalent of {approx} 15 ppt (part per trillion). At 500 V/cm, the free electron speed is 1.5 mm/mus. In a LAr-TPC a free electron lifetime in excess of 15 ms corresponds for instance to an attenuation of less than 20% after a drift path of 5 m, opening the way to the operation of the LAr-TPC with exceptionally long drift distances.

  20. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    CERN Document Server

    Bradbury, S M

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope.

  1. Alternative optical concept for electron cyclotron emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. X., E-mail: jsliu9@berkeley.edu [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Milbourne, T. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 (United States); Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Kubota, S. [Department of Physics, University of California Los Angeles, Los Angeles, California 90095 (United States); Kasparek, W. [Department of Electrical Engineering, University of Stuttgart, Stuttgart (Germany); Lu, J. [Department of Physics, Chongqing University, Chongqing 400044 (China); Park, H. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of)

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  2. Far-ultraviolet astronomical narrowband imaging.

    Science.gov (United States)

    Cook, Timothy A; Hicks, Brian A; Jung, Paul G; Chakrabarti, Supriya

    2009-04-01

    We describe an all-reflective system for narrowband imaging suitable for imaging emission lines in the far ultraviolet. The system, which we call a monochromatic imager, combines a pupil plane grating monochromator with a telescope and camera to image a scene in one or more very narrow bands. The monochromator uses physical stops at its input and output apertures, and, as a result, the system has excellent rejection of out-of-band and off-axis light.

  3. Application of FPGA's in Flexible Analogue Electronic Image Generator Design

    Directory of Open Access Journals (Sweden)

    Peter Kulla

    2006-01-01

    Full Text Available This paper focuses on usage of the FPGAs (Field Programmable Gate Arrays Xilinx as a part of our more complex workdedicated to design of flexible analogue electronic images generator for application in TV measurement technique or/and TV servicetechnique or/and education process. The FPGAs performs here the role of component colour R, G, B, synchronization and blanking signals source. These signals are next processed and amplified in other parts of the generator as NTSC/PAL source encoder and RF modulator. The main aim of this paper is to show the possibilities how with suitable development software use a FPGAs in analog TV technology.

  4. Electron Paramagnetic Resonance Imaging and Spectroscopy of Polydopamine Radicals.

    Science.gov (United States)

    Mrówczyński, Radosław; Coy, L Emerson; Scheibe, Błażej; Czechowski, Tomasz; Augustyniak-Jabłokow, Maria; Jurga, Stefan; Tadyszak, Krzysztof

    2015-08-13

    A thorough investigation of biomimetic polydopamine (PDA) by Electron Paramagnetic Resonance (EPR) is shown. In addition, temperature dependent spectroscopic EPR data are presented in the range 3.8-300 K. Small discrepancies in magnetic susceptibility behavior are observed between previously reported melanin samples. These variations were attributed to thermally acitivated processes. More importantly, EPR spatial-spatial 2D imaging of polydopamine radicals on a phantom is presented for the first time. In consequence, a new possible application of polydopamine as EPR imagining marker is addressed.

  5. Electronic image stabilization system based on global feature tracking

    Institute of Scientific and Technical Information of China (English)

    Zhu Juanjuan; Guo Baolong

    2008-01-01

    A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch,the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filter-ation. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational,and zooming jitter and robust to local motions.

  6. High-heat-load monochromator options for the RIXS beamline at the APS with the MBA lattice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zunping, E-mail: zpliu@anl.gov; Gog, Thomas, E-mail: gog@aps.anl.gov; Stoupin, Stanislav A.; Upton, Mary H.; Ding, Yang; Kim, Jung-Ho; Casa, Diego M.; Said, Ayman H.; Carter, Jason A.; Navrotski, Gary [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States)

    2016-07-27

    With the MBA lattice for APS-Upgrade, tuning curves of 2.6 cm period undulators meet the source requirements for the RIXS beamline. The high-heat-load monochromator (HHLM) is the first optical white beam component. There are four options for the HHLM such as diamond monochromators with refrigerant of either water or liquid nitrogen (LN{sub 2}), and silicon monochromators of either direct or indirect cooling system. Their performances are evaluated at energy 11.215 keV (Ir L-III edge). The cryo-cooled diamond monochromator has similar performance as the water-cooled diamond monochromator because GaIn of the Cu-GaIn-diamond interface becomes solid. The cryo-cooled silicon monochromators perform better, not only in terms of surface slope error due to thermal deformation, but also in terms of thermal capacity.

  7. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Science.gov (United States)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  8. Understanding oxide interfaces: From microscopic imaging to electronic phases

    Science.gov (United States)

    Ilani, Shahal

    2014-03-01

    In the last decade, the advent of complex oxide interfaces has unleashed a wealth of new possibilities to create materials with unexpected functionalities. A notable example is the two-dimensional electron system formed at the interface between LaAlO3 and SrTiO3 (LAO/STO), which exhibits ferromagnetism, superconductivity, and a wide range of unique magneto-transport properties. A key challenge is to find the microscopic mechanisms that underlie these emergent phenomena. While there is a growing understanding that these phenomena might reflect rich structures at the micro-scale, experimental progress toward microscopic imaging of this system has been so far rather limited due to the buried nature of its interface. In this talk I will discuss our experiments that study this system on microscopic and macroscopic scales. Using a newly-developed nanotube-based scanning electrometer we image on the nanoscale the electrostatics and mechanics of this buried interface. We reveal the dynamics of structural domains in STO, their role in generating the contested anomalous piezoelectricity of this substrate, and their direct effects on the physics of the interface electrons. Using macroscopic magneto-transport experiments we demonstrate that a universal Lifshitz transition between the population of d-orbitals with different symmetries underlies many of the transport phenomena observed to date. We further show that the interactions between the itinerant electrons and localized spins leads to an unusual, gate-tunable magnetic phase diagram. These measurements highlight the unique physical settings that can be realized within this new class of low dimensional systems.

  9. Robust image alignment for cryogenic transmission electron microscopy.

    Science.gov (United States)

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Double crystal monochromator controlled by integrated computing on BL07A in New SUBARU, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Okui, Masato, E-mail: okui@kohzu.co.jp [Kohzu Precision Co., Ltd., 2-6-15, Kurigi, Asao-ku, Kawasaki-shi, Kanagawa 215-8521 (Japan); Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan); Yato, Naoki; Watanabe, Akinobu; Lin, Baiming; Murayama, Norio [Kohzu Precision Co., Ltd., 2-6-15, Kurigi, Asao-ku, Kawasaki-shi, Kanagawa 215-8521 (Japan); Fukushima, Sei, E-mail: FUKUSHIMA.Sei@nims.go.jp [Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan); National Institute for Material Sciences (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan)

    2016-07-27

    The BL07A beamline in New SUBARU, University of Hyogo, has been used for many studies of new materials. A new double crystal monochromator controlled by integrated computing was designed and installed in the beamline in 2014. In this report we will discuss the unique features of this new monochromator, MKZ-7NS. This monochromator was not designed exclusively for use in BL07A; on the contrary, it was designed to be installed at low cost in various beamlines to facilitate the industrial applications of medium-scale synchrotron radiation facilities. Thus, the design of the monochromator utilized common packages that can satisfy the wide variety of specifications required at different synchrotron radiation facilities. This monochromator can be easily optimized for any beamline due to the fact that a few control parameters can be suitably customized. The beam offset can be fixed precisely even if one of the two slave axes is omitted. This design reduces the convolution of mechanical errors. Moreover, the monochromator’s control mechanism is very compact, making it possible to reduce the size of the vacuum chamber can be made smaller.

  11. On the influence of monochromator thermal deformations on X-ray focusing

    Science.gov (United States)

    Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; Narayanan, S.; Navrotski, G.

    2016-06-01

    A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator - and the potential loss of beam brightness - is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromator system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. An analysis of the defocusing and options to mitigate this effect are explored.

  12. On the influence of monochromator thermal deformations on X-ray focusing

    Energy Technology Data Exchange (ETDEWEB)

    Antimonov, M.A. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Khounsary, A.M., E-mail: amk@iit.edu [Department of Physics, Illinois Institute of Technology, Chicago, IL 60616 (United States); Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Sandy, A.R.; Narayanan, S.; Navrotski, G. [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-06-01

    A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromator system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. An analysis of the defocusing and options to mitigate this effect are explored.

  13. The residual stress instrument with optimized Si(220) monochromator and position-sensitive detector at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Moon, Myung-Kook [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of)]. E-mail: moonmk@kaeri.re.kr; Em, Vyacheslav T. [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Hyun [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Cheon, Jong-Kyu [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Nam, Uk-Won [Korea Astronomy Observatory, Yusung, Daejon 305-348 (Korea, Republic of); Kong, Kyung-Nam [Korea Astronomy Observatory, Yusung, Daejon 305-348 (Korea, Republic of)

    2005-06-11

    An upgraded residual stress instrument at the HANARO reactor of the KAERI is described. A horizontally focusing bent perfect crystal Si(220) monochromator (instead of a mosaic vertical focusing Ge monochromator) is installed in a drum with a tunable (2{theta}{sub M}=0-60{sup o}) take-off angle/wavelength. A specially designed position-sensitive detector (60% efficiency for {lambda}=1.8A) with 200mm (instead of 100mm) high-active area is used. There are no Soller type collimators in the instrument. The minimum possible monochromator to sample distance, L{sub MS}=2m, and sample to detector distance, L{sub SD}=1.2m, were found to be optimal. The new PSD and bent Si(220) monochromator combined with the possibility of selecting an appropriate wavelength resulted in about a ten-fold gain in data collection rate. The optimal reflections of austenitic and ferritic steels, aluminum and nickel for stress measurements with a Si(220) monochromator were chosen experimentally. The ability of the instrument to make strain measurements deep inside the austenitic and ferritic steels has been tested. For the chosen reflections and wavelengths, no shift of peak position (apparent strain) was observed up to 56mm length of path.

  14. Coherent diffraction and holographic imaging of individual biomolecules using low-energy electrons

    CERN Document Server

    Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2013-01-01

    Modern microscopy techniques are aimed at imaging an individual molecule at atomic resolution. Here we show that low-energy electrons with kinetic energies of 50-250 eV offer a possibility of overcome the problem of radiation damage, and obtaining images of individual biomolecules. Two experimental schemes for obtaining images of individual molecules, holography and coherent diffraction imaging, are discussed and compared. Images of individual molecules obtained by both techniques, using low-energy electrons, are shown.

  15. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Science.gov (United States)

    2010-07-01

    ... COMMISSION In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof, and... certain electronic devices with image processing systems, components thereof, and associated software that... importation, and the sale within the United States after importation of certain electronic devices with...

  16. A double multilayer monochromator for the B16 Test beamline at the Diamond Light Source

    Science.gov (United States)

    Sawhney, K. J. S.; Dolbnya, I. P.; Scott, S. M.; Tiwari, M. K.; Preece, G. M.; Alcock, S. G.; Malandain, A. W.

    2011-09-01

    The B16 Test beamline at the Diamond Light Source is in user operation. It has been recently upgraded with the addition of a double multilayer monochromator (DMM), which provides further functionality and versatility to the beamline. The multilayer monochromator is equipped with two pairs of multilayer optics (Ni/B4C and Ru/B4C) to cover the wide photon energy range of 2 - 20 keV, with good efficiency. The DMM provides a broad bandpass / high flux operational mode for the beamline and, when used in tandem with the Si (111) double crystal monochromator, it gives a very high higher-order harmonics suppression. The design details of the DMM and the first commissioning results obtained using the DMM are presented.

  17. Correction of image drift and distortion in a scanning electron microscopy.

    Science.gov (United States)

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system.

  18. Professional Acceptance Of Electronic Images In Radiologic Practice

    Science.gov (United States)

    Gitlin, Joseph N.; Curtis, David J.; Kerlin, Barbara D.; Olmsted, William W.

    1983-05-01

    During the past four years, a large number of radiographic images have been interpreted in both film and video modes in an effort to determine the utility of digital/analogue systems in general practice. With the cooperation of the Department of Defense, the MITRE Corporation, and several university-based radiology departments, the Public Health Service has participated in laboratory experiments and a teleradiology field trial to meet this objective. During the field trial, 30 radiologists participated in the interpretation of more than 4,000 diagnostic x-ray examinations that were performed at distant clinics, digitized, and transmitted to a medical center for interpretation on video monitors. As part of the evaluation, all of the participating radiologists and the attending physicians at the clinics were queried regarding the teleradiology system, particularly with respect to the diagnostic quality of the electronic images. The original films for each of the 4,000 examinations were read independently, and the findings and impressions from each mode were compared to identify discrepancies. In addition, a sample of 530 cases was reviewed and interpreted by a consensus panel to measure the accuracy of findings and impressions of both film and video readings. The sample has been retained in an automated archive for future study at the National Center of Devices and Radiological Health facilities in Rockville, Maryland. The studies include a comparison of diagnostic findings and impressions from 1024 x 1024 matrices with those obtained from the 512 x 512 format used in the field trial. The archive also provides a database for determining the effect of data compression techniques on diagnostic interpretations and establishing the utility of image processing algorithms. The paper will include an analysis of the final results of the field trial and preliminary findings from the ongoing studies using the archive of cases at the National Center for Devices and Radiological

  19. A diffracted-beam monochromator for long linear detectors in X-ray diffractometers with Bragg-Brentano parafocusing geometry

    NARCIS (Netherlands)

    Van der Pers, N.M.; Hendrikx, R.W.A.; Delhez, R.; Böttger, A.J.

    2013-01-01

    A new diffracted-beam monochromator has been developed for Bragg-Brentano X-ray diffractometers equipped with a linear detector. The monochromator consists of a cone-shaped graphite highly oriented pyrolytic graphite crystal oriented out of the equatorial plane such that the parafocusing geometry is

  20. Real-time portal imaging devices operating on high-pressure gaseous electronic principles

    Science.gov (United States)

    Giakos, George C.; Richardson, Donna B.; Ghotra, P.; Pillai, Bindu; Seetharaman, Lakshmi; Passalaqua, Anthony M.; DiBianca, Frank A.; Endorf, Robert J.; Devidas, Sreenivas

    1995-05-01

    A novel real-time portal imaging scanning detector, based on high-pressure gaseous electronics principles and operating up to 60 atmospheres, is presented and the predicted performance of this detector is analyzed. The idea is to utilize high pressure gaseous electronics imaging detectors operating in the saturation regime, aimed at improving image performance characteristics in real time portal imaging. As a result, beam localization errors are controlled, identified and corrected accurately and the patient radiotherapy treatment becomes more effective.

  1. SPR imaging based electronic tongue via landscape images for complex mixture analysis.

    Science.gov (United States)

    Genua, Maria; Garçon, Laurie-Amandine; Mounier, Violette; Wehry, Hillary; Buhot, Arnaud; Billon, Martial; Calemczuk, Roberto; Bonnaffé, David; Hou, Yanxia; Livache, Thierry

    2014-12-01

    Electronic noses/tongues (eN/eT) have emerged as promising alternatives for analysis of complex mixtures in the domain of food and beverage quality control. We have recently developed an electronic tongue by combining surface plasmon resonance imaging (SPRi) with an array of non-specific and cross-reactive receptors prepared by simply mixing two small molecules in varying and controlled proportions and allowing the mixtures to self-assemble on the SPRi prism surface. The obtained eT generated novel and unique 2D continuous evolution profiles (CEPs) and 3D continuous evolution landscapes (CELs) based on which the differentiation of complex mixtures such as red wine, beer and milk were successful. The preliminary experiments performed for monitoring the deterioration of UHT milk demonstrated its potential for quality control applications. Furthermore, the eT exhibited good repeatability and stability, capable of operating after a minimum storage period of 5 months.

  2. Application of Ion and Electron Momentum Imaging to Atomic Collisions

    Science.gov (United States)

    Cocke, C. L.

    2000-06-01

    COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) combines fast imaging detectors with a supersonically cooled gas target to allow the charged particles from any ionizing collision, including both recoil ions and electrons, to be collected with extremely high efficiency and with fully measured vector momenta. Since all particles are measured in event mode, the full multi-dimensional momentum space is mapped. We will review several examples of the use of this technique to study two- , three- and four-body final states created in ionizing interactions of photons and charged particles with He and D2 . The momentum spectra of electrons ejected from these targets by slow projectiles reveal the stucture of the molecular orbitals which are promoted into the continuum. Double photoionization of the same targets reveals patterns which can be interpreted in terms of collective coordinates. Two-electron removal from D2 by Xe ^26+ reveals the influence of the projectile field on the dissociation process. A recent application of the technique to ionization by high intensity laser fields will be discussed. Work performed in collaboration with M.A.Abdallah^1, I.Ali^1, Matthias Achler^2, H.Braeuning^2,3, Angela Braeuning-Deminian^2, Achim Czasch^2,3, R.Doerner^2,3, R.DuBois^6, A. Landers^1,5, V.Mergel^2, R.E.Olson^6, T.Osipov^1, M.Prior^3, H.Schmidt-Boecking^2, M.Singh^1, A.Staudte^2,3, T.Weber^2, W.Wolff^4, and H.E.Wolf^4 ^1J.R.Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506; ^2 Institut fuer Kernphysik, Univ. Frankfurt, August-Euler-Str.6,D-60486 Frankfurt, Germany ; ^3Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ^4Instituto de Fisica, Universidade Federal do Rio de Janeiro Caixa Postal 68.528, 21945-970, Rio de Janeiro, Brazil; ^5Physics Dept., Western Michigan University, Kalamazoo, MI 49008; ^6Physics Dept., Univ. Missouri Rolla, Rolla, MO 65409 Work supported by the Division of Chemical Sciences, Office of Basic

  3. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    Science.gov (United States)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  4. Post calibration of the two-dimensional electron cyclotron emission imaging instrument with electron temperature characteristics of the magnetohydrodynamic instabilities.

    Science.gov (United States)

    Choi, M J; Park, H K; Yun, G S; Nam, Y B; Choe, G H; Lee, W; Jardin, S

    2016-01-01

    The electron cyclotron emission imaging (ECEI) instrument is widely used to study the local electron temperature (Te) fluctuations by measuring the ECE intensity IECE ∝ Te in tokamak plasmas. The ECEI measurement is often processed in a normalized fluctuation quantity against the time averaged value due to complication in absolute calibration. In this paper, the ECEI channels are relatively calibrated using the flat Te assumption of the sawtooth crash or the tearing mode island and a proper extrapolation. The 2-D relatively calibrated electron temperature (Te,rel) images are reconstructed and the displacement amplitude of the magnetohydrodynamic modes can be measured for the accurate quantitative growth analysis.

  5. Char porosity characterisation by scanning electron microscopy and image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, H.S.; Rosenberg, P.; Petersen, H.I.; Soerensen, L.H. [Danfoss A/S, Nordborg (Denmark)

    2000-09-01

    No significant change in either the morphotype composition or the macroporosity (pores {gt}5 {mu}m) in the 0-30 wt.% char burnout interval were revealed by reflected light microscopy or image analysis. Two high temperature char series from a Tertiary South American coal (C1) and a Permian Gondwana coal (C2) were therefore examined by scanning electron microscopy to provide information on the combustion process up to {approximately} 60 wt% char burnout. This study documents a significant mesopore ({approximately} 0.1-5 {mu}m) development on the fused chars in the burnout interval studied. A method to quantify the size and amount of the mesopores is described and both the parameters increased with increasing char burnout. Above a char burnout of {approximately} 30 wt% an increase in macroporosity was detected and ascribed to coalescence of mesopores to form large pores. Although the measurement of mesoporosity is restricted to fused chars, i.e. pores in fragments and the char morphotypes inertoid, fusinoid and solid could not be measured, the consideration of mesoporosity seems to be fundamental in understanding, evaluating and modelling combustion processes in the char burnout interval studied. 7 refs., 9 figs., 4 tabs.

  6. Measurement & Minimization of Mount Induced Strain on Double Crystal Monochromator Crystals

    Science.gov (United States)

    Kelly, J.; Alcock, S. G.

    2013-03-01

    Opto-mechanical mounts can cause significant distortions to monochromator crystals and mirrors if not designed or implemented carefully. A slope measuring profiler, the Diamond-NOM [1], was used to measure the change in tangential slope as a function of crystal clamping configuration and load. A three point mount was found to exhibit the lowest surface distortion (Diamond Light Source.

  7. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM.

  8. Nicotiana Occidentalis Chloroplast Ultrastructure imaged with Transmission Electron Microscopes Working at Different Accelerating Voltages

    OpenAIRE

    SVIDENSKÁ, Silvie

    2010-01-01

    The main goal of this thesis is to study and compare electron microscopy images of Nicotiana Occidentalis chloroplasts, obtained from two types of transmission electron microscopes,which work with different accelerating voltage of 80kV and 5kV. The two instruments, TEM JEOL 1010 and low voltage electron microscope LVEM5 are employed for experiments. In the first theoretical part, principle of electron microscopy and chloroplast morphology is described. In experimental part, electron microscop...

  9. An application of ultrasonic phased array imaging in electron beam welding inspection

    Institute of Scientific and Technical Information of China (English)

    周琦; 刘方军; 李志军; 李旭东; 齐铂金

    2002-01-01

    The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.

  10. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    NARCIS (Netherlands)

    Tobias, B. J.; Classen, I.G.J.; Domier, C.W.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the o

  11. Evaluation of image quality for various electronic portal imaging devices in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Son, Soon Yong; Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Jung Min [Dept. of College of Health Science, Radiologic Science, Korea University, Seoul (Korea, Republic of); and others

    2015-12-15

    In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) × 10 (length) × 1 (width) cm3 and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeamTM (Varian), BEAMVIEWPLUS (Siemens), iViewGT (Elekta) and Clinac®iX (Varian) were used. As for MTF results, TrueBeamTM(Varian) flattening filter free(FFF) showed the highest values of 0.46 mm-1and1.40mm-1for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and 1 mm-1DQE of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID)

  12. Towards a digital model for an electron-microscope image.

    Science.gov (United States)

    Burge, R E; Ali, S M

    1988-01-01

    An image model is defined based on the boundaries between image regions with different textures and series of descriptions of those textures. Six models of texture are studied under the categories of pixel-based and region-based models. Several techniques for the determination of the unit-cell of textures are presented. The model is applied to the consideration of (a) image correction, (b) the classification of image texture, (c) image enhancement including averaging of detail in periodic specimens, and (d) image data compression. A floating point format, which provides a significant simplification for the Huffman code, is also introduced.

