WorldWideScience

Sample records for monochromatic tunable hard

  1. Status report on the tunable monochromatic gamma—ray source

    Institute of Scientific and Technical Information of China (English)

    M.Bertschy; W.Mondelaers; 等

    1996-01-01

    The tunable monochromatic gamma-ray source at the Ghent 15MeV linac is described.The characteristics of the monochromatic beam are given,and some applications,as the detection of heavy elements in other materials,are presented.

  2. Tunable, all-optical quasi-monochromatic Thomson X-ray source

    CERN Document Server

    Khrennikov, K; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2014-01-01

    Brilliant X-ray sources are of great interest for many research fields from biology via medicine to material research. The quest for a cost-effective, brilliant source with unprecedented temporal resolution has led to the recent realization of various high-intensity-laser-driven X-ray beam sources. Here we demonstrate the first all-laser-driven, energy-tunable and quasi-monochromatic X-ray source based on Thomson backscattering. This is a decisive step beyond previous results, where the emitted radiation exhibited an uncontrolled broad energy distribution. In the experiment, one part of the laser beam was used to drive a few-fs bunch of quasi-monoenergetic electrons from a Laser-Wakefield Accelerator (LWFA), while the remainder was scattered off the bunch in a near-counter-propagating geometry. When the electron energy was tuned from 10-50 MeV, narrow-bandwidth X-ray spectra peaking at 5-35keV were directly measured, limited in photon energy by the sensitivity curve of our X-ray detector. Due to the ultrashor...

  3. Preliminary experimental study and simulation of an energy-tunable quasi-monochromatic laser-Compton X/γ-ray source

    Institute of Scientific and Technical Information of China (English)

    LUO We; XU Wang; ZHUO Hong-Bin; MA Yan-Yun

    2012-01-01

    We propose a slanting collision scheme for Compton scattering of a laser light against a relativistic electron beam.This scheme is suitable to generate an energy-tunable X/γ-ray source.In this paper,we present theoretical study and simulation of the spectral,spatial and temporal characteristics of such a source.We also describe two terms laser-Compton scattering (LCS) experiments at the 100 MeV Linac of Shanghai Institute of Applied Physics,where quasi-monochromatic LCS X-ray energy spectra with peak energies of ~30 keV are observed successfully.These preliminary investigations are carried out to understand the feasibility of developing an energy-tunable quasi-monochromatic X/γ-ray source,the future Shanghai Laser Electron Gamma Source.

  4. Investigation of fingerprints for small polar molecules by using a tunable monochromatic THz source

    Science.gov (United States)

    Sun, Hongqian

    Over the past 20 years, considerable efforts have been dedicated to the generation and the application of electromagnetic waves in the Terahertz (THz) regime. Among all of the proposed applications, the THz spectroscopy is probably the most mature and promising one. According to the previous reports, the THz spectroscopy has been extensively applied into many analysis fields, including the investigation of vibrational modes for the crystalline solids, the characterization of electron transport in the condense matters and the identification of explosive materials at a standoff distance. More interestingly, since most gas phase chemicals exhibit unique transition peaks in the THz spectra, one could in principle achieve highly accurate molecular fingerprinting and chemical sensing as well. However, all of the practical THz spectroscopy applications were still greatly hampered by the lack of suitable sources and detectors. In this thesis, a unique approach to measure the THz spectrum is developed based on a novel tunable narrowband source. Unlike the previous THz systems, high power THz pulses were generated by the difference frequency generation processes between two collinearly propagated near infrared laser beams. To tune the output THz signal frequency, one can simply adjust one of the incident beam frequencies. Therefore, based on a convenient wavelength tuning scheme, the transmission spectra can be measured for a series of polar gases with either similar or distinct molecular structures. According to the measured spectra, it is found that the obtained transition frequencies, absorption intensities and molecular constants are all in good agreement with the theoretical results tabulated in the molecular spectroscopic databases, such as the HITRAN database. By further analyzing the transition frequencies, it is also discovered that one can confidently identify each polar molecule and differentiate between various isotopic variants based on their characteristic

  5. Production Of Intense, Tunable, Quasi-monochromatic X- Rays Using The Rpi Linear Accelerator

    CERN Document Server

    Sones, B A

    2004-01-01

    This research investigated the production of parametric X-rays (PXR) using the 60-MeV electron linear accelerator at Rensselaer Polytechnic Institute. PXR is an intense, energy tunable, and polarized X-ray source derived from the interaction of relativistic electrons and the periodic structure of crystal materials. In this work, PXR photon yields and the associated bremsstrahlung background were characterized for graphite, LiF, Si, Ge, Cu, and W target crystals. A model that considers the experimental geometry and crystal mosaicity was employed to predict PXR energy broadening. Measured energy linewidths consistently agreed with predicted values except in cases using poor quality graphite in which the mosaicity was greater than the PXR characteristic angle, 8.5 mrad for 60 MeV electrons. When the predicted energy linewidth was more narrow than our Si X-ray detector resolution, a near-absorption edge transmission technique was used to measure the PXR energy linewidth for Si(400) FWHM of 134 eV at 9.0 keV (2%) ...

  6. Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator

    Science.gov (United States)

    Sergueev, I.; Wille, H.-C.; Hermann, R. P.; Bessas, D.; Shvyd’ko, Yu. V.; Zając, M.; Rüffer, R.

    2011-01-01

    A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20–40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of 121Sb at 37.13 keV, 125Te at 35.49 keV, 119Sn at 23.88 keV, 149Sm at 22.50 keV and 151Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150–300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. PMID:21862862

  7. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A.; Fischer, R.; Fisher, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  8. Lens coupled tunable Young's double pinhole system for hard X-ray spatial coherence characterization.

    Science.gov (United States)

    Lyubomirskiy, Mikhail; Snigireva, Irina; Snigirev, Anatoly

    2016-06-13

    We have implemented a modified Young's double slit experiment using pinholes with tunable separation distance coupled with compound refractive lens for hard X-ray spatial coherence characterization. Varying distance between the apertures provides a high sensitivity to the determination of spatial coherence across a wide range of experimental parameters. The use of refractive lenses as a Fourier transformer ensures far field registration conditions and allows the realization of a very compact experimental setup in comparison with the classical Young technique and its derivatives. The tunable double aperture interferometer was experimentally tested at the ESRF ID06 beamline in the energy range from 8 to 25 keV. The spatial coherence and the source size were measured by evaluating the visibility of the interference fringes at various separation distances between the apertures and this value agrees very well with the data obtained by other techniques. The proposed scheme can be used for comprehensive characterization of the coherence properties of the source on low emittance synchrotrons in the hard X-ray region.

  9. Tunable hard X-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal.

    Science.gov (United States)

    Seely, John F; Henins, Albert; Feldman, Uri

    2016-05-01

    A Cauchois type hard x-ray spectrometer was developed that utilizes the (301) diffraction planes at an asymmetric angle of 23.51° to the normal to the surface of a cylindrically curved quartz transmission crystal. The energy coverage is tunable by rotating the crystal and the detector arm, and spectra were recorded in the 8 keV to 20 keV range with greater than 2000 resolving power. The high resolution results from low aberrations enabled by the nearly perpendicular angle of the diffracted rays with the back surface of the crystal. By using other asymmetric planes of the same crystal and rotating to selected angles, the spectrometer can operate with high resolution up to 50 keV.

  10. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengxiang [The Institute of Laser and Optoelectronics, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071 (China); Zhang, Xinyuan [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Chao; Xu, Degang, E-mail: xudegang@tju.edu.cn; Shi, Wei; Yao, Jianquan [The Institute of Laser and Optoelectronics, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Li, Yin; Zhang, Guochun; Wu, Yicheng [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Xinzheng [The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071 (China)

    2016-01-04

    We report an experimental study on widely tunable terahertz (THz) wave difference frequency generation (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ∼1.3 μm double-pass KTiOPO{sub 4} optical parametric oscillator. A tuning range of 0.02–20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process was demonstrated. The photon conversion efficiency could reach 2.9%.

  11. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología—CINN (CSIC—Universidad de Oviedo—Principado de Asturias), Parque Tecnológico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vélez, M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  12. Tunable long range forces mediated by self-propelled colloidal hard spheres

    NARCIS (Netherlands)

    Ni, R.; Cohen Stuart, M.A.; Bolhuis, P.G.

    2015-01-01

    Using Brownian dynamics simulations, we systematically study the effective interaction between two parallel hard walls in a 2D suspension of self-propelled (active) colloidal hard spheres, and we find that the effective force between two hard walls can be tuned from a long range repulsion into a lon

  13. Sub-Picosecond Tunable Hard X-Ray Undulator Source for Laser/X-Ray Pump-Probe Experiments

    Science.gov (United States)

    Ingold, G.; Beaud, P.; Johnson, S.; Streun, A.; Schmidt, T.; Abela, R.; Al-Adwan, A.; Abramsohn, D.; Böge, M.; Grolimund, D.; Keller, A.; Krasniqi, F.; Rivkin, L.; Rohrer, M.; Schilcher, T.; Schmidt, T.; Schlott, V.; Schulz, L.; van der Veen, F.; Zimoch, D.

    2007-01-01

    The FEMTO source under construction at the μXAS beamline is designed to enable tunable time-resolved laser/x-ray absorption and diffraction experiments in photochemistry and condensed matter with ps- and sub-ps resolution. The design takes advantage of (1) the highly stable operation of the SLS storage ring, (2) the reliable high harmonic operation of small gap, short period undulators to generate hard x-rays with energy 3-18 keV at 2.4 GeV beam energy, and (3) the progress in high power, high repetition rate fs solid-state laser technology to employ laser/e-beam `slicing' to reach a time resolution of ultimately 100 fs. The source will profit from the inherently synchronized pump (laser I: 100 fs, 2 mJ, 1 kHz) and probe (sliced X-rays, laser II: 50 fs, 5 mJ, 1 kHz) pulses, and from the excellent stability of the SLS storage ring which is operated in top-up mode and controlled by a fast orbit feedback (FOFB). Coherent radiation emitted at THz frequencies by the sliced 100 fs electron bunches will be monitored as on-line cross-correlation signal to keep the laser-electron beam interaction at optimum. The source is designed to provide at 8 keV (100 fs) a monochromized flux of 104 ph/s/0.01% bw (Si crystal monochromator) and 106 ph/s/1.5% bw (multilayer monochromator) at the sample. It is operated in parasitic mode using a hybrid bunch filling pattern. Because of the low intensity measurements are carried out repetitively over many shots using refreshing samples and gated detectors. `Diffraction gating' experiments will be used to characterize the sub-ps X-ray pulses.

  14. Emission of monochromatic microwave radiation from a nonequilibrium condensation of excited magnons

    OpenAIRE

    Vannucchi, FS; Vasconcellos, AR; Luzzi,R.

    2013-01-01

    The observation of monochromatic emission of radiation from a nonequilibrium Bose-Einstein-like condensate of magnons suggests the possibility of creating a monochromatic microwave generator pumped by incoherent broadband sources. The device would have a tunable emitted frequency as a function of the applied constant magnetic field. We present an analysis of the mechanisms of interaction between the condensate of magnons and the radiation field producing the super-radiant emission of photons....

  15. Wavelength-tunable split-and-delay optical system for hard X-ray free-electron lasers.

    Science.gov (United States)

    Osaka, Taito; Hirano, Takashi; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yamauchi, Kazuto; Yabashi, Makina

    2016-05-02

    We developed a hard X-ray split-and-delay optical (SDO) system based on Bragg diffraction in crystal optics for generating two split pulses with a variable temporal separation. To achieve both high stability and operational flexibility, the SDO system was designed to include variable-delay and fixed-delay branches. As key optical elements, we fabricated high quality thin crystals and channel-cut crystals by applying the plasma chemical vaporization machining technique. The SDO system using Si(220) crystals covered a photon energy range of 6.5-11.5keV and a delay time range from a negative value to > 45 ps over the photon energy range (up to 220 ps at 6.5 keV). A simple alignment method for realizing a spatial overlap between the split pulses was developed. The SDO system was tested at a SPring-8 beamline in combination with a focusing system. We achieved an excellent overlap with an accuracy of 30 nm for ∼ 200 nm focused beams in both the horizontal and vertical directions. This achievement is an important progress towards the realization of time-resolved studies using multiple X-ray pulses with a time range from femtosecond to subnanosecond scales at X-ray free-electron laser facilities.

  16. A multipurpose tunable source of monochromatic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Chesta, M.A.; Plivelic, T.S.; Mainardi, R.T. E-mail: mainardi@mail.famaf.unc.edu.ar

    2002-02-01

    The emission of characteristic X-rays from any chemical element induced by beta particles of high energy (10{sup 5}-10{sup 6} eV) is much higher than photon excitation, with the possible exception of selective excitation. This work describes the properties of a variable energy X-ray generator that uses {sup 90}Sr as a source of beta particles and a multitarget array in a transparent source geometry. This compact device provides, through suitable selection of the target material, over 30 monoenergetic lines spread uniformly in the energy range of between 6 and 100 keV. The X-ray photon flux thus generated has an intensity of between 10{sup 2}-10{sup 3} s{sup -1} sr{sup -1} per MBq of the beta source activity. With this single beta source, the X-ray yield is higher as compared with generators using {sup 241}Am or other X- or gamma-ray sources with the same activity, and the line's intensity changes by less than a factor of three over the whole energy range.

  17. Monochromatic gamma emitter for low energy quanta

    CERN Document Server

    Tomova, Z R; Mironova, S A

    2004-01-01

    The possibility of creating of a monochromatic gamma emitter of low energy quanta is analyzed. The idea is based on Daning's scheme. Except for purely scientific problems the monochromator is actual for therapy of wide range of diseases.

  18. Excitation of monochromatic and stable electron acoustic wave by two counter-propagating laser beams

    Science.gov (United States)

    Xiao, C. Z.; Liu, Z. J.; Zheng, C. Y.; He, X. T.

    2017-07-01

    The undamped electron acoustic wave is a newly-observed nonlinear electrostatic plasma wave and has potential applications in ion acceleration, laser amplification and diagnostics due to its unique frequency range. We propose to make the first attempt to excite a monochromatic and stable electron acoustic wave (EAW) by two counter-propagating laser beams. The matching conditions relevant to laser frequencies, plasma density, and electron thermal velocity are derived and the harmonic effects of the EAW are excluded. Single-beam instabilities, including stimulated Raman scattering and stimulated Brillouin scattering, on the excitation process are quantified by an interaction quantity, η =γ {τ }B, where γ is the growth rate of each instability and {τ }B is the characteristic time of the undamped EAW. The smaller the interaction quantity, the more successfully the monochromatic and stable EAW can be excited. Using one-dimensional Vlasov-Maxwell simulations, we excite EAW wave trains which are amplitude tunable, have a duration of thousands of laser periods, and are monochromatic and stable, by carefully controlling the parameters under the above conditions.

  19. Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.

  20. Dark Matter Decay to a Photon and a Neutrino: the Double Monochromatic Smoking Gun Scenario

    CERN Document Server

    Aisati, Chaïmae El; Hambye, Thomas; Scarna, Tiziana

    2015-01-01

    In the energy range from few TeV to 25 TeV, upper bounds on the dark matter decay rate into high energy monochromatic neutrinos have recently become comparable to those on monochromatic gamma-ray lines. This implies clear possibilities of a future double "smoking-gun" evidence for the dark matter particle, from the observation of both a gamma and a neutrino line at the same energy. In particular, we show that a scenario where both lines are induced from the same dark matter particle decay leads to correlations that can already be tested. We study this "double monochromatic" scenario by considering the complete list of lowest dimensional effective operators that could induce such a decay. Furthermore, we argue that, on top of lines from decays into two-body final states, three-body final states can also be highly relevant. In addition to producing a distinct hard photon spectrum, three-body final states also produce a line-like feature in the neutrino spectrum that can be searched for by neutrino telescopes.

  1. Monochromatic computed tomography with a compact laser-driven X-ray source.

    Science.gov (United States)

    Achterhold, K; Bech, M; Schleede, S; Potdevin, G; Ruth, R; Loewen, R; Pfeiffer, F

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered.

  2. Radiation Hard High Performance Optoelectronic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-hard, widely-tunable integrated laser/modulator chip and large-area avalanche photodetectors (APDs) are key components of optical...

  3. Study on paper moisture measurement method by monochromatic light sources

    Science.gov (United States)

    Mo, Changtao; Du, Xin; He, Ping; Zhang, Lili; Li, Nan; Wang, Ming

    2010-10-01

    We design the emission and detection optical paths of three monochromatic infrared light sources with different wavelength. The three light sources are placed according to the different angles, so that the three kinds of monochromatic lights are converged on the same point of the sample. Using the method, we can detect the same point and improve the measurement accuracy. We choose the standard near-infrared monochromatic light source, so that we can save some equipments, such as tungsten- halogen lamp, filtered wheel, collimation focalizer, electric machine, and so on. In particular, we save the cumbersome cooling system, reduce the volume of the instrument greatly and reduce the cost. The three monochromatic light sources are supplied by the same pulse power source, to ensure their synchronous working.

  4. Relief Restoration of Complicated form Objects by Monochromatic Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Kuzmenko Ivan

    2016-01-01

    Full Text Available Article demonstrates possibility of monochromatic radiation usage for relief restoration. There is a problem with restoration when scanned object is not flat and it is not parallel to the scanning plane. It was discovered that two-dimensional phase distribution could be applied for distance determination. It is reliable way to solve problems listed above. In conclusion offered methods allow monochromatic microwave radiation usage for screening system development.

  5. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  6. Broadband, monochromatic and quasi-monochromatic x-ray propagation in multi-Z media for imaging and diagnostics

    Science.gov (United States)

    Westphal, Maximillian S.; Lim, Sara N.; Nahar, Sultana N.; Chowdhury, Enam; Pradhan, Anil K.

    2017-08-01

    With the advent of monochromatic and quasi-monochromatic x-ray sources, we explore their potential with computational and experimental studies on propagation through a combination of low and high-Z (atomic number) media for applications to imaging and detection. The multi-purpose code GEANT4 and a new code PHOTX are employed in numerical simulations, and a variety of x-ray sources are considered: conventional broadband devices with well-known spectra, quasi-monochromatic laser driven sources, and monochromatic synchrotron x-rays. Phantom samples consisting of layers of low-Z and high-Z material are utilized, with atomic-molecular species ranging from H2O to gold. Differential and total attenuation of x-ray fluxes from the different x-ray sources are illustrated through simulated x-ray images. Main conclusions of this study are: I. It is shown that a 65 keV Gaussian quasi-monochromatic source is capable of better contrast with less radiation exposure than a common 120 kV broadband simulator. II. A quantitative measure is defined and computed as a metric to compare the efficacy of any two x-ray sources, as a function of concentration of high-Z moieties in predominantly low-Z environment and depth of penetration. III. Characteristic spectral features of \

  7. Extension of self-seeding to hard X-rays >10 keV as a way to increase user access at the European XFEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01

    We propose to use the self-seeding scheme with single crystal monochromator at the European X-ray FEL to produce monochromatic, high-power radiation at 16 keV. Based on start to end simulations we show that the FEL power of the transform-limited pulses can reach about 100 GW by exploiting tapering in the tunable-gap baseline undulator. The combination of high photon energy, high peak power, and very narrow bandwidth opens a vast new range of applications, and includes the possibility to considerably increase the user capacity and fully exploit the high repetition rate of the European XFEL. In fact, dealing with monochromatic hard X-ray radiation one may use crystals as deflectors with minimum beam loss. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed for future study and possible extension of the baseline facility. They can be repeated a number of times to form an almost complete (one meter scale) ring with an angle of 20 degrees between...

  8. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.

  9. Reconstruction of quasi-monochromatic images from a multiple monochromatic x-ray imaging diagnostic for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N; Turner, R; Barbee, T; Koch, J; Welser, L; Mansini, R

    2004-04-15

    We have developed a software package for image reconstruction of a multiple monochromatic x-ray imaging diagnostics (MMI) for diagnostic of inertial conferment fusion capsules. The MMI consists of a pinhole array, a multi-layer Bragg mirror, and a charge injection device image detector (CID). The pinhole array projects {approx}500 sub-images onto the CID after reflection off the multi-layer Bragg mirror. The obtained raw images have continuum spectral dispersion on its vertical axis. For systematic analysis, a computer-aided reconstruction of the quasi-monochromatic image is essential.

  10. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  11. On monochromatic arm exponents for 2D critical percolation

    CERN Document Server

    Beffara, Vincent

    2009-01-01

    We investigate the so-called monochromatic arm exponents for critical percolation in two dimensions. These exponents, describing the probability of observing j disjoint macroscopic paths, are shown to exist and to form a different family from the (now well-understood) polychromatic exponents.

  12. Kernels by Monochromatic Paths and Color-Perfect Digraphs

    Directory of Open Access Journals (Sweden)

    Galeana-Śanchez Hortensia

    2016-05-01

    Full Text Available For a digraph D, V (D and A(D will denote the sets of vertices and arcs of D respectively. In an arc-colored digraph, a subset K of V(D is said to be kernel by monochromatic paths (mp-kernel if (1 for any two different vertices x, y in N there is no monochromatic directed path between them (N is mp-independent and (2 for each vertex u in V (D \\ N there exists v ∈ N such that there is a monochromatic directed path from u to v in D (N is mp-absorbent. If every arc in D has a different color, then a kernel by monochromatic paths is said to be a kernel. Two associated digraphs to an arc-colored digraph are the closure and the color-class digraph CC(D. In this paper we will approach an mp-kernel via the closure of induced subdigraphs of D which have the property of having few colors in their arcs with respect to D. We will introduce the concept of color-perfect digraph and we are going to prove that if D is an arc-colored digraph such that D is a quasi color-perfect digraph and CC(D is not strong, then D has an mp-kernel. Previous interesting results are generalized, as for example Richardson′s Theorem.

  13. Classical stabilization of the hydrogen atom in a monochromatic field

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Casati, G. (Dipartimento di Fisica dell' Universita, Via Castelnuovo 7, 22100 Como (Italy)); Shepelyansky, D.L. (Laboratoire de Physique Quantique, Universite Paul Sabatier, 31062, Toulouse (France))

    1993-02-01

    We report the results of analytical and numerical investigations on the ionization of a classical atom in a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect should be observable in real laboratory experiments.

  14. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scatteri...

  15. Tunable and Memory Metamaterials

    Science.gov (United States)

    2015-12-02

    AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One

  16. Trace chemical characterization using monochromatic X-ray undulator radiation

    Science.gov (United States)

    Eba; Numako; Iihara; Sakurai

    2000-06-01

    An efficient Johansson-type X-ray fluorescence spectrometer has been developed for advanced X-ray spectroscopic analysis with third-generation synchrotron radiation. Kalpha and Kbeta X-ray fluorescence spectra for trace metals have been collected by a Ge(220) analyzing crystal with a Rowland radius of 150 mm, under monochromatic X-ray excitation at the undulator beamline at the SPring-8. The energy resolution is approximately 10 eV for most of the K lines for 3d transition metals. In light of the greatly improved efficiency, as well as the excellent signal-to-background ratio, the relative and absolute detection limits achieved are 1 ppm and 1.2 ng of copper in a carbon matrix, respectively. The energy resolution of the present spectrometer permits the observation of some chemical effects in Kbeta spectra. It has been demonstrated that the changes in Kbeta5 and Kbeta'' intensity for iron and cobalt compounds can be used for the analysis of chemical states. Resonant X-ray fluorescent spectra are another important application of monochromatic excitation. In view of trace chemical characterization, the present spectrometer can be a good alternative to a conventional Si(Li) detector system when combined with highly brilliant X-rays.

  17. Tunable plasmonic crystal

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  18. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  19. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  20. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume...

  1. On the detectability of Galactic dark matter annihilation into monochromatic gamma-rays

    Institute of Scientific and Technical Information of China (English)

    唐志成; 袁强; 毕效军; 陈国明

    2011-01-01

    Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with

  2. Contrast imaging with a monochromatic x-ray scanner

    Science.gov (United States)

    Pole, Donald J.; Popovic, Kosta; Williams, Mark B.

    2008-03-01

    We are currently developing a monochromatic x-ray source for small animal tomographic imaging. This source consists of a conventional cone beam microfocus x-ray tube with a tungsten target coupled to a filter that uses Bragg diffraction to transmit only x-rays within a narrow energy range (~3 keV FWHM). A tissue-equivalent mouse phantom was used to a) evaluate how clearly CT imaging using the quasi-monoenergetic beam is able to differentiate tissue types compared to conventional polyenergetic CT, and b) to test the ability of the source and Bragg filter combination to perform dual energy, iodine contrast enhanced imaging. Single slice CT scans of the phantom were obtained both with polyenergetic (1.8 mm Al filtration) and quasi-monoenergetic beams. Region of interest analysis showed that pixel value variance was signifcantly reduced in the quasi-monochromatic case compared to the polyenergetic case, suggesting a reduction in the variance of the linear attenuation coefficients of the tissue equivalent materials due to the narrower energy spectrum. To test dual energy iodine K-edge imaging, vials containing solutions with a range of iodine contrasts were added to the phantom. Single-slice CT scans were obtained using spectra with maximum values at 30 and 35 keV, respectively. Analysis of the resulting difference images (35 keV image - 30 keV image) shows that the magnitude of the difference signal produced by iodine exceeds that of bone for iodine concentrations above ~20 mg/ml, and that of muscle and fat tissues for iodine concentrations above ~5 mg/ml.

  3. On the detectability of Galactic dark matter annihilation into monochromatic gamma-rays

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-Cheng; YUAN Qiang; BI Xiao-Jun; CHEN Guo-Ming

    2011-01-01

    Monochromatic γ-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic γ-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with γ-rays directly. In this work, we study the detection strategy of the monochromatic γ-rays in a future space-based detector. The flux of monochromatic γ-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects γ-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic γ-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.

  4. On the Detectability of Galactic Dark Matter Annihilation into Monochromatic Gamma-rays

    CERN Document Server

    Tang, Zhi-Cheng; Bi, Xiao-Jun; Chen, Guo-Ming

    2010-01-01

    Monochromatic gamma-rays are thought to be the smoking gun signal for identifying the dark matter annihilation. However, the flux of monochromatic gamma-rays is usually suppressed by the virtual quantum effects since dark matter should be neutral and does not couple with gamma-rays directly. In the work we study the detection strategy of the monochromatic gamma-rays in a future space-based detector. The monochromatic gamma-ray flux is calculated by assuming supersymmetric neutralino as a typical dark matter candidate. We discuss both the detection focusing on the Galactic center and in a scan mode which detects gamma-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic gamma-rays detection, with different energy and angular resolution, field of view, background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo method.

  5. Monochromatic X-ray propagation in multi-Z media for imaging and diagnostics including Kα Resonance Fluorescence

    Science.gov (United States)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Pradhan, Anil

    2016-05-01

    Aimed at monochromatic X-ray imaging and therapy, broadband, monochromatic, and quasi-monochromatic X-ray sources and propagation through low and high-Z (HZ) media were studied with numerically and experimentally. Monte Carlo simulations were performed using the software package Geant4, and a new code Photx, to simulate X-ray image contrast, depth of penetration, and total attenuation. The data show that monochromatic and quasi-monochromatic X-rays achieve improved contrast at lower absorbed radiation doses compared to conventional broadband 120 kV or CT scans. Experimental quasi-monochromatic high-intensity laser-produced plasma sources and monochromatic synchrotron beam data are compared. Physical processes responsible for X-ray photoexcitation and absorption are numerically modelled, including a novel mechanism for accelerating Kα resonance fluorescence via twin monochromatic X-ray beam. Potential applications are medical diagnostics and high-Z material detection. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  6. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  7. Fusion of colour and monochromatic images with edge emphasis

    Directory of Open Access Journals (Sweden)

    Rade M. Pavlović

    2014-02-01

    Full Text Available We propose a novel method to fuse true colour images with monochromatic non-visible range images that seeks to encode important structural information from monochromatic images efficiently but also preserve the natural appearance of the available true chromacity information. We utilise the β colour opponency channel of the lαβ colour as the domain to fuse information from the monochromatic input into the colour input by the way of robust grayscale fusion. This is followed by an effective gradient structure visualisation step that enhances the visibility of monochromatic information in the final colour fused image. Images fused using this method preserve their natural appearance and chromacity better than conventional methods while at the same time clearly encode structural information from the monochormatic input. This is demonstrated on a number of well-known true colour fusion examples and confirmed by the results of subjective trials on the data from several colour fusion scenarios. Introduction The goal of image fusion can be broadly defined as: the representation of visual information contained in a number of input images into a single fused image without distortion or loss of information. In practice, however, a representation of all available information from multiple inputs in a single image is almost impossible and fusion is generally a data reduction task.  One of the sensors usually provides a true colour image that by definition has all of its data dimensions already populated by the spatial and chromatic information. Fusing such images with information from monochromatic inputs in a conventional manner can severely affect natural appearance of the fused image. This is a difficult problem and partly the reason why colour fusion received only a fraction of the attention than better behaved grayscale fusion even long after colour sensors became widespread. Fusion method Humans tend to see colours as contrasts between opponent

  8. Nonlinear propagation of a wave packet in a hard-walled circular duct

    Science.gov (United States)

    Nayfeh, A. H.

    1975-01-01

    The method of multiple scales is used to derive a nonlinear Schroedinger equation for the temporal and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled circular duct. This equation is used to show that monochromatic waves are stable and to determine the amplitude dependance of the cutoff frequencies.

  9. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  10. Sex and vision II: color appearance of monochromatic lights

    Directory of Open Access Journals (Sweden)

    Abramov Israel

    2012-09-01

    Full Text Available Abstract Background Because cerebral cortex has a very large number of testosterone receptors, we examined the possible sex differences in color appearance of monochromatic lights across the visible spectrum. There is a history of men and women perceiving color differently. However, all of these studies deal with higher cognitive functions which may be culture-biased. We study basic visual functions, such as color appearance, without reference to any objects. We present here a detailed analysis of sex differences in primary chromatic sensations. Methods We tested large groups of young adults with normal vision, including spatial and temporal resolution, and stereopsis. Based on standard color-screening and anomaloscope data, we excluded all color-deficient observers. Stimuli were equi-luminant monochromatic lights across the spectrum. They were foveally-viewed flashes presented against a dark background. The elicited sensations were measured using magnitude estimation of hue and saturation. When the only permitted hue terms are red (R yellow (Y, green (G, blue (B, alone or in combination, such hue descriptions are language-independent and the hue and saturation values can be used to derive a wide range of color-discrimination functions. Results There were relatively small but clear and significant, differences between males and females in the hue sensations elicited by almost the entire spectrum. Generally, males required a slightly longer wavelength to experience the same hue as did females. The spectral loci of the unique hues are not correlated with anomaloscope matches; these matches are directly determined by the spectral sensitivities of L- and M-cones (genes for these cones are on the X-chromosomes. Nor are there correlations between loci of pairs of unique hues (R, Y, G, B. Wavelength-discrimination functions derived from the scaling data show that males have a broader range of poorer discrimination in the middle of the spectrum. The

  11. The quasi-monochromatic ULF wave foreshock boundary at Venus

    Science.gov (United States)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong; Du, Aimin; Lu, Quanming; Zhang, Tielong

    2017-04-01

    The location of ULF quasi-monochromatic wave onsets upstream of Venus bow shock is explored using VEX magnetic field data. We report the existence of a spatial foreshock boundary from which ULF waves are present. It is found that the ULF boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone-angle larger than 30 degrees. In the Venusian foreshock, the slope of the boundary increases with the cone-angle and for a nominal direction of the IMF, it makes an inclination of 70 degrees with the Sun-Venus direction. Moreover, we have found that the velocity of an ion traveling along the ULF boundary presents a qualitative agreement with the hypothesis of a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For a nominal IMF direction, the ions associated with the boundary have enough momentum to overcome the solar wind convection. These elements strongly suggest that backstreaming ions upstream of Venus bow shock provide the main energy source of the ULF foreshock waves.

  12. The effect of monochromatic infrared energy on diabetic wound healing.

    Science.gov (United States)

    He, Yayi; Yip, Selina Ly; Cheung, Kwok-Kuen; Huang, Lin; Wang, Shijie; Cheing, Gladys Ly

    2013-12-01

    This study examined the effect of monochromatic infrared energy (MIRE) on diabetic wound healing. Fifteen diabetic rats were given MIRE intervention on their skin wounds located on the dorsum and compared with 15 control diabetic rats. Assessments were conducted for each group at weeks 1, 2 and 4 post wounding (five rats at each time point) by calculating the percentage of wound closures (WCs) and performing histological and immunohistochemical staining on sections of wound tissue. Evaluations of WCs and histological examinations of reepithelialisation, cellular content and granulation tissue formation showed no significant difference between the MIRE and the control group at each time point. Through semi-quantitative immunohistochemical staining, the deposition of type I collagen in the MIRE group was found to have improved when compared with the control group at the end of week 2 (P = 0.05). No significant differences in the myofibroblast population were detected between the two groups. In conclusion, MIRE appeared to promote collagen deposition in the early stage of wound healing in diabetic rats, but the overall wound healing in the MIRE group was not significantly different from that of the control group. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  13. How accurate are infrared luminosities from monochromatic photometric extrapolation?

    CERN Document Server

    Lin, Zesen; Kong, Xu

    2016-01-01

    Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ($L_{\\mathrm{IR}}$) of galaxies. By utilizing multi-wavelength data that covers across 0.35--500\\,$\\mathrm{\\mu m}$ in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated $L_{\\mathrm{IR}}$ based on three IR spectral energy distribution (SED) templates (\\citealt[CE01]{Chary2001}; \\citealt[DH02]{Dale2002}; \\citealt[W08]{Wuyts2008a}) out to $z\\sim 3.5$. We find that the CE01 template provides the best estimate of $L_{\\mathrm{IR}}$ in {\\it Herschel}/PACS bands, while the DH02 template performs best in {\\it Herschel}/SPIRE bands. To estimate $L_{\\mathrm{IR}}$, we suggest that extrapolations from the available longest wavelength PACS band based on the CE01 template can be a good estimator. Moreover, if PACS measurement is unavailable, extrapolations from SPIRE observations but based on the \\cite{Dale2002} template can also provide ...

  14. Cell response to quasi-monochromatic light with different coherence

    Science.gov (United States)

    Budagovsky, A. V.; Solovykh, N. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2015-04-01

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λmax = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length Lcoh and the correlation radius rcor are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 - 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent - incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size.

  15. First Sub-arcsecond Collimation of Monochromatic Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G; Abbas, Sohrab; Treimer, Wolfgang, E-mail: nintsspd@barc.gov.in

    2010-11-01

    We have achieved the tightest collimation to date of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. An optimised silicon {l_brace}111{r_brace} Bragg prism has collimated 5.26A neutrons down to 0.58 arcsecond. In conjunction with a similarly optimised Bragg prism analyser of opposite asymmetry, this ultra-parallel beam yielded a 0.62 arcsecond wide rocking curve. This beam has produced the first SUSANS spectrum in Q {approx} 10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising agglomerates upto 150 {mu}m in size. The super-collimation has also enabled recording of the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. An analysis of this pattern yielded the beam transverse coherence length of 175 {mu}m (FWHM), the greatest achieved to date for A wavelength neutrons.

  16. Coloring random graphs online without creating monochromatic subgraphs

    CERN Document Server

    Mütze, Torsten; Spöhel, Reto

    2011-01-01

    Consider the following random process: The vertices of a binomial random graph $G_{n,p}$ are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number $r$ of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph $F$ in the process. Our first main result is that for any $F$ and $r$, the threshold function for this problem is given by $p_0(F,r,n)=n^{-1/m_1^*(F,r)}$, where $m_1^*(F,r)$ denotes the so-called \\emph{online vertex-Ramsey density} of $F$ and $r$. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any $F$ and $r$, the online vertex-Ramsey density $m_1^*(F,r)$ is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time...

