WorldWideScience

Sample records for monocarboxylate-functionalized cyanine dyes

  1. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  2. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, K.D.; Kovalska, V.B.; Segers-Nolten, Gezina M.J.; Veldhuis, G.; Veldhuis, G.J.; Subramaniam, Vinod; Yarmoluk, S.M.

    2009-01-01

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar α-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  3. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, Kateryna D; Kovalska, V B; Segers-Nolten, G M J; Veldhuis, G.; Subramaniam, V; Yarmoluk, S M

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar alpha-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  4. The dimerization study of some cationic monomethine cyanine dyes by chemometrics method

    Czech Academy of Sciences Publication Activity Database

    Ahmadi, S.; Deligeorgiev, T.G.; Vasilev, A.; Kubista, Mikael

    2012-01-01

    Roč. 86, č. 13 (2012), s. 1974-1981 ISSN 0036-0244 Institutional research plan: CEZ:AV0Z50520701 Keywords : dimerization * chemometrics * UV-vis spectroscopy * monomethine cyanine dyes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.386, year: 2012

  5. Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.

    Science.gov (United States)

    Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B

    2018-05-17

    The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.

  6. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    Science.gov (United States)

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent heterodimeric DNA-staining energy transfer dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts. Kits and individual compounds are provided, where the kits find use for simultaneous detection of a variety of moieties, particularly using a single narrow wavelength irradiation source. The individual compounds are characterized by high donor quenching and high affinity to dsDNA as a result of optimizing the length of the linking group separating the two chromophores.

  7. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’ an; Mukhopadhyay, Sukrit; Jang, Sei-Hum; Bredas, Jean-Luc; Jen, Alex K.-Y.

    2015-01-01

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  8. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’an

    2015-09-09

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  9. An OFF–ON–OFF type of pH fluorescent sensor: Benzo[c,d]indole-based dimethine cyanine dye-synthesis, spectral properties and density functional theory studies

    International Nuclear Information System (INIS)

    Liu, Qi; Hong Su, Xiao; Ying Wang, Lan; Sun, Wei; Bo Lei, Yi; Yi Wen, Zhen

    2014-01-01

    We synthesized a novel OFF–ON–OFF type of pH-dependent fluorescent sensor: benzo[c,d]indole-based dimethine cyanine dye D1, with donor-π-acceptor (D-π-A) structure based on intramolecular charge transfer system (ICT), which employed dimethine cyanine dye as a fluorophore and pentavalent nitrogen NH + group as a pH modulator, respectively. The product was identified by 1 H NMR, 13 C NMR, IR, UV–vis and HRMS. The investigation of spectral properties found that dye D1 showed excellent spectroscopic properties and its absorption maxima and fluorescence quantum yield were basically larger in protic solvent than in aprotic solvent. Meanwhile, the absorption spectra of D1 were revealed to hypochromatic-shift and the absorption intensity was gradually decreased along with the increase of pH value. Interestingly, dye D1 showed remarkable fluorescence when pH value was in the range of 6.00–9.80 with the peak at 8.21, which was defined as an OFF–ON–OFF type of pH-dependent fluorescent sensors based on ICT. In addition, dye D1 exhibited a high selectivity for H + over other common ions, such as Cl − , K + , Fe 2+ etc. Theoretical calculations based on density functional theory (DFT) were employed to provide a better understanding of this particular dye sensor. These results indicated that D1 would be able to act as an efficient pH-sensor and had a potential to play an important role in biological and medical study. - Highlights: • A new benzo[c,d]indole-based pH fluorescent sensor was synthesized without adding catalyst. • The absorption spectra of dye D1 were associated with the solvents’ pK a value. • The sensor showed OFF–ON–OFF fluorescence in pH buffer, with the peak at 8.21. • The sensor had high sensitivity and selectivity

  10. Controlled Modulation of Serum Protein Binding and Biodistribution of Asymmetric Cyanine Dyes by Variation of the Number of Sulfonate Groups

    Directory of Open Access Journals (Sweden)

    Franziska M. Hamann

    2011-07-01

    Full Text Available To assess the suitability of asymmetric cyanine dyes for in vivo fluoro-optical molecular imaging, a comprehensive study on the influence of the number of negatively charged sulfonate groups governing the hydrophilicity of the DY-67x family of asymmetric cyanines was performed. Special attention was devoted to the plasma protein binding capacity and related pharmacokinetic properties. Four members of the DY-67x cyanine family composed of the same main chromophore, but substituted with a sequentially increasing number of sulfonate groups (n = 1−4; DY-675, DY-676, DY-677, DY-678, respectively, were incubated with plasma proteins dissolved in phosphate-buffered saline. Protein binding was assessed by absorption spectroscopy, gel electrophoresis, ultrafiltration, and dialysis. Distribution of dye in organs was studied by intraveneous injection of 62 nmol dye/kg body weight into mice (n = 12; up to 180 minutes postinjection using whole-body near-infrared fluorescence imaging. Spectroscopic studies, gel electrophoresis, and dialysis demonstrated reduced protein binding with increasing number of sulfonate groups. The bovine serum albumin binding constant of the most hydrophobic dye, DY-675, is 18 times higher than that of the most hydrophilic fluorophore, DY-678. In vivo biodistribution analysis underlined a considerable influence of dye hydrophilicity on biodistribution and excretion pathways, with the more hydrophobic dyes, DY-675 and DY-676, accumulating in the liver, followed by strong fluorescence signals in bile and gut owing to accumulation in feces and comparatively hydrophilic DY-678-COOH accumulating in the bladder. Our results demonstrate the possibility of selectively controlling dye-protein interactions and, thus, biodistribution and excretion pathways via proper choice of the fluorophore's substitution pattern. This underlines the importance of structure-property relationships for fluorescent labels. Moreover, our data could provide the

  11. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Wengel, Jesper

    2013-01-01

    Double-labeled oligonucleotide probes containing fluorophores interacting by energy-transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little...

  12. Why the Particle-in-a-Box Model Works Well for Cyanine Dyes but Not for Conjugated Polyenes

    Science.gov (United States)

    Autschbach, Jochen

    2007-01-01

    We investigate why the particle-in-a-box (PB) model works well for calculating the absorption wavelengths of cyanine dyes and why it does not work for conjugated polyenes. The PB model is immensely useful in the classroom, but owing to its highly approximate character there is little reason to expect that it can yield quantitative agreement with…

  13. Photoinduced dynamics of a cyanine dye: parallel pathways of non-radiative deactivation involving multiple excited-state twisted transients.

    Science.gov (United States)

    Upadhyayula, Srigokul; Nuñez, Vicente; Espinoza, Eli M; Larsen, Jillian M; Bao, Duoduo; Shi, Dewen; Mac, Jenny T; Anvari, Bahman; Vullev, Valentine I

    2015-04-01

    Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3'-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, -CH 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 . The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission

  14. Characterization of the vitreous body of the human eye using a cyanine dye as a spectral and fluorescent probe

    Science.gov (United States)

    Panova, Ina G.; Tatikolov, Alexander S.

    2009-02-01

    We used one of cyanine dyes as a spectral and fluorescent probe in the study of the composition of the extracellular matrix of the human eye (its vitreous body). Owing to the unique ability of the dye to bind to collagens and human serum albumin, we revealed the simultaneous presence of both types of biomacromolecules in the vitreous body. The formation of the dye complex with human serum albumin leads to appearance of a long-wavelength absorption band (~612 nm) and a steep rise of fluorescence, whereas in the presence of collagens the dye forms J-aggregates with a longer-wavelength absorption band (640-660 nm) and moderate fluorescence. In this work we studied the composition of the human fetus vitreous body and its dynamics from 9 to 31 gestation weeks. On the basis of the data obtained by this method, we may assume that albumin, being a carrier protein, probably provides the vitreous body and surrounding tissues with necessary growth factors, hormones, lipids, vitamins, and some other biomolecules. The data show that the dye is promising not only for study of albumin functions in eye development, but also for characterization of some eye diseases and for analysis of other extracellular media.

  15. Organic photovoltaic materials: squarylium and cyanine-TCNQ dyes

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, V.Y.

    1978-07-01

    The photovoltaic properties of Schottky barrier sandwich cells consisting of sublimed and solution-cast thin films of selected squarylium (bis-anilino derivatives of cyclobuta-1,3-diene-2,4-dione) and cyanine-tetracyanoquinodimethanide (TCNQ) dyes have been measured. For hydroxy squarylium (OHSq), maximum power conversion efficiencies (Eta) were 0.2% for 850-nm light (1 m W/cm/sup 2/); 0.05% for 633-nm light (94mW/cm/sup 2/); 0.06% for white light (21 mW/cm/sup 2/); 0.15% for low intensity (0.14 mW/cm) simulated AM0 light (sunlight under outer space conditions), and 0.02% for high intensity (140 mW/cm/sup 2/) AM0 light. Efficiencies of selected OHSq cells were observed to increase fivefold when the cells were doped with bromine or 1-phenyl-3-p-N, N-diethylaminostyryl-5-p-N, N-diethylaminophenyl-..delta../sup 2/-pyrazoline (DEASP), e.g., 0.05 to 0.23% (Br); 0.004 to 0.021% (DEASP). The efficiency of a solution-cast cell of amorphous 2,2'-dicarbocyanine-TCNQ was 0.02% when 933-nm light (approximately 1 mW/cm/sup 2/) was used. Amorphous solid solutions of 1,1'-diethyl-2,2'-dicarbocyanine-and oxa-2,2'-dicarbocyanine-TCNO salts were also tested. The effects of various material and device properties on the performance of organic photovoltaic cells are discussed, and it is proposed that organic solar cells having efficiencies of one percent or more can be made by using existing technologies.

  16. Near-infrared chemodosimetric probes based on heptamethine cyanine dyes for the “naked-eye” detection of cyanide in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Dali [College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province (China); Liu, Yijiang, E-mail: liuyijiang84@iccas.ac.cn [College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province (China); Li, Mengnan [State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Hongbiao, E-mail: chhb606@163.com [College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province (China); Li, Huaming [College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province (China)

    2017-05-15

    Two simple chemodosimetric probes (P1 and P2) based on heptamethine cyanine dyes have been synthesized for highly sensitive and selective detection of cyanide anions (CN{sup −}) in aqueous media. The probes with an immobilized indolium salt as the specifically nucleophilic addition reaction site for CN{sup −} exhibit absorption bands in the near-infrared (NIR) region (650–850 nm). Upon the addition of CN{sup −}, the probes display a blue-shifted spectrum and result in apparent color change from green to brilliant yellow that can be easily observed by the naked eye even in the presence of other interfering anions such as F{sup −}, AcO{sup −}, Br{sup −}, NO{sub 2}{sup −}, Cl{sup −}, SO{sub 4}{sup 2−} and I{sup −}. There are good linear relationships between the fluorescence intensity of the probes and CN{sup −} concentrations, and the detection limits for P1 and P2 are estimated to be 0.017 μM and 0.2 μM, respectively. The sensing mechanism of the nucleophilic addition is confirmed by {sup 1}H NMR and mass spectroscopic analysis. In addition, the probe P2 is employed for cell imaging and the detection of CN{sup −} in living cells L929 is successfully realized. - Graphical abstract: Simple chemodosimetric probes based on heptamethine cyanine dye were synthesized and applied to detect CN{sup −} in aqueous media with colorimetric and fluorescent dual channel recognition.

  17. Novel synthetic approach to asymmetric monocationic trimethine cyanine dyes derived from N-ethyl quinolinum moiety. Combined fluorescent and ICD probes for AT-DNA labelling

    Energy Technology Data Exchange (ETDEWEB)

    Kurutos, Atanas [Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry, University of Sofia, 1164 Sofia (Bulgaria); Crnolatac, Ivo; Orehovec, Iva [Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb (Croatia); Gadjev, Nikolai [Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry, University of Sofia, 1164 Sofia (Bulgaria); Piantanida, Ivo, E-mail: pianta@irb.hr [Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb (Croatia); Deligeorgiev, Todor, E-mail: ohtak@chem.uni-sofia.bg [Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry, University of Sofia, 1164 Sofia (Bulgaria)

    2016-06-15

    Two asymmetric monocationic trimethine cyanine dyes were obtained via condensation reaction between 2-methylbenzothialolium salts containing various (aliphatic and benzyl) substituents on the nitrogen atom of the benzothiazolic chromophore, and 1-ethyl−4-(2-(phenylamine)vinyl)quinolin−1-ium iodide, by a novel improved method at room temperature under mild conditions. Both compounds bind non-covalently to double stranded DNA and RNA by micromolar affinity, but give highly selective fluorescent response>650 nm for only AT-DNA sequences at excess of DNA over dye, combined with equally AT-DNA selective ICD response at dye/DNA crowded conditions (r{sub [dye]/[AT-DNA]}>0.2)-namely ICD bands (attributed to dye-dimer formation) allow determination of AT-DNA at submicromolar concentrations. Selectivity was attributed to particular steric properties of AT-DNA minor groove in respect to other studied ds-DNA/RNA. Comparison of aliphatic- and benzyl- dye showed that only aliphatic- derivative revealed ICD band upon binding to AU-RNA major groove and short AT-sequences in mixed sequence (ct-)DNA.

  18. Activatable Optical Imaging with a Silica-Rhodamine Based Near Infrared (SiR700) Fluorophore: A comparison with cyanine based dyes

    Science.gov (United States)

    McCann, Thomas E.; Kosaka, Nobuyuki; Koide, Yuichiro; Mitsunaga, Makoto; Choyke, Peter L.; Nagano, Tetsuo; Urano, Yasuteru; Kobayashi, Hisataka

    2011-01-01

    Optical imaging is emerging as an important tool to visualize tumors. However, there are many potential choices among the available fluorophores. Optical imaging probes that emit in the visible range can image superficial tumors with high quantum yields, however, if deeper imaging is needed then near infrared (NIR) fluorophores are necessary. Most commercially available NIR fluorophores are cyanine based and are prone to non-specific binding and relatively limited photostability. Silica-containing rhodamine (SiR) fluorophores represent a new class of NIR fluorophores, which permit photoactivation via H-dimer formation as well as demonstrate improved photostability. This permits higher tumor-to-background ratios (TBRs) to be achieved over longer periods of time. Here, we compared an avidin conjugated with SiR700 (Av-SiR700) to similar compounds based on cyanine dyes (Av-Cy5.5 and Av-Alexa Fluor 680) in a mouse tumor model of ovarian cancer metastasis. We found that the Av-SiR700 probe demonstrated superior quenching enabling activation after binding-internalization to the target cell. As a result, Av-SiR700 had higher TBRs compared to Av-Cy5.5, and better biostability compared to Av-Alexa Fluor 680. PMID:22034863

  19. Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R

    Directory of Open Access Journals (Sweden)

    Maria A. Morosanova

    2018-03-01

    Full Text Available The interaction of silica–titania xerogel with triphenylmethane dyes (pyrocatechol violet, chrome azurol S, eriochrome cyanine R has been investigated to create a new sensor material for solid phase spectrophotometric determination of food oxalates. The complex forming reaction between xerogel incorporated titanium(IV and triphenylmethane dyes has been studied; half-reaction periods, complex composition, equilibrium constants, and xerogel sorption capacity have been calculated for each dye. Eriochrome cyanine R (ECR is characterized by the shortest half-reaction period, the smallest equilibrium constant, and the greatest capacity; it has been chosen for the sensor material construction because titanium(IV-ECR complex is formed faster and can be destroyed easier than other studied complexes. The interaction of this sensor material with oxalates has been described: the presence of oxalates causes sensor material discoloration and the absorbance is used as analytical signal. The analytical range is 35–900 mg/L (LOD 10.5 mg/L, n = 7. High concentrations of interfering inorganic anions, organic acids, and sucrose did not affect oxalate determination. Proposed solid phase spectrophotometric procedure has been successfully applied for the determination of oxalates in food samples (sorrel, spinach, parsley, ginger, and black pepper and the results are in good agreement with HPLC oxalate determination.

  20. Noncovalent Labeling of Biomolecules with Red and Near- Infrared Dyes

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2004-02-01

    Full Text Available Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  1. Hematoxylin shortages: their causes and duration, and other dyes that can replace hemalum in routine hematoxylin and eosin staining.

    Science.gov (United States)

    Dapson, R; Horobin, R W; Kiernan, J

    2010-02-01

    The origins of repeated hematoxylin shortages are outlined. Lack of integration in the hematoxylin trade exacerbates the problems inherent in using a natural product. Separate corporations are engaged in tree growth and harvesting, dye extraction, processing of extracts to yield hematoxylin, and formulation and sale of hematoxylin staining solutions to the end users in biomedical laboratories. Hematoxylin has many uses in biological staining and no single dye can replace it for all applications. Probably, the most satisfactory substitutes for aluminum-hematoxylin (hemalum) are the ferric complexes of celestine blue (CI 51050; mordant blue 14) and eriochrome cyanine R (CI 43820; mordant blue 3, also known as chromoxane cyanine R and solochrome cyanine R). The iron-celestine blue complex is a cationic dye that binds to nucleic acids and other polyanions, such as those of cartilage matrix and mast cell granules. Complexes of iron with eriochrome cyanine R are anionic and give selective nuclear staining similar to that obtained with acidic hemalum solutions. Iron complexes of gallein (CI 45445; mordant violet 25), a hydroxyxanthene dye, can replace iron-hematoxylin in formulations for staining nuclei, myelin, and protozoa.

  2. Configuration of organic dye excimers in nanoporous SiO2 matrices

    International Nuclear Information System (INIS)

    Sorokin, A.V.; Gnap, B.A.; Bespalova, I.I.; Yefimova, S.L.; Malyukin, Yu.V.

    2016-01-01

    The effect of cyanine dye 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO) and benzimidazole dye 4-dimethylamino-1,8-naphthoylene-1′,2′-benzimidazole (DNBI) accumulation in nanoporous silica matrices on the dyes luminescence properties has been studied. For both dyes, ground state dimer formation with perpendicular transition dipoles at high dye concentrations has been considered as a result of restricted geometry of the nanoscale pores. The dimer excitation leads to excimer formation revealing by appearance of new long-wavelength luminescence band and shortening the dye luminescence lifetime. In the excimer luminescence excitation spectra two additional bands have been observed, one of which is bathochromically shifted relatively to the absorption band and another one is hypsocromically shifted. Using the Kasha exciton model it was shown that the excimers possess oblique transition dipoles configuration. - Highlights: • Organic dye molecules are efficiently accumulated in nanoporous silica matrices. • Restricted geometry of SiO 2 nanopores provokes excimerization of both cyanine and benzimidazole dyes. • The excimers reveal configuration of oblique dimers. • The excimers are originated from ground state dimers with a perpendicular arrangement of transition dipoles.

  3. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    Science.gov (United States)

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  4. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  5. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption.

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Larsen, Adam M; Findley, Daniel A; Davis, Robert C; Samha, Hussein; Linford, Matthew R

    2010-09-21

    Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.

  6. Analysis of photoisomerizable dyes using laser absorption and fluorescence techniques

    International Nuclear Information System (INIS)

    Duchowicz, R.; Di Paolo, R.E.; Scaffardi, L.; Tocho, J.O.

    1992-01-01

    The attention of the present report has been directed mainly to the description of laser-based techniques developed in order to obtain kinetic and spectroscopic properties of polymethine cyanine dyes in solution. Special attention was dedicated to photoisomerizable molecules where the absorption spectra of both isomers are strongly overlapped. As an example, measurements of two different dyes of laser technological interest, DTCI and DODCI were performed. The developed methods provide a complete quantitative description of photophysical processes. (author). 14 refs, 6 figs

  7. Conduction and TSC properties of LB films adsorbing cyanine dyes; Cyanine shikiso kyuchaku LB maku ni okeru denki dendo oyobi netsushigeki denryu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shinbo, K.; Kato, K.; Kaneko, F.; Kobayashi, S. [Niigata University, Niigata (Japan)

    1995-05-20

    The electric properties were investigated for phosphatidic acid (PA) LB films adsorbing cyanide dyes (NK-3) with sandwich electrodes. PA LB adsorbing the dyes and the monolayers of Cd salt without the dyes are deposited using subphases, containing various concentrations of the dyes and containing CdCl2 instead of the dyes, respectively. Conduction currents are measured at room temperature for the PA LB film devices. Increases in the conduction currents are observed in the LB films containing the dyes. Furthermore, the conduction currents remarkably increase using the Au upper electrode. The current(I) vs. voltage (V) properties nearly follow the Poole conduction, log(I)-V. Therefore, the conduction currents are very complicated and are thought to be due to composite mechanisms in the film and at the interface. TSC measurements are used to examine the dipolar polarizations in the PA LB films, in the temperature region between 150 K and 300 K. Remarkable increase of TSCs are observed above 260 K for the devices containing the dyes. The TSCs are caused by the dipolar polarizations, and increase with the quantity of the dyes contained in the LB devices and/or aggregations of the dyes. The results are useful for applications of ultrathin film devices in the future. 16 refs., 11 figs., 3 tabs.