  13. Evaluation of usefulness of portal image using Electronic Portal Imaging Device (EPID) in the patients who received pelvic radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Chul; Kim, Heon Jong; Park, Seong Young; Cho, Young Kap; Loh, John J. K. [College of Medicine, Inha Univ., Pusan (Korea, Republic of); Park, Won; Suh, Chang Ok; Kim, Gwi Eon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    1998-12-01

    To evaluate the usefulness of electronic portal imaging device through objective compare of the images acquired using an EPID and a conventional port film. From Apr. to Oct. 1997, a total of 150 sets of images from 20 patients who received radiation therapy in the pelvis area were evaluated in the Inha University Hospital and Severance Hospital. A dual image recording technique was devised to obtain both electronic portal images and port film images simultaneously with one treatment course. We did not perform double exposure. Five to ten images were acquired from each patient. All images were acquired from posteroanterior (PA) view except images from two patients. A dose rate of 100-300 MU/min and a 10-MV X-ray beam were used and 2-10 MUs were required to produce a verification image during treatment. Kodak diagnostic film with metal/film imaging cassette which was located on the top of the EPID detector was used for the port film. The source to detector distance was 140 cm. Eight anatomical landmarks (pelvic brim, sacrum, acetabulum, iliopectineal line, symphysis, ischium, obturator foramen, sacroiliac joint) were assessed. Four radiation oncologist joined to evaluate each image. The individual landmarks in the port film or in the EPID were rated-very clear (1), clear (2), visible (3), notclear (4), not visible (5). Using an video camera based EPID system, there was no difference of image quality between no enhanced EPID images and port film images. However, when we provided some change with window level for the portal image, the visibility of the sacrum and obturator foramen was improved in the portal images than in the port film images. All anatomical landmarks were more visible in the portal images than in the port film when we applied the CLAHE mode enhancement. The images acquired using an matrix ion chamber type EPID were also improved image quality after window level adjustment. The quality of image acquired using an electronic portal imaging device was

  14. Monte Carlo modeling of cavity imaging in pure iron using back-scatter electron scanning microscopy

    Science.gov (United States)

    Yan, Qiang; Gigax, Jonathan; Chen, Di; Garner, F. A.; Shao, Lin

    2016-11-01

    Backscattered electrons (BSE) in a scanning electron microscope (SEM) can produce images of subsurface cavity distributions as a nondestructive characterization technique. Monte Carlo simulations were performed to understand the mechanism of void imaging and to identify key parameters in optimizing void resolution. The modeling explores an iron target of different thicknesses, electron beams of different energies, beam sizes, and scan pitch, evaluated for voids of different sizes and depths below the surface. The results show that the void image contrast is primarily caused by discontinuity of energy spectra of backscattered electrons, due to increased outward path lengths for those electrons which penetrate voids and are backscattered at deeper depths. Size resolution of voids at specific depths, and maximum detection depth of specific voids sizes are derived as a function of electron beam energy. The results are important for image optimization and data extraction.

  15. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  16. Imaging Gallium Nitride High Electron Mobility Transistors to Identify Point Defects

    Science.gov (United States)

    2014-03-01

    REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE IMAGING GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS TO IDENTIFY...Identification of these trends will assist in the improvement of gallium nitride HEMT fabrication processes leading to the development of more...reliable devices. 14. SUBJECT TERMS Electron microscopy, Gallium Nitride (GaN), high electron mobility transistor (HEMT

  17. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  18. Spectral radiant power measurements of VUV and soft x-ray sources using the electron storage ring BESSY as a radiometric standard source.

    Science.gov (United States)

    Fischer, J; Kühne, M; Wende, B

    1984-12-01

    A method is described for measuring the spectral radiant power of VUV and soft x-ray sources using the electron storage ring BESSY as a radiometric standard source of calculable spectral radiant power and degree of polarization. An ellipsoidal grazing incidence mirror stigmatically images the stored electrons or the source under investigation in equal optical conditions into a toroidal grating monochromator. The monochromator can be rotated around its optical axis in UHV conditions to account for different degrees of polarization of the two sources. The accuracy presently available with this method is demonstrated by a measurement of the spectral concentration of radiant intensity of a laser-produced tungsten plasma in the wavelength range between 7 and 100 nm with an overall uncertainty of 10%. A detailed analysis of the contributions to this uncertainty shows that the major part of it is caused by the presently uncertain knowledge of the polarizing properties of the radiometric instrumentation and by the uncertainty of the correction procedure which accounts for the influence of higher diffraction orders of the monochromator grating. The results of the radiation measurements of the laser-produced tungsten plasma let us expect that this source type has the potential to serve as a radiometric transfer standard in the VUV and soft x-ray range below 100 nm.

  19. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd., Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M.; Edwards-Gau, Gregory R. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  20. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Science.gov (United States)

    Sutter, John P.; Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-01

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  1. Prevention of electron beam transmittance for biological cell imaging using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Nawa, Yasunori; Inami, Wataru; Kawata, Yoshimasa

    2017-04-01

    We demonstrated the high-spatial-resolution imaging of label-free biological cells using an electron beam excitation-assisted optical (EXA) microscope without irradiation damage by the electron beam. An EXA microscope can be used to observe a specimen with a nanometric light source excited in the Si3N4 membrane by an electron beam. The incident electron beam penetrates the Si3N4 membrane and damages the specimen. To suppress the irradiation damage of the specimen, we prevented the transmittance of the electron beam by coating the Si3N4 membrane with a gold thin film. To obtain an electron beam transmittance through the Si3N4 of 0%, a gold film of 15 nm thickness was required. By adding the gold layer, a label-free cellular structure was observed with 135-nm spatial resolution.

  2. Accessing select properties of the electron with ImageJ: an open-source image-processing paradigm

    Science.gov (United States)

    Alam, Junaid; Shaheen, Amrozia; Sabieh Anwar, Muhammad

    2014-01-01

    This paper describes a way to measure the radii of curvature of electrons following a curved path in a magnetic field and the radii of the concentric rings resulting from the interference of the electrons inside an evacuated diffraction tube. High-resolution imaging dramatically increases the precision of measurements of physical distances, if they are along circular arcs. Digital photographs were taken and the free software ImageJ that comes with a multitude of image-processing routines and is widely used in life sciences research was employed for measurement and analysis.

  3. Image formation mechanisms in scanning electron microscopy of carbon nanotubes, and retrieval of their intrinsic dimensions.

    Science.gov (United States)

    Jackman, H; Krakhmalev, P; Svensson, K

    2013-01-01

    We present a detailed analysis of the image formation mechanisms that are involved in the imaging of carbon nanotubes with scanning electron microscopy (SEM). We show how SEM images can be modelled by accounting for surface enhancement effects together with the absorption coefficient for secondary electrons, and the electron-probe shape. Images can then be deconvoluted, enabling retrieval of the intrinsic nanotube dimensions. Accurate estimates of their dimensions can thereby be obtained even for structures that are comparable to the electron-probe size (on the order of 2 nm). We also present a simple and robust model for obtaining the outer diameter of nanotubes without any detailed knowledge about the electron-probe shape.

  4. Image formation mechanisms in scanning electron microscopy of carbon nanotubes, and retrieval of their intrinsic dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, H., E-mail: henrik.jackman@kau.se [Department of Physics and Electrical Engineering, Karlstad University, SE-651 88 Karlstad (Sweden); Krakhmalev, P. [Department of Mechanical and Materials Engineering, Karlstad University, SE-651 88 Karlstad (Sweden); Svensson, K. [Department of Physics and Electrical Engineering, Karlstad University, SE-651 88 Karlstad (Sweden)

    2013-01-15

    We present a detailed analysis of the image formation mechanisms that are involved in the imaging of carbon nanotubes with scanning electron microscopy (SEM). We show how SEM images can be modelled by accounting for surface enhancement effects together with the absorption coefficient for secondary electrons, and the electron-probe shape. Images can then be deconvoluted, enabling retrieval of the intrinsic nanotube dimensions. Accurate estimates of their dimensions can thereby be obtained even for structures that are comparable to the electron-probe size (on the order of 2 nm). We also present a simple and robust model for obtaining the outer diameter of nanotubes without any detailed knowledge about the electron-probe shape. -- Highlights: Black-Right-Pointing-Pointer We model the image formation of free-standing carbon nanotubes in SEM. Black-Right-Pointing-Pointer The electron-probe shape is characterized from SEM-images. Black-Right-Pointing-Pointer We use the electron-probe shape to deconvolute SEM-images of carbon nanotubes. Black-Right-Pointing-Pointer We present a simple method for retrieval of intrinsic nanotube dimensions.

  5. Electron beam moiré fringes imaging by image converter tube with a magnetic lens

    Science.gov (United States)

    Liao, Yubo; Lei, Yunfei; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan

    2016-06-01

    An image converter tube with a magnetic lens was used to obtain static images of moiré fringes formed by electron beam. These moiré fringes are formed due to the interference between the anode mesh and the photocathode containing slits of various spatial frequencies. Moiré fringes are observed at an accelerating voltage of 3.5 kV requiring the magnetic excitation condition of ˜550 ampere-turns. Not only the features of the fringes are analyzed but also the change of fringe spacing as a function of the rotation angle is investigated. The experimental results are found well in agreement with the theoretical analysis. By changing the rotation angle or adjusting the excitation condition of the magnetic lens, we were able to record parallel moiré and secondary moiré fringes too. The secondary moiré fringes can be observed in the rotation angle range of -39.5° to -50.6°. The theoretical analysis indicates that the secondary moiré is formed by the interference between the photocathode slits and the 2-D periodic structure of the anode mesh. Combining our proposed moiré method with the pulse-dilation technique may potentially open the door for future applications, in various fields including, but not limited to, ultrafast electrical pulse diagnostics.

  6. Laser induced electron diffraction: a tool for molecular orbital imaging

    CERN Document Server

    Peters, Michel; Charron, Eric; Keller, Arne; Atabek, Osman

    2012-01-01

    We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800\\,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the electron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents.

  7. On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activity

    NARCIS (Netherlands)

    Tobias, B. J.; Boivin, R. L.; Boom, J. E.; Classen, I.G.J.; Domier, C.W.; Donne, A. J. H.; Heidbrink, W. W.; N C Luhmann Jr.,; Munsat, T.; Muscatello, C. M.; Nazikian, R.; Park, H. K.; Spong, D. A.; Turnbull, A. D.; VanZeeland, M. A.; Yun, G. S.

    2011-01-01

    Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfven wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous

  8. A magnetically adsorbed fine adjustment mechanism of the second crystal in a double-crystal monochromator

    Institute of Scientific and Technical Information of China (English)

    CAO Chong-Zhen; GAO Xue-Guan; MA Pei-Sun; WANG Feng-Qin; HE Dong-Qing; HUANG Yu-Ying; LIU Peng

    2005-01-01

    In a fine adjustment mechanism of the second crystal in a double-crystal monochromator, a compression spring is usually used as a return force element, but it often produces permanent deform after some time. A novel fine adjustment mechanism is put forward, which utilizes permanent-magnet as the return force element instead of a compression spring. Its principle and advantages of adjusting the pitch angle and the roll angle are analyzed, and the structure parameters of the permanent-magnet, which is the key pa rt of the fine adjustment mechanism, are optimized. The magnetically adsorbed fine adjustment mechanism has been testified and applied successfully in the double-crystal monochromator of 4W1B beam line in Beijing Synchrotron Radiation Facility (BSRF).

  9. Alignment and characterization of the two-stage time delay compensating XUV monochromator

    CERN Document Server

    Eckstein, Martin; Kubin, Markus; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Vrakking, Marc J J; Kornilov, Oleg

    2016-01-01

    We present the design, implementation and alignment procedure for a two-stage time delay compensating monochromator. The setup spectrally filters the radiation of a high-order harmonic generation source providing wavelength-selected XUV pulses with a bandwidth of 300 to 600~meV in the photon energy range of 3 to 50~eV. XUV pulses as short as $12\\pm3$~fs are demonstrated. Transmission of the 400~nm (3.1~eV) light facilitates precise alignment of the monochromator. This alignment strategy together with the stable mechanical design of the motorized beamline components enables us to automatically scan the XUV photon energ in pump-probe experiments that require XUV beam pointing stability. The performance of the beamline is demonstrated by the generation of IR-assisted sidebands in XUV photoionization of argon atoms.

  10. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Science.gov (United States)

    Lee, Han Rim; Kim, Sung Hun; Park, Jong Hoon; Jung, Won Gyun; Lim, Hansang; Kim, Chan Hyeong

    2017-06-01

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a 90Sr beta source, a 60Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  11. Fast continuous energy scan with dynamic coupling of the monochromator and undulator at the DEIMOS beamline.

    Science.gov (United States)

    Joly, L; Otero, E; Choueikani, F; Marteau, F; Chapuis, L; Ohresser, P

    2014-05-01

    In order to improve the efficiency of X-ray absorption data recording, a fast scan method, the Turboscan, has been developed on the DEIMOS beamline at Synchrotron SOLEIL, consisting of a software-synchronized continuous motion of the monochromator and undulator motors. This process suppresses the time loss when waiting for the motors to reach their target positions, as well as software dead-time, while preserving excellent beam characteristics.

  12. Focusing characteristics of diamond crystal x-ray monochromators. An experimental and theoretical comparison

    DEFF Research Database (Denmark)

    Rio, M.S. del; Grübel, G.; Als-Nielsen, J.

    1995-01-01

    Perfect crystals in transmission (Laue) geometry can be used effectively for x-ray monochromators, and moreover, perfect Laue crystals show an interesting focusing effect when the incident beam is white and divergent. This focusing is directly dependent on the incident beam divergence and on the ...... from a diamond crystal in Lane geometry, and we analyze and explain the results by comparison with ray-tracing simulations. (C) 1995 American Institute of Physics....

  13. A point-focusing small angle x-ray scattering camera using a doubly curved monochromator of a W/Si multilayer

    Science.gov (United States)

    Sasanuma, Yuji; Law, Robert V.; Kobayashi, Yuji

    1996-03-01

    A point-focusing small angle x-ray scattering (SAXS) camera using a doubly curved monochromator of a W/Si multilayer has been designed, constructed, and tested. The two radii of curvature of the monochromator are 20 400 and 7.6 mm. The reflectivity of its first-order Bragg reflection for CuKα radiation was calculated to be 0.82, being comparable to that (0.81) of its total reflection. By only 10 s x-ray exposure, scattering from a high-density polyethylene film was detected on an imaging plate (IP). A rotating-anode x-ray generator operated at 40 kV and 30 mA was used. Diffraction from rat-tail collagen has shown that the optical arrangement gives the Bragg spacing up to, at least, 30 nm for CuKα radiation. Combined with IPs, the camera may permit us to carry out time-resolved SAXS measurements for phase behaviors of liquid crystals, lipids, polymer alloys, etc., on conventional x-ray generators available in laboratories.

  14. Imaging the dynamics of free-electron Landau states.

    Science.gov (United States)

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-08-08

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

  15. FEA analysis of diamond as IMCA{close_quote}s monochromator crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chrzas, J.; Cimpoes, S.; Ivanov, I.N. [CSRRI, Illinois Institute of Technology, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)

    1996-09-01

    A great deal of effort has been make in recent years in the field of undulator high heat load optics, and currently there are several tractable options [Rev. Sci. Instrum. {bold 69}, 2792 (1994); Nucl. Instrum. Methods A {bold 266}, 517 (1988); Nucl. Instrum. Methods A {bold 239}, 555 (1993)]. Diamond crystals offer some attractive options{endash}water as the coolant, the use of established monochromator mechanisms, simpler monochromator design as compared to the use of liquid nitrogen or gallium. The use of diamond crystals as the optical elements in a double-crystal monochromator for the IMCA-CAT and MR-CAT ID beamlines has been studied. A first crystal mounting scheme using an indium-gallium eutectic as the heat transfer medium developed in collaboration with DND-CAT and M. Hart will be presented. A FEA analysis of the IMCA-CAT ID beamline arrangement using the APS undulator A as the radiaiton source will be presented. {copyright} {ital 1996 American Institute of Physics.}

  16. Bent Crystal Monochromator with Constant Crystal Center Position and 2-theta Arm for a Dispersive Beamline

    Science.gov (United States)

    Neuenschwander, Regis T.; Tolentino, Hélio C. N.

    2004-05-01

    For the new LNLS dispersive beam line it was designed a single-crystal monochromator and a 2-theta arm. The monochromator uses a new bender design assembled on the top of an in-vacuum HUBER goniometer. This bender is able to apply independent torque on each extremity of the crystal in a way that changes in the curvature radius do not affect the position of the center of the crystal. It also has a twist mechanism, based on eccentric bearings and elastic components. The crystal extremities are clamped to the bender using two water-cooled copper blocks, for thermal stabilization. All the bender's movements are done with vacuum compatible stepping-motors. The vacuum chamber was built with enough space to allow future installation of another bender for crystals with different Bragg planes. The internal mechanics is isolated from the vacuum chamber and can move up and down with three high precision jacks. The design of the 2-theta arm is based on two linear translation stages and some special bearings. The two stages are equipped with linear encoders, ball screws end linear bearings. With a proper alignment procedure, it is possible to find the equations that controls each translation stage in order to get a virtual rotation referenced to the monochromator center. The main arm is composed of a steel frame, a 3m long granite block, a central aluminum optical rail and two auxiliary side rails.

  17. Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator

    Science.gov (United States)

    Sergueev, I.; Wille, H.-C.; Hermann, R. P.; Bessas, D.; Shvyd’ko, Yu. V.; Zając, M.; Rüffer, R.

    2011-01-01

    A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20–40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of 121Sb at 37.13 keV, 125Te at 35.49 keV, 119Sn at 23.88 keV, 149Sm at 22.50 keV and 151Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150–300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. PMID:21862862

  18. High heat flux x-ray monochromators: What are the limits?

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.S.

    1997-06-01

    First optical elements at third-generation, hard x-ray synchrotrons, such as the Advanced Photon Source (APS), are subjected to immense heat fluxes. The optical elements include crystal monochromators, multilayers and mirrors. This paper presents a mathematical model of the thermal strain of a three-layer (faceplate, heat exchanger, and baseplate), cylindrical optic subjected to narrow beam of uniform heat flux. This model is used to calculate the strain gradient of a liquid-gallium-cooled x-ray monochromator previously tested on an undulator at the Cornell High Energy Synchrotron Source (CHESS). The resulting thermally broadened rocking curves are calculated and compared to experimental data. The calculated rocking curve widths agree to within a few percent of the measured values over the entire current range tested (0 to 60 mA). The thermal strain gradient under the beam footprint varies linearly with the heat flux and the ratio of the thermal expansion coefficient to the thermal conductivity. The strain gradient is insensitive to the heat exchanger properties and the optic geometry. This formulation provides direct insight into the governing parameters, greatly reduces the analysis time, and provides a measure of the ultimate performance of a given monochromator.

  19. Atomic-focuser imaging in electron nanodiffraction from carbon nanoshells

    Science.gov (United States)

    Cowley

    2000-03-01

    When nanodiffraction patterns are obtained by transmission through the top and bottom walls of near-spherical, hollow carbon nano-shells, using the focused probe of a STEM instrument, a graphitic crystal in one wall may act as an atomic focuser to produce high-resolution images of small regions of the other wall within the central beam and the diffraction disks of the nanodiffraction pattern. A theoretical analysis of the imaging process is given. Images showing one- and two-dimensional periodicities, with fringe spacings as small as 0.124 nm, and also images showing non-periodic features have been obtained from carbon nanoshells having diameters of the order of 100 nm.

  20. Imaging Molecular Structure and Dynamics utilizing X-ray Free-Electron-Laser Sources

    OpenAIRE

    Küpper, Jochen

    2015-01-01

    Imaging controlled molecules with ultrashort x- ray pulses from free-electron lasers enables the recording of “molecular movies”, i.e., snapshots of molecules at work, with spatial (picometer) and temporal (femtosecond) atomic resolution.

  1. Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Naresh-Kumar, G.; Hourahine, B.; Trager-Cowan, C. [Department of Physics, SUPA, University of Strathclyde, Glasgow (United Kingdom); Vilalta-Clemente, A.; Ruterana, P. [CIMAP UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6, Caen (France); Gamarra, P.; Lacam, C.; Tordjman, M.; Di Forte-Poisson, M.A. [Thales Research and Technology, III-V Lab, Marcoussis (France); Parbrook, P.J. [Department of Electrical and Electronic Engineering, University of Sheffield (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd., Claremont House, High St, Lydney (United Kingdom); England, G. [K. E. Developments Ltd., Cambridge (United Kingdom)

    2012-03-15

    We describe the use of electron channelling contrast imaging (ECCI) - in a field emission scanning electron microscope (SEM) - to reveal and identify defects in nitride semiconductor thin films. In ECCI changes in crystallographic orientation, or changes in lattice constant due to local strain, are revealed by changes in grey scale in an image constructed by monitoring the intensity of backscattered electrons (BSEs) as an electron beam is scanned over a suitably oriented sample. Extremely small orientation changes are detectable, enabling small angle tilt and rotation boundaries and dislocations to be imaged. Images with a resolution of tens of nanometres are obtainable with ECCI. In this paper, we describe the use of ECCI with TEM to determine threading dislocation densities and types in InAlN/GaN heterostructures grown on SiC and sapphire substrates. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2012-06-04

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION:...

  3. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    Science.gov (United States)

    2012-05-30

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice....

  4. Post calibration of the two-dimensional electron cyclotron emission imaging instrument with electron temperature characteristics of the magnetohydrodynamic instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. J., E-mail: mjchoi@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Park, H. K. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Yun, G. S.; Nam, Y. B.; Choe, G. H. [Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Lee, W. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Jardin, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-01-15

    The electron cyclotron emission imaging (ECEI) instrument is widely used to study the local electron temperature (T{sub e}) fluctuations by measuring the ECE intensity I{sub ECE} ∝ T{sub e} in tokamak plasmas. The ECEI measurement is often processed in a normalized fluctuation quantity against the time averaged value due to complication in absolute calibration. In this paper, the ECEI channels are relatively calibrated using the flat T{sub e} assumption of the sawtooth crash or the tearing mode island and a proper extrapolation. The 2-D relatively calibrated electron temperature (T{sub e,rel}) images are reconstructed and the displacement amplitude of the magnetohydrodynamic modes can be measured for the accurate quantitative growth analysis.

  5. An image acquisition system built with a modular frame grabber for scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, S. [The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Kapp, O.H. [The Department of Radiology and The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    1995-09-01

    We have built an image acquisition and processing system based on a modular frame grabber board (MFG) for use with scanning (or scanning transmission) electron microscopes. The variable-scan acquisition module of the grabber board provides compatibility with electron microscopes processing various scan speeds, e.g., the very slow scan rate of our mirror-type electron microscope. In addition to the acquisition function, the board provides many image processing capabilities. A special time-base unit was built to synchronize the acquisition system with the scanning system on the electron microscope. A Windows application has been built to operate the MFG as well as manage all functions of the electron microscope. Using this approach we have been able to greatly simplify the task of digital image acquisition as well as creating a powerful and seamless interface to our Windows-based environment. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    Science.gov (United States)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  7. Quasi-3D electron cyclotron emission imaging on J-TEXT

    Science.gov (United States)

    Zhao, Zhenling; Zhu, Yilun; Tong, Li; Xie, Jinlin; Liu, Wandong; Yu, Changxuan; Yang, Zhoujun; Zhuang, Ge; Luhmann, N. C., Jr.; Domier, C. W.