  17. Cell response to quasi-monochromatic light with different coherence

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)

  18. Relations between integrated and monochromatic luminosities of flat-spectrum radio quasars

    Institute of Scientific and Technical Information of China (English)

    Zhi-Fu Chen; Zhao-Yu Chen; Yi-Ping Qin; Min-Feng Gu; Lian-Zhong Lü; Cheng-Yue Su; You-Bing Li; Ye Chen

    2011-01-01

    We employ a sample of 362 flat-spectrum radio quasars (FSRQs) to calculate their integrated luminosities by integrating the spectral energy distribution (SED) constructed with multi-band (radio, IR, optical, UV and X-ray) data.We compare these luminosities with those estimated from monochromatic luminosities by multiplying them by the conventional bolometric correction factors.Our analysis shows that the integrated luminosities calculated from the SED are much larger than the bolometric luminosities estimated from monochromatic luminosities.Their departing behavior tightly correlates with radio luminosities.The relations between integrated and monochromatic luminosities are explored, which are regarded as empirical relations that might be more suitable to be applied to estimate integrated luminosities of FSRQs from their monochromatic luminosities.

  19. A monochromatized chopped beam of cold neutrons for low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussiere, A. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Grivot, P. (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Kossakowski, R. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Liaud, P. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Saintignon, P. de (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Schreckenbach, K. (Inst. Laue-Langevin, 38 - Grenoble (France))

    1993-07-15

    The design and performance of a monochromatized, chopped beam of cold neutrons are described. The beam is particularly suited for experiments where a low level of gamma ray and diffused neutron background is required. (orig.)

  20. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  1. Widely tunable edge emitters

    Science.gov (United States)

    Sarlet, Gert; Wesstrom, Jan-Olof; Rigole, Pierre-Jean; Broberg, Bjoern

    2001-11-01

    We will present the current state-of-the-art in widely tunable edge emitting lasers for WDM applications. Typical applications for a tunable laser will be discussed, and the different types of tunable lasers available today will be compared with respect to the requirements posed by these applications. We will focus on the DBR-type tunable lasers - DBR, SG-DBR and GCSR - which at present seem to be the only tunable lasers mature enough for real-life applications. Their main advantages are that they are all monolithic, with no moving parts, and can be switched from one frequency to the other very rapidly since the tuning is based on carrier injection and not on thermal or mechanical changes. We will briefly discuss the working principle of each of these devices, and present typical performance characteristics. From a manufacturing point of view, rapid characterization of the lasers is crucial; therefore an overview will be given of different characterization schemes that have recently been proposed. For the end user, reliability is the prime issue. We will show results of degradation studies on these lasers and outline how the control electronics that drive the laser can compensate for any frequency drift. Finally, we will also discuss the impact of the requirement for rapid frequency switching on the design of the control electronics.

  2. Monochromatic 4-term arithmetic progressions in 2-colorings of $\\mathbb Z_n$

    CERN Document Server

    Lu, Linyuan

    2011-01-01

    This paper is motivated by a recent result of Wolf \\cite{wolf} on the minimum number of monochromatic 4-term arithmetic progressions(4-APs, for short) in $\\Z_p$, where $p$ is a prime number. Wolf proved that there is a 2-coloring of $\\Z_p$ with 0.000386% fewer monochromatic 4-APs than random 2-colorings; the proof is probabilistic and non-constructive. In this paper, we present an explicit and simple construction of a 2-coloring with 9.3% fewer monochromatic 4-APs than random 2-colorings. This problem leads us to consider the minimum number of monochromatic 4-APs in $\\Z_n$ for general $n$. We obtain both lower bound and upper bound on the minimum number of monochromatic 4-APs in all 2-colorings of $\\Z_n$. Wolf proved that any 2-coloring of $\\Z_p$ has at least $(1/16+o(1))p^2$ monochromatic 4-APs. We improve this lower bound into $(7/96+o(1))p^2$. Our results on $\\Z_n$ naturally apply to the similar problem on $[n]$ (i.e., $\\{1,2,..., n\\}$). In 2008, Parillo, Robertson, and Saracino \\cite{prs} constructed a 2-...

  3. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  4. A tunable XUV monochromatic light source based on the time preserving grating selection of high-order harmonic generation

    Science.gov (United States)

    Niu, Yong; Liang, Hongjing; Liu, Yi; Liu, Fangyuan; Ma, Ri; Ding, Dajun

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grants Nos. 11627807, 11127403, and 11474130), the National Basic Research Program of China (Grant No. 2013CB922200), and the Natural Science Foundation of Jilin Province of China (Grant No. 20160101332JC).

  5. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  6. A mirror for lab-based quasi-monochromatic parallel x-rays.

    Science.gov (United States)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  7. A mirror for lab-based quasi-monochromatic parallel x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu, E-mail: i-jeon@chonnam.ac.kr [School of Mechanical Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Jung, Jin-Ho [Pro-optics Co., Ltd., 475 Ami-ri, Bubal-eup, Icheon 467-866 (Korea, Republic of); Jin, Gye-Hwan [Department of Radiology, Nambu University, 76 Chumdan Jungang 1-ro, Gwangsan-gu, Gwangju 506-706 (Korea, Republic of); Kim, Sung Youb [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2014-09-15

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  8. Cycles and transitivity by monochromatic paths in arc-coloured digraphs

    Directory of Open Access Journals (Sweden)

    Enrique Casas-Bautista

    2015-11-01

    The result by Sands et al. (1982 that asserts: Every 2-coloured digraph has a kernel by monochromatic paths, and the result by Galeana-Sánchez et al. (2011 that asserts: If D is a finite m-coloured digraph that admits a partition {C1,C2} of the set of colours of D such that for each i∈{1,2} every cycle in the subdigraph D[Ci] spanned by the arcs with colours in Ci is monochromatic, C(D does not contain neither rainbow triangles nor rainbow P3⃗ (path of length 3 involving colours of both C1 and C2; then D has a kernel by monochromatic paths.

  9. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  10. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  11. Fabrics with tunable oleophobicity

    OpenAIRE

    McKinley, Gareth H.; Choi, Wonjae; Cohen, Robert E.; Tuteja, Anish; Chhatre, Shreerang S.; Mabry, Joseph M.

    2009-01-01

    A simple “dip-coating” process that imbues oleophobicity to various surfaces that inherently possess re-entrant texture, such as commercially available fabrics, is reported. These dip-coated fabric surfaces exhibit reversible, deformation-dependent, tunable wettability, including the capacity to switch their surface wetting properties (between super-repellent and super-wetting) against a wide range of polar and nonpolar liquids.

  12. Note on 2-edge-colorings of complete graphs with small monochromatic k-connected subgraphs

    Institute of Scientific and Technical Information of China (English)

    JIN Ze-min; WANG Yu-ling; WEN Shi-li

    2014-01-01

    Bollob´as and Gy´arf´as conjectured that for n > 4(k-1) every 2-edge-coloring of Kn contains a monochromatic k-connected subgraph with at least n-2k+2 vertices. Liu, et al. proved that the conjecture holds when n ≥ 13k-15. In this note, we characterize all the 2-edge-colorings of Kn where each monochromatic k-connected subgraph has at most n-2k+2 vertices for n≥13k-15.

  13. Dispersion-free monochromatization method for selecting a single-order harmonic beam

    CERN Document Server

    Takahashi, Eiji J; Ichimaru, Satoshi; Midorikawa, Katsumi

    2015-01-01

    We propose a method to monochromatize multiple orders of high harmonics by using a proper designed multilayer mirror. Multilayer mirrors designed by our concept realize the perfect extraction of a single-order harmonic from multiple-order harmonic beam, and exhibit broadband tenability and high reflectivity in the soft-x-ray region. Furthermore, the proposed monochromatization method can preserve the femtosecond to attosecond pulse duration for the reflected beam. This device is very useful for ultrafast soft x-ray experiments that require high-order harmonic beams, such as femtosecond/attosecond, time-resolved, pump-probe spectroscopy.

  14. The monochromatic imaging mode of a RITA-type neutron spectrometer

    DEFF Research Database (Denmark)

    Bahl, C.R.H.; Andersen, P.; Klausen, S.N.;

    2004-01-01

    The imaging monochromatic mode of a neutron spectrometer with a multi-bladed RITA analyser system is so far unexplored. We present analytical calculations that define the mode. It is shown that the mode can be realised for PG (002) analyser crystals, from incident energies of about 3.2 meV and up......, allowing the important cases of 3.7, 5.0 and 13.7 meV. Due to beam divergence, the neutron rays from neighbouring analyser blades are found to overlap slightly. Hence, the optimal use of the monochromatic imaging mode would be found by employing an adjustable radial collimator to limit the spread...

  15. Lightweight Tunable Infrared Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation has developed spaceflight qualified compact tunable Fabry-Perot interferometers for a number of applications, from ranging direct...

  16. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting.

    Science.gov (United States)

    Dai, Qi; Shan, Qifeng; Lam, Hien; Hao, Luoxi; Lin, Yi; Cui, Zhe

    2016-09-05

    Optimization of solid-state lighting spectra is performed to achieve beneficial and tunable circadian effects. First, the minimum spectral circadian action factor (CAF) of 2700 K white light-emitting diodes (LEDs) is studied for applications where biologically active illumination is undesirable. It is found that white-LEDs based on (i) RGB chips, (ii) blue & red chips plus green phosphor, and (iii) blue chip plus green & red phosphors are the corresponding minimum-CAF solutions at color-rendering index (CRI) requirements of 80, 90, and 95, respectively. Second, maximum CAF tunability of LED clusters is studied for dynamic daylighting applications. A dichromatic phosphor-converted blue-centered LED, a dichromatic phosphor-converted green-centered LED, and a monochromatic red LED are grouped to obtain white spectra between 2700 K and 6500 K. A maximum CAF tunability of 3.25 times is achieved with CRI above 90 and luminous efficacy of radiation of 313 - 373 lm/W. We show that our approaches have advantages over previously reported solutions on system simplicity, minimum achievable CAF value, CAF tunability range, and light source efficacy.

  17. Effect of a combination of green and blue monochromatic light on broiler immune response.

    Science.gov (United States)

    Zhang, Ziqiang; Cao, Jing; Wang, Zixu; Dong, Yulan; Chen, Yaoxing

    2014-09-05

    Our previous study suggested that green light or blue light would enhance the broiler immune response; this study was conducted to evaluate whether a combination of green and blue monochromatic light would result in improved immune response. A total of 192 Arbor Acre male broilers were exposed to white light, red light, green light, and blue light from 0 to 26 days. From 27 to 49 days, half of the broilers in green light and blue light were switched to blue light (G-B) and green light (B-G), respectively. The levels of anti-Newcastle disease virus (NDV) and anti-bovine serum albumin (BSA) IgG in G-B group were elevated by 11.9-40.3% and 17.4-48.7%, respectively, compared to single monochromatic lights (Plight groups. However, the serum TNF-α concentration in the G-B group was reduced by 3.64-40.5% compared to other groups, and no significant difference was found between the G-B and B-G groups in any type of detection index at the end of the experiment. These results suggested that the combination of G-B and B-G monochromatic light could effectively enhance the antibody titer, the proliferation index of lymphocytes and alleviate the stress response in broilers. Therefore, the combination of green and blue monochromatic light can improve the immune function of broilers. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Pustular Palmoplantar Psoriasis Successfully Treated with Nb-UVB Monochromatic Excimer Light: A Case-Report

    Directory of Open Access Journals (Sweden)

    Serena Gianfaldoni

    2017-07-01

    Full Text Available Barber’s palmoplantar pustulosis (PPP is a form of localised pustular psoriasis, affecting the palmar and plantar surfaces. It is a chronic disease, with a deep impact on the patients’ quality of life. The Authors discuss a case of Baber Psoriasis successfully treated with monochromatic excimer light.

  19. Resonant three-photon ionization of hydrogenic atoms by a non-monochromatic laser field

    NARCIS (Netherlands)

    Yakhontov, V.; Santra, R.; Jungmann, K.

    1999-01-01

    We present ionization probability and lineshape calculations for the two-step three- photon ionization process, 1S (2(h)over-bar-omega)under-right-arrow, 2S ((h)over-bar-omega)under-right-arrow epsilon P, of the ground state of hydrogenic atoms in a non-monochromatic laser field with a time-dependen

  20. Resonant three-photon ionization of hydrogenic atoms by a non-monochromatic laser field

    NARCIS (Netherlands)

    Yakhontov, V.; Santra, R.; Jungmann, K.

    1999-01-01

    We present ionization probability and lineshape calculations for a specifed two-step three-photon ionization process of the ground state of hydrogenic atoms in a non-monochromatic laser field with a time-dependent amplitude. Within the framework of a three-level model, the AC Stark shifts and non-ze

  1. Broadband EM radiation amplification by means of a monochromatically driven two-level system

    Science.gov (United States)

    Soldatov, Andrey V.

    2017-02-01

    It is shown that a two-level quantum system possessing dipole moment operator with permanent non-equal diagonal matrix elements and driven by external semiclassical monochromatic high-frequency electromagnetic (EM) (laser) field can amplify EM radiation waves of much lower frequency.

  2. Tunable multiwalled nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alex K [Kensington, CA; Jensen, Kenneth J [Berkeley, CA; Girit, Caglar [Albany, CA; Mickelson, William E [San Francisco, CA; Grossman, Jeffrey C [Berkeley, CA

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  3. Tunable multiwalled nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  4. Tunable nonlinear graphene metasurfaces

    CERN Document Server

    Smirnova, Daria A; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements ("metamolecules") and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.

  5. Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations

    Science.gov (United States)

    Malliori, A.; Bliznakova, K.; Sechopoulos, I.; Kamarianakis, Z.; Fei, B.; Pallikarakis, N.

    2014-08-01

    The aim of this study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28 kVp and a monochromatic one at 19 keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4 cm thick computational breast models, in a compressed state, were used: one simple homogeneous and one heterogeneous based on CT breast images, with compositions of 50% glandular-50% adipose and 40% glandular-60% adipose tissues by weight, respectively. Modeled lesions, representing masses and calcifications, were inserted within these breast phantoms. X-ray transport in the breast models was simulated with previously developed and validated Monte Carlo application. Results showed that, for the same incident photon fluence, the use of the monochromatic beam in BT resulted in higher image quality compared to the one using polychromatic acquisition, especially in terms of contrast. For the homogenous phantom, the improvement ranged between 15% and 22% for calcifications and masses, respectively, while for the heterogeneous one this improvement was in the order of 33% for the masses and 17% for the calcifications. For different exposures, comparable image quality in terms of signal-difference-to-noise ratio and higher contrast for all features was obtained when using a monochromatic 19 keV beam at a lower mean glandular dose, compared to the polychromatic one. Monochromatic images also provide better detail and, in combination with BT, can lead to substantial improvement in visualization of features, and particularly better edge detection of low-contrast masses.

  6. Frequency-domain spectroscopy using high-power tunable THz-wave sources: towards THz sensing and detector sensitivity calibration

    Science.gov (United States)

    Takida, Yuma; Minamide, Hiroaki

    2017-05-01

    The development of reliable, high-power, frequency-tunable terahertz (THz)-wave sources is crucial for a wide variety of applications, such as spectroscopy, imaging, and sensing. In order to generate frequency-tunable THz waves at room temperature, one of the most promising methods is a wavelength conversion in nonlinear optical crystals. Here, we present our recent results on high-power, widely-tunable, frequency-agile THz-wave sources based on nonlinear parametric processes in MgO:LiNbO3 crystals. By changing the noncollinear phase-matching condition in MgO:LiNbO3, the tunability of sub-nanosecond-pumped injection-seeded THz-wave parametric generators (is-TPGs) covers the 3.65-octave frequency range from 0.37 THz up to 4.65 THz. The monochromatic THz-wave output from is-TPGs is greater than 10 kW peak power with the linewidth of approximately 3 GHz and the stability of 1%. These is-TPG systems are reliable and promising high-power tunable THz-wave sources for frequency-domain spectroscopic measurements towards THz sensing and detector sensitivity calibration.

  7. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  8. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Ze-Guo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  9. Microstrip antenna on tunable substrate

    Science.gov (United States)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  10. Tunable Imaging Filters in Astronomy

    CERN Document Server

    Bland-Hawthorn, J

    2000-01-01

    While tunable filters are a recent development in night time astronomy, they have long been used in other physical sciences, e.g. solar physics, remote sensing and underwater communications. With their ability to tune precisely to a given wavelength using a bandpass optimized for the experiment, tunable filters are already producing some of the deepest narrowband images to date of astrophysical sources. Furthermore, some classes of tunable filters can be used in fast telescope beams and therefore allow for narrowband imaging over angular fields of more than a degree over the sky.

  11. Mid-infrared tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  12. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  13. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering

    Science.gov (United States)

    Yu, Changhai; Qi, Rong; Wang, Wentao; Liu, Jiansheng; Li, Wentao; Wang, Cheng; Zhang, Zhijun; Liu, Jiaqi; Qin, Zhiyong; Fang, Ming; Feng, Ke; Wu, Ying; Tian, Ye; Xu, Yi; Wu, Fenxiang; Leng, Yuxin; Weng, Xiufeng; Wang, Jihu; Wei, Fuli; Yi, Yicheng; Song, Zhaohui; Li, Ruxin; Xu, Zhizhan

    2016-07-01

    Inverse Compton scattering between ultra-relativistic electrons and an intense laser field has been proposed as a major route to generate compact high-brightness and high-energy γ-rays. Attributed to the inherent synchronization mechanism, an all-optical Compton scattering γ-ray source, using one laser to both accelerate electrons and scatter via the reflection of a plasma mirror, has been demonstrated in proof-of-principle experiments to produce a x-ray source near 100 keV. Here, by designing a cascaded laser wakefield accelerator to generate high-quality monoenergetic e-beams, which are bound to head-on collide with the intense driving laser pulse via the reflection of a 20-um-thick Ti foil, we produce tunable quasi-monochromatic MeV γ-rays (33% full-width at half-maximum) with a peak brilliance of ~3 × 1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV. To the best of our knowledge, it is one order of magnitude higher than ever reported value of its kinds in MeV regime. This compact ultrahigh brilliance γ-ray source may provide applications in nuclear resonance fluorescence, x-ray radiology and ultrafast pump-probe nondestructive inspection.

  14. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  15. Generalised Cornu spirals: an experimental study using hard x-rays.

    Science.gov (United States)

    Werdiger, Freda; Kitchen, Marcus J; Paganin, David M

    2016-05-16

    The Cornu spiral is a graphical aid that has been used historically to evaluate Fresnel integrals. It is also the Argand-plane mapping of a monochromatic complex scalar plane wave diffracted by a hard edge. We have successfully reconstructed a Cornu spiral due to diffraction of hard x-rays from a piece of Kapton tape. Additionally, we have explored the generalisation of the Cornu spiral by observing the Argand-plane mapping of complex scalar electromagnetic fields diffracted by a cylinder and a sphere embedded within a cylinder.

  16. Recent developments in hard X-ray tomography

    CERN Document Server

    Rau, C; Snigirev, A; Schrör, C; Tümmler, J; Lengeler, B

    2001-01-01

    A new technique for magnified hard X-ray tomography using compound refractive lenses (CRLs) has been tested. A full-field X-ray microscope was included into a conventional microtomography setup at a synchrotron undulator beamline. Experiments were carried out at 19.7 keV with a monochromatic beam as well as with the so-called 'pink' beam using a larger energy bandwidth. During this pilot experiment a resolution of about 1 mu m was already achieved, which corresponds to the best resolution obtained with phase-contrast enhanced microtomography. The technique has the potential to increase the spatial resolution of hard-X-ray microtomography to a scale of several hundred nanometers.

  17. Towards a Monochromatization Scheme for Direct Higgs Production at FCC-ee

    CERN Document Server

    Valdivia Garcia, Marco Alan; Zimmermann, Frank

    2016-01-01

    Direct Higgs production in e+e− collisions at the FCC is of interest if the centre-of-mass energy spread can be reduced by at least an order of magnitude. A monochromatization scheme, to accomplish this, can be realized with horizontal dispersion of opposite sign for the two colliding beams at the interaction point (IP). We recall historical approaches to monochromatization, then derive a set of IP parameters which would provide the required performance in FCC e+e− collisions at 62.5 GeV beam energy, compare these with the baseline optics parameters at neighbouring energies (45.6 and 80 GeV), comment on the effect of beamstrahlung, and indicate the modifications of the FCC-ee final-focus optics needed to obtain the required parameters.

  18. Monochromatic imaging instrumentation for applications in aeronomy of the earth and planets

    Science.gov (United States)

    Baumgardner, Jeffrey; Flynn, Brian; Mendillo, Michael

    1992-01-01

    Monochromatic imaging instrumentation has been developed that uses narrow-band (12 A FWHP) interference filters or plane reflection gratings for 2D imaging and imaging spectrograph applications. By changing the optics in front of the filter or grating, the field of view of the instruments can be varied from 180 deg to 6 deg. In the case of the 2D monochromatic imager, the 12 mm-diameter filtered image is formed at about f/1 on the input photocathode of an intensified CCD camera (380 x 488 pixels). The sensitivities of the systems are about 50-100 R s (S/N about 2). Examples of data taken with both of these instruments include detection and mapping of Jupiter's sodium magnetonebula and stable auroral red arcs in the terrestrial ionosphere.

  19. Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates.

    Science.gov (United States)

    Metje, Jan; Borgwardt, Mario; Moguilevski, Alexandre; Kothe, Alexander; Engel, Nicholas; Wilke, Martin; Al-Obaidi, Ruba; Tolksdorf, Daniel; Firsov, Alexander; Brzhezinskaya, Maria; Erko, Alexei; Kiyan, Igor Yu; Aziz, Emad F

    2014-05-05

    We report on a newly built laser-based tabletop setup which enables generation of femtosecond light pulses in the XUV range employing the process of high-order harmonic generation (HHG) in a gas medium. The spatial, spectral, and temporal characteristics of the XUV beam are presented. Monochromatization of XUV light with minimum temporal pulse distortion is the central issue of this work. Off-center reflection zone plates are shown to be advantageous when selection of a desired harmonic is carried out with the use of a single optical element. A cross correlation technique was applied to characterize the performance of the zone plates in the time domain. By using laser pulses of 25 fs length to pump the HHG process, a pulse duration of 45 fs for monochromatized harmonics was achieved in the present setup.

  20. Monochromatic wavelength dispersive x-ray fluorescence providing sensitive and selective detection of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J [Los Alamos National Laboratory; Collins, Michael L [Los Alamos National Laboratory; Montoya, Velma M [Los Alamos National Laboratory; Chen, Zewu [XOS; Wei, Fuzhong [XOS

    2010-01-01

    Monochromatic wavelength dispersive X-ray fluorescence (MWDXRF) is a sensitive and selective method for elemental compositional analyses. The basis for this instrumental advance is the doubly curved crystal (DCC) optic. Previous work has demonstrated the feasibility of sensitive trace element detection for yttrium as a surrogate for curium in aqueous solutions. Additional measurements have demonstrated similar sensitivity in several different matrix environments which attests to the selectivity of the DCC optic as well as the capabilities of the MWDXRF concept. The objective of this effort is to develop an improved Pu characterization method for nuclear fuel reprocessing plants. The MWDXRF prototype instrument is the second step in a multi-year effort to achieve an improved Pu assay. This work will describe a prototype MWDXRF instrument designed for uranium detection and characterization. The prototype consists of an X-ray tube with a rhodium anode and a DCC excitation optic incorporated into the source. The DCC optic passes the RhK{alpha} line at 20.214 keV for monochromatic excitation of the sample. The source is capable of 50 W power at 50 kV and 1.0 mA operation. The x-ray emission from the sample is collected by a DCC optic set at the UL{alpha} line of 13.613 keV. The collection optic transmits the UL{alpha} x-rays to the silicon drift detector. The x-ray source, sample, collection optic and detector are all mounted on motion controlled stages for the critical alignment of these components. The sensitivity and selectivity of the instrument is obtained through the monochromatic excitation and the monochromatic detection. The prototype instrument performance has a demonstrated for sensitivity for uranium detection of around 2 ppm at the current state of development. Further improvement in sensitivity is expected with more detailed alignment.

  1. Photonic MEMS tunable laser sources

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-qun

    2009-01-01

    This article covers laser configurations, design and experiments of photonic microelectromechanical systems (MEMS) tunable laser sources. Three different types of MEMS tunable lasers such as MEMS coupled-cavity lasers, injection-locked laser systems and dual-wavelength tunable lasers are demonstrated as examples of natural synergy of MEMS with photonics. The expansion and penetration of the MEMS technology to silicon optoelectronic creates on-chip optical systems at an unprecedented scale of integration. While producing better integration with robustness and compactness, MEMS improves the functionalities and specifications of laser chips. Additionally, MEMS tunable lasers are featured with small size, high tuning speed, wide tuning range and CMOS compatible integration, which broaden their applications to many fields.

  2. In-ovo monochromatic green light photostimulation enhances embryonic somatotropic axis activity.

    Science.gov (United States)

    Dishon, L; Avital-Cohen, N; Malamud, D; Heiblum, R; Druyan, S; Porter, T E; Gumulka, M; Rozenboim, I

    2017-06-01

    Previous studies demonstrated that in ovo photostimulation with monochromatic green light increases body weight and accelerates muscle development in broilers. The mechanism in which in ovo photostimulation accelerates growth and muscle development is not clearly understood. The objective of the current study was to define development of the somatotropic axis in the broiler embryo associated with in ovo green light photostimulation. Two-hundred-forty fertile broiler eggs were divided into 2 groups. The first group was incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\\m2 at shell level, and the second group was incubated under dark conditions and served as control. In ovo green light photostimulation increased plasma growth hormone (GH) and prolactin (PRL) levels, as well as hypothalamic growth hormone releasing hormone (GHRH), liver growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-1) mRNA levels. The in ovo photostimulation did not, however, increase embryo's body weight, breast muscle weight, or liver weight. The results of this study suggest that stimulation with monochromatic green light during incubation increases somatotropic axis expression, as well as plasma prolactin levels, during embryonic development. © 2017 Poultry Science Association Inc.

  3. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    Science.gov (United States)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  4. Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans

    Science.gov (United States)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2017-05-01

    Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.

  5. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks.

    Science.gov (United States)

    Zhang, Liwei; Cao, Jing; Wang, Zixu; Dong, Yulan; Chen, Yaoxing

    2016-04-01

    To study the mechanism by which monochromatic lights affect the growth of broilers, a total of 192 newly hatched broilers, including the intact, sham-operated and pinealectomy groups, were exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) using a light-emitting diode (LED) system for 2 weeks. The results showed that the GHRH-ir neurons were distributed in the infundibular nucleus (IN) of the chick hypothalamus. The mRNA and protein levels of GHRH in the hypothalamus and the plasma GH concentrations in the chicks exposed to GL were increased by 6.83-31.36%, 8.71-34.52% and 6.76-9.19% compared to those in the chicks exposed to WL (P=0.022-0.001), RL (P=0.002-0.000) and BL (P=0.290-0.017) in the intact group, respectively. The plasma melatonin concentrations showed a positive correlation with the expression of GHRH (r=0.960) and the plasma GH concentrations (r=0.993) after the various monochromatic light treatments. After pinealectomy, however, these parameters decreased and there were no significant differences between GL and the other monochromatic light treatments. These findings suggest that melatonin plays a critical role in GL illumination-enhanced GHRH expression in the hypothalamus and plasma GH concentrations in young broilers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  7. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  8. Thermodynamic hardness and the maximum hardness principle

    Science.gov (United States)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2017-08-01

    An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I -A ) , where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

  9. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  10. Wear of hard materials by hard particles

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  11. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?

    Energy Technology Data Exchange (ETDEWEB)

    Kuchenbecker, Stefan, E-mail: stefan.kuchenbecker@dkfz.de; Faby, Sebastian; Sawall, Stefan; Kachelrieß, Marc [German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Lell, Michael [Friedrich-Alexander-University (FAU), Erlangen 91054 (Germany)

    2015-02-15

    Purpose: Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. Methods: Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energy to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal

  12. Tunable perovskite microdisk lasers.

    Science.gov (United States)

    Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai

    2016-04-28

    Perovskite microdisk lasers have been intensively studied recently. But their lasing properties are usually fixed once the devices are synthesized. Here, for the first time, we demonstrated the switchable and tunable perovskite microdisk lasers by surrounding them with 5CB liquid crystals. With the increase of the environmental temperature from 24 °C to 34 °C, the lasing wavelength slightly changed from 552.91 nm to 552.11 nm at the beginning and suddenly shifted to around 552.54 nm at T = 32 °C, where the phase transition of liquid crystals occurs. Our numerical calculation shows that the wavelength shift is caused by the changes of the refractive index of liquid crystals. More than tuning of the wavelength, a more dramatic wavelength transition from ∼554 nm to 550 nm has also been observed. This sudden transition is mainly induced by the reduction of scattering rather than the change in the refractive index when the liquid crystals are changed from the nematic phase to the isotropic phase. We believe that our research can shed light on the applications of perovskite optoelectronics.

  13. Tunable High-Frequency Gravitational-Wave Detection with optically-levitated sensors

    CERN Document Server

    Arvanitaki, Asimina

    2012-01-01

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 30 - 300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range by 1 - 3 orders of magnitude, using an instrument of only a few percent of their size. Such a device extends the search volume for 100 kHz gravitational wave sources by more than 10^6, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  14. High harmonic generation with fully tunable polarization by train of linearly polarized pulses

    Science.gov (United States)

    Neufeld, Ofer; Bordo, Eliyahu; Fleischer, Avner; Cohen, Oren

    2017-02-01

    We propose and demonstrate, analytically and numerically, a scheme for generation of high-order harmonics with fully tunable polarization, from circular through elliptic to linear, while barely changing the other properties of the high harmonic radiation and where the ellipticity values of all the harmonic orders essentially coincide. The high harmonics are driven by a train of quasi-monochromatic linearly polarized pulses that are identical except for their polarization angles, which is the tuning knob. This system gives rise to full control over the polarization of the harmonics while largely preserving the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized.

  15. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Subramanian

    2013-01-01

    Full Text Available Context: Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP, though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. Aim: To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects and Methods: Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique. Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Statistical Analysis: Variation in FVEP latencies between the individuals (interindividual variability and the variations within the same individual for four trials (intraindividual variability were assessed using coefficient of variance (COV. The technique with lower COV was considered the better method. Results: Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Conclusions: Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  16. Source mechanics for monochromatic icequakes produced during iceberg calving at Columbia Glacier, AK

    Science.gov (United States)

    O'Neel, Shad; Pfeffer, W.T.

    2007-01-01

    Seismograms recorded during iceberg calving contain information pertaining to source processes during calving events. However, locally variable material properties may cause signal distortions, known as site and path effects, which must be eliminated prior to commenting on source mechanics. We applied the technique of horizontal/vertical spectral ratios to passive seismic data collected at Columbia Glacier, AK, and found no dominant site or path effects. Rather, monochromatic waveforms generated by calving appear to result from source processes. We hypothesize that a fluid-filled crack source model offers a potential mechanism for observed seismograms produced by calving, and fracture-processes preceding calving.

  17. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    Science.gov (United States)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  18. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    Science.gov (United States)

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean-Paul; Ellis, A. Robert; Klem, John F.; Sinclair, Michael B.; Luk, Ting S.

    2016-01-01

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  19. Improvement of Image Quality in Transmission Computed Tomography Using Synchrotron Monochromatic X-Ray Sheet Beam

    Science.gov (United States)

    2001-10-25

    7] T. Takeda, M. Kazama, T. Zeniya, T. Yuasa, M. Akiba, A. Uchida, K. Hyodo, T. Akatsuka, M. Ando, and Y. Itai , “Development of a Mono- chromatic X...Uyama (Springer-Verlag, Tokyo), pp. 103-110 (1998). [8] Y. Itai , T. Takeda, T. Akatsuka, T. Maeda, K. Hyodo, A. Uchida, T. Yuasa, M. Kazama, J. Wu...T. Yuasa, K. Hyodo, M. Ando, T. Akatsuka, and Y. Itai , “Performance Study of Monochromatic Synchro- tron X-ray Computed Tomography using a Linear

  20. Enhancing monochromatic multipole emission by a subwavelength enclosure of degenerate Mie resonances

    KAUST Repository

    Zhao, Jiajun

    2017-07-06

    Sound emission is inefficient at low frequencies as limited by source size. This letter presents enhancing emission of monochromatic monopole and multipole sources by enclosing the source with a subwavelength circular enclosure filled of an anisotropic material of a low radial sound speed. The anisotropy is associated with an infinite tangential density along the azimuth. Numerical simulations show that emission gain is produced at frequencies surrounding degenerate Mie resonant frequencies of the enclosure, and meanwhile the radiation directivity pattern is well preserved. The degeneracy is theoretically analyzed. A realization of the material is suggested by using a space-coiling structure.

  1. Response of vegetable organisms to quasi-monochromatic light of different duration, intensity and wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    By the example of vegetable organisms differing in structure and functional properties it is shown that their response to the action of quasi-monochromatic light from laser sources does not obey the Bunsen – Roscoe dose law. The dependence of biological effect on the irradiation time has the multimodal (multiextremal) form with alternating maxima and minima of the stimulating effect. Such a property manifests itself in the spectral ranges, corresponding to photoinduced conversion of chromoproteins of photocontrol systems and is probably related to the cyclic variations of metabolic activity in vegetable cells. (biophotonics)

  2. Display of the complex degree of coherence due to quasi-monochromatic spatially incoherent sources.

    Science.gov (United States)

    Michalski, M; Sicre, E E; Rabal, H J

    1985-12-01

    A method for displaying the complex degree of coherence (CDC) of a quasi-monochromatic spatially incoherent source is proposed. The phase of the CDC is encoded in a method similar to that used in interferometric imaging with incoherent light. The method is based on Fourier analysis of the speckle pattern that appears when a diffuser is illuminated with the partially coherent field whose CDC is to be displayed. In addition, an intensity pattern that resembles the spatial distribution of the incoherent source can also be obtained.

  3. A monochromatic x-ray imaging system for characterizing low-density foams

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, Nicholas E. [Los Alamos National Laboratory; Taccetti, Jose M. [Los Alamos National Laboratory; Hamilton, Christopher E. [Los Alamos National Laboratory

    2012-05-04

    In High Energy Density (HED) laser experiments, targets often require small, low-density, foam components. However, their limited size can preclude single component characterization, forcing one to rely solely on less accurate bulk measurements. We have developed a monochromatic imaging a system to characterize both the density and uniformity of single component low-mass foams. This x-ray assembly is capable of determining line-averaged density variations near the 1% level, and provides statistically identical results to those obtained at the Brookhaven's NSLS. This system has the added benefit of providing two-dimensional density data, allowing an assessment of density uniformity.

  4. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    Science.gov (United States)

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean-Paul; Ellis, A. Robert; Klem, John F.; Sinclair, Michael B.; Luk, Ting S.

    2016-10-01

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  5. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...... separate inlets we can change the period of the droplet array. As a result, the lasing frequency is tuned over a broad spectral range. Using this configuration, we demonstrate wavelength tunability of about 70 nm and lasing threshold of about 15 μJ/mm2....

  6. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; Krumm, Christoph; Ren, Limin; Damen, Jonathan N.; Shete, Meera H.; Lee, Han Seung; Zuo, Xiaobing; Lee, Byeongdu; Fan, Wei; Vlachos, Dionisios G.; Lobo, Raul F.; Tsapatsis, Michael; Dauenhauer, Paul J.

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.

  7. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A., E-mail: alexandre.giuliani@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  8. Statistical analysis of ocular monochromatic aberrations in Chinese population for adaptive optics ophthalmoscope design

    Directory of Open Access Journals (Sweden)

    Junlei Zhao

    2017-01-01

    Full Text Available It is necessary to know the distribution of the Chinese eye’s aberrations in clinical environment to guide high-resolution retinal imaging system design for large Chinese population application. We collected the monochromatic wave aberration of 332 healthy eyes and 344 diseased eyes in Chinese population across a 6.0-mm pupil. The aberration statistics of Chinese eyes including healthy eyes and diseased eyes were analyzed, and some differences of aberrations between the Chinese and European race were concluded. On this basis, the requirement for adaptive optics (AO correction of the Chinese eye’s monochromatic aberrations was analyzed. The result showed that a stroke of 20μm and ability to correct aberrations up to the 8th Zernike order were needed for reflective wavefront correctors to achieve near diffraction-limited imaging in both groups for a reference wavelength of 550nm and a pupil diameter of 6.0mm. To verify the analysis mentioned above, an AO flood-illumination system was established, and high-resolution retinal imaging in vivo was achieved for Chinese eye including both healthy and diseased eyes.