  8. Exploring the dynamics of fluorescence staining of bacteria with cyanine dyes for the development of kinetic assays

    Science.gov (United States)

    Thomas, Marlon Sheldon

    -exponential or bi-exponential) function, and time constants were extracted by regressing on the experimental data. The addition of the TWEEN surfactants decreased the rate at which the dyes interacted with the bacterial cells, which typically resulted in larger time constants derived from an exponential fit. ANOVA analysis of the time constants confirmed that the values of the time constants clustered in a narrow range and were independent of dye concentration and weakly dependent on cell density.

  9. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Al Araimi

    2016-12-01

    Full Text Available The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719 and single-walled carbon nanotubes (SWNTs using absorption and photoluminescence (PL spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  10. Coherent Plasmon-Exciton Coupling in Silver Platelet-J-aggregate Nanocomposites

    Science.gov (United States)

    2015-02-27

    visible spectra of colloidal suspensions containing silver nanoplatelets and a cyanine dye, 1,1?-diethyl-2,2?-cyanine iodide (PIC). PIC was...highest reported for colloidal nanoparticles. The optical properties of the silver platelet-J-aggregate nanocomposites were supported numerically and...visible spectra of colloidal suspensions containing silver nanoplatelets and a cyanine dye, 1,1′-diethyl-2,2′-cyanine iodide (PIC). PIC was electrostati

  11. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    Science.gov (United States)

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  12. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society

  13. Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents

    Science.gov (United States)

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.

    2016-01-01

    Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081

  14. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents.

    Science.gov (United States)

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M

    2015-12-01

    Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.

  15. Syntheses and absorption-structure relationships of some new ...

    Indian Academy of Sciences (India)

    New biheterocyclic compound was synthesized as starting material to prepare new photosensitizers mono-, tri-, substituted tri-, azadimethine and mixed cyanine dyes. Absorption-structure relationship of the synthesized cyanine dyes were determined by studying their electronic spectral behaviour in ethanol. The structure of ...

  16. Enhancing sensitivity of SERRS nanoprobes by modifying heptamethine cyanine-based reporter molecules

    Directory of Open Access Journals (Sweden)

    Yunfei Zhang

    2016-07-01

    Full Text Available Surface enhanced resonance Raman scattering (SERRS is a physical phenomenon that occurs when the energy of incident light is close to that of electronic excitation of reporter molecules (RMs attached on substrates. SERRS has showed great promise in healthcare applications such as tumor diagnosis, image-guided tumor surgery and real-time evaluation of therapeutic response due to its ultra-sensitivity, manipulating convenience and easy accessibility. As the most widely used organic near-infrared (NIR fluorophore, heptamethine cyanines possess the electronic excitation energy that is close to the plasmon absorption energy of the gold nano-scaffolds, which results in the extraordinary enhancement of the SERRS signal. However, the effect of heptamethine cyanine structure and the gold nanoparticle morphology to the SERRS intensity are barely investigated. This work developed a series of SERRS nanoprobes in which two heptamethine cyanine derivatives (IR783 and IR780 were used as the RM and three gold nanoparticles (nanorod, nanosphere and nanostar were used as the substrates. Interestingly, even though IR780 and IR783 possess very similar chemical structure, SERRS signal produced by IR780 was determined as 14 times higher than that of IR783 when the RM concentration was 6.5 × 10−6M. In contrast, less than 4.0 fold SERRS signal intensity increase was measured by changing the substrate morphologies. Above experimental results indicate that finely tuning the chemical structure of the heptamethine cyanine could be a feasible way to develop robust SERRS probes to visualize tumor or guide tumor resection with high sensitivity and target to background ratio.

  17. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  18. Monocarboxylate Transporters and Lactate Metabolism in Equine Athletes: A Review

    Directory of Open Access Journals (Sweden)

    Pösö AR

    2002-06-01

    Full Text Available Lactate is known as the end product of anaerobic glycolysis, a pathway that is of key importance during high intensity exercise. Instead of being a waste product lactate is now regarded as a valuable substrate that significantly contributes to the energy production of heart, noncontracting muscles and even brain. The recent cloning of monocarboxylate transporters, a conserved protein family that transports lactate through biological membranes, has given a new insight into the role of lactate in whole body metabolism. This paper reviews current literature on lactate and monocarboxylate transporters with special reference to horses.

  19. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C

    2012-01-01

    Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular...

  20. Monocarboxylate transporters in the brain and in cancer.

    Science.gov (United States)

    Pérez-Escuredo, Jhudit; Van Hée, Vincent F; Sboarina, Martina; Falces, Jorge; Payen, Valéry L; Pellerin, Luc; Sonveaux, Pierre

    2016-10-01

    Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. [1,10]Phenanthroline based cyanine dyes as fluorescent probes for ribonucleic acids in live cells

    Science.gov (United States)

    Kovalska, Vladyslava; Kuperman, Marina; Varzatskii, Oleg; Kryvorotenko, Dmytro; Kinski, Elisa; Schikora, Margot; Janko, Christina; Alexiou, Christoph; Yarmoluk, Sergiy; Mokhir, Andriy

    2017-12-01

    A series of monomethine, trimethine- and styrylcyanine dyes based on a [1,10]phenanthroline moiety was synthesized, characterized and investigated as potential fluorescent probes for nucleic acids in cell free settings and in cells. The dyes were found to be weakly fluorescent in the unbound state, whereas upon the binding to dsDNA or RNA their emission intensity raised up to 50 times (for monomethine benzothiazole derivative FT1 complexed with RNA). The strongest fluorescence intensity in assemblies with dsDNA and RNA was observed for the trimethine benzothiazole derivative FT4. The quantum yield of FT4 fluorescence in its complex with dsDNA was found to be 1.5% and the binding constant (K b) was estimated to be 7.9 × 104 M-1 that is a typical value for intercalating molecules. The FT4 dye was found to be cell membrane permeable. It stains RNA rich components—the nucleoli and most probably the cytoplasmic RNA. FT4 bound to RNAs delivers a very strong fluorescence signal, which makes this easily accessible dye a potentially useful alternative to known RNA stains, e.g. expensive SYTO® 83. The advantage of FT4 is its easy synthetic access including no chromatographic purification steps, which will be reflected in its substantially lower price.

  2. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat; Aziz, Saadullah G.; Osman, Osman I.; Bredas, Jean-Luc

    2017-01-01

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD

  3. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  4. A Conjugate of Pentamethine Cyanine and 18F as a Positron Emission Tomography/Near-Infrared Fluorescence Probe for Multimodality Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Fei-Fei An

    2017-06-01

    Full Text Available The novel synthesis of a dual-modality, pentamethine cyanine (Cy5 fluorescent, 18F positron emission tomography (PET imaging probe is reported. The probe shows a large extinction coefficient and large quantum yield in the biologically transparent, near-infrared window (650–900 nm for in vivo fluorescent imaging. This fluorophore bears the isotope, 18F, giving a 18F-PET/near-infrared fluorescent (NIRF, bi-modal imaging probe, that combines the long-term stability of NIRF and the unlimited penetration depth of PET imaging. The bi-modal probe is labeled with 18F in a quick, one-step reaction, which is important in working with the rapid decay of 18F. The bi-modal probe bears a free carboxyl group, highlighting a PET/NIRF synthon that can be conjugated onto many advanced biomolecules for biomarker-specific in vivo dual-modal PET/NIR tumor imaging, confocal histology, and utility in multi-fluorophore, fluorescence-guided surgery. Its potential in vivo biocompatibility is explored in a quick proof-of-principal in vivo study. The dye is delivered to A549 xenograft flank-tumors to generate PET and NIRF signals at the tumor site. The tumor distribution is confirmed in ex vivo gamma counting and imaging. Pentamethine cyanine (Cy5 has the ability to preferentially accumulate in tumor xenografts. We substitute the PET/NIRF probe for Cy5, and explore this phenomenon.

  5. Cy3 and Cy5 dyes attached to oligonucleotide terminus stabilize DNA duplexes: predictive thermodynamic model.

    Science.gov (United States)

    Moreira, Bernardo G; You, Yong; Owczarzy, Richard

    2015-03-01

    Cyanine dyes are important chemical modifications of oligonucleotides exhibiting intensive and stable fluorescence at visible light wavelengths. When Cy3 or Cy5 dye is attached to 5' end of a DNA duplex, the dye stacks on the terminal base pair and stabilizes the duplex. Using optical melting experiments, we have determined thermodynamic parameters that can predict the effects of the dyes on duplex stability quantitatively (ΔG°, Tm). Both Cy dyes enhance duplex formation by 1.2 kcal/mol on average, however, this Gibbs energy contribution is sequence-dependent. If the Cy5 is attached to a pyrimidine nucleotide of pyrimidine-purine base pair, the stabilization is larger compared to the attachment to a purine nucleotide. This is likely due to increased stacking interactions of the dye to the purine of the complementary strand. Dangling (unpaired) nucleotides at duplex terminus are also known to enhance duplex stability. Stabilization originated from the Cy dyes is significantly larger than the stabilization due to the presence of dangling nucleotides. If both the dangling base and Cy3 are present, their thermodynamic contributions are approximately additive. New thermodynamic parameters improve predictions of duplex folding, which will help design oligonucleotide sequences for biophysical, biological, engineering, and nanotechnology applications. Copyright © 2015. Published by Elsevier B.V.

  6. Dye Sensitizers for Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Harold S. Freeman

    2013-03-01

    Full Text Available Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT. Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89 and having broad food and drug administration (FDA approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA, meta-tetra(hydroxyphenylchlorin (m-THPC, N-aspartyl chlorin e6 (NPe6, and precursors to endogenous protoporphyrin IX (PpIX: 1,5-aminolevulinic acid (ALA, methyl aminolevulinate (MAL, hexaminolevulinate (HAL. Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers.

  7. Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation.

    Science.gov (United States)

    Fayol, Laurence; Baud, Olivier; Monier, Anne; Pellerin, Luc; Magistretti, Pierre; Evrard, Philippe; Verney, Catherine

    2004-01-31

    Lactate and the other monocarboxylates are a major energy source for the developing brain. We investigated the immunocytochemical expression of two monocarboxylate transporters, MCT1 and MCT2, in the human visual cortex between 13 and 26 post-ovulatory weeks. We used immunoperoxidase and immunofluorescence techniques to determine whether these transporters co-localized with markers for blood vessels (CD34), neurons (microtubule-associated protein 2 [MAP2], SMI 311), radial glia (vimentin), or astrocytes (glial fibrillary acidic protein [GFAP], S100beta protein). MCT1 immunoreactivity was visible in blood vessel walls as early as the 13th week of gestation mainly in the cortical plate and subplate. At this stage, less than 10% of vessels in the ventricular layer expressed MCT1, whereas all blood vessels walls showed this immunoreactivity at the 26th gestational week. Starting at the 19th week of gestation, sparse MCT1 positive cell bodies were detected, some of them co-localized with MAP2 immunoreactivity. MCT2 immunoreactivity was noted in astrocytic cell bodies from week 19 and spread subsequently to the astrocyte end-feet in contact with blood vessels. MCTs immunoreactivities were most marked in the subplate and deep cortical plate, where the most differentiated neurons were located. Our findings suggest that monocarboxylate trafficking between vessels (MCT1), astrocytes (MCT2) and some postmitotic neurons (MCT1) could develop gradually toward 20 gestational weeks (g.w.). These data suggest that lactate or other monocarboxylates could represent a significant energy source for the human visual cortex at this early stage.

  8. Targeted Imaging of Tumor-Associated Macrophages by Cyanine 7-Labeled Mannose in Xenograft Tumors

    Directory of Open Access Journals (Sweden)

    Chong Jiang MD

    2017-01-01

    Full Text Available Mannose receptor is considered as a hallmark of M2-oriented tumor-associated macrophages (TAMs, but its utility in TAMs was rarely reported. Therefore, deoxymannose (DM, a high-affinity ligand of mannose receptor, was labeled with near-infrared dye cyanine 7 (Cy7, and its feasibility of targeted imaging on TAMs was evaluated in vitro and in vivo. The Cy7-DM was synthesized, and its binding affinity with induced TAMs in vitro, whole-body imaging in xenograft tumor mouse model in vivo, and the cellular localization in dissected tissues were evaluated. We demonstrated a high uptake of Cy7-DM by induced M2 macrophages and TAMs in tumor tissues. In vivo near-infrared live imaging visualized abundant TAMs in tumor lesions instead of inflammatory sites by Cy7-DM imaging, and the quantity of Cy7-DM signals in tumors was significantly higher than that shown in inflammatory sites from 1 to 8 hours of imaging. Our results suggest that mannose could rapidly and specifically target TAMs and is a promising candidate for targeted diagnosis of tumor with rich TAMs.

  9. Application of monocarboxylic acids for the extraction of metal ions-literature survey

    International Nuclear Information System (INIS)

    Brzozka, Z.; Rozycki, C.

    1980-01-01

    In the paper there is presented a literature review concerning the application of monocarboxylic acids for extraction of metal ions. The following problems are discussed: characteristic of monocarboxylic acids and their mixtures, the equilibria between the acid solution in organic solvent and aqueous phase, the mechanism of acid partition, complexes of carboxylic acids and metal ions in aqueous phase, mechanism of extraction by means of carboxylic acids as well as the problems concerning the extraction of individual metal ions. Data about the extraction of metal ions are presented in table. The 138 references are given. (author)

  10. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  11. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  12. Modified zirconium-eriochrome cyanine R determination of fluoride

    Science.gov (United States)

    Thatcher, L.L.

    1957-01-01

    The Eriochrome Cyanine R method for determining fluoride in natural water has been modified to provide a single, stable reagent solution, eliminate interference from oxidizing agents, extend the concentration range to 3 p.p.m., and extend the phosphate tolerance. Temperature effect was minimized; sulfate error was eliminated by precipitation. The procedure is sufficiently tolerant to interferences found in natural and polluted waters to permit the elimination of prior distillation for most samples. The method has been applied to 500 samples.

  13. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    Science.gov (United States)

    Tang, Weizhong; Zhou, Huafu; Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  14. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Corem-Salkmon E

    2012-10-01

    Full Text Available Enav Corem-Salkmon, Benny Perlstein, Shlomo MargelThe Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, IsraelBackground: Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near-infrared (NIR fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices.Methods and results: NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA, were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin

  15. Si Functionalization With Dye Molecular as Light-Harvesting Material

    International Nuclear Information System (INIS)

    Nurul Aqidah Mohd Sinin; Mohd Adib Ibrahim; Mohd Asri Mat Teridi; Norasikin Ahmad Ludin; Suhaila Sepeai; Kamaruzzaman Sopian

    2015-01-01

    The surface plays an important role in thin silicon solar cells, especially with regard to the surface state and interface electronic properties that influence the electron and hole to recombine. In order to keep the recombination loss at a tolerable minimum and avoid an unacceptably large efficiency loss when moving towards thinner silicon materials, the surface must be electronically well passivated. Passivation is the most significant step for the functionalization of silicon. In this study, Si functionalization with a dye molecule might increase the absorption of light that acts as light-harvesting material on the silicon surface. Two types of dye molecular were used; DiL (λ_p_e_a_k = 549 nm) and DiO (λ_p_e_a_k = 484 nm). Both dyes were deposited using a spin-coating technique. These dye layers on the silicon surface were characterized using a Kelvin probe (KP) and photoluminescence (PL) spectroscopy. A different mechanism of slow charge trapping and detrapping was observed using KP measurement. A lifetime decay was observed that indicated a slow process of charge detrapping, owing to light trapping inside the dye/ SiNW interface, with a slow process for an equilibrium to establish between the surface states and the space charge region. An average lifetime of the entire fluorescence decay process was recorded at about 1.24 ns (DiO) and 0.22 ns (DiL), using PL spectroscopy. We show conclusively that these two types of dye can be used as light absorbers, in order to improve the surface properties of the silicon. (author)

  16. Recording membrane potential changes through photoacoustic voltage sensitive dye

    Science.gov (United States)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.

    2017-03-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.

  17. Elevated Serum Triiodothyronine and Intellectual and Motor Disability with Paroxysmal Dyskinesia Caused by a Monocarboxylate Transporter 8 Gene Mutation

    Science.gov (United States)

    Fuchs, Oliver; Pfarr, Nicole; Pohlenz, Joachim; Schmidt, Heinrich

    2009-01-01

    "Monocarboxylate transporter 8" ("MCT8" or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome…

  18. Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA

    Science.gov (United States)

    Wynne, Samantha A.; Pinheiro, Vitor B.; Holliger, Philipp; Leslie, Andrew G. W.

    2013-01-01

    Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers. PMID:23940661

  19. The genetic variation in Monocarboxylic acid transporter 2 (MCT2 has functional and clinical relevance with male infertility

    Directory of Open Access Journals (Sweden)

    Jinu Lee

    2014-10-01

    Full Text Available Monocarboxylic acid transporter 2 (MCT2 transports pyruvate and lactate outside and inside of sperms, mainly as energy sources and plays roles in the regulation of spermatogenesis. We investigated the association among genetic variations in the MCT2 gene, male infertility and MCT2 expression levels in sperm. The functional and genetic significance of the intron 2 (+28201A > G, rs10506398 and 3' untranslated region (UTR single nucleotide polymorphism (SNP (+2626G > A, rs10506399 of MCT2 variants were investigated. Two MCT2 polymorphisms were associated with male infertility (n = 471, P A had a strong association with the oligoasthenoteratozoospermia (OAT group. The +2626GG type had an almost 2.4-fold higher sperm count than that of the +2626AA type (+2626GG; 66 × 10 6 vs +2626AA; 27 × 10 6 , P < 0.0001. The MCT2-3' UTR SNP may be important for expression, as it is located at the MCT2 3' UTR. The average MCT2 protein amount in sperm of the +2626GG type was about two times higher than that of the +2626AA type. The results suggest that genetic variation in MCT2 has functional and clinical relevance with male infertility.

  20. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1.

    Science.gov (United States)

    Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2012-09-01

    Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy. ©2012 AACR.

  1. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters

    Science.gov (United States)

    Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui

    2016-01-01

    Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812

  2. Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells

    DEFF Research Database (Denmark)

    Cheng, Chang; Edin, Nina F Jeppesen; Lauritzen, Knut H

    2012-01-01

    Tumour cells are characterized by aerobic glycolysis, which provides biomass for tumour proliferation and leads to extracellular acidification through efflux of lactate via monocarboxylate transporters (MCTs). Deficient and spasm-prone tumour vasculature causes variable hypoxia, which favours...

  3. Spectrophotometric determination of Sc in eriochrome cyanine R(chrome azurol S) - phosphatidyl choline system

    International Nuclear Information System (INIS)

    Xu, Y.; Chen, X.; Hu, Z.

    1987-01-01

    Eriochrome cyanine R(chrome azurol S) is used as a color reagent to determine Sc in the presence of phosphatidyl choline, eta = 3.7 * 10 4 (4.5 * 10 4 ). This method has been connected to extraction separation to determine Sc in the presence of rare earth elements, and good results have been obtained. Phosphatidyl choline(PC) is a biochemical reagent, which can be used as a surfactant. It has been reported that chrome azurol S(CAS) can be used to determine Be in the presence of PC but it has not been reported that eriochrome cyanine R(ECR) and CAS can been used to determine Sc in the presence of PC. This paper has put forward a method by which Sc can be determined. ECR (CAS) has been used as a color reagent and PC as a surfactant. Conditional experiments have been made and this method has been connected to extraction separation. Tributyl phosphate (TBP) extracts Sc from rare earth elements to make a determination and good results have been obtained

  4. Effect of crosslinker on the swelling and adsorption properties of ...

    Indian Academy of Sciences (India)

    The SAPs were used to adsorb the dye Orange G at different initial concentrations of the dye. The equilibrium adsorption data followed the Langmuir adsorption isotherms. The SAPs were also used to adsorb three other dyes, namely, Congo red, Amido black and Alizarin cyanine green. They exhibited different adsorption ...

  5. Synthesis of dye/fluorescent functionalized dendrons based on cyclotriphosphazene

    Directory of Open Access Journals (Sweden)

    Aurélien Hameau

    2011-11-01

    Full Text Available Functionalized phenols based on tyramine were synthesized in order to be selectively grafted on to hexachlorocyclotriphosphazene, affording a variety of functionalized dendrons of type AB5. The B functions comprised fluorescent groups (dansyl or dyes (dabsyl, whereas the A function was provided by either an aldehyde or an amine. The characterization of these dendrons is reported. An unexpected behaviour of a fluorescent and water-soluble dendron based on dansyl groups in mixtures of dioxane/water was observed.