    2017-09-01

    Electron cyclotron emission imaging (ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in different toroidal ports with 67.5 degree separation have been implemented on J-TEXT to study the 3D structure of magnetohydrodynamic (MHD) instabilities. Each system consists of 12 (vertical) × 16 (horizontal) = 192 channels and the image of the 2nd harmonic X-mode electron cyclotron emission can be captured continuously in the core plasma region. The field curvature adjustment lens concept is developed to control the imaging plane for receiving optics of the ECEI systems. Field curvature of the image can be controlled to match the emission layer. Consequently, a quasi-3D image of the MHD instability in the core of the plasma has been achieved.

  8. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    OpenAIRE

    Berkels, Benjamin; Wirth, Benedikt

    2016-01-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of th...

  9. Segmentation of scanning electron microscopy images from natural rubber samples with gold nanoparticles using starlet wavelets

    OpenAIRE

    de Siqueira, Alexandre Fioravante; Cabrera, Flavio Camargo [UNESP; Pagamisse, Aylton; Job,Aldo Eloizo

    2016-01-01

    Electronic microscopy has been used for morphology evaluation of different materials structures. However, microscopy results may be affected by several factors. Image processing methods can be used to correct and improve the quality of these results. In this article, we propose an algorithm based on starlets to perform the segmentation of scanning electron microscopy images. An application is presented in order to locate gold nanoparticles in natural rubber membranes. In this application, our...

  10. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  11. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  12. A single probe for imaging photons, electrons and physical forces

    Science.gov (United States)

    Pilet, Nicolas; Lisunova, Yuliya; Lamattina, Fabio; Stevenson, Stephanie E.; Pigozzi, Giancarlo; Paruch, Patrycja; Fink, Rainer H.; Hug, Hans J.; Quitmann, Christoph; Raabe, Joerg

    2016-06-01

    The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

  13. Detecting and imaging single Rydberg electrons in a Bose-Einstein condensate

    CERN Document Server

    Karpiuk, Tomasz; Rzążewski, Kazimierz; Balewski, Jonathan B; Krupp, Alexander T; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman

    2014-01-01

    The quantum mechanical states of electrons in atoms and molecules are discrete spatial orbitals, which are fundamental for our understanding of atoms, molecules, and solids. They determine a wide range of basic atomic properties, ranging from the coupling to external fields to the whole field of chemistry. Nevertheless, the manifestation of electron orbitals in experiments so far has been rather indirect. In a detailed theoretical model, we analyze the impact of a single Rydberg electron onto a Bose-Einstein condensate and compare the results to experimental data. Based on this validated model we propose a method to optically image the shape of single electron orbitals using electron-phonon coupling in a Bose-Einstein condensate. This scheme requires only established and readily available experimental techniques and allows to directly capture textbook-like spatial images of single electronic orbitals in a single shot experiment.

  14. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure a...

  15. Commissioning of electron cyclotron emission imaging instrument on the DIII-D tokamak and first data

    NARCIS (Netherlands)

    Tobias, B.; Domier, C.W.; Liang, T.; Kong, X.; Yu, L.; Yun, G. S.; Park, H. K.; Classen, I.G.J.; Boom, J. E.; Donne, A. J. H.; Munsat, T.; Nazikian, R.; Van Zeeland, M.; Boivin, R. L.; N C Luhmann Jr.,

    2010-01-01

    A new electron cyclotron emission imaging diagnostic has been commissioned on the DIII-D tokamak. Dual detector arrays provide simultaneous two-dimensional images of T-e fluctuations over radially distinct and reconfigurable regions, each with both vertical and radial zoom capability. A total of 320

  16. Imaging the potential distribution of charged adsorbates on graphene by low-energy electron holography

    CERN Document Server

    Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2016-01-01

    While imaging individual atoms can routinely be achieved in high resolution transmission electron microscopy, visualizing the potential distribution of individually charged adsorbates leading to a phase shift of the probing electron wave is still a challenging task. Since low-energy electrons are sensitive to localized potential gradients, we employed this tool in the 30 eV kinetic energy range to visualize the potential distribution of localized charged adsorbates present on free-standing graphene.

  17. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  18. Modeling of Image Formation in Cryo-Electron Microscopy

    NARCIS (Netherlands)

    Vulovic, M.

    2013-01-01

    Knowledge of the structure of biological specimens is crucial for understanding life. Cryo-electron microscopy (cryo-EM) permits structural studies of biological specimen at their near-native state. The research performed in this thesis represents one of two subprojects of the FOM industrial partner

  19. Applications of Secondary Electron Composition Contrast Imaging Method in Microstructure Studies on Heterojunction Semiconductor Devices and Multilayer Materials

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+-Si1-xGex/p-Si heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.

  20. Sub-micron imaging of buried integrated circuit structures using scanning confocal electron microscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, S. P.; Levine, Z.; Zaluzec, N. J.; Materials Science Division; Northern Arizona Univ.; NIST

    2002-09-09

    Two-dimensional images of model integrated circuit components were collected using the technique of scanning confocal electron microscopy. For structures embedded about 5 {mu}m below the surface of a silicon oxide dielectric, a lateral resolution of 76{+-}9 nm was measured. Elemental mapping via x-ray emission spectrometry is demonstrated. A parallax analysis of images taken for various tilt angles to the electron beam allowed determination of the spacing between two wiring planes. The results show that scanning confocal electron microscopy is capable of probing buried structures at resolutions that will be necessary for the inspection of next-generation integrated circuit technology.

  1. Diffractive imaging of transient electronic core-shell structures in a nanoplasma

    CERN Document Server

    Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Krikunova, Maria; Müller, Jan-Phillipe; Müller, Maria; Oelze, Tim; Ovcharenko, Yevheniy; Sauppe, Mario; Schorb, Sebastian; Wolter, David; Harmand, Marion; Treusch, Rolf; Bostedt, Christoph; Möller, Thomas

    2016-01-01

    We have recorded the coherent diffraction images of individual xenon clusters using intense extreme ultraviolet free-electron laser pulses tuned to atomic and ionic resonances in order to elucidate the influence of light induced electronic changes on the diffraction pattern. The data show the emergence of a transient core-shell structure within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a cluster shell with strongly altered refraction. The presented resonant scattering approach enables the imaging of ultrafast electron dynamics with unprecedented spatial resolution on their natural time scale.

  2. Imaging the electron wave function in self-assembled quantum dots.

    Science.gov (United States)

    Vdovin, E E; Levin, A; Patanè, A; Eaves, L; Main, P C; Khanin, Y N; Dubrovskii, Y V; Henini, M; Hill, G

    2000-10-06

    Magnetotunneling spectroscopy is used as a noninvasive and nondestructive probe to produce two-dimensional spatial images of the probability density of an electron confined in a self-assembled semiconductor quantum dot. The technique exploits the effect of the classical Lorentz force on the motion of a tunneling electron and can be regarded as the momentum (k) space analog of scanning tunneling microscopy imaging. The images reveal the elliptical symmetry of the ground state and the characteristic lobes of the higher energy states.

  3. Separation of image-distortion sources and magnetic-field measurement in scanning electron microscope (SEM).

    Science.gov (United States)

    Płuska, Mariusz; Czerwinski, Andrzej; Ratajczak, Jacek; Katcki, Jerzy; Oskwarek, Lukasz; Rak, Remigiusz

    2009-01-01

    The electron-microscope image distortion generated by electromagnetic interference (EMI) is an important problem for accurate imaging in scanning electron microscopy (SEM). Available commercial solutions to this problem utilize sophisticated hardware for EMI detection and compensation. Their efficiency depends on the complexity of distortions influence on SEM system. Selection of a proper method for reduction of the distortions is crucial. The current investigations allowed for a separation of the distortions impact on several components of SEM system. A sum of signals from distortion sources causes wavy deformations of specimen shapes in SEM images. The separation of various reasons of the distortion is based on measurements of the periodic deformations of the images for different electron beam energies and working distances between the microscope final aperture and the specimen. Using the SEM images, a direct influence of alternating magnetic field on the electron beam was distinguished. Distortions of electric signals in the scanning block of SEM were also separated. The presented method separates the direct magnetic field influence on the electron beam below the SEM final aperture (in the chamber) from its influence above this aperture (in the electron column). It also allows for the measurement of magnetic field present inside the SEM chamber. The current investigations gave practical guidelines for selecting the most efficient solution for reduction of the distortions.

  4. Low-energy electron holographic imaging of gold nanorods supported by ultraclean graphene

    Energy Technology Data Exchange (ETDEWEB)

    Longchamp, Jean-Nicolas, E-mail: longchamp@physik.uzh.ch; Escher, Conrad; Latychevskaia, Tatiana; Fink, Hans-Werner

    2014-10-15

    An ideal support for an electron microscopy should be as thin as possible and be able to interact as little as possible with the primary electrons. Since graphene is atomically thin and made up of carbon atoms arranged in a honeycomb lattice, the potential to use graphene as a substrate in electron microscopy is enormous. Until now graphene has hardly ever been used for this purpose because the cleanliness of freestanding graphene before or after deposition of the objects of interest was insufficient. We demonstrate here by means of low-energy electron holographic imaging that freestanding graphene prepared with a platinum-metal catalysis method remains ultraclean even after re-exposure to ambient conditions and deposition of gold nanorods from the liquid phase. In the holographic reconstruction of gold particles the organic shell surrounding the objects is apparent while it is not detectable in SEM images of the very same sample, demonstrating the tremendous potential of low-energy electron holography for imaging of graphene-supported single biomolecules. - Highlights: • Deposition of nanometre-sized objects onto ultraclean freestanding graphene. • TEM imaging of ultraclean freestanding graphene. • Low-energy electron imaging of gold-nanorods deposited onto freestanding graphene.

  5. Datapath system for multiple electron beam lithography systems using image compression

    Science.gov (United States)

    Yang, Jeehong; Savari, Serap A.; Harris, H. Rusty

    2013-07-01

    The datapath throughput of electron beam lithography systems can be improved by applying lossless image compression to the layout images and using an electron beam writer that contains a decoding circuit packed in single silicon to decode the compressed image on-the-fly. In our past research, we had introduced Corner2, a lossless layout image compression algorithm that achieved significantly better performance in compression ratio, encoding/decoding speed, and decoder memory requirement than Block C4. However, it assumed a somewhat different writing strategy from those currently suggested by multiple electron beam (MEB) system designers. The Corner2 algorithm is modified so that it can support the writing strategy of an MEB system.

  6. Non-destructive electron microscopy imaging and analysis of biological samples with graphene coating

    Science.gov (United States)

    Park, Jong Bo; Kim, Yong-Jin; Kim, Seong-Min; Yoo, Je Min; Kim, Youngsoo; Gorbachev, Roman; Barbolina, I. I.; Kim, Sang Jin; Kang, Sangmin; Yoon, Myung-Han; Cho, Sung-Pyo; Novoselov, Konstantin S.; Hong, Byung Hee

    2016-12-01

    In electron microscopy (EM), charging of non-conductive biological samples by focused electron beams hinders their high-resolution imaging. Gold or platinum coatings have been commonly used to prevent such sample charging, but it disables further quantitative and qualitative chemical analyses such as energy dispersive spectroscopy (EDS). Here we report that graphene-coating on biological samples enables non-destructive high-resolution imaging by EM as well as chemical analysis by EDS, utilizing graphene’s transparency to electron beams, high conductivity, outstanding mechanical strength and flexibility. We believe that the graphene-coated imaging and analysis would provide us a new opportunity to explore various biological phenomena unseen before due to the limitation in sample preparation and image resolution, which will broaden our understanding on the life mechanism of various living organisms.

  7. A High-Speed CMOS Image Sensor with Global Electronic Shutter Pixels Using Pinned Diodes

    Science.gov (United States)

    Yasutomi, Keita; Tamura, Toshihiro; Furuta, Masanori; Itoh, Shinya; Kawahito, Shoji

    This paper describes a high-speed CMOS image sensor with a new type of global electronic shutter pixel. A global electronic shutter is necessary for imaging fast-moving objects without motion blur or distortion. The proposed pixel has two potential wells with pinned diode structure for two-stage charge transfer that enables a global electronic shuttering and reset noise canceling. A prototype high-speed image sensor fabricated in 0.18μm standard CMOS image sensor process consists of the proposed pixel array, 12-bit column-parallel cyclic ADC arrays and 192-channel digital outputs. The sensor achieves a good linearity at low-light intensity, demonstrating the perfect charge transfer between two pinned diodes. The input referred noise of the proposed pixel is measured to be 6.3 e-.

  8. Free electron lifetime achievements in Liquid Argon Imaging TPC

    CERN Document Server

    Baibussinov, B; Calligarich, E; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Rubbia, C; Varanini, F; Ventura, S

    2010-01-01

    A key feature for the success of the Liquid Argon TPC technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be initially and continuously kept at an exceptional purity. New purification techniques have been applied to a 120 litres LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to monitor the LAr purity. The short path length used (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic rays muons at sea level. A free electron lifetime of (21.4+7.3-4.3) ms, namely > 15.8 ms at 90 % C.L. has been observed under stable conditions over several weeks, corresponding to about 15 ppt (part per trillion) of Oxygen equivalent. At 500 V/cm, where the electron speed is approximately of 1.5 mm/us, the free electron lifetime >15 ms corresponds to an attenuation <15 % for a drift path of 5 m, opening the way to reliable operation of LAr TPC for exceptionall...

  9. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  10. Non-rigid image registration to reduce beam-induced blurring of cryo-electron microscopy images

    Energy Technology Data Exchange (ETDEWEB)

    Karimi Nejadasl, Fatemeh; Karuppasamy, Manikandan [Leiden University Medical Center, PO Box 9600, 2300RC Leiden (Netherlands); Newman, Emily R.; McGeehan, John E. [University of Portsmouth, Portsmouth PO1 2DY (United Kingdom); Ravelli, Raimond B. G., E-mail: raimond.nl@gmail.com [Leiden University Medical Center, PO Box 9600, 2300RC Leiden (Netherlands)

    2013-01-01

    Cryo-electron microscopy images of vitrified large macromolecular complexes can become blurred due to beam-induced specimen alterations. Exposure series are examined, and rigid and non-rigid image registration schemes are applied to reduce such blurring. The typical dose used to record cryo-electron microscopy images from vitrified biological specimens is so high that radiation-induced structural alterations are bound to occur during data acquisition. Integration of all scattered electrons into one image can lead to significant blurring, particularly if the data are collected from an unsupported thin layer of ice suspended over the holes of a support film. Here, the dose has been fractioned and exposure series have been acquired in order to study beam-induced specimen movements under low dose conditions, prior to bubbling. Gold particles were added to the protein sample as fiducial markers. These were automatically localized and tracked throughout the exposure series and showed correlated motions within small patches, with larger amplitudes of motion vectors at the start of a series compared with the end of each series. A non-rigid scheme was used to register all images within each exposure series, using natural neighbor interpolation with the gold particles as anchor points. The procedure increases the contrast and resolution of the examined macromolecules.

  11. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy

    CERN Document Server

    Popova-Gorelova, Daria; Santra, Robin

    2016-01-01

    We theoretically study how time- and angle-resolved photoemission spectroscopy can be applied for imaging coherent electron dynamics in molecules. We consider a process in which a pump pulse triggers coherent electronic dynamics in a molecule by creating a valence electron hole. An ultrashort extreme ultraviolet (XUV) probe pulse creates a second electron hole in the molecule. Information about the electron dynamics is accessed by analyzing angular distributions of photoemission probabilities at a fixed photoelectron energy. We demonstrate that a rigorous theoretical analysis, which takes into account the indistinguishability of transitions induced by the ultrashort, broadband probe pulse and electron hole correlation effects, is necessary for the interpretation of time- and angle-resolved photoelectron spectra. We show how a Fourier analysis of time- and angle-resolved photoelectron spectra from a molecule can be applied to follow its electron dynamics by considering photoelectron distributions from an indol...

  12. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  13. 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy.

    Science.gov (United States)

    Ortalan, Volkan; Zewail, Ahmed H

    2011-07-20

    We report the development of 4D scanning transmission ultrafast electron microscopy (ST-UEM). The method was demonstrated in the imaging of silver nanowires and gold nanoparticles. For the wire, the mechanical motion and shape morphological dynamics were imaged, and from the images we obtained the resonance frequency and the dephasing time of the motion. Moreover, we demonstrate here the simultaneous acquisition of dark-field images and electron energy loss spectra from a single gold nanoparticle, which is not possible with conventional methods. The local probing capabilities of ST-UEM open new avenues for probing dynamic processes, from single isolated to embedded nanostructures, without being affected by the heterogeneous processes of ensemble-averaged dynamics. Such methodology promises to have wide-ranging applications in materials science and in single-particle biological imaging.

  14. Medical Image Resource Center--making electronic teaching files from PACS.

    Science.gov (United States)

    Lim, C C Tchoyoson; Yang, Guo Liang; Nowinski, Wieslaw L; Hui, Francis

    2003-12-01

    A picture archive and communications system (PACS) is a rich source of images and data suitable for creating electronic teaching files (ETF). However, the potential for PACS to support nonclinical applications has not been fully realized: at present there is no mechanism for PACS to identify and store teaching files; neither is there a standardized method for sharing such teaching images. The Medical Image Resource Center (MIRC) is a new central image repository that defines standards for data exchange among different centers. We developed an ETF server that retrieves digital imaging and communication in medicine (DICOM) images from PACS, and enables users to create teaching files that conform to the new MIRC schema. We test-populated our ETF server with illustrative images from the clinical case load of the National Neuroscience Institute, Singapore. Together, PACS and MIRC have the potential to benefit radiology teaching and research.

  15. Carbon Nanotube Electron Emitter for X-ray Imaging

    Directory of Open Access Journals (Sweden)

    Jung Su Kang

    2012-11-01

    Full Text Available The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube emitter, and the transmitted X-ray image was of high resolution.

  16. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    Directory of Open Access Journals (Sweden)

    Ken Smart

    2016-04-01

    Full Text Available A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode.

  17. Integrated multimedia electronic patient record and graph-based image information for cerebral tumors.

    Science.gov (United States)

    Puentes, John; Batrancourt, Bénédicte; Atif, Jamal; Angelini, Elsa; Lecornu, Laurent; Zemirline, Abdelhamid; Bloch, Isabelle; Coatrieux, Gouenou; Roux, Christian

    2008-04-01

    Current electronic patient record (EPR) implementations do not incorporate medical images, nor structural information extracted from them, despite images increasing role for diagnosis. This paper presents an integration framework into EPRs of anatomical and pathological knowledge extracted from segmented magnetic resonance imaging (MRI), applying a graph of representation for anatomical and functional information for individual patients. Focusing on cerebral tumors examination and patient follow-up, multimedia EPRs were created and evaluated through a 3D navigation application, developed with open-source libraries and standards. Results suggest that the enhanced clinical information scheme could lead to original changes in the way medical experts utilize image-based information.

  18. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).

    Science.gov (United States)

    McGarry, C K; Grattan, M W D; Cosgrove, V P

    2007-12-07

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been

  19. Study of a scattering shield in a high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rong, E-mail: rh66@cornell.edu [IMCA-CAT, Hauptman-Woodward Institute (United States); Meron, Mati [CARS, The University of Chicago (United States)

    2013-07-11

    The techniques for the cooling of the first crystal of a monochromator are by now mature and are used routinely to deal with the heat loads resulting from the intense beams generated by third generation synchrotron insertion device sources. However, the thermal stability of said monochromators, which crucially depends on proper shielding of X-ray scattering off the first crystal, remains a serious consideration. This will become even more so in the near future, as many synchrotron facilities are upgrading to higher beam currents and energies. During a recent upgrade of the 17-ID beamline at the APS it was recognized that accurate simulation of the spatial distribution of the power scattered off the first crystal was essential for the understanding and remediation of the observed large temperature increase of the first crystal's scattering shield. The calculation is complex, due to the broad energy spectrum of the undulator and the prevalence of multiple X-ray scattering events within the bulk of the crystal, thus the Monte Carlo method is the natural tool for such a task. A successful simulation was developed, for the purpose of the 17-ID upgrade, and used to significantly improve the design of the first crystal's scattering shield. -- Highlights: • We use the Monte Carlo method to simulate X-ray scattering from monochromator crystals. • Scattered X-ray power on each surface of the scattering shield has been calculated. • Overheating on the original shield is well explained with simulated scattering power. • The thermal stability of the modified scattering shield is satisfactory.

  20. 1-40-keV fixed-exit monochromator for a wafer mapping TXRF facility

    Science.gov (United States)

    Comin, Fabio; Apostolo, G.; Freund, Andreas K.; Mangiagalli, P.; Navizet, M.; Troxel, C. L.

    1998-12-01

    An industrial facility for the mapping of trace impurities on the surface of 300 mm Silicon wafers will be commissioned at the end of 1998. The elements to be detected range from Na to Hg with a target routine detection limit of 108 atoms/cm2. The monochromator of the facility plays a central role and fulfills the following requirements: ease of operations and fast tuning (one single motor); extended energy range (1 - 40 KeV covered by a fixed exit Si(111) channel cut and multilayer pair); smooth and reliable running (water cooling even in the powerful ESRF undulator beams at high energies). The mechanical structure of the monochromator is based on well-established concepts: an external goniometer transfers the main rotation to the in-vacuum plateau via a hollow differentially pumped feed-through. The optical arrangement shows some novelties: the plateau can be cooled either by water or liquid nitrogen and it holds the convex- concave machined Si(111) channel-cut for fixed exit performances. The shape of the machined surfaces of the crystal helps also on to spread the power density of the beam on the silicon surface. A set of two identical multilayers are also mounted on the plateau and the transition from the Si(111) crystal to the multilayer operation is performed by rotating the wafer main axis by about 180 degrees. The whole facility is centered around the three main components: the monochromator, the wafer handling robots and the two linear arrays of solid state fluorescence detectors.

  1. A New Flexible Monochromator Setup for Quick Scanning X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stotzel, J.; Lutzenkirchen-Hecht, D; Frahm, R

    2010-01-01

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0{sup o} to 3.0{sup o} within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  2. A new flexible monochromator setup for quick scanning x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C, Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)

    2010-07-15

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0 deg. to 3.0 deg. within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  3. New insights into subsurface imaging of carbon nanotubes in polymer composites via scanning electron microscopy

    Science.gov (United States)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladár, András E.; Liddle, J. Alexander

    2015-02-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by three-dimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  4. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    Science.gov (United States)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  5. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy.