  9. Dual-energy tissue cancellation in mammography with quasi-monochromatic x-rays.

    Science.gov (United States)

    Marziani, M; Taibi, A; Tuffanelli, A; Gambaccini, M

    2002-01-21

    Dual-energy radiography has not evolved into a routine clinical examination yet due to intrinsic limitations of both dual-kVp imaging and single-exposure imaging with conventional x-ray sources. The recent introduction of novel quasi-monochromatic x-ray sources and detectors could lead to interesting improvements, especially in mammography where the complex structure of healthy tissues often masks the detectability of lesions. A dual-energy radiography technique based on a tissue cancellation algorithm has been developed for mammography, with the aim of maximizing the low intrinsic contrast of pathologic tissues while being able to minimize or cancel the contrast between glandular and fat tissues. Several images of a plastic test object containing various tissue equivalent inserts were acquired in the energy range 17-36 keV using a quasi-monochromatic x-ray source and a scintillator-coated CCD detector. Images acquired at high and low energies were nonlinearly combined to generate two energy-independent basis images. Suitable linear combinations of these two basis images result in the elimination of the contrast of a given material with respect to another. This makes it possible to selectively cancel certain details in the processed image.

  10. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms.

  11. Constraining the monochromatic gamma-rays from dark matter annihilation by the LHC

    Science.gov (United States)

    Esmaili, Arman; Khatibi, Sara; Mohammadi Najafabadi, Mojtaba

    2017-07-01

    The installation of forward detectors in CMS and ATLAS turn the LHC into an effective photon-photon collider. The elastic scattering of the beam protons via the emission of photons, which can be identified by tagging the intact protons in the forward detectors, provides a powerful diagnostic of the central production of new particles through photon-photon annihilation. In this paper we study the central production of dark matter particles and the potential of the LHC to constrain the cross section of this process. By virtue of the crossing symmetry, this limit can immediately be used to constrain the production of monochromatic gamma rays in dark matter annihilation, a smoking gun signal under investigation in indirect dark matter searches. We show that with the integrated luminosity L =30 fb-1 in the LHC at center-of-mass energy √{s }=13 TeV , for dark matter masses ˜(50 - 600 ) GeV , a model-independent constraint on the cross section of dark matter annihilation to monochromatic gamma rays at the same order of magnitude as the current Fermi-LAT and the future limits from CTA can be obtained.

  12. Control of cell interaction using quasi-monochromatic light with varying spatiotemporal coherence

    Science.gov (United States)

    Budagovsky, A. V.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2017-02-01

    By the example of plants, fungi and bacteria, we consider the possibility of controlling the interaction of cells, being in competitive, antagonistic, or parasitic relations. For this aim we used short-time irradiation (a few seconds or minutes) with the red (633 nm) quasi-monochromatic light having different spatiotemporal coherence. It is shown that the functional activity is mostly increased in the cells whose size does not exceed the coherence length and the correlation radius of the light field. Thus, in the case of cells essentially differing in size, it is possible to increase the activity of smaller cells, avoiding the stimulation of larger ones. For example, the radiation having relatively low coherence (Lcoh, rcor plant cells by pathogen fungi, while the exposure to light with less statistical regularity (Lcoh = 4 μm, rcor = 5 μm) inhibits the growth of the Fusarium microcera fungus, infected by the bacterium of the Pseudomonas species. The quasi-monochromatic radiation with sufficiently high spatiotemporal coherence stimulated all interacting species (bacteria, fungi, plants). In the considered biocenosis, the equilibrium was shifted towards the favour of organisms having the highest rate of cell division or the ones better using their adaptation potential.

  13. Rod and Rod-driven Function in Achromatopsia and Blue Cone Monochromatism

    Science.gov (United States)

    Moskowitz, Anne; Hansen, Ronald M.; Akula, James D.; Eklund, Susan E.; Fulton, Anne B.

    2008-01-01

    Purpose To evaluate rod photoreceptor and postreceptor retinal function in pediatric patients with achromatopsia (ACHR) and blue cone monochromatism (BCM) using contemporary electroretinographic (ERG) procedures. Methods Fifteen patients (age 1 to 20 years) with ACHR and six patients (age 4 to 22 years) with BCM were studied. ERG responses to full-field stimuli were obtained in scotopic and photopic conditions. Rod photoreceptor (Srod, Rrod) and rod-driven postreceptor (log σ, Vmax) response parameters were calculated from the a-wave and b-wave. The ERG records were digitally filtered to demonstrate the oscillatory potentials (OPs); a sensitivity parameter, log SOPA1/2, and an amplitude parameter, SOPAmax, were used to characterize the OP response. Response parameters were compared to those of 12 normal control subjects. Results As expected, photopic responses were non-detectable in patients with ACHR and BCM. In addition, mean scotopic photoreceptor (Rrod) and postreceptor (Vmax and SOPAmax) amplitude parameters were significantly reduced compared to those in normal controls. The flash intensity required to evoke a half maximum b-wave amplitude (log σ) was significantly increased. Conclusions The results of this study provide evidence that deficits in rod and rod mediated function occur in the primary cone dysfunction syndromes, achromatopsia and blue cone monochromatism. PMID:18824728

  14. Monochromatic light-emitting diode (LED source in layers hens during the second production cycle

    Directory of Open Access Journals (Sweden)

    Rodrigo Borille

    2015-09-01

    Full Text Available ABSTRACTLight is an important environmental factor for birds, allowing not only their vision, but also influencing their physiological responses, such as behavioral and reproductive activity. The objective of this experiment was to evaluate the impact of different colors of monochromatic light (LED sources in laying hens production during the second laying cycle. The study was conducted in an experimental laying house during 70 days. A total of 300 laying hens Isa Brown® genetic strain, aged 95 weeks, in the second laying cycle were used in the study. The artificial light sources used were blue, yellow, green, red and white. The light regimen was continuous illumination of 17 h per day (12 h natural and 5 h artificial in a daily light regimen of 17L:5D (light: dark. The Latin Square design was adopted with five treatments (five colors divided into five periods, and five boxes, with six replicates of ten birds in each box. The production and egg quality were evaluated. The different colors of light source did not affect production parameters or egg quality (p > 0.05. The monochromatic light source may be considered as an alternative to artificial lighting in laying hens during the second production cycle.

  15. Constraining the monochromatic gamma-rays from dark matter annihilation by the LHC

    CERN Document Server

    Esmaili, Arman; Najafabadi, Mojtaba Mohammadi

    2016-01-01

    The installation of forward detectors in CMS and ATLAS turn the LHC to an effective photon-photon collider. The elastic scattering of the beam-protons via the emission of photons, which can be identified by tagging the intact protons in the forward detectors, provides a powerful diagnostic of the central production of new particles through photon-photon annihilation. In this letter we study the central production of dark matter particles and the potential of LHC to constrain the cross section of this process. By virtue of the crossing symmetry, this limit can immediately be used to constrain the production of monochromatic gamma-rays in dark matter annihilation, a smoking gun signal under investigation in indirect dark matter searches. We show that with the integrated luminosity $\\mathcal{L}=30~{\\rm fb}^{-1}$ in LHC at center-of-mass energy $\\sqrt{s}=$ 13 TeV, for dark matter masses $\\sim (50-600)$ GeV, a model-independent constraint on the cross section of dark matter annihilation to monochromatic gamma-rays...

  16. Effects of monochromatic light on quality properties and antioxidation of meat in broilers.

    Science.gov (United States)

    Ke, Y Y; Liu, W J; Wang, Z X; Chen, Y X

    2011-11-01

    Our previous study demonstrated that blue monochromatic light was better to promote the growth and development of broilers than red light. However, consumer research suggests that the eating quality of the meat is more important. The present study was, therefore, designed to further evaluate the effects of various monochromatic lights on the muscle growth and quality properties and antioxidation of meat. A total of 288 newly hatched Arbor Acre male broilers were exposed to blue light (BL), green light (GL), red light (RL), and white light (WL) by a light-emitting diode system for 49 d, respectively. Results showed that the broilers reared under BL significantly increased BW and carcass yield as compared with RL, WL, and GL (P 0.05). Compared with RL, the muscles of breast and thigh in GL and BL had higher pH, water-holding capacity, and protein content, whereas cooking loss, lightness value, shear value, and fat content were lower (P 0.05). These results suggest that BL better improves meat quality of Arbor Acre broilers by elevating antioxidative capacity than does RL.

  17. Design of Tunable Superconducting Metamaterials

    Science.gov (United States)

    Trepanier, Melissa; Zhang, Daimeng; Anlage, Steven

    2013-03-01

    Our goal is to create a superconducting metamaterial utilizing deep sub-wavelength meta-atoms with a quickly-tunable index of refraction. To accomplish this we will combine two different materials: an array of rf SQUIDs (with tunable effective permeability) and an array of thin wires interrupted by Josephson junctions (with tunable effective permittivity). These materials have been designed to maximize tunablility in the range easily measured via X-band, Ku-band, and K-band waveguides. Various sizes of rf SQUIDs were designed to be non-hysteretic, be sufficiently insensitive to noise, and to have resonant frequencies ranging from 6.5 - 22 GHz. The wire array was designed so that the inductance of the Josephson junctions can completely cancel the geometric and kinetic inductance of the wires, giving rise to strong tunability. We will present the design considerations and simulation results for this new class of metamaterials. This work is supported by the NSF-GOALI program through grant # ECCS-1158644, and CNAM.

  18. Hardness Tester for Polyur

    Science.gov (United States)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  19. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  20. Skin Treatment with Pulsed Monochromatic UVA1 355 Device and Computerized Morphometric Analysis of Histochemically Identified Langerhans Cells

    Directory of Open Access Journals (Sweden)

    Nicola Zerbinati

    2016-01-01

    Full Text Available Fluorescent or metal halide lamps are widely used in therapeutic applications in dermatological diseases, with broadband or narrow band emission UVA/UVA1 (320–400 nm obtained with suitable passive filters. Recently, it has been possible for us to use a new machine provided with solid state source emitting pulsed monochromatic UVA1 355 nm. In order to evaluate the effects of this emission on immunocells of the skin, human skin samples were irradiated with monochromatic 355 nm UVA1 with different energetic fluences and after irradiation Langerhans cells were labeled with CD1a antibodies. The immunohistochemical identification of these cells permitted evaluating their modifications in terms of density into the skin. Obtained results are promising for therapeutical applications, also considering that a monochromatic radiation minimizes thermic load and DNA damage in the skin tissues.

  1. Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity

    OpenAIRE

    Zhiyang Hu; Shuhong Xu; Xiaojing Xu; Zhaochong Wang; Zhuyuan Wang; Chunlei Wang; Yiping Cui

    2015-01-01

    In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving o...

  2. Dynamic hardness of metals

    Science.gov (United States)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  3. Detection limits for actinides in a monochromatic, wavelength-dispersive x-ray fluorescence instrument

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael L [Los Alamos National Laboratory; Havrilla, George J [Los Alamos National Laboratory

    2009-01-01

    Recent developments in x-ray optics have made it possible to examine the L x-rays of actinides using doubly-curved crystals in a bench-top device. A doubly-curved crystal (DCC) acts as a focusing monochromatic filter for polychromatic x-rays. A Monochromatic, Wavelength-Dispersive X-Ray Fluorescence (MWDXRF) instrument that uses DCCs to measure Cm and Pu in reprocessing plant liquors was proposed in 2007 by the authors at Los Alamos National Laboratory. A prototype design of this MWDXRF instrument was developed in collaboration with X-ray Optical Systems Inc. (XOS), of East Greenbush, New York. In the MWDXRF instrument, x-rays from a Rhodium-anode x-ray tube are passed through a primary DCC to produce a monochromatic beam of 20.2-keV photons. This beam is focused on a specimen that may contain actinides. The 20.2-keV interrogating beam is just above the L3 edge of Californium; each actinide (with Z = 90 to 98) present in the specimen emits characteristic L x-rays as the result of L3-shell vacancies. In the LANL-XOS prototype MWDXRf, these x-rays enter a secondary DCC optic that preferentially passes 14.961-keV photons, corresponding to the L-alpha-1 x-ray peak of Curium. In the present stage of experimentation, Curium-bearing specimens have not been analyzed with the prototype MWDXRF instrument. Surrogate materials for Curium include Rubidium, which has a K-beta-l x-ray at 14.961 keV, and Yttrium, which has a K-alpha-1 x-ray at 14.958 keV. In this paper, the lower limit of detection for Curium in the LANL-XOS prototype MWDXRF instrument is estimated. The basis for this estimate is described, including a description of computational models and benchmarking techniques used. Detection limits for other actinides are considered, as well as future safeguards applications for MWDXRF instrumentation.

  4. Hardness and excitation energy

    Indian Academy of Sciences (India)

    Á Nagy

    2005-09-01

    The concept of the ensemble Kohn-Sham hardness is introduced. It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the limit → 0. It is proposed that the first excitation energy can be used as a reactivity index instead of the hardness.

  5. Tunable diffraction grating in flexible substrate by UV-nanoimprint lithography

    Science.gov (United States)

    Hamouda, F.; Aassime, A.; Bertin, H.; Gogol, P.; Bartenlian, B.; Dagens, B.

    2017-02-01

    The fabrication of flexible advanced devices is a very important issue that requires the hybrid integration of different nanostructured materials. In this work, we report on a new molding technique based on an improved hard UV-nanoimprint lithography process (hard UV-NIL) using a poly(dimethylsiloxane) (PDMS) film. The large-scale integration of a high-quality nanostructured gold pattern in PDMS is made possible with the use of an inorganic sacrificial layer soluble in hydrogen peroxide. A tunable diffraction gold stripe grating has been fabricated by transferring a 1 cm2 stripe grating from a rigid silicon substrate to a flexible PDMS substrate. As a result, we successfully demonstrate diffraction grating optical tunability when mechanical tension is applied.

  6. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  7. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    Science.gov (United States)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.

  8. Energy dependence of CP-violation reach for monochromatic neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, Jose [IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot, Valencia (Spain); Espinoza, Catalina [IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot, Valencia (Spain)], E-mail: m.catalina.espinoza@uv.es

    2008-06-26

    The ultimate goal of future neutrino facilities is the determination of CP violation in neutrino oscillations. Besides |U(e3)|{ne}0, this will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We compare the physics potential for two different configurations: (I) {gamma}=90 and {gamma}=195 (maximum achievable at present SPS) to Frejus; (II) {gamma}=195 and {gamma}=440 (maximum achievable at upgraded SPS) to Canfranc. We conclude that the SPS upgrade to 1000 GeV is important to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline.

  9. A Photodegradation Study of Three Common Paint and Plaster Biocides under monochromatic UV Light

    DEFF Research Database (Denmark)

    Minelgaite, Greta; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    2014-01-01

    Photodegradation of the three common paint-and-plaster biocides (carbendazim, diuron and terbutryn) was investigated at controlled laboratory conditions. Samples prepared in two types of water (demineralized water and pond water) were subjected to 254 nm monochromatic UV light. Light intensity (W m......-2) in the experimental chamber was measured by a fiber optic spectrometer. The observed decline in biocide concentration was related with the light energy, accumulated during the time of degradation (kJ m-2), and 1st order photodegradation rate constants (m2 kJ-1) were determined. The obtained...... results demonstrated that diuron and terbutryn were readily degradable at the tested conditions, while carbendazim remained stable throughout the 28 – 34 hours of the experiments. Photodegradation rate constants of diuron and terbutryn were found to be slightly higher in demineralized water (0.0183 – 0...

  10. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator.

    Science.gov (United States)

    Hall, G N; Burdiak, G C; Suttle, L; Stuart, N H; Swadling, G F; Lebedev, S V; Smith, R A; Patankar, S; Suzuki-Vidal, F; de Grouchy, P; Harvey-Thompson, A J; Bennett, M; Bland, S N; Pickworth, L; Skidmore, J

    2014-11-01

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  11. X-ray Absorption Imaging of High-Intensity Discharge Lamps Using Monochromatic Synchrotron Radiation

    Science.gov (United States)

    Curry, John J.; Sansonetti, Craig J.; Hechtfischer, Ulrich; Adler, Helmar G.

    2002-10-01

    We will report results from the imaging of Hg vapor in high-intensity discharge lamps using synchrotron radiation and digital detectors. These measurements extend previous work on x-ray absorption imaging in arc lamps using an x-ray tube and a passive phosphor image plate detector^i. The large x-ray flux obtained from the Advanced Photon Source (Argonne National Laboratory) combined with the electronic gating capabilities of an intensified charge-coupled device detector have allowed us to obtain time-resolved Hg distributions with high spatial resolution. Monochromatic synchrotron radiation improves the accuracy over what can be obtained with quasi-continuum radiation from an x-ray tube source. ^iJ. J. Curry, M. Sakai, and J. E. Lawler, Journal of Applied Physics 84, 3066 (1998).

  12. A compact design for monochromatic OSL measurements in the wavelength range 380-1020 nm

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L.; Poolton, N.R.J.; Willumsen, F.; Christiansen, H. [Risoe National Lab., Roskilde (Denmark)

    1994-04-01

    The development and performance of a compact module is described that allows for the monochromatic illumination of samples in the wavelength range 380-1020 nm, enabling the measurement of energy-resolved optically stimulated luminescence. The unit is designed to couple directly to the existing automated Risoe TL/OSL dating apparatus, thus allowing for either routine scanning or more detailed thermo-optical investigations. The high throughput efficiency of the unit means that the existing 75 W tungsten-halogen lamp can be directly used for such measurements on both quartz and feldspar samples. The design allows for rapid spectral scanning with a choice of resolution of anywhere between 10 and 80 nm: stray light levels are less than 0.01%. The unit can equally be used for recording wavelength-resolved emission spectra, whether photo-excited or thermally stimulated; the capabilities of the system are demonstrated in the article. (author).

  13. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: gareth.hall@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J. [The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2014-11-15

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  14. Parametric decay of a parallel propagating monochromatic whistler wave: Particle-in-cell simulations

    Science.gov (United States)

    Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2017-01-01

    In this paper, by using one-dimensional (1-D) particle-in-cell simulations, we investigate the parametric decay of a parallel propagating monochromatic whistler wave with various wave frequencies and amplitudes. The pump whistler wave can decay into a backscattered daughter whistler wave and an ion acoustic wave, and the decay instability grows more rapidly with the increase of the frequency or amplitude. When the frequency or amplitude is sufficiently large, a multiple decay process may occur, where the daughter whistler wave undergoes a secondary decay into an ion acoustic wave and a forward propagating whistler wave. We also find that during the parametric decay a considerable part of protons can be accelerated along the background magnetic field by the enhanced ion acoustic wave through the Landau resonance. The implication of the parametric decay to the evolution of whistler waves in Earth's magnetosphere is also discussed in the paper.

  15. Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya

    Directory of Open Access Journals (Sweden)

    Y. Katoh

    2011-05-01

    Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.

  16. Non-destructive characterization of minerals in ancient Greek ceramics using monochromatic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Siouris, I M [Department of Production and Management Engineering, Democritus University of Thrace Xanthi, 67100 Xanthis (Greece); Department of Informatics and Communication, Technological and Educational, Institute of Serres, SimLab, 62124 Serres (Greece)], E-mail: jsiou@pme.duth.gr

    2008-03-12

    A collection of ancient Greek ceramic pieces originating from different excavations from Neos Scopos, Serres, in the North East of Greece has been studied at room temperature by means of non-destructive neutron diffraction using a monochromatic beam. Quantitative phase analyses revealed different compositions of the mineral fractions present, but a general similarity of the main materials is still recognizable. It is shown that the observed variations are partly due to the experimental set-up and they can be remedied by taking a sufficient number of measurements for different sample orientations while bathing the entire object in the beam. An additional reason for the observed anomaly in the mineral phase compositions may be the different heat treatments to which the mixtures of clays/pastes was subjected as well as the postproduction environmental conditions for the selected samples. The firing temperatures were estimated to be in the range of 850-1000 deg. C.

  17. Hard and Soft

    OpenAIRE

    Claes H. de Vreese; Boomgaarden, Hajo G.; Semetko, Holli A.

    2008-01-01

    Abstract Support for European integration is a function no longer only of `hard' economic and utilitarian predictors but also of `soft' predictors such as feelings of identity and attitudes towards immigrants. Focusing on the issue of the potential membership of Turkey in the European Union (EU), this study demonstrates that the importance of `soft' predictors outweighs the role of `hard' predictors in understanding public opinion about Turkish membership. The study draws on survey...

  18. Electronically Tunable Sinusoidal Oscillator Circuit

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2012-01-01

    Full Text Available This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters.

  19. Flexible polymer waveguide tunable lasers.

    Science.gov (United States)

    Kim, Kyung-Jo; Kim, Jun-Whee; Oh, Min-Cheol; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-04-12

    A flexible polymeric Bragg reflector is fabricated for the purpose of demonstrating widely tunable lasers with a compact simple structure. The external feedback of the Bragg reflected light into a superluminescent laser diode produces the lasing of a certain resonance wavelength. The highly elastic polymer device enables the direct tuning of the Bragg wavelength by controlling the imposed strain and provides a much wider tuning range than silica fiber Bragg gratings or thermo-optic tuned polymer devices. Both compressive and tensile strains are applied within the range from -36000 microepsilon to 35000 microepsilon, so as to accomplish the continuous tuning of the Bragg reflection wavelength over a range of up to 100 nm. The external feedback laser with the tunable Bragg reflector exhibits a repetitive wavelength tuning range of 80 nm with a side mode suppression ratio of 35 dB.

  20. Experiments with tunable Josephson metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Susanne; Jung, Philipp [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, RAS, Moscow (Russian Federation); Ustinov, Alexey V. [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); National University of Science and Technology, MISIS, Moscow (Russian Federation)

    2013-07-01

    We report on experiments investigating a tunable metamaterial consisting of rf-SQUIDs. A metamaterial is a medium constructed of artifical elements, so-called meta-atoms, that interact in a specific way with an incoming electromagnetic wave. The size of the individual meta-atom is much smaller than the wavelength. Our metamaterial consists of an array of rf-SQUIDs which is placed into a coplanar waveguide. The rf-SQUIDs couple to the magnetic field component of the propagating microwave. In a frequency range around the resonance frequency, the magnetic permeability μ{sub r} of the metamaterial deviates strongly from the typical value of μ{sub r} = 1. By using an additional constant magnetic field bias, the inductance of the Josephson junction and thereby the resonance frequency of our meta-atom is changed. We show that the magnetic permeability of such a SQUID metamaterial is tunable in situ and compare the experimental results with numerical simulations.

  1. BAMline: the first hard X-ray beamline at BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, W.; Hentschel, M.P.; Mueller, B.R. E-mail: bernd.mueller@bam.de; Riesemeier, H.; Krumrey, M.; Ulm, G.; Diete, W.; Klein, U.; Frahm, R

    2001-07-21

    The first hard X-ray beamline at BESSY II will be installed by BAM and PTB at a superconducting 7 T wavelength shifter. The main optical elements of the beamline are a Double-Multilayer-Monochromator and a Double-Crystal-Monochromator. The two devices can be used separately or in-line. Main applications of monochromatic radiation with photon energies up to 50 keV are X-ray fluorescence analysis, micro-computed tomography, X-ray topography, detector calibration and reflectometry. Calculable undispersed radiation up to 200 keV will be available for radiometric applications.

  2. Rotation of hard particles in a soft matrix

    Science.gov (United States)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  3. Hardness amplification in nondeterministic logspace

    OpenAIRE

    Gupta, Sushmita

    2007-01-01

    A hard problem is one which cannot be easily computed by efficient algorithms. Hardness amplification is a procedure which takes as input a problem of mild hardness and returns a problem of higher hardness. This is closely related to the task of decoding certain error-correcting codes. We show amplification from mild average case hardness to higher average case hardness for nondeterministic logspace and worst-to-average amplification for nondeterministic linspace. Finally we explore possible ...

  4. Focusing Mirror with Tunable Eccentricity

    CERN Document Server

    Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2013-01-01

    We present a new kind of varifocal mirror with independently adjustable curvatures in the major directions. For actuation we use two stacked piezo bending actuators with crossed in-plane polarization. This mirror can be used for example as an off-axis focusing device with tunable focal length and compensation for a variable angle of incidence or for coma correction. We demonstrate the prototype of such a mirror and characterize the mechanical deflection, as well as the focusing capabilities.

  5. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  6. Tunable nanowire nonlinear optical probe

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong

    2008-02-18

    One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.

  7. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    CERN Document Server

    Hara, Hidetake; Matsuzawa, Hiroki; Inoue, Toshiyuki; Abe, Shinji; Satoh, Hitoshi; Nakajima, Yasuo

    2015-01-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize acute-stage cerebral infarction by applying virtual monochromatic images to this phantom using dual-energy CT (DECT). Virtual monochromatic images were created using DECT from 40 to 100 keV at every 10 keV and from 60 to 80 keV at every 1 keV, under three energy conditions of tube voltages with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images between 65 and 75 keV were significantly higher than those obtained for all other created energy images. Therefore, optimal conditions for visualizing acute ischemic stroke were achievable.

  8. Electron Spin Resonance of Single Crystals of Cystine Dihydrochloride Irradiated with Monochromatic UV Radiation at Various Wavelenghts

    DEFF Research Database (Denmark)

    Lund-Thomsen, E.; Nielsen, S. O.

    1972-01-01

    Single crystals of cystine dihydrochloride were irradiated at room temperature with monochromatic uv radiation. The optical bandwidth was about 20 Å for each wavelength used. Essentially two ESR centers were observed, the relative yield being approximately 1. One center is identified as the RS...

  9. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    Science.gov (United States)

    Hara, Hidetake; Muraishi, Hiroshi; Matsuzawa, Hiroki; Inoue, Toshiyuki; Nakajima, Yasuo; Satoh, Hitoshi; Abe, Shinji

    2015-07-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize an acute-stage cerebral infarction by using dual-energy Computed tomography (DECT) to obtain virtual monochromatic images of this phantom. Virtual monochromatic images were created by using DECT voltages from 40 to 100 keV in steps of 10 keV and from 60 to 80 keV in steps of 1 keV, under three conditions of the tube voltage with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images at voltages between 65 and 75 keV were significantly higher than those obtained for all other created images. Therefore, the optimal conditions for visualizing acute ischemic stroke were achievable.

  10. Tunable metamaterials fabricated by fiber drawing

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...... of the metamaterial provides tunability; by compressing the metamaterial we demonstrated a 50% plasma frequency shift using THz time-domain spectroscopy. Releasing the compression allowed the metamaterial to return to its original dimensions and plasma frequency, demonstrating dynamic reversible tunability....

  11. One-Dimensional Tunable Josephson Metamaterials

    OpenAIRE

    Butz, Susanne

    2014-01-01

    This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.

  12. 1550-nm wavelength-tunable HCG VCSELs

    Science.gov (United States)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2014-02-01

    We demonstrate wavelength-tunable VCSELs using high contrast gratings (HCGs) as the top output mirror on VCSELs, operating at 1550 nm. Tunable HCG VCSELs with a ~25 nm mechanical tuning range as well as VCSELs with 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for WDM communications systems.

  13. SU-E-I-40: Phantom Research On Monochromatic Images Taken by Dual CBCT with Multiple Energy Sets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R [Duke University, Durham, NC - North Carolina (United States); Shandong University, Jinan, Shandong (China); Wang, H [Shandong University, Jinan, Shandong (China); Zhang, Y [Duke University, Durham, NC - North Carolina (United States); Mao, R [The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan (China); Ren, L; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To evaluate the quality of monochromatic images at the same virtual monochromatic energy using dual cone-beam computed tomography (CBCT) with either kV/kV or MV/kV or MV/MV energy sets. Methods: CT images of Catphan 504 phantom were acquired using four different KV and MV settings: 80kV, 140kV, 4MV, 6MV. Three sets of monochromatic images were calculated: 80kV-140kV, 140kV-4MV and 4MV-6MV. Each set of CBCT images were reconstructed from the same selected virtual monochromatic energy of 1MeV. Contrast-to-Noise Ratios (CNRs) were calculated and compared between each pair of images with different energy sets. Results: Between kV/MV and MV/MV images, the CNRs are comparable for all inserts. However, differences of CNRs were observed between the kV/kV and kV/MV images. Delrin’s CNR ratio between kV/kV image and kV/MV image is 1.634. LDPE’s (Low-Density Polyethylene) CNR ratio between kV/kV and kV/MV images is 0.509. Polystyrene’s CNR ratio between kV/kV image and kV/MV image is 2.219. Conclusion: Preliminary results indicated that the CNRs calculated from CBCT images reconstructed from either kV/MV projections or MV/MV projections for the same selected virtual monochromatic energy may be comparable.

  14. Hard and superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-03-01

    This article reviews the development of hard coatings from a titanium nitride film through superlattice coatings to nanocomposite coatings. Significant attention is devoted to hard and superhard single layer nanocomposite coatings. A strong correlation between the hardness and structure of nanocomposite coatings is discussed in detail. Trends in development of hard nanocomposite coatings are also outlined. (orig.)

  15. Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs.

    Science.gov (United States)

    Oh, Ji Hye; Oh, Jeong Rok; Park, Hoo Keun; Sung, Yeon-Goog; Do, Young Rag

    2012-01-02

    This study introduces a long-pass dichroic filter (LPDF) on top of a phosphor-converted LED (pc-LED) packing associated with each corresponding tunable orthosilicate ((Ba,Sr)2SiO4:Eu) phosphor in order to fabricate tunable green pc-LEDs. These LPDF-capped green pc-LEDs provide luminous efficacies between 143–173 lm/W at 60 mA in a wavelength range between 515 and 560 nm. These tunable green pc-LEDs can replace green semiconductor-type III-V LEDs, which present challenges with respect to generating high luminous efficacy. We also introduce the highly-efficient tunable green pc-LEDs into tri-color white LED systems that combine an InGaN blue LED and green/red full down-converted pc-LEDs. The effect of peak wavelength in the tunable green pc-LEDs on the optical properties of a tri-color package white LED is analyzed to determine the proper wavelength of green color for tri-color white LEDs. The tri-color white LED provides excellent luminous efficacy (81.5–109 lm/W) and a good color rendering index (64–87) at 6500 K of correlated color temperature (CCT) with the peak wavelength of green pc-LEDs. The luminous efficacy of the LPDF-capped green monochromatic pc-LED and tri-color package with tunable green pc-LEDs can be increased by improving the external quantum efficiency of blue LEDs and the conversion efficiency of green pc-LEDs.

  16. Session: Hard Rock Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  17. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  18. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Wuhui Li; Fengzhang Ren; Juanhua Su; Zhanhong Ma; Ke Cao; Baohong Tian

    2011-07-01

    This paper presents a new formula for calculating the hardness of metallic crystals, resulted from the research on the critical grain size with stable dislocations. The formula is = 6 /[(1 – )], where is the hardness, the coefficient, the shear modulus, the Poisson’s ratio, a function of the radius of an atom () and the electron density at the atom interface (). The formula will not only be used to testify the critical grain size with stable dislocations, but also play an important role in the understanding of mechanical properties of nanocrystalline metals.

  19. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.

    2007-01-15

    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  20. Effects of monochromatic light on mucosal mechanical and immunological barriers in the small intestine of broilers.

    Science.gov (United States)

    Xie, D; Li, J; Wang, Z X; Cao, J; Li, T T; Chen, J L; Chen, Y X

    2011-12-01

    Our previous studies demonstrated that green and blue monochromatic lights were effective to stimulate immune response of the spleen in broilers. This study was designed to investigate the effects of monochromatic light on both gut mucosal mechanical and immunological barriers. A total of 120 Arbor Acre male broilers on post-hatching day (P) 0 were exposed to red light, green light (GL), blue light (BL), and white light (WL) for 49 d, respectively. As compared with broilers exposed to WL, the broilers exposed to GL showed that the villus height of small intestine was increased by 19.5% (P = 0.0205) and 38.8% (P = 0.0149), the crypt depth of small intestine was decreased by 15.1% (P = 0.0049) and 10.1% (P = 0.0005), and the ratios of villus height to crypt depth were increased by 39.3% (P < 0.0001) and 52.5% (P < 0.0001) at P7 and P21, respectively. Until P49, an increased villus height (33.6%, P = 0.0076), a decreased crypt depth (15.4%, P = 0.0201), and an increased villus height-to-crypt depth ratio (58.5%, P < 0.0001) were observed in the BL group as compared with the WL group. On the other hand, the numbers of intestinal intraepithelial lymphocytes (27.9%, P < 0.0001 and 37.0%, P < 0.0001), goblet cells (GC, 22.1%, P < 0.0001 and 18.1%, P < 0.0001), and IgA(+) cells (14.8%, P = 0.0543 and 47.9%, P = 0.0377) in the small intestine were significantly increased in the GL group as compared with the WL group at P7 and P21, respectively. The numbers of intestinal intraepithelial lymphocytes (36.2%, P < 0.0001), GC (26.5%, P < 0.0001), and IgA(+) cells (68.0%, P = 0.0177) in the BL group were also higher than those in the WL group at P49. These results suggest that both mucosal mechanical and immunological barriers of the small intestine may be improved by rearing broilers under GL at an early age and under BL at an older age.

  1. CSI: Hard Drive

    Science.gov (United States)

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  2. Hard Probes at ATLAS

    CERN Document Server

    Citron, Z; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has measured several hard probe observables in Pb+Pb and p+Pb collisions at the LHC. These measurements include jets which show modification in the hot dense medium of heavy ion collisions as well as color neutral electro-weak bosons. Together, they elucidate the nature of heavy ion collisions.

  3. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  4. Budgeting in Hard Times.

    Science.gov (United States)

    Parrino, Frank M.

    2003-01-01

    Interviews with school board members and administrators produced a list of suggestions for balancing a budget in hard times. Among these are changing calendars and schedules to reduce heating and cooling costs; sharing personnel; rescheduling some extracurricular activities; and forming cooperative agreements with other districts. (MLF)

  5. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...

  6. Running in Hard Times

    Science.gov (United States)

    Berry, John N., III

    2009-01-01

    Roberta Stevens and Kent Oliver are campaigning hard for the presidency of the American Library Association (ALA). Stevens is outreach projects and partnerships officer at the Library of Congress. Oliver is executive director of the Stark County District Library in Canton, Ohio. They have debated, discussed, and posted web sites, Facebook pages,…

  7. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-10-02

    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  8. Self-Assembled, Nanostructured, Tunable Metamaterials via Spinodal Decomposition.

    Science.gov (United States)

    Chen, Zuhuang; Wang, Xi; Qi, Yajun; Yang, Sui; Soares, Julio A N T; Apgar, Brent A; Gao, Ran; Xu, Ruijuan; Lee, Yeonbae; Zhang, Xiang; Yao, Jie; Martin, Lane W

    2016-11-22

    Self-assembly via nanoscale phase separation offers an elegant route to fabricate nanocomposites with physical properties unattainable in single-component systems. One important class of nanocomposites are optical metamaterials which exhibit exotic properties and lead to opportunities for agile control of light propagation. Such metamaterials are typically fabricated via expensive and hard-to-scale top-down processes requiring precise integration of dissimilar materials. In turn, there is a need for alternative, more efficient routes to fabricate large-scale metamaterials for practical applications with deep-subwavelength resolution. Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of the VO2-TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured metamaterials and other nanocomposites for desired functionalities.

  9. Tunable Properties of Magnetoactive Elastomers for Biomedical Applications

    Science.gov (United States)

    Makarova, Liudmila A.; Alekhina, Yuliya A.; Rusakova, Tatiana S.; Perov, Nikolai S.

    The remote controllable magneto-mechanical devices based on MAEs (magnetoactive elastomers) can be obtained through variation of magnetic parameters of MAEs. Such devices can be used as the elements of peristaltic systems, artificial muscles, hyperthermia or drug delivery. MAEs with different matrix rigidity and filler particles type were investigated with VSM Lakeshore 7400 series and immittance meter Aktakom AM-3016 model. The dependencies of magnetostatic and magnetodynamic properties of MAEs with different types of magnetic particles on concentration of the magnetic filler and DC magnetic field strength were studied. There is a possibility to control the "magnetic hardness", energy absorption and heating, relaxation properties of MAEs which allow to use MAEs as the main element of the tunable devices for biomedical applications.