  6. Mono-carboxylate conversion coatings for AZ31 Mg alloy protection

    Energy Technology Data Exchange (ETDEWEB)

    Frignani, A.; Grassi, V.; Zucchi, F.; Zanotto, F. [Corrosion Study Centre A. Dacco, University of Ferrara (Italy)

    2011-11-15

    Conversion coatings on a magnesium alloy were obtained by dipping AZ31 specimens in aqueous solutions of sodium salts of mono-carboxylic acids (stearic, palmitic, myristic, lauric, mono-carboxylate ion concentration from 1 to 5 mM, depending on the salt solubility) for 24 and 72 h at room temperature, or 24 h at 50 C. The influence exerted by the treatment time, bath temperature and alkyl chain length on the efficiency of these coatings was studied. The performances of the coatings were evaluated by potentiodynamic polarization curve recording after 1 h immersion in 0.05 M Na{sub 2}SO{sub 4} solution, while their temporal evolution was monitored by electrochemical impedance spectroscopy (EIS) spectra during 24 h. Further and long lasting tests were carried out also in 0.1 M NaCl solution. The efficiency of the coatings depended on the aliphatic chain length, and increased as the treatment time and the bath temperature were increased. The coating of lower homologue only hindered the cathodic process, while those of the higher homologues markedly inhibited the anodic process too. The best performances were displayed by 24 h-50 C stearic conversion coating, which maintained a very high efficiency for over 800 h immersion in 0.05 M sulphate solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Deprive to kill: Glutamine closes the gate to anticancer monocarboxylic drugs

    OpenAIRE

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate tr...

  8. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    International Nuclear Information System (INIS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-01-01

    Gold nanoparticles (Au NPs) in three different silica based sol–gel matrixes with and without surfactants are prepared. They are characterized by UV–vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol–gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200–280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5–15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  9. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Uday Pratap; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Pal, Manas [Banaras Hindu University, Department of Chemistry, Faculty of Science (India)

    2011-09-15

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  10. Determination of photophysical parameters of cyanines using different techniques. Application to DODCI (3-3' dietiloxacarbocyanine iodide)

    International Nuclear Information System (INIS)

    Duchowicz, R.; Scaffardi, L.; Di Paolo, R.E.; Tocho, J.O.

    1990-01-01

    A number of fluorescence and absorption techniques were developed for the determination of photo-physical parameters of photo-isomerizable cyanines. The application of these techniques, such as saturated fluorescence, double excitation fluorescence and temperature dependent absorption, to the specific case of 3-3' dietiloxadicarbocyanine iodide (DODCI), allowed the particular study of photo-isomer's exited state along with its decay processes. Fluorescence efficiency and the mean life of the photo-isomer as a function of temperature were obtained. The activation energy and the pre-exponential factor for the non-radioactive decay processes were determined. For the first time, the fluorescence spectrum of the transient isomer form was registered free of the emission of the normal species. (Author). 6 refs., 9 figs

  11. Spectrophotometric determination of catecholamine using vanadium and eriochrome cyanine r

    International Nuclear Information System (INIS)

    Nagaraja, Padmarajaiah; Shrestha, Ashwinee Kumar; Shivakumar, Anantharaman; Al-Tayar, Naef Ghallab Saeed; Gowda, Avinask K.

    2011-01-01

    highly sensitive spectrophotometric method for the analysis of catecholamine drugs; L-dopa and methyldopa, is described. The analysis is based on the reaction of drug molecules with vanadium (V) which is reduced to vanadium (IV) and form complex with eriochrome cyanine R to give products having maximum absorbance (λ max ) at 565 nm. Beer's law is obeyed in the range 0.028-0.84 and 0.099-0.996 μg mL -1 for L-dopa and methyldopa, respectively. The statistical analysis as well as comparison with reported methods demonstrated high precision and accuracy of the proposed method. The method was successfully applied in the analysis of pharmaceutical preparations. (author)

  12. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring.

    Science.gov (United States)

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.

  13. Computational screening of functionalized zinc porphyrins for dye sensitized solar cells

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2013-01-01

    separation, and high output voltage. Here we demonstrate an extensive computational screening of zinc porphyrins functionalized with electron donating side groups and electron accepting anchoring groups. The trends in frontier energy levels versus side groups are analyzed and a no-loss DSSC level alignment...... quality is estimated. Out of the initial 1029 molecules, we find around 50 candidates with level alignment qualities within 5% of the optimal limit. We show that the level alignment of five zinc porphyrin dyes which were recently used in DSSCs with high efficiencies can be further improved by simple side......An efficient dye sensitized solar cell (DSSC) is one possible solution to meet the world's rapidly increasing energy demands and associated climate challenges. This requires inexpensive and stable dyes with well-positioned frontier energy levels for maximal solar absorption, efficient charge...

  14. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  15. Excitations in opal photonic crystals infiltrated with polarizable media

    Science.gov (United States)

    Eradat, Nayer; Sivachenko, A. Y.; Raikh, Mikhail E.; Vardeny, Z. Valy; Zakhidov, Anvar A.; Li, S.; Baughman, Ray H.

    2002-12-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function. PCs can be a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with highly polarizable media such as j-aggregates of cyanine dyes. Opals are self-assembled structures of silica spheres. We report our studies on clarifying the relationship between a polaritonic gap and a photonic stop band (Bragg gap) when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. Both effects exist independently when the Bragg (at ω = ωB) and polaritonic (ω = ωT) resonances are well separated in frequency. A completely different situation occurs when ωT ~ωB. Such a condition was achieved in opals that were infiltrated with J-aggregates of cyanine dyes that have large Rabi frequency. Our measurements show some dramatic changes in the shape of the reflectivity plateaus, which are due to the interplay between the photonic band gap and the polaritonic gap. The experimental results on reflectivity and its dependence on the light propagation angle and concentration of the cyanie dyes are in agreement with the theoretical calculations.

  16. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2} and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.

  17. Normalization of voltage-sensitive dye signal with functional activity measures.

    Directory of Open Access Journals (Sweden)

    Kentaroh Takagaki

    Full Text Available In general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the DeltaF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the DeltaF/F method may, to an extent, be mitigated by a novel method of normalization, DeltaF/DeltaF(epileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of "hypersynchronized" bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional DeltaF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization

  18. Multi-dye theranostic nanoparticle platform for bioimaging and cancer therapy

    Directory of Open Access Journals (Sweden)

    Singh AK

    2012-06-01

    Full Text Available Amit K Singh,1,2 Megan A Hahn,2 Luke G Gutwein,3 Michael C Rule,4 Jacquelyn A Knapik,5 Brij M Moudgil,1,2 Stephen R Grobmyer,3 Scott C Brown,2,61Department of Materials Science and Engineering, College of Engineering, 2Particle Engineering Research Center, College of Engineering, 3Division of Surgical Oncology, Department of Surgery, College of Medicine, 4Cell and Tissue Analysis Core, McKnight Brain Institute, 5Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; 6DuPont Central Research and Development, Corporate Center for Analytical Science, Wilmington, DE, USABackground: Theranostic nanomaterials composed of fluorescent and photothermal agents can both image and provide a method of disease treatment in clinical oncology. For in vivo use, the near-infrared (NIR window has been the focus of the majority of studies, because of greater light penetration due to lower absorption and scatter of biological components. Therefore, having both fluorescent and photothermal agents with optical properties in the NIR provides the best chance of improved theranostic capabilities utilizing nanotechnology.Methods: We developed nonplasmonic multi-dye theranostic silica nanoparticles (MDT-NPs, combining NIR fluorescence visualization and photothermal therapy within a single nanoconstruct comprised of molecular components. A modified NIR fluorescent heptamethine cyanine dye was covalently incorporated into a mesoporous silica matrix and a hydrophobic metallo-naphthalocyanine dye with large molar absorptivity was loaded into the pores of these fluorescent particles. The imaging and therapeutic capabilities of these nanoparticles were demonstrated in vivo using a direct tumor injection model.Results: The fluorescent nanoparticles are bright probes (300-fold enhancement in quantum yield versus free dye that have a large Stokes shift (>110 nm. Incorporation of the naphthalocyanine dye and exposure to NIR laser excitation

  19. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    International Nuclear Information System (INIS)

    Gao, Hejun; Kan, Taotao; Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli; Wang, Xiaodong; Zheng, Liqiang

    2013-01-01

    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent

  20. Spectrophotometric determination of aluminium in presence of iron with eriochrome cyanine R. Essays with a decolorated reagent

    International Nuclear Information System (INIS)

    Barrachina Gomez, M.; Gasco Sanchez, L.; Fernandez Cellini, R.

    1962-01-01

    The behaviour of the extinction coefficient of aqueous solutions of Eriochrome Cyanine R is studied. It is found that at pH 5-6 the diluted acid solutions decolorate rapidly according to an exponential law (538 mμ). The fact that the decoloree solutions go on still reacting with the aluminium has. (Author) 12 refs

  1. Candidate genes for performance in horses, including monocarboxylate transporters

    Directory of Open Access Journals (Sweden)

    Inaê Cristina Regatieri

    Full Text Available ABSTRACT: Some horse breeds are highly selected for athletic activities. The athletic potential of each animal can be measured by its performance in sports. High athletic performance depends on the animal capacity to produce energy through aerobic and anaerobic metabolic pathways, among other factors. Transmembrane proteins called monocarboxylate transporters, mainly the isoform 1 (MCT1 and its ancillary protein CD147, can help the organism to adapt to physiological stress caused by physical exercise, transporting lactate and H+ ions. Horse breeds are selected for different purposes so we might expect differences in the amount of those proteins and in the genotypic frequencies for genes that play a significant role in the performance of the animals. The study of MCT1 and CD147 gene polymorphisms, which can affect the formation of the proteins and transport of lactate and H+, can provide enough information to be used for selection of athletic horses increasingly resistant to intense exercise. Two other candidate genes, the PDK4 and DMRT3, have been associated with athletic potential and indicated as possible markers for performance in horses. The oxidation of fatty acids is highly effective in generating ATP and is controlled by the expression of PDK4 (pyruvate dehydrogenase kinase, isozyme 4 in skeletal muscle during and after exercise. The doublesex and mab-3 related transcription factor 3 (DMRT3 gene encodes an important transcription factor in the setting of spinal cord circuits controlling movement in vertebrates and may be associated with gait performance in horses. This review describes how the monocarboxylate transporters work during physical exercise in athletic horses and the influence of polymorphisms in candidate genes for athletic performance in horses.

  2. Synthesis and Properties of Sulfhydryl-Reactive Near-Infrared Cyanine Fluorochromes for Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yuhui Lin

    2003-04-01

    Full Text Available Near-infrared fluorochromes (NIRF are useful compounds for diverse biotechnology applications and for in vivo biomedical imaging. Such NIRF must have high quantum yield, be biocompatible, and be conjugatable to a wide variety of proteins, peptides, and other affinity ligands. Here, we describe the synthesis of four new nonsymmetrical sulfhydryl-reactive cyanine NIRF with excellent optical and chemical properties. Each fluorochrome was designed to contain an iodoacetamido group that reacts specifically with sulfhydryl-containing molecules. The synthesized fluorochromes were used to label model peptides and sulfhydryl-containing biomolecules.

  3. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    OpenAIRE

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  4. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    Science.gov (United States)

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  5. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  6. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  7. Interaction of the Bragg gap with polaritonic gap in opal photonic crystals

    Science.gov (United States)

    Nayer, Eradat; Sivachenko, Andrey Yu; Li, Sergey; Raikh, Mikhail E.; Valy Vardeny, Z.

    2001-03-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function. PCs can be a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with highly polarizable media such as j-aggregates of cyanine dyes. Opals are self- assembled structures of silica (SiO_2) spheres. We report our studies on clarifying the relationship between a polaritonic gap and a photonic stop band (Bragg gap) when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. Both effects exist independently when the Bragg (at ω=ω_B) and polaritonic (at ω=ω_T) resonances are well separated in frequency. A completely different situation occurs when ωT =ω_B. Such a condition was achieved in opals that were infiltrated with J-aggregates of cyanine dyes that have large Rabi frequency. Our measurements show some dramatic changes in the shape of the reflectivity plateaus, which are due to the interplay between the photonic band gap and the polaritonic gap. The experimental results on reflectivity and its dependence on the light propagation angle and concentration of the cyanie dyes are in agreement with the theoretical calculations. (The work was supported in part by Army Research office DAAD19-00-1-0406.)

  8. Ballistic delivery of dyes for structural and functional studies of the nervous system

    Science.gov (United States)

    Gan, Wen-Biao; Grutzendler, Jaime; Wong, Rachel O.; Lichtman, Jeff W.

    2010-01-01

    This chapter describes a detail protocol for rapid labeling of cells in a variety of preparations by means of particle-mediated ballistic (gene gun) delivery of fluorescent dyes. This method has been used for rapid labeling of cells with either lipid or water-soluble dyes in a variety of preparations. In particular, carbocyanine lipophilic dyes such as DiI have been used to obtain Golgi-like labeling of neurons and glia in fixed and live cell cultures, brain slices, as well as fixed post-mortem human brain. Water-soluble calcium indicators such as calcium green-1 dextran have been used to image calcium dynamics in living brain slices and retinal explants. This ballistic labeling technique is thus useful for studying the structure and function of neurons and glia in both living and fixed specimens. PMID:20147144

  9. Management of Industrial Dye Wastes Through Adsorption By Functionalized Graft Copolymers

    International Nuclear Information System (INIS)

    El-Nagger Abdel-Wahab, M.; Hegazy El-Sayed, A.; Aly Hussein, A.; Zahran Abdel-Hamid, H.

    1999-01-01

    The sorption of Methyl Green (basic dye) by different grafted polymers with individual acrylonitrile (AN) and its binary comonomer mixture with N-vinylpyrrolidone (NVP) has been investigated. It was found that at approximately equal levels of graft yield of AN, poly(tetrafluoroethylene-hexafluoropropylene)(FEP) showed the highest dye sorption of the basic dye while the grafted low density polyethylene (LDPE) displayed the lowest dye sorption. On the other hand, the different grafted polymers with AN/NVP binary monomers which having an approximately equal total graft yield (TGY) showed a dye sorption for the same basic dye according to the order: HDPE>FEP> LDPE>PP. Nevertheless, it was found that the dye sorption values by the grafted polymers with AN/NVP mixtures are much higher than those by the grafted polymers with individual AN monomer. The dye ability of HDPE grafted with individual AN and the comonomer mixture AN/NVP towards basic and disperse dyes was utilized to investigate the synergism during radiation grafting of the comonomer mixture. Results showed that such graft materials are promising in practical use for the treatment of industrial dye wastes from textile factories

  10. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  11. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    Science.gov (United States)

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  12. Thermodynamic study of complexation of thorium with pyridine monocarboxylates by calorimetry and DFT calculations

    International Nuclear Information System (INIS)

    Rama Mohana Rao, D.; Rawat, Neetika; Sawant, R.M.; Tomar, B.S.; Manna, D.; Ghanty, T.K.

    2013-01-01

    Stability constants of Th(IV) complexes with pyridine mono-carboxylates, namely, picolinate, nicotinate and isonicotinate have been determined following potentiometric titration of the metal ion and ligand mixtures with NaOH solution of known concentration. These data were used during the analysis of the calorimetric titration data to obtain the enthalpy of complexation reactions. The experimental data have been compared with that obtained from the DFT based theoretical calculations. (author)

  13. Highly charged cyanine fluorophores for trafficking scaffold degradation

    International Nuclear Information System (INIS)

    Owens, Eric A; Alyabyev, Sergey; Henary, Maged; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Park, GwangLi; Ashitate, Yoshitomo; Choi, Jungmun; Hong, Gloria H; Choi, Hak Soo; Lee, Sang Jin; Khang, Gilson

    2013-01-01

    Biodegradable scaffolds have been extensively used in the field of tissue engineering and regenerative medicine. However, noninvasive monitoring of in vivo scaffold degradation is still lacking. In order to develop a real-time trafficking technique, a series of meso-brominated near-infrared (NIR) fluorophores were synthesized and conjugated to biodegradable gelatin scaffolds. Since the pentamethine cyanine core is highly lipophilic, the side chain of each fluorophore was modified with either quaternary ammonium salts or sulfonate groups. The physicochemical properties such as lipophilicity and net charge of fluorophores played a key role in the fate of NIR-conjugated scaffolds in vivo after biodegradation. The positively charged fluorophore-conjugated scaffold fragments were found in salivary glands, lymph nodes, and most of the hepatobiliary excretion route. However, halogenated fluorophores intensively accumulated into lymph nodes and the liver. Interestingly, balanced-charged gelatin scaffolds were degraded into urine in a short period of time. These results demonstrate that the noninvasive optical imaging using NIR fluorophores can be useful for the translation of biodegradable scaffolds into the clinic. (paper)

  14. The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching

    Directory of Open Access Journals (Sweden)

    Sara Granja

    2013-12-01

    Full Text Available Background/Aims: The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs, namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. Methods: The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Results: Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. Conclusion: We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted.

  15. Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model.

    Directory of Open Access Journals (Sweden)

    Liyi Mai

    Full Text Available Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo.

  16. Expression patterns of emmprin and monocarboxylate transporter-1 in ovarian epithelial tumors.

    Science.gov (United States)

    Fukuoka, Miyoko; Hamasaki, Makoto; Koga, Kaori; Hayashi, Hiroyuki; Aoki, Mikiko; Kawarabayashi, Tatsuhiko; Miyamoto, Shingo; Nabeshima, Kazuki

    2012-10-01

    Emmprin is a transmembrane glycoprotein known as a matrix metalloproteinase inducer and is highly up-regulated in malignant cancer cells. The monocarboxylate transporters (MCTs) are responsible for H(+)-linked transport of monocarboxylates across the cell membrane. It was recently demonstrated that proper plasma membrane localization and activity of MCTs require the presence of emmprin as a chaperone and that MCT-1 also acts as chaperone for emmprin. The objectives of this study were to clarify emmprin and MCT-1 expression patterns in ovarian epithelial tumors and to elucidate the clinicopathological significance of co-localization of the two molecules. Immunohistochemical analysis of 205 epithelial tumors indicated that emmprin is always localized in cell membranes but its distribution differs according to tumor type: in lateral membranes in 89 % of adenomas, in lateral and basal membranes in 76 % of borderline tumors, and in membranes surrounding the entire cell in 98 % of carcinomas. Most carcinomas in situ also showed a lateral and basal expression pattern. In only 21 % of the carcinomas, the cells expressing membranous MCT-1 showed co-localized emmprin expression. Poor co-localization of the two molecules was more frequently found in serous carcinomas. However, the overall survival was not significantly different for the good and poor co-localization carcinoma groups. These findings indicate that the emmprin expression pattern might discriminate between invasive carcinomas and borderline tumors including carcinoma in situ. Moreover, there may be an as yet unidentified regulatory mechanism(s), for localization of MCT-1 and emmprin in cell membranes in vivo.

  17. Expression of monocarboxylate transporter 1 in oral and ocular canine melanocytic tumors.

    Science.gov (United States)

    Shimoyama, Y; Akihara, Y; Kirat, D; Iwano, H; Hirayama, K; Kagawa, Y; Ohmachi, T; Matsuda, K; Okamoto, M; Kadosawa, T; Yokota, H; Taniyama, H

    2007-07-01

    Solid tumors are composed of a heterogeneous population of cells surviving in various concentrations of oxygen. In a hypoxic environment, tumor cells generally up-regulate glycolysis and, therefore, generate more lactate that must be expelled from the cell through proton transporters to prevent intracellular acidosis. Monocarboxylate transporter 1 (MCT1) is a major proton transporter in mammalian cells that transports monocarboxylates, such as lactate and pyruvate, together with a proton across the plasma membrane. Melanocytic neoplasia occurs frequently in dogs, but the prognosis is highly site-dependent. In this study, 50 oral canine melanomas, which were subdivided into 3 histologic subtypes, and 17 ocular canine melanocytic neoplasms (14 melanocytomas and 3 melanomas) were used to examine and compare MCT1 expression. Immunohistochemistry using a polyclonal chicken anti-rat MCT1 antibody showed that most oral melanoma exhibited cell membrane staining, although there were no significant differences observed among the 3 histologic subtypes. In contrast, the majority of ocular melanocytic tumors were not immunoreactive. Additionally, we documented the presence of a 45-kDa band in cell membrane protein Western blots, and sequencing of a reverse transcriptase polymerase chain reaction band of expected size confirmed its identity as a partial canine MCT1 transcript in 3 oral tumors. Increased MCT1 expression in oral melanomas compared with ocular melanocytic tumors may reflect the very different biology between these tumors in dogs. These results are the first to document canine MCT1 expression in canine tumors and suggest that increased MCT1 expression may provide a potential therapeutic target for oral melanoma.