    Science.gov (United States)

    Bushby, Andrew J; P'ng, Kenneth M Y; Young, Robert D; Pinali, Christian; Knupp, Carlo; Quantock, Andrew J

    2011-06-01

    In this protocol, we describe a 3D imaging technique known as 'volume electron microscopy' or 'focused ion beam scanning electron microscopy (FIB/SEM)' applied to biological tissues. A scanning electron microscope equipped with a focused gallium ion beam, used to sequentially mill away the sample surface, and a backscattered electron (BSE) detector, used to image the milled surfaces, generates a large series of images that can be combined into a 3D rendered image of stained and embedded biological tissue. Structural information over volumes of tens of thousands of cubic micrometers is possible, revealing complex microanatomy with subcellular resolution. Methods are presented for tissue processing, for the enhancement of contrast with osmium tetroxide/potassium ferricyanide, for BSE imaging, for the preparation and platinum deposition over a selected site in the embedded tissue block, and for sequential data collection with ion beam milling; all this takes approximately 90 h. The imaging conditions, procedures for alternate milling and data acquisition and techniques for processing and partitioning the 3D data set are also described; these processes take approxiamtely 30 h. The protocol is illustrated by application to developing chick cornea, in which cells organize collagen fibril bundles into complex, multilamellar structures essential for transparency in the mature connective tissue matrix. The techniques described could have wide application in a range of fields, including pathology, developmental biology, microstructural anatomy and regenerative medicine.

  6. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  7. A new gradient monochromator for the IN13 back-scattering spectrometer

    Science.gov (United States)

    Ciampolini, L.; Bove, L. E.; Mondelli, C.; Alianelli, L.; Labbe-Lavigne, S.; Natali, F.; Bée, M.; Deriu, A.

    2005-06-01

    We present new McStas simulations of the back-scattering thermal neutron spectrometer IN13 to evaluate the advantages of a new temperature gradient monochromator relative to a conventional one. The simulations show that a flux gain up to a factor 7 can be obtained with just a 10% loss in energy resolution and a 20% increase in beam spot size at the sample. The results also indicate that a moderate applied temperature gradient (ΔT≃16 K) is sufficient to obtain this significant flux gain.

  8. A new gradient monochromator for the IN13 back-scattering spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolini, L. [Istituto Nazionale per la Fisica della Materia, Unita di Parma (Italy)]. E-mail: ciampolinil@ieee.org; Bove, L.E. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Mondelli, C. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Alianelli, L. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Institut Laue Langevin, Grenoble (France); Labbe-Lavigne, S. [CNRS, Grenoble (France); Natali, F. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Bee, M. [Universite Joseph Fourier, Grenoble (France); Deriu, A. [Istituto Nazionale per la Fisica della Materia, Unita di Parma (Italy); Dipartimento di Fisica, Universita di Parma (Italy)

    2005-06-01

    We present new McStas simulations of the back-scattering thermal neutron spectrometer IN13 to evaluate the advantages of a new temperature gradient monochromator relative to a conventional one. The simulations show that a flux gain up to a factor 7 can be obtained with just a 10% loss in energy resolution and a 20% increase in beam spot size at the sample. The results also indicate that a moderate applied temperature gradient ({delta}T{approx}16K) is sufficient to obtain this significant flux gain. n.

  9. Synchronous scanning of undulator gap and monochromator for XAFS measurements in soft x-ray region.

    Science.gov (United States)

    Tanaka, T; Matsubayashi, N; Imamura, M; Shimada, H

    2001-03-01

    Synchronous scanning of the undulator gap and a monochromator was done to obtain smooth profiles of incident x-rays that are suitable for XAFS measurements. By changing the gap from 150 mm(B=0.12 T) to 140 mm (B=0.15 T) with the use of the 3rd to 11th harmonic peaks, soft x-rays with energy from 200 eV to 1200 eV were obtained. The smooth profile of the incident x-rays provided high-quality measurement of XANES and EXAFS spectra in the soft x-ray region. Issues that would improve the synchronous scanning system are discussed.

  10. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    CERN Document Server

    Suvorov, A; Chubar, O; Cai, Y Q

    2015-01-01

    A further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the "Synchrotron Radiation Workshop" software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. It was shown that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  11. Image pixel device using integrated organic electronic components

    Science.gov (United States)

    Swathi, K.; Narayan, K. S.

    2016-11-01

    We report a solution processed, monolithically integrated device similar to an imaging pixel element used in complementary metal-oxide semiconductor (CMOS) based cameras. This integrated pixel essentially consists of a pair of organic photodiode (OPD) and organic field effect transistor (OFET). The signal generated by the light responsive OPD drives the OFET to different output states to quantify the light intensity. The prerequisite of a low operating voltage OFET (polymer semiconductor and a self-assembled hybrid dielectric layer. A bulk heterojunction blend was used as the photo-active layer in the OPD along with suitable buffer layers for charge extraction. The material parameters were optimized to realize a suitable structure which clearly demonstrated the interplay of the OPD and OFET operations, thereby forming a roadmap for all-organic CMOS arrays.

  12. Counterfeit Electronics Detection Using Image Processing and Machine Learning

    Science.gov (United States)

    Asadizanjani, Navid; Tehranipoor, Mark; Forte, Domenic

    2017-01-01

    Counterfeiting is an increasing concern for businesses and governments as greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. There is an ongoing effort in experimental and national labs inside the United States to detect and prevent such counterfeits in the most efficient time period. However, there is still a missing piece to automatically detect and properly keep record of detected counterfeit ICs. Here, we introduce a web application database that allows users to share previous examples of counterfeits through an online database and to obtain statistics regarding the prevalence of known defects. We also investigate automated techniques based on image processing and machine learning to detect different physical defects and to determine whether or not an IC is counterfeit.

  13. Near Infrared (NIR) Imaging Techniques Using Lasers and Nonlinear Crystal Optical Parametric Oscillator/Amplifier (OPO/OPA) Imaging and Transferred Electron (TE) Photocathode Image Intensifiers

    Energy Technology Data Exchange (ETDEWEB)

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.

    2000-12-20

    Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.

  14. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  15. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...... the non-adiabatic photodissociation of carbon disulphide demonstrate how the purely electronic rearrangements of the valence electrons can be projected from inherently coupled electronic-vibrational dynamics. Combined with ongoing efforts in molecular frame alignment(20) and orientation(21,22), TRMFPADs...

  16. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  17. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  18. Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging.

    Science.gov (United States)

    Liu, Weina; Naydenov, Boris; Chakrabortty, Sabyasachi; Wuensch, Bettina; Hübner, Kristina; Ritz, Sandra; Cölfen, Helmut; Barth, Holger; Koynov, Kaloian; Qi, Haoyuan; Leiter, Robert; Reuter, Rolf; Wrachtrup, Jörg; Boldt, Felix; Scheuer, Jonas; Kaiser, Ute; Sison, Miguel; Lasser, Theo; Tinnefeld, Philip; Jelezko, Fedor; Walther, Paul; Wu, Yuzhou; Weil, Tanja

    2016-10-12

    There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.

  19. Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    There is strong interest in lithium imaging, particularly because of its significance in battery materials. However, light atoms only scatter electrons weakly and atomic resolution direct imaging of lithium has proven difficult. This paper explores theoretically the conditions under which lithium columns can be expected to be directly visible using annular bright field scanning transmission electron microscopy. A detailed discussion is given of the controllable parameters and the conditions most favourable for lithium imaging. -- Highlights: {yields} Optimum conditions to image Li columns in Li-bearing materials with ABF are explored. {yields} Higher accelerating voltages give better contrast at a given resolution. {yields} Aperture size must compromise between resolution and good coupling to the column. {yields} Samples with small along-column interatomic spacing between Li atoms are best. {yields} The trends observed are consistent with prediction based on the s-state model.

  20. A soft X-ray plane-grating monochromator optimized for elliptical dipole radiation from modern sources

    Energy Technology Data Exchange (ETDEWEB)

    Kachel, Torsten, E-mail: torsten.kachel@helmholtz-berlin.de; Eggenstein, Frank [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Follath, Rolf [Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-07-14

    The utilization of elliptical dipole radiation in a collimated plane-grating monochromator at BESSY II is described. A new but yet well proven way of making elliptically polarized dipole radiation from the BESSY II storage ring applicable to the SX700-type collimated plane-grating monochromator PM3 is described. It is shown that due to the limited vertical acceptance of the grating a simple use of vertical apertures is not possible in this case. Rather, deflecting the beam upwards or downwards by rotating the vertically collimating toroidal mirror M1 around the light axis leads to excellent performance. The resulting detuning of the photon energy can be taken into account by a readjustment of the monochromator internal plane mirror M2. The energy resolution of the beamline is not affected by the non-zero ‘roll’ of the collimating mirror.

  1. Optimisation and fabrication of a composite pyrolytic graphite monochromator for the Pelican instrument at the ANSTO OPAL reactor

    Science.gov (United States)

    Freund, A. K.; Yu, D. H.

    2011-04-01

    The triple monochromator for the TOF neutron spectrometer Pelican at ANSTO has been fully optimised in terms of overall performance, including the determination of the thickness of the pyrolytic graphite crystals. A total of 24 composite crystals were designed and fabricated. The calculated optimum thickness of 1.3 mm and the length of 15 cm of the monochromator crystals, that are not available commercially, were obtained by cleaving and soldering with indium. An extensive characterisation of the crystals using X-ray and neutron diffraction was conducted before and after the cleaving and bonding processes. The results proved that no damage was introduced during fabrication and showed that the design goals were fully met. The measured peak reflectivity and rocking curve widths were indeed in an excellent agreement with theory. In addition to the superior efficiency of the triple monochromator achieved by this novel approach, the amount of the crystal material required could be reduced by 1/3.

  2. Development of a fast electromagnetic shutter for compressive sensing imaging in scanning transmission electron microscopy

    CERN Document Server

    Béché, Armand; Freitag, Bert; Verbeeck, Jo

    2015-01-01

    The concept of compressive sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic shutter placed in the condenser plane of a STEM is proposed. The shutter blanks the beam following a random pattern while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both medium scale and high resolution are acquired and then reconstructed based on a discrete cosine algorithm. The obtained results confirm the predicted usefulness of compressive sensing in experimental STEM even though some remaining artifacts need to be resolved.

  3. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Ben [University of California, Davis; Classen, I.G.J. [FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands; Domier, C. W. [University of California, Davis; Heidbrink, W. [University of California, Irvine; Luhmann, N.C. [University of California, Davis; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Park, H.K. [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Spong, Donald A [ORNL; Van Zeeland, Michael [General Atomics

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  4. Snell's law for surface electrons: Refraction of an electron gas imaged in real space

    OpenAIRE

    Repp, Jascha; Meyer, Gerhard; Rieder, Karl-Heinz

    2003-01-01

    On NaCl(100)/Cu(111) an interface state band is observed that descends from the surface-state band of the clean copper surface. This band exhibits a Moire-pattern-induced one-dimensional band gap, which is accompanied by strong standing-wave patterns, as revealed in low-temperature scanning tunneling microscopy images. At NaCl island step edges, one can directly see the refraction of these standing waves, which obey Snell's refraction law.

  5. Snell's law for surface electrons: refraction of an electron gas imaged in real space.

    Science.gov (United States)

    Repp, Jascha; Meyer, Gerhard; Rieder, Karl-Heinz

    2004-01-23

    On NaCl(100)/Cu(111) an interface state band is observed that descends from the surface-state band of the clean copper surface. This band exhibits a Moiré-pattern-induced one-dimensional band gap, which is accompanied by strong standing-wave patterns, as revealed in low-temperature scanning tunneling microscopy images. At NaCl island step edges, one can directly see the refraction of these standing waves, which obey Snell's refraction law.

  6. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    OpenAIRE

    Ken Smart; Jia Du; Li Li; David Wang; Keith Leslie; Fan Ji; Xiang Dong Li; Da Zhang Zeng

    2016-01-01

    A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to...

  7. Development of electron cyclotron emission imaging system on Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D.; Tsuji-Iio, S. [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Nagayama, Y.; Yoshinaga, T.; Tsuchiya, H.; Sugito, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Yamaguchi, S. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-Higashi, Fukuoka 811-0295 (Japan); Akaki, K.; Mase, A. [KASTEC, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580 (Japan)

    2010-10-15

    A combined system of microwave imaging reflectometry and electron cyclotron emission (ECE) imaging has been developed for the Large Helical Device. This system includes a wide-band two-dimensional horn-antenna mixer array (HMA). The HMA consists of horn antennas, waveguides, mixers, and intermediate frequency circuits. The frequency response of the HMA is between 50 and 110 GHz. The ECE signal is selected using a 95 GHz local oscillator and a 93 GHz high-pass filter.

  8. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase-contrast

    CERN Document Server

    Dixit, Gopal; Santra, Robin

    2013-01-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wavepacket would appear to be the most obvious approach to image the electronic motion in real-time and real-space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wavepacket. However, recent results by Dixit {\\em et al.} [Proc. Natl. Acad. Sci. U.S.A., {\\bf 109}, 11636 (2012)] have put this notion into question and shown that the scattering in the far-field regime probes spatio-temporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wavepacket via ultrafast x-ray {\\em phase contrast imaging}. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field reg...

  9. $YB_{66} a new soft X-ray monochromator for synchrotron radiation

    CERN Document Server

    Wong, J; Rowen, M; Schäfers, F; Müller, B R; Rek, Z U

    1999-01-01

    For pt.I see Nucl. Instrum. Methods Phys. Res., vol.A291, p.243-8, 1990. YB/sub 66/, a complex boron-rich man-made crystal, has been singled out as a potential monochromator material to disperse synchrotron soft X-rays in the 1-2 keV region. Results of a series of systematic property characterizations pertinent for this application are presented in this paper. These include Laue diffraction patterns and high-precision lattice-constant determination, etch rate, stoichiometry, thermal expansion, soft X-ray reflectivity and rocking-curve measurements, thermal load effects on monochromator performance, nature of intrinsic positive glitches and their reduction. The 004 reflection of YB/sub 66/ has a reflectance of ~3 in this spectral region. The width of the rocking curve varies from 0.25 eV at 1.1 keV to 1.0 eV at 2 keV, which is a factor of two better than that of beryl(1010) in the same energy range, and enables measurements of high-resolution XANES spectra at the Mg, Al and Si K- edges. The thermal bump on the...

  10. Grating monochromator for soft X-ray self-seeding the European XFEL

    CERN Document Server

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni

    2013-01-01

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with...

  11. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  12. Italian panoramic monochromator for the THEMIS telescope: the first results and instrument evaluation

    Science.gov (United States)

    Cavallini, Fabio; Berrilli, Francesco; Caccin, Bruno; Cantarano, Sergio; Ceppatelli, Guido; Egidi, Alberto; Righini, Alberto

    1998-07-01

    We briefly describe the design and the characteristics of the Italian Panoramic Monochromator installed at the focal plane of the THEMIS telescope built in Izana by a joint venture of the French and Italian National Research Councils. The Panoramic Monochromator substantially is a narrow band filter (approximately equals 22 mAngstrom bandwidth) tunable on the visible spectrum for quasi simultaneous bidimensional spectrometry of the solar atmosphere. The narrow bandwidth is obtained by using a non standard birefringent filter and a Fabry Perot interferometer mounted in series. This assembly has the advantage of the spectral purity of one channel of the Fabry Perot interferometer and a very large free spectral range. Moreover the spectral stability depends on the interferometer, the environment of which may be carefully controlled. The design of this instrument is not really new, but, only now it has been possible to build it thanks to the development of servo controlled Fabry Perot interferometers, which are stable in time and may easily be tuned. The system seems to perform well. It is stable in wavelength and the spectral pass band and stray light are within the expected values, as it may be deduced by very preliminary tests performed at the THEMIS Telescope and in Arcetri (Firenze) at the 'G. B. Donati' solar tower.

  13. Design and fabrication of an active polynomial grating for soft-X-ray monochromators and spectrometers

    CERN Document Server

    Chen, S J; Perng, S Y; Kuan, C K; Tseng, T C; Wang, D J

    2001-01-01

    An active polynomial grating has been designed for use in synchrotron radiation soft-X-ray monochromators and spectrometers. The grating can be dynamically adjusted to obtain the third-order-polynomial surface needed to eliminate the defocus and coma aberrations at any photon energy. Ray-tracing results confirm that a monochromator or spectrometer based on this active grating has nearly no aberration limit to the overall spectral resolution in the entire soft-X-ray region. The grating substrate is made of a precisely milled 17-4 PH stainless steel parallel plate, which is joined to a flexure-hinge bender shaped by wire electrical discharge machining. The substrate is grounded into a concave cylindrical shape with a nominal radius and then polished to achieve a roughness of 0.45 nm and a slope error of 1.2 mu rad rms. The long trace profiler measurements show that the active grating can reach the desired third-order polynomial with a high degree of figure accuracy.

  14. Design and fabrication of an active polynomial grating for soft-X-ray monochromators and spectrometers

    Science.gov (United States)

    Chen, S.-J.; Chen, C. T.; Perng, S. Y.; Kuan, C. K.; Tseng, T. C.; Wang, D. J.

    2001-07-01

    An active polynomial grating has been designed for use in synchrotron radiation soft-X-ray monochromators and spectrometers. The grating can be dynamically adjusted to obtain the third-order-polynomial surface needed to eliminate the defocus and coma aberrations at any photon energy. Ray-tracing results confirm that a monochromator or spectrometer based on this active grating has nearly no aberration limit to the overall spectral resolution in the entire soft-X-ray region. The grating substrate is made of a precisely milled 17-4 PH stainless steel parallel plate, which is joined to a flexure-hinge bender shaped by wire electrical discharge machining. The substrate is grounded into a concave cylindrical shape with a nominal radius and then polished to achieve a roughness of 0.45 nm and a slope error of 1.2 μrad rms. The long trace profiler measurements show that the active grating can reach the desired third-order polynomial with a high degree of figure accuracy.

  15. High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples

    Science.gov (United States)

    Yoda, Yoshitaka; Okada, Kyoko; Wang, Hongxin; Cramer, Stephen P.; Seto, Makoto

    2016-12-01

    A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. In addition to high resolution, higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution better than 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. A 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

  16. Dancing with the Electrons: Time-Domain and CW In Vivo EPR Imaging

    Directory of Open Access Journals (Sweden)

    Murali C. Krishna

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired electrons’, metaphorically speaking.

  17. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope.

    Directory of Open Access Journals (Sweden)

    Diana B Peckys

    Full Text Available Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7 were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM laboratory.

  18. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms.

  19. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  20. A diffracted-beam monochromator for long linear detectors in X-ray diffractometers with Bragg-Brentano parafocusing geometry.

    Science.gov (United States)

    van der Pers, N M; Hendrikx, R W A; Delhez, R; Böttger, A J

    2013-04-01

    A new diffracted-beam monochromator has been developed for Bragg-Brentano X-ray diffractometers equipped with a linear detector. The monochromator consists of a cone-shaped graphite highly oriented pyrolytic graphite crystal oriented out of the equatorial plane such that the parafocusing geometry is preserved over the whole opening angle of the linear detector. In our standard setup a maximum wavelength discrimination of 3% is achieved with an overall efficiency of 20% and a small decrease in angular resolution of only 0.02 °2θ. In principle, an energy resolution as low as 1.5% can be achieved.

  1. Investigation of the LabPET™ detector and electronics for photon-counting CT imaging

    Science.gov (United States)

    Bérard, Philippe; Riendeau, Joel; Pepin, Catherine M.; Rouleau, Daniel; Cadorette, Jules; Fontaine, Réjean; Lecomte, Roger

    2007-02-01

    The development of new molecular probes targeting receptors with high specificity in selected cells and tissues highlights the importance of obtaining the anatomical context in Positron Emission Tomography (PET) imaging. This can be achieved using another imaging modality, such as X-ray Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), but the anatomic and molecular images obtained sequentially with different scanners must subsequently be co-registered and are subjected to motion artifacts. Conventional CT imaging also contributes a significant dose, which may compromise the benefits of longitudinal molecular imaging studies in the same subject. To overcome these difficulties, we have investigated the use of the LabPET™ detector and electronics as a multi-modal detection system. Based on fast light emitting inorganic scintillators individually coupled to avalanche photodiodes and parallel, low-noise, fast digital processing electronics, the proposed detector front-end is suitable for coincidence detection of annihilation radiation (511 keV) in PET and for ultra-fast low-energy X-ray photon counting in CT. This combined detection system enables concurrent PET/CT imaging while potentially achieving superior image contrast sensitivity for a given dose in CT photon-counting mode. Anatomical images with millimeter spatial resolution and sufficient tissue contrast for anatomical localization in small animals have been obtained with doses in the mGy range. The CT performance for dual-modality imaging of small animals was analyzed in terms of spatial resolution, noise and image contrast sensitivity as a function of dose.

  2. Registration of electronic portal images for patient set-up verification.

    Science.gov (United States)

    Matsopoulos, George K; Asvestas, Pantelis A; Delibasis, Konstantinos K; Kouloulias, Vassilios; Uzunoglu, Nikolaos; Karaiskos, Pantelis; Sandilos, Panagiotis

    2004-07-21

    Images acquired from an electronic portal imaging device are aligned with digitally reconstructed radiographs (DRRs) or other portal images to verify patient positioning during radiation therapy. Most of the currently available computer aided registration methods are based on the manual placement of corresponding landmarks. The purpose of the paper is twofold: (a) the establishment of a methodology for patient set-up verification during radiotherapy based on the registration of electronic portal images, and (b) the evaluation of the proposed methodology in a clinical environment. The estimation of set-up errors, using the proposed methodology, can be accomplished by matching the portal image of the current fraction of the treatment with the portal image of the baseline treatment (reference portal image) using a nearly automated technique. The proposed registration method is tested on a number of phantom data as well as on data from four patients. The phantom data included portal images that corresponded to various positions of the phantom on the treatment couch. For each patient, a set of 30 portal images was used. For the phantom data (for both transverse and lateral portal images), the maximum absolute deviations of the translational shifts were within 1.5 mm, whereas the in-plane rotation angle error was less than 0.5 degrees. The two-way Anova revealed no statistical significant variability both within observer and between-observer measurements (P > 0.05). For the patient data, the mean values obtained with manual and the proposed registration methods were within 0.5 mm. In conclusion, the proposed registration method has been incorporated within a system, called ESTERR-PRO. Its image registration capability achieves high accuracy and both intra- and inter-user reproducibility. The system is fully operational within the Radiotherapy Department of 'HYGEIA' Hospital in Athens and it could be easily installed in any other clinical environment since it requires

  3. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    Science.gov (United States)

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  4. Markov Random Field Based Automatic Image Alignment for ElectronTomography

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.; Elidan, Gal; Downing, Kenneth H.; Horowitz, Mark

    2007-11-30

    Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors. To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.