  10. The capabilities of monochromatic EC neutrino beams with the SPS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, C; Bernabeu, J [IFIC, Universidad de Valencia-CSIC, E-46100, Burjassot, Valencia (Spain)], E-mail: m.catalina.espinoza@uv.es, E-mail: jose.bernabeu@uv.es

    2008-05-15

    The goal for future neutrino facilities is the determination of the U(e3) mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We conclude that the SPS upgrade to 1000 GeV is crucial to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline. We compare the physics potential for two different configurations: I) {gamma} = 90 and {gamma} = 195 (maximum achievable at present SPS) to Frejus; II) {gamma} = 195 and {gamma} = 440 (maximum achievable at upgraded SPS) to Canfranc. The main conclusion is that, whereas the gain in the determination of U(e3) is rather modest, setup II provides much better sensitivity to CP violation.

  11. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers

    Science.gov (United States)

    Abdo, Safaa E.; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light. PMID:28698764

  12. Experimental and Numerical Studies on Wave Breaking Characteristics over a Fringing Reef under Monochromatic Wave Conditions

    Directory of Open Access Journals (Sweden)

    Jong-In Lee

    2014-01-01

    Full Text Available Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r2>0.8 the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A0/h0<0.07 in this study. However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.

  13. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    Science.gov (United States)

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque.

  14. Hard gap in epitaxial semiconductor-superconductor nanowires.

    Science.gov (United States)

    Chang, W; Albrecht, S M; Jespersen, T S; Kuemmeth, F; Krogstrup, P; Nygård, J; Marcus, C M

    2015-03-01

    Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states--a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs-Al semiconductor-superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.

  15. Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light

    CERN Document Server

    Park, Jongchan; Lee, KyeoReh; Cho, Yong-Hoon; Park, YongKeun

    2016-01-01

    Due to its time-reversal nature, optical phase conjugation generates a monochromatic light wave which retraces its propagation paths. Here, we demonstrate the regeneration of a subwavelength optical focus by phase conjugation. Monochromatic light from a subwavelength source is scattered by random nanoparticles, and the scattered light is phase conjugated at the far-field region by coupling its wavefront into a single-mode optical reflector using a spatial light modulator. Then the conjugated beam retraces its propagation paths and forms a refocus on the source at the subwavelength scale. This is the first direct experimental realization of subwavelength focusing beyond the diffraction limit with far-field time reversal in the optical domain.

  16. Thermoluminescence dependence on the wavelength of monochromatic UV-radiation in Cu-doped KCl and KBr at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perez R, A.; Piters, T.; Aceves, R.; Rodriguez M, R.; Perez S, R., E-mail: rperez@cifus.uson.mx [Universidad de Sonora, Departamento de Investigaciones en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    Thermoluminescence (Tl) dependence on the UV irradiation wavelengths from 200 to 500 nm in Cu-doped KCl and KBr crystals with different thermal treatment has been analyzed. Spectrum of the Tl intensity of each material show lower intensity at wavelengths longer than 420 nm. The Tl intensity depends on the irradiation wavelength. Structure of the Tl intensity spectrum of each sample is very similar to the structure of its optical absorption spectrum, indicating that at each wavelength, monochromatic radiation is absorbed to produce electronic transitions and electron hole pairs. Thermoluminescence of materials with thermal treatment at high temperature shows electron-hole trapping with less efficiency. The results show that Cu-doped alkali-halide materials are good detectors of a wide range of UV monochromatic radiations and could be used to measure UV radiation doses. (Author)

  17. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  18. Metal artifacts reduction using monochromatic images from spectral CT: Evaluation of pedicle screws in patients with scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: wangzhang227@163.com [Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Qian, Bangping, E-mail: qianbangping@163.com [Spine Service, Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008 (China); Li, Baoxin, E-mail: wangzhi68@163.com [Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Qin, Guochu, E-mail: qgc7605@yahoo.com.cn [Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Zhou, Zhengyang, E-mail: zyzhou@nju.edu.cn [Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Qiu, Yong, E-mail: scoliosis2002@sina.com [Spine Service, Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008 (China); Sun, Xizhao, E-mail: sunxizhaonj@163.com [Department of Radiology and Urology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008 (China); Zhu, Bin, E-mail: gobin10266@163.com [Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2013-08-15

    Purpose: To evaluate the effectiveness of spectral CT in reducing metal artifacts caused by pedicle screws in patients with scoliosis. Materials and methods: Institutional review committee approval and written informed consents from patients were obtained. 18 scoliotic patients with a total of 228 pedicle screws who underwent spectral CT imaging were included in this study. Monochromatic image sets with and without the additional metal artifacts reduction software (MARS) correction were generated with photon energy at 65 keV and from 70 to 140 keV with 10 keV interval using the 80 kVp and 140 kVp projection sets. Polychromatic images corresponded to the conventional 140 kVp imaging were also generated from the same scan data as a control group. Both objective evaluation (screw width and quantitative artifacts index measurements) and subjective evaluation (depiction of pedicle screws, surrounding structures and their relationship) were performed. Results: Image quality of monochromatic images in the range from 110 to 140 keV (0.97 ± 0.28) was rated superior to the conventional polychromatic images (2.53 ± 0.54) and also better than monochromatic images with lower energy. Images of energy above 100 keV also give accurate measurement of the width of screws and relatively low artifacts index. The form of screws was slightly distorted in MARS reconstruction. Conclusions: Compared to conventional polychromatic images, monochromatic images acquired from dual-energy CT provided superior image quality with much reduced metal artifacts of pedicle screws in patients with scoliosis. Optimal energy range was found between 110 and 140 keV.

  19. Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity.

    Science.gov (United States)

    Hu, Zhiyang; Xu, Shuhong; Xu, Xiaojing; Wang, Zhaochong; Wang, Zhuyuan; Wang, Chunlei; Cui, Yiping

    2015-10-08

    In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving only Mn dopant emission with improved monochromaticity. The mechanism for the optical filtering effect of Ag was investigated. The results indicate that the doping of Ag will introduce a new faster deactivation process from ZnSe conduction band to Ag energy level, leading to less electrons deactived via ZnSe band gap emission and ZnSe trap emission. As a result, only Mn dopant emission is left.

  20. Theory of hard photoproduction

    OpenAIRE

    Klasen, Michael

    2002-01-01

    The present theoretical knowledge about photons and hard photoproduction processes, i.e. the production of jets, light and heavy hadrons, quarkonia, and prompt photons in photon-photon and photon-hadron collisions, is reviewed. Virtual and polarized photons and prompt photon production in hadron collisions are also discussed. The most important leading and next-to-leading order QCD results are compiled in analytic form. A large variety of numerical predictions is compared to data from TRISTAN...

  1. SUPER HARD SURFACED POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Louis K [ORNL; Bhattacharya, R [UES, Incorporated, Dayton, OH; Blau, Peter Julian [ORNL; Clemons, Art [ORNL; Eberle, Cliff [ORNL; Evans, H B [UES, Incorporated, Dayton, OH; Janke, Christopher James [ORNL; Jolly, Brian C [ORNL; Lee, E H [Consultant, Milpitas, CA; Leonard, Keith J [ORNL; Trejo, Rosa M [ORNL; Rivard, John D [ORNL

    2010-01-01

    High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

  2. Graphene cardboard: From ripples to tunable metamaterial

    Science.gov (United States)

    Koskinen, Pekka

    2014-03-01

    Recently, graphene was introduced with tunable ripple texturing, a nanofabric enabled by graphene's remarkable elastic properties. However, one can further envision sandwiching the ripples, thus constructing composite nanomaterial, graphene cardboard. Here, the basic mechanical properties of such structures are investigated computationally. It turns out that graphene cardboard is highly tunable material, for its elastic figures of merit vary orders of magnitude, with Poisson ratio tunable from 10 to -0.5 as one example. These trends set a foundation to guide the design and usage of metamaterials made of rippled van der Waals solids.

  3. SU-D-BRA-06: Dual-Energy Chest CT: The Effects of Virtual Monochromatic Reconstructions On Texture Analysis Features

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, J; Duran, C; Stingo, F; Wei, W; Rao, A; Zhang, L; Court, L; Erasmus, J; Godoy, M [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To characterize the effect of virtual monochromatic reconstructions on several commonly used texture analysis features in DECT of the chest. Further, to assess the effect of monochromatic energy levels on the ability of these textural features to identify tissue types. Methods: 20 consecutive patients underwent chest CTs for evaluation of lung nodules using Siemens Somatom Definition Flash DECT. Virtual monochromatic images were constructed at 10keV intervals from 40–190keV. For each patient, an ROI delineated the lesion under investigation, and cylindrical ROI’s were placed within 5 different healthy tissues (blood, fat, muscle, lung, and liver). Several histogram- and Grey Level Cooccurrence Matrix (GLCM)-based texture features were then evaluated in each ROI at each energy level. As a means of validation, these feature values were then used in a random forest classifier to attempt to identify the tissue types present within each ROI. Their predictive accuracy at each energy level was recorded. Results: All textural features changed considerably with virtual monochromatic energy, particularly below 70keV. Most features exhibited a global minimum or maximum around 80keV, and while feature values changed with energy above this, patient ranking was generally unaffected. As expected, blood demonstrated the lowest inter-patient variability, for all features, while lung lesions (encompassing many different pathologies) exhibited the highest. The accuracy of these features in identifying tissues (76% accuracy) was highest at 80keV, but no clear relationship between energy and classification accuracy was found. Two common misclassifications (blood vs liver and muscle vs fat) accounted for the majority (24 of the 28) errors observed. Conclusion: All textural features were highly dependent on virtual monochromatic energy level, especially below 80keV, and were more stable above this energy. However, in a random forest model, these commonly used features were

  4. Nonlinear, tunable and active metamaterials

    CERN Document Server

    Lapine, Mikhail; Kivshar, Yuri

    2015-01-01

    Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.

  5. Does pupil constriction under blue and green monochromatic light exposure change with age?

    Science.gov (United States)

    Daneault, Véronique; Vandewalle, Gilles; Hébert, Marc; Teikari, Petteri; Mure, Ludovic S; Doyon, Julien; Gronfier, Claude; Cooper, Howard M; Dumont, Marie; Carrier, Julie

    2012-06-01

    Many nonvisual functions are regulated by light through a photoreceptive system involving melanopsin-expressing retinal ganglion cells that are maximally sensitive to blue light. Several studies have suggested that the ability of light to modulate circadian entrainment and to induce acute effects on melatonin secretion, subjective alertness, and gene expression decreases during aging, particularly for blue light. This could contribute to the documented changes in sleep and circadian regulatory processes with aging. However, age-related modification in the impact of light on steady-state pupil constriction, which regulates the amount of light reaching the retina, is not demonstrated. We measured pupil size in 16 young (22.8±4 years) and 14 older (61±4.4 years) healthy subjects during 45-second exposures to blue (480 nm) and green (550 nm) monochromatic lights at low (7×10(12) photons/cm2/s), medium (3×10(13) photons/cm2/s), and high (10(14) photons/cm2/s) irradiance levels. Results showed that young subjects had consistently larger pupils than older subjects for dark adaptation and during all light exposures. Steady-state pupil constriction was greater under blue than green light exposure in both age groups and increased with increasing irradiance. Surprisingly, when expressed in relation to baseline pupil size, no significant age-related differences were observed in pupil constriction. The observed reduction in pupil size in older individuals, both in darkness and during light exposure, may reduce retinal illumination and consequently affect nonvisual responses to light. The absence of a significant difference between age groups for relative steady-state pupil constriction suggests that other factors such as tonic, sympathetic control of pupil dilation, rather than light sensitivity per se, account for the observed age difference in pupil size regulation. Compared to other nonvisual functions, the light sensitivity of steady-state pupil constriction appears to

  6. Human wavelength discrimination of monochromatic light explained by optimal wavelength decoding of light of unknown intensity.

    Directory of Open Access Journals (Sweden)

    Li Zhaoping

    Full Text Available We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats. Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.

  7. Does pupil constriction under blue and green monochromatic light exposure change with age?

    Science.gov (United States)

    Daneault, Véronique; Vandewalle, Gilles; Hébert, Marc; Teikari, Petteri; Mure, Ludovic S.; Doyon, Julien; Gronfier, Claude; Cooper, Howard M.; Dumont, Marie; Carrier, Julie

    2017-01-01

    Many non-visual functions are regulated by light through a photoreceptive system involving melanopsin-expressing retinal ganglion cells that are maximally sensitive to blue light. Several studies have suggested that the ability of light to modulate circadian entrainment and to induce acute effects on melatonin secretion, subjective alertness and gene expression, decreases during aging, particularly for blue light. This could contribute to the documented changes in sleep and circadian regulatory processes with aging. However, age-related modification in the impact of light on steady-state pupil constriction, which regulates the amount of light reaching the retina, is not demonstrated. We measured pupil size in 16 young (22.8±4y) and 14 older (61±4.4y) healthy subjects during 45s exposures to blue (480nm) and green (550nm) monochromatic lights at low (7×1012 photons/cm2/s), medium (3×1013 photons/cm2/s), and high (1014 photons/cm2/s) irradiance levels. Results showed that young subjects had consistently larger pupils than older subjects, for dark adaptation and during all light exposures. Steady-state pupil constriction was greater under blue than green light exposure in both age groups and increased with increasing irradiance. Surprisingly, when expressed in relation to baseline pupil size, no significant age-related differences were observed in pupil constriction. The observed reduction in pupil size in older individuals, both in darkness and during light exposure, may reduce retinal illumination and consequently affect non-visual responses to light. The absence of a significant difference between age groups for relative steady-state pupil constriction suggests that other factors such as tonic, sympathetic control of pupil dilation, rather than light sensitivity per se, account for the observed age difference in pupil size regulation. Compared to other nonvisual functions, the light sensitivity of steady-state pupil constriction appears to remain relatively

  8. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  9. Tunable permeability of magnetic wires at microwaves

    Science.gov (United States)

    Panina, L. V.; Makhnovskiy, D. P.; Morchenko, A. T.; Kostishin, V. G.

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires.

  10. Tunable beam steering enabled by graphene metamaterials.

    Science.gov (United States)

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  11. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  12. Electrically tunable materials for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  13. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  14. Observation and simulation of hard x ray photoelectron diffraction to determine polarity of polycrystalline zinc oxide films with rotation domains

    OpenAIRE

    Williams, Jesse R.; Píš, Igor; Kobata, Masaaki; Winkelmann, Aimo; Matsushita, Tomohiro; Adachi, Yutaka; Ohashi, Naoki; Kobayashi, Keisuke

    2012-01-01

    X ray photoelectron diffraction (XPD) patterns of polar zinc oxide (ZnO) surfaces were investigated experimentally using hard x rays and monochromatized Cr Kα radiation and theoretically using a cluster model approach and a dynamical Bloch wave approach. We focused on photoelectrons emitted from the Zn 2p3/2 and O 1s orbitals in the analysis. The obtained XPD patterns for the (0001) and (000) surfaces of a ZnO single crystal were distinct for a given emitter and polarity. Polarity determinati...

  15. Quantum rainbow scattering at tunable velocities

    CERN Document Server

    Strebel, M; Ruff, B; Stienkemeier, F; Mudrich, M

    2012-01-01

    Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances.

  16. Tunable spectral enhancement of fiber supercontinuum

    Science.gov (United States)

    Yeom, Dong-Il; Bolger, Jeremy A.; Marshall, Graham D.; Austin, Dane R.; Kuhlmey, Boris T.; Withford, Michael J.; de Sterke, C. Martijn; Eggleton, Benjamin J.

    2007-06-01

    We demonstrate tunable spectral enhancement of the supercontinuum generated in a microstructured fiber with a fiber long-period grating. The long-period grating leads to phase distortion and loss that, with subsequent high-intensity propagation in uniform fiber, evolves into an enhancement around the grating's resonant wavelengths. Wavelength tunability is achieved by varying the temperature or the ambient refractive index, and the spectral peak can be extinguished by immersing the grating in index-matching oil.

  17. The Berkeley tunable far infrared laser spectrometers

    Science.gov (United States)

    Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.

    1991-01-01

    A detailed description is presented for a tunable far infrared laser spectrometer based on frequency mixing of an optically pumped molecular gas laser with tunable microwave radiation in a Schottky point contact diode. The system has been operated on over 30 laser lines in the range 10-100/cm and exhibits a maximum absorption sensitivity near one part in a million. Each laser line can be tuned by + or - 110 GHz with first-order sidebands.

  18. Tunability of Nonuniform Reflection Holographic Filter

    Institute of Scientific and Technical Information of China (English)

    Shanhong You(游善红); Xinwan Li(李新碗); Jianhong Wu(吴建宏); Zongmin Yin(殷宗敏); Minxue Tang(唐敏学)

    2003-01-01

    The tunability of nonuniform reflection holographic filter is investigated theoretically and experimentally. It is shown that the reflection holographic filter has not only high optical density and narrow bandwidth, but also good tunability. The coupled wave theoretical model for uniform medium is compared with the model for nonuniform medium. It is identified that the coincidence of the theoretical results of the nonuniform model with the experimental results are better than that of the uniform model.

  19. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  20. Theory of hard photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2002-06-01

    The present theoretical knowledge about photons and hard photoproduction processes, i.e. the production of jets, light and heavy hadrons, quarkonia, and prompt photons in photon-photon and photon-hadron collisions, is reviewed. Virtual and polarized photons and prompt photon production in hadron collisions are also discussed. The most important leading and next-to-leading order QCD results are compiled in analytic form. A large variety of numerical predictions is compared to data from TRISTAN, LEP, and HERA and extended to future electron and muon colliders. The sources of all relevant results are collected in a rich bibliography. (orig.)

  1. Tunable-Bandwidth Filter System

    Science.gov (United States)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  2. Wave-flume experiments of soft-rock cliff erosion under monochromatic waves

    Science.gov (United States)

    Regard, Vincent; Astruc, Dominique; Caplain, Bastien

    2017-04-01

    We investigate how cliffs erode under wave attack. Rocky coast erosion works through cycles, each one corresponding to three successive phases: (i) notch creation at cliff toe by mechanical action of waves, (ii) cliff fracturation leading to collapse, and (iii) evacuation of scree aprons by waves and currents. We performed experiments in a 5m x 14cm x 25cm wave flume (15 cm water depth) to investigate how waves are eroding a rocky coast. The cliff is made of wet sand and models a relatively soft rock. We used 3 different grain size (D50 = 0.28-0.41-0.48 mm), changing the cliff rheology. Waves are monochromatic; their height and period differ for the various experiments. Actual wave parameters are estimated by capacitive probes located offshore. The experiments are monitored by two video cameras both on the side and above the flume. Pictures are taken at a rate of 1Hz during the first 4h and then the rate is decreased to 0.1Hz till the end of experiment (about 1 day). The monitoring ensure a confident characterization of experiments in terms of waves (surf similarity parameter ξ and the incident wave energy flux F) and in terms of sediment (Dean number Ω and Shields number θb at breakers). Experiments begin by an initial phase of quick cliff retreat. Then the system evolves with slower cliff retreat. We focus on bottom morphology which we characterize in function of wave forcing (ξ, F). We show that the bottom morphology mainly depends on ξ. For our reference sediment (Dm = 0.41 mm), we observed: (i) surging breakers on a steep terrace (type T1) for ξ > 0.65; (ii)collapsing breakers on a bared profile attached to the inner platform (type T2) for 0.55< ξ <0.6; (iii) spilling breakers on gentle terrace (type T3) for F < 1.3 W/m and 0.55< ξ <0.6. Another bottom morphology, type T4, displays two sub-systems, an outer system with a double-bar profile where breaking waves are plunging, and an inner system with a T1, T2 or T3 profile. Some of these bottom

  3. Effect of monochromatic and combined light colour on performance, blood parameters, ovarian morphology and reproductive hormones in laying hens

    Directory of Open Access Journals (Sweden)

    Md. Rakibul Hassan

    2013-07-01

    Full Text Available We evaluated the effect of monochromatic and combined light emitting diode (LED light colour on performance, ovarian morphology, and reproductive hormone and biochemical blood parameters in laying hens. A total of 600 Hy-line Brown pullets, 12 weeks of age, were divided (25×4×6 = birds × replications × treatments as follows: red (R, green (G, blue (B, and combinations of R→G and R→G→B treatments. Fluorescent white light (W was the control. The results showed that higher egg production was found under the monochromatic R and combination R→G treatments, and that heavier eggs were laid by the B and G treatments (P<0.05. Consequently, better feed conversion ratio was attained in the R→G treatment. Serum follicle stimulating hormone and 17β-estradiol levels were significantly higher in the R and R→G treatments. B treated birds came into production 15 days later than those treated with R light. Organ weight (ovary and stroma and ovarian follicle numbers (1-3 and 4-6 mm were significantly higher in R treated birds, as well as serum glucose and triglyceride contents. Serum IgG concentrations and the heterophil to lymphocyte ratio were not influenced by light colour. In these laying hens, 14 h R with 2 h G light in the later part of the day increased reproductive hormone levels, ovarian weight, and follicle number and hence increased egg production. Thus, these results suggest that a combination of R→G light may be comparable with monochromatic R light to enhance egg production in laying hens.

  4. Optically tunable plasmonic color filters

    Science.gov (United States)

    Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Wang, B.; Danner, A. J.; Yuan, X. C.; Teng, J. H.

    2012-04-01

    We fabricated sub-wavelength patterned gold plasmonic nanostructures on a quartz substrate through the focused ion beam (FIB) technique. The perforated gold film demonstrated optical transmission peaks in the visible range, which therefore can be used as a plasmonic color filter. Furthermore, by integrating a layer of photoresponsive liquid crystals (LCs) with the gold nanostructure to form a hybrid system, we observed a red-shift of transmission peak wavelength. More importantly, the peak intensity can be further enhanced more than 10% in transmittance due to the refractive index match of the media on both sides of it. By optically pumping the hybrid system using a UV light, nematic-isotropic phase transition of the LCs was achieved, thus changing the effective refractive index experienced by the impinging light. Due to the refractive index change, the transmission peak intensity was modulated accordingly. As a result, an optically tunable plasmonic color filter was achieved. This kind of color filters could be potentially applied to many applications, such as complementary metal-oxide-semiconductor (CMOS) image sensors, liquid crystal display devices, light emitting diodes, etc.

  5. Tunable Micro- and Nanomechanical Resonators

    Science.gov (United States)

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  6. Tunable Micro- and Nanomechanical Resonators

    Directory of Open Access Journals (Sweden)

    Wen-Ming Zhang

    2015-10-01

    Full Text Available Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators.

  7. Fabrication of tunable superhydrophobic surfaces

    Science.gov (United States)

    Shiu, Jau-Ye; Kuo, Chun-Wen; Chen, Peilin

    2004-02-01

    Inspired by the water-repellent behavior of the micro- and nano-structured plant surfaces, superhydrophobic materials, with a water contact larger than 150 degree, have received a lot of research attentions recently. It has been suggested that contamination, oxidation and current conduction can be inhibited on such superhydrophobic surfaces, and the flow resistance in the microfluidic channels can also be reduced using super water-repellent materials. In order to prepare superhydrophobic materials, we have developed two simple approaches for fabricating tunable superhydrophobic surfaces using nanosphere lithography and plasma etching. In the first case, the polystyrene nanospheres were employed to create well-ordered rough surfaces covered by gold and alkylthiols. Using oxygen plasma treatment, the topmost surface area can be modified systematically, as the result the water contact angle on such surfaces can be tuned from 132 to 170 degree. The water contact angles measured on these surfaces can be modeled by the Cassie"s formulation without any adjustable parameter. In the second approach, thin films of Teflon were spin-coated on the substrate surfaces and treated by oxygen plasma. Superhydrophobic surfaces with water contact angle up to 170 degree were obtained by this approach. If the ITO glasses were used as the substrates, the hydrophobicity of the surface can be tuned by applying DC voltage. Water contact angle can be adjusted from 158 degree to 38 degree.

  8. Steady state of a low-density ensemble of atoms in a monochromatic field taking into account recoil effects

    Science.gov (United States)

    Prudnikov, O. N.; Il'enkov, R. Ya.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2011-06-01

    A method has been developed for obtaining the steady-state solution of a quantum kinetic equation for the atomic density matrix in an arbitrarily polarized monochromatic field with the complete inclusion of recoil effects and degeneracy of atomic levels in the projection of the angular momentum. This method makes it possible to obtain the most general solution beyond the previously accepted approximations (semiclassical approximation, secular approximation, etc.). In particular, it has been shown that the laser cooling temperature is a function of not only the depth of the optical potential (as was previously thought), but also the mass of an atom.

  9. Amplified spontaneous emission spectrum at the output of a diode amplifier saturated by an input monochromatic wave

    Science.gov (United States)

    Bogatov, A. P.; Drakin, A. E.; D'yachkov, N. V.; Gushchik, T. I.

    2016-08-01

    Expressions for the amplitudes of amplified spontaneous emission waves in a diode amplifier near the frequency ω0 of a 'strong' input monochromatic wave have been derived in terms of a random function of a stationary Gaussian process. We have found expressions for the spectral density of the amplitudes and shown that, on the red side of the spectrum with respect to frequency ω0, spontaneous emission waves obtain additional nonlinear gain, induced by the strong wave, whereas on the blue side of the spectrum an additional loss is induced. Such behaviour of the amplitudes of amplified waves agrees with previous results.

  10. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus...

  11. Hard photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-07-01

    In view of possible photoproduction studies in ultra-peripheral heavy-ion collisions at the LHC, we briefly review the present theoretical understanding of photons and hard photoproduction processes at HERA, discussing the production of jets, light and heavy hadrons, quarkonia, and prompt photons. We address in particular the extraction of the strong coupling constant from photon structure function and inclusive jet measurements, the infrared safety and computing time of jet definitions, the sensitivity of di-jet cross sections on the parton densities in the photon, factorization breaking in diffractive di-jet production, the treatment of the heavy-quark mass in charm production, the relevance of the color-octet mechanism for quarkonium production, and isolation criteria for prompt photons. (author)

  12. Tunable wideband-directive thermal emission from SiC surface using bundled graphene sheets

    Science.gov (United States)

    Inampudi, Sandeep; Mosallaei, Hossein

    2017-09-01

    Coherent thermal radiation emitters based on diffraction gratings inscribed on surface of a polar material, such as silicon carbide, always possess high angular dispersion resulting in wideband-dispersive or monochromatic-directive emission. In this paper, we identify roots of the high angular dispersion as the rapid surface phonon polariton (SPhP) resonance of the material surface and the misalignment of the dispersion curve of the diffraction orders of the grating with respect to light line. We minimize the rapid variation of SPhP resonance by compensating the material dispersion using bundled graphene sheets and mitigate the misalignment by a proper choice of the grating design. Utilizing a modified form of rigorous coupled wave analysis to simultaneously incorporate atomic-scale graphene sheets and bulk diffraction gratings, we accurately compute the emissivity profiles of the composite structure and demonstrate reduction in the angular dispersion of thermal emission from as high as 30∘ to as low as 4∘ in the SPhP dominant wavelength range of 11-12 μ m . In addition, we demonstrate that the graphene sheets via their tunable optical properties allow a fringe benefit of dynamical variation of the angular dispersion to a wide range.

  13. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  14. Gate-Tunable Conducting Oxide Metasurfaces.

    Science.gov (United States)

    Huang, Yao-Wei; Lee, Ho Wai Howard; Sokhoyan, Ruzan; Pala, Ragip A; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2016-09-14

    Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after their fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in reflectarray geometry. We measure a phase shift of 180° and ∼30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at frequencies exceeding 10 MHz and electrical switching of ±1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable beam steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators.

  15. Tunable permeability of magnetic wires at microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Panina, L.V., E-mail: lpanina@plymouth.ac.uk [National University of Science and Technology, MISiS, Moscow (Russian Federation); Institute for Design Problems in Microelectronics, RAN, Moscow (Russian Federation); Makhnovskiy, D.P. [School of Computing and Mathematics, University of Plymouth (United Kingdom); Morchenko, A.T.; Kostishin, V.G. [National University of Science and Technology, MISiS, Moscow (Russian Federation)

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires. - Highlights: • Applications of magnetic microwires for functional composites and distributed sensor networks are proposed. • Diluted composites with magnetic microwires can demonstrate tunable left-handed properties. • Large microwave permeability combined with a specific magnetic structure lead to a large and sensitive microwave magnetoimpedance. • Microwave magnetoimpedance highly sensitive to temperature is demonstrated.

  16. Implementation of dual-energy technique for virtual monochromatic and linearly mixed CBCTs

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Giles, William; Ren Lei; Bowsher, James; Yin Fangfang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2012-10-15

    Purpose: To implement dual-energy imaging technique for virtual monochromatic (VM) and linearly mixed (LM) cone beam CTs (CBCTs) and to demonstrate their potential applications in metal artifact reduction and contrast enhancement in image-guided radiation therapy (IGRT). Methods: A bench-top CBCT system was used to acquire 80 kVp and 150 kVp projections, with an additional 0.8 mm tin filtration. To implement the VM technique, these projections were first decomposed into acrylic and aluminum basis material projections to synthesize VM projections, which were then used to reconstruct VM CBCTs. The effect of VM CBCT on the metal artifact reduction was evaluated with an in-house titanium-BB phantom. The optimal VM energy to maximize contrast-to-noise ratio (CNR) for iodine contrast and minimize beam hardening in VM CBCT was determined using a water phantom containing two iodine concentrations. The LM technique was implemented by linearly combining the low-energy (80 kVp) and high-energy (150 kVp) CBCTs. The dose partitioning between low-energy and high-energy CBCTs was varied (20%, 40%, 60%, and 80% for low-energy) while keeping total dose approximately equal to single-energy CBCTs, measured using an ion chamber. Noise levels and CNRs for four tissue types were investigated for dual-energy LM CBCTs in comparison with single-energy CBCTs at 80, 100, 125, and 150 kVp. Results: The VM technique showed substantial reduction of metal artifacts at 100 keV with a 40% reduction in the background standard deviation compared to a 125 kVp single-energy scan of equal dose. The VM energy to maximize CNR for both iodine concentrations and minimize beam hardening in the metal-free object was 50 keV and 60 keV, respectively. The difference of average noise levels measured in the phantom background was 1.2% between dual-energy LM CBCTs and equivalent-dose single-energy CBCTs. CNR values in the LM CBCTs of any dose partitioning are better than those of 150 kVp single-energy CBCTs. The

  17. The effect of pupil size on stimulation of the melanopsin containing retinal ganglion cells, as evaluated by monochromatic pupillometry

    DEFF Research Database (Denmark)

    Nissen, Claus Jeppe; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    Purpose: To evaluate the influence of the size of the light exposed pupil in one eye on the pupillary light reflex of the other eye. Method: Using a monochromatic pupillometer, the left eye in each of 10 healthy subjects was exposed to 20¿s of monochromatic light of luminance 300¿cd/m(2), first red...... (660¿nm) and in a following session, blue (470¿nm) light. The consensual pupillary diameter in the right eye was continuously measured before, during, and after light exposure. Subsequently, Tropicamide 1% or Pilocarpine 2% was instilled into the left eye and when the pupil was either maximally dilated...... or contracted, the entire sequence of red and blue light exposure repeated. After at least 3¿days, when the effect of the eye drop had subsided, the entire experiment was repeated, this time employing the other substance. Results: Prior dilatation of the left pupil augmented the post light contraction to blue...

  18. Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments.

    Science.gov (United States)

    O'Carrigan, Andrew; Babla, Mohammad; Wang, Feifei; Liu, Xiaohui; Mak, Michelle; Thomas, Richard; Bellotti, Bill; Chen, Zhong-Hua

    2014-09-01

    Light spectrum affects the yield and quality of greenhouse tomato, especially over a prolonged period of monochromatic light treatments. Physiological and chemical analysis was employed to investigate the influence of light spectral (blue, green and red) changes on growth, photosynthesis, stomatal behaviour, leaf pigment, and micronutrient levels. We found that plants are less affected under blue light treatment, which was evident by the maintenance of higher A, gs, Tr, and stomatal parameters and significantly lower VPD and Tleaf as compared to those plants grown in green and red light treatments. Green and red light treatments led to significantly larger increase in the accumulation of Fe, B, Zn, and Cu than blue light. Moreover, guard cell length, width, and volume all showed highly significant positive correlations to gs, Tr and negative links to VPD. There was negative impact of monochromatic lights-induced accumulation of Mn, Cu, and Zn on photosynthesis, leaf pigments and plant growth. Furthermore, most of the light-induced significant changes of the physiological traits were partially recovered at the end of experiment. A high degree of morphological and physiological plasticity to blue, green and red light treatments suggested that tomato plants may have developed mechanisms to adapt to the light treatments. Thus, understanding the optimization of light spectrum for photosynthesis and growth is one of the key components for greenhouse tomato production.

  19. Measurement of Monochromatic Emissivity of Cement Clinker with Various Fe2O3 Content at High Temperature

    Institute of Scientific and Technical Information of China (English)

    Z.J.Ye; C.F.Ma; 等

    1996-01-01

    An applicatiopn of the optical pyrometer is studied for measuring monochromatic emissivities of cement clinker with various Fe2O3 contnet.The idsa of using “brightness temperature” is introduced into the eimssivity measurement.In this method,there is no need for measuring an actual temperature of sample surfaces,only with determining both brightness temperatures of a sample and a blackbody can the required emissivity be evaluated according to Wien's radiation law.In practice,the cement clinker is regarded as a greybody,the monochromatic emissivity is approximately equal to the total emissivity,so a single-colour optical pyrometer is applied for this purpose,Test measurements are carried out on 10 kinds of cement clinkers,Experimental data are treated by the least square method.As a result ,the emissivity variation with temperature at a certain Fe2O3 content is quite well represented by εn=a+bT.Furthermore,this work first reported that the eimissivities of cement clinker change consierably with Fe2O3 contents.In multiple cement production this conclusion is very important.

  20. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  1. Gate-tunable conducting oxide metasurfaces

    CERN Document Server

    Huang, Yao-Wei; Sokhoyan, Ruzan; Pala, Ragip; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2015-01-01

    Metasurfaces composed of planar arrays of sub-wavelength artificial structures show promise for extraordinary light manipulation; they have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces and orbital angular momentum manipulation and detection over a broad range of electromagnetic spectrum. However the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in a reflectarray geometry. We measure a phase shift of {\\pi} and ~ 30% change in the reflectanc...

  2. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph......We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  3. Tunable random lasing behavior in plasmonic nanostructures

    Science.gov (United States)

    Yadav, Ashish; Zhong, Liubiao; Sun, Jun; Jiang, Lin; Cheng, Gary J.; Chi, Lifeng

    2017-01-01

    Random lasing is desired in plasmonics nanostructures through surface plasmon amplification. In this study, tunable random lasing behavior was observed in dye molecules attached with Au nanorods (NRs), Au nanoparticles (NPs) and Au@Ag nanorods (NRs) respectively. Our experimental investigations showed that all nanostructures i.e., Au@AgNRs, AuNRs & AuNPs have intensive tunable spectral effects. The random lasing has been observed at excitation wavelength 532 nm and varying pump powers. The best random lasing properties were noticed in Au@AgNRs structure, which exhibits broad absorption spectrum, sufficiently overlapping with that of dye Rhodamine B (RhB). Au@AgNRs significantly enhance the tunable spectral behavior through localized electromagnetic field and scattering. The random lasing in Au@AgNRs provides an efficient coherent feedback for random lasers.

  4. Highly tunable elastic dielectric metasurface lenses

    CERN Document Server

    Kamali, Seyedeh Mahsa; Arbabi, Amir; Horie, Yu; Faraon, Andrei

    2016-01-01

    Dielectric metasurfaces are two-dimensional structures composed of nano-scatterers that manipulate phase and polarization of optical waves with subwavelength spatial resolution, enabling ultra-thin components for free-space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have a fixed functionality. Here we demonstrate highly tunable metasurface devices based on subwavelength thick silicon nano-posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 $\\mu$m to 1400 $\\mu$m through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50$\\%$. The demonstrated tunable metasurface concept is highly versatile for developing ultra-slim, multi-functional and tunable optical devices with widespread applications ranging f...