  18. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  19. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes

    Science.gov (United States)

    Chaúque, Eutilério F. C.; Dlamini, Langelihle N.; Adelodun, Adedeji A.; Greyling, Corinne J.; Ngila, J. Catherine

    2017-08-01

    The manipulation of nanofibers' surface chemistry could enhance their potential application toward the removal of ionic dyes in wastewater. For this purpose, surface modification of electrospun polyacrylonitrile (PAN) nanofibers with ethylenediaminetetraacetic acid (EDTA) and ethylenediamine (EDA) crosslinker was experimented. The functionalized EDTA-EDA-PAN nanofibers were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) technique. The impregnation of EDA and EDTA chelating agents on the surface of PAN changed the distribution of nanofibers as proximity is increased (accompanied by reduced softness), but the nanofibrous structure of the pristine PAN nanofibers was not substantially altered. Adsorption equilibrium studies were performed with Freundlich, Langmuir and Temkin isotherm models with the former providing better correlation to the experimental data. The modified PAN nanofibers showed efficient sorption of methyl orange (MO) and reactive red (RR) from aqueous synthetic samples, evinced by the maximum adsorption capacities (at 25 °C) of 99.15 and 110.0 mg g-1, respectively. The fabricated nanofibers showed appreciable removal efficiency of the target dye sorptives from wastewater. However, the presence of high metal ions content affected the overall extraction of dyes from wastewater due to the depletion of the adsorbent's active adsorptive sites.

  20. DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    JIE XU

    2010-02-01

    Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.

  1. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  2. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  3. Development of a novel ozone- and photo-stable HyPer5 red fluorescent dye for array CGH and microarray gene expression analysis with consistent performance irrespective of environmental conditions

    Directory of Open Access Journals (Sweden)

    Kille Peter

    2008-11-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (CGH and gene expression profiling have become vital techniques for identifying molecular defects underlying genetic diseases. Regardless of the microarray platform, cyanine dyes (Cy3 and Cy5 are one of the most widely used fluorescent dye pairs for microarray analysis owing to their brightness and ease of incorporation, enabling high level of assay sensitivity. However, combining both dyes on arrays can become problematic during summer months when ozone levels rise to near 25 parts per billion (ppb. Under such conditions, Cy5 is known to rapidly degrade leading to loss of signal from either "homebrew" or commercial arrays. Cy5 can also suffer disproportionately from dye photobleaching resulting in distortion of (Cy5/Cy3 ratios used in copy number analysis. Our laboratory has been active in fluorescent dye research to find a suitable alternative to Cy5 that is stable to ozone and resistant to photo-bleaching. Here, we report on the development of such a dye, called HyPer5, and describe its' exceptional ozone and photostable properties on microarrays. Results Our results show HyPer5 signal to be stable to high ozone levels. Repeated exposure of mouse arrays hybridized with HyPer5-labeled cDNA to 300 ppb ozone at 5, 10 and 15 minute intervals resulted in no signal loss from the dye. In comparison, Cy5 arrays showed a dramatic 80% decrease in total signal during the same interval. Photobleaching experiments show HyPer5 to be resistant to light induced damage with 3- fold improvement in dye stability over Cy5. In high resolution array CGH experiments, HyPer5 is demonstrated to detect chromosomal aberrations at loci 2p21-16.3 and 15q26.3-26.2 from three patient sample using bacterial artificial chromosome (BAC arrays. The photostability of HyPer5 is further documented by repeat array scanning without loss of detection. Additionally, HyPer5 arrays are shown to preserve sensitivity and

  4. Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis

    Science.gov (United States)

    Aponte, José C.; Tarozo, Rafael; Alexandre, Marcelo R.; Alexander, Conel M. O.'D.; Charnley, Steven B.; Hallmann, Christian; Summons, Roger E.; Huang, Yongsong

    2014-04-01

    The origin of homochirality and its role in the development of life on Earth are among the most intriguing questions in science. It has been suggested that carbonaceous chondrites seeded primitive Earth with the initial organic compounds necessary for the origin of life. One of the strongest pieces of evidence supporting this theory is that certain amino acids in carbonaceous chondrites display a significant L-enantiomeric excess (ee), similar to those use by terrestrial life. Analyses of ee in meteoritic molecules other than amino acids would shed more light on the origins of homochirality. In this study we investigated the stereochemistry of two groups of compounds: (1) free monocarboxylic acids (MCAs) from CM2 meteorites LON 94101 and Murchison; and (2) the aliphatic side chains present in the insoluble organic matter (IOM) and extracted in the form of monocarboxylic acids (MCAs) from EET 87770 (CR2) and Orgueil (CI1). Contrary to the well-known ee observed for amino acids in meteorites, we found that meteoritic branched free and IOM-derived MCAs with 5-8 carbon atoms are essentially racemic. The racemic nature of these compounds is used to discuss the possible influence of ultraviolet circularly polarized light (UVCPL) and aqueous alterations on the parent body on chirality observed in in carbonaceous chondrites.

  5. Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Zhu, Kai-Li [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000, Gansu (China); Song, Yan-Lin [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China)

    2016-09-15

    A novel organic dye with 2D-A structure has been designed and calculated whereby density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for dye-sensitized solar cells. The double-donor branched dye which was consisted of two separated light-harvesting moieties was beneficial to photocurrent generation. First, we discussed the effects of different donor chains on photoelectric performance in the dye molecule, using the DTP-B8 which was a previously reported structure as the reference. Only to conclude that the suitable length can achieve the satisfactory efficiency. Secondly, to modify and sift potential sensitizers further, three series of dyes (BC-series, CB-series and CC-series) were designed and characterized. The increased molar extinction coefficient and the red-shifted λ{sub max} was attributed to an increasing in electron conjunction. This work presented a new route to design sensitizers that provide two channels for donating more electrons and improve the final efficiency. It is expected to provide some theoretical guidance on designing and synthetizing high efficiency photosensitive dye in the future experiments. - Highlights: • A novel organic dye with 2D-A structure was designed and characterized. • The double-donor branched dye was consisted of two separated light-harvesting paths. • The double-donor branched dye was beneficial to photocurrent generation. • The molar extinction coefficient was greatly improved in this novel structure. • Four promising candidates have been screened out.

  6. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-01-01

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  7. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  8. BODIPYs for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Klfout, Hafsah; Stewart, Adam; Elkhalifa, Mahmoud; He, Hongshan

    2017-11-22

    BODIPY, abbreviation of boron-dipyrromethene, is one class of robust organic molecules that has been used widely in bioimaging, sensing, and logic gate design. Recently, BODIPY dyes have been explored for dye-sensitized solar cells (DSCs). Studies demonstrate their potential as light absorbers for the conversion of solar energy to electricity. However, their photovoltaic performance is inferior to many other dyes, including porphyrin dyes. In this review, several synthetic strategies of BODIPY dyes for DSCs and their further functionalization are described. The photophysical properties of dye molecules and their photovoltaic performances in DSCs are summarized. We aim to provide readers a clear picture of the field and expect to shed light on the next generation of BODIPY dyes for their applications in solar energy conversion.

  9. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  10. Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain.

    Science.gov (United States)

    Baud, Olivier; Fayol, Laurence; Gressens, Pierre; Pellerin, Luc; Magistretti, Pierre; Evrard, Philippe; Verney, Catherine

    2003-10-20

    In addition to glucose, monocarboxylates including lactate represent a major source of energy for the brain, especially during development. We studied the immunocytochemical expression of the monocarboxylate transporters MCT1 and MCT2 in the rat brain between embryonic day (E) 16 and postnatal day (P) 14. At E16-18, MCT1-like immunoreactivity was found throughout the cortical anlage, being particularly marked medially in the hippocampal anlage next to the ventricle. In a complementary pattern, MCT2-like immunoreactivity was expressed along the medial and ventral border of the ventricle in the medial septum and habenula before birth. The hypothalamic area exhibited MCT2 and MCT1 positive areas from E18 on. These transient labelings revealed four main sites of monocarboxylate and/or glucose exchange: the brain parenchyma, the epithelial cells, the ependymocytes, and the glia limitans. During the first postnatal week, MCT1 immunoreactivity extended massively to the vessel walls and moderately to the developing astrocytes in the cortex. In contrast, MCT2 immunoreactivity was faint in blood vessels but massive in developing astrocytes from P3 to P7. Neither MCT2 nor MCT1 colocalized with neuronal, microglial, or oligodendrocytic markers during the first postnatal week. At P14, a part of the scattered punctate MCT2 staining could be associated with astrocytes and postsynaptic dendritic labeling. The transient pattern of expression of MCTs throughout the perinatal period suggests a potential relationship with the maturation of the blood-brain barrier. Copyright 2003 Wiley-Liss, Inc.

  11. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  12. Monocarboxylate transporter 4 (MCT4 and CD147 overexpression is associated with poor prognosis in prostate cancer

    Directory of Open Access Journals (Sweden)

    Pereira Helena

    2011-07-01

    Full Text Available Abstract Background Monocarboxylate transporters (MCTs are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown. The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. Methods Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n = 171, adjacent non-neoplastic tissues (n = 135, PIN lesions (n = 40 and normal prostatic tissue (n = 14. Protein expression was correlated with patients' clinicopathologic characteristics. Results In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. Conclusions Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and

  13. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer

    International Nuclear Information System (INIS)

    Pértega-Gomes, Nelma; Lopes, Carlos; Baltazar, Fátima; Vizcaíno, José R; Miranda-Gonçalves, Vera; Pinheiro, Céline; Silva, Joana; Pereira, Helena; Monteiro, Pedro; Henrique, Rui M; Reis, Rui M

    2011-01-01

    Monocarboxylate transporters (MCTs) are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown. The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs) expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs) blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n = 171), adjacent non-neoplastic tissues (n = 135), PIN lesions (n = 40) and normal prostatic tissue (n = 14). Protein expression was correlated with patients' clinicopathologic characteristics. In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and both MCT4 and CD147 as markers of poor prognosis in

  14. MHI-148 Cyanine Dye Conjugated Chitosan Nanomicelle with NIR Light-Trigger Release Property as Cancer Targeting Theranostic Agent.

    Science.gov (United States)

    Thomas, Reju George; Moon, Myeong Ju; Surendran, Suchithra Poilil; Park, Hyeong Ju; Park, In-Kyu; Lee, Byeong-Il; Jeong, Yong Yeon

    2018-02-15

    Paclitaxel (PTX) loaded hydrophobically modified glycol chitosan (HGC) micelle is biocompatible in nature, but it requires cancer targeting ability and stimuli release property for better efficiency. To improve tumor retention and drug release characteristic of HGC-PTX nanomicelles, we conjugated cancer targeting heptamethine dye, MHI-148, which acts as an optical imaging agent, targeting moiety and also trigger on-demand drug release on application of NIR 808 nm laser. The amine group of glycol chitosan modified with hydrophobic 5β-cholanic acid and the carboxyl group of MHI-148 were bonded by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide chemistry. Paclitaxel was loaded to MHI-HGC nanomicelle by an oil-in-water emulsion method, thereby forming MHI-HGC-PTX. Comparison of near infrared (NIR) dyes, MHI-148, and Flamma-774 conjugated to HGC showed higher accumulation for MHI-HGC in 4T1 tumor and 4T1 tumor spheroid. In vitro studies showed high accumulation of MHI-HGC-PTX in 4T1 and SCC7 cancer cell lines compared to NIH3T3 cell line. In vivo fluorescence imaging of the 4T1 and SCC7 tumor showed peak accumulation of MHI-HGC-PTX at day 1 and elimination from the body at day 6. MHI-HGC-PTX showed good photothermal heating ability (50.3 °C), even at a low concentration of 33 μg/ml in 1 W/cm 2 808 nm laser at 1 min time point. Tumor reduction studies in BALB/c nude mice with SCC7 tumor showed marked reduction in MHI-HGC-PTX in the PTT group combined with photothermal therapy compared to MHI-HGC-PTX in the group without PTT. MHI-HGC-PTX is a cancer theranostic agent with cancer targeting and optical imaging capability. Our studies also showed that it has cancer targeting property independent of tumor type and tumor reduction property by combined photothermal and chemotherapeutic effects.

  15. DYEING SILK FABRICS WITH STINK BEAN POD (PARKIA SPECIOSA HASSK. NATURAL DYE IN THE COLOR FASTNESS AND UV PROTECTION

    Directory of Open Access Journals (Sweden)

    M. MASAE

    2017-07-01

    Full Text Available This paper describes natural dye extracted from stink bean pod (Parkia speciosa Hassk. which was dyed on the silk fabric. The mordants as aluminum potassium sulfate, iron chloride, sodium hydroxide and mud were used to dye fabric using three different dyeing methods: pre-mordanting, meta-mordanting and post-mordanting. The color fastness to washing, water, perspiration, light and crocking of the dyed samples was determined according to AATCC test methods. In this study the UV-protection properties on silk fabrics were investigated. The chemical functional groups of the dyes were characterized by Fourier transform infrared spectroscopy (FTIR. The results revealed that the dyeing silk fabrics with stink beans pod were fair to good fastness to washing and crocking and very poor to poor light fastness with the exception of samples mordanted with iron chloride. The water and perspiration fastness ratings were fair to good. Silk fabrics mordanted with iron chloride and dyed with stink bean usually showed good UV-protection levels even if undyed. These extracts gave polyphenolic, betalain dye and chlorophyll content. Therefore, it was suggested that stink bean pod has the potential in producing functional dyes that could be imparted into the silk dyeing natural colorant system.

  16. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice.

    OpenAIRE

    Lengacher Sylvain; Nehiri-Sitayeb Touria; Steiner Nadia; Carneiro Lionel; Favrod Céline; Preitner Frédéric; Thorens Bernard; Stehle Jean-Christophe; Dix Laure; Pralong François; Magistretti Pierre J; Pellerin Luc

    2013-01-01

    The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1(+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1(+/-) mice displayed resistance to development of diet-induced obesity ...

  17. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  18. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications.

    Science.gov (United States)

    Prajongtat, Pongthep; Suramitr, Songwut; Nokbin, Somkiat; Nakajima, Koichi; Mitsuke, Koichiro; Hannongbua, Supa

    2017-09-01

    Structural and electronic properties of eight isolated azo dyes (ArNNAr', where Ar and Ar' denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO 2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO 2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (Φ B-N ) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, Φ B-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO 2 . On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO 2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    Science.gov (United States)

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  20. Dye-sensitization of CdS nano-cage - A density functional theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kalpna; Singh, Kh. S. [Department of Physics, D. J. College, Baraut, U.P.-250611 (India); Kishor, Shyam [Department of Chemistry, J. V. College, Baraut, U.P.-250611 (India); Josefsson, Ida; Odelius, Michael [Fysikum, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2016-05-23

    Quantum dots a few nanometer in size exhibit unique properties in comparison to bulk due to quantum confinement. Their properties can be tuned according to their sizes. Dye sensitized quantum dot (DSQD) solar cells are based on the same principle with surface dangling bonds as a challenge. Researches have shown the existence and stability of nano-cages which are assembled such as to minimize the surface dangling bonds and hence maximize stability. Here, we report a first principles DFT study of optical and electronic properties of CdS-cage (Cd{sub 34}S{sub 34}) sensitized with nkx-2388 dye in three different geometric configurations of dye attachment. A significant distortion is found to occur in the geometric structure of the cage when it interacts strongly with the dye. The relative positioning of dye and cage energy levels is found to be different in different configurations. The absorption spectrum has been analyzed with the help of natural transition orbitals (NTO).

  1. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    International Nuclear Information System (INIS)

    Liu Guangfei; Wang Jing; Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long

    2009-01-01

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L -1 , the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  2. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  3. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  4. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N. B.

    2014-01-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I–V) characteristic results, we observed a certain transition voltage (V th ) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, V th is 3.9 V whereas for COOH-SWCNT mixed with this dye, V th drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm 2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers. (semiconductor devices)

  5. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  6. Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.

    2006-01-01

    The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were...... prepared: standard photoelectrochemical (PEC) solar cells and polymer solar cells. The PEC solar cells employed a sandwich geometry between TiO2 nanoporous photoanodes and Pt counter electrodes using LiI/I-2 in CH3CN as an electrolyte. The polymer solar cells employed planar anatase electrodes...

  7. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  8. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  9. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push-Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Fernandes, Sara S M; Castro, M Cidália R; Pereira, Ana Isabel; Mendes, Adélio; Serpa, Carlos; Pina, João; Justino, Licínia L G; Burrows, Hugh D; Raposo, M Manuela M

    2017-12-31

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO 2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO 2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

  10. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push–Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells

    Science.gov (United States)

    2017-01-01

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push–pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine–thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20–64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%. PMID:29302638

  11. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  12. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  13. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangfei [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Wang Jing, E-mail: wangjingbio@yahoo.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China)

    2009-11-15

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L{sup -1}, the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  14. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  15. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Marinado, Tannia

    2009-10-15

    The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight. State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components. In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results. The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V). The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII. The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the

  16. Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy.

    Science.gov (United States)

    Liu, Bei; Niu, Le; Shen, Ming-Zhi; Gao, Lei; Wang, Chao; Li, Jie; Song, Li-Jia; Tao, Ye; Meng, Qiang; Yang, Qian-Li; Gao, Guo-Dong; Zhang, Hua

    2014-10-01

    Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.

  17. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode.

    Science.gov (United States)

    Zhang, Xi; Huang, Xuezhen; Li, Chensha; Jiang, Hongrui

    2013-08-14

    Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  19. Stable non-covalent labeling of layered silicate nanoparticles for biological imaging.

    Science.gov (United States)

    Mortimer, Gysell M; Jack, Kevin S; Musumeci, Anthony W; Martin, Darren J; Minchin, Rodney F

    2016-04-01

    Layered silicate nanoparticles (LSN) are widely used in industrial applications and consumer products. They also have potential benefits in biomedical applications such as implantable devices and for drug delivery. To study how nanomaterials interact with cells and tissues, techniques to track and quantify their movement through different biological compartments are essential. While radiolabels can be very sensitive, particularly for in vivo studies, fluorescent labeling has been preferred in recent years because of the array of methods available to image and quantify fluorescent nanoparticles. However, labeling can be problematic, especially if it alters the physical properties of the nanomaterial. Herein is described a novel non-covalent labeling technique for LSN using readily available fluorescent dimeric cyanine dyes without the need to use excess amounts of dye to achieve labeling, or the need for removal of unbound dye. The approach utilizes the cationic binding properties of layered silicate clays and the multiple quaternary nitrogens associated with the dyes. Preparation of YOYO-1 labeled LSN with optimal dispersion in aqueous media is presented. The utilization of the labeled particles is then demonstrated in cell binding and uptake studies using flow cytometry and confocal microscopy. The labeled LSN are highly fluorescent, stable and exhibit identical physical properties with respect to the unlabeled nanoparticles. The general approach described here is applicable to other cyanine dyes and may be utilized more widely for labeling nanoparticles that comprise a crystalline plate structure with a high binding capacity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xu Chunhui; Li Jing; Wang Xianbao; Wang Jingchao; Wan Li; Li Yuanyao; Zhang Min; Shang Xiaopeng; Yang Yingkui

    2012-01-01

    Highlights: ► Hemin functionalized reduced graphene oxide (hemin–RGO) materials were synthesized by microwave irradiation. ► Hemin–RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone. ► Hemin–RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity. - Abstract: This work reports a facile and rapid method assisted by microwave irradiation for the synthesis of hemin functionalized reduced graphene oxide (hemin–RGO) materials. Our investigation confirmed that the hemin molecules were covalently grafted to the surface of graphene by the amidation reaction of the -NH 2 groups on the edges of ethylenediamine functionalized graphene oxide with the -COOH groups of hemin. Hemin–RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone after more than one month, indicating that hemin can effectively improve the dispersion and solubility of RGO in the solvent. Hemin–RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity for I 3 − to I − reduction compared with RGO.

  1. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chunhui; Li Jing [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Xianbao, E-mail: wangxb68@yahoo.com.cn [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Wang Jingchao; Wan Li; Li Yuanyao; Zhang Min; Shang Xiaopeng; Yang Yingkui [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hemin functionalized reduced graphene oxide (hemin-RGO) materials were synthesized by microwave irradiation. Black-Right-Pointing-Pointer Hemin-RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone. Black-Right-Pointing-Pointer Hemin-RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity. - Abstract: This work reports a facile and rapid method assisted by microwave irradiation for the synthesis of hemin functionalized reduced graphene oxide (hemin-RGO) materials. Our investigation confirmed that the hemin molecules were covalently grafted to the surface of graphene by the amidation reaction of the -NH{sub 2} groups on the edges of ethylenediamine functionalized graphene oxide with the -COOH groups of hemin. Hemin-RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone after more than one month, indicating that hemin can effectively improve the dispersion and solubility of RGO in the solvent. Hemin-RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity for I{sub 3}{sup -} to I{sup -} reduction compared with RGO.