  5. Estimating the thickness of ultra thin sections for electron microscopy by image statistics

    DEFF Research Database (Denmark)

    Sporring, Jon; Khanmohammadi, Mahdieh; Darkner, Sune

    2014-01-01

    We propose a method for estimating the thickness of ultra thin histological sections by image statistics alone. Our method works for images, that are the realisations of a stationary and isotropic stochastic process, and it relies on the existence of statistical image-measures that are strictly...... monotonic with distance. We propose to use the standard deviation of the difference between pixel values as a function of distance, and we give an extremely simple, linear algorithm. Our algorithm is applied to the challenging domain of electron microscopic sections supposedly $45\\text{ nm}$ apart, and we...

  6. Laser-Induced Electron Diffraction: Inversion of Photoelectron Spectra for Molecular Orbital Imaging

    CERN Document Server

    Puthumpally-Joseph, R; Peters, M; Nguyen-Dang, T T; Atabek, O; Charron, E

    2016-01-01

    In this paper, we discuss the possibility of imaging molecular orbitals from photoelectron spectra obtained via Laser Induced Electron Diffraction (LIED) in linear molecules. This is an extension of our work published recently in Physical Review A \\textbf{94}, 023421 (2016) to the case of the HOMO-1 orbital of the carbon dioxide molecule. We show that such an imaging technique has the potential to image molecular orbitals at different internuclear distances in a sub-femtosecond time scale and with a resolution of a fraction of an Angstr\\"om.

  7. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    Science.gov (United States)

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were

  8. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Sawada, H.; Okunishi, E.; Kondo, Y. [JEOL Ltd., Tokyo 196-8558 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-06-15

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  9. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations.

    We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%.

    This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The

  10. Simulation Study on High Energy Cosmic Electron Detection by Shower Image

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Many projects have recently been carried out and proposed for observing high energy electrons since it is realized that cosmic ray electrons are very important when study ing the dark matter particles and the acceleration mechanism of cosmic rays. An imaging calorimeter, BETS (Balloon-borne Electron Telescope with Scintillator fiber), has been de veloped for this purpose. Using pattern analysis of the shower development, the electrons can be selected from those primary cosmic ray proton events with flux heights one-tenth that of the electrons. The Monte-Carlo simulation is indispensable for the instrument design, the sig nal trigger and the data analysis. We present different shower simulation codes and compare the simulation results with the beam test and the flight data of BETS. We conclude that the code FLUKA2002 gives the most consistent results with the experimental data.

  11. Electron Pattern Recognition using trigger mode SOI pixel sensor for Advanced Compton Imaging

    Science.gov (United States)

    Shimazoe, K.; Yoshihara, Y.; Fairuz, A.; Koyama, A.; Takahashi, H.; Takeda, A.; Tsuru, T.; Arai, Y.

    2016-02-01

    Compton imaging is a useful method for localizing sub MeV to a few MeV gamma-rays and widely used for environmental and medical applications. The direction of recoiled electrons in Compton scattering process provides the additional information to limit the Compton cones and increases the sensitivity in the system. The capability of recoiled electron tracking using trigger-mode Silicon-On-Insulator (SOI) sensor is investigated with various radiation sources. The trigger-mode SOI sensor consists of 144 by 144 active pixels with 30 μm cells and the thickness of sensor is 500 μm. The sensor generates the digital output when it is hit by gamma-rays and 25 by 25 pixel pattern of surrounding the triggered pixel is readout to extract the recoiled electron track. The electron track is successfully observed for 60Co and 137Cs sources, which provides useful information for future electron tracking Compton camera.

  12. The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope.

    Science.gov (United States)

    Maher, D M; Joy, D C

    1976-06-01

    The technique of scanning transmission electron microscopy (STEM) has been employed usefully in studies of amorphous materials, and the theory of image formation and interpretation in this case has been well developed. Less attention has been given to the practical and theoretical problems associated with the use of STEM for the examination of crystalline materials. In this case the contrast mechanisms are dominated by Bragg diffraction and so they are quite different from those occurring in amorphous substances. In this paper practical techniques for the observation and interpretation of contrast from defects in crystalline materials are discussed. It is shown that whilst images of defects are obtained readily under all typical STEM operating conditions, the form of the image and the information it contains varies with the angle subtended at the specimen by the detector. If this angle is too large significant image modifications relative to the "conventional" transmission electron microscope case may occur and the resolution of the image may degrade. If this angle is too small, then signal to noise considerations make an interpretation of the image difficult. In this paper we indicate how the detector angle may be chosen correctly, and also present techniques for setting up a STEM instrument for imaging a crystalline material containing lattice defects.

  13. Polyplanar optical display electronics

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.; Biscardi, C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  14. Grain size distributions of chalk from image analysis of electron micrographs

    DEFF Research Database (Denmark)

    Røgen, Birte; Gommesen, Lars; Fabricius, Ida Lykke

    2001-01-01

    In the chalk of the Ekofisk formation in the Chalk Group of the North Sea, substantial depth-related variations in porosityare observed. With the aim of obtaining a textural interpretation of these porositydata, we have developed a method to assess the grain size distribution of the chalk from...... image analysis. The chalk is composed of a fine-grained matrix of nannofossils and predominantlycalcitic fossil debris with larger microfossil grains, but the chalk may also contain significant amounts of silica and siliciclastic clay. For image analysis, we used backscatter electron images of epoxy......-impregnated, polished samples from the Ekofisk Formation, Tyra field, Danish North Sea. On backscatter images the calcite phase will appear light as opposed to the dark pore space. The procedure involves the combination of data acquired at two magnifications and bythis method analysis of only four images per sample...

  15. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids.

    Science.gov (United States)

    Kleinerman, O; Parra-Vasquez, A Nicholas G; Green, M J; Behabtu, N; Schmidt, J; Kesselman, E; Young, C C; Cohen, Y; Pasquali, M; Talmon, Y

    2015-07-01

    Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    Science.gov (United States)

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems.

  17. The impact of non-thermal electrons on resolved black hole accretion disk images

    Science.gov (United States)

    Mao, Shengkai; Dexter, Jason; Quataert, Eliot

    2015-01-01

    Recent developments in radio astronomy (in particular, the Event Horizon Telescope) allow us for the first time to resolve length scales around the Milky Way's Sgr A* comparable to the event horizon radius. These observations are opening up new opportunities to study strong gravity and accretion physics in the vicinity of a supermassive black hole. However, the processes governing black hole accretion are not well understood. In particular, the electron thermodynamics in black hole accretion disks remain mysterious, and current models vary significantly from each other. The impact of these differences between current electron thermodynamics models on results obtained from EHT images is not well understood. Thus, in this work, we explore the effects of non-thermal electrons on black hole images and radio spectra in the context of both semi-analytic and numerical models of accretion flows. Using general relativistic ray-tracing and radiative transfer code, we simulate images of the accretion disk around Sgr A* and compare our simulations to observed radio data. We estimate the range of electron energy distribution functions permissible by the data. In so doing, we also explore the range and variety of black hole images obtained by varying the distribution function.

  18. The complementary use of electron backscatter diffraction and ion channelling imaging for the characterization of nanotwins

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Pantleon, Karen

    2013-01-01

    On the example of electrodeposited nickel films, it is shown that unique information on twins with dimensions on the nanoscale can be obtained by suitable combination of ion channelling imaging and electron backscatter diffraction analysis, whereas both (routine) single techniques cannot meet...

  19. 78 FR 69440 - Certain Electronic Imaging Devices; Notice of Request for Statements on the Public Interest

    Science.gov (United States)

    2013-11-19

    ... COMMISSION Certain Electronic Imaging Devices; Notice of Request for Statements on the Public Interest AGENCY...'') recommended by the ALJ. This notice is soliciting public interest comments from the public only. Parties are to file public interest submissions pursuant to 19 CFR 210.50(a)(4). FOR FURTHER INFORMATION...

  20. Correlation of live-cell imaging with volume scanning electron microscopy.

    Science.gov (United States)

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Automated detection of a prostate Ni-Ti stent in electronic portal images

    DEFF Research Database (Denmark)

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane

    2006-01-01

    of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection...

  2. Chemical-state imaging of Li using scanning Auger electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Nobuyuki, E-mail: ISHIDA.Nobuyuki@nims.go.jp [Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Fujita, Daisuke [Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Advanced Nanocharacterization Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-02-15

    Highlights: •Scanning Auger electron microscopy is used to image chemical states of Li. •The combined use of AES and EELS signals for the elemental mapping is powerful. •Distribution corresponding to metallic and oxidized states of Li can be imaged. -- Abstract: The demand for measurement tools to detect Li with high spatial resolution and precise chemical sensitivity is increasing with the spread of lithium-ion batteries (LIBs) for use in a wide range of applications. In this work, scanning Auger electron microscopy (SAM) is used to image chemical states of a partially oxidized Li surface on the basis of the Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS) data obtained during an oxidation process of a metal Li. We show that distribution of metallic and oxidized states of Li is clearly imaged by mapping the intensity of the corresponding AES and EELS peaks. Furthermore, a tiny difference in the extent of oxidation can be distinguished by comparing the elemental map of an AES peak with that of an EELS peak owing to the different behaviors of those signals to the chemical states of Li.

  3. 75 FR 39971 - In the Matter of Certain Electronic Imaging Devices; Notice of Investigation

    Science.gov (United States)

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Electronic Imaging Devices; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY:...

  4. Low-energy electron holographic imaging of individual tobacco mosaic virions

    Energy Technology Data Exchange (ETDEWEB)

    Longchamp, Jean-Nicolas, E-mail: longchamp@physik.uzh.ch; Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner [Physics Department, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland)

    2015-09-28

    Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.

  5. Development of electron cyclotron emission imaging system on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, M.; Shi, Z. B.; Liu, Z. T.; Ding, X. T.; Li, J.; Zhong, W. L.; Chen, W.; Che, Y. L.; Fu, B. Z.; Cui, Z. Y.; Sun, P.; Liu, Y.; Yang, Q. W.; Duan, X. R. [Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China); Che, S.; Domier, C. W.; Luhmann, N. C. Jr.; Hu, X.; Spear, A. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2013-11-15

    A 2D electron cyclotron emission imaging (ECEI) system has been developed for measurement of electron temperature fluctuations in the HL-2A tokamak. It is comprised of a front-end 24 channel heterodyne imaging array with a tunable RF range spanning 75–110 GHz, and a set of back-end ECEI electronics that together generate 24 × 8 = 192 channel images of the 2nd harmonic X-mode electron cyclotron emission from the HL-2A plasma. The simulated performance of the local oscillator (LO) optics and radio frequency (RF) optics is presented, together with the laboratory characterization results. The Gaussian beams from the LO optics are observed to properly cover the entire detector array. The ECE signals from the plasma are mixed with the LO signal in the array box, then delivered to the electronics system by low-loss microwave cables, and finally to the digitizers. The ECEI system can achieve temporal resolutions of ∼μs, and spatial resolutions of 1 cm (radially) and 2 cm (poloidally)

  6. On the accuracy of localization achievable in fiducial-based stereoscopic image registration system using an electronic portal imaging device.

    Science.gov (United States)

    Ung, N M; Wee, L

    2012-06-01

    Portal imaging using electronic portal imaging device (EPID) is a well-established image-guided radiation therapy (IGRT) technique for external beam radiation therapy. The aims of this study are threefold; (i) to assess the accuracy of isocentre localization in the fiducial-based stereoscopic image registration, (ii) to investigate the impact of errors in the beam collimation device on stereoscopic registration, and (iii) to evaluate the intra- and inter-observer variability in stereoscopic registration. Portal images of a ball bearing phantom were acquired and stereoscopic image registrations were performed based on a point centred in the ball bearing as the surrogate for registration. Experiments were replicated by applying intentional offsets in the beam collimation device to simulate collimation errors. The accuracy of fiducial markers localization was performed by repeating the experiment using three spherical lead shots implanted in a pelvic phantom. Portal images of pelvis phantom were given to four expert users to assess the inter-observer variability in performing registration. The isocentre localization accuracy tested using ball bearing phantom was within 0.3 mm. Gravity-induced systematic errors of beam collimation device by 2 mm resulted in positioning offsets of the order of 2 mm opposing the simulated errors. Relatively large inter-portal pair projection errors ranges from 1.3 mm to 1.8 mm were observed with simulated errors in the beam collimation device. The intra-user and inter-user variabilities were observed to be 0.8 and 0.4 mm respectively. Fiducial-based stereoscopic image registration using EPID is robust for IGRT procedure.

  7. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  8. Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaab, J.; Meier, D., E-mail: dennis.meier@mat.ethz.ch [Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland); Krug, I. P. [Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich (Germany); Nickel, F.; Gottlob, D. M.; Doğanay, H.; Schneider, C. M. [Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich (Germany); Cano, A. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Hentschel, M. [4th Physics Institute and Research Center SCoPE, University of Suttgart, Pfaffenwaldring 57, 70659 Stuttgart (Germany); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yan, Z.; Bourret, E. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ramesh, R. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2014-06-09

    High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating domain walls in ferroelectrics with high spatial resolution. Using ErMnO{sub 3} as test system, we show that ferroelectric domain walls can be visualized based on photo-induced charging effects and local variations in their electronic conductance can be mapped by analyzing the energy distribution of photoelectrons. Our results open the door for non-destructive, contact-free, and element-specific studies of the electronic and chemical structure at domain walls in ferroelectrics.

  9. Segmentation of scanning electron microscopy images from natural rubber samples with gold nanoparticles using starlet wavelets.

    Science.gov (United States)

    de Siqueira, Alexandre Fioravante; Cabrera, Flávio Camargo; Pagamisse, Aylton; Job, Aldo Eloizo

    2014-01-01

    Electronic microscopy has been used for morphology evaluation of different materials structures. However, microscopy results may be affected by several factors. Image processing methods can be used to correct and improve the quality of these results. In this article, we propose an algorithm based on starlets to perform the segmentation of scanning electron microscopy images. An application is presented in order to locate gold nanoparticles in natural rubber membranes. In this application, our method showed accuracy greater than 85% for all test images. Results given by this method will be used in future studies, to computationally estimate the density distribution of gold nanoparticles in natural rubber samples and to predict reduction kinetics of gold nanoparticles at different time periods.

  10. Nanocrystal Phase Identification by Lattice Fringe Fingerprinting from High Resolution Transmission Electron Microscope Images

    Science.gov (United States)

    Bjorge, Ruben; Seipel, Bjoern; Moeck, Peter; Fraundorf, Philip

    2006-05-01

    Lattice fringe fingerprinting is a novel and powerful method of identifying and characterizing nanocrystalline structures or materials based on images from direct space high-resolution transmission electron microscopy (HRTEM). We examine Fourier transformed HRTEM images of nanocrystals in certain orientations (i.e. lattice fringes and cross fringes) in order to obtain a lattice fringe fingerprint plot. Such plots are used to identify a crystalline nanoparticle by comparing the experimental data with data that are derived from a comprehensive database. A lattice fringe fingerprint plot is similar to a classical X-ray powder diffractogram, but an important advantage is that the intersection angles of lattice fringes give us additional information. When transmission electron microscope image acquisition and data interpretation are automated and connected to a comprehensive database (such as our Nano-Crystallography Database, http://nanocrystallography.research.pdx.edu/), fringe fingerprinting will be able to compete with powder X-ray diffraction in identifying unknown nanocrystals on a routine basis.

  11. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    Science.gov (United States)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope.

  12. Imaging an aligned polyatomic molecule with laser-induced electron diffraction

    CERN Document Server

    Pullen, Michael; Le, Anh-Thu; Baudisch, Matthias; Hemmer, Michaël; Senftleben, Arne; Schröter, Claus Dieter; Ullrich, Joachim; Moshammer, Robert; Lin, Chii-Dong; Biegert, Jens

    2015-01-01

    Laser-induced electron diffraction is an evolving tabletop method, which aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-{\\AA}ngstr\\"om spatial and femtosecond temporal resolution. Here, we provide the general foundation for the retrieval of multiple bond lengths from a polyatomic molecule by simultaneously measuring the C-C and C-H bond lengths in aligned acetylene. Our approach takes the method beyond the hitherto achieved imaging of simple diatomic molecules and is based upon the combination of a 160 kHz mid-IR few-cycle laser source with full three-dimensional electron-ion coincidence detection. Our technique provides an accessible and robust route towards imaging ultrafast processes in complex gas phase molecules with atto- to femto-second temporal resolution.

  13. Dual-Array Electron Cyclotron Emission Imaging (ECEI): a New Millimeter Wave Imaging System for Electron Temperature Fluctuation on the DIII-D Tokamak

    Science.gov (United States)

    Luhmann, N. C., Jr.; Tobias, B. J.; Domier, C. W.; Kong, X.; Liang, T.; Jaspers, R.; Donne, A. J. H.; Smith, M.; Nazikian, R.; Park, H. K.

    2009-11-01

    A new diagnostic tool has been developed for simultaneous real-time imaging of electron temperature fluctuations at both the high and low field sides. Separate imaging arrays spanning 75 to 110 and 90 to 140 GHz, respectively consist of 160 channels (20 vertical by 8 radial) with ˜1 cm^2 resolution, providing up to 55 cm of vertical plasma coverage. Fluctuations of 1% are measurable on μs time-scales. The technical capabilities of this diagnostic, as well as potential physics issues to be investigated, are discussed. The details of the constituent technologies, including advanced antennas and substrate lenses, quasi-optical planar filter components, and double down-conversion heterodyne signal detection will be addressed.

  14. HORACE: Presentation-Level Protocol Standard for Digital Transmission of Monochrome Television Images

    Science.gov (United States)

    1993-11-01

    3 4.4.6 DS- 1C [Half-DS-2) (3.156 mb/s) ............ 4-3 4.4.7 DS-2 (6.312 mb/s) ........................... 4-3 4.4.8 DS-A (Two DS-2) (12.624 mb/s...skip at 15:1 or 7:1. 4.4.5 DS-1 (1.544 mb/s). Fixed or variable skip modes up to 3:1 can be used at this rate. 4.4.6 DS- 1C (Half-DS-2) (3.156 mb/sL...Rieger and Edward K. Tipler . NWC Technical Publication 5837. China Lake: NWC, October 1976. 25. - - -. - - -. Integrated Range Television System. By

  15. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  16. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    Science.gov (United States)

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers.

  17. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    Science.gov (United States)

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at approximately 3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.

  18. Determining optimum red filter slide distance on creating 3D electron microscope images using anaglyph method

    Science.gov (United States)

    Tresna, W. P.; Isnaeni

    2017-04-01

    Scanning Electron Microscope (SEM) is a proven instrument for analyzing material in which a 2D image of an object is produced. However, the optimization of a 3D image in the SEM system is usually difficult and costly. There is a simple method to produce a 3D image by using two light sources with a red and a blue filter combined in a certain angle. In this experiment, the authors conducted a simulation of the 3D image formation using anaglyph method by finding the optimum point of shifting the red and blue filters in an SEM image. The method used in this experiment was an image processing that employed a digital manipulation on a certain deviation distance of the central point of the main object. The simulation result of an SEM image with a magnification of 5000 times showed an optimal 3D effect that was achieved when the red filter was shifted by 1 μm to the right and the blue filter was shifted by 1 µm to the left from the central position. The result of this simulation can be used to understand better the viewing angle and the optimal position of the two light sources, i.e. red and blue filter pairs. The produced 3D image can be clearly seen using 3D glasses.

  19. ESTERR-PRO: A Setup Verification Software System Using Electronic Portal Imaging

    Directory of Open Access Journals (Sweden)

    Pantelis A. Asvestas

    2007-01-01

    Full Text Available The purpose of the paper is to present and evaluate the performance of a new software-based registration system for patient setup verification, during radiotherapy, using electronic portal images. The estimation of setup errors, using the proposed system, can be accomplished by means of two alternate registration methods. (a The portal image of the current fraction of the treatment is registered directly with the reference image (digitally reconstructed radiograph (DRR or simulator image using a modified manual technique. (b The portal image of the current fraction of the treatment is registered with the portal image of the first fraction of the treatment (reference portal image by applying a nearly automated technique based on self-organizing maps, whereas the reference portal has already been registered with a DRR or a simulator image. The proposed system was tested on phantom data and on data from six patients. The root mean square error (RMSE of the setup estimates was 0.8±0.3 (mean value ± standard deviation for the phantom data and 0.3±0.3 for the patient data, respectively, by applying the two methodologies. Furthermore, statistical analysis by means of the Wilcoxon nonparametric signed test showed that the results that were obtained by the two methods did not differ significantly (P value >0.05.

  20. 75 FR 8115 - In the Matter of Certain Electronic Devices Having Image Capture or Display Functionality and...

    Science.gov (United States)

    2010-02-23

    .... 5,995,767, 5,774,131, and 6,281,895. 74 FR 14157 (2009). The complainant named Eastman Kodak Company... COMMISSION In the Matter of Certain Electronic Devices Having Image Capture or Display Functionality and... sale within the United States after importation of certain electronic devices having image capture...

  1. Impact of ultrafast electronic damage in single particle x-ray imaging experiments

    CERN Document Server

    Lorenz, U; Weckert, E; Vartanyants, I A

    2012-01-01

    In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.

  2. Calibration of imaging plates to electrons between 40 and 180 MeV.

    Science.gov (United States)

    Rabhi, N; Bohacek, K; Batani, D; Boutoux, G; Ducret, J-E; Guillaume, E; Jakubowska, K; Thaury, C; Thfoin, I

    2016-05-01

    This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d'Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.

  3. Impact of ultrafast electronic damage in single-particle x-ray imaging experiments

    Science.gov (United States)

    Lorenz, U.; Kabachnik, N. M.; Weckert, E.; Vartanyants, I. A.

    2012-11-01

    In single-particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.

  4. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy

    Science.gov (United States)

    Zhang, Xuan; Shastry, Sathvik; Bradforth, Stephen E.; Nadeau, Jay L.

    2014-11-01

    Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in Dox-resistant cancers.Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in

  5. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    Science.gov (United States)

    Alexeev, P.; Asadchikov, V.; Bessas, D.; Butashin, A.; Deryabin, A.; Dill, F.-U.; Ehnes, A.; Herlitschke, M.; Hermann, R. P.; Jafari, A.; Prokhorov, I.; Roshchin, B.; Röhlsberger, R.; Schlage, K.; Sergueev, I.; Siemens, A.; Wille, H.-C.

    2016-12-01

    We report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on Mössbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. The device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  6. A high-precision cryogenically-cooled crystal monochromator for the APS diagnostics beamline

    Energy Technology Data Exchange (ETDEWEB)

    Rotela, E.; Yang, B.; Sharma, s.; Barcikowski, A.