  5. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  6. Measuring the Hardness of Minerals

    Science.gov (United States)

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  7. Why All the Hard Work?

    Institute of Scientific and Technical Information of China (English)

    VALERIE; SARTOR

    2011-01-01

    The stereotype of the hard working Chinese has been around for a long time in the West. As early a 1894, Arthur Smith, a missionary who spent 54 years in China, wrote book introducing the hard-working Chinese people to Americans. In his book Chinese Characteristics, Smith wrote about the dili

  8. Phase behavior of hard particles

    NARCIS (Netherlands)

    Duijneveldt, J.S. van; Lekkerkerker, H.N.W.

    1995-01-01

    The phase behavior of hard particles and mixtures thereof is reviewed. Special attention is given to a lattice model consisting of hard hexagons and points on a triangular lattice. This model appears to have two disordered phases and an ordered phase.

  9. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  10. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  11. Tunable reflector with active magnetic metamaterials.

    Science.gov (United States)

    Deng, Tianwei; Huang, Ruifeng; Tang, Ming-Chun; Tan, Peng Khiang

    2014-03-24

    We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented.

  12. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  13. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  14. Application of sub-micrometer patterned permalloy thin film in tunable radio frequency inductors

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel; Wang, Tengxing; Peng, Yujia; Wang, Guoan

    2015-01-01

    Electrical tunable meander line inductor using coplanar waveguide structures with patterned permalloy (Py) thin film has been designed and implemented in this paper. High resistivity Si substrate is used to reduce the dielectric loss from the substrate. Inductor is implemented with a 60 nm thick Py deposited and patterned on top of the gold meander line, and Py film is patterned with dimension of 440 nm 10 lm to create the shape anisotropy field, which in turn increases the FMR frequency. Compared to a regular meanderline inductor without the application of sub-micrometer patterned Py thin film, the inductance density has been increased to 20% for the implemented inductor with patterned Py. Measured FMR frequency of the patterned Py is 4.51 GHz without the application of any external magnetic field. This has enabled the inductor application in the practical circuit boards, where the large external magnet is unavailable. Inductance tunability of the implemented inductor is demonstrated by applying a DC current. Applied DC current creates a magnetic field along the hard axis of the patterned Py thin film, which changes the magnetic moment of the thin film and thus, decreases the inductance of the line. Measured results show that the inductance density of the inductor can be varied 5% by applying 300 mA DC current, larger inductance tunability is achievable by increasing the thickness of Py film. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918766

  15. Magnetically tunable Mie resonance-based dielectric metamaterials.

    Science.gov (United States)

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-11-11

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route.

  16. Effect of Monochromatic Light on Expression of Estrogen Receptor (ER) and Progesterone Receptor (PR) in Ovarian Follicles of Chicken.

    Science.gov (United States)

    Liu, Lingbin; Li, Diyan; Gilbert, Elizabeth R; Xiao, Qihai; Zhao, Xiaoling; Wang, Yan; Yin, Huadong; Zhu, Qing

    2015-01-01

    Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs) and progesterone receptors (PRs) in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm), green (GL; 560 nm), blue (BL; 480 nm) and control cool white (400-760 nm) light with an LED (light-emitting diode). There were 4 identical light-controlled rooms (n = 138) each containing 3 replicate pens (46 birds per pen). Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5), the third largest preovulatory follicle (F3) and the largest preovulatory follicle (F1), ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle), F5 and F1. These results indicate that blue and green

  17. Effect of Monochromatic Light on Expression of Estrogen Receptor (ER and Progesterone Receptor (PR in Ovarian Follicles of Chicken.

    Directory of Open Access Journals (Sweden)

    Lingbin Liu

    Full Text Available Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs and progesterone receptors (PRs in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm, green (GL; 560 nm, blue (BL; 480 nm and control cool white (400-760 nm light with an LED (light-emitting diode. There were 4 identical light-controlled rooms (n = 138 each containing 3 replicate pens (46 birds per pen. Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5, the third largest preovulatory follicle (F3 and the largest preovulatory follicle (F1, ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle, F5 and F1. These results indicate that blue

  18. Invisibility with a tunable cloaking device

    Energy Technology Data Exchange (ETDEWEB)

    Kort-Kamp, W.J.M.; Rosa, F.S.S.; Pinheiro, F.A.; Farina, C. [Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: In the last decades, electromagnetic cloaking devices have been extensively investigated by physicists and engineers for several reasons. A variety of approaches have been proposed for achieving invisibility based on the unusual properties of meta materials, such as the coordinate-transformation method or scattering cancellation techniques, and both of them have already been experimentally implemented successfully. However, despite all the recent improvements in cloaking techniques, it is still a challenge to make practical tunable cloaking devices. Nowadays, the designed cloaks used in the experiments are generally manufactured to work at or around a certain frequency that cannot be freely controlled after fabrication. >From the experimental point of view this is a considerable limitation to test the cloaking efficiency in different frequency ranges of operation. Hence, it would be very interesting to conceive a cloaking device whose electromagnetic properties could be controlled by an external tunable agent. Our purpose in this work is to show that a magneto-optical cloaking device under the influence of a tunable external magnetic field can be used to control the invisibility condition for a frequency range of operation. Besides, our results, which can be achieved for moderate magnetic fields and typical plasmonic materials, are shown to be robust to material losses, so that they may pave the way for developing actively tunable, versatile plasmonic cloaks. (author)

  19. Tunable metamaterial dual-band terahertz absorber

    Science.gov (United States)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  20. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...

  1. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  2. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  3. Hybrid polyurea elastomers with enzymatic degradation and tunable mechanical properties

    Directory of Open Access Journals (Sweden)

    Nicholas A Sears

    2016-12-01

    Full Text Available Herein, we report on the synthesis and characterization of enzymatically labile polyureas for use as a tissue-engineered ligament scaffold. Polyureas were selected due to their excellent tensile properties, fatigue resistance, and highly tunable nature. Incorporation of a collagenase-sensitive peptide into the backbone of the polyurea provided a means to confer cell-responsive degradation to the synthetic polymer. Chemical, morphological, and mechanical testing were used to confirm incorporation of the peptide and characterize polyurea films. Notably, the incorporation of the peptide resulted in an increase in modulus, elongation, and tensile strength. This was attributed to an increase in phase mixing and an increase in hydrogen bonding between the hard and soft segments. Candidate polyureas with varying levels of collagen-mimetic peptide (0%, 10%, 20% were then subjected to degradation in collagenase media or buffer at 37°C over 4 weeks. Statistically significant decreases in strength and elongation were observed in polyureas with 20% peptide content after collagenase treatment, whereas specimens in phosphate-buffered saline showed no statistically significant difference. These observations confirmed that enzyme-specific degradation was conferred to the polyurea. Overall, these polyureas hold great promise as a material for ligament reconstruction due to the promising mechanical properties and potential for cell-mediated degradation.

  4. Fast, electrically tunable filters for hyperspectral imaging

    Science.gov (United States)

    Liberman, V.; Parameswaran, L.; Gear, C.; Cabral, A.; Rothschild, M.

    2014-06-01

    Tunable, narrow-wavelength spectral filters with a ms response in the mid-wave/long-wave infrared (MW/LWIR) are an enabling technology for hyperspectral imaging systems. Few commercial off-the-shelf (COTS) components for this application exist, including filter wheels, movable gratings, and Fabry-Perot (FP) etalon-based devices. These devices can be bulky, fragile and often do not have the required response speed. Here, we present a fundamentally different approach for tunable reflective IR filters, based on coupling subwavelength plasmonic antenna arrays with liquid crystals (LCs). Our device operates in reflective mode and derives its narrow bandwidth from diffractive coupling of individual antenna elements. The wavelength tunability of the device arises from electrically-induced re-orientation of the LC material in intimate contact with antenna array. This re-orientation, in turn, induces a change in the local dielectric environment of the antenna array, leading to a wavelength shift. We will first present results of full-field optimization of micron-size antenna geometries to account for complex 3D LC anisotropy. We have fabricated these antenna arrays on IR-transparent CaF2 substrates utilizing electron beam lithography, and have demonstrated tunability using 5CB, a commercially available LC. However, the design can be extended to high-birefringence liquid crystals for an increased tuning range. Our initial results demonstrate <60% peak reflectance in the 4- 6 μm wavelength range with a tunability of 0.2 μm with re-orientation of the surface alignment layers. Preliminary electrical switching has been demonstrated and is being optimized.

  5. Cylindrical shock waves in rotational axisymmetric non-ideal dusty gas with increasing energy under the action of monochromatic radiation

    Science.gov (United States)

    Sahu, P. K.

    2017-08-01

    The propagation of a cylindrical shock wave in a rotational axisymmetric non-ideal dusty gas under the action of monochromatic radiation with increasing energy, which has variable azimuthal and axial components of fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. Similarity solutions are obtained as well as the effects of the variation of the radiation parameters, the parameter of non-idealness of the gas, the mass concentration of solid particles in the mixture, the ratio of the density of solid particles to the initial density of the gas, and the piston velocity index are worked out in detail. The total energy of the shock wave is varying and increases with time. It is observed that the radiation parameter and the piston velocity index have opposite behaviour on the flow variables as well as the shock strength.

  6. Influence of monochromatic light on quality traits, nutritional, fatty acid, and amino acid profiles of broiler chicken meat.

    Science.gov (United States)

    Kim, M J; Parvin, R; Mushtaq, M M H; Hwangbo, J; Kim, J H; Na, J C; Kim, D W; Kang, H K; Kim, C D; Cho, K O; Yang, C B; Choi, H C

    2013-11-01

    The role of monochromatic lights was investigated on meat quality in 1-d-old straight-run broiler chicks (n = 360), divided into 6 light sources with 6 replicates having 10 chicks in each replicate. Six light sources were described as incandescent bulbs (IBL, as a control) and light-emitting diode (LED) light colors as white light (WL), blue light, red light (RL), green light, and yellow light. Among LED groups, the RL increased the concentration of monounsaturated fatty acids (P light produced by LED responded similar to the IBL light in influencing nutrient contents of meat. Moreover, LED is not decisive in improving fatty acid composition of meat. However, the role of IBL in reducing n-6:n-3 ratio and enhancing n-3 cannot be neglected. Among LED, WL is helpful in improving essential and nonessential amino acid contents of broiler meat.

  7. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  8. Tunable all electric spin polarizer

    Science.gov (United States)

    Bhandari, Nikhil K.

    To realize the full potential of spin-based devices, ways must be found to inject, manipulate, and detect the spin of the electron by purely electrical means. Previously, our group has shown that a quantum point contact (QPC) with lateral spin orbit coupling (LSOC) can be used to create a strongly spin-polarized current by purely electrical means. The LSOC results from the lateral in-plane electric field created by the confining potential in QPCs with in-plane side gates (SGs). Strongly spin-polarized currents can be generated by tuning the asymmetric bias voltages on the side gates. A conductance anomaly in the form of a plateau at conductance G ≅ 0.5G0 (where G 0 = 2e2/h) was observed in the ballistic conductance of a QPC based in the absence of magnetic field - which was established to be a signature of complete spin polarization. A Non-Equilibrium Green's Function (NEGF) analysis was used to model a small QPC and three ingredients were found to be essential to generate a strong spin polarization: (1) LSOC, (2) an asymmetric lateral confinement, and (3) a strong electron-electron (e-e) interaction. We have also shown that all-electric control of spin polarization can be achieved for different materials, electron mobility, heterostructure design, QPC dimensions and strength of LSOC. Our previous experimental and theoretical results have also found the presence of other conductance anomalies (i.e., at values different from 0.5 G0 ) and the main reason for these occurrences was shown to be due to the influence of surface roughness scattering. In this thesis, we address the important technological challenge to better control the location of the conductance anomalies in QPCs and create a tunable all-electric spin polarizer based on a QPC with four gates, i.e., with two in-plane SGs in series. Here, the first pair of SGs, near the source, is asymmetrically biased to create spin polarization in the QPC channel. The second set of gates, near the drain, is

  9. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick.

    Science.gov (United States)

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2016-11-01

    The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of monochromatic light sources on sex hormone levels in serum and on semen quality of ganders.

    Science.gov (United States)

    Chang, Shen-Chang; Zhuang, Zi-Xuan; Lin, Min-Jung; Cheng, Chuen-Yu; Lin, Tsung-Yi; Jea, Yu-Shine; Huang, San-Yuan

    2016-04-01

    Light is an essential external factor influencing various physiological processes, including reproductive performance, in birds. Although several attempts have been made to understand the effect of light on poultry production, the effect of light of a particular wavelength (color) on the reproductive function in geese remains unclear. This study evaluated the effect of various monochromatic light sources on the levels of sex hormone and on semen quality of ganders. Of 30 male White Roman geese in their third reproductive season (average age=3 years), 27 were divided into three groups receiving monochromatic white or red or blue lights. The birds were kept in an environmentally controlled house with a lighting photoperiod of 7L:17D for six weeks as the adaptation period. The photoperiod was subsequently changed to 9L:15D and maintained for 24 weeks. Three ganders at the beginning of the study and three from each group at the end of the adjusting period and the 20th and 30th week of the study period were sacrificed, and their testes and blood samples were collected for determining the sex hormone levels. Semen samples were collected for determining semen quality parameters, including the semen collection index, sperm concentration, semen volume, sperm motility, sperm viability, sperm morphology, and semen quality factor. The results showed that the testosterone and estradiol levels remained unchanged in all three groups at all time points. The ratio of testosterone to estradiol of ganders exposed to white light was significantly higher than that of ganders exposed to red light at the 30th week (Plight were significantly the lowest (Plight were the highest (Plight may maintain a better semen quality than that with red or blue lights in ganders.

  11. Dual Energy CT (DECT Monochromatic Imaging: Added Value of Adaptive Statistical Iterative Reconstructions (ASIR in Portal Venography.

    Directory of Open Access Journals (Sweden)

    Liqin Zhao

    Full Text Available To investigate the effect of the adaptive statistical iterative reconstructions (ASIR on image quality in portal venography by dual energy CT (DECT imaging.DECT scans of 45 cirrhotic patients obtained in the portal venous phase were analyzed. Monochromatic images at 70keV were reconstructed with the following 4 ASIR percentages: 0%, 30%, 50%, and 70%. The image noise (IN (standard deviation, SD of portal vein (PV, the contrast-to-noise-ratio (CNR, and the subjective score for the sharpness of PV boundaries, and the diagnostic acceptability (DA were obtained. The IN, CNR, and the subjective scores were compared among the four ASIR groups.The IN (in HU of PV (10.05±3.14, 9.23±3.05, 8.44±2.95 and 7.83±2.90 decreased and CNR values of PV (8.04±3.32, 8.95±3.63, 9.80±4.12 and 10.74±4.73 increased with the increase in ASIR percentage (0%, 30%, 50%, and 70%, respectively, and were statistically different for the 4 ASIR groups (p<0.05. The subjective scores showed that the sharpness of portal vein boundaries (3.13±0.59, 2.82±0.44, 2.73±0.54 and 2.07±0.54 decreased with higher ASIR percentages (p<0.05. The subjective diagnostic acceptability was highest at 30% ASIR (p<0.05.30% ASIR addition in DECT portal venography could improve the 70 keV monochromatic image quality.

  12. Unified approach to hard diffraction

    CERN Document Server

    Peschanski, R

    2001-01-01

    Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bj} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions.

  13. Improvement of the tuneable monochromatic gamma-ray source at the 15 MeV linac of the University of Gent

    Science.gov (United States)

    Masschaele, B.; Jolie, J.; Mondelaers, W.; Materna, T.; Cauwels, P.; Dierick, M.

    2001-07-01

    It is shown how the tuneable gamma-ray source based on a bremsstrahlung source and a crystal, diffracting in Cauchois geometry, can be made intense and monochromatic using an asymmetrically cut Si crystal. The results and implications are here presented.

  14. Effect of monochromatic light stimuli during embryogenesis on muscular growth, chemical composition, and meat quality of breast muscle in male broilers.

    Science.gov (United States)

    Zhang, L; Zhang, H J; Qiao, X; Yue, H Y; Wu, S G; Yao, J H; Qi, G H

    2012-04-01

    This study was conducted to evaluate the effect of monochromatic light stimuli during embryogenesis on breast muscle growth, chemical composition, and meat quality of male broilers. Fertile broiler eggs (Arbor Acres; n = 1,320) were preweighed and randomly assigned to 1 of 3 treatment groups in 3 modified incubators: 1) control group (in dark condition), 2) monochromatic green light group (560 nm), and 3) monochromatic blue light group (480 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. After hatch, 120 male chicks from each group were placed in 6 replicates with 20 birds each. All of the birds were housed under white light (30 lx at bird-head level) with a light schedule of 23L:1D. At 21, 35, and 42 d of age, BW and breast muscle weight in the green light group were significantly increased compared with birds in the blue or dark groups (P dark condition or blue group at 42 d of market age (P dark condition (P 0.05). Green light stimuli tended to increase cooking loss (P = 0.08) and L* value of 24-h meat color (P = 0.09). These results suggest that green light stimuli during embryogenesis enhanced the posthatch BW of male broilers, increased breast muscle growth, and improved the feed conversion ratio, but it did not cause any noticeable changes in breast chemical composition or overall meat quality characteristics.

  15. Sensitivity and specificity of monochromatic photography of the ocular fundus in differentiating optic nerve head drusen and optic disc oedema: optic disc drusen and oedema.

    Science.gov (United States)

    Gili, Pablo; Flores-Rodríguez, Patricia; Yangüela, Julio; Orduña-Azcona, Javier; Martín-Ríos, María Dolores

    2013-03-01

    Evaluation of the efficacy of monochromatic photography of the ocular fundus in differentiating optic nerve head drusen (ONHD) and optic disc oedema (ODE). Sixty-six patients with ONHD, 31 patients with ODE and 70 healthy subjects were studied. Colour and monochromatic fundus photography with different filters (green, red and autofluorescence) were performed. The results were analysed blindly by two observers. The sensitivity, specificity and interobserver agreement (k) of each test were assessed. Colour photography offers 65.5 % sensitivity and 100 % specificity for the diagnosis of ONHD. Monochromatic photography improves sensitivity and specificity and provides similar results: green filter (71.20 % sensitivity, 96.70 % specificity), red filter (80.30 % sensitivity, 96.80 % specificity), and autofluorescence technique (87.8 % sensitivity, 100 % specificity). The interobserver agreement was good with all techniques used: autofluorescence (k = 0.957), green filter (k = 0.897), red filter (k = 0.818) and colour (k = 0.809). Monochromatic fundus photography permits ONHD and ODE to be differentiated, with good sensitivity and very high specificity. The best results were obtained with autofluorescence and red filter study.

  16. Three Dimensional Broadband Tunable Terahertz Metamaterials

    CERN Document Server

    Fan, Kebin; Zhang, Xin; Averitt, Richard D

    2013-01-01

    We present optically tunable magnetic 3D metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon-on-sapphire, fabricated using multilayer electroplating. Photoexcitation of free carriers in the silicon within the capacitive region of the DSRR results in a red-shift of the resonant frequency from 1.74 THz to 1.16 THz. The observed frequency shift leads to a transition from a magnetic-to-bianisotropic response as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers.

  17. Tunable Oscillations in the Purkinje Neuron

    CERN Document Server

    Abrams, Ze'ev R; Wang, Yuan; Trauner, Dirk; Zhang, Xiang

    2011-01-01

    In this paper, we study the dynamics of slow oscillations in Purkinje neurons in vitro, and derive a strong association with a forced parametric oscillator model. We demonstrate the precise rhythmicity of the oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photo-switchable compound. We show that this slow oscillation can be induced in every Purkinje neuron, having periods ranging between 10-25 seconds. Starting from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced oscillation is concluded. These results signify an additional functional role of tunable oscillations within the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.

  18. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...

  19. A tunable wavelength-conversion laser

    Science.gov (United States)

    Kondo, Kentaro; Kuno, Masaaki; Yamakoshi, Shigenobu; Wakao, Kiyohide

    1992-05-01

    A novel wavelength-conversion laser was fabricated using monolithic integration of a bistable laser diode and a wavelength-tunable distributed Bragg reflector (DBR) laser. This device converts an input light signal with a certain wavelength to output light with a tunable wavelength over 3.5 nm. Input power required for switching is investigated, and its resonant dependence on input wavelength is revealed. Input polarization is also discussed, and suppression of crosstalk is demonstrated. This device's turn-off switching response is greatly influenced by the light power of the input signal as well as bias current, and the first 1 Gb/s operation is achieved in optimum conditions for fast turn-off and stable turn-on.

  20. Tunable plasmonic metasurface for perfect absorption

    Directory of Open Access Journals (Sweden)

    Arroyo Huidobro Paloma

    2017-01-01

    Full Text Available Tunable metasurfaces, whose functionality can be dynamically modified, open up the possibility of ultra-compact photonic components with reconfigurable applications. Here we consider a graphene monolayer subject to a spatially periodic gate bias, which, thank to surface plasmons in the graphene, acts as a tunable and extremely compact metasurface for terahertz radiation. After characterizing its functionality, we show that it serves as the basic building block of an ultrathin complete absorber. In this subwavelength-thickness device, transmission and reflection channels are blocked and electromagnetic energy is completely absorbed by the metasurface building blocks. The proposed structure can be used as a modulator, and its frequency of operation can be changed by scaling its size or adjusting the doping level.

  1. Thermally tunable quadruple Vernier racetrack resonators.

    Science.gov (United States)

    Boeck, Robert; Chrostowski, Lukas; Jaeger, Nicolas A F

    2013-07-15

    The spectral responses of series-coupled racetrack resonators exhibiting the Vernier effect have many attractive features as compared to the spectral responses of identical series-coupled racetrack resonators, such as free spectral range (FSR) extension and enhanced wavelength tunability. Here we present experimental results of a thermally tunable quadruple series-coupled silicon racetrack resonator exhibiting the Vernier effect. We thermally tune two of the four racetrack resonators to enable discrete switching of the major peak by 15.54 nm. Also, our device has an interstitial peak suppression of 35.4 dB, a 3 dB bandwidth of 0.45 nm, and an extended FSR of 37.66 nm.

  2. On-chip tunable optofluidic dye laser

    Science.gov (United States)

    Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng

    2016-11-01

    We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.

  3. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  4. NANOCOMPOSITE COATINGS WITH ENHANCED HARDNESS

    Institute of Scientific and Technical Information of China (English)

    J. Musil

    2005-01-01

    The article reviews the present state of the art in the magnetron sputtering of hart and superhard nanocomposite coatings. It is shown that there are (1) two groups of hard and superhard nanocomposites: (i) nc-MN/hard phase and (ii) nc-MN/soft phase, (2) three possible origins of the enhanced hardness: (i) dislocation-dominated plastic deformation, (ii) cohesive forces between atoms and (iii) nanostructure of materials, and (3) huge differences in the microstructure of single- and two-phase films. A main attention is devoted to the formation of nanocrystalline and/or X-ray amorphous films. Such films are created in a vicinity of transitions between (i)crystalline and amorphous phases, (ii) two crystalline phases of different chemical composition or (iii) two different preferred orientations of grains of the sane material from which the coating is composed. The existence of the last transition makes it possible to explain the enhanced hardness in single-phase films. The thermal stability and oxidation resistance of hard nanocomposite films is also shortly discussed.

  5. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....

  6. Tunable coplanar waveguide resonator with nanowires

    Institute of Scientific and Technical Information of China (English)

    周渝; 郏涛; 翟计全; 汪橙; 钟先茜; 曹志敏; 孙国柱; 康琳; 吴培亨

    2015-01-01

    A tunable superconducting half-wavelength coplanar waveguide resonator (CPWR) with Nb parallel nanowires ∼300 nm in width embedded in the center conductor was designed, fabricated, and measured. The frequency shift and the amplitude attenuation of the resonance peak under irradiation of 404-nm pulse laser were observed with different light powers at 4.2 K. The RF power supplied to such a CPWR can serve as current bias, which will affect the light response of the resonator.

  7. Tunable Focusing by a Flexible Metasurface

    CERN Document Server

    Zárate, Yair; Powell, David A

    2016-01-01

    An efficient reflective elastic metasurface with tunable focusing point is proposed. The metasurface is based on electric resonators embedded in a stretchable elastic substrate. The focal length is controlled by mean of the stretching applied applied to the sample. The results predicted by theory and numerical simulations are experimentally verified. Our proposal shows that smart engineering elastic metamaterials are an effective platform for new functional devices based on metamaterials.

  8. Rugged, Tunable Extended-Cavity Diode Laser

    Science.gov (United States)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  9. Advances in tunable solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    De Shazer, L.G.

    1987-02-01

    Continuing problems in solid-state lasers including low efficiency and lack of frequency diversity have limited their applicability in past years. Through recent materials technological developments, both of these problems are starting to be solved. Many new tunable lasers operating at wavelengths ranging from 650 nm to 3..mu..m have been demonstrated in the laboratory, and applications now are being considered for space and terrestrial remote sensors. Comparable progress also has been made towards more efficient solid-state lasers, for example, new neodymium (Nd) lasers having 6% overall efficiency. These advances in solid-state lasers depend on the interplay between the fields of materials science and lasers. To develop this association between the two disciplines, an Optical Society of America (OSA) topical meeting on Tunable Solid State lasers was held in Zigzag, Oreg. As well as covering research and development of tunable lasers based on ion-doped dielectric solids, this meeting discussed crystal growth and laser applications. Also included were rare earth laser sources operating at new wavelengths, an expansion in the agenda from the first meeting, held last year in May in Arlington, Va.

  10. Tunable nanoparticle arrays at charged interfaces.

    Science.gov (United States)

    Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi; Gang, Oleg

    2014-10-28

    Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells.

  11. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    Science.gov (United States)

    Liu, Peng; Yan, Feng-Ping; Li, Jian; Wang, Lin; Ning, Ti-Gang; Gong, Tao-Rong; Jian, Shui-Sheng

    2008-12-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate.

  12. One-Dimensional Tunable Josephson Metamaterials - Eindimensionale stimmbare Josephson Metamaterialien

    OpenAIRE

    Butz, Susanne

    2014-01-01

    This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.

  13. Electrically tunable functional nanomaterials for actuation and photonics

    OpenAIRE

    Shao, Li-Hua

    2012-01-01

    Nanomaterials with tunable electronic structure exploit the large specific surface area of metal nanostructures along with the strategy of tuning the surface properties through the controlled introduction of space-charge regions. Then, materials with tunable macroscopic properties can be created. The present thesis work achieved a successful synthesis of metallic and carbon-based tunable nanomaterials and demonstrated novel functional behavior in two fields of application: actuation and photo...

  14. Hard Diffraction at D{phi}

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Gilvan A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Lab. de Cosmologia e Fisica Experimental de Altas Energias

    2000-07-01

    Full text follows: We review recent Hard Diffraction results from the D{phi} experiment at Fermilab, for the following processes: hard color singlet exchange, hard single diffraction, and hard double pomeron exchange. Measurements of rates, {eta}, E{sub T} and {radical}S dependencies are presented and comparisons made with predictions of several models. (author)

  15. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  16. Hard Diffraction in Pythia 8

    CERN Document Server

    Rasmussen, Christine O

    2015-01-01

    We present an overview of the options for diffraction implemented in the general--purpose event generator Pythia 8. We review the existing model for low-- and high--mass soft diffraction and present a new model for hard diffraction in pp and ppbar collisions. Both models uses the Pomeron approach pioneered by Ingelman and Schlein, factorising the single diffractive cross section into a Pomeron flux and a Pomeron PDF. The model for hard diffraction is implemented as a part of the multiparton interactions framework, thereby introducing a dynamical rapidity gap survival probability that explicitly breaks factorisation.

  17. Hard Diffraction in Pythia 8

    CERN Document Server

    Rasmussen, Christine O

    2015-01-01

    We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.

  18. Hard diffraction in Pythia 8

    Science.gov (United States)

    Overgaard Rasmussen, Christine

    2016-07-01

    We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8 [1]. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.

  19. Light-dependent magnetoreception in birds: increasing intensity of monochromatic light changes the nature of the response

    Directory of Open Access Journals (Sweden)

    Bischof Hans-Joachim

    2007-02-01

    Full Text Available Abstract Background The Radical Pair model proposes that magnetoreception is a light-dependent process. Under low monochromatic light from the short-wavelength part of the visual spectrum, migratory birds show orientation in their migratory direction. Under monochromatic light of higher intensity, however, they showed unusual preferences for other directions or axial preferences. To determine whether or not these responses are still controlled by the respective light regimes, European robins, Erithacus rubecula, were tested under UV, Blue, Turquoise and Green light at increasing intensities, with orientation in migratory direction serving as a criterion whether or not magnetoreception works in the normal way. Results The birds were well oriented in their seasonally appropriate migratory direction under 424 nm Blue, 502 nm Turquoise and 565 nm Green light of low intensity with a quantal flux of 8·1015 quanta s-1 m-2, indicating unimpaired magnetoreception. Under 373 nm UV of the same quantal flux, they were not oriented in migratory direction, showing a preference for the east-west axis instead, but they were well oriented in migratory direction under UV of lower intensity. Intensities of above 36·1015 quanta s-1 m-2 of Blue, Turquoise and Green light elicited a variety of responses: disorientation, headings along the east-west axis, headings along the north-south axis or 'fixed' direction tendencies. These responses changed as the intensity was increased from 36·1015 quanta s-1 m-2 to 54 and 72·1015 quanta s-1 m-2. Conclusion The specific manifestation of responses in directions other than the migratory direction clearly depends on the ambient light regime. This implies that even when the mechanisms normally providing magnetic compass information seem disrupted, processes that are activated by light still control the behavior. It suggests complex interactions between different types of receptors, magnetic and visual. The nature of the

  20. Tunable nonlinear superconducting metamaterials: Experiment and simulation

    Science.gov (United States)

    Trepanier, Melissa

    I present experimental and numerical simulation results for two types of nonlinear tunable superconducting metamaterials: 2D arrays of rf SQUIDs (radio frequency superconducting quantum interference devices) as magnetic metamaterials and arrays of Josephson junction-loaded wires as electric metamaterials. The effective inductance of a Josephson junction is sensitive to dc current, temperature, and rf current. I took advantage of this property to design arrays of Josephson junction-loaded wires that present a tunable cutoff frequency and thus a tunable effective permittivity for propagating electromagnetic waves in a one-conductor waveguide. I measured the response of the metamaterial to each tuning parameter and found agreement with numerical simulations that employ the RCSJ (resistively and capacitively shunted junction) model. An rf SQUID is an analogue of an SRR (split ring resonator) with the gap capacitance replaced with a Josephson junction. Like the SRR the SQUID is a resonant structure with a frequency-dependent effective permeability. The difference between the SQUID and the SRR is that the effective inductance and thus effective permeability of the SQUID can be tuned with dc and rf flux, and temperature. Individual rf SQUID meta-atoms and two-dimensional arrays were designed and measured as a function of each tuning parameter and I have found excellent agreement with numerical simulations. There is also an interesting transparency feature that occurs for intermediate rf flux values. The tuning of SQUID arrays has a similar character to the tuning of individual rf SQUID meta-atoms. However, I found that the coupling between the SQUIDs increases the resonant frequency, decreases dc flux tuning, and introduces additional resonant modes. Another feature of arrays is disorder which suppresses the coherence of the response and negatively impacts the emergent properties of the metamaterial. The disorder was experimentally found to be mainly due to a dc flux

  1. Tunable Interface Non-linear Electron Transport in Semiconductor Nanowire Heterostructure and Its Application in Optoelectronics

    Science.gov (United States)

    Chen, Guannan

    Understanding the effects of finite size and dimensionality on the interaction of light with nanoscale semiconductor heterostructure is central to identifying and exploiting novel modes in optoelectronic devices. In type-I heterostructured core-shell GaAs/AlxGa1-xAs nanowires, the real space transfer (RST) of photogenerated hot electrons across the interface from the GaAs core to the AlxGa1-xAs shell forms the basis of a new family of optoelectronic devices by a carefully designed and optimized nanofabrication process. Due to the large mobility difference, we observed negative differential resistance (NDR) on single nanowire devices. External modulation of the transfer rates, manifested as a large tunability of the voltage onset of NDR, is achieved using three different modes: electrostatic gating, incident photon flux, and photon energy. In this dissertation, the physics of coupling of external control to transfer rate was investigated. The combined influences of geometric confinement, heterojunction shape and carrier scattering on hot-electron transfer is discussed. Temperature-dependent transport study under monochromatic tunable laser illumination reveals an ultrafast carrier dynamics related to RST of excess carriers, which provides an insight into hot carrier cooling. Device element showing adjustable phase shift and frequency doubling of ac modulation is demonstrated. For a full understanding, Carrier transport properties are probed through electron beam induced current, which is capable of imaging sub-surface feature in excess carrier transport. Along with simulation of injected electron trajectories, selective probing of core and shell by tuning electron beam energies reveals axial and bias dependent transport along parallel channels. The drift and diffusion component of the excess carrier current is deconvoluted from a coupled decay length, from which lower than bulk shell electron mobility is extracted. A precise knowledge of band edge discontinuities at

  2. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada); Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada); Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada)

    2016-06-15

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  3. Hard Trying and These Recipes

    Science.gov (United States)

    Atwell, Nancie

    2003-01-01

    Writers thrive when they are motivated to work hard, have regular opportunities to practice and reflect, and benefit from a knowledgeable teacher who knows writing. Student feedback to lessons during writing workshop helped guide Nancie Atwell in her quest to provide the richest and most efficient path to better writing.

  4. Kinetic theory of hard spheres

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1979-01-01

    Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonloca

  5. Metrics for Hard Goods Merchandising.

    Science.gov (United States)

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students interested in hard goods merchandising, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…

  6. Inclusive Hard Diffraction at HERA

    CERN Document Server

    Proskuryakov, Alexander

    2010-01-01

    Recent data from the H1 and ZEUS experiments on hard inclusive diffraction are discussed. Results of QCD analyses of the diffractive deep-inelastic scattering processes are reported. Predictions based on the extracted parton densities are compared to diffractive dijet measurements.

  7. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  8. Hard sphere model of atom

    CERN Document Server

    Tsekov, R

    2014-01-01

    The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.

  9. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion bombardment

  10. Unifying approach to hard diffraction

    CERN Document Server

    Navelet, H

    2001-01-01

    We find a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. A theoretical interpretation in terms of S-Matrix and perturbative QCD properties in the small x_{Bj} regime is proposed.

  11. Verrucous Carcinoma of Hard Plate

    OpenAIRE

    Parmod Kalstra,Monica Manhas,Rajdeep Sood

    2000-01-01

    VerrucouS squamous cell carcinoma occurs mainly in oral cavity and larynx, buccal mucosa being most commonly involved. One case of verrucous carcinoma involvmg left hard palate (T4 No Mo)in an adult male is being reported who underwent left total maxillectomy. The tumor behaviour andlts management has been dlscussed.

  12. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem.

    Directory of Open Access Journals (Sweden)

    Gilles Vandewalle

    Full Text Available BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s monochromatic violet (430 nm, blue (473 nm, and green (527 nm light exposures of equal photon flux (10(13ph/cm(2/s while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.