  2. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  3. First principles DFT study of dye-sensitized CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kalpna; Singh, Kh. S. [Department of Physics, D. J. College, Baraut -250611, U.P. (India); Kishor, Shyam, E-mail: shyam387@gmail.com [Department of Chemistry, J. V. College, Baraut -250611, U.P. (India); Josefesson, Ida; Odelius, Michael [Fysikum, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positions of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.

  4. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  5. Testicular regulation of neuronal glucose and monocarboxylate transporter gene expression profiles in CNS metabolic sensing sites during acute and recurrent insulin-induced hypoglycemia.

    Science.gov (United States)

    Vavaiya, Kamlesh V; Paranjape, Sachin A; Briski, Karen P

    2007-01-01

    Recurrent insulin-induced hypoglycemia (RIIH) impairs glucose counter-regulatory function in male humans and rodents and, in the latter, diminishes neuronal activation in CNS structures that monitor metabolic homeostasis, including the lateral hypothalamic area (LHA) and dorsal vagal complex (DVC). We investigated whether habituated neuronal reactivity in CNS sensing sites to hypoglycemia is correlated with modified monocarboxylate and/or glucose uptake by using quantitative real-time RT-PCR to analyze neuronal monocarboxylate transporter (MCT2) and glucose transporter variant (GLUT and GLUT4) gene expression profiles in the microdissected LHA, ventromedial nucleus hypothalamus (VMH), and DVC after one or multiple insulin injections. Because orchidectomy (ORDX) maintains uniform glycemic responses to RIIH in male rats, we also examined whether regional gene response patterns are testes dependent. In the intact male rat DVC, MCT2, GLUT3, and GLUT4 gene expression was not altered by acute hypoglycemia but was enhanced by RIIH. MCT2 and GLUT3 mRNA levels in the ORDX rat DVC did not differ among groups, but GLUT4 transcripts were progressively increased by acute and recurrent hypoglycemia. Precedent hypoglycemia decreased or increased basal MCT2 and GLUT4 gene expression, respectively, in the intact rat LHA; LHA GLUT3 transcription was augmented by RIIH in intact rats only. Acute hypoglycemia suppressed MCT2, GLUT3, and GLUT4 gene expression in the intact rat VMH, a response that was abolished by RIIH. In ORDX rats, VMH gene transcript levels were unchanged in response to one dose of insulin but were selectively diminished during RIIH. These data demonstrate site-specific, testes-dependent effects of acute and recurrent hypoglycemia on neuronal metabolic substrate transporter gene expression in characterized rat brain metabolic sensing loci and emphasize the need to assess the impact of potential alterations in glucose and lactate uptake during RIIH on general and

  6. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    Energy Technology Data Exchange (ETDEWEB)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id [Graduate Program of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan (Indonesia); Suyitno,, E-mail: suyitno@uns.ac.id; Rachmanto, Rendy Adhi, E-mail: rendy.ar@gmail.com; Hidayat, Lullus Lambang Govinda, E-mail: lulus-l@yahoo.com; Hadi, Syamsul, E-mail: syamsulhadi@ft.uns.ac.id [Department of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Wibowo, Atmanto Heru, E-mail: aheruwibowo@yahoo.com [Department of Chemistry, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  7. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    International Nuclear Information System (INIS)

    Mulyanto, Subur; Suyitno,; Rachmanto, Rendy Adhi; Hidayat, Lullus Lambang Govinda; Hadi, Syamsul; Wibowo, Atmanto Heru

    2016-01-01

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  8. Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiong; Zhou, Le; Li, Yawei [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Sun, Qiang, E-mail: sunqiang@pku.edu.cn [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2012-08-06

    Five new metal-free dyes with acceptor–π–donor (A–π–D) structure are studied using first-principles calculation based on density functional theory. Benzothiadiazole (BTD) and triphenylamine (TPA) were chosen, respectively, as an acceptor and a donor with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) as a π linker. The linker was further modified by -CH=CH- resulting in a red-shift with improved absorption spectra caused by the smaller energy gap and the increased orbital hybridization. The designed dyes are found to exhibit wide absorption spectra, high molar extinction coefficients, desirable orbital distributions, and good energy levels alignment, and hence can have potential applications in dye-sensitized solar cells. -- Highlights: ► New metal-free dyes with A–π–D architecture. ► With wide absorption spectra and high molar extinction coefficients. ► With desirable orbital distribution and good energy levels alignment.

  9. Modelling of polyester fabric dyeing in the presence of ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Kodrić Marija

    2017-01-01

    Full Text Available In this paper, modelling of dyeing, i.e. adsorptive behaviour of disperse dyes on polyester fibres (dyeing, under the influence of ultrasound has been considered with the aim of getting the data about mechanisms of binding the dyes and defining the conditions of dyeing process of this synthetic fibres along with additional energy source without the use of carriers, compounds that increase permeability of the fibres and help dyeing. Dyeing - adsorption is conducted under different conditions, and the concentration of dyes, mass of the substrate, recipes and time of dyeing were being varied. It has been established that ultrasound allows dyeing without carriers and the efficiency of dyeing depends on the time of contact, initial concentration of the dye and the amount of absorbent - material. There is the continuity of growth of the amount of bound dye to the mass of the absorbent. Characteristic graphs, obtained from Langmuir isotherm, have confirmed that this model ensures precise description of polyester dyeing by disperse dye. Kinetic of dyeing has been remarkably interpreted by pseudo second-order in regards to the high functionality.

  10. Effects of Introducing Methoxy Groups into the Ancillary Ligands in Bis(diimine Copper(I Dyes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Annika Büttner

    2018-04-01

    Full Text Available A systematic investigation of four heteroleptic bis(diimine copper(I dyes in n-type Dye-Sensitized Solar Cells (DSSCs is presented. The dyes are assembled using a stepwise, on-surface assembly. The dyes contain a phosphonic acid-functionalized 2,2′-bipyridine (bpy anchoring domain (5 and ancillary bpy ligands that bear peripheral phenyl (1, 4-methoxyphenyl (2, 3,5-dimethoxyphenyl (3, or 3,4,5-trimethoxyphenyl (4 substituents. In masked DSSCs, the best overall photoconversion efficiency was obtained with the dye [Cu(5(4]+ (1.96% versus 5.79% for N719. Values of JSC for both [Cu(5(2]+ (in which the 4-MeO group is electron releasing and [Cu(5(4]+ (which combines electron-releasing and electron-withdrawing effects of the 4- and 3,5-substituents and are enhanced with respect to [Cu(5(1]+. DSSCs with [Cu(5(3]+ show the lowest JSC. Solid-state absorption spectra and external quantum efficiency spectra reveal that [Cu(5(4]+ benefits from an extended spectral range at higher energies. Values of VOC are in the order [Cu(5(4]+ > [Cu(5(1]+ > [Cu(5(2]+ > [Cu(5(3]+. Density functional theory calculations suggest that methoxyphenyl character in MOs within the HOMO manifold in [Cu(5(2]+ and [Cu(5(4]+ may contribute to the enhanced performances of these dyes with respect to [Cu(5(1]+.

  11. Cobalt(III)-catalyzed alkenylation of arenes and 6-arylpurines with terminal alkynes: efficient access to functional dyes.

    Science.gov (United States)

    Wang, Shan; Hou, Ji-Ting; Feng, Mei-Lin; Zhang, Xiao-Zhuan; Chen, Shan-Yong; Yu, Xiao-Qi

    2016-02-14

    Alkenylation of unactivated arenes and 6-arylpurines with terminal alkynes in high yields using Cp*Co(CO)I2 as catalyst under mild conditions is described. This method shows outstanding functional group compatibility and can be applied in the design of a mitochondria-targeted imaging dye.

  12. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  13. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  14. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voï tchovsky, Kislon; Ashari-Astani, Negar; Tavernelli, Ivano; Té treault, Nicolas; Rothlisberger, Ursula; Stellacci, Francesco; Grä tzel, Michael; Harms, Hauke A.

    2015-01-01

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell's performance depends on the molecular arrangement and the density of the dye on the semiconductor surface

  15. Alignment of the dye's molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT-TDDFT study

    International Nuclear Information System (INIS)

    De Angelis, Filippo; Fantacci, Simona; Selloni, Annabella

    2008-01-01

    We present a theoretical study of the lineup of the LUMO of Ru(II)-polypyridyl (N3 and N719) molecular dyes with the conduction band edge of a TiO 2 anatase nanoparticle. We use density functional theory (DFT) and the Car-Parrinello scheme for efficient optimization of the dye-nanoparticle systems, followed by hybrid B3LYP functional calculations of the electronic structure and time-dependent DFT (TDDFT) determination of the lowest vertical excitation energies. The electronic structure and TDDFT calculations are performed in water solution, using a continuum model. Various approximate procedures to compute the excited state oxidation potential of dye sensitizers are discussed. Our calculations show that the level alignment for the interacting nanoparticle-sensitizer system is very similar, within about 0.1 eV, to that for the separated TiO 2 and dye. The excellent agreement of our results with available experimental data indicates that the approach of this work could be used as an efficient predictive tool to help the optimization of dye-sensitized solar cells.

  16. A spectrophotometric investigation of the complex formation between lanthanum (III) and eriochrome cyanine R

    International Nuclear Information System (INIS)

    Boodts, J.F.C.; Saffioti, W.

    1979-01-01

    The complex formation between La(III) and Eriochrome Cyanine R has been investigated. Three complexes have been detected. A first one (Complex I) in the pH range of 5.3-5.5 with lambda sub(max) = 460nm. a second one (Complex II) in the pH range of 6.2-6.5 with lambda sub(max) = 490nm and a third one (complex III) in the pH range of 8.2 - 9.0 with lambda sub(max) = 545nm and a shoulder between 570-580nm. The composition and stability constants of the complexes, respectively: complex I: La(ECR) 2 and 4.9 x 10 7 , complex II: La(ECR) 2 and 7.0 x 10 7 , complex III: La.ECR and 1.0 x 10 4 . All measurements were taken at 25.0 +- 0.1 0 C and μ = 0.2 (NaClO 4 ). (Author) [pt

  17. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    Science.gov (United States)

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-04-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.

  18. Solvent effect on indocyanine dyes: A computational approach

    International Nuclear Information System (INIS)

    Bertolino, Chiara A.; Ferrari, Anna M.; Barolo, Claudia; Viscardi, Guido; Caputo, Giuseppe; Coluccia, Salvatore

    2006-01-01

    The solvatochromic behaviour of a series of indocyanine dyes (Dyes I-VIII) was investigated by quantum chemical calculations. The effect of the polymethine chain length and of the indolenine structure has been satisfactorily reproduced by semiempirical Pariser-Parr-Pople (PPP) calculations. The solvatochromism of 3,3,3',3'-tetramethyl-N,N'-diethylindocarbocyanine iodide (Dye I) has been deeply investigated within the ab initio time-dependent density functional theory (TD-DFT) approach. Dye I undergoes non-polar solvation and a linear correlation has been individuated between absorption shifts and refractive index. Computed absorption λ max and oscillator strengths obtained by TD-DFT are in good agreement with the experimental data

  19. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    Science.gov (United States)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  20. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    International Nuclear Information System (INIS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO 2 . In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO 2 as working electrodes, and the rest are directly mixed TiO 2 paste to obtain dye titanium dioxide.The paste TiO 2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO 2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO 2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO 2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization. (paper)

  1. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells.

    Science.gov (United States)

    Weidelener, Martin; Powar, Satvasheel; Kast, Hannelore; Yu, Ze; Boix, Pablo P; Li, Chen; Müllen, Klaus; Geiger, Thomas; Kuster, Simon; Nüesch, Frank; Bach, Udo; Mishra, Amaresh; Bäuerle, Peter

    2014-11-01

    Four new donor-π-acceptor dyes differing in their acceptor group have been synthesized and employed as model systems to study the influence of the acceptor groups on the photophysical properties and in NiO-based p-type dye-sensitized solar cells. UV/Vis absorption spectra showed a broad range of absorption coverage with maxima between 331 and 653 nm. Redox potentials as well as HOMO and LUMO energies of the dyes were determined from cyclic voltammetry measurements and evaluated concerning their potential use as sensitizers in p-type dye-sensitized solar cells (p-DSCs). Quantum-chemical density functional theory calculations gave further insight into the frontier orbital distributions, which are relevant for the electronic processes in p-DSCs. In p-DSCs using an iodide/triiodide-based electrolyte, the polycyclic 9,10-dicyano-acenaphtho[1,2-b]quinoxaline (DCANQ) acceptor-containing dye gave the highest power conversion efficiency of 0.08%, which is comparable to that obtained with the perylenemonoimide (PMI)-containing dye. Interestingly, devices containing the DCANQ-based dye achieve a higher V(OC) of 163 mV compared to 158 mV for the PMI-containing dye. The result was further confirmed by impedance spectroscopic analysis showing higher recombination resistance and thus a lower recombination rate for devices containing the DCANQ dye than for PMI dye-based devices. However, the use of the strong electron-accepting tricyanofurane (TCF) group played a negative role in the device performance, yielding an efficiency of only 0.01% due to a low-lying LUMO energy level, thus resulting in an insufficient driving force for efficient dye regeneration. The results demonstrate that a careful molecular design with a proper choice of the acceptor unit is essential for development of sensitizers for p-DSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insights into the Mechanism of a Covalently Linked Organic Dye-Cobaloxime Catalyst System for Dye-Sensitized Solar Fuel Devices.

    Science.gov (United States)

    Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández-Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif; Tian, Haining

    2017-06-09

    A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Application of RBF neural network improved by peak density function in intelligent color matching of wood dyeing

    International Nuclear Information System (INIS)

    Guan, Xuemei; Zhu, Yuren; Song, Wenlong

    2016-01-01

    According to the characteristics of wood dyeing, we propose a predictive model of pigment formula for wood dyeing based on Radial Basis Function (RBF) neural network. In practical application, however, it is found that the number of neurons in the hidden layer of RBF neural network is difficult to determine. In general, we need to test several times according to experience and prior knowledge, which is lack of a strict design procedure on theoretical basis. And we also don’t know whether the RBF neural network is convergent. This paper proposes a peak density function to determine the number of neurons in the hidden layer. In contrast to existing approaches, the centers and the widths of the radial basis function are initialized by extracting the features of samples. So the uncertainty caused by random number when initializing the training parameters and the topology of RBF neural network is eliminated. The average relative error of the original RBF neural network is 1.55% in 158 epochs. However, the average relative error of the RBF neural network which is improved by peak density function is only 0.62% in 50 epochs. Therefore, the convergence rate and approximation precision of the RBF neural network are improved significantly.

  4. Theoretical Study of Ultrafast Electron Injection into a Dye/TiO2 System in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Lin, Chundan; Xia, Qide; Li, Kuan; Li, Juan; Yang, Zhenqing

    2018-06-01

    The ultrafast injection of excited electrons in dye/TiO2 system plays a critical role, which determines the device's efficiency in large part. In this work, we studied the geometrical structures and electronic properties of a dye/TiO2 composite system for dye-sensitized solar cells (DSSCs) by using density functional theory, and we analyzed the mechanism of ultrafast electron injection with emphasis on the power conversion efficiency. The results show that the dye SPL103/TiO2 (101) surface is more stable than dye SPL101. The electron injection driving force of SPL103/TiO2 (101) is 3.55 times that of SPL101, indicating that SPL103/TiO2 (101) has a strong ability to transfer electrons. SPL103 and SPL101/TiO2 (101) both have fast electron transfer processes, and especially the electron injection time of SPL103/TiO2 (101) is only 1.875 fs. The results of this work are expected to provide a new understanding of the mechanism of electron injection in dyes/TiO2 systems for use in highly effective DSSCs.

  5. Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet.

    Science.gov (United States)

    Lauritzen, Fredrik; Eid, Tore; Bergersen, Linda H

    2015-01-01

    Epilepsy is a serious neurological disorder that affects approximately 1 % of the general population, making it one of the most common disorders of the central nervous system. Furthermore, up to 40 % of all patients with epilepsy cannot control their seizures with current medications. More efficacious treatments for medication refractory epilepsy are therefore needed. A better understanding of the mechanisms that cause this disorder is likely to facilitate the discovery of such treatments. Impairment in cerebral energy metabolism has been proposed as a possible causative factor in the pathogenesis of temporal lobe epilepsy (TLE), which is one of the most common types of medication-refractory epilepsies in adults. In this review, we will discuss some of the current hypotheses regarding the possible causal relationship between brain energy metabolism and TLE. Emphasis will be placed on the role of energy substrates (lactate and ketone bodies) and their transporter molecules, particularly monocarboxylate transporters 1 and 2 (MCT1 and MCT2). We recently reported that the cellular distribution of MCT1 and MCT2 is perturbed in the hippocampus in patients with TLE. The changes may be an adaptive response aimed at keeping high levels of lactate in the epileptic tissue, which may serve to counteract epileptic activity by downregulating cAMP levels through the lactate receptor GPR81, newly discovered in hippocampus. We propose that the perturbation of MCTs may be further involved in the pathophysiology of TLE by influencing brain energy homeostasis, mitochondrial function, GABA-ergic and glutamatergic neurotransmission, and flux of lactate through the brain.

  6. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  7. Fabrication and characterization of mixed dye: Natural and synthetic organic dye

    Science.gov (United States)

    Richhariya, Geetam; Kumar, Anil

    2018-05-01

    Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.

  8. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    Science.gov (United States)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  9. Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions.

    Science.gov (United States)

    Chen, Chia-Hsiu; Tanaka, Kenichi; Funatsu, Kimito

    2018-04-22

    The Quantitative Structure - Property Relationship (QSPR) approach was performed to study the fluorescence absorption wavelengths and emission wavelengths of 413 fluorescent dyes in different solvent conditions. The dyes included the chromophore derivatives of cyanine, xanthene, coumarin, pyrene, naphthalene, anthracene and etc., with the wavelength ranging from 250 nm to 800 nm. An ensemble method, random forest (RF), was employed to construct nonlinear prediction models compared with the results of linear partial least squares and nonlinear support vector machine regression models. Quantum chemical descriptors derived from density functional theory method and solvent information were also used by constructing models. The best prediction results were obtained from RF model, with the squared correlation coefficients [Formula: see text] of 0.940 and 0.905 for λ abs and λ em , respectively. The descriptors used in the models were discussed in detail in this report by comparing the feature importance of RF.

  10. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  11. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Directory of Open Access Journals (Sweden)

    Doris E. Ramírez-Herrera

    2018-04-01

    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  12. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  13. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  14. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School

    2018-01-05

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

  15. Nature of the electronic transitions in thiacarbocyanines with a long polymethine chain

    International Nuclear Information System (INIS)

    Lepkowicz, Richard S.; Przhonska, Olga V.; Hales, Joel M.; Fu Jie; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2004-01-01

    A detailed experimental investigation and quantum-chemical analysis of symmetric cyanines of different conjugation lengths have been performed with the goal of understanding the nature of the electronic transitions in molecules that possess a long chromophore. The nature of electronic transitions in cyanines with a relatively short chromophore (inside the cyanine limit) has already been investigated and many properties of these molecules are well understood. However, little is known about the nature of the transitions beyond the cyanine limit. Their unusual properties, which were proposed by Tolbert and Zhao to be connected with symmetry breaking, still remain unexplored. The analysis of the spectral data in various solvents and results of femtosecond pump-probe saturable absorption measurements enable us to conclude that an increase in the length of the chain leads to a symmetry breaking and the appearance of two forms with symmetrical and asymmetrical distributions of the charge density in the ground state. For thiacarbocyanines, symmetry breaking is predicted and observed for a pentacarbocyanine dye. Quantum-chemical calculations provide additional proof of this hypothesis. The excited-state absorption properties of a pentacarbocyanine in the visible region are also reported. For the first time we have observed an excited-state cross-section that is larger (∼3x) than the ground state cross-section at the peak spectral position

  16. In vitro and in vivo evidence for active brain uptake of the GHB analogue HOCPCA by the monocarboxylate transporter subtype 1

    DEFF Research Database (Denmark)

    Thiesen, Louise; Kehler, Jan; Clausen, Rasmus P

    2015-01-01

    and in vivo, and to investigate the hypothesis that HOCPCA, like GHB, is a substrate for the monocarboxylate transporters (MCTs). For in vitro uptake studies, MCT1, 2 and 4 were recombinantly expressed in Xenopus laevis oocytes and the previously reported radioligand [(3)H]HOCPCA was used (as substrate......). HOCPCA inhibited the uptake of the endogenous MCT substrate L-[(14)C]lactate, and [(3)H]HOCPCA was shown to act as substrate for MCT1 and 2 (Km values in the low millimolar range). Introducing single point amino acid mutations into positions essential for MCT function supported that HOCPCA binds...... to the endogenous substrate pocket of MCTs. MCT1-mediated brain entry of HOCPCA (10 mg/kg s.c.) was further confirmed in vivo in mice by co-administration of increasing doses of the MCT inhibitor [(R)-5-(3-hydroxypyrrolidine-1-carbonyl)-1-isobutyl-3-methyl-6-(quinolin-4-ylmethyl)thieno[2,3-d]pyrimidine-2,4(1H,3H...