    2000-07-24

    A high-precision cryogenically-cooled crystal monochromator has been developed for the APS diagnostics beamline. The design permits simultaneous measurements of the particle beam size and divergence. It provides for a large rotation angle, {minus}15{degree} to 180{degree}, with a resolution of 0.0005{degree}. The roll angle of the crystal can be adjusted by up to {+-}3{degree} with a resolution of 0.0001{degree}. A vertical translational stage, with a stroke of {+-}25 mm and resolution of 8 {micro}m, is provided to enable using different parts of the same crystal or to retract the crystal from the beam path. The modular design will allow optimization of cooling schemes to minimize thermal distortions of the crystal under high heat loads.

  7. Flux-enhanced monochromator by ultrasound excitation of annealed Czochralski-grown silicon crystals

    CERN Document Server

    Koehler, S; Seitz, C; Magerl, A; Mashkina, E; Demin, A

    2003-01-01

    The neutron flux from monochromator crystals can be increased by ultrasound excitation or by strain fields. Rocking curves of both a perfect float-zone silicon crystal and an annealed Czochralski silicon crystal with oxygen precipitates were measured at various levels of ultrasound excitation on a cold-neutron backscattering spectrometer. We find that the effects of the dynamic strain field from the ultrasound and the static strain field from the defects are not additive. Rocking curves were also taken at different ultrasound frequencies near resonance of the crystal/ultrasound-transducer system with a time resolution of 1 min. Pronounced effects of crystal heating are observed, which render the conditions for maximum neutron reflectivity delicate. (orig.)

  8. Adaptive silicon monochromators for high-power wigglers; design, finite-element analysis and laboratory tests.

    Science.gov (United States)

    Quintana, J P; Hart, M

    1995-05-01

    Multipole wigglers in storage rings already produce X-ray power in the range up to a few kilowatts and planned devices at third-generation facilities promise up to 30 kW. Although the power density at the monochromator position is an order of magnitude lower than that from undulators, the thermal strain field in the beam footprint can still cause severe loss of performance in X-ray optical systems. For an optimized adaptive design, the results of finite-element analysis are compared with double-crystal rocking curves obtained with a laboratory X-ray source and, in a second paper [Quintana, Hart, Bilderback, Henderson, Richter, Setterson, White, Hausermann, Krumrey & Schulte-Schrepping (1995). J. Synchotron Rad. 2, 1-5], successful tests at wiggler sources at CHESS and ESRF and in an undulator source at HASYLAB are reported.

  9. A Drabkin-type spin resonator as tunable neutron beam monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, F.M., E-mail: florian.piegsa@phys.ethz.ch [ETH Zürich, Institute for Particle Physics, CH-8093 Zürich (Switzerland); Ries, D. [ETH Zürich, Institute for Particle Physics, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Filges, U.; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2015-09-11

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  10. Bragg prism monochromator and analyser for super ultra-small angle neutron scattering studies

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Sohrab Abbas; Markus Strobl; Wolfgang Treimer

    2008-11-01

    We have designed, fabricated and operated a novel Bragg prism monochromator–analyser combination. With a judicious choice of the Bragg reflection, its asymmetry and the apex angle of the silicon single crystal prism, the monochromator has produced a neutron beam with sub-arcsec collimation. A Bragg prism analyser with the opposite asymmetry has been tailored to accept a still sharper angular profile. With this optimized monochromator–analyser pair, we have attained the narrowest and sharpest neutron angular profile to date. At this facility, we have recorded the first SUSANS spectra spanning wave vector transfers ∼ 10−6 Å-1 to characterize samples containing agglomerates up to tens of micrometres in size.

  11. On the sagittal focusing of synchrotron radiation with a double crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, V.I.; Quintana, J.P.; Georgopoulos, P. (DUNU Synchrotron Research Center, Robert R. McCormick School of Engineering and Applied Science, Northwestern Univ., Evanston, IL (United States))

    1993-05-01

    A method to avoid the anticlastic bending of the second crystal in a two-crystal monochromator for synchrotron radiation is proposed. It is analytically shown that the anticlastic curvature is zero at the center of the crystal for a simply supported isotropic crystal loaded with a constant moment provided that the crystal's aspect ratio is equal to a 'golden value' dependent on the Poisson coefficient [nu]. For [nu]=0.262 (equal to [nu] in the Si(111) plane) this ratio is 2.360. Finite element results are presented on the case of the clamped crystal and show that there is a similar 'golden value' approximately equal to 1.42 for [nu]=0.262. (orig.).

  12. High-aperture monochromator-reflectometer and its usefulness for CCD calibration

    Science.gov (United States)

    Vishnyakov, Eugene A.; Shcherbakov, Alexander V.; Pertsov, Andrei A.; Polkovnikov, Vladimir N.; Pestov, Alexey E.; Pariev, Dmitry E.; Chkhalo, Nikolai I.

    2017-05-01

    We present a laboratory high-aperture monochromator-reflectometer employing laser-plasma radiation source and three replaceable Schwarzschild objectives for a certain range of applications in the soft X-ray spectral waveband. Three sets of X-ray multilayer mirrors for the Schwarzschild objectives enable operation of the reflectometer at the wavelengths of 135, 171 and 304 Å, while a goniometer with three degrees of freedom allows different measurement modes. We have used the facility for a laboratory CCD calibration at the wavelengths specified. Combined with the results of the CCD sensitivity measurements conducted in the VUV spectral waveband, the total outcome provides a more comprehensive understanding of the CCD effectivity in a wide spectral range.

  13. A water-cooled x-ray monochromator for using off-axis undulator beam.

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.; Maser, J.

    2000-12-11

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided.

  14. A study of Winston-Lutz test on two different electronic portal imaging devices and with low energy imaging.

    Science.gov (United States)

    Ravindran, Paul B

    2016-09-01

    Stereotactic radiosurgery requires sub-millimetre accuracy in patient positioning and target localization. Therefore, verification of the linear accelerator (linac) isocentre and the laser alignment to the isocentre is performed in some clinics prior to the treatment using the Winston-Lutz (W-L) test with films and more recently with images obtained using the electronic portal imaging devices (EPID). The W-L test is performed by acquiring EPID images of a radio-opaque ball of 6 mm diameter (the W-L phantom) placed at the isocentre of the linac at various gantry and table angles, with a predefined small square or circular radiation beam. In this study, the W-L test was performed on two linacs having EPIDs of different size and resolution, viz, a TrueBeam™ linac with aS1000 EPID of size 40 × 30 cm(2) with 1024 × 768 pixel resolution and an EDGE™ linac having an EPID of size 43 × 43 cm(2) with pixel resolution of 1280 × 1280. In order to determine the displacement of the radio-opaque ball centre from the radiation beam centre of the W-L test, an in-house MATLAB™ image processing code was developed using morphological operations. The displacement in radiation beam centre at each gantry and couch position was obtained by determining the distance between the radiation field centre and the radio-opaque ball centre for every image. Since the MATLAB code was based on image processing that was dependent on the image contrast and resolution, the W-L test was also compared for images obtained with different beam energies. The W-L tests were performed for 6 and 8 MV beams on the TrueBeam™ linac and for 2.5 and 6 MV beams on the EDGE™ linac with a higher resolution EPID. It was observed that the images obtained with the EPID of higher resolution resulted in same accuracy in the determination of the displacement between the centres of the radio-opaque ball and the radiation beam, and significant difference was not observed with images acquired with

  15. Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope.

    Science.gov (United States)

    Hovden, Robert; Muller, David A

    2012-12-01

    Mono-atomic-layer membranes such as graphene offer new opportunities for imaging and detecting individual light atoms in transmission electron microscopes (TEM). For such applications where multiple scattering and diffraction effects are weak, we evaluate the detection efficiency and interpretability of single atom images for the most common detector geometries using quantitative quantum mechanical simulations. For well-resolved and atomically-thin specimens, the low angle annular dark field (LAADF) detector can provide a significant increase in signal-to-noise over other common detector geometries including annular bright field and incoherent bright field. This dramatically improves the visibility of organic specimens on atomic-layer membranes. Simulations of Adenosine Triphosphate (ATP) imaged under ideal conditions indicate the minimal dose requirements for elastic imaging by STEM or conventional TEM still exceed previously reported dose limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy.

    Science.gov (United States)

    Mirsaidov, Utkur M; Zheng, Haimei; Casana, Yosune; Matsudaira, Paul

    2012-02-22

    We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å(2). The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Imaging of fast moving electron-density structures in the polar cap

    Directory of Open Access Journals (Sweden)

    C. N. Mitchell

    2007-06-01

    Full Text Available The imaging of fast-moving electron-density structures in the polar cap presents a unique set of challenges that are not encountered in other ionospheric imaging problems. GPS observations of total electron content in the polar cap are sparse compared to other regions in the Northern Hemisphere. Furthermore, the slow relative motion of the satellites across the sky complicates the problem since the velocity of the plasma can be large in comparison and traditional approaches could result in image blurring. This paper presents a Kalman-filter based method that incorporates a forward projection of the solution based on a model plasma drift velocity field. This is the first time that the plasma motion, rather than just integrations of electron density, has been used in an ionospheric imaging algorithm. The motion is derived from the Weimer model of the electric field. It is shown that this novel approach to the implementation of a Kalman filter provides a detailed view of the polar cap ionosphere under severe storm conditions. A case study is given for the October 2003 Halloween storm where verification is provided by incoherent scatter radars.

  18. New EBCCD with transferred electron photocathode for range-gated active imaging system

    Science.gov (United States)

    Xu, Xiaowen; Guo, Jin

    2002-09-01

    A detailed comparison between conventional image intensifiers and electron bombarded CCD (EBCCD) is conducted. These sensors' advantages and drawbacks are analyzed. EBCCD with transferred electron (TE) photocathode and its application in Laser Illuminated Viewing and Ranging (LIVAR) system are shown in details. The TE Photocathode (TEP) developed by Intevac in 1996 has a demonstrated quantum efficiency of 20% or higher over the spectral range between 0.95 and 1.7 μm. The TEP is coupled directly with a CCD chip in an electron bombarded CCD (EBCCD) configuration. The overall noise figure of the EBCCD camera is close to one, approximately half that of a standard Generation-III image intensifier. The EBCCD eliminates the micro-channel plate (MCP), phosphor screen, and fiber optics, and as a result both improved image quality and increased sensitivity can be obtained in a smaller sized camera. Because of the reduction in the number of image conversions and the significantly greater signal-to-noise performance, an EBCCD has higher contrast and resolution than an ICCD. These characteristics make the EBCCD a good candidate for military, helmet-mounted night-vision systems as well as for covert surveillance applications.

  19. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Science.gov (United States)

    Bainbridge, A. R.; Barlow Myers, C. W.; Bryan, W. A.

    2016-01-01

    Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics. PMID:27158637

  20. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  1. Femtosecond single- to few-electron point-projection microscopy for nanoscale dynamic imaging

    CERN Document Server

    Bainbridge, A R; Bryan, W A

    2015-01-01

    Femtosecond electron microscopy produces real-space images of matter on micrometre to nanometre length scales in a series of ultrafast snapshots, tracking the dynamic evolution of charge distributions. Given that femtosecond pulses of electrons self-disperse under space-charge broadening, the ideal operation mode (without active compression) is a single electron per pulse. Here, we demonstrate for the first time femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electron pulses in the present work have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 120 fs, combined with a spatial resolution below a micrometre. We image the evolution of a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. The rapidity of the strong-field response of the metal nanotip facilitates the char...

  2. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    Science.gov (United States)

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM.

  3. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    Science.gov (United States)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-09-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

  4. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    Science.gov (United States)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-01-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM – electrons reflected) to Low Energy Electron Microscopy (LEEM – electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. PMID:27608605

  5. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Soumia, Sid Ahmed, E-mail: samasoumia@hotmail.fr [Science and Technology Faculty, El Bachir El Ibrahimi University, BordjBouArreridj (Algeria); Messali, Zoubeida, E-mail: messalizoubeida@yahoo.fr [Laboratory of Electrical Engineering(LGE), University of M' sila (Algeria); Ouahabi, Abdeldjalil, E-mail: abdeldjalil.ouahabi@univ-tours.fr [Polytechnic School, University of Tours (EPU - PolytechTours), EPU - Energy and Electronics Department (France); Trepout, Sylvain, E-mail: sylvain.trepout@curie.fr, E-mail: cedric.messaoudi@curie.fr, E-mail: sergio.marco@curie.fr; Messaoudi, Cedric, E-mail: sylvain.trepout@curie.fr, E-mail: cedric.messaoudi@curie.fr, E-mail: sergio.marco@curie.fr; Marco, Sergio, E-mail: sylvain.trepout@curie.fr, E-mail: cedric.messaoudi@curie.fr, E-mail: sergio.marco@curie.fr [INSERMU759, University Campus Orsay, 91405 Orsay Cedex (France)

    2015-01-13

    The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the

  6. Comparison between image quality in electronic zoom and geometric magnification in digital mammography.

    Science.gov (United States)

    Alkhalifah, K H; Brindhaban, A; Asbeutah, A M

    2016-10-06

    Magnification mammography is performed to enhance the visibility of small structures at the expense of relatively high radiation dose as a complementary examination to standard mammography. The introduction of post-processing capabilities and the widespread use of digital mammography has promoted some controversy in the last decade on whether similar visibility can be achieved using electronic zoom. The aim of this study is to compare the visibility of small structures in images obtained by the two techniques stated above for different exposure conditions. Images of a Fluke Biomedical Model 18-220 Mammography Accreditation Phantom were obtained using standard techniques and geometric magnification, using a digital mammography unit, with different exposure factors. Three different target/filter combinations (Mo/Mo,Mo/Rh,Rh/Rh), variable kVp (26-32), and automatic exposure control were used. Images obtained using standard technique were electronically zoomed and compared to the corresponding magnification mammograms. Comparisons were based on the visibility of structures evaluated by five senior technologist with extensive experience in mammography. Statistical analysis was performed using non-parametric tests. Visibility of structures was not affected by the kV used for a given target/filter combination for both techniques (p > 0.065). Target/filter combination of Mo/Mo provided better visibility of micro-calcification and fibers (p geometric magnification technique and Mo/Rh in the digital zoom technique. No significant differences were observed in the visibility of simulated breast masses. The overall image score was significantly higher (p geometric magnification over the digital zoom for Mo/Mo & Rh/Rh combinations. Although sufficient image quality was maintained in electronically zoomed images, geometric magnification provided better overall visualization of structures in the phantom.

  7. A workflow for the automatic segmentation of organelles in electron microscopy image stacks.

    Science.gov (United States)

    Perez, Alex J; Seyedhosseini, Mojtaba; Deerinck, Thomas J; Bushong, Eric A; Panda, Satchidananda; Tasdizen, Tolga; Ellisman, Mark H

    2014-01-01

    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime.

  8. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    Science.gov (United States)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  9. Automated detection of synapses in serial section transmission electron microscopy image stacks.

    Directory of Open Access Journals (Sweden)

    Anna Kreshuk

    Full Text Available We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem.

  10. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    LIANG WenXi; JIN Zhan; WEI ZhiYi; ZHAO Wei; LI YingJun; ZHANG Jie; LI YuTong; XU MiaoHua; YUAN XiaoHui; ZHENG ZhiYuan; ZHANG Yi; LIU Feng; WANG ZhaoHua; LI HanMing

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri-bution and energy spectrum of hot electrons were measured with IP in the experi-ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  11. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri- bution and energy spectrum of hot electrons were measured with IP in the experi- ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  12. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J., E-mail: I.G.J.Classen@differ.nl; Bogomolov, A. V. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Domier, C. W.; Luhmann, N. C. [Department of Applied Science, University of California at Davis, Davis, California 95616 (United States); Suttrop, W.; Boom, J. E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Donné, A. J. H. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  13. Ion-momentum imaging of dissociative electron attachment dynamics in acetylene

    CERN Document Server

    Fogle, M; Landers, A L; Orel, A E; Rescigno, T N

    2014-01-01

    We present experimental results for dissociative electron attachment to acetylene near the 3 eV $^2\\Pi_g$ resonance. In particular, we use an ion-momentum imaging technique to investigate the dissociation channel leading to C$_2$H$^-$ fragments. From our measured ion-momentum results we extract fragment kinetic energy and angular distributions. We directly observe a significant dissociation bending dynamic associated with the formation of the transitory negative ion. In modeling this bending dynamic with \\emph{ab initio} electronic structure and fixed-nuclei scattering calculations we obtain good agreement with the experiment.

  14. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.; Antonuk, L.E. E-mail: antonuk@umich.edu; Berry, J.; Maolinbay, M.; Martelli, C.; Mody, P.; Nassif, S.; Yeakey, M

    1999-07-11

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The system allows image capture in both radiographic mode (corresponding to the capture of individual X-ray images), and fluoroscopic mode (corresponding to the capture of a continual series of X-ray images). A detailed description of the system architecture and the underlying motivations for the design is reported in this paper. (author)

  15. Design of 220 GHz electronically scanned reflectarrays for confocal imaging systems

    Science.gov (United States)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2012-09-01

    The authors analyze properties of a 220 GHz imaging system that uses a scanned reflectarray to perform electronic beam scanning of a confocal imager for applications including imaging meter-sized fields of view at 50 m standoff. Designs incorporating reflectarrays with confocal imagers have not been examined previously at these frequencies. We examine tradeoffs between array size, overall system size, and number of achievable image pixels resulting in a realistic architecture capable of meeting the needs of our application. Impacts to imaging performance are assessed through encircled energy calculations, beam pointing accuracy, and examining the number and intensity of quantization lobes that appear over the scan ranges of interest. Over the desired scan range, arrays with 1 and 2-bit phase quantization showed similar array main beam energy efficiencies. Two-bit phase quantization is advantageous in terms of pointing angle error, resulting in errors of at most 15% of the diffraction-limited beam size. However, both phase quantization cases considered resulted in spurious returns over the scan range of interest and other array layouts should be examined to eliminate potential imaging artifacts.

  16. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics, Monash University, Victoria 3800 (Australia); Kohno, Y. [JEOL Ltd., Tokyo 196-8558 (Japan); Cardamone, L.A. [School of Physics, Monash University, Victoria 3800 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan)

    2014-01-15

    We show that an imaging mode based on taking the difference between signals recorded from the bright field (forward scattering region) in atomic resolution scanning transmission electron microscopy provides an enhancement of the detectability of light elements over existing techniques. In some instances this is an enhancement of the visibility of the light element columns relative to heavy element columns. In all cases explored it is an enhancement in the signal-to-noise ratio of the image at the light column site. The image formation mechanisms are explained and the technique is compared with earlier approaches. Experimental data, supported by simulation, are presented for imaging the oxygen columns in LaAlO{sub 3}. Case studies looking at imaging hydrogen columns in YH{sub 2} and lithium columns in Al{sub 3}Li are also explored through simulation, particularly with respect to the dependence on defocus, probe-forming aperture angle and detector collection aperture angles. - Author-Highlights: • We present a method for enhancing the visibility and reliability of imaging light elements in STEM. • The method involves taking the difference between signals on separate bright field detectors. • Experimental data for LaAlO{sub 3} are presented, and are shown to compare favourably with simulation. • Optimum imaging parameters are explored through simulation.

  17. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  18. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    Science.gov (United States)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.; Hull, David R.

    2003-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e., soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  19. Electron beam dispersion measurements in nitrogen using two-dimensional imaging of N2(+) fluorescence

    Science.gov (United States)

    Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.

    Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.

  20. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    OpenAIRE

    Hiroshi Akamine; So Okumura; Sahar Farjami; Yasukazu Murakami; Minoru Nishida

    2016-01-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualis...

  1. Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-A information limit.

    Science.gov (United States)

    Kisielowski, C; Freitag, B; Bischoff, M; van Lin, H; Lazar, S; Knippels, G; Tiemeijer, P; van der Stam, M; von Harrach, S; Stekelenburg, M; Haider, M; Uhlemann, S; Müller, H; Hartel, P; Kabius, B; Miller, D; Petrov, I; Olson, E A; Donchev, T; Kenik, E A; Lupini, A R; Bentley, J; Pennycook, S J; Anderson, I M; Minor, A M; Schmid, A K; Duden, T; Radmilovic, V; Ramasse, Q M; Watanabe, M; Erni, R; Stach, E A; Denes, P; Dahmen, U

    2008-10-01

    The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

  2. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  3. Secondary signal imaging (SSI) electron tomography (SSI-ET): A new three-dimensional metrology for mesoscale specimens in transmission electron microscope.

    Science.gov (United States)

    Han, Chang Wan; Ortalan, Volkan

    2015-09-01

    We have demonstrated a new electron tomography technique utilizing the secondary signals (secondary electrons and backscattered electrons) for ultra thick (a few μm) specimens. The Monte Carlo electron scattering simulations reveal that the amount of backscattered electrons generated by 200 and 300keV incident electrons is a monotonic function of the sample thickness and this causes the thickness contrast satisfying the projection requirement for the tomographic reconstruction. Additional contribution of the secondary electrons emitted from the edges of the specimens enhances the visibility of the surface features. The acquired SSI tilt series of the specimen having mesoscopic dimensions are successfully reconstructed verifying that this new technique, so called the secondary signal imaging electron tomography (SSI-ET), can directly be utilized for 3D structural analysis of mesoscale structures. Published by Elsevier Ltd.

  4. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    Science.gov (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  5. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.

    Science.gov (United States)

    McNally, Elizabeth; Nan, Feihong; Botton, Gianluigi A; Schwarcz, Henry P

    2013-06-01

    Previously we presented (McNally et al., 2012) a model for the ultrastructure of bone showing that the mineral resides principally outside collagen fibrils in the form of 5 nm thick mineral structures hundreds of nanometers long oriented parallel to the fibrils. Here we use high-angle annular dark-field electron tomography in the scanning transmission electron microscope to confirm this model and further elucidate the composite structure. Views of a section cut parallel to the fibril axes show bundles of mineral structures extending parallel to the fibrils and encircling them. The mineral density inside the fibrils is too low to be visualized in these tomographic images. A section cut perpendicular to the fibril axes, shows quasi-circular walls composed of mineral structures, wrapping around apparently empty holes marking the sites of fibrils. These images confirm our original model that the majority of mineral in bone resides outside the collagen fibrils.

  6. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    CERN Document Server

    Pullen, M G; Le, A -T; Baudisch, M; Sclafani, M; Pires, H; Schröter, C D; Ullrich, J; Moshammer, R; Pfeifer, T; Lin, C D; Biegert, J

    2016-01-01

    The ability to directly follow and time resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as {\\pi}g) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with {\\pi}g and {\\pi}u symmetries, respectively, and where their ionisation probabilities do not maximise along their molecular axes. While this removes a serious bottleneck for laser induced diffraction imaging, we find unexpec...