  13. Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

    2010-04-08

    Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

  14. Dual energy computed tomography quantification of carotid plaques calcification: comparison between monochromatic and polychromatic energies with pathology correlation

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, Lorenzo [University of Washington, Departments of Radiology, Seattle, WA (United States); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY (United States); MacDonald, Lawrence; Ferguson, Marina; Shuman, William P.; Xu, Dongxiang; Yuan, Chun; Mitsumori, Lee M. [University of Washington, Departments of Radiology, Seattle, WA (United States); Mancini, Marcello; Ragucci, Monica; Monti, Serena [IRCCS Fondazione SDN, Naples (Italy)

    2015-05-01

    We compared carotid plaque calcification detection sensitivity and apparent cross-sectional area on CT as a function of CT beam energy using conventional CT techniques and virtual mono-energetic CT images generated from dual-energy acquisitions. Five ex-vivo carotid endarterectomy (CEA) specimens were imaged with dual-energy computed tomography. Virtual monochromatic spectrum (VMS) CT images were reconstructed at energies between 40-140 keV. The same specimens were imaged using conventional polyenergetic spectrum (PS) CT with peak beam energies 80, 100, 120, and 140 kVp. The histological calcium areas on each corresponding CEA specimen were traced manually on digitized images of Toluidine-Blue/Basic-Fuchsin stained plastic sections. 40 keV VMS CT images provided high detection sensitivity (97 %) similar to conventional PS CT images (∝96 %). The calcification size measured on CT decreased systematically with increasing CT beam energy; the rate of change was larger for the VMS images than for PS images. From a single dual-energy CT, multiple VMS-CT images can be generated, yielding equivalent detection sensitivity and size correlations as conventional PS-CT in CEA calcification imaging. VMS-CT at 80-100 keV provided the most accurate estimates of calcification size, as compared to histology, but detection sensitivity was reduced for smaller calcifications on these images. (orig.)

  15. Computer simulations on resonant fluorescence spectra in atomic gases in two monochromatic laser fields of arbitrary intensity and magnetic field

    Science.gov (United States)

    Karagodova, Tamara Y.

    1996-03-01

    In the intense radiation fields with power density from 104W/cm2 to 109W/cm2 the essential modification of electronic states of atoms occurs displaying, in particular, in modifications of resonant fluorescence (rf) spectra. We use 'Fermi golden rule' for calculations of relative intensities and frequencies for rf multiplet for real multilevel initially unexcited atoms in two monochromatic laser fields of arbitrary intensity resonant to adjacent transitions of (Xi) or (Lambda) types and magnetic field, giving the level splittings of different values from Zeeman to Paschen-Back effect. The dependence of quasienergies on parameters obtained with the help of a sorting program permits us to define the values of parameters for which the states of the system are mixed and so to receive the correct probability amplitudes for instantaneous or adiabatic regimes of switching the perturbation. The analysis of the quasienergies and form of rf spectra permits us to get relations between the form of the spectra and modifications of electronic structure of the atom due to radiation fields and external magnetic field.

  16. Spitzer Analysis of HII Region Complexes in the Magellanic Clouds: Determining a Suitable Monochromatic Obscured Star Formation Indicator

    CERN Document Server

    Lawton, Brandon; Babler, Brian; Block, Miwa; Bolatto, Alberto D; Bracker, Steve; Carlson, Lynn R; Engelbracht, Charles W; Hora, Joseph L; Indebetouw, Remy; Madden, Suzanne C; Meade, Marilyn; Meixner, Margaret; Misselt, Karl; Oey, M S; Oliveira, Joana M; Robitaille, Thomas; Sewilo, Marta; Shiao, Bernie; Vijh, Uma P; Whitney, Barbara

    2010-01-01

    HII regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. We aim to determine the monochromatic IR band that most accurately traces the bolometric IR flux (TIR), which can then be used to estimate an obscured SFR. We present the spatial analysis, via aperture/annulus photometry, of 16 LMC and 16 SMC HII region complexes using the Spitzer IRAC and MIPS bands. UV rocket data and SHASSA H-alpha data are also included. We find that nearly all of the LMC and SMC HII region SEDs peak around 70um, from ~10 to ~400 pc from the central sources. As a result, the sizes of HII regions as probed by 70um is approximately equal to the sizes as probed by TIR (about 70 pc in radius); the radial profile of the 70um flux, normalized by TIR, is constant at all radii (70um ~ 0.45 TIR); the 1-sigma standard deviation of the 7...

  17. An alignment method for the ATLAS end-cap TRT detector using a narrow monochromatic X-ray beam

    CERN Document Server

    Åkesson, T; Dixon, N; Dolgoshein, B A; Eerola, Paule Anna Mari; Farthouat, Philippe; Fedin, O; Froidevaux, Daniel; Gavrilenko, I; Hajduk, Z; Hauviller, Claude; Ivanov, V; Ivochkin, V G; Jelamkov, A; Konovalov, S V; Lichard, P; Lundberg, B; Muraviev, S; Nadtochy, A; Nevski, P; Peshekhonov, V D; Platonov, Yu P; Price, M; Romaniouk, A; Shchegelskii, V; Shmeleva, A; Smirnov, A; Smirnov, S; Sosnovtsev, V V

    2001-01-01

    The end-cap transition radiation tracker (TRT), consisting of 36 modules (wheels), is being constructed as a part of the ATLAS Inner Detector at the CERN LHC. This paper describes a method for determining the wire positions inside the straw proportional tubes (SPT), which are the basic building blocks of the ATLAS TRT, with an accuracy of better than 10 mu m. The procedure involves moving a narrow monochromatic X-ray beam across the straw and measuring the counting rate as a function of the position of the X-ray beam in the straw. To achieve this goal, a beam directing device (BDD), providing the possibility to direct the X-ray beam in a chosen direction within some solid angle and supplying an accurate angular measurement system, has been constructed. The results of the wire position measurements performed using this BDD on a full-scale mechanical prototype end-cap wheel of the TRT are presented in this paper. (11 refs).

  18. Successful treatment with 308-nm monochromatic excimer light and subsequent tacrolimus 0.03% ointment in refractory plasma cell cheilitis.

    Science.gov (United States)

    Yoshimura, Kazuhiro; Nakano, Shunji; Tsuruta, Daisuke; Ohata, Chika; Hashimoto, Takashi

    2013-06-01

    Plasma cell cheilitis is a chronic inflammatory disease that presents with erythema, erosions, ulcers and occasional nodules within the mucosa, including the lips. It is histopathologically characterized by dense plasma cell infiltration in the lamina propria of the mucous membranes. Several treatments for plasma cell cheilitis have been reported, including topical steroids, topical antibiotics or topical tacrolimus. However, 308-nm monochromatic excimer light (MEL) has never been reported as a treatment option, while it was reported to be very effective in treating erosive oral lichen planus. We report a 62-year-old man who had chronic plasma cell cheilitis on the lower lip, which was refractory to topical and systemic corticosteroid. The lesion and severe pain were significantly improved by the treatment with nine sessions of 308-nm MEL twice per week with a total dose of 1120 mJ/cm(2). However, the lesion gradually worsened after treatment frequency was reduced to once per month. Subsequent tacrolimus 0.03% ointment cleared the lesion completely in a month and no recurrence was observed a year later. Refractory plasma cell cheilitis and concomitant severe pain quickly responded to 308-nm MEL when administrated twice per week. Because the long interval between each MEL treatment seemed ineffective to improve the lesion, appropriate frequency and adequate total dose of MEL treatment may be necessary for a successful treatment.

  19. The Effect of Monochromatic Infrared Photo Energy on the Irritability of Myofascial Trigger Spot of Rabbit Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Ta-Shen Kuan

    2015-01-01

    Full Text Available Objective. To determine whether the vasodilatation effect of monochromatic infrared photo energy (MIRE had the potential for the treatment of myofascial trigger spot (MTrS in rabbits. Design. A randomized-controlled animal study. Subjects. Twelve adult New Zealand rabbits. Methods. For each rabbit, a MTrS (equivalent to a myofascial trigger point in humans in one side of the biceps femoris muscle was randomly selected for MIRE treatment (experimental side, while another MTrS in the other side (control side received a sham treatment. The intervention consisted of a daily 40 minutes treatment, three times per week for 2 weeks. The prevalence of endplate noise (EPN loci in the MTrS was assessed before, immediately after, and one week after the completion of the 2-week treatment. Results. MIRE could suppress the prevalence of EPN in the MTrS. The degree of reduction in EPN prevalence in the MTrS between the experimental side and the control side was significantly different immediately after MIRE treatment, but not significantly different one week after MIRE treatment. Conclusion. Our study suggests that MIRE may be a useful therapeutic option for the management of the myofascial trigger point in humans.

  20. Hard processes in hadronic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)

    1995-07-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.

  1. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    Science.gov (United States)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  2. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    Science.gov (United States)

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  3. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    Directory of Open Access Journals (Sweden)

    Y. Eissa

    2015-07-01

    Full Text Available Routine measurements of the beam irradiance at normal incidence (DNI include the irradiance originating from within the extent of the solar disc only (DNIS whose angular extent is 0.266° ± 1.7 %, and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI. This study investigates if the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and a collocated Sun and Aureole Measurement (SAM instrument which offers reference measurements of the monochromatic profile of solar radiance, were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE of 5 %, a relative bias of +1 % and acoefficient of determination greater than 0.97. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a Two Term Henyey–Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 22 and −19 % and a coefficient of determination of 0.89. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard DNI measurements.

  4. Analysis of monochromatic signals by using data from the detector of Allegro gravitational waves; Analise de sinais monocromaticos utilizando dados do detector de ondas gravitacionais Allegro

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernanda Gomes de

    2010-07-01

    The present work is developed in the searching for monochromatic gravitational waves signals in ALLEGRO's data. We have two procedures for data analysis based on the periodogram of Welch, which a method for the detection of monochromatic signals in the middle of noise which basically makes power spectrum estimates using averaged modified periodograms. By using this method it was possible to obtain a power spectrum for the data which reinforce peaks due to monochromatic signals. The two procedures of analysis for the years 1997 and 1999, were focused on monitoring a peak that appears in the spectral density of ALLEGRO's detector, so called 'mystery mode' (near 887 Hz). We look for variations in the frequency of the mystery mode that agree with the variation of the Doppler effect. In the rst analysis we have used by the variation of daily and annual Doppler shift. For the second one, we have only searched annual Doppler shift. We have applied the periodogram of Welch in both tests in the raw data of the detector in the search for a real signal and we found some peaks that can be candidates of gravitational radiation only the second analysis. In order to test the method we used in both analysis a simulated gravitational wave signal modulated by the Doppler effect injected in the data. We detected in both methods the artificial signal of GW simulated. Therefore we have reason to conclude that both methods are efficient in the search for monochromatic signals. (author)

  5. 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity

    Directory of Open Access Journals (Sweden)

    H. Ly Diallo

    2012-06-01

    Full Text Available We present in this study the determination of the equivalent electrical circuits associated to the recombination velocities for a bifacial silicon solar cell under frequency modulation and monochromatic illumination. This determination is based on Bode and Nyquist diagrams that is the variations of the phase and the module of the back surface and intrinsic junction recombination velocities. Their dependence on illumination wavelength is also shown.

  6. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  7. Narrow-Band WGM Optical Filters With Tunable FSRs

    Science.gov (United States)

    Mohageg, Makan; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Strekalov, Dmitry

    2007-01-01

    Optical resonators of the whispering-gallery-mode (WGM) type featuring DC-tunable free spectral ranges (FSRs) have been demonstrated. By making the FSR tunable, one makes it possible to adjust, during operation, the frequency of a microwave signal generated by an optoelectronic oscillator in which an WGM optical resonator is utilized as a narrow-band filter.

  8. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  9. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...

  10. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...

  11. Local and Systemic Cardiovascular Effects from Monochromatic Infrared Therapy in Patients with Knee Osteoarthritis: A Double-Blind, Randomized, Placebo-Controlled Study

    Directory of Open Access Journals (Sweden)

    Ru-Lan Hsieh

    2012-01-01

    Full Text Available Infrared (IR therapy is used for pain relief in patients with knee osteoarthritis (OA. However, IR’s effects on the cardiovascular system remain uncertain. Therefore, we investigated the local and systemic cardiovascular effects of monochromatic IR therapy on patients with knee OA in a double-blind, randomized, placebo-controlled study. Seventy-one subjects with knee OA received one session of 40 min of active or placebo monochromatic IR treatment (with power output of 6.24 W, wavelength of 890 nm, power density of 34.7 mW/cm2 for 40 min, total energy of 41.6 J/cm2 per knee per session over the knee joints. Heart rate, blood pressure, and knee arterial blood flow velocity were periodically assessed at the baseline, during, and after treatment. Data were analyzed by repeated-measure analysis of covariance. Compared to baseline, there were no statistically significant group x time interaction effects between the 2 groups for heart rate (P=0.160, blood pressure (systolic blood pressure: P=0.861; diastolic blood pressure: P=0.757, or mean arterial blood flow velocity (P=0.769 in follow-up assessments. The present study revealed that although there was no increase of knee arterial blood flow velocity, monochromatic IR therapy produced no detrimental systemic cardiovascular effects.

  12. Electrostatically tunable optomechanical "zipper" cavity laser

    CERN Document Server

    Perahia, Raviv; Meenehan, Sean; Alegre, Thiago P Mayer; Painter, Oskar

    2010-01-01

    A tunable nanoscale "zipper" laser cavity, formed from two doubly clamped photonic crystal nanobeams, is demonstrated. Pulsed, room temperature, optically pumped lasing action at a wavelength of 1.3 micron is observed for cavities formed in a thin membrane containing InAsP/GaInAsP quantum-wells. Metal electrodes are deposited on the ends of the nanobeams to allow for micro-electro-mechanical actuation. Electrostatic tuning and modulation of the laser wavelength is demonstrated at a rate of 0.25nm/V^2 and a frequency as high as 6.7MHz, respectively.

  13. 600-GHz Electronically Tunable Vector Measurement System

    Science.gov (United States)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  14. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Three Cavity Tunable MEMS Fabry Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Narayanswamy Sivakumar

    2007-12-01

    Full Text Available In this paper a four-mirror tunable micro electro-mechanical systems (MEMSFabry Perot Interferometer (FPI concept is proposed with the mathematical model. Thespectral range of the proposed FPI lies in the infrared spectrum ranging from 2400 to 4018(nm. FPI can be finely tuned by deflecting the two middle mirrors (or by changing the threecavity lengths. Two different cases were separately considered for the tuning. In case one,tuning was achieved by deflecting mirror 2 only and in case two, both mirrors 2 and 3 weredeflected for the tuning of the FPI.

  16. Novel hydrophobically associative polyacrylamide with tunable viscosity

    Institute of Scientific and Technical Information of China (English)

    Xu Feng Zhang; Wen Hui Wu

    2009-01-01

    Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylarnide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (N_H) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.

  17. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...

  18. Magnetocapacitance of an electrically tunable silicene device

    KAUST Repository

    Tahir, M.

    2012-09-26

    Despite their structural similarity, the electronic properties of silicene are fundamentally different from those of well-known graphene due to the strong intrinsic spin orbit interaction and buckled structure of silicene. We address the magnetocapacitance of spin and valley polarized silicene in an external perpendicular magnetic field to clarify the interplay of the spin orbit interaction and the perpendicular electric field. We find that the band gap is electrically tunable and show that the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high magnetic field.

  19. Electronically tunable phase locked loop oscillator

    Science.gov (United States)

    Balasis, M.; Davis, M. R.; Jackson, C. R.

    1982-02-01

    This report describes the design and development of a low noise, high power, variable oscillator incorporating a high 'Q' electronically tunable resonator as the frequency determining element. The VCO provides improved EMC performance in phase locked synthesizers which are a part of communications equipments. The oscillator combines a low noise VMOS transistor with the selectivity and out-of-band attenuation of a coaxial resonator to provide superior EMC performance. Several oscillator designs were examined and the basis for the final configuration is presented. Oscillator noise is discussed and models for analysis are explained. A brass board model was constructed and tested and the technical results are presented.

  20. Fibonacci optical lattices for tunable quantum quasicrystals

    Science.gov (United States)

    Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.

    2015-12-01

    We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.

  1. Electronically Tunable Fractional Order All Pass Filter

    Science.gov (United States)

    Verma, Rakesh; Pandey, Neeta; Pandey, Rajeshwari

    2017-08-01

    In this paper, an electronically tunable fractional order all pass filter (FOAPF) based on operational transconductance amplifier (OTA) is presented. It uses two OTAs and single fractional order capacitor (FC) of non-integer order α to provide FOAPF of α order. Two different values of α, in particular 0.5 and 0.9, for FC are taken for investigation. The functionality of the proposal is verified through SPICE simulations using TSMC 0.18 μm Complementary Metal Oxide Semiconductor (CMOS) process parameters. Simulated and theoretical frequency and time domain responses are found to be in close agreement.

  2. Tunable nonlinear absorption of hydrogenated nanocrystalline silicon.

    Science.gov (United States)

    Ma, Y J; Oh, J I; Zheng, D Q; Su, W A; Shen, W Z

    2011-09-01

    Nonlinear absorption (NLA) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the open aperture Z-scan method for the photon energy of the incident irradiance slightly less than the bandgap of the sample. NLA responses have been observed to be highly sensitive to the wavelength and intensity of the incident irradiance as well as to the bandgap of the sample, indicating greatly tunable NLA of nc-Si:H. The band tail of nc-Si:H appears to play a crucial role in such NLA responses.

  3. Tunable Antenna Coupled Intersubband Terahertz Detector

    CERN Document Server

    Gautam, Nutan; Chahat, Nacer; Karasik, Boris; Focardi, Paolo; Gulkis, Samuel; Pfeiffer, Loren; Sherwin, Mark

    2014-01-01

    We report on the development of a tunable antenna coupled intersubband terahertz (TACIT) detector based on GaAs/AlGaAs two dimensional electron gas. A successful device design and micro-fabrication process have been developed which maintain the high mobility (1.1x106 cm2/V-s at 10K) of a 2DEG channel in the presence of a highly conducting backgate. Gate voltage-controlled device resistance and direct THz sensing has been observed. The goal is to operate as a nearly quantum noise limited heterodyne sensor suitable for passively-cooled space platforms.

  4. Experimental demonstration of a tunable microwave undulator.

    Science.gov (United States)

    Tantawi, Sami; Shumail, Muhammad; Neilson, Jeffery; Bowden, Gordon; Chang, Chao; Hemsing, Erik; Dunning, Michael

    2014-04-25

    Static magnetic undulators used by x-ray light sources are fundamentally too limited to achieve shorter undulator periods and dynamic control. To overcome these limitations, we report experimental demonstration of a novel short-period microwave undulator, essentially a Thomson scattering device, that has yielded tunable spontaneous emission and seeded coherent radiation. Its equivalent undulator period (λu) is 13.9 mm while it has achieved an equivalent magnetic field of 0.65 T. For future-generation light sources, this device promises a shorter undulator period, a large aperture, and fast dynamic control.

  5. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  6. Tunable Transmission-Line Metamaterials Mimicking Electromagnetically Induced Transparency

    Science.gov (United States)

    Feng, T. H.; Han, H. P.

    2016-11-01

    Tunable transmission-line (TL) metamaterials mimicking electromagnetically induced transparency (EIT) have been studied. Firstly, two types of tunable TL EIT-like metamaterial, based on the double split-ring resonator (DSRR) and single split-ring resonator (SSRR), were fabricated and their transmission properties carefully compared. The results showed that the transmittance maximum was almost invariable with shift of the transparency window for the tunable DSRR-based TL EIT-like metamaterial, but for the tunable SSRR-based TL EIT-like metamaterial, the transmittance maximum gradually diminished with shift of the transparency window toward the center of the absorption band. Moreover, the reason for these different transmission properties was explored, revealing that the reduction of the transmittance maximum of the transparency window for the tunable SSRR-based TL EIT-like metamaterial is mainly due to energy loss caused by the resistance of the loaded varactor diodes.

  7. Tunable photonic filters: a digital signal processing design approach.

    Science.gov (United States)

    Binh, Le Nguyen

    2009-05-20

    Digital signal processing techniques are used for synthesizing tunable optical filters with variable bandwidth and centered reference frequency including the tunability of the low-pass, high-pass, bandpass, and bandstop optical filters. Potential applications of such filters are discussed, and the design techniques and properties of recursive digital filters are outlined. The basic filter structures, namely, the first-order all-pole optical filter (FOAPOF) and the first-order all-zero optical filter (FOAZOF), are described, and finally the design process of tunable optical filters and the designs of the second-order Butterworth low-pass, high-pass, bandpass, and bandstop tunable optical filters are presented. Indeed, we identify that the all-zero and all-pole networks are equivalent with well known principles of optics of interference and resonance, respectively. It is thus very straightforward to implement tunable optical filters, which is a unique feature.

  8. Tunable Handset Antenna: Enhancing Efficiency on TV White Spaces

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in orde...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz.......With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...

  9. LIGHT PRESSURE: Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    Science.gov (United States)

    Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.

    2008-12-01

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.

  10. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities

    Science.gov (United States)

    Berkowitz, Max; Parr, Robert G.

    1988-02-01

    Hardness and softness kernels η(r,r') and s(r,r') are defined for the ground state of an atomic or molecular electronic system, and the previously defined local hardness and softness η(r) and s(r) and global hardness and softness η and S are obtained from them. The physical meaning of s(r), as a charge capacitance, is discussed (following Huheey and Politzer), and two alternative ``hardness'' indices are identified and briefly discussed.

  11. Ultrasonic material hardness depth measurement

    Science.gov (United States)

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  12. Development of Radiation Hard Scintillators

    CERN Document Server

    Tiras, Emrah; Bilki, Burak; Winn, David; Onel, Yasar

    2016-01-01

    Modern high-energy physics experiments are in ever increasing need for radiation hard scintillators and detectors. In this regard, we have studied various radiation-hard scintillating materials such as Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), our prototype material Scintillator X (SX) and Eljen (EJ). Scintillation and transmission properties of these scintillators are studied using stimulated emission from a 334 nm wavelength UV laser with PMT before and after certain amount of radiation exposure. Recovery from radiation damage is studied over time. While the primary goal of this study is geared for LHC detector upgrades, these new technologies could easily be used for future experiments such as the FCC and ILC. Here we discuss the physics motivation, recent developments and laboratory measurements of these materials.

  13. Schwannoma of the hard palate

    OpenAIRE

    2009-01-01

    Schwannomas are benign encapsulated perineural tumors. The head and neck region is the most common site. Intraoral origin is seen in only 1% of cases, tongue being the most common site; its location in the palate is rare. We report a case of hard-palate schwannoma with bony erosion which was immunohistochemically confirmed. The tumor was excised completely intraorally. After two months of follow-up, the defect was found to be completely covered with palatal mucosa.

  14. Playing Moderately Hard to Get

    Directory of Open Access Journals (Sweden)

    Stephen Reysen

    2013-12-01

    Full Text Available In two studies, we examined the effect of different degrees of attraction reciprocation on ratings of attraction toward a potential romantic partner. Undergraduate college student participants imagined a potential romantic partner who reciprocated a low (reciprocating attraction one day a week, moderate (reciprocating attraction three days a week, high (reciprocating attraction five days a week, or unspecified degree of attraction (no mention of reciprocation. Participants then rated their degree of attraction toward the potential partner. The results of Study 1 provided only partial support for Brehm’s emotion intensity theory. However, after revising the high reciprocation condition vignette in Study 2, supporting Brehm’s emotion intensity theory, results show that a potential partners’ display of reciprocation of attraction acted as a deterrent to participants’ intensity of experienced attraction to the potential partner. The results support the notion that playing moderately hard to get elicits more intense feelings of attraction from potential suitors than playing too easy or too hard to get. Discussion of previous research examining playing hard to get is also re-examined through an emotion intensity theory theoretical lens.

  15. Acceleration of relativistic electrons due to resonant interaction with oblique monochromatic whistler-mode waves generated in the ionosphere.

    Science.gov (United States)

    Kuzichev, Ilya; Shklyar, David

    2016-04-01

    One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of

  16. Tunable Mechanical Filter for Longitudinal Vibrations

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2007-01-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a filter, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the “Pass Bands” and wave propagation is efficiently attenuated within other frequency bands called the “Stop Bands”. The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. The concept of this mechanical filter as presented can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  17. Elastic metamaterial beam with remotely tunable stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  18. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  19. Silver nanoparticles with tunable work functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp [Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka 819-0395 (Japan); Tanaka, Daisuke [Department of Electrical and Electronic Engineering, National Institute of Technology, Oita College, Oita 870-0152 (Japan); Ryuzaki, Sou; Araki, Shohei; Okamoto, Koichi; Tamada, Kaoru [Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2015-10-12

    To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probe force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.

  20. Wavelength-tunable duplex integrated light source

    Science.gov (United States)

    Okamoto, Hiroshi; Yasaka, Hiroshi; Oe, Kunishige

    1996-04-01

    A monolithically integrated opto-electronic device is proposed as a fast wavelength-switching light source. This tunable duplex integrated light source comprises two wavelength-tunable distributed Bragg reflector (DBR) laser diodes (LDs), two MQW-electro-absorption optical switches, a Y-shaped waveguide coupler, a MQW-electro-absorption modulator, and two thermal drift compensators (TDCs). The wavelength-switching time of the optical switches was estimated to be 60 ps including a 50-ps rise time for the electrical-pulse generator. The wavelength of a 10-Gbit/s NRZ-modulated optical signal can be switched without bit loss. The function of the TDCs is to keep the device-chip temperature constant. Thermal-transient- induced wavelength drift with a millisecond-order time constant, which has been reported for DBR-LDs, and thermal crosstalk between the tuning regions of the integrated LDs, which causes wavelength fluctuation, are effectively suppressed by thermal-drift-compensation operation using the TDCs.

  1. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  2. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  3. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  4. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  5. Comprehensive Analysis of Photosynthetic Characteristics and Quality Improvement of Purple Cabbage under Different Combinations of Monochromatic Light

    Science.gov (United States)

    Yang, Biyun; Zhou, Xiangzhu; Xu, Ru; Wang, Jin; Lin, Yizhang; Pang, Jie; Wu, Shuang; Zhong, Fenglin

    2016-01-01

    Light is essential for plant growth. Light intensity, photoperiod, and light quality all affect plant morphology and physiology. Compared to light intensity, photoperiod, little is known about the effects of different monochromatic lights on crop species. To investigate how different lighting conditions influence crops with heterogeneous colors in leaves, we examined photosynthetic characteristics and quality (regarding edibility and nutrition) of purple cabbage under different combinations of lights. Eight different treatments were applied including monochromic red (R), monochromic blue (B), monochromic yellow (Y), monochromic green (G), and the combination of red and blue (3/1, RB), red/blue/yellow (3/1/1, RBY), red/blue/green (3/1/1,RBG), and white light as the control. Our results indicate that RBY (3/1/1) treatment promotes the PSII activity of purple cabbage, resulting in improved light energy utilization. By contrast, both G and Y lights alone have inhibitory effect on the PSII activity of purple cabbage. In addition, RBY (3/1/1) significantly boosts the anthocyanin and flavonoids content compared with other treatments. Although we detected highest soluble protein and vitamin C content under B treatment (increased by 30.0 and 14.3% compared with the control, respectively), RBY (3/1/1) appeared to be the second-best lighting condition (with soluble protein and vitamin C content increased by 8.6 and 4.1%, respectively compared with the control). Thus we prove that the addition of yellow light to the traditional combination of red/blue lighting conditions is beneficial to synthesizing photosynthetic pigments and enables superior outcome of purple cabbage growth. Our results indicate that the growth and nutritional quality of purple cabbage are greatly enhanced under RBY (3/1/1) light, and suggest that strategical management of lighting conditions holds promise in maximizing the economic efficiency of plant production and food quality of vegetables grown in

  6. Effect of melatonin on monochromatic light-induced T-lymphocyte proliferation in the thymus of chickens.

    Science.gov (United States)

    Chen, Fuju; Reheman, Aikebaier; Cao, Jing; Wang, Zixu; Dong, Yulan; Zhang, Yuxian; Chen, Yaoxing

    2016-08-01

    A total of 360 post-hatching day 0 (P0) Arbor Acre male broilers, including intact, sham operation and pinealectomy groups, were exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) from a light-emitting diode (LED) system until for P14. We studied the effects of melatonin and its receptors on monochromatic light-induced T-lymphocyte proliferation in the thymus of broilers. The density of proliferating cell nuclear antigen (PCNA) cells and the proliferation of T-lymphocytes in response to Concanavalin A (ConA) in GL significantly increased both in vivo and in vitro (from 9.57% to 32.03% and from 34.30% to 50.53%, respectively) compared with other lights (plights (p<0.005). However, exogenous melatonin (10(-9)M) significantly increased the proliferative activity of T-lymphocyte by 9.64% (p=0.002). In addition, GL significantly increased mRNA expression levels of Mel1a, Mel1b and Mel1c receptors from 21.09% to 32.57%, and protein expression levels from 24.43% to 42.92% compared with RL (p<0.05). However, these effects were blocked after pinealectomy. Furthermore, 4P-PDOT (a selective Mel1b antagonist) and prazosin (a selective Mel1c antagonist) attenuated GL-induced T-lymphocyte proliferation in response to ConA (p=0.000). Luzindole (a nonselective Mel1a/Mel1b antagonist), however, did not induce these effects (p=0.334). These results suggest that melatonin may mediate GL-induced T-lymphocyte proliferation via the Mel1b and Mel1c receptors but not via the Mel1a receptor.

  7. Monochromatic Minibeams Radiotherapy: From Healthy Tissue-Sparing Effect Studies Toward First Experimental Glioma Bearing Rats Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Deman, Pierre [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Vautrin, Mathias [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); DOSIsoft, Cachan (France); Edouard, Magali [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Stupar, Vasile [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); Bobyk, Laure; Farion, Regine [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Elleaume, Helene [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Grenoble University Hospital, Grenoble (France); Remy, Chantal; Barbier, Emmanuel L. [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); Esteve, Francois [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Grenoble University Hospital, Grenoble (France); Adam, Jean-Francois, E-mail: adam@esrf.fr [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Grenoble University Hospital, Grenoble (France)

    2012-03-15

    Purpose: The purpose of this study was to evaluate high-dose single fraction delivered with monochromatic X-rays minibeams for the radiotherapy of primary brain tumors in rats. Methods and Materials: Two groups of healthy rats were irradiated with one anteroposterior minibeam incidence (four minibeams, 123 Gy prescribed dose at 1 cm depth in the brain) or two interleaved incidences (54 Gy prescribed dose in a 5 Multiplication-Sign 5 Multiplication-Sign 4.8 mm{sup 3} volume centered in the right hemisphere), respectively. Magnetic resonance imaging (MRI) follow-up was performed over 1 year. T2-weighted (T2w) images, apparent diffusion coefficient (ADC), and blood vessel permeability maps were acquired. F98 tumor bearing rats were also irradiated with interleaved minibeams to achieve a homogeneous dose of 54 Gy delivered to an 8 Multiplication-Sign 8 Multiplication-Sign 7.8 mm{sup 3} volume centered on the tumor. Anatomic and functional MRI follow-up was performed every 10 days after irradiation. T2w images, ADC, and perfusion maps were acquired. Results: All healthy rats were euthanized 1 year after irradiation without any clinical alteration visible by simple examination. T2w and ADC measurements remain stable for the single incidence irradiation group. Localized Gd-DOTA permeability, however, was observed 9 months after irradiation for the interleaved incidences group. The survival time of irradiated glioma bearing rats was significantly longer than that of untreated animals (49 {+-} 12.5 days versus 23.3 {+-} 2 days, p < 0.001). The tumoral cerebral blood flow and blood volume tend to decrease after irradiation. Conclusions: This study demonstrates the sparing effect of minibeams on healthy tissue. The increased life span achieved for irradiated glioma bearing rats was similar to the one obtained with other radiotherapy techniques. This experimental tumor therapy study shows the feasibility of using X-ray minibeams with high doses in brain tumor radiotherapy.

  8. Impact of different monochromatic LED light colours and bird age on the behavioural output and fear response in ducks

    Directory of Open Access Journals (Sweden)

    Shabiha Sultana

    2013-12-01

    Full Text Available This study was performed to observe the effect of monochromatic light emitting diode (LED light colour and bird age on the behaviour and fear response of ducks. A total of 200 1-day-old ducklings were used in the experiment (two replications, 25 ducklings/pen, and lighting was set up as follows: white (W, control, 400-770 nm, yellow (Y, 600 nm, green (G, 520 nm and blue (B, 460 nm LED lights. Ducks were subjected to 23L: 1D h lighting with 0.1 Watt/m2 light intensity. Video was recorded twice per day (2 h in the morning and 2 h in the afternoon and observed five consecutive days per week. Duration of feeding, drinking, sitting, walking, standing, preening, wing flapping, wing stretching, tail wagging, head shaking, body shaking, ground pecking, peck object, and social interaction behaviour were recorded. At 3 and 6 weeks of age, 10 birds per treatment were subjected to the tonic immobility (TI test (three times/duck. Ducks reared in Y and W light were more active, as expressed by more walking, ground pecking, drinking and social interaction activities than those of ducks under the B light treatment (P<0.05. Ducks showed more time sitting, standing, and preening under B light (P<0.05. Feeding, sitting, standing and drinking behaviours increased, and walking and social interaction behaviours decreased with age of the ducks (P<0.05. Differences in behaviours among different light colours were observed. In addition, the TI test results indicated that B and G light reduced the fear response of the ducks.

  9. Raman Model Predicting Hardness of Covalent Crystals

    OpenAIRE

    Zhou, Xiang-Feng; Qian, Quang-Rui; Sun, Jian; Tian, Yongjun; Wang, Hui-Tian

    2009-01-01

    Based on the fact that both hardness and vibrational Raman spectrum depend on the intrinsic property of chemical bonds, we propose a new theoretical model for predicting hardness of a covalent crystal. The quantitative relationship between hardness and vibrational Raman frequencies deduced from the typical zincblende covalent crystals is validated to be also applicable for the complex multicomponent crystals. This model enables us to nondestructively and indirectly characterize the hardness o...

  10. Tribological characterization of selected hard coatings

    OpenAIRE

    Karlsson, Patrik

    2009-01-01

    Hard coatings are often used for protection of tool surfaces due to coating properties like low friction and high wear resistance. Even though many of the hard coatings have been tested for wear, it is important to try new wear test setups to fully understand tribological mechanisms and the potential of hard coatings. Few experiments have been performed with dual-coated systems where the sliding contact surfaces are coated with the same, or different, hard coating. The dual-coated system coul...

  11. 7 CFR 201.21 - Hard seed.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seed. 201.21 Section 201.21 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.21 Hard seed. The label shall show the percentage of hard...

  12. 7 CFR 201.30 - Hard seed.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hard seed. 201.30 Section 201.30 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.30 Hard seed. The label shall show the percentage of hard seed,...

  13. Widely tunable erbium-doped fiber laser based on multimode interference effect.

    Science.gov (United States)

    Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P

    2010-01-18

    A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

  14. Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter

    Science.gov (United States)

    Ngo, Nam Quoc; Song, Yufeng; Lin, Bo

    2011-02-01

    We present the design and analysis of a wideband and tunable optical Hilbert transformer (OHT) using a tunable waveguide-based finite-impulse response (FIR) filter structure by using the digital filter design method and the Remez algorithm. The tunable Nth-order waveguide-based FIR filter, which simply consists of N delay lines, N tunable couplers, N tunable phase shifters and a combiner, can be tuned, by thermally adjusting the tunable couplers and tunable phase shifters, to tune the bandwidth of an OHT using silica-based planar lightwave circuit (PLC) technology. To demonstrate the effectiveness of the method, the simulation results have an excellent agreement with the theoretical predictions. The tunable OHT can function as a wideband and tunable 90° phase shifter and thus has many potential applications. The two unique features of wideband characteristic (up to ~ 2 THz) and tunable bandwidth (THz tuning range) of the proposed OHT cannot be obtained from the existing OHTs.

  15. The hard problem of cooperation.

    Directory of Open Access Journals (Sweden)

    Kimmo Eriksson

    Full Text Available Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  16. Chiral THz metamaterial with tunable optical activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiangfeng [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory; Chowdhury, Roy [Los Alamos National Laboratory; Zhao, Rongkuo [IOWA STATE UNIV; Soukoullis, Costas M [IOWA STATE UNIV

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  17. Systematic hardness studies on lithium niobate crystals

    Indian Academy of Sciences (India)

    K G Subhadra; K Kishan Rao; D B Sirdeshmukh

    2000-04-01

    In view of discrepancies in the available information on the hardness of lithium niobate, a systematic study of the hardness has been carried out. Measurements have been made on two pure lithium niobate crystals with different growth origins, and a Fe-doped sample. The problem of load variation of hardness is examined in detail. The true hardness of LiNbO3 is found to be 630 ± 30 kg/mm2. The Fe-doped crystal has a larger hardness of 750 ± 50 kg/mm2.