  17. Theoretical study of indoline dyes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Kim, Young Sik

    2010-01-01

    Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.

  18. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, Roman A., E-mail: era@jinr.ru [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kholmurodov, Kholmirzo T. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); International University “Dubna”, Dubna 141980 (Russian Federation); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv 03022 (Ukraine); Rosta, László [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Grigoryeva, Natalia A. [Faculty of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg (Russian Federation); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2015-11-05

    Highlights: • The model of the scattering particle for a reliable SANS analysis is proposed. • The structural parameters of saturated mono-carboxylic acids in solutions are obtained. • The differences in nematic transitions correlate to solvation peculiarities. - Abstract: The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute–solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.

  19. Biochemical study of some environmental pollutants dyes Part II: disperse dyes

    International Nuclear Information System (INIS)

    Shakra, S.; Ahmed, F.A.; Fetyan, N.A.

    2005-01-01

    This work was aimed to develop a method for removal of the dyes color from the textile wastewater that is well be much less costly than the other chemical or physical methods used. It therefore included: 1. Preparation of three disperses dyes. 2. Isolation of dyes degradable microorganisms from wastewater effluents and soil after adding 200 ppm of each dye individually. 3. Decolorisation and biodegradation of the dyes in liquid culture of the isolated bacteria (Bacillus thuringiensis). 4. Identification of the probable byproducts by different instruments. 5. Toxicity assessment of the dyes and their biodegraded products

  20. Development of novel functional dyes for the effective detection of γ-ray. JAERI's nuclear research promotion program, H12-007. Contract research

    International Nuclear Information System (INIS)

    Tokita, Sumio; Yoshida, Masaru

    2004-03-01

    The academic field of ''Functional Dyes'' was proposed in Japan and has been widely applied to novel functional materials for electronic industry, however, its application to radiation chemistry is still scarce. We have found a certain photochromic dye, benzo[1,2,3-kl:4,5,6-k'l'] dixanthene endoperoxide, to give dramatic change of color in acid conditions. In this research project, we have developed this finding to realize novel dosimetry systems. The findings of this research are as follows: 1. Computer programs for the molecular design of functional materials using quantum chemical method such as PPP or INDO/S molecular orbital calculations were developed. 2. Novel functional materials for the detection of γ-ray were surveyed. Among these, the following series of compound were found to have practical importance. a. Color formers having phenoxazine moieties. b. Color formers having sulfur containing protective groups. 3. Novel sensor systems for γ radiation using functional materials were developed. (author)

  1. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  2. Functionalization of Microcrystalline Cellulose with N,N-dimethyldodecylamine for the Removal of Congo Red Dye from an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dongying Hu

    2014-08-01

    Full Text Available Microcrystalline cellulose (MCC was functionalized with quaternary amine groups for use as an adsorbent to remove Congo Red dye (CR from aqueous solution. The ultrasonic pretreatment of MCC was investigated during its functionalization. Characterization was conducted using infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The batch adsorption of the functionalized MCC was studied to evaluate the effects of dye concentration, pH of solution, temperature, and NaCl concentration on the adsorption CR. The adsorbent (FM-1 obtained using ultrasonic pretreatment of MCC under 10.8 kJ•g–1 exhibited an adsorption capacity of 304 mg•g–1 at initial pH under a dose of 0.1 g•L–1 and initial concentration of 80 mg•L–1. After functionalization, the FT-IR and XPS results indicated that the quaternary amine group was successfully grafted onto the cellulose, the surface was transformed to be coarse and porous, and the crystalline structure of the original cellulose was disrupted. FM-1 has been shown to be a promising and efficient adsorbent for the removal of CR from an aqueous solution.

  3. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  4. Synthesis, characterization and dyeing behavior of heterocyclic acid dyes and mordent acid dyes on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    Patel Hitendra M.

    2012-01-01

    Full Text Available Novel heterocyclic acid and mordent acid dyes were synthesized by the coupling of diazonium salt solution of different aromatic amines with 2- butyl-3-(4-hydroxybenzoylbenzofuran. The resulting heterocyclic acid dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1HNMR, 13C-NMR spectral studies and UV- visible spectroscopy. The dyeing performance of all the heterocyclic acid dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness.

  5. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue

    2016-01-01

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  6. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-11-05

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  7. The Versatile SALSAC Approach to Heteroleptic Copper(I Dye Assembly in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Frederik J. Malzner

    2018-05-01

    Full Text Available Surface-bound heteroleptic copper(I dyes [Cu(Lanchor(Lancillary]+ are assembled using the “surfaces-as-ligands, surfaces as complexes” (SALSAC approach by three different procedures. The anchoring and ancillary ligands chosen are ((6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl-bis(4,1-phenylenebis(phosphonic acid (3 and 4,4′-bis(4-iodophenyl-6,6′-diphenyl-2,2′-bipyridine (4, respectively. In the first SALSAC procedure, the FTO/TiO2 electrode is functionalized with 3 in the first dye bath, and then undergoes ligand exchange with the homoleptic complex [Cu(42][PF6] to give surface-bound [Cu(3(4]+. In the second method, the FTO/TiO2 electrode functionalized with 3 is immersed in a solution containing a 1:1 mixture of [Cu(MeCN4][PF6] and 4 to give surface-anchored [Cu(3(4]+. In the third procedure, the anchor 3, copper(I ion and ancillary ligand 4 are introduced in a sequential manner. The performances of the DSSCs show a dependence on the dye assembly procedure. The sequential method leads to the best-performing DSSCs with the highest values of JSC (7.85 and 7.73 mA cm−2 for fully masked cells and overall efficiencies (η = 2.81 and 2.71%, representing 41.1 and 39.6% relative to an N719 reference DSSC. Use of the 1:1 mixture of [Cu(MeCN4][PF6] and 4 yields DSSCs with higher VOC values but lower JSC values compared to those assembled using the sequential approach; values of η are 2.27 and 2.29% versus 6.84% for the N719 reference DSSC. The ligand exchange procedure leads to DSSCs that perform relatively poorly. The investigation demonstrates the versatile and powerful nature of SALSAC in preparing dyes for copper-based DSSCs, allowing the photoconversion efficiency of dye to be optimized for a given dye. The SALSAC strategy provides alternative hierarchical strategies where the isolation of the homoleptic [Cu(Lancillary2]+ is difficult or time-consuming; stepwise strategies are more atom-economic than ligand exchange involving the

  8. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter

    Science.gov (United States)

    Abplanalp, Jeannette; Laczko, Endre; Philp, Nancy J.; Neidhardt, John; Zuercher, Jurian; Braun, Philipp; Schorderet, Daniel F.; Munier, Francis L.; Verrey, François; Berger, Wolfgang; Camargo, Simone M.R.; Kloeckener-Gruissem, Barbara

    2013-01-01

    Creatine transport has been assigned to creatine transporter 1 (CRT1), encoded by mental retardation associated SLC6A8. Here, we identified a second creatine transporter (CRT2) known as monocarboxylate transporter 12 (MCT12), encoded by the cataract and glucosuria associated gene SLC16A12. A non-synonymous alteration in MCT12 (p.G407S) found in a patient with age-related cataract (ARC) leads to a significant reduction of creatine transport. Furthermore, Slc16a12 knockout (KO) rats have elevated creatine levels in urine. Transport activity and expression characteristics of the two creatine transporters are distinct. CRT2 (MCT12)-mediated uptake of creatine was not sensitive to sodium and chloride ions or creatine biosynthesis precursors, breakdown product creatinine or creatine phosphate. Increasing pH correlated with increased creatine uptake. Michaelis–Menten kinetics yielded a Vmax of 838.8 pmol/h/oocyte and a Km of 567.4 µm. Relative expression in various human tissues supports the distinct mutation-associated phenotypes of the two transporters. SLC6A8 was predominantly found in brain, heart and muscle, while SLC16A12 was more abundant in kidney and retina. In the lens, the two transcripts were found at comparable levels. We discuss the distinct, but possibly synergistic functions of the two creatine transporters. Our findings infer potential preventive power of creatine supplementation against the most prominent age-related vision impaired condition. PMID:23578822

  9. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2009-01-01

    Full Text Available Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of chrome pretreated wool and silk have also been monitored. The result shows that better hue was obtained on mordented fiber. Results of bactericidal studies of chrome pretreated fibers revealed that the toxicity of mordented dyes against bacteria is fairly good. Dyeing on wool and silk fibers resulted in yellowish pink to reddish brown colourations having excellent light fastness and washing fastness.

  10. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  11. A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy.

    Science.gov (United States)

    Xue, Fengfeng; Wen, Ying; Wei, Peng; Gao, Yilin; Zhou, Zhiguo; Xiao, Shuzhang; Yi, Tao

    2017-06-13

    We report a pH-responsive photothermal ablation agent (pH-PTT) based on cyanine dyes for photothermal therapy (PTT). The nanoparticles formed by BSA and pH-PTT preferentially accumulated in the Golgi apparatus of cancer cells compared to normal cells, and thus can be specifically activated by the acidic Golgi apparatus in cancer cells for effective PTT both ex vivo and in vivo.

  12. Spherical anatase TiO2 covered with nanospindles as dual functional scatters for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xue, Xiaopan; Tian, Jianhua; Liao, Wenming; Shan, Zhongqiang

    2014-01-01

    Highlights: • Spherical anatase TiO 2 covered with nanospindles (SNS) were employed in DSSCs. • SNS possess the dual functions of light scattering and high dye loading. • SNS were fabricated through a facile hydrothermal treatment of the precursors. • Precursors were synthesized by controlled hydrolysis of TBT after being diluted. • The cells based on SNS-18/P25 photoanode exhibited advanced performance. - Abstract: Spherical anatase TiO 2 covered with nanospindles (SNS) were fabricated through a facile hydrothermal treatment of precursors in the presence of ammonia. The precursors were synthesized by controlling hydrolysis rate of TBT (tetrabutyl titanate) in ethanol. Organic structure directing agents and toxic reagents were avoided in the two–step process. By scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is confirmed that the morphology and structure of the products can be controlled by adjusting hydrothermal treatment conditions. Time dependent trails revealed the growth mechanism of SNS, which indicating that ammonia can not only retard the dissolution of precursors but also make TiO 2 grow selectively along the direction. Furthermore, photocurrent-potential (I-V) curves show that the solar cells fabricated with the SNS collected after 18 h hydrothermal treatment (SNS-18) exhibit the highest solar energy conversion efficiency. The efficiency is improved by 24.5% compared with that of the cells fabricated with pure P25. Based on the UV-Vis spectrum, nitrogen sorption and IPCE analysis, the improved performance can be attributed to the enhanced scattering and increased active sites for dye loading. Therefore, the dual functions of light scattering and many active sites for dye loading make SNS superior candidates for DSSCs

  13. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  14. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  15. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie; Xu, Mingfei; Li, Renzhi; Huang, Kuo-Wei; Jiang, Changyun; Qi, Qingbiao; Zeng, Wangdong; Zhang, Jie; Chi, Chunyan; Wang, Peng; Wu, Jishan

    2014-01-01

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize

  16. Dyes for displays

    Science.gov (United States)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  17. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  18. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voïtchovsky, Kislon

    2015-05-27

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell\\'s performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid. Our results reveal changes in the conformation and the lateral arrangement of the dye molecules, depending on their average packing density on the surface. Complementary quantitative measurements on the ensemble of the film are obtained by the quartz-crystal microbalance with dissipation technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations. (Figure Presented).

  19. Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

    Directory of Open Access Journals (Sweden)

    Ilana Perelshtein

    2016-01-01

    Full Text Available The sonochemical technique has already been proven as one of the best coating methods for stable functionalization of substrates over a wide range of applications. Here, we report for the first time on the simultaneous sonochemical dyeing and coating of textiles with antibacterial metal oxide (MO nanoparticles. In this one-step process the antibacterial nanoparticles are synthesized in situ and deposited together with dye nanoparticles on the fabric surface. It was shown that the antibacterial behavior of the metal oxides was not influenced by the presence of the dyes. Higher K/S values were achieved by sonochemical deposition of the dyes in comparison to a dip-coating (exhaustion process. The stability of the antibacterial properties and the dye fastness was studied for 72 h in saline solution aiming at medical applications.

  20. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons.

    Science.gov (United States)

    Kennedy, Tyler; Broadie, Kendal

    2017-10-11

    Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural

  1. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  2. DYEING COTTON WITH EISENIA BICYCLIS AS NATURAL DYE USING DIFFERENT BIOMORDANTS

    Directory of Open Access Journals (Sweden)

    BONET Mª Ángeles

    2015-05-01

    Full Text Available Natural dyes are known for their use in coloring of food substrate, leather as well as natural protein fibers like wool, silk and cotton as major areas of application since pre-historic times. Nowadays, there has been revival of the growing interest on the application of natural dyes on natural fibers due to worldwide environmental consciousness. Some researchers focus their studies on the improvement of these dyes using mordants. Most works use metallic mordants like aluminum or iron are used, but some of them are hazardous. In this work we used a biomordant to solve environmental problems caused by metallic mordants. The effects of chitosan weight molecular in mordanting on the dyeing characteristics and the UV protection property were examined in this study. Chitosan mordanted Eisenia Bicyclis dyed cotton showed better dyeing characteristic and higher UV protection property compared with undyed cotton fabric. To analyze the differences of the dyeing, reflection spectrophotometer was used, evaluating the results of CIELAB color difference values and the strength color (in terms of K/S value. We conclude that the type of chitosan used affect the dyeing efficiency and the UV protection, showing different behavior between dye sample using chitosan with low or medium molecular weight.

  3. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  4. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  5. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    Science.gov (United States)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  6. Effect of auxiliary group for p-type organic dyes in NiO-based dye-sensitized solar cells: The first principal study

    Science.gov (United States)

    Li, Juan; Zhang, Shijie; Shao, Di; Yang, Zhenqing; Zhang, Wansong

    2018-03-01

    Auxiliary acceptor groups play a crucial role in D-A-π-A structured organic dyes. In this paper, we designed three D-A-π-A structured organic molecules based on the prototype dye QT-1, named ME18-ME20, and further investigated their electronic and optical properties with density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated results indicate that the scope and intensity of dyes' absorption spectra have some outstanding changes by inserting auxiliary groups. ME20 has not only 152 nm redshifts to long wave orientation, but also 78% increased oscillator strength compared to QT-1, and its absorption spectrum broadens region even up to 1400 nm. Then, we studied the reason that the effect of the introduced different auxiliary acceptor groups in these dyes through their ground states geometries and energy levels, electron transfer and recombination rate.

  7. Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes

    International Nuclear Information System (INIS)

    Chang, Peter R.; Zheng Pengwu; Liu Baoxiang; Anderson, Debbie P.; Yu Jiugao; Ma Xiaofei

    2011-01-01

    Soluble starch-functionalized multiwall carbon nanotube composites (MWCNT-starch) were prepared to improve the hydrophilicity and biocompatibility of MWCNTs. Characterization of the MWCNT-starch by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM) and thermogravimetric analysis (TG), showed that the starch component (about 14.3 wt%) was covalently grafted onto the surface of MWCNT. MWCNT-starch-iron oxide composites, intended for use as adsorbents for the removal of dyes from aqueous solutions, were prepared by synthesizing iron oxide nanoparticles at the surface of MWCNT-starch. Starch acts as a template for growth of iron oxide nanoparticles which are uniformly dispersed on the surface of the MWCNT-starch. MWCNT-starch-iron oxide exhibits superparamagnetic properties with a saturation magnetization (23.15 emu/g) and better adsorption for anionic methyl orange (MO) and cationic methylene blue (MB) dyes than MWCNT-iron oxide.

  8. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  9. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  10. PHOTOPOLYMERIZATION OF MMA INITIATED BY CYANINE DYE AND HEXAARYLBIIMIDAZOLE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The photoinitiating system composed of 1-ethyl-3'-methyl thiacyanine bromide (C-I), 2-chlorohexaarylbiimidazole (o-Cl-HABI) and 3-mercapto-4-methyl-4H-1, 2, 4-triazole (MTA), which act as sensitizer, initiator and hydrogen-donor respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The kinetic study was carried out in trichloromathane solution at 30℃ by using dilatometry. The relation between the polymerization rate and the concentrations of C-I, o-Cl-HABI, MTA and MMA was studied.

  11. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  12. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  13. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  14. Characterization of pore-expanded amino-functionalized mesoporous silicas directly synthesized with dimethyldecylamine and its application for decolorization of sulphonated azo dyes

    International Nuclear Information System (INIS)

    Yang Hong; Feng Qiyan

    2010-01-01

    With dimethyldecylamine (DMDA) as the expander, a new kind of pore-expanded amino-functionalized mesoporous silicas (PEAFMS) was directly synthesized under mild alkali condition. The characteristics of PEAFMS sample demonstrated that the presence of DMDA markedly augmented the average pore diameter (19.04 nm) and strongly enhanced its decolorization ability. Subsequently, acid mordant dark yellow GG (YGG) and reactive red violet X-2R (RVX) were chosen to assess its adsorption capacity for sulphonated azo dyes. The effect of initial pH was investigated and the decolorization mechanism was illuminated. Three isotherms were conducted and the goodness of fit increased as the following order: Freundlich < Langmuir < Redlich-Peterson. The maximum adsorption capacities of YGG and RVX onto PEAFMS were 1.967 and 0.957 mmol/g, respectively. Adsorption kinetic processes were better predicted by the pseudo-second-order rate equation than the pseudo-first-order one. Adsorption thermodynamic results suggested that the adsorption behavior of both dyes onto PEAFMS was spontaneous with the chemical nature. In addition, the regeneration of PEAFMS was proved to be feasible using NaOH as the strippant. After five cycles, PEAFMS still possessed a favorable adsorption capacity for dyes. It is safely concluded that PEAFMS could be a potential adsorbent for the dye removal from wastewater.

  15. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  16. Nanoelectronics, Nanophotonics, and Nanomagnetics: Report of the National Nanotechnology Initiative Workshop February 11-13, 2004

    Science.gov (United States)

    2004-02-01

    of Intel. Magnetic cobalt nanoparticles self-assembled into bracelet-like “ nanorings ,” courtesy of Alexander Wei and Purdue University News Service...corrugation. The concentric ring pattern was milled into a sapphire substrate, which was then overcoated with 300 nm of silver . As a final step, a...Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, Effects of fluorophore-to- silver distance on the emission of cyanine-dye-labeled

  17. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  18. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  19. Spectrophotometric determination of aluminium in presence of iron with eriochrome cyanine R. Essays with a decolorated reagent; Determinacion espectrofotometrica de aluminio en presencia de hierro con eriocromocianina R. Ensayos con un reactivo decolorado

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Gomez, M; Gasco Sanchez, L; Fernandez Cellini, R

    1962-07-01

    The behaviour of the extinction coefficient of aqueous solutions of Eriochrome Cyanine R is studied. It is found that at pH 5-6 the diluted acid solutions decolorate rapidly according to an exponential law (538 m{mu}). The fact that the decoloree solutions go on still reacting with the aluminium has. (Author) 12 refs.

  20. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  1. Poly(acrylamide) functionalized chitosan: An efficient adsorbent for azo dyes from aqueous solutions

    International Nuclear Information System (INIS)

    Singh, Vandana; Sharma, Ajit Kumar; Sanghi, Rashmi

    2009-01-01

    In the present communication we report on the optimization of persulfate/ascorbic acid initiated synthesis of chitosan-graft-poly(acrylamide) (Ch-g-PAM) and its application in the removal of azo dyes. The optimum yield of the copolymer was obtained using 16 x 10 -2 M acrylamide, 3.0 x 10 -2 M ascorbic acid, 2.4 x 10 -3 M K 2 S 2 O 8 and 0.1 g chitosan in 25 mL of 5% aqueous formic acid at 45 ± 0.2 o C. Ch-g-PAM remained water insoluble even under highly acidic conditions and could efficiently remove Remazol violet and Procion yellow dyes from the aqueous solutions over a pH range of 3-8 in contrast to chitosan (Ch) which showed pH dependent adsorption. The adsorption data of the Ch-g-PAM and Ch for both the dyes were modeled by Langmuir and Freundlich isotherms where the data fitted better to Langmuir isotherms. To understand the adsorption behavior of Ch-g-PAM, adsorption of Remazol violet on to the copolymer was optimized and the kinetic and thermodynamic studies were carried out taking Ch as reference. Both Ch-g-PAM and Ch followed pseudo-second-order adsorption kinetics. The thermodynamic study revealed a positive heat of adsorption (ΔH o ), a positive ΔS o and a negative ΔG o , indicating spontaneous and endothermic nature of the adsorption of RV dye on to the Ch-g-PAM. The Ch-g-PAM was found to be very efficient in removing color from real industrial wastewater as well, though the interfering ions present in the wastewater slightly hindered its adsorption capacity. The data from regeneration efficiencies for ten cycles evidenced the high reusability of the copolymer in the treatment of waste water laden with even high concentrations of dye.