  7. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    Science.gov (United States)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  8. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    Science.gov (United States)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2016-11-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  9. Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research - chances and challenges.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Mäder, Karsten

    2010-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful technique to study chemical species with unpaired electrons. Since its discovery in 1944, it has been widely used in a number of research fields such as physics, chemistry, biology and material and food science. This review is focused on its application in drug delivery research. EPR permits the direct measurement of microviscosity and micropolarity inside drug delivery systems (DDS), the detection of microacidity, phase transitions and the characterization of colloidal drug carriers. Additional information about the spatial distribution can be obtained by EPR imaging. The chances and also the challenges of in vitro and in vivo EPR spectroscopy and imaging in the field of drug delivery are discussed.

  10. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Christensen, Jakob Munkholt

    2011-01-01

    experimentally. Transmission electron microscopy (TEM) is used for microstructural characterization and provides feedback for both theory and synthesis. TEM is a powerful tool for characterizing of catalysts. However, conventional TEM does not provide dynamic information about catalysts in their working state....... We have recently installed an environmental transmission electron microscope (ETEM) equipped with a differential pumping system to confine a controlled flow of gas around the specimen, allowing observation in a gaseous environment (FEI Titan E-cell, monochromated, objective lens aberration corrector...... changes in the specimen. Representative TEM images of a CuSn based catalyst for synthesis of higher alcohols are shown in Figure 1. The CuSn particles are observed to sinter during the reduction leading to a decreased activity of the catalyst. Figure 2 shows the distribution of Co and Mo in a Co/MoS2...

  11. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  12. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    Science.gov (United States)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-09-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85I 0:15:Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  13. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, Hiroko, E-mail: hiroko@mail.pharm.tohoku.ac.j [Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Kondo, Yasuhiro [Ishinomaki Senshu University, 1 Shinmito Minamisakai Ishinomaki-shi, Miyagi 986-8580 (Japan)

    2010-09-21

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr{sub 0:85}I{sub 0:15}:Eu{sup 2+} have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu{sup 2+} luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  14. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    Imaging of free radicals by electron paramagnetic resonance (EPR) spectroscopy using time domain acquisition as in nuclear magnetic resonance (NMR) has not been attempted because of the short spin-spin relaxation times, typically under 1 μs, of most biologically relevant paramagnetic species...... to minimize motional artifacts from cardiac and lung motion that cause significant problems in frequency-domain spectral acquisition, such as in continuous wave (cw) EPR techniques...

  15. Imaging polyatomic molecules with ultrafast laser-induced electron diffraction (Conference Presentation)

    Science.gov (United States)

    Le, Anh-Thu; Lin, Chii-Dong

    2016-10-01

    Molecular structure determination of chemical reactions or processes has been one of the grand challenges in physics, chemistry, and biology. To image these processes, it typically requires sub-Angstrom spatial and femtosecond temporal resolutions. One of the standard imaging techniques, X-ray diffraction, however, currently suffers from temporal jitters and is available only at large facilities. Furthermore, it also suffers from very low elastic scattering cross sections, which make it difficult to apply to gas phase molecules. Another technique, ultrafast electron diffraction (UED), overcomes this low cross section problem, but the temporal resolution is still limited to hundreds of femtoseconds, mainly due to Coulomb repulsion in electron beam and velocity mismatch between laser-pump pulse and electron probe pulse in a typical pump-probe scheme. The recently proposed laser-induced electron diffraction (LIED) is based on two basic ideas. First, an electron wave packet can be generated from a target itself by an intense laser pulse and driven back within the subsequent half-cycle of the laser to rescatter from the parent ion, thus realizing a self-imaging process. Laser-free elastic differential cross sections (DCS) can then be extracted from high-energy electron spectra, as demonstrated by the Quantitative Rescattering theory (QRS). Second, the target structure information can be retrieved from the DCS. This retrieval is further simplified by using back-scattered electrons with collision energy of about 100 eV, for which the independent-atom model (IAM) can be employed to quite accurately simulate the DCS. Demonstration of ultrafast imaging with the LIED has been reported so far on simple diatomic molecules. Here we discuss recent progress in LIED with polyatomic molecules in two examples. The first one is aligned acetylene (C2H2) and the second one is benzene (C6H6). In both cases, two bond lengths, C-C and C-H have been successfully retrieved. For even more

  16. DICOM image integration into an electronic medical record using thin viewing clients

    Science.gov (United States)

    Stewart, Brent K.; Langer, Steven G.; Taira, Ricky K.

    1998-07-01

    Purpose -- To integrate radiological DICOM images into our currently existing web-browsable Electronic Medical Record (MINDscape). Over the last five years the University of Washington has created a clinical data repository combining in a distributed relational database information from multiple departmental databases (MIND). A text-based view of this data called the Mini Medical Record (MMR) has been available for three years. MINDscape, unlike the text based MMR, provides a platform independent, web browser view of the MIND dataset that can easily be linked to other information resources on the network. We have now added the integration of radiological images into MINDscape through a DICOM webserver. Methods/New Work -- we have integrated a commercial webserver that acts as a DICOM Storage Class Provider to our, computed radiography (CR), computed tomography (CT), digital fluoroscopy (DF), magnetic resonance (MR) and ultrasound (US) scanning devices. These images can be accessed through CGI queries or by linking the image server database using ODBC or SQL gateways. This allows the use of dynamic HTML links to the images on the DICOM webserver from MINDscape, so that the radiology reports already resident in the MIND repository can be married with the associated images through the unique examination accession number generated by our Radiology Information System (RIS). The web browser plug-in used provides a wavelet decompression engine (up to 16-bits per pixel) and performs the following image manipulation functions: window/level, flip, invert, sort, rotate, zoom, cine-loop and save as JPEG. Results -- Radiological DICOM image sets (CR, CT, MR and US) are displayed with associated exam reports for referring physician and clinicians anywhere within the widespread academic medical center on PCs, Macs, X-terminals and Unix computers. This system is also being used for home teleradiology application. Conclusion -- Radiological DICOM images can be made available

  17. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    Science.gov (United States)

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  18. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen Guanghong, E-mail: gchen7@wisc.ed [Department of Medical Physics, University of Wisconsin-Madison, WI 53705 (United States)

    2010-05-07

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  19. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-05-01

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  20. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  1. NOTE: Radiological thickness measurement using a liquid ionization chamber electronic portal imaging device

    Science.gov (United States)

    Evans, Philip M.; Donovan, Ellen M.; Partridge, Mike; Bidmead, A. Margaret; Garton, Andrew; Mubata, Cephas

    1999-06-01

    We present a method of calibrating the Portal Vision electronic portal imaging device to obtain radiological thickness maps for compensator design. In this method, coefficients are derived to describe the relationship between intensity and thickness for a set of water-equivalent blocks. The effects of four parameters were studied: (a) The dose response of the system was measured and found to be describable by a square-root function. (b) The calibration data and images were taken with a wedge in situ. The effects of using different wedges and different wedge orientations were investigated. The intrinsic accuracy of the accelerator/imager system was found to be 1.9 mm, for both 15° and 30° wedges. Changing the wedge orientation between calibration and imaging and rotating the calibration coefficients accordingly led to an error of 3.5 mm. (c) The variation in detector response with gantry angle was measured and corrected. The residual error in this process was 2.4 mm. (d) The use of a model to correct the effects of imaging with different field sizes was investigated and found to yield a residual error of 2.9 mm. The overall error in image calibrations was 4 mm or 2% in dose. This is considered to be sufficiently small for the intended use of designing compensators for tangential breast irradiation.

  2. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.

    Science.gov (United States)

    Lebeau, James M; Stemmer, Susanne

    2008-11-01

    This paper reports on a method to obtain atomic resolution Z-contrast (high-angle annular dark-field) images with intensities normalized to the incident beam. The procedure bypasses the built-in signal processing hardware of the microscope to obtain the large dynamic range necessary for consecutive measurements of the incident beam and the intensities in the Z-contrast image. The method is also used to characterize the response of the annular dark-field detector output, including conditions that avoid saturation and result in a linear relationship between the electron flux reaching the detector and its output. We also characterize the uniformity of the detector response across its entire area and determine its size and shape, which are needed as input for image simulations. We present normalized intensity images of a SrTiO(3) single crystal as a function of thickness. Averaged, normalized atom column intensities and the background intensity are extracted from these images. The results from the approach developed here can be used for direct, quantitative comparisons with image simulations without any need for scaling.

  3. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Science.gov (United States)

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La0.7Sr0.3MnO3 (LSMO) and Nd0.5Sr0.5MnO3, in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields.

  4. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    Science.gov (United States)

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  5. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.;

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close...... to the dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less...

  6. Four-wave dark-field electron holography for imaging strain fields

    Science.gov (United States)

    Denneulin, T.; Hÿtch, M.

    2016-06-01

    Strain characterization by transmission electron microscopy is an active area of research especially for microelectronics applications. Two-wave dark-field electron holography (DFEH) was previously introduced as a reliable strain mapping technique. Here, DFEH with four electron waves was investigated in order to image equi-displacement lines as amplitude modulations of the holographic fringes. Two perpendicular electrostatic biprisms are used to interfere three reference waves diffracted by a substrate and one object wave diffracted by an epitaxially strained region. This technique provides a different way to represent the displacement field. It might be helpful to obtain information about the strain state during in situ experiments. A dummy p-MOSFET device with embedded SiGe source and drain is used for experimental demonstration.

  7. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@ioe.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.

  8. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Science.gov (United States)

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community.

  9. Electronic structure of the diatomic VO anion: A combined photoelectron-imaging spectroscopic and theoretical investigation

    Science.gov (United States)

    Cheng, Shi-Bo; Harmon, Christopher L.; Yang, Huan; Castleman, A. W.

    2016-12-01

    The electronic structure of the diatomic VO anion was explored by combining the photoelectron-imaging spectroscopy and high-level theoretical calculations. The electron affinity (EA) of VO is determined to be 1.244 ± 0.025 eV from the vibrationally resolved photoelectron spectrum acquired at 532 nm. The anisotropy parameter (β) for the EA defined peak is measured to be 1.59 ± 0.02, indicating that it is the 9σ electron attachment leading to the formation of the ground state of V O- . The present imaging experiment provides direct evidence that the ground state of V O- is X 3Σ- with a (3π ) 4(8σ ) 2(9σ ) 2(1δ ) 2 electron configuration, which resolves the significant discrepancy in previous experiment and theory. In addition, the molecular orbitals and bonding involved in the anionic VO cluster are also examined based on the present high-level theoretical calculations.

  10. Marker-free image registration of electron tomography tilt-series

    Directory of Open Access Journals (Sweden)

    Bilbao-Castro JR

    2009-04-01

    Full Text Available Abstract Background Tilt series are commonly used in electron tomography as a means of collecting three-dimensional information from two-dimensional projections. A common problem encountered is the projection alignment prior to 3D reconstruction. Current alignment techniques usually employ gold particles or image derived markers to correctly align the images. When these markers are not present, correlation between adjacent views is used to align them. However, sequential pairwise correlation is prone to bias and the resulting alignment is not always optimal. Results In this paper we introduce an algorithm to find regions of the tilt series which can be tracked within a subseries of the tilt series. These regions act as landmarks allowing the determination of the alignment parameters. We show our results with synthetic data as well as experimental cryo electron tomography. Conclusion Our algorithm is able to correctly align a single-tilt tomographic series without the help of fiducial markers thanks to the detection of thousands of small image patches that can be tracked over a short number of images in the series.

  11. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  12. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging

    Science.gov (United States)

    Epel, Boris; Halpern, Howard J.

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.

  13. BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    CERN Document Server

    Cossio, Pilar; Baruffa, Fabio; Rampp, Markus; Lindenstruth, Volker; Hummer, Gerhard

    2016-01-01

    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The g...

  14. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    Science.gov (United States)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  15. Advanced image processing package for FPGA-based re-programmable miniature electronics

    Science.gov (United States)

    Ovod, Vladimir I.; Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.

    2005-05-01

    Nova Sensors produces miniature electronics for a variety of real-time digital video camera systems, including foveal sensors based on Nova's Variable Acuity Superpixel Imager (VASITM) technology. An advanced image-processing package has been designed at Nova Sensors to re-configure the FPGA-based co-processor board for numerous applications including motion detection, optical, background velocimetry and target tracking. Currently, the processing package consists of 14 processing operations that cover a broad range of point- and area-applied algorithms. Flexible FPGA designs of these operations and re-programmability of the processing board allows for easy updates of the VASITM sensors, and for low-cost customization of VASITM sensors taking into account specific customer requirements. This paper describes the image processing algorithms implemented and verified in Xilinx FPGAs and provides the major technical performances with figures illustrating practical applications of the processing package.

  16. Imaging of surface spin textures on bulk crystals by scanning electron microscopy.

    Science.gov (United States)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-22

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  17. Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular ultrastructures with serial block-face scanning electron microscopy.

    Science.gov (United States)

    Thai, Truc Quynh; Nguyen, Huy Bang; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Elewa, Yaser Hosny Ali; Ichii, Osamu; Kon, Yasuhiro; Takaki, Takashi; Joh, Kensuke; Ohno, Nobuhiko

    2016-09-01

    Serial block-face imaging using scanning electron microscopy enables rapid observations of three-dimensional ultrastructures in a large volume of biological specimens. However, such imaging usually requires days for sample preparation to reduce charging and increase image contrast. In this study, we report a rapid procedure to acquire serial electron microscopic images within 1 day for three-dimensional analyses of subcellular ultrastructures. This procedure is based on serial block-face with two major modifications, including a new sample treatment device and direct polymerization on the rivets, to reduce the time and workload needed. The modified procedure without uranyl acetate can produce tens of embedded samples observable under serial block-face scanning electron microscopy within 1 day. The serial images obtained are similar to the block-face images acquired by common procedures, and are applicable to three-dimensional reconstructions at a subcellular resolution. Using this approach, regional immune deposits and the double contour or heterogeneous thinning of basement membranes were observed in the glomerular capillary loops of an autoimmune nephropathy model. These modifications provide options to improve the throughput of three-dimensional electron microscopic examinations, and will ultimately be beneficial for the wider application of volume imaging in life science and clinical medicine.

  18. Development of Automated Image Analysis Tools for Verification of Radiotherapy Field Accuracy with AN Electronic Portal Imaging Device.

    Science.gov (United States)

    Dong, Lei

    1995-01-01

    The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5^ circ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1^ circ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross -correlation technique were

  19. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  20. VESAS: a novel concept for fully-electronic passive MW imaging

    Science.gov (United States)

    Schreiber, Eric; Peichl, Markus; Jirousek, Matthias; Suess, Helmut

    2013-05-01

    These days passive microwave (MW) remote sensing has found many applications. For example, in Earth observation missions, it is possible to estimate the salinity of oceans, the soil moisture of landscapes, or to extract atmospheric parameters like the liquid water content of clouds [1, 2, 3]. Due to the penetration capabilities of microwaves through many dielectric materials, and the purely passive character of this kind of remote sensing, this technique nowadays is considered as well in many security and reconnaissance applications (e.g. observation of sensitive areas, detection of concealed objects, trough-wall imaging, etc.). Presently different imaging principles for MW radiometry are possible. Most of them still are based on pure mechanical scanning or they combine this with electronic scanning by using parts of a focal plane array [4]. Due to many advantages, the technological trend is going towards fully-electronic beam steering or two-dimensional focal plane arrays. These systems are able to achieve high frame rates, but they are still very expensive because of a significantly higher number of receiver modules, compared to a mechanical scanning system. In our approach a novel concept for a Ka band fully-electronic wide swath MW imaging radiometer system is introduced [5]. It is based on a combination of beam steering by frequency shift for one scanning direction using a slotted-waveguide antenna, and the application of aperture synthesis in the other. In the following a proof of concept is outlined using a two-element interferometer system called VESAS (Voll elektronischer Scanner mit Apertursynthese) demonstrator. The advantage of using the aperture synthesis technique is the possibility to implement minimal redundant sparse arrays without a degradation of the antenna pattern. In combination with the beam steering by frequency shift, one requires a one dimensional receiver/antenna array for a two dimensional imaging, hence a low-cost, fully-electronic wide

  1. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

    Science.gov (United States)

    Bente, Klaas; Weber, Matthias; Graeser, Matthias; Sattel, Timo F; Erbe, Marlitt; Buzug, Thorsten M

    2015-02-01

    It has been shown that magnetic particle imaging (MPI), an imaging method suggested in 2005, is capable of measuring the spatial distribution of magnetic nanoparticles. Since the particles can be administered as biocompatible suspensions, this method promises to perform well as a tracer-based medical imaging technique. It is capable of generating real-time images, which will be useful in interventional procedures, without utilizing any harmful radiation. To obtain a signal from the administered superparamagnetic iron oxide (SPIO) particles, a sinusoidal changing external homogeneous magnetic field is applied. To achieve spatial encoding, a gradient field is superimposed. Conventional MPI works with a spatial encoding field that features a field free point (FFP). To increase sensitivity, an improved spatial encoding field, featuring a field free line (FFL) can be used. Previous FFL scanners, featuring a 1-D excitation, could demonstrate the feasibility of the FFL-based MPI imaging process. In this work, an FFL-based MPI scanner is presented that features a 2-D excitation field and, for the first time, an electronic rotation of the spatial encoding field. Furthermore, the role of relaxation effects in MPI is starting to move to the center of interest. Nevertheless, no reconstruction schemes presented thus far include a dynamical particle model for image reconstruction. A first application of a model that accounts for relaxation effects in the reconstruction of MPI images is presented here in the form of a simplified, but well performing strategy for signal deconvolution. The results demonstrate the high impact of relaxation deconvolution on the MPI imaging process.

  2. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    Science.gov (United States)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  3. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    Science.gov (United States)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-01-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673

  4. SU-E-I-63: Performance Study of An Electron-Tracking Compton Camera for Medical Imaging.

    Science.gov (United States)

    Kabuki, S; Kimura, H; Kubo, H; Ogawa, K; Kunieda, E; Tanimori, T

    2012-06-01

    Conventional gamma-ray detector, PET and SPECT, have the limitation of energy and field of view. These limitations are major problems of studying for a new medical imaging. Therefore, we have developed the new imaging detector which is an electron-tracking Compton camera (ETCC). A reconstruction method of Compton camera (CC) is using the physics principle. Because of using physics principle, CC can have a wide energy dynamic range and wide field of view. Conventional CC, however, cannot catch Compton recoil electron tracks, and this is one of the reasons of low imaging power. We have developed a time projection chamber (TPC) using micro pixel chamber (μPIC) as the new detector for ETCC. The μPIC is 2-dimensional gaseous detector and this position resolution is less than 400 μm. Using this detector, ETCC can get electron tracks which are generated from Compton scattering. In this paper, we show the prototype ETCC performance and imaging results. ETCC achieved a wide energy dynamic range (200-1300keV) and wide field of view (3 steradian). Also we succeeded in imaging new imaging reagents using mice as follows; (1) F-18-FDG (511 keV) and I-131-MIBG (364 keV) simultaneous imaging for double clinical tracer imaging, (2) Zn-65- porphyrin (1116 keV) imaging for high energy gamma-ray imaging and, (3) imaging of some minerals (Mn-54, Zn-65) in mice and so on. And we succeeded in 3-D imaging which has imaged only one direction using one head camera. We have developed the ETCC for new medical imaging device and succeeded in imaging the some imaging reagents. We started to develop the new ETCC which can image the mouse within 30 min. Thus, this detector has the possibility of new medical imaging. © 2012 American Association of Physicists in Medicine.

  5. Imaging spin filter for electrons based on specular reflection from iridium (001)

    Energy Technology Data Exchange (ETDEWEB)

    Kutnyakhov, D.; Lushchyk, P. [Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz (Germany); Fognini, A.; Perriard, D. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland); Kolbe, M.; Medjanik, K.; Fedchenko, E.; Nepijko, S.A.; Elmers, H.J. [Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz (Germany); Salvatella, G.; Stieger, C.; Gort, R.; Bähler, T.; Michlmayer, T.; Acremann, Y.; Vaterlaus, A. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland); Giebels, F.; Gollisch, H.; Feder, R. [Universität Duisburg-Essen, Theoretische Festkörperphysik, 47057 Duisburg (Germany); Tusche, C. [Max Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); and others

    2013-07-15

    As Stern–Gerlach type spin filters do not work with electrons, spin analysis of electron beams is accomplished by spin-dependent scattering processes based on spin–orbit or exchange interaction. Existing polarimeters are single-channel devices characterized by an inherently low figure of merit (FoM) of typically 10{sup −4}–10{sup −3}. This single-channel approach is not compatible with parallel imaging microscopes and also not with modern electron spectrometers that acquire a certain energy and angular interval simultaneously. We present a novel type of polarimeter that can transport a full image by making use of k-parallel conservation in low-energy electron diffraction. We studied specular reflection from Ir (001) because this spin-filter crystal provides a high analyzing power combined with a “lifetime” in UHV of a full day. One good working point is centered at 39 eV scattering energy with a broad maximum of 5 eV usable width. A second one at about 10 eV shows a narrower profile but much higher FoM. A relativistic layer-KKR SPLEED calculation shows good agreement with measurements. - Highlights: • Novel type of spin polarimeter can transport a full image by making use of k{sup →}{sub ||} conservation in LEED. • When combined with a hemispherical analyzer, it acquires a certain energy and angular interval simultaneously. • Ir (001) based spin-filter provides a high analyzing power combined with a “lifetime” in UHV of a full day. • Parallel spin detection improves spin polarimeter efficiency by orders of magnitude. • A relativistic layer-KKR SPLEED calculation shows good agreement with measurements.

  6. Thirty per cent contrast in secondary-electron imaging by scanning field-emission microscopy.

    Science.gov (United States)

    Zanin, D A; De Pietro, L G; Peter, Q; Kostanyan, A; Cabrera, H; Vindigni, A; Bähler, Th; Pescia, D; Ramsperger, U

    2016-11-01

    We perform scanning tunnelling microscopy (STM) in a regime where primary electrons are field-emitted from the tip and excite secondary electrons out of the target-the scanning field-emission microscopy regime (SFM). In the SFM mode, a secondary-electron contrast as high as 30% is observed when imaging a monoatomic step between a clean W(110)- and an Fe-covered W(110)-terrace. This is a figure of contrast comparable to STM. The apparent width of the monoatomic step attains the 1 nm mark, i.e. it is only marginally worse than the corresponding width observed in STM. The origin of the unexpected strong contrast in SFM is the material dependence of the secondary-electron yield and not the dependence of the transported current on the tip-target distance, typical of STM: accordingly, we expect that a technology combining STM and SFM will highlight complementary aspects of a surface while simultaneously making electrons, selected with nanometre spatial precision, available to a macroscopic environment for further processing.