  18. Hard Identity and Soft Identity

    Directory of Open Access Journals (Sweden)

    Hassan Rachik

    2006-04-01

    Full Text Available Often collective identities are classified depending on their contents and rarely depending on their forms. Differentiation between soft identity and hard identity is applied to diverse collective identities: religious, political, national, tribal ones, etc. This classification is made following the principal dimensions of collective identities: type of classification (univocal and exclusive or relative and contextual, the absence or presence of conflictsof loyalty, selective or totalitarian, objective or subjective conception, among others. The different characteristics analysed contribute to outlining an increasingly frequent type of identity: the authoritarian identity.

  19. Sampling hard to reach populations.

    Science.gov (United States)

    Faugier, J; Sargeant, M

    1997-10-01

    Studies on 'hidden populations', such as homeless people, prostitutes and drug addicts, raise a number of specific methodological questions usually absent from research involving known populations and less sensitive subjects. This paper examines the advantages and limitations of nonrandom methods of data collection such as snowball sampling. It reviews the currently available literature on sampling hard to reach populations and highlights the dearth of material currently available on this subject. The paper also assesses the potential for using these methods in nursing research. The sampling methodology used by Faugier (1996) in her study of prostitutes, HIV and drugs is used as a current example within this context.

  20. Radiation Hardness Assurance (RHA) Guideline

    Science.gov (United States)

    Campola, Michael J.

    2016-01-01

    Radiation Hardness Assurance (RHA) consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the mission space environment. The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.

  1. Thermopile detector radiation hard readout

    Science.gov (United States)

    Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.

    2010-08-01

    The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.

  2. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; YAN Feng-Ping; LI Jian; WANG Lin; NING Ti-Gang; GONG Tao-Rong; JIAN Shui-Sheng

    2008-01-01

    @@ A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated.The OC acts as a lO0%-refiective mirror.A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-refiecting mirror is implemented in the linear cavity.By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized.The wavelength tuning range covers approximately 7.0Ohm in C band (from 1543.6161 to 1550.3307nm).The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm.Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50km transmission experiment was performed using our TEDFL at a 10 Gb/s modulation rate.

  3. Applications of Tunable Imaging Filters for the VLT

    CERN Document Server

    Jones, H

    2001-01-01

    Tunable imaging filters have been used for a variety of science programmes on the Anglo-Australian and William Herschel Telescopes during the last five years. This contribution describes these novel devices and reviews the science (both Galactic and extragalactic) done with them. Possible strategies for implementing a tunable filter at the VLT are also discussed. Significant scientific potential exists for a tunable filter on the VLT, particularly in the years before such capability becomes available on 8 -- 10 m-class telescopes elsewhere.

  4. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  5. Widely tunable lasers enabling efficient and intelligent optical networks

    Science.gov (United States)

    Yu, Rang-Chen

    2002-08-01

    Widely tunable laser has been recognized as one of the key enabling technologies for more efficient and intelligent optical networks. We present recent advanced development of a monolithic full band tunable laser device based on sampled grating distributed Bragg reflector (SG-DBR) technology at Agility Communications. We will discuss key performance parameters, as well as long term reliability of a widely tunable laser with high power (> 20mW), wide tuning range (the whole C-band, or L-band), monolithically integrated electro-absorption (EA) modulator and semiconductor optical amplifier (SOA). Optical network applications will also be discussed.

  6. Thermally tunable silicon racetrack resonators with ultralow tuning power.

    Science.gov (United States)

    Dong, Po; Qian, Wei; Liang, Hong; Shafiiha, Roshanak; Feng, Dazeng; Li, Guoliang; Cunningham, John E; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2010-09-13

    We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts. The 10%-90% switching time is demonstrated to be ~170 µs. Such low-power tunable micro-resonators are particularly useful as multiplexing devices and wavelength-tunable silicon microcavity modulators.

  7. Tunable Microwave Component Technologies for SatCom-Platforms

    Science.gov (United States)

    Maune, Holger; Jost, Matthias; Wiens, Alex; Weickhmann, Christian; Reese, Roland; Nikfalazar, Mohammad; Schuster, Christian; Franke, Tobias; Hu, Wenjuan; Nickel, Matthias; Kienemund, Daniel; Prasetiadi, Ananto Eka; Jakoby, Rolf

    2017-03-01

    Modern communication platforms require a huge amount of switched RF component banks especially made of different filters and antennas to cover all operating frequencies and bandwidth for the targeted services and application scenarios. In contrast, reconfigurable devices made of tunable components lead to a considerable reduction in complexity, size, weight, power consumption, and cost. This paper gives an overview of suitable technologies for tunable microwave components especially for SatCom applications. Special attention is given to tunable components based on functional materials such as barium strontium titanate (BST) and liquid crystal (LC).

  8. Tunable VO2/Au hyperbolic metamaterial

    Science.gov (United States)

    Prayakarao, S.; Mendoza, B.; Devine, A.; Kyaw, C.; van Dover, R. B.; Liberman, V.; Noginov, M. A.

    2016-08-01

    Vanadium dioxide (VO2) is known to have a semiconductor-to-metal phase transition at ˜68 °C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial studied in this work is composed of subwavelength VO2 and Au layers and is designed to undergo a temperature controlled transition from the optical hyperbolic phase to the metallic phase. VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in electrical conductivity and optical (transmission and reflection) experiments. The observed temperature-dependent changes in the reflection and transmission spectra of the metamaterials and VO2 thin films are in a good qualitative agreement with theoretical predictions. The demonstrated optical hyperbolic-to-metallic phase transition is a unique physical phenomenon with the potential to enable advanced control of light-matter interactions.

  9. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.

    2011-01-01

    Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross......-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  10. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  11. Tunable hybridization in metal nanoshell chains.

    Science.gov (United States)

    Ling, C W; Zheng, M J; Yu, K W

    2011-03-16

    We have studied the coupled surface plasmon (SP) modes in periodic metal nanoshell chains by including long range electromagnetic interactions. The eigen-decomposition method is used to analyze the dispersion and dissipation of the SP modes. The resulting band structure can be understood as a hybridization between a hole band and a particle band with a structurally tunable band gap in the middle of the first Brillouin zone. The mode quality, which is defined as the imaginary part of the generalized polarizability, increases as the shell thickness decreases. This indicates a larger energy loss and an increasing coupling between the bands. Through the manipulation of the band structures, the propagation of the coupled SP modes in the nanoshell chain can be controlled.

  12. Tunable hybridization in metal nanoshell chains

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C W; Zheng, M J; Yu, K W, E-mail: mjzheng@phy.cuhk.edu.hk [Department of Physics, Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

    2011-03-16

    We have studied the coupled surface plasmon (SP) modes in periodic metal nanoshell chains by including long range electromagnetic interactions. The eigen-decomposition method is used to analyze the dispersion and dissipation of the SP modes. The resulting band structure can be understood as a hybridization between a hole band and a particle band with a structurally tunable band gap in the middle of the first Brillouin zone. The mode quality, which is defined as the imaginary part of the generalized polarizability, increases as the shell thickness decreases. This indicates a larger energy loss and an increasing coupling between the bands. Through the manipulation of the band structures, the propagation of the coupled SP modes in the nanoshell chain can be controlled.

  13. Spectral tunability of realistic plasmonic nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Portela, Alejandro; Matsui, Hiroaki; Tabata, Hitoshi, E-mail: tabata@bioeng.t.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yano, Takaaki; Hayashi, Tomohiro; Hara, Masahiko [Department of Electronic Chemistry, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502 (Japan); Santschi, Christian; Martin, Olivier J. F. [Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne, Lausanne CH-1015 (Switzerland)

    2014-09-01

    Single nanoantenna spectroscopy was carried out on realistic dipole nanoantennas with various arm lengths and gap sizes fabricated by electron-beam lithography. A significant difference in resonance wavelength between realistic and ideal nanoantennas was found by comparing their spectral response. Consequently, the spectral tunability (96 nm) of the structures was significantly lower than that of simulated ideal nanoantennas. These observations, attributed to the nanofabrication process, are related to imperfections in the geometry, added metal adhesion layer, and shape modifications, which are analyzed in this work. Our results provide important information for the design of dipole nanoantennas clarifying the role of the structural modifications on the resonance spectra, as supported by calculations.

  14. Origami Metamaterials for Tunable Thermal Expansion.

    Science.gov (United States)

    Boatti, Elisa; Vasios, Nikolaos; Bertoldi, Katia

    2017-07-01

    Materials with engineered thermal expansion, capable of achieving targeted area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with engineered coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here it is shown that origami metamaterials also provide a platform for the design of systems with a wide range of thermal expansion coefficients. Experiments and simulations are combined to demonstrate that by tuning the geometrical parameters of the origami structure and the arrangement of plates and creases, an extremely broad range of thermal expansion coefficients can be obtained. Differently from all previously reported systems, the proposed structure is tunable in situ and nonporous. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tunable Broadband Printed Carbon Transparent Conductor

    Science.gov (United States)

    Xu, Yue; Wan, Jiayu

    Transparent conductors have been widely applied in solar cells, transparent smart skins, and sensing/imaging antennas, etc. Carbon-based transparent conductor has attracted great attention for its low cost and broad range transparency. Ion intercalation has been known to highly dope graphitic materials, thereby tuning materials' optoelectronic properties. For the first time, we successfully tune the optical transmittance of a reduced graphene oxide (RGO)/CNT network from mid-IR range to visible range by means of Li-ion intercalation/deintercalation. We also observed a simultaneous increase of the electrical conductivity with the Li-ion intercalation. This printed carbon hybrid thin film was prepared through all solution processes and was easily scalable. This study demonstrates the possibility of using ion intercalation for low cost, tunable broadband transparent conductors.

  16. Tunable mid IR plasmon in GZO nanocrystals.

    Science.gov (United States)

    Hamza, M K; Bluet, J-M; Masenelli-Varlot, K; Canut, B; Boisron, O; Melinon, P; Masenelli, B

    2015-07-28

    Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants.

  17. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  18. Tunable Plasma-Wave Laser Amplifier

    Science.gov (United States)

    Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Electrically tunable artificial gauge potential for polaritons

    Science.gov (United States)

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  20. Tunable surface properties from bioinspired polymers

    Science.gov (United States)

    van Zoelen, Wendy; Rosales, Adrianne; Murnen, Hannah; Zuckermann, Ronald; Segalman, Rachel

    2011-03-01

    Anti-fouling properties can be derived from patterned or ``ambiguous'' surfaces displaying multiple surface properties. Biological polymers with precisely controlled chain shapes and self-assembled structures are attractive materials for these applications, in which tunability is of great importance. We have investigated the surface properties of polypeptoids, a class of non-natural biomimetic polymers based on an N-substituted glycine backbone, that combine many of the advantageous properties of bulk polymers with those of synthetically produced proteins. Polypeptoids are of particular interest as they can be made in a sequence controlled fashion with functionalities already known to impart fouling-resistance (ethers, zwitterions, hydrophobicity, and nanoscale patterning). We demonstrate their surface stability and processibility from the standpoint of coating performance and also discuss controlled self-assembly of these materials. Used strategies include mediation of crystallization by incorporating chain defects and specific interactions.

  1. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  2. Tunable Design for LTE Mobile-Phones

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon;

    2014-01-01

    Antenna volume has become a critical parameter in mobile phone antenna design, as broader bandwidths are required for high connectivity between users. Shrinking the antenna size affects its efficiency, if one does not sacrifice bandwidth. This paper proposes an architecture to address the need fo......-bands with an efficiency of -3 dB at 700 MHz.......Antenna volume has become a critical parameter in mobile phone antenna design, as broader bandwidths are required for high connectivity between users. Shrinking the antenna size affects its efficiency, if one does not sacrifice bandwidth. This paper proposes an architecture to address the need...... for small and wide-band antennas. The study focuses on the low-frequencies (700 MHz - 960 MHz) in order to address a tough scenario for small platforms. A tunable design of the front-end and the antennas of the mobile phone is proposed and investigated. Operation is achieved on all low...

  3. Tunable focalizers: axicons, lenses, and axilenses

    Science.gov (United States)

    Ojeda-Castañeda, Jorge; Gómez-Sarabia, Cristina M.; Ledesma, Sergio

    2013-09-01

    We propose the use of a pair of phase masks, which have both radial and angular variations, for implementing several varifocal devices. One mask of the proposed pair has a complex amplitude transmittance that is the complex conjugate of the other member of the pair. We show that the overall complex amplitude transmittance has only a radial variation after introducing an in-plane rotation, say by an angle β, between the members of the pair. However, we note that the optical power is proportional to the rotation angle β. As examples of the proposed method, we show that the refractive pair is useful for implementing varifocal lenses, tunable axicons, controllable axilenses, as well as annularly distributed focalizers.

  4. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  5. Tunable Magnetic Proximity Effects in Graphene Junctions

    Science.gov (United States)

    Lazic, Predrag; Belashchenko, Kirill; Zutic, Igor

    2015-03-01

    The characteristic length of the magnetic proximity effects exceed the thickness of a graphene layer leading to an important, but typically overlooked, modifications of equilibrium and transport properties, as well as the implications for graphene spintronics. Using the first-principles studies that integrate a real space density functional theory (GPAW) with the state-of-the art boundary elements electrostatic code based on the Robin Hood method, we explore tunable electronic structure and magnetic proximity effects in the ferromagnet/insulator/graphene junctions. We show that the inclusion of a finite-size gate electrodes and van der Walls interaction lead to nontrivial effects that could also be important in other two-dimensional materials beyond graphene. Work supported by US ONR, NSF-DMR and Nebraska NSF MRSEC.

  6. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  7. The Brazilian tunable filter imager for SOAR

    Science.gov (United States)

    Taylor, Keith; Mendes de Oliveira, Cláudia; Laporte, Rene; Guzman, Christian D.; Ramirez Fernandez, Javier; Scarano, Sergio, Jr.; Ramos, Giseli; Plana, Henri; Lourenco, Fernando E.; Gach, Jean-Luc; Fontes, Fernando L.; Ferrari, Fabricio; Cavalcanti, Luiz; Gutierrez Castañeda, Edna C.; de Calasans, Alvaro; Balard, Philippe; Amram, Philippe; Andrade, Denis

    2010-07-01

    A scientific and engineering team led by the Department of Astronomy of the IAG, at the University of São Paulo, is engaged in the development of a highly versatile, new technology, optical imaging interferometer to be used both in seeing-limited mode and at high spatial resolution using the SOAR Adaptive Optics Module (SAM: the GLAO facility for the SOAR telescope). Such an instrument opens up important new science capabilities for the SOAR astronomical community: from studies of nearby galaxies and the ISM to statistical cosmological investigations. The Brazilian Tunable Filter Imager (BTFI) concept takes advantage of two new technologies that have been successfully demonstrated in the laboratory environment but have yet to be deployed in any astronomical instrument. The iBTF (imaging Bragg Tunable Filter) concept utilizes a Volume Phase Holographic Grating in double-pass configuration (Blais-Ouellette et al. 20061) while the new Fabry-Perot concept involves the use of commercially available technology allowing a single etalon to act over a very large range of interference orders. Both technologies will be used in the same instrument. The combination allows for highly versatile capabilities. Spectral resolutions spanning the full range between 5 and 35,000 can be achieved in the same instrument through the use of iBTF at low resolution and scanning Fabry-Perots beyond R ~2,000 with some overlap in the mid-range. The instrument is being developed in collaboration with several other Brazilian Institutions (Poli/USP, INPE, LNA and Unipampa) and international collaborations with the Laboratoire d'Astrophysique de Marseille and the University of Montreal. The reader is directed to the URL http://www.astro.iag.usp.br/~btfi/index.php for a full representation of the project and its current status. The instrument should see first light, mounted on the SOAR telescope, as a visiting instrument, on semester 2010B.

  8. Hard Fault Analysis of Trivium

    CERN Document Server

    Yupu, Hu; Yiwei, Zhang

    2009-01-01

    Fault analysis is a powerful attack to stream ciphers. Up to now, the major idea of fault analysis is to simplify the cipher system by injecting some soft faults. We call it soft fault analysis. As a hardware-oriented stream cipher, Trivium is weak under soft fault analysis. In this paper we consider another type of fault analysis of stream cipher, which is to simplify the cipher system by injecting some hard faults. We call it hard fault analysis. We present the following results about such attack to Trivium. In Case 1 with the probability not smaller than 0.2396, the attacker can obtain 69 bits of 80-bits-key. In Case 2 with the probability not smaller than 0.2291, the attacker can obtain all of 80-bits-key. In Case 3 with the probability not smaller than 0.2291, the attacker can partially solve the key. In Case 4 with non-neglectable probability, the attacker can obtain a simplified cipher, with smaller number of state bits and slower non-linearization procedure. In Case 5 with non-neglectable probability,...

  9. TU-EF-204-12: Quantitative Evaluation of Spectral Detector CT Using Virtual Monochromatic Images: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Guild, J [UT Southwestern Medical Center, Dallas, TX (United States); Arbique, G; Anderson, J [UT Southwestern Medical Ctr at Dallas, Dallas, TX (United States); Dhanantwari, A [Philips Healthcare, Highland Heights, OH (United States); Yagil, Y [Philips Medical Systems, Haifa (Israel)

    2015-06-15

    Purpose To evaluate the image quality and spectral information of a spectral detector CT (SDCT) scanner using virtual monochromatic (VM) energy images. Methods The SDCT scanner (Philips Healthcare) was equipped with a dual-layer detector and spectral iterative reconstruction (IR), which generates conventional 80–140 kV polychromatic energy (PE) CT images using both detector layers, PE images from the low-energy (upper) and high-energy (lower) detector layers and VM images. A solid water phantom with iodine (2.0–20.0 mg I/ml) and calcium (50.0–600.0 mg Ca/ml) rod inserts was used to evaluate effective energy estimate (EEE) and iodine contrast to noise ratio (CNR). The EEE corresponding to an insert CT number in a PE image was calculated from a CT number fit to the VM image set. Since PE image is prone to beam-hardening artifact EEE may underestimate the actual energy separation from two layers of the detector. A 30-cm-diameter water phantom was used to evaluate noise power spectrum (NPS). The phantoms were scanned at 120 and 140 kV with the same CTDIvol. Results The CT number difference for contrast inserts in VM images (50–150 keV) was 1.3±6% between 120 and 140 kV scans. The difference of EEE calculated from low- and high-energy detector images was 11.5 and 16.7 keV for 120 and 140 kV scans, respectively. The differences calculated from 140 and 100 kV conventional PE images were 12.8, and 20.1 keV from 140 and 80 kV conventional PE images. The iodine CNR increased monotonically with decreased keV. Compared to conventional PE images, the peak of NPS curves from VM images were shifted to lower frequency. Conclusion The EEE results indicates that SDCT at 120 and 140 kV may have energy separation comparable to 100/140 kV and 80/140 kV dual-kV imaging. The effects of IR on CNR and NPS require further investigation for SDCT. Author YY and AD are Philips Healthcare employees.

  10. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons.

    Science.gov (United States)

    Chou, L-C; Jang, C-Y; Wu, Y-H; Tsai, W-C; Wang, S-K; Chen, J; Chang, S-C; Liu, C-C; Shai, Y; Wen, C-R

    2008-12-07

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F(+) and F(-) PSD ion yields were measured from CF(3)Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF(3)Cl dose=0.3x10(15) molecules/cm(2), approximately 0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF(3)Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F(+) ion desorption is associated with the bond breaking of the surface CF(3)Cl, CF(2)Cl, CFCl, and SiF species. (c) the F(-) yield is mainly due to DA and DD of the adsorbed CF(3)Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F(+), or F(-) ion produced by scission of C-F bond of CF(3)Cl, CF(2)Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF(3)Cl-covered surface. Based on this model and the variation rates of the F(+)F(-) signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV [near the F(1s) edge], the photolysis cross section was deduced as a function of energy.

  11. Effects of monochromatic light stimuli on the development and Muc2 expression of goblet cells in broiler small intestines during embryogenesis.

    Science.gov (United States)

    Yu, Y; Wang, Z; Cao, J; Dong, Y; Wang, T; Chen, Y

    2014-07-01

    The effects of monochromatic light on the ontogeny, differentiation, and Muc2 expression level in goblet cells were studied in the small intestines of late-stage broiler embryos. The embryos were exposed to blue light (B group), green light (G group), red light (R group), or darkness (D group) throughout the incubation period. On d 15 of incubation (E15), a few acidic goblet cells (only the sulfated subtype) were observed, and Muc2 mRNA expression was detected. On E18, however, neutral, acidic, and intermediate types, as well as the sulfated subtype, were observed in the small intestine, and a decreasing gradient of goblet cell density was found along the duodenum to ileum axis. Up to E21, 3 types of goblet cells and 3 acidic cell subtypes were found in all the small intestines. The goblet cell density increased along the duodenum to ileum axis. Monochromatic light stimulation resulted in no significant differences in the density and types of goblet cells between the different treatment groups on E15 and E18, but an increased Muc2 mRNA expression level was detected on E18 in the G group compared with the other treatment groups. On E21, the goblet cell density, proportion of acidic goblet cells, and Muc2 mRNA expression level increased in the G group compared with other treatment groups. These results suggest that the ontogeny and differentiation of goblet cells in broiler embryos display temporal and spatial differences. Green monochromatic light may have the potential to promote the proliferation and maturation of as well as the expression of Muc2 mRNA in goblet cells of broiler embryos.

  12. Changes of plasma growth hormone, insulin-like growth factors-I, thyroid hormones, and testosterone concentrations in embryos and broiler chickens incubated under monochromatic green light

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2014-07-01

    Full Text Available Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight and pectoral muscle growth of broilers. In this experiment, we further investigated whether the regulation of broiler embryonic or posthatch growth by green light stimulus during incubation is associated with the changes of some important hormones at different ages of embryos and broiler chickens. Fertile broiler eggs (Arbor Acres, n=880 were pre-weighed and randomly assigned 1 of 2 incubation treatment groups: i dark condition (control group, and ii monochromatic green light group (560 nm. The monochromatic lighting systems sourced from light-emitting diode lamps were equalised at the intensity of 15 lux (lx at eggshell level. The dark condition was set as a commercial control from day one until hatching. After hatch, 120 day-old male chicks from each group were housed under white light with an intensity of 30 lx at bird-head level. Compared with the dark condition, chicks incubated under the green light showed significantly higher growth hormone (GH levels from 19 d of embryogenesis (E19 to 5 d of posthatch (H5, and higher plasma insulinlike growth factor (IGF-I levels from both E17 to E19 and H3 to H35. No significant differences were found in plasma thyroxine, triiodothyronine, and testosterone in embryos or hatched birds between the 2 groups. These results indicate that somatotropic axis hormones (GH and IGF-I may be the most important contributor to chicken growth promoted by green light stimuli during embryogenesis.

  13. Infiltrated microstructured fibers as tunable and nonlinear optical devices

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;

    We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....

  14. Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;

    2007-01-01

    We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....

  15. Novel Tunable Dye Laser for Lidar Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  16. Actively tunable plasmonic lens for subwavelength imaging at different wavelengths

    CERN Document Server

    Zeng, Beibei; Luo, Xiangang

    2011-01-01

    A type of tunable plasmonic lens with nanoslits is proposed for subwavelength imaging in the far field at different wavelengths. The nanoslits array in the plasmonic lens, which have constant depths but varying widths, could generate desired optical phase retardations based on the particular propagation property of the Surface Plasmon Polaritons (SPPs) in the metal-dielectric-metal (MDM) slit waveguides. We theoretically and numerically demonstrate the tunability of a single plasmonic lens for subwavelength imaging (full width at half maximum, 0.37 ~0.47) by adjusting the surrounding dielectric fluid, thereby realizing the compact in-plane tunable plasmonic lens. This work provides a novel approach for developing integrative tunable plasmonic lens for a variety of lab-on-chip applications.

  17. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...

  18. Compact Tunable High-Efficiency Entangled Photon Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MagiQ proposes to develop a compact tunable high-efficiency low-power-consumption entangled photon source. The source, based on inter-Fabry-Perot-cavity Spontaneous...

  19. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  20. A Compact Narrow-Band Tunable Optical Transversal Filter

    Institute of Scientific and Technical Information of China (English)

    Zhigang Wu; Katsuyuki Utaka

    2003-01-01

    We present a compact narrow-band tunable optical transversal filter with phase-variable taps. A transmission bandwidth of the comb filter is less than 0.2nm and can be continuously tuned in the entire FSR.

  1. Tunable THz perfect absorber using graphene-based metamaterials

    Science.gov (United States)

    Faraji, Mahboobeh; Moravvej-Farshi, Mohammad Kazem; Yousefi, Leila

    2015-11-01

    A tunable THz absorber, with absorbance more than 90% is proposed, and numerically characterized. The absorber structure is based on metamaterials with unit cells consisting of two patterned graphene layers separated by a 5-nm thick layer of Al2O3. Numerical results show that when the chemical potential of the top graphene microribbons are tuned by an external variable bias and that of the lower graphene fishnet is kept at μC=0, frequency of the absorption peaks can be tuned as desired, therefore we can have a tunable or switchable absorber. The proposed absorber can have applications in designing tunable reflective THz filters or tunable THz switches and modulators. It can also be used for cloaking objects in THz range.

  2. Tunable Single Frequency 1.55 Micron Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  3. Design and analysis of a novel tunable optical power splitter

    Institute of Scientific and Technical Information of China (English)

    Xionggui Tang; Jinkun Liao; Heping Li; Lin Zhang; Rongguo Lu; Yongzhi Liu

    2011-01-01

    @@ A novel tunable optical power splitter, with a Y-branch waveguide based on the total internal reflection and a microprism with tunable index refraction, is presented. Numerical simulation of its optical performance shows that a high dynamic range, low optical loss, and relatively low wavelength-dependence can be achieved. This component offers numerous advantages such as ease for fabrication, low cost, and compact size, which are very useful for potential application in integrated optical devices.%A novel tunable optical power splitter, with a Y-branch waveguide based on the total internal reflection and a microprism with tunable index refraction, is presented. Numerical simulation of its optical performance shows that a high dynamic range, low optical loss, and relatively low wavelength-dependence can be achieved. This component offers numerous advantages such as ease for fabrication, low cost, and compact size, which are very useful for potential application in integrated optical devices.

  4. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.

    Science.gov (United States)

    Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying

    2015-11-01

    We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.

  5. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  6. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  7. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  8. Initial application of dual energy CT in enterography: monochromatic images of normal intestinal wall%正常回肠壁双能CT成像

    Institute of Scientific and Technical Information of China (English)

    容蓉; 邱建星; 王霄英; 孙晓伟; 蒋学祥

    2012-01-01

    Objective:To evaluate the image quality of CT enterography (CTE) with monochromatic images of dual energy CT. Methods:Eighteen patients underwent CT enterography with dual energy CT (Gemstone spectral imaging,GSI) examinations. The spectrum analysis was used to select the monochromatic images for obtaining the best contrast-to-noise ratio (CNR) for ileum wall. The CNR and image noise of ileum wall at the selected monochromatic level and the conventional polychromatic images were measured. Two readers assessed the image quality, noise and sharpness of both optimal CNR monochromatic level and the conventional polychromatic images. Results: At the selected monochromatic level,the image noise of monochromatic images was higher than that of polychromatic images (fat: 16. 87±2. 73 vs 14. 58±2. 26,t= 3. 85,P<0. 01;fluid: 16. 08±4. 17 vs 13. 51 ±2. 85,t= 4. 96,P<0. 01). The CNR of ileum wall in monochromatic images was also higher than that of polychromatic images (4. 36±0. 71 vs 3. 34±0. 78,t=4. 702,P<0. 01). The intraclass correlation coefficient values among readers for optimal CNR monochromatic images quality was 1. 00. Conclusion: Monochromatic images at optimal CNR keV for CTE can improve CNR for normal ileum wall and improve the overall image quality of CTE.%目的:探讨双能CT小肠成像单能量图像显示正常回肠壁的成像质量及其与混合能量图像在小肠CT成像中的差异.方法:对18例拟诊为炎症性肠病患者行小肠CT成像(CTE),采用双能CT宝石能谱成像技术行CT平扫及双期增强扫描(实质期和延迟期),将实质期图像数据分别进行混合能量和GSI单能量重建,应用能谱分析软件,获得正常回肠壁最佳对比噪声比(CNR)单能图像的KeY值.计算混合能量和单能图像上正常回肠壁的对比噪声比,测量两种图像的噪声并进行配对t检验;由两位医师对两种图像上主动脉锐利度、噪声和图像质量进行主观评分并进行配对t检验,计算组

  9. Monochromatic photography of the Cygnus Loop supernova remnant. Plotting of isophotes of partial nebula radiation in the (OIII) and (NII)+H. cap alpha. lines

    Energy Technology Data Exchange (ETDEWEB)

    Sitnik, T.G.; Toropova, M.S. (Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' ' )

    1982-11-01

    System of the isophotes of the 9' size in the west part of the Cyg Loop supernova remnant using monochromatic photographs in the (O3) and (N2)+Hsub(..cap alpha..) lines is obtained. A relative displacement of the regions of emission in these lines is discovered and explained by temperature reduction due to radiative losses behind the shock wave of the supernova explosion. The morphology difference between the (O3) and (N2)+Hsub(..cap alpha..) lines is explained. Anomalously large intensity ratios Isub((O3))/Isub(Hsub(..beta..)) are supposed to be due to spatial separation of the corresponding emission regions.

  10. Magnetic field tunable capacitive dielectric:ionic-liquid sandwich composites

    Science.gov (United States)

    Wu, Ye; Bhalla, Amar; Guo, Ruyan

    2016-03-01

    We examined the tunability of the capacitance for GaFeO3-ionic liquid-GaFeO3 composite material by external magnetic and electric field. Up to 1.6 folds of capacitance tunability could be achieved at 957 kHz with voltage 4 V and magnetic field 0.02 T applied. We show that the capacitance enhancement is due to the polarization coupling between dielectric layer and ionic liquid layer.

  11. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials.

    Science.gov (United States)

    Andryieuski, Andrei; Kuznetsova, Svetlana M; Zhukovsky, Sergei V; Kivshar, Yuri S; Lavrinenko, Andrei V

    2015-08-27

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment.

  12. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  13. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  14. Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods

    Science.gov (United States)

    2014-12-04

    alignment in liquid crystal media was achieved. Furthermore, 3D layer-by-layer graphene –gold nanoparticle hybrid architecture with tunable interlayer...nanoparticles which could further guide to fabricate novel nanophotonic and optical metamaterials . Figure TEM images of P8GNR in LCP. (A) Before UV...Building 3D layer-by-layer gold- graphene nanoparticle hybrid architecture with tunable interlayer distance. The ability to construct self-assembled

  15. Towards chains of tunable and nonlinear superconducting microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael; Wulschner, Friedrich; Schaumburger, Udo; Haeberlein, Max; Fedorov, Kirill; Goetz, Jan; Xie, Edwar [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Schwarz, Manuel; Eder, Peter; Menzel, Edwin; Zhong, Ling; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    We present an experimental feasibility study of chains of tunable and nonlinear superconducting microwave resonators within the realm of circuit QED. We describe the fabrication and experimental characterization of the components required to realize nonlinear resonators with tunable anharmonicity, capacitively coupled resonator chains and on-chip parallel plate capacitors. We discuss possible error sources in the fabrication and characterization processes. Furthermore, simulations based on existing theories are performed to identify accessible parameter ranges.

  16. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  17. Hard rock, heavy metal, metal

    OpenAIRE

    Hein, Fabien

    2011-01-01

    Le terme générique metal désigne une multitude de genres et de sous-genres musicaux issus de l’appariement du hard rock et du heavy metal. Il résulte d’une agrégation sémantique consécutive de l’érosion et de l’interpénétration de ces termes au cours des années 1980. Leurs modèles canoniques, respectivement représentés par les groupes Led Zeppelin et Black Sabbath, se sont progressivement dilués sous l’effet d’une filiation particulièrement effervescente et féconde : black, thrash, doom, prog...

  18. Probing Strangeness in Hard Processes

    CERN Document Server

    Avakian, H; Cisbani, E; Contalbrigo, M; D'Alesio, U; De Leo, R; Devita, R; Di Nezza, P; Hasch, D; Mirazita, M; Osipenko, M; Pappalardo, L; Rossi, P

    2012-01-01

    Since the discovery of strangeness almost five decades ago, interest in this degree of freedom has grown up and now its investigation spans the scales from quarks to nuclei. Measurements with identified strange hadrons can provide important information on several hot topics in hadronic physics: the strange distribution and fragmentation functions, the nucleon tomography and quark orbital momentum, accessible through the study of the {\\it generalized} parton distribution and the {\\it transverse momentum dependent} parton distribution functions, the quark hadronization in the nuclear medium, the hadron spectroscopy and the search for exotic mesons. The CLAS12 large acceptance spectrometer in Hall B at the Jefferson Laboratory upgraded with a RICH detector together with the 12 GeV CEBAF high intensity, high polarized electron beam can open new possibilities to study strangeness in hard processes allowing breakthroughs in all those areas. This paper summarizes the physics case for a RICH detector for CLAS12. Many...

  19. A hard case for modeling

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-10-01

    Some fighter pilots alive today owe their survival to tough, low-weight helmets whose qualities have been refined as a result of biomechanical modeling. Porter and his colleagues have modeled the human head as a mechanical arrangement of a heavy ball on a rod support, as a system of soft matter contained in a hard case, as an arrangement of meso-scale sub-systems, and as a combination of material systems built up from the nano-molecular and atomic scales. An extensive modeling hierarchy (Fig. 1 is held on nothing more esoteric than a networked workstation and server architecture. Nevertheless, thanks to a process of focused simplification at each hierarchical level, it is able to predict the mechanical behavior of the human head and its constituents in reacting to impacts with considerable accuracy.

  20. Schwannoma of the hard palate.

    Science.gov (United States)

    Isildak, Huseyin; Yilmaz, Mehmet; Ibrahimov, Metin; Aslan, Mehmet; Karaman, Emin; Enver, Ozgun

    2010-01-01

    About half of all neurogenic tumors are seen in the head and neck region. The types of neurogenic tumors must be distinguished. Schwannomas originate from Schwann cells of the neural sheath and are solitary, well-encapsulated, slow-growing adjacent to the parental nerve but extrinsic to the nerve fascicles.Approximately 25% to 45% of all schwannomas are seen in the head and neck region and are found rarely in the oral cavity. Most of the intraoral schwannomas are located in the tongue. Other less common locations are the buccal mucosa, palate, base of the mouth, gingiva, and lips.In this study, we report a rare case of schwannoma of the hard palate, which was excised intraorally.

  1. Tunable defect mode realized by graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo

    2016-04-29

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band. - Highlights: • A novel PhC embedded with grapheme sheets is presented, tunable defect is realized. • The mechanism of the tunable defect is explained using the change of equivalent thickness. • The electromagnetic force of a slab is calculated, which indicates the structure can serve as a tunable force generator.

  2. Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons.

    Science.gov (United States)

    Beaud, P; Johnson, S L; Streun, A; Abela, R; Abramsohn, D; Grolimund, D; Krasniqi, F; Schmidt, T; Schlott, V; Ingold, G

    2007-10-26

    We report on the temporal and spatial stability of the first tunable femtosecond undulator hard-x-ray source for ultrafast diffraction and absorption experiments. The 2.5-1 Angstrom output radiation is driven by an initial 50 fs laser pulse employing the laser-electron slicing technique. By using x-ray diffraction to probe laser-induced coherent optical phonons in bulk bismuth, we estimate an x-ray pulse duration of 140+/-30 fs FWHM with timing drifts below 30 fs rms measured over 5 days. Optical control of coherent lattice motion is demonstrated.

  3. Hardware Assisted ROP Detection Mode (HARD Mode)

    Science.gov (United States)

    2013-08-01

    Distribution A. Cleared for public release; unlimited distribution. USAFA-CN-2013-457 Hardware Assisted ROP Detection Mode (HARD Mode) NATHANIEL HART...457 This report, "Hardware Assisted ROP Detection Mode (HARD Mode)" is presented as a competent treatment of the subj ect, worthy of publication. The...Technical 20120810-20121215 Hardware Assisted ROP Detection Mode (HARD Mode) NATHANIEL HART MICHAEL WINSTEAD MARTIN CARLISLE RODNEY LYKINS MICHAEL

  4. Hardness measures and resolution lower bounds

    OpenAIRE

    Beyersdorff, Olaf; Kullmann, Oliver

    2013-01-01

    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this report we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. We also extend these measures to all clause-sets (possibly satisfiable).

  5. Unified characterisations of resolution hardness measures

    OpenAIRE

    Beyersdorff, O; Kullmann, O.

    2014-01-01

    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations b...

  6. Shock Waves in Dense Hard Disk Fluids

    OpenAIRE

    Sirmas, Nick; Tudorache, Marion; Barahona, Javier; Radulescu, Matei I.

    2011-01-01

    Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropi...

  7. Potential health impacts of hard water

    National Research Council Canada - National Science Library

    Sengupta, Pallav

    2013-01-01

    ... the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems...

  8. Hard, soft, and sticky spheres for dynamical studies of disordered colloidal packings

    Science.gov (United States)

    Gratale, Matthew Daniel

    can be employed to probe the shape and size of surrounding macromolecules at the nano-scale. The third set of experiments explored variation in the vibrational properties of colloidal glasses induced by changes in interparticle interactions. In particular, we study the vibrational phonons of quasi-2D colloidal glasses whose interparticle interactions are controlled via the temperature tunable depletion interaction described in the aforementioned experimental work. This tunable attraction enables us to study the changes in the properties of a colloidal glass as the interparticle attraction strength is gradually increased from weak (nearly hard-sphere) to strong. We observed that particle dynamics slow monotonically with increasing attraction strength and eventually plateau at very high attraction strength. The shape of the phonon density of states is also revealed to change with increasing attraction strength; specifically, glasses with low interparticle attraction strength exhibit comparatively more low frequency modes than glasses with high interparticle attraction strength.

  9. Colliding. gamma. e and. gamma gamma. beams based in single-pass e/sup +/e/sup -/ accelerators. Pt. 2. Polarization effects, monochromatization improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Panfil, S.L.; Telnov, V.I.

    Polarization effects are considered in colliding ..gamma..e and ..gamma gamma.. beams, which are proposed to be obtained on the basis of linear e/sup +/e/sup -/ colliders (by backward Compton scattering of laser light on electron beams). It is shown that using electrons and laser photons with helicities lambda and Psub(c), such that lambdaPsub(c) < 0, essentially improves the monochromatization. The characteristic laser flash energy, A/sub 0/, which is necessary to obtain a conversion coefficient k proportional 1 with a definite degree of monochromatization, is considerably less (somestimes by one order of magnitude) in the case 2 lambdaPsub(c) = -1 in contrast to the case lambdaPsub(c) = 0. Simultaneously the luminosities Lsub(..gamma..e) and Lsub(..gamma gamma..) essentially increase. Formulae are obtained which allow one to extract the polarization information about ..gamma..e -> X and ..gamma gamma.. -> X reactions. Perculiarities connected with the specific scheme of the ..gamma.. beam preparation are discussed. Problems of the calibration of the ..gamma..e and ..gamma gamma.. collisions for the polarized beams are discussed.

  10. Verification of TG-61 dose for synchrotron-produced monochromatic x-ray beams using fluence-normalized MCNP5 calculations

    CERN Document Server

    Brown, Thomas A D; Alvarez, Diane; Matthews, Kenneth L; Ham, Kyungmin; 10.1118/1.4761870

    2012-01-01

    Ion chamber dosimetry is being used to calibrate dose for cell irradiations designed to investigate photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. This study performed a dosimetry intercomparison for synchrotron-produced monochromatic x-ray beams at 25 and 35 keV. Ion chamber depth-dose measurements in a PMMA phantom were compared with the product of MCNP5 Monte Carlo calculations of dose per fluence and measured incident fluence. Monochromatic beams of 25 and 35 keV were generated on the tomography beamline at CAMD. A cylindrical, air-equivalent ion chamber was used to measure the ionization created in a 10x10x10-cm3 PMMA phantom for depths from 0.6 to 7.7 cm. The American Association of Physicists in Medicine TG-61 protocol was applied to convert measured ionization into dose. Photon fluence was determined using a NaI detector to make scattering measurements of the beam from a thin polyethylene target at angles 30 degrees to 60 degrees. Differential Compto...

  11. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station

    CERN Document Server

    Huang, Xiaoyuan; Tsai, Yue-Lin Sming; Xu, Ming; Yuan, Qiang; Chang, Jin; Dong, Yong-Wei; Hu, Bing-Liang; Lü, Jun-Guang; Wang, Le; Wu, Bo-Bing; Zhang, Shuang-Nan

    2015-01-01

    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution ($\\sim1\\%$ for electrons and photons and $20\\%$ for nuclei) and a large geometry factor ($>3\\, m^2sr$ for electrons and diffuse photons and $>2\\, m^2sr$ for nuclei). In this work we discuss the capability of HERD to detect monochromatic $\\gamma$-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic $\\gamma$-ray searches at energies between $\\sim10$ to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.

  12. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's space station

    Science.gov (United States)

    Huang, Xiaoyuan; Lamperstorfer, Anna S.; Tsai, Yue-Lin Sming; Xu, Ming; Yuan, Qiang; Chang, Jin; Dong, Yong-Wei; Hu, Bing-Liang; Lü, Jun-Guang; Wang, Le; Wu, Bo-Bing; Zhang, Shuang-Nan

    2016-05-01

    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution (∼1% for electrons and photons and 20% for nuclei) and a large geometry factor (>3 m2 sr for electrons and diffuse photons and > [2]m2 sr for nuclei). In this work we discuss the capability of HERD to detect monochromatic γ-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic γ-ray searches at energies between ∼ 10 to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.

  13. Analysis and interpretation of the first monochromatic X-ray tomography data collected at the Australian Synchrotron Imaging and Medical beamline.

    Science.gov (United States)

    Stevenson, Andrew W; Hall, Christopher J; Mayo, Sheridan C; Häusermann, Daniel; Maksimenko, Anton; Gureyev, Timur E; Nesterets, Yakov I; Wilkins, Stephen W; Lewis, Robert A

    2012-09-01

    The first monochromatic X-ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X-ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point-spread function for the X-ray imaging system and harmonic contamination of the X-ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X-ray spectrum prior to monochromatization, allowance for the response of the double-crystal Si monochromator used (via X-ray dynamical theory), as well as a thorough assessment of the role of X-ray phase-contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point-spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X-ray tomography data, across a wide range of disciplines, including materials and life sciences.

  14. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    CERN Document Server

    Brown, Thomas A D; Alvarez, Diane; Matthews, Kenneth L; Ham, Kyungmin; Dugas, Joseph P; 10.1118/1.4767770

    2012-01-01

    This work investigates the dose-response curves of GAFCHROMIC EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10x10x10-cm3 PMMA phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Cent...

  15. Characterization of four-color multi-package white light-emitting diodes combined with various green monochromatic phosphor-converted light-emitting diodes

    Science.gov (United States)

    Oh, Ji Hye; Lee, Keyong Nam; Do, Young Rag

    2012-03-01

    In this study, several combinations of multi-package white light-emitting diodes (LEDs), which combine an InGaN blue LED with green, amber, and red phosphor-converted LEDs (pc-LEDs), were characterized by changing the peak wavelength of green pc-LEDs between 515nm and 560nm (515, 521, 530, 540, 550, 560nm) in color temperature of 6,500K and 3,500K. Various green monochromatic pc-LEDs were fabricated by capping a long-wave pass-filter (LWPF) on top of pc-LEDs to improve luminous efficacy and color purity. LWPF-capped green monochromatic pc-LED can address the drawback of green semiconductor-type III-V LED, such as low luminous efficacy in the region of green gap wavelength. Luminous efficacy and color rendering index (CRI) of multi-package white LEDs are compared with changing the driving current of individual LED in various multi-package white LEDs. This study provides a best combination of four-color multi-package white LEDs which has high luminous efficacy and good CRI.

  16. Optical reflectivity and hardness improvement of hafnium nitride films via tantalum alloying

    Science.gov (United States)

    Gu, Zhiqing; Huang, Haihua; Zhang, Sam; Wang, Xiaoyi; Gao, Jing; Zhao, Lei; Zheng, Weitao; Hu, Chaoquan

    2016-12-01

    It is found that incorporation of tantalum in a hafnium nitride film induces a tunable optical reflectivity and improves the hardness. The underlying mechanism can be illustrated by a combination of experiments and first-principles calculations. It is shown that the evolution of optical reflectivity and the increase in hardness arise from the formation of Hf1-xTaxN solid solutions and the resulting changes in the electronic structure. The increase in infrared reflectance originates from the increase in concentration of free electrons (n) because Ta (d3s2) has one more valence electron than Hf (d2s2). The sharp blue-shift in cutoff wavelength is attributed to the increase in n and the appearance of t2g → eg interband absorption. These results suggest that alloying of a second transition metal renders an effective avenue to improve simultaneously the optical and mechanical properties of transition metal nitride films. This opens up a door in preparing high-reflectance yet hard films.

  17. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell.

    Science.gov (United States)

    Liu, Fei; Zhu, Jinghan; Yang, Wenlong; Dong, Yunhe; Hou, Yanglong; Zhang, Chenzhen; Yin, Han; Sun, Shouheng

    2014-02-17

    Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange-coupled nanocomposites of hard magnetic face-centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct-FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct-FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct-FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.

  18. InP tunable ring resonator filters

    Science.gov (United States)

    Tauke-Pedretti, A.; Vawter, G. A.; Skogen, E. J.; Peake, G.; Overberg, M.; Alford, C.; Torres, D.; Cajas, F.

    2013-03-01

    Optical channelizing filters with narrow linewidth are of interest for optical processing of microwave signals. Fabrication tolerances make it difficult to place exactly the optical resonance frequency within the microwave spectrum as is required for many applications. Therefore, efficient tuning of the filter resonance is essential. In this paper we present a tunable ring resonator filter with an integrated semiconductor optical amplifier (SOA) fabricated on an InP based photonic integrated circuit (PIC) platform. The ring resonance is tuned over 37 GHz with just 0.2 mA of current injection into a passive phase section. The use of current injection is often more efficient than thermal tuning using heaters making them useful for low-power applications. The single active ring resonator has an electrical FWHM of 1.5 GHz and shows greater than 16 dB of extinction between on and off resonance. The effects of SOA internal ring gain and induced passive loss on extinction and linewidth will be shown. Agreement between experimentally demonstrated devices and simulations are shown. The integration of the active and passive regions is done using quantum well intermixing and the resonators utilize buried heterostructure waveguides. The fabrication process of these filters is compatible with the monolithic integration of DBR lasers and high speed modulators enabling single chip highly functional PICs for the channelizing of RF signals.

  19. Tunable magnetocaloric effect in transition metal alloys.

    Science.gov (United States)

    Belyea, Dustin D; Lucas, M S; Michel, E; Horwath, J; Miller, Casey W

    2015-10-28

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based "high entropy alloys" in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  20. Tunable magnetocaloric effect in transition metal alloys

    Science.gov (United States)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  1. Digital pyramid wavefront sensor with tunable modulation.

    Science.gov (United States)

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  2. Tunable focusing by a flexible metasurface

    Science.gov (United States)

    Zárate, Yair; Shadrivov, Ilya V.; Powell, David A.

    2017-09-01

    An efficient reflective metasurface with elastically tunable focal length is proposed and experimentally demonstrated. The metasurface consists of electric resonators embedded in a stretchable elastic substrate which allows continuous elongation of the system. Our theory and numerical simulations predict how the focal length is controlled by means of the stretching, which we experimentally verify. By performing phase-sensitive measurements of the scattered field, we are able to differentiate the true focus, where all scattered waves are in phase, from the point of maximum amplitude. These phase measurements further enable us to characterise an axial aberration in the stretched structure, due to rays projected from distinct parts of the structure converging at different focal lengths. Additionally, we characterise the efficiency of our structure, showing that 78-95% of the incident power is reflected, depending on the degree of tuning. We also quantify the fraction of incident power which is directed into the beam waist. Our results demonstrate that metamaterials integrated with engineered elastic structures are an effective platform for functional devices.

  3. Patchy polymer colloids with tunable anisotropy dimensions.

    Science.gov (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  4. Tunable nanostructures as photothermal theranostic agents.

    Science.gov (United States)

    Young, Joseph K; Figueroa, Elizabeth R; Drezek, Rebekah A

    2012-02-01

    The theranostic potential of several nanostructures has been discussed in the context of photothermal therapies and imaging. In the last several decades, the burden of cancer has grown rapidly, making the need for new theranostic approaches vital. Lasers have emerged as promising tools in cancer treatment, especially with the advent of photothermal therapies wherein light absorbing dyes or plasmonic gold nanoparticles are used to generate heat and achieve tumor damage. Recently, photoabsorbing nanostructures have materialized that can be employed in conjunction with lasers in the near-infrared region in order to enhance both imaging and photothermal effects. The incorporation of tunable nanostructures has resulted in improved specificity in cancer treatment. Silica-cored gold nanoshells and gold nanorods currently serve as the chief plasmonic structures for photothermal therapy. Although gold nanorods and silica-cored gold nanoshells have shown promise as therapeutic agents, over the past few years new nanostructures have emerged that offer comparable and even superior theranostic properties. In the present review, several theranostic agents and their impact on the development of more effective photothermal therapies for the treatment of cancer are discussed. These agents include hollow gold nanoshells, gold gold-sulfide nanoparticles, gold nanocages, carbon and titanium nanotubes, photothermal-based nanobubbles, polymeric nanoparticles and copper-based nanocrystals.

  5. A porous silicon thermally tunable optical filter

    Science.gov (United States)

    Song, Da; Tokranova, Natalya; Gracias, Alison; Castracane, James

    2008-02-01

    Porous silicon (PSi) is a promising material for the creation of optical components for chip-to-chip interconnects because of its unique optical properties, flexible fabrication methods and integration with conventional CMOS material sets. In this paper, we present a novel active optical filter made of PSi to select desired optical wavelengths. The tunable membrane type optical filter is based on a Fabry-Perot interferometer employing two Bragg reflectors separated by an adjustable air gap, which can be thermally controlled. The Bragg reflectors contain alternating layers of high and low porosities. These layers were created by electrochemical etching of p+ type silicon wafers by varying the applied current during etching process. Micro bimorph actuators are designed to control the movement of the top DBR mirror, which changes the cavity thickness. By varying the applied current, the proposed filter can tune the transmitted wavelength of the optical signal. Various geometrical shapes and sizes ranging from 100μm to 1mm of the active filtering region have been realized for specific applications. The MOEMS technology-based device fabrication is fully compatible with the existing IC mass fabrication processes, and can be integrated with a variety of active and passive optical components to realize inter-chip or intra-chip communication at the system level at a relatively low cost.

  6. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  7. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  8. A widely tunable laser using silica-waveguide ring resonators

    Science.gov (United States)

    Yamazaki, Hiroyuki; Takahashi, Morio; Suzuki, Kouichi; Deki, Yukari; Takeuchi, Takeshi; Takaesu, Sekizen; Horie, Mika; Sato, Kenji; Kudo, Koji

    2005-10-01

    A Wide wavelength tunable laser is needed for Wavelength Division Multiplexing (WDM) and Reconfigurable Optical Add/Drop Multiplexing (ROADM) networks, since it realizes flexible network, effectively employing wavelength resources, and inventory cost reduction. Several types currently exist, but they all are difficult to produce; that is, their mass producibility is not high and they have many components. In particular, monolithically integrated wavelength tunable lasers, such as DFB array, and SG(Sampled Grating)-DBR based structures, have been developed. While these lasers have good performance, they require complex InP growth steps and processing. The external cavity lasers also have good performance, but require precise manual assembly and have moving parts. We have proposed novel tunable laser consisting of silica waveguide ring resonator connected directly to semiconductor optical amplifier. This laser structure has several advantages, such as a simple laser structure suitable for mass-production and high reliability due to having a stable thermal optic phase shifter and no moving parts. This paper gives recent progress in waveguide ring resonator based tunable laser. Low loss and high performance silica waveguide ring resonator, which was suitable for tunable laser, was successfully fabricated using high index contrast SiON core. Double-ring resonators successfully attained 45-nm and 160-nm wavelength tuning operations, which was the largest wavelength tuning range in a tunable laser with no mechanical moving parts reported to date. Triple-ring resonator demonstrated stable full L-band tuning operations with 50-GHz wavelength spacing. We believe that silica waveguide ring resonator based tunable laser is very suitable for not only mass production, but also widely wavelength tuning and stable single mode operations.

  9. Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II

    Science.gov (United States)

    Erko, A.; Zizak, I.

    2009-09-01

    The capabilities of the X-ray beamlines at Berliner Elektronenspeicherring für Synchrotronstrahlung II (BESSY II) for hard X-ray measurements with micro- and nanometer spatial resolution are reviewed. The micro-X-ray fluorescence analysis (micro-XRF), micro-extended X-ray absorption fine structure (micro-EXAFS), micro-X-ray absorption near-edge structure (micro-XANES) as well as X-ray standing wave technique (XSW), X-ray beam induced current (XBIC) in combination with micro-XRF and micro-diffraction as powerful methods for organic and inorganic sample characterization with synchrotron radiation are discussed. Mono and polycapillary optical systems were used for fine X-ray focusing down to 1 µm spot size with monochromatic and white synchrotron radiation. Polycapillary based confocal detection was applied for depth-resolved micro-XRF analysis with a volume resolution down to 3.4 · 10 - 6 mm 3. Standing wave excitation in waveguides was also applied to nano-EXAFS measurements with depth resolution on the order of 1 nm. Several examples of the methods and its applications in material research, biological investigations and metal-semiconductor interfaces analysis are given.

  10. Toward TW-Level, Hard X-Ray Pulses at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen; Wu, J,; /SLAC

    2011-12-13

    Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

  11. Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing.

    Science.gov (United States)

    Liu, Wenjun; Ice, Gene E; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z; Choi, J Y

    2011-07-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway.

  12. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  13. Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance

    Science.gov (United States)

    Kozlova, O.; Sadouni, A.; Truong, D.; Briaudeau, S.; Himbert, M.

    2016-12-01

    We describe a high-performance, transportable, versatile spectroradiometer based on an acousto-optical tunable filter (AOTF). The instrument was developed for temperature metrology, namely, to determine the thermodynamic temperature of black bodies above the Ag freezing point (961.78 °C). Its main design feature is the attenuation of the diffraction side lobes (and, thus, out-of-band stray light) thanks to the use of a double-pass configuration. The radiofrequency tuning of the AOTF allows continuous, fine, and rapid wavelength control over a wide spectral range (650 nm-1000 nm). The instrument tunability can be easily calibrated with an Ar spectral lamp with reproducibility within 10 pm over one week. The instrument was characterised in terms of relative signal stability (few 10-4) and wavelength stability (1 pm) over several hours. The spectral responsivity of the instrument was calibrated with two complementary methods: tuning of the wavelength of the optical source or tuning the radiofrequency of the AOTF. Besides the application for thermodynamic temperature determination at the lowest uncertainty level, this instrument can also be used for multispectral non-contact thermometry of processed materials of non-grey and non-unitary emissivity (in the glass or metallurgical industries).

  14. Nanoscale Tunable Strong Carrier Density Modulation of 2D Materials for Metamaterials and Other Tunable Optoelectronics

    Science.gov (United States)

    Peng, Cheng; Efetov, Dmitri; Shiue, Ren-Jye; Nanot, Sebastien; Hempel, Marek; Kong, Jing; Koppens, Frank; Englund, Dirk

    Strong spatial tunability of the charge carrier density at nanoscale is essential to many 2D-material-based electronic and optoelectronic applications. As an example, plasmonic metamaterials with nanoscale dimensions would make graphene plasmonics at visible and near-infrared wavelengths possible. However, existing gating techniques based on conventional dielectric gating geometries limit the spatial resolution and achievable carrier concentration, strongly restricting the available wavelength, geometry, and quality of the devices. Here, we present a novel spatially selective electrolyte gating approach that allows for in-plane spatial Fermi energy modulation of 2D materials of more than 1 eV (carrier density of n = 1014 cm-2) across a length of 2 nm. We present electrostatic simulations as well as electronic transport, photocurrent, cyclic voltammetry and optical spectroscopy measurements to characterize the performance of the gating technique applied to graphene devices. The high spatial resolution, high doping capacity, full tunability and self-aligned device geometry of the presented technique opens a new venue for nanoscale metamaterial engineering of 2D materials for complete optical absorption, nonlinear optics and sensing, among other applications.

  15. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  16. Retraction of Hard, Lozano, and Tversky (2006)

    Science.gov (United States)

    Hard, B. M.; Lozano, S. C.; Tversky, B.

    2008-01-01

    Reports a retraction of "Hierarchical encoding of behavior: Translating perception into action" by Bridgette Martin Hard, Sandra C. Lozano and Barbara Tversky (Journal of Experimental Psychology: General, 2006[Nov], Vol 135[4], 588-608). All authors retract this article. Co-author Tversky and co-author Hard believe that the research results cannot…

  17. Hard Spring Wheat Technical Committee 2016 Crop

    Science.gov (United States)

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  18. Numerical Solution of Hard-Core Mixtures

    OpenAIRE

    Buhot, Arnaud; Krauth, Werner

    1997-01-01

    We study the equilibrium phase diagram of binary mixtures of hard spheres as well as of parallel hard cubes. A superior cluster algorithm allows us to establish and to access the demixed phase for both systems and to investigate the subtle interplay between short-range depletion and long-range demixing.

  19. Hardness methods for testing maize kernels.

    Science.gov (United States)

    Fox, Glen; Manley, Marena

    2009-07-08

    Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect

  20. Theoretical Hardness of Wurtzite-Structured Semiconductors

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Ju; XU Bo; LIU Zhong-Yuan; YU Dong-Li; HE Ju-Long; GUO Li-Cong

    2008-01-01

    Vickers hardness calculations of eleven wurtzite-structured semiconductors are performed based on the microscopic hardness model All the parameters are obtained from first-principles calculations. There axe two types of chemical bonds in wurtzite-structured crystals. The overlap populations of the two types of chemical bonds in lonsdaleite are chosen as Pc for wurtzite structure. The calculated bond ionicity values of the wurtzite-structured semiconductors are in good agreement with the ionicities from the dielectric definition. When the hardness of wurtzite-structured crystal is higher than 20GPa, our calculated Vickers hardness is within 10% accuracy. Therefore, the hardness of novel wurtzite-structured crystal could be estimated from first-principles calculations.

  1. Use of dimensionality to enhance tunable microwave dielectrics

    Science.gov (United States)

    Schlom, D. G.; Lee, Che-Hui; Haislmaier, R.; Vlahos, E.; Gopalan, V.; Birol, T.; Zhu, Y.; Kourkoutis, L. F.; Benedek, N.; Kim, Y.; Brock, J. D.; Muller, D. A.; Fennie, C. J.; Orloff, N. D.; Booth, J. C.; Goian, V.; Kamba, S.; Biegalski, M. D.; Bernhagen, M.; Uecker, R.; Xi, X. X.; Takeuchi, I.

    2012-02-01

    The miniaturization and integration of frequency-agile microwave circuits---tunable filters, resonators, phase shifters and more---with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at GHz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems, e.g., BaxSr1-xTiO3, have a paraelectric-to-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss---Srn+1TinO3n+1 phases---where in-plane crystallographic shear (SrO)2 faults provide an alternative to point defects for accommodating non-stoichiometry. In this talk we will establish both experimentally and theoretically the emergence of a ferroelectric and highly tunable ground state in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 40 GHz. With increasing n the (SrO)2 faults are separated further than the ferroelectric coherence length perpendicular to the in-plane polarization, enabling tunability with a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

  2. The Brazilian Tunable Filter Imager for the SOAR telescope

    CERN Document Server

    de Oliveira, Cláudia Mendes; Quint, Bruno; Andrade, Denis; Ferrari, Fabricio; Laporte, Rene; Ramos, Giseli de A; Guzman, Christian Dani; Cavalcanti, Luiz; de Calasans, Alvaro; Fernandez, Javier Ramirez; Castañeda, Edna Carolina Gutierrez; Jones, Damien; Fontes, Fernando Luis; Molina, Ana Maria; Fialho, Fábio; Plana, Henri; Jablonski, Francisco J; Reitano, Luiz; Daigle, Olivier; Scarano, Sergio; Amram, Philippe; Balard, Philippe; Gach, Jean-Luc; Carignan, Claude

    2013-01-01

    This paper presents a new Tunable Filter Instrument for the SOAR telescope. The Brazilian Tunable Filter Imager (BTFI) is a versatile, new technology, tunable optical imager to be used in seeing-limited mode and at higher spatial fidelity using the SAM Ground-Layer Adaptive Optics facility at the SOAR telescope. The instrument opens important new science capabilities for the SOAR community, from studies of the centers of nearby galaxies and the insterstellar medium to statistical cosmological investigations. The BTFI takes advantage of three new technologies. The imaging Bragg Tunable Filter concept utilizes Volume Phase Holographic Gratings in a double-pass configuration, as a tunable filter, while a new Fabry-Perot (FP) concept involves technologies which allow a single FP etalon to act over a large range of interference orders and spectral resolutions. Both technologies will be in the same instrument. Spectral resolutions spanning the range between 25 and 30,000 can be achieved through the use of iBTF at l...

  3. Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jochmann, Axel

    2014-07-01

    Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pump-probe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results

  4. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  5. Tunable Erbium-Doped Fiber Laser Based on Random Distributed Feedback

    National Research Council Canada - National Science Library

    Lulu Wang; Xinyong Dong; Shum, Perry Ping; Haibin Su

    2014-01-01

    A tunable erbium-doped fiber (EDF) laser based on random distributed feedback through backward Rayleigh scattering in a 20-km-long single-mode fiber and a tunable fiber Fabry-Perot interferometer filter is demonstrated...

  6. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane; Matthews, Kenneth L. II; Ham, Kyungmin; Dugas, Joseph P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 and Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States); Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States); Center for Advanced Microstructures and Devices, Louisiana State University and A and M College, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 and Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States)

    2012-12-15

    Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.

  7. Multiplexed gas spectroscopy using tunable VCSELs

    Energy Technology Data Exchange (ETDEWEB)

    Bond, T; Bond, S; McCarrick, J; Zumstein, J; Chang, A; Moran, B; Benett, W J

    2012-04-10

    Detection and identification of gas species using tunable laser diode laser absorption spectroscopy has been performed using vertical cavity surface emitting lasers (VCSEL). Two detection methods are compared: direct absorbance and wavelength modulation spectroscopy (WMS). In the first, the output of a DC-based laser is directly monitored to detect for any quench at the targeted specie wavelength. In the latter, the emission wavelength of the laser is modulated by applying a sinusoidal component on the drive current of frequency {omega}, and measuring the harmonics component (2{omega}) of the photo-detected current. This method shows a better sensitivity measured as signal to noise ratio, and is less susceptible to interference effects such as scattering or fouling. Gas detection was initially performed at room temperature and atmospheric conditions using VCSELs of emission wavelength 763 nm for oxygen and 1392 nm for water, scanning over a range of approximately 10 nm, sufficient to cover 5-10 gas specific absorption lines that enable identification and quantization of gas composition. The amplitude and frequency modulation parameters were optimized for each detected gas species, by performing two dimensional sweeps for both tuning current and either amplitude or frequency, respectively. We found that the highest detected signal is observed for a wavelength modulation amplitude equal to the width of the gas absorbance lines, in good agreement with theoretical calculations, and for modulation frequencies below the time response of the lasers (<50KHz). In conclusion, we will discuss limit of detection studies and further implementation and packaging of VCSELs in diode arrays for continuous and simultaneous monitoring of multiple species in gaseous mixtures.

  8. Megawatt, 330 Hz PRF tunable gyrotron experiments

    Science.gov (United States)

    Spark, S. N.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    1994-12-01

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes, whereas cold cathode gyrotrons have normally operated as ‘single shot’ devices. The novel results presented here show that cold cathode gyrotrons can be successfully pulsed repetitively. A tunable gyrotron with a pulse repetition frequency (PRF) of 150Hz is demonstrated. This system developed >4MW mm-wave output pulses at 100GHz. The gyrotron is based on a two-electrode configuration comprising a field-immersed, field emission, cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a cable pulser was used to drive the electron beam. This pulser produced up to a (200±20)kV pulse with 10ns rise time, a 100ns flat top, a 10ns decay with a characteristic impedance of 200Ω. The energy storage capacity of the cable pulser was 35J. The charging unit limited the maximum PRF to 330Hz. Due to spark gap switching limitations 330Hz was only obtainable in 5 to 10 pulse bursts. For substantial periods of the order of 30 seconds, 100Hz PRF was achieved over an oscillating range of 28 to 100GHz and 150Hz PRF was achieved at 80GHz. No degradation effects on the mm-wave output pulse was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the diode recovery time in our cold cathode gyrotron is less than 3ms.

  9. Microwave photonic phase shifter based on tunable silicon-on-insulator microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi;

    2010-01-01

    We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained.......We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained....

  10. Superexciplex of Coumarin Molecules using Tunable Ti-Sapphire Laser

    Science.gov (United States)

    Al-Ghamdi, Attieh Ali; Al-Dwayyan, Abdullah S.; Masilamani, Vadivel; Al-Saud, Turki Saud M.; Al-Salhi, Mohammed Saleh

    2003-10-01

    Certain highly polar dye molecules exhibit an additional optical gain band under pulsed laser excitation, while there is no such band under steady-state continuous wave (CW) lamp excitation. This new band is not due to an excimer, an exciplex or a two-photon fluorescence band but stems from the formation of a new molecular complex in which two excited molecules remain associated with a solvent molecule acting as a bridge. In this paper, the characteristics of superexciplexes of four related coumarin molecules are presented. All molecules were excited using a tunable Ti-sapphire laser pulse 10 ns in width. The distinct difference between the amplified spontaneous emission (ASE) spectra obtained with tunable laser and tunable lamp excitation demonstrated that twisted intramolecular charge transfer (TICT) conformations might also assist in the formation of these superexciplexes.

  11. Dynamically tunable Fano resonance in periodically asymmetric graphene nanodisk pair

    CERN Document Server

    Zhang, Zhengren; Fan, Yuancheng; Yin, Pengfei; Zhang, Liwei; Shi, Xi

    2015-01-01

    We present a dynamically frequency tunable Fano resonance planar device composed of periodically asymmetric graphene nanodisk pair for the mid-infrared region. There are two kinds of modes in this structure, that is, the symmetric mode and the antisymmetric mode. The resonance coupling between the symmetric and antisymmetric modes creates a classical Fano resonance. Both of the Fano resonance amplitude and frequency of the structure can be dynamically controlled by varying the Fermi energy of graphene. Resonance transition in the structure is studied to reveal the physical mechanism behind the dynamically tunable Fano resonance. The features of the Fano resonant graphene nanostructures should have promising applications in tunable THz filters, switches, and modulators.

  12. Opto-VLSI-based tunable single-mode fiber laser.

    Science.gov (United States)

    Xiao, Feng; Alameh, Kamal; Lee, Tongtak

    2009-10-12

    A new tunable fiber ring laser structure employing an Opto-VLSI processor and an erbium-doped fiber amplifier (EDFA) is reported. The Opto-VLSI processor is able to dynamically select and couple a waveband from the gain spectrum of the EDFA into a fiber ring, leading to a narrow-linewidth high-quality tunable laser output. Experimental results demonstrate a tunable fiber laser of linewidth 0.05 nm and centre wavelength tuned over the C-band with a 0.05 nm step. The measured side mode suppression ratio (SMSR) is greater than 35 dB and the laser output power uniformity is better than 0.25 dB. The laser output is very stable at room temperature.

  13. A New Class of Electrically Tunable Metamaterial Terahertz Modulators

    CERN Document Server

    Yan, Rusen; Liu, Lei; Jena, Debdeep; Xing, Huili Grace

    2012-01-01

    Switchable metamaterials offer unique solutions for efficiently manipulating electromagnetic waves, particularly for terahertz waves, which has been difficult since naturally occurring materials rarely respond to terahertz frequencies controllably. However, few terahertz modulators demonstrated to date exhibit simultaneously low attenuation and high modulation depth. In this letter we propose a new class of electrically-tunable terahertz metamaterial modulators employing metallic frequency-selective-surfaces (FSS) in conjunction with capacitively-tunable layers of electrons, promising near 100% modulation depth and < 15% attenuation. The fundamental departure in our design from the prior art is tuning enabled by self-gated electron layers that is independent from the metallic FSS. Our proposal is applicable to all possible electrically tunable elements including graphene, Si, MoS2, oxides etc, thus opening up myriad opportunities for realizing high performance switchable metamaterials over an ultra-wide te...

  14. Tunable asymmetric reflectance in silver films near the percolation threshold

    CERN Document Server

    Chen, Aiqing

    2010-01-01

    We demonstrate semi-transparent thin films exhibiting unique tunable asymmetry in reflectance and simultaneously preserve symmetry in transmittance under light illuminations from opposite directions. The films are obtained using a multi-step process, where a nanocrystalline silver film is first deposited on a glass substrate and then subsequently coated with additional silver via thermal vacuum-deposition. We show that the dispersions of reflectance asymmetries may be tuned both in sign and in magnitude, as well as a universal, tunable spectral crossover point near percolation threshold, which are attributed to asymmetric losses from surface plasmon enhanced absorption and scatterings. The broadband and tunable asymmetric reflectors may have potential applications to light enhancement and light harvesting of photovoltaics.

  15. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bockstiegel, C. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  16. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  17. Strain tunable light emitting diodes with germanium P-I-N heterojunctions

    Science.gov (United States)

    Lagally, Max G; Sanchez Perez, Jose Roberto

    2016-10-18

    Tunable p-i-n diodes comprising Ge heterojunction structures are provided. Also provided are methods for making and using the tunable p-i-n diodes. Tunability is provided by adjusting the tensile strain in the p-i-n heterojunction structure, which enables the diodes to emit radiation over a range of wavelengths.

  18. CALiPER Report 23: Photometric Testing of White Tunable LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-01

    This report documents an initial investigation of photometric testing procedures for white-tunable LED luminaires and summarizes the key features of those products. Goals of the study include understanding the amount of testing required to characterize a white-tunable product, and documenting the performance of available color-tunable luminaires that are intended for architectural lighting.

  19. Fundamentals and hard-switching converters

    CERN Document Server

    Ioinovici, Adrian

    2013-01-01

    Volume 1 Fundamentals and Hard-switching Converters introduces the key challenges in power electronics from basic components to operation principles and presents classical hard- and soft-switching DC to DC converters, rectifiers and inverters. At a more advanced level, it provides comprehensive analysis of DC and AC models comparing the available approaches for their derivation and results. A full treatment of DC to DC hard-switching converters is given, from fundamentals to modern industrial solutions and practical engineering insight. The author elucidates various contradictions and misunderstandings in the literature, for example, in the treatment of the discontinuous conduction operation or in deriving AC small-signal models of converters.

  20. Monochromatic excimer light versus combination of topical steroid with vitamin D3 analogue in the treatment of nonsegmental vitiligo: a randomized blinded comparative study.

    Science.gov (United States)

    Abdel Latif, Azmy Ahmed; Ibrahim, Shady Mahmoud Attia

    2015-01-01

    Vitiligo is a difficult disease to treat, socially stigmatizing its patients. Monochromatic excimer light (MEL) was developed for use in dermatology and adapted for the treatment of vitiligo. Comparing the efficacy of MEL versus topical combination therapy of vitamin D3 analogue and steroid in the treatment of nonsegmental vitiligo. Forty-four patients with localized and stable nonsegmental vitiligo participated in the present study. In each patient, two lesions were selected and divided randomly into two groups, group A was treated with daily topical combination of calcipotriol and betamethasone and group B was treated with biweekly sessions of MEL for 3 months. Efficacy based on repigmentation percentages were blindly evaluated by two independent physicians and patient's satisfaction. There was significant improvement in both treatment modalities at the end of the study, but without significant differences in both groups. There was a significant difference between both groups regarding the onset of repigmentation (p-value vitiligo.