  2. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    International Nuclear Information System (INIS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-01-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO 2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO 2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO 2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively. (paper)

  3. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  4. Acid-base indicator properties of dyes from local plants I: Dyes from ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Acid-base indicator properties of dyes from local plants I: Dyes from Basella alba. (Indian spinach) and ... solution, which change colour immediately after the equivalence point has .... The pH ranges over which the dyes change colour were ...

  5. Plastic encapsulated, dye sensitised photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Potter, R.J.; Otley, L.C.; Durrant, J.R.; Haque, S.; Xu, C. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Holmes, A.B.; Park, T.; Schulte, N. [Cambridge Univ. (United Kingdom)

    2004-07-01

    The report presents the results of a collaborative project that aimed to demonstrate the technical feasibility of a plastic-encapsulated, solid state, dye-sensitised solar cell (DSSC) with an energy conversion efficiency (ECE) of at least 3%. DSSCs offer a possible 'step change' in photovoltaic technology resulting in lower costs compared with existing technologies. The project involved a series of eight main tasks: the development of first and second generation HTM electrolytes; the development of polymer-supported electrolytes; the development of low temperature electrode coating procedures; dye development; cell assembly and testing; component integration; and overall process development. A wide range of innovative HTMs have been synthesised, including materials incorporating both hole-transporting and ion-chelating functional groups. The ruthenium-based dye, N3, remained the preferred sensitising component. The project has produced a system that can routinely achieve over 5% ECE at 0.1 Sun illumination on 1 cm{sup 2} cells using polymer-supported electrolytes.

  6. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  7. Vibrational spectroscopy of photosensitizer dyes for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Leon, C.

    2005-11-18

    Ruthenium(II) complexes containing polypyridyl ligands are intensely investigated as potential photosensitizers in organic solar cells. Of particular interest is their use in dye-sensitized solar cells based on nanocrystalline films of TiO{sub 2}. Functional groups of the dye allow for efficient anchoring on the semiconductor surface and promote the electronic communication between the donor orbital of the dye and the conduction band of the semiconductor. In the present work a new dye, [Ru(dcbpyH{sub 2}){sub 2}(bpy-TPA{sub 2})](PF6{sub )2}, and the well known (Bu{sub 4}N){sub 2}[Ru(dcbpyH){sub 2}(NCS){sub 2}] complex were spectroscopically characterized. The electronic transitions of both dyes showed solvatochromic shifts due to specific interactions of the ligands with the solvent molecules. The surface-enhanced Raman (SER) spectra of the dyes dissolved in water, ethanol, and acetonitrile were measured in silver and gold colloidal solutions. The results demonstrate that the dyes were adsorbed on the metallic nanoparticles in different ways for different solvents. It was also found that in the gold colloid, the aqueous solutions of both dyes did not produce any SERS signal, whereas in ethanolic solution the SERS effect was very weak. Deprotonation, H-bonding, and donor-acceptor interactions seem to determine these different behaviors. Our results indicate the important role of the charge transfer mechanism in SERS. The adsorption of the dye on two different TiO{sub 2} substrates, anatase paste films and anatase nanopowder, was also studied to clarify the role of the carboxylate groups in the anchoring process of the dyes on the semiconductor surface. The recorded spectra indicate a strong dependence of the anchoring configuration on the morphology of the semiconductor. (orig.)

  8. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  9. Preparation of TiO{sub 2} films by layer-by-layer assembly and their application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000 (China); Xie, A.J. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Shen, Y.H., E-mail: s_yuhua@163.co [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Li, S.K. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2010-09-03

    Polyacrylate sodium (PAAS)/titania (TiO{sub 2}) multilayers have been fabricated through the electrostatic layer-by-layer assembly technique. The composite films display an excellent photovoltaic performance after sintering and sensitization by cyanine dye (CD), which can be applied in dye-sensitized solar cells. The properties of PAAS/TiO{sub 2} multilayers are investigated by ultraviolet-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), Thermogravimetric analysis (TGA), and photovoltaic measurements. The results indicate that the thermal stability of the PAAS has a direct influence on the performance of dye-sensitized solar cells. The energy conversion efficiency of approximately 1.29% was obtained for dye-sensitized solar cell with TiO{sub 2}/PAAS (40 bilayers) as precursor film. In addition, the composite films also show a good self-cleaning property for photocatalytic degradation of methylene blue.

  10. Crystallography and Molecular Arrangement of Polymorphic Monolayer J-Aggregates of a Cyanine Dye: Multiangle Polarized Light Fluorescence Optical Microscopy Study.

    Science.gov (United States)

    Prokhorov, Valery V; Pozin, Sergey I; Perelygina, Olga M; Mal'tsev, Eugene I

    2018-04-24

    The molecular orientation in monolayer J-aggregates of 3,3-di(γ-sulfopropyl)-5,5-dichlorotiamonomethinecyanine dye has been precisely estimated using improved linear polarization measurements in the fluorescence microscope in which a multiangle set of polarization data is obtained using sample rotation. The estimated molecular orientation supplemented with the previously established crystallographic constraints based on the analysis of the well-developed two-dimensional J-aggregate shapes unambiguously indicate the staircase type of molecular arrangement for striplike J-aggregates with the staircases oriented along strips. The molecular transition dipoles are inclined at an angle of ∼25° to the strip direction, whereas the characteristic strip vertex angle ∼45° is formed by the [100] and [1-10] directions of the monoclinic unit cell. Measurements of the geometry of partially unwound tubes and their polarization properties support the model of tube formation by close-packed helical winding of flexible monolayer strips. In the tubes, the long molecular axes are oriented at a small angle in the range of 5-15° to the normal to the tube axis providing low bending energy. At a nanoscale, high-resolution atomic force microscopy imaging of J-aggregate monolayers reveals a complex quasi-one-dimensional organization.

  11. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  12. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  13. Modified Multiwalled Carbon Nanotubes for Treatment of Some Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    M. I. Mohammed

    2014-01-01

    Full Text Available In Iraq, a large quantity of basic orange and methyl violet dyes contaminated wastewater from textile industries is discharged into Tigris River. So the aim of this work is to found an efficient and fast technique that can be applied directly for removal of such dyes from the wastewater before discharging into river. Accordingly, CNTs as a new approach prepared by CCVD technique were purified, functionalized, and used as adsorption material to remove dyes from wastewater. The effect of pH, contact time, CNTs dosage, and dyes concentration on removal of pollutants was studied. The removal percentage of both dyes was proportional to the contact time, CNTs dosage, and pH and inversely proportional to the dyes concentration. The results show that the equilibrium time was 20 and 30 min for basic orange and methyl violet dyes, respectively, and the maximum removal percentage for all dyes concentrations was at pH = 8.5 and CNTs dosage of 0.25 g/L and 0.3 g/L for methyl violet and basic orange dye, respectively. The adsorption isotherm shows that the correlation coefficient of Freundlich model was higher than Langmuir model for both dyes, indicating that the Freundlich model is more appropriate to describe the adsorption characteristics of organic pollutants.

  14. Novel diyne-bridged dyes for efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jing-Kun, E-mail: fjk@njust.edu.cn [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Sun, Tengxiao [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Tian, Yi [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Zhang, Yingjun, E-mail: ZhangYingjun@hec.cn [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Jin, Chuanfei [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Xu, Zhimin; Fang, Yu; Hu, Xiangyu; Wang, Haobin [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China)

    2017-07-01

    Three new metal free organic dyes (FSD101-103) were synthesized to investigate the influence of diyne unit on dye molecules. FSD101 and FSD102 with diyne unit and FSD103 with monoyne unit were applied as sensitizers in the dye-sensitized solar cells (DSSCs). The optical and electrochemical properties, theoretical studies, and photovoltaic parameters of DSSCs sensitized by these dyes were systematically investigated. By replacing the monoyne unit with a diyne unit, FSD101 exhibited broader absorption spectrum, lower IP, higher EA, lower band gap energy, higher oscillator strength, more efficient electron injection ability, broader IPCE response range and higher τ{sub e} in comparison with FSD103. Hence, DSSC sensitized by FSD101 showed higher J{sub sc} and V{sub oc} values, and demonstrated a power conversion efficiency of 3.12%, about 2-fold as that of FSD103 (1.55%). FSD102 showed similar results as FSD101, with a power conversion efficiency of 2.98%, despite a stronger electron withdraw cyanoacrylic acid group was introduced. This may be due to the lower efficiency of the electron injection from dye to TiO{sub 2} and lower τ{sub e} of FSD102 than that of FSD101. These results indicate that the performance of DSSCs can be significantly improved by introducing a diyne unit into this type of organic dyes. - Highlights: • Diyne-bridge was introduced into dye molecules by a transition-metal-free protocol. • Power conversion efficiency grows from 1.55% to 3.12% by replacing monoyne unit with diyne unit. • FSD101 with diyne unit shows the highest electron lifetime resulting in a higher V{sub oc}.

  15. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  16. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  17. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer; Chaudhuri, Rajib Ghosh

    2016-01-01

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  18. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer

    2016-08-04

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  19. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    Directory of Open Access Journals (Sweden)

    Shafeer Kalathil

    2016-08-01

    Full Text Available Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs in the presence of solid and hollow palladium (Pd nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  20. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  1. Dataset on analysis of dyeing property of natural dye from Thespesia populnea bark on different fabrics

    Directory of Open Access Journals (Sweden)

    Kuchekar Mohini

    2018-02-01

    Full Text Available The natural dyes separated from plants are of gaining interest as substitutes for synthetic dyes in food and cosmetics. Thespesia populnea (T. populnea is widely grown plant and used in the treatment of various diseases. This study was aimed to separate natural dye from T. populnea bark and analysis of its dyeing property on different fabrics. In this investigation pharmacognostic study was carried out. The pharmacognostic study includes morphological study, microscopical examination, proximate analysis along with the phytochemical study. The dyeing of different fabric was done with a natural dye extracted from T. populnea bark. The fabrics like cotton, butter crep, polymer, chiken, lone, ulene and tarakasa were dye with plant extract. The various evaluation parameters were studied. It includes effect of washing with water, effect of soap, effect of sunlight, effect of alum, effect of Cupric sulphate, microscopical study of fabrics and visual analysis of dyeing by common people were studied. In results, natural dye isolated from T. populnea bark could be used for dyeing fabrics with good fastness properties. The studies reveals that, the dyeing property of fabrics after washing with water and soap, exposed to sunlight does not get affected. It was observed that cotton and tarakasa stains better as compared with other fabrics. It was concluded that the ethanolic extract having good dyeing property. Keywords: Plant, Thespesia populnea, Bark, Natural dye, Fabrics

  2. Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes

    International Nuclear Information System (INIS)

    Xue, Ailian; Zhou, Shouyong; Zhao, Yijiang; Lu, Xiaoping; Han, Pingfang

    2011-01-01

    Highlights: → We prepared a new amine functionalized adsorbent derived from clay-based material. → Attapulgite surface was modified with 3-aminopropyltriethoxysilane. → Some modification parameters affecting the adsorption potential were investigated. → Enhance the attapulgite adsorptive capacity for reactive dyes from aqueous solutions. - Abstract: The amine moiety has an important function in many applications, including, adsorption, catalysis, electrochemistry, chromatography, and nanocomposite materials. We developed an effective adsorbent for aqueous reactive dye removal by modifying attapulgite with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified attapulgite were characterized by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. We evaluated the impact of solvent, APTES concentration, water volume, reaction time, and temperature on the surface modification. NH 2 -attapulgite was used to remove reactive dyes in aqueous solution and showed very high adsorption rates of 99.32%, 99.67%, and 96.42% for Reactive Red 3BS, Reactive Blue KE-R and Reactive Black GR, respectively. These powerful dye removal effects were attributed to strong electrostatic interactions between reactive dyes and the grafted NH 2 groups.

  3. Radiation degradation-adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Dessouki, A.M.; Amer, S.I.

    2002-01-01

    The radiolysis or three toxic dyes, viz. Reactive Yellow 3, Reactive Black 39, and Basic Blue 26, was investigated as a function of the dye concentration, pH, irradiation dose and dose rate. The radiolytic degradation was more pronounced with Reactive yellow 3 and Reactive Black 39 than with Basic Blue 26. The degree of degradation could be increased by combining the irradiation procedure with the conventional treatment, such as addition of oxygen or hydrogen peroxide; addition of nitrogen, on the other hand, resulted in no change. A pH drop was observed and tentatively attributed to the degradation of the dye molecules to lower molecular weight compounds such as organic acids. The primary radiolysis products as well as the secondary products are responsible for the degradation of the dye chromophore. Experiments with the adsorption or exchange of the dyes on GAC, some ion exchange resins and polymeric membranes were carried out to find that the polymeric membranes have the highest adsorption capacity for the pollutants except the basic dye. The combined treatment by irradiation and adsorption resulted in a complete removal of the toxic dyes in question

  4. Synthesis of azo pyridone dyes

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2011-01-01

    Full Text Available Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were used rapidly since 1970 in inks for the heat-transfer printing of polyester. The main synthetic route for the preparation of azo dyes is coupling reaction between an aromatic diazo compound and a coupling component. Of all dyes manufactured, about 60% are produced by this reaction. Arylazo pyridone dyes can be prepared from pyridone moiety as a coupling component, where substituent can be on nitrogen, and diazonim salts which can be derived from different substituted anilines or other heterocyclic derivatives. In addition, arylazo dyes containing pyridone ring can be prepared from arylazo diketones or arylazo ketoesters (obtained by coupling β-diketones or β-ketoesters with diazonim salts by condensation with cyanoacetamide. Disazo dyes can be prepared by tetrazotizing a dianiline and coupling it with a pyridone or by diazotizing aniline and coupling it with a dipyridone. Trisazo dyes can be also prepared by diazotizing of aniline and coupling it with a tripyridone or by hexazotizing a trianiline and coupling it with a pyridone. The main goal of this paper is to give a brief review on the synthesis of arylazo pyridone dyes due to the lack of such reviews. In addition, some properties of arylazo pyridone dyes as light fastness and azo-hydrazon tautomerism are disccused.

  5. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.; Yum, Jun-Ho; Hoke, Eric T.; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L.; Nazeeruddin, Md. Khaja; Grätzel, Michael; McGehee, Michael D.

    2010-01-01

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3

  6. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  8. Use of dyes in cariology.

    Science.gov (United States)

    van de Rijke, J W

    1991-04-01

    The property of dyes to enhance contrast by their colour can be used in clinical dentistry and in investigations in vitro or in vivo. They have been used for indication of affected dental tissues, improvement of diagnostic methods, enhancement of patient awareness and information about specific processes. The development of particular dye systems, aimed at clinical application, is often laborious because of toxic effects, lack of specificity, irreversible staining or difficulties with removal of the dye. Clinically used dyes are often visually observed, which means a qualitative assessment of the staining, while quantification of the staining, if performed at all, is confined mostly to laboratory experiments. In this paper the application of dyes, arranged according to their specific purpose in cariology, is discussed, and a brief historical overview is given of the development of two particular dye applications for which commercial dye systems are now available. If certain requirements are met, dyes can be of great help in detection and quantification when used with several diagnostic methods.

  9. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  10. Potential of roselle and blue pea in the dye-sensitized solar cell

    Science.gov (United States)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  11. Hyaluronan, CD44, and Emmprin Regulate Lactate Efflux and Membrane Localization of Monocarboxylate Transporters in Human Breast Carcinoma Cells

    Science.gov (United States)

    Slomiany, Mark G.; Grass, G. Daniel; Robertson, Angela D.; Yang, Xiao Y.; Maria, Bernard L.; Beeson, Craig; Toole, Bryan P.

    2013-01-01

    Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin)is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells. PMID:19176383

  12. Optical study of planar waveguides based on oxidized porous silicon impregnated with laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chouket, A. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT-6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)], E-mail: habib.elhouichet@fst.rnu.tn; Oueslati, M. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)

    2009-05-15

    Oxidized porous silicon optical planar waveguides were elaborated and impregnated with rhodamine B and rhodamine 6G. The waveguiding, absorption, and photoluminescence properties of these impregnated waveguides were studied. Successful impregnation of the structure with laser dyes is shown from photoluminescence and reflectivity measurements. Furthermore, the reflectivity spectra prove the homogenous incorporation of both dye molecules inside the pores of the matrices. The refractive indices of waveguide layers were determined before and after dye impregnation to indicate the conservation of guiding conditions. The optical losses in the visible wavelengths are studied as a function of dye concentration. The dye absorption is the main reason for these losses.

  13. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Md. Khalid Hossain

    Full Text Available In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV–Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell’s (DSSC photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric. Keywords: DSSC, Natural dye, TiO2 photoanode, Dye extracting solvent, Dye-adsorption time

  14. Tuning the Electron-Transport and Electron-Accepting Abilities of Dyes through Introduction of Different π-Conjugated Bridges and Acceptors for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Li, Yuanzuo; Sun, Chaofan; Song, Peng; Ma, Fengcai; Yang, Yanhui

    2017-02-17

    A series of dyes, containing thiophene and thieno[3,2-b]thiophene as π-conjugated bridging units and six kinds of groups as electron acceptors, were designed for dye-sensitized solar cells (DSSCs). The ground- and excited-state properties of the designed dyes were investigated by using density functional theory (DFT) and time-dependent DFT, respectively. Moreover, the parameters affecting the short-circuit current density and open-circuit voltage were calculated to predict the photoelectrical performance of each dye. In addition, the charge difference density was presented through a three-dimensional (3D) real-space analysis method to investigate the electron-injection mechanism in the complexes. Our results show that the longer conjugated bridge would inhibit the intramolecular charge transfer, thereby affecting the photoelectrical properties of DSSCs. Similarly, owing to the lowest chemical hardness, largest electron-accepting ability, dipole moment (μnormal ) and the change in the energy of the TiO 2 conduction band (ΔECB ), the dye with a (E)-3-(4-(benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-2-cyanoacrylic acid (TCA) acceptor group would exhibit the most significant photoelectrical properties among the designed dyes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    Science.gov (United States)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  16. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  17. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Dostanić, J., E-mail: jasmina@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Lončarević, D. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Zlatar, M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade (Serbia); Vlahović, F. [University of Belgrade, Innovation center of the Faculty of Chemistry, 11000 Belgrade (Serbia); Jovanović, D.M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2016-10-05

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ{sub p} constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ{sub p} constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO{sub 2} photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  18. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Dostanić, J.; Lončarević, D.; Zlatar, M.; Vlahović, F.; Jovanović, D.M.

    2016-01-01

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ_p constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ_p constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO_2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  19. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules

    Directory of Open Access Journals (Sweden)

    Jing Kang

    2010-01-01

    Full Text Available H-aggregates of the cyanine dye Cy5 are formed during covalent linkage to the cationic macromolecule Poly(allylamine (PAH. The nonfluorescent H-aggregates strongly restrict the usage of the dye for analytical purposes and prevent a quantitative determination of the labeled macromolecules. The behavior of the H-aggregates has been studied by investigation of the absorption and fluorescence spectra of the dye polymer in dependence on solvent, label degree and additional sulfonate groups. H-aggregate formation is caused by an inhomogeneous distribution of the Cy5 molecules on the polymer chain. The H-aggregates can be destroyed by conformational changes of the PAH induced by interactions with polyanions or in organic solvents. It has been found that the polymer labeling process in high content of organic solvents can prevent the formation of H-aggregates. The results offer a better understanding and improvement of the use of the Cy5 dye for labeling purposes in fluorescence detection of macromolecules.

  20. Photodetectors based on single-walled carbon nanotubes and thiamonomethinecyanine J-aggregates on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, I. V., E-mail: i-v-fedorov@mail.ru; Emel’yanov, A. V.; Romashkin, A. V.; Bobrinetskiy, I. I. [National Research University of Electronic Technology (MIET) (Russian Federation)

    2015-09-15

    The present paper is devoted to observations of the photoresistive effect in multilayer structures with a sensitive layer of J-aggregates of thiamonomethinecyanine polymethine dye and a transparent electrode of a conductive carbon-nanotube network on a flexible polyethylenenaphtalate substrate. The effect of narrow-band emission with a wavelength of 465 nm on a change in the conductivity of the fabricated structures is studied. The prepared samples are studied by atomic-force microscopy, Raman spectroscopy, and spectrophotometry methods. It is shown that these structures are photosensitive to the indicated spectral region, and the dye layer is a film of dye J-aggregates. The change in the sample conductivity upon exposure to light one hundred times exceeds the dark conductivity. In general, the principal possibility of developing a photoresistive detector based on J-aggregates of cyanine dyes on flexible supports on account of the use of transparent and conductive carbon-nanotube layers is shown.

  1. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    Science.gov (United States)

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  2. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    Directory of Open Access Journals (Sweden)

    Supratik Kar

    2016-12-01

    Full Text Available Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs. Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT and time-dependent DFT (TD-DFT methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency.

  3. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brian E.; Hoke, Eric T.; Baranoff, Etienne; Zakeeruddin, Shaik M.; Nazeeruddin, Mohammad K.; Torres, Tomas; McGehee, Michael D.; Grä tzel, Michael

    2011-01-01

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse

  4. In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone

    Directory of Open Access Journals (Sweden)

    Irfan Ahmed Shaikh

    2014-12-01

    Full Text Available In this study, a new idea of decolourization was investigated in which residual dyeing effluent from textile dyeing process was treated using O3 in the same machine where it was generated. The novelty comes from the idea of doing dyeing and treatment simultaneously. At the completion of dyeing process, O3 gas was injected directly into the machine to remove colour and COD from the wastewater. To evaluate the effectiveness of new method, pilot-scale studies were performed, and decolourization of residual dyeing effluents containing C.I. Reactive Orange 7, C.I. Reactive Blue 19, and C.I. Reactive Black 5 was carried out in specially built textile jet dyeing machine. The results showed that almost 100% colour removal and 90% COD reduction were achieved when process conditions such as pH, dye concentration (mg/L, ozone production rate (g/hr, and temperature were optimized. The study concludes that new method has a great potential to eliminate the need of a separate end-of-the-pipe wastewater treatment system, thus offering an on-site and cost-effective solution.

  5. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie

    2014-01-08

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics. © 2013 American Chemical Society.

  6. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chien-Hsin, E-mail: yangch@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Wen-Churng [Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan (China); Wang, Tzong-Liu; Shieh, Yeong-Tarng; Chen, Wen-Janq; Liao, Shao-Hong; Sun, Yu-Kuang [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2011-10-17

    Highlights: {yields} We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. {yields} A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. {yields} Carbazole donor in the dye molecule provides electron in increasing efficiency. {yields} Two rhodaniline-3-acetic acids play a key role in increasing efficiency. {yields} AC impedance proves this dye's effect on enhancing charge transfer in TiO{sub 2}. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO{sub 2}-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO{sub 2}, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO{sub 2} (e{sup -}). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  7. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Wu, H.M. [Department of Materials Engineering, Tatung University, No. 40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei City 104, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Jwo, C.S. [Department of Energy and Air-Conditioning Refrigeration Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Lo, Y.J. [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-04-16

    This study used spinach extract, ipomoea leaf extract and their mixed extracts as the natural dyes for a dye-sensitized solar cell (DSSC). Spinach and ipomoea leaves were first placed separately in ethanol and the chlorophyll of these two kinds of plants was extracted to serve as the natural dyes for using in DSSCs. In addition, the self-developed nanofluid synthesis system prepared a TiO{sub 2} nanofluid with an average particle size of 50 nm. Electrophoresis deposition was performed to let the TiO{sub 2} deposit nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11.61 {mu}m. This TiO{sub 2} thin film underwent sintering at 450 {sup o}C to enhance the compactness of thin film. Finally, the sintered TiO{sub 2} thin film was immersed in the natural dye solutions extracted from spinach and ipomoea leaves, completing the production of the anode of DSSC. This study then further inspected the fill factor, photoelectric conversion efficiency and incident photon current efficiency of the encapsulated DSSC. According to the experimental results of current-voltage curve, the photoelectric conversion efficiency of the DSSCs prepared by natural dyes from ipomoea leaf extract is 0.318% under extraction temperature of 50 {sup o}C and pH value of extraction fluid at 1.0. This paper also investigated the influence of the temperature in the extraction process of this kind of natural dye and the influence of pH value of the dye solution on the UV-VIS patterns absorption spectra of the prepared natural dye solutions, and the influence of these two factors on the photoelectric conversion efficiency of DSSC.

  8. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  9. Theoretical insight into electronic structure and optoelectronic properties of heteroleptic Cu(I)-based complexes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuxian; Li, Ke; Lu, Xiaoqing, E-mail: luxq@upc.edu.cn; Zhao, Zigang; Shao, Yang; Dang, Yong; Li, Shaoren; Guo, Wenyue, E-mail: wyguo@upc.edu.cn

    2016-04-15

    A series of heteroleptic Cu(I)-based dyes were investigated by density functional theory (DFT) and time-dependent DFT (TD-DFT). Results showed that Cu(I)-based dyes were inclined to form distorted pseudo-trigonal pyramidal configurations with four-coordinated geometry index τ{sub 4} ranging from 0.905 to 0.914. The absorption spectra of Cu(I)-based dyes covered ∼300.0–600.0 nm region, and the lowest excitation states were crucial for efficient electron excitation and separation. Suitable energy levels of Cu(I)-based dyes rendered them thermodynamically favorable for efficient electron injection into semiconductor and regeneration from electrolyte. Relative to π-conjugation, heteroaromatic groups introduced into ancillary ligands could significantly improve the property of Cu(I)-based dyes by decreasing HOMO-LUMO gaps, red-shifting spectral range, strengthening absorption intensity, boosting light-harvesting efficiency, and promoting interfacial electron injection. Specifically, Cu(I)-based dye with dithiole-functionalized group exhibited outstanding optoelectronic property. - Highlights: • Assessment of heteroleptic Cu(I) dyes for dye-sensitized solar cells. • Suitable energy levels render Cu(I) dyes ideal candidates for electron injection. • Heteroaromatic groups efficiently improve Cu(I) dyes light-harvesting properties. • Dye with dithiole group exhibits ideal photoelectronic property.

  10. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  11. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Science.gov (United States)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  12. The role of rare earth oxide nanoparticles in suppressing the photobleaching of fluorescent organic dyes

    Science.gov (United States)

    Guha, Anubhav; Basu, Anindita

    2013-03-01

    Organic dyes are widely used for both industrial as well as in scientific applications such as the fluorescent tagging of materials. However the process of photobleaching can rapidly degrade dye fluorescence rendering the material non-functional. Thus exploring novel methods for preventing photobleaching can have widespread benefits. In this work we show that the addition of minute quantities of rare earth (RE) oxide nanoparticles can significantly suppress the photobleaching of dyes. The fluorescence of Rhodamine and AlexaFluor dyes was measured as a function of time with and without the addition of CeO2 and La2O3 nanoparticle additives (two RE oxides that contain an oxygen vacancy based defect structure), as well as with FeO nanoparticles (which has an oxygen excess stoichiometry). We find that the rare earth oxides significantly prolonged the lifetimes of the dyes. The results allow us to develop a model based upon the presence of oxygen vacancies defects that allow the RE oxides to act as oxygen scavengers. This enables the RE oxide particles to effectively remove reactive oxygen free radicals generated in the dye solutions during the photoabsorption process. Current affiliation: Harvard University

  13. Natural dyeing and UV protection of plasma treated cotton

    Science.gov (United States)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  14. Extraction of dye

    African Journals Online (AJOL)

    Dyes of natural origins are great for color appreciation as any variation in the concentration of dye, mordant, type of water, soil and climate give variations in ... Grey scale and blue dyed silk were used for color fastness rating. ..... Down to Earth.

  15. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine

    Science.gov (United States)

    Wu, Mianmian; Li, Pan; Zhu, Qingxia; Wu, Meiran; Li, Hao; Lu, Feng

    2018-05-01

    There has been an increasing demand for rapid and sensitive techniques for the identification of Sudan compounds that emerged as the most often illegally added fat-soluble dyes in herbal medicine. In this report, we have designed and fabricated a functionalized filter paper consisting of gold nanorods (GNRs) and mono-6-thio-cyclodextrin (HS-β-CD) as a surface-enhanced Raman spectroscopy (SERS) substrate, in which the GNR provides sufficient SERS enhancement, and the HS-β-CD with strong chemical affinity toward GNR provides the inclusion compound to capture hydrophobic molecules. Moreover, the CD-GNR were uniformly assembled on filter paper cellulose through the electrostatic adsorption and hydrogen bond, so that the CD-GNR paper-based SERS substrate (CD-GNR-paper) demonstrated higher sensitivity for the determination of Sudan III (0.1 μM) and Sudan IV (0.5 μM) than GNRs paper-based SERS substrate (GNR-paper), with high stability after the storage in the open air for 90 days. Importantly, CD-GNR-paper can effectively collect the Sudan dyes from illegally adulterated onto samples of Resina Draconis with a simple operation, further open up new exciting opportunity for SERS detection of more compounds illegally added with high sensitivity and fast signal responses.

  16. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    Science.gov (United States)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  17. Photolysis of rhodamine-WT dye

    Science.gov (United States)

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  18. Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    DHIRUBHAI J. DESAI

    2010-05-01

    Full Text Available Novel acid mono azo and mordent acid mono azo dyes were synthesised by the coupling of diazonium salt solution of different aromatic amines with 2-hydroxy-4-methoxybenzophenone. The resulting dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1H-NMR and UV–visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre-treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness. The results of antibacterial studies of chrome pre-treated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  19. The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thio phen Group

    International Nuclear Information System (INIS)

    Nonomura, K.; Xu, Y.; Marinado, T.; Hagberg, D.P.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Rong Zhang, R.; Boschloo, G.; Hagfeldt, A.

    2009-01-01

    A new ruthenium complex, cis-di(thiocyanato)(2,2'-bipyridine-4,4'-dicarboxylic acid)(4,4'-bis (2-(5-(2-(4-diphenylaminophenyl)ethenyl) -thiophen-2-yl)ethenyl)-2,2'-bipyridine)ruthenium(II) (named E322) has been synthesized for use in dye-sensitized solar cells (DSCs). Higher extinction coefficient and a broader absorption compared to the standard Ru-dye, N719, were aimed. DSCs were fabricated with E322, and the efficiency was 0.12% initially. (4.06% for N719, as reference). The efficiency was enhanced to 1.83% by exposing the cell under simulated sunlight containing UV-irradiation at short-circuit condition. The reasons of this enhancement are (1) enhanceing electron injection from sensitizer to TiO 2 following a shift toward positive potentials of the conduction band of TiO 2 by the adsorption of protons or cations from the sensitizer, or from the redox electrolyte and (2) improving the regeneration reaction of the oxidized dye by the redox electrolyte by the dissolution of aggregated dye from the surface of TiO 2 following the treatment.

  20. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8.

    Science.gov (United States)

    Protze, Jonas; Braun, Doreen; Hinz, Katrin Manuela; Bayer-Kusch, Dorothea; Schweizer, Ulrich; Krause, Gerd

    2017-06-01

    Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T 3 -docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.

  1. Self-Propelled Soft Protein Microtubes with a Pt Nanoparticle Interior Surface.

    Science.gov (United States)

    Kobayakawa, Satoshi; Nakai, Yoko; Akiyama, Motofusa; Komatsu, Teruyuki

    2017-04-11

    Human serum albumin (HSA) microtubes with an interior surface composed of Pt nanoparticles (PtNPs) are self-propelled in aqueous H 2 O 2 medium. They can capture cyanine dye and Escherichia coli (E. coli) efficiently. Microtubes were prepared by wet templating synthesis by using a track-etched polycarbonate (PC) membrane with alternate filtrations of aqueous HSA, poly-l-arginine (PLA), and citrate-PtNPs. Subsequent dissolution of the PC template yielded uniform hollow cylinders made of (PLA/HSA) 8 PLA/PtNP stacking layers (1.16±0.02 μm outer diameter, ca. 23 μm length). In aqueous H 2 O 2 media, the soft protein microtubes are self-propelled by jetting O 2 bubbles from the open-end terminus. The effects of H 2 O 2 and surfactant concentrations on the velocity were investigated. The swimming microtube captured cyanine dye in the HSA component of the wall. Addition of an intermediate γ-Fe 3 O 4 layer allowed manipulation of the direction of movement of the tubule by using a magnetic field. Because the exterior surface is positively charged, the bubble-propelled microtubes adsorbed E. coli with high efficiency. The removal ratio of E. coli by a single treatment reached 99 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    International Nuclear Information System (INIS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-01-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash –SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties. - Highlights: ► The optimum absorbed dose obtained for surface modification of cotton (RC) is 8 kGy. ► Irradiation has enhanced antioxidant, anti bacterial and hemolytic activities. ► Optimum dyeing conditions are 60 min dyeing time and 8 g/L salt concentration. ► At optimum conditions, color strength and fastness properties are enhanced.

  3. Synthesis and dyeing performance of bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol

    Directory of Open Access Journals (Sweden)

    Rajesh H. Parab

    2016-09-01

    Full Text Available The present communication aims to develop bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol (DAP both as a coupling component as well as a diazonium salt. Coupling reaction of DAP was carried out with a diazonium salt of 4-aminoacetanilide to yield a monoazo disperse dye, and then it was further used as a diazonium salt and coupled with a different aromatic phenol to synthesize bisazo disperse dyes. All the disperse dyes were characterized by elemental analysis, IR, NMR and UV–Visible spectral studies with a view to determine their chemical structure. The dyeing ability of these bisazo disperse dyes has been evaluated in terms of their dyeing behavior and fastness properties on different fabrics.

  4. Natural dyes versus lysochrome dyes in cheiloscopy: A comparative evaluation.

    Science.gov (United States)

    Singh, Narendra Nath; Brave, V R; Khanna, Shally

    2010-01-01

    Cheiloscopy is the study of lip prints. Lip prints are genotypically determined and are unique, and stable. At the site of crime, lip prints can be either visible or latent. To develop lip prints for study purpose various chemicals such as lysochrome dyes, fluorescent dyes, etc. are available which are very expensive. Vermilion (Sindoor used by married Indian women) and indigo dye (fabric whitener) are readily available, naturally derived, and cost-effective reagents available in India. To compare the efficacy of sudan black, vermilion, and indigo in developing visible and latent lip prints made on bone china cup, satin fabric, and cotton fabric. Out of 45 Volunteers 15 lip prints were made on bone China cup 15 lip prints on Satin fabric and 15 on Cotton fabric. Sudan black, vermilion and indigo were applied on visible and latent lip prints and graded as good (+,+), fair (+), and poor (-) and statistically evaluated. The vermilion and indigo dye gives comparable results to that of sudan black for developing visible and latent lip prints.

  5. Survery on Actual Conditions of Food Dyes

    OpenAIRE

    佐藤, ひろみ

    1981-01-01

    Many food dyes are widely used as food additives in Japan, and many investigations have been pointed the problems of safety of these food dyes used in Japanese food. There are two types of commercial food dyes, one is synthetic dyes and the other is natural dyes.Recently Japanese food is not stained so colourfully, but it is stained faintly in colour near to natural food by using of mixed synthetic dyes. On their hand, many consumers have a tendency to prefer natural food dyes because they ha...

  6. Thermal stability of the C106 dye in robust electrolytes

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Pechy, Peter

    -MPN) introduced by Gao et al. in 2008. [1]. Figure 1 Thermal degradation of C106 bound to TiO2 at 80 ºC in dark as a function of heating time. ● C106 = RuLL´(NCS)2 ■ RuLL´(NCS)(NBB)+ ▲ RuLL´(NCS)(3-MPN)+ The C106 dye was attached to the surface of TiO2 nano-particles and stable colloidal solutions...... of the particles were prepared in electrolyte mixture B. The solutions were thermally treated at 80 ◦C for 0-2000 hours followed by dye extraction and analysis by HPLC coupled to UV/Vis and electro spray mass spectrometry [2]. Figure 1 shows the concentration profiles of C106 samples prepared under ambient...... and glove box conditions as a function of the heating time. Preparation of the samples under strict atmospheric moisture control in a glove box gives the best results with a steady state surface concentration of 80% intact C106 and 20% NBB substitution product after ~1500 hours of heating at 80 ºC. If dye...

  7. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.; Hoke, Eric T.; Armstrong, Paul B.; Yum, Jun-Ho; Comte, Pascal; Torres, Tomá s; Fré chet, Jean M. J.; Nazeeruddin, Md Khaja; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near

  8. Condensed heterocycles with a thiazole ring. 13. Azinothiazoloquinoxalinium salts

    International Nuclear Information System (INIS)

    Nesterenko, Yu.A.; Romanov, N.N.

    1987-01-01

    The condensation of 2,3-dichloroquinoxaline with 2-mercaptopyridines and 2-mercaptoquinolines gave the corresponding derivatives of new heterocyclic systems, viz., azino[1',2':3,2]thaizolo[4,5-b]quinoxalinium salts, which can be used for the synthesis of cyanine dyes. The electronic spectra of solutions of the compounds were obtained with an SF-8 spectrophotometer. The PMR spectra of solutions of CF 3 COOD were recorded with a BS-467 spectrometer (60 MHz) with hexamethyldisiloxane (HMDS) as the external standard

  9. Chromatographic separation and spectro-analytical characterization of a natural African mineral dye

    Directory of Open Access Journals (Sweden)

    G.B. Adebayo

    2007-08-01

    Full Text Available Chromatographic fractionation and spectroscopic characterization of a natural African mineral dye have been carried out. The chromatographic separation of the dyes made use of column and thin layer chromatographic techniques. Some physicochemical properties of the dye including solubility in polar and non-polar solvents, pH, ash and organic contents were determined. The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF, X-ray diffractometry (XRD, Optical microscopy, infrared (IR and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic separation. All the fractions were found to contain aromatic nucleus based on IR and UV-VIS spectroscopic data. Other functional groups detected are Ar-NH2, -CONH2, C=C, C-C and metal-carbon chelate rings. The presence of aromatic amine in the dye provides strong evidence for its use as hair dye. The dye was found to be soluble in both aqueous and non-aqueous solvents. The pH of the dye's aqueous solution was found to be 8.6, and the ash and organic content of the raw dye were 49 % and 51 % respectively. The XRF revealed that the dye contains twenty elements with concentrations ranging from major to ultra-trace levels. The XRD also showed that the sample contains about forty-six mineral phases which include both inorganic and organic components. The maximum absorption wavelength (λmax in UV-VIS of the aqueous solution was found to be 464 nm. The optical microscopic investigation gave indication that the dyes are likely to be of the marine origin.

  10. Eco-friendly synthesis of 4-4-diaminodiphenylurea, a dye intermediate and direct dyes derived from it

    International Nuclear Information System (INIS)

    Amjad, R.; Khan, S.R.; Naeem, M.; Sohaib, M.; Munawar, M.A.

    2011-01-01

    A rapid, environmental friendly and highly efficient method for the synthesis of 4-4/sup '/-diaminodiphenyl- urea and direct dyes derived form it has been reported. The reported method is environmentally friendly, as it doesn't involve the usage of environmentally hazardous material like phosgene and tri phosgene. Novel azo dyes have been prepared by the coupling of 4-4/sup '/-Diamino diphenylurea with various couplers. Structure elucidation of the synthesized dyes was carried out by IR, NMR, Elemental analysis, and confirmation was made by Mass Spectrometry. The dyeing performance of these dyes was assessed on cotton fabric. The dye bath exhaustion, sublimation and fastness properties were also determined. The dyed fabric showed moderate to good light fastness and very good to excellent fastness properties for washing, rubbing, perspiration, and sublimation. (author)

  11. Acid azo dye remediation in anoxic-aerobic-anoxic microenvironment under periodic discontinuous batch operation: bio-electro kinetics and microbial inventory.

    Science.gov (United States)

    Venkata Mohan, S; Suresh Babu, P; Naresh, K; Velvizhi, G; Madamwar, Datta

    2012-09-01

    Functional behavior of anoxic-aerobic-anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50 ± 1 U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0 ± 0.2 μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  13. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L

    Energy Technology Data Exchange (ETDEWEB)

    Agustia, Yuda Virgantara, E-mail: yuda.mechanical.engineer@student.uns.ac.id; Suyitno,, E-mail: suyitno@uns.ac.id; Sutanto, Bayu, E-mail: bayu.sutanto@student.uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Arifin, Zainal, E-mail: zainal-a@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, Brawijaya University, Malang (Indonesia)

    2016-03-29

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, E{sub HOMO} and E{sub LUMO} was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where E{sub red} = −