  7. Quality control test for electronic portal imaging device using QC-3 phantom with PIPSpro

    Directory of Open Access Journals (Sweden)

    Birendra Kumar Rout

    2014-12-01

    Full Text Available Purpose:A Quality control (QC test suitable for routinely daily use has been established for electronic portal imaging device (EPID using PIPSpro software version 4.4 (Standard Imaging, Middleton, WI. It provides an objective and quantitative test for tolerable image quality on the basis of the high contrast spatial resolution, the contrast-to-noise ratio (CNR and noise.Methods: The test uses a QC-3 phantom consisting of five sets of high contrast rectangular bar patterns with spatial frequeinces of 0.10, 0.20, 0.25, 0.43 and 0.75 lp/mm using 6MV and 15MV photon energy for accquiring high quality images. A “base line” value for the relative square wave modulation transfer function (RMTF, CNR and Noise data was obtained during a one week calibration period and one month test period.Results: Subsequent measurements shows significant deviations from baseline values, resulting in warning messages “potential problems in system performance”. The QC test uses high contrast spatial resolution and CNR for the system with acceptable performance. Conclusion: The method provides an automatic, objective, and sensitive measure of the system's imaging performance. This is a useful implementation during acceptance testing, commissioning, and routine quality control.

  8. Verification of segmented beam delivery using a commercial electronic portal imaging device.

    Science.gov (United States)

    Curtin-Savard, A J; Podgorsak, E B

    1999-05-01

    In modern radiotherapy, three-dimensional conformal dose distributions are achieved through the delivery of beam ports having precalculated planar distributions of photon beam intensity. Although sophisticated means to calculate and deliver these spatially modulated beams have been developed, means to verify their actual delivery are relatively cumbersome, making equipment and treatment quality assurance difficult to enforce. An electronic portal imaging device of the scanning liquid ionization chamber type yields images which, once calibrated from a previously determined calibration curve, provide highly precise planar maps of the incident dose rate. For verification of an intensity-modulated beam delivered in the segmented approach with a multileaf collimator, a portal image is acquired for each subfield of the leaf sequence. Subsequent to their calibration, the images are multiplied by their respective associated monitor unit settings, and summed to produce a planar dose distribution at the measurement depth in phantom. The excellent agreement of our portal imager measurements with calculations of our treatment planning system and measurements with a one-dimensional beam profiler attests to the usefulness of this method for the planar verification of intensity-modulated fields produced in the segmented approach on a computerized linear accelerator equipped with a multileaf collimator.

  9. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  10. On the theory of the reconstruction of a weak phase-amplitude object from its images, especially in electron microscopy. I. Isoplanatic imaging

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.

    1975-01-01

    In this paper we discuss the reconstruction of a weak phase-amplitude object from its intensity image. This problem occurs in electron microscopy where the weak object approximation holds for not too low accelerating voltages (E>~100 keV). Isoplanatic imaging is assumed. The illumination is supposed

  11. Thermal and structural finite element analysis of water cooled silicon monochromator for synchrotron radiation comparison of two different cooling schemes

    CERN Document Server

    Artemiev, A I; Busetto, E; Hrdy, J; Mrazek, D; Plesek, I; Savoia, A

    2001-01-01

    The article describes the results of Finite Element Analysis (FEA) of the first Si monochromator crystal distortions due to Synchrotron Radiation (SR) heat load and consequent analysis of the influence of the distortions on a double crystal monochromator performance. Efficiencies of two different cooling schemes are compared. A thin plate of Si crystal is lying on copper cooling support in both cases. There are microchannels inside the cooling support. In the first model the direction of the microchannels is parallel to the diffraction plane. In the second model the direction of the microchannels is perpendicular to the diffraction plane or in other words, it is a conventional cooling scheme. It is shown that the temperature field along the crystal volume is more uniform and more symmetrical in the first model than in the second (conventional) one.

  12. Optimization of bent perfect Si(220)-crystal monochromator for residual strain/stress instrument-Part II

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Kook [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of)]. E-mail: moonmk@kaeri.re.kr; Em, Vyacheslav T. [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Lee, Chang-Hee [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Mikula, Pavol [Nuclear Physics Institute and Research Centre Rez Ltd., 250 68 Rez (Czech Republic); Hong, Kwang-Pyo [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Hyun [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Cheon, Jong-Kyu [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Nam, Uk-Won [Nuclear Physics Institute and Research Centre Rez Ltd., 250 68 Rez (Czech Republic); Kong, Kyung-Nam [Nuclear Physics Institute and Research Centre Rez Ltd., 250 68 Rez (Czech Republic); Korea Astronomy Observatory, Yusung, Daejeon 305-348 (Korea, Republic of); Jin, Kyung-Chan [Korea Institute of Industrial Technology, 35-3 Hongchon-Ri, Ipchang-Myun, Chonan-Si, Chungnam, 330-825 (Korea, Republic of)

    2005-11-01

    Optimized diffractometer arrangements for residual strain measurements employing curved crystal monochromators provide good luminosity and a high {delta}d/d resolution in the vicinity of usually used scattering angle 2{theta}{sub S}{approx}+/-90{sup o}. Due to a variety of designs of the diffractometers which could be installed at a constant or different take-off angles, except a few attempts, there is a lack of experimental evidence providing a help in a choice of parameters for an optimum performance. In addition to our earlier investigations with curved Si(311) monochromator employed in different diffraction geometries (see paper I [M.K. Moon et al., Physica B, submitted [1

  13. Design, Build & Test of a Double Crystal Monochromator for Beamlines I09 & I23 at the Diamond Light Source

    Science.gov (United States)

    Kelly, J.; Lee, T.; Alcock, S.; Patel, H.

    2013-03-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 - 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  14. A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    Directory of Open Access Journals (Sweden)

    Alex Joseph Perez

    2014-11-01

    Full Text Available Electron microscopy (EM facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson’s and Alzheimer’s diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM. Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime.

  15. Status of VESAS: a fully-electronic microwave imaging radiometer system

    Science.gov (United States)

    Schreiber, Eric; Peichl, Markus; Suess, Helmut

    2010-04-01

    Present applications of microwave remote sensing systems cover a large variety. One utilisation of the frequency range from 1 - 300 GHz is the domain of security and reconnaissance. Examples are the observation of critical infrastructures or the performance of security checks on people in order to detect concealed weapons or explosives, both being frequent threats in our world of growing international terrorism. The imaging capability of concealed objects is one of the main advantages of microwave remote sensing, because of the penetration performance of electromagnetic waves through dielectric materials in this frequency domain. The main physical effects used in passive microwave sensing rely on the naturally generated thermal radiation and the physical properties of matter, the latter being surface characteristics, chemical and physical composition, and the temperature of the material. As a consequence it is possible to discriminate objects having different material characteristics like ceramic weapons or plastic explosives with respect to the human body. Considering the use of microwave imaging with respect to people scanning systems in airports, railway stations, or stadiums, it is advantageous that passively operating devices generate no exposure on the scanned objects like actively operating devices do. For frequently used security gateways it is additionally important to have a high through-put rate in order to minimize the queue time. Consequently fast imaging systems are necessary. In this regard the conceptual idea of a fully-electronic microwave imaging radiometer system is introduced. The two-dimensional scanning mechanism is divided into a frequency scan in one direction and the method of aperture synthesis in the other. The overall goal here is to design a low-cost, fully-electronic imaging system with a frame rate of around one second at Ka band. This frequency domain around a center frequency of 37 GHz offers a well-balanced compromise between the

  16. Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy.

    Science.gov (United States)

    Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed

    2017-08-24

    Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Evaluation of Dynamic Partial Reconfiguration for Signal and Image Processing in Professional Electronics Applications

    Directory of Open Access Journals (Sweden)

    Aulagnier Denis

    2008-01-01

    Full Text Available Abstract Signal and image processing applications require a lot of computing resources. For low-volume applications like in professional electronics applications, FPGA are used in combination with DSP and GPP in order to reach the performances required by the product roadmaps. Nevertheless, FPGA designs are static, which raises a flexibility issue with new complex or software defined applications like software-defined radio (SDR. In this scope, dynamic partial reconfiguration (DPR is used to bring a virtualization layer upon the static hardware of FPGA. During the last decade, DPR has been widely studied in academia. Nevertheless, there are very few real applications using it, and therefore, there is a lack of feedback providing relevant issues to address in order to improve its applicability. This paper evaluates the interest and limitations when using DPR in professional electronics applications and provides guidelines to improve its applicability. It makes a fair evaluation based on experiments made on a set of signal and image processing applications. It identifies the missing elements of the design flow to use DPR in professional electronics applications. Finally, it introduces a fast reconfiguration manager providing an 84-time improvement compared to the vendor solution.

  18. An Evaluation of Dynamic Partial Reconfiguration for Signal and Image Processing in Professional Electronics Applications

    Directory of Open Access Journals (Sweden)

    Philippe Manet

    2009-02-01

    Full Text Available Signal and image processing applications require a lot of computing resources. For low-volume applications like in professional electronics applications, FPGA are used in combination with DSP and GPP in order to reach the performances required by the product roadmaps. Nevertheless, FPGA designs are static, which raises a flexibility issue with new complex or software defined applications like software-defined radio (SDR. In this scope, dynamic partial reconfiguration (DPR is used to bring a virtualization layer upon the static hardware of FPGA. During the last decade, DPR has been widely studied in academia. Nevertheless, there are very few real applications using it, and therefore, there is a lack of feedback providing relevant issues to address in order to improve its applicability. This paper evaluates the interest and limitations when using DPR in professional electronics applications and provides guidelines to improve its applicability. It makes a fair evaluation based on experiments made on a set of signal and image processing applications. It identifies the missing elements of the design flow to use DPR in professional electronics applications. Finally, it introduces a fast reconfiguration manager providing an 84-time improvement compared to the vendor solution.

  19. Electronic properties and STM images of vacancy clusters and chains in functionalized silicene and germanene

    Science.gov (United States)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2017-01-01

    Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1-1.9 eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization.

  20. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W. [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  1. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images.

    Science.gov (United States)

    Stevens, Andrew; Yang, Hao; Carin, Lawrence; Arslan, Ilke; Browning, Nigel D

    2014-02-01

    The use of high-resolution imaging methods in scanning transmission electron microscopy (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example, in the study of organic systems, in tomography and during in situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high-resolution STEM images. These computational algorithms have been applied to a set of images with a reduced number of sampled pixels in the image. For a reduction in the number of pixels down to 5% of the original image, the algorithms can recover the original image from the reduced data set. We show that this approach is valid for both atomic-resolution images and nanometer-resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these postacquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or the alignment of the microscope itself.

  2. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  3. Electronic spreadsheet to acquire the reflectance from the TM and ETM+ Landsat images

    Directory of Open Access Journals (Sweden)

    Antonio R. Formaggio

    2005-08-01

    Full Text Available The reflectance of agricultural cultures and other terrestrial surface "targets" is an intrinsic parameter of these targets, so in many situations, it must be used instead of the values of "gray levels" that is found in the satellite images. In order to get reflectance values, it is necessary to eliminate the atmospheric interference and to make a set of calculations that uses sensor parameters and information regarding the original image. The automation of this procedure has the advantage to speed up the process and to reduce the possibility of errors during calculations. The objective of this paper is to present an electronic spreadsheet that simplifies and automatizes the transformation of the digital numbers of the TM/Landsat-5 and ETM+/Landsat-7 images into reflectance. The method employed for atmospheric correction was the dark object subtraction (DOS. The electronic spreadsheet described here is freely available to users and can be downloaded at the following website: http://www.dsr.inpe.br/Calculo_Reflectancia.xls.

  4. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source

    CERN Document Server

    Stoupin, S; Blank, V D; Shvyd'ko, Yu V; Goetze, K; Assoufid, L; Polyakov, S N; Kuznetsov, M S; Kornilov, N V; Katsoudas, J; Alonso-Mori, R; Chollet, M; Feng, Y; Glownia, J M; Lemke, H; Robert, A; Song, S; Sikorski, M; Zhu, D

    2014-01-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal with a thickness of 100 um provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. Here we report on the design, fabrication, and X-ray characterization of the first and second (300-um-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 X 2 mm2 with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 X 2 mm2 working regions of the crystals.

  5. Double-crystal monochromator for a PF 60-period soft x-ray undulator (abstract)

    Science.gov (United States)

    Ishikawa, T.; Maezawa, H.; Nomura, M.; Ando, M.

    1989-07-01

    Since undulator light is sharply collimated itself, it can be effectively monochromatized by a perfect crystal. An x-ray double-crystal monochromator with a fixed exit has been designed and built for the use of undulator light from a 60-period undulator at Photon Factory (beamline 2A). Available Bragg angle ranges from 7° to 80°. Angle scan is made by means of a goniometer outside the vacuum chamber, with the finest step of 0.1 arcsec. Magnetic fluid is used as the vacuum seal of the feedthrough. The fixed exit beam position is kept by translating the second crystal along the two mechanical guides: one for normal and the other for parallel to the crystal surface. Adjustment of the parallelity of two crystals is made manually with flexible wires. Since a total power in the central coherent portion which is limited by a 1×1-mm2 slit is not so much, a stable operation is possible without cooling the crystal. Currently, InSb (111) reflection is used. The diffracting planes of the first cyrstal is 1° off from the surface and the second is the symmetric reflection. At its fifth harmonics, brilliant undulator light of approximately 1012 photons/s mm2 with 1-eV energy resolution is available (E=2 keV).

  6. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å-1 have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements.

  7. Design, Fabrication and Measurement of Ni/Ti Multilayer Used for Neutron Monochromator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong; WANG Zhan-Shan; ZHU Jing-Tao; WU Yong-Rong; MU Bao-Zhong; WANG Feng-Li; QIN Shu-Ji; CHEN Ling-Yan

    2007-01-01

    Ni/Ti multilayers.which can be used for neutron monochromators,are designed,fabricated and measured.Firstly,their reflectivities are simulated based on the Nevot-Croce model.Reflectivities of two Ni/Ti multilayer mirrors with periods d=10.3nm(M1)and d=7.8nm(M2) are calculated.In the calculation,the reflectivity of the Ni/Ti multilayer is taken as a function of the gazing angle with different roughness factors δ=1.0nm and δ=1.5nm.Secondly,these two multilayers are fabricated by the direct current magnetron sputtering technology.Thirdly their structures are characterized by small-angle x-ray diffraction.The roughness factors are fitted to be O.68nm and 1.16nm for M1 and M2.respectively.Finally their reflective performances are measured on the V14 neutron beam line at the Bedin Neutron Scattering Centre(BENSC),Germany.The experimental data show that the grazing angle of the reflected neutron intensity peak increases,but the reflected neutron intensity decreases.with the decreasing periods of the multilayers.

  8. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Science.gov (United States)

    Kristiansen, Paw; Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim

    2015-01-01

    The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged. PMID:26134790

  9. The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline.

    Science.gov (United States)

    Zhang, Lin; Lee, Wah Keat; Wulff, Michael; Eybert, Laurent

    2003-07-01

    The channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility is indirectly cooled from the sides by liquid nitrogen. The thermal slope error of the diffracting surface is calculated by finite-element analysis and the results are compared with experiments. The slope error is studied as a function of cooling coefficients, beam size, position of the footprint and power distribution. It is found that the slope error versus power curve can be divided into three regions: (i). The linear region: the thermal slope error is linearly proportional to the power. (ii). The transition region: the temperature of the Si crystal is close to 125 K; the thermal slope error is below the straight line extrapolated from the linear curve described above. (iii). The non-linear region: the temperature of the Si crystal is higher than 125 K and the thermal slope error increases much faster than the power. Heat-load tests were also performed and the measured rocking-curve widths are compared with those calculated by finite-element modeling. When the broadening from the intrinsic rocking-curve width and mounting strain are included, the calculated rocking-curve width versus heat load is in excellent agreement with experiment.

  10. Mechanical design aspects of a soft X-ray plane grating monochromator

    CERN Document Server

    Vasina, R; Dolezel, P; Mynar, M; Vondracek, M; Chab, V; Slezak, J A; Comicioli, C; Prince, K C

    2001-01-01

    A plane grating monochromator based on the SX-700 concept has been constructed for the Materials Science Beamline, Elettra, which is attached to a bending magnet. The tuning range is from 35 to 800 eV with calculated spectral resolving power epsilon/DELTA epsilon better than 4000 in the whole range. The optical elements consist of a toroidal prefocusing mirror, polarization aperture, entrance slit, plane pre-mirror, single plane grating (blazed), spherical mirror, exit slit and toroidal refocusing mirror. The plane grating is operated in the fixed focus mode with C sub f sub f =2.4. Energy scanning is performed by rotation of the plane grating and simultaneous translation and rotation of the plane pre-mirror. A novel solution is applied for the motion of the plane pre-mirror, namely by a translation and mechanically coupling the rotation by a cam. The slits have no moving parts in vacuum to reduce cost and increase ruggedness, and can be fully closed without risk of damage. In the first tests, a resolving pow...

  11. Influence of nuclear quantum effects on frozen phonon simulations of electron vortex beam HAADF-STEM images

    Energy Technology Data Exchange (ETDEWEB)

    Löfgren, André; Zeiger, Paul; Kocevski, Vancho; Rusz, Ján, E-mail: jan.rusz@fysik.uu.se

    2016-05-15

    We have evaluated atomic resolution high-angle annular dark field images with ordinary beams and electron vortex beams for thin crystals of bcc iron, explicitly considering the atomic vibrations using molecular dynamics. The shape of the image representing an atomic column depends on the orbital angular momentum, sample thickness and temperature. For electron vortex beams we observe characteristic doughnut-shaped images of atomic columns. It is shown how the thermal diffuse scattering reduces the depth of their central minima, which get further smeared by finite source size effects. In addition, it is shown that in calculations of HAADF-STEM images at low temperatures one has to explicitly consider the nuclear quantum effects (zero point vibrations), otherwise the effect of atomic vibrations is strongly underestimated. - Highlights: • HAADF STEM images calculated for ordinary beams and electron vortex beams. • Temperature, sample thickness, convergence angle and source size broadening effects. • Zero point vibrations included into the molecular dynamics calculations.

  12. Aerosol Imaging with a Soft X-ray Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

    2011-08-22

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  13. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B.; Kong, X.; Liang, T.; Spear, A.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Classen, I. G. J.; Boom, J. E.; Pol, M. J. van de; Jaspers, R.; Donne, A. J. H. [Association EURATOM-FOM, FOM Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands); Park, H. K. [Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Munsat, T. [University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2009-09-15

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  14. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  15. Adenovirus Structure as Revealed by X-Ray Crystallography, Electron Microscopy, and Difference Imaging

    Science.gov (United States)

    Stewart, Phoebe L.; Burnett, Roger M.

    1993-03-01

    The three-dimensional structure of human type 2 adenovirus was studied by combining X-ray crystallography and electron microscopy in a novel way. The 2.9 Å crystal structure of the major capsid protein, hexon, was positioned into a three-dimensional image reconstruction of the intact virus that was derived from cryo-electron micrographs. A three-dimensional difference map was generated by subtracting 240 copies of the crystallographic hexon from the density of the intact virus. This map revealed several minor structural proteins acting as “cement” to stabilize the assembly. The current state of structural knowledge concerning the location of the polypeptide components and the viral DNA is presented.

  16. Diffractive imaging of a molecular rotational wavepacket with femtosecond Megaelectronvolt electron pulses

    CERN Document Server

    Yang, Jie; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Centurion, Martin; Wang, Xijie

    2015-01-01

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, since the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. We performed a gas-phase electron diffraction experiment using Megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved an unprecedented combination of 100 fs root-mean-squared (RMS) temporal resolution and sub-Angstrom (0.76 {\\AA}) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomical...

  17. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  18. Laser and Pulsed Power Electron Density Imaging Through Talbot-Lau X-ray Deflectometry

    Science.gov (United States)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begischev, Ildar; Theobald, Wolfgang; Bromage, Jake; Regan, Sean; Klein, Salee; Muñoz-Cordovez, Gonzalo; Vescovi, Milenko; Valenzuela-Villaseca, Vicente; Veloso, Felipe

    2016-10-01

    A Talbot-Lau X-ray Deflectometer was deployed using laser driven and x-pinch x-ray backlighters. The Talbot-Lau X-ray Deflectometer is an ideal electron density diagnostic for High Energy Density plasmas with the potential to simultaneously deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single image with source limited resolution. Grating survival and electron density mapping was demonstrated for 10-29 J, 8-30 ps laser pulses using Cu foil targets at the Multi-TeraWatt facility. An areal electron density of 0.050 g/cm2 was obtained at the center of a fluoro-nylon fiber of 300 mm diameter with a source FWHM of 80 µm and resolution of 50 µm. Grating survival and Moiré pattern formation was demonstrated using a Cu x-pinch plasma of FWHM 27 µm, driven by the 350 kA, 350 ns Llampudken pulsed power generator. These results closely match simulations and laboratory results. It was demonstrated that the technique can detect both sharp and smooth density gradients in the range of 2x1023 to 2x1025 cm-3, thus allowing implementation of the electron density technique as a HED plasma diagnostic in both laser and pulsed power experiments U.S. DoE/NNSA and DE-NA0002955.

  19. Backscattered electron imaging at low emerging angles: A physical approach to contrast in LVSEM

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, J., E-mail: jacques.cazaux@univ-reims.fr [LISM, EA 4695 Faculty of Sciences, BP 1039, 51687 Reims Cedex 2 (France); Kuwano, N. [Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Sato, K. [Steel Research Laboratory, JFE Steel Corporation, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan)

    2013-12-15

    Due to the influence of refraction effects on the escape probability of the Back-Scattered Electrons (BSE), an expression of the fraction of these BSE is given as a function of the beam energy, E°, and emission angle (with respect to the normal) α. It has been shown that these effects are very sensitive to a local change of the work function in particular for low emerging angles. This sensitivity suggests a new type of contrast in Low Voltage Scanning Electron Microscopy (LVSEM for E°<2 keV): the work function contrast. Involving the change of ϕ with crystalline orientation, this possibility is supported by a new interpretation of a few published images. Some other correlated contrasts are also suggested. These are topographical contrasts or contrasts due to subsurface particles and cracks. Practical considerations of the detection system and its optimization are indicated. - Highlights: • Refraction effects experienced by Back-Scattered Electrons at sample/vacuum interfaces are evaluated as a function of energy and angles. • Sensitive to local work function changes with crystalline orientation these effects concern mainly keV-electrons at low emerging angles. • A new type of contrast in SEM is thus deduced and illustrated. • Some other correlated contrasts, topographical contrasts or contrasts due to subsurface particles and cracks are also suggested.

  20. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2016-05-10

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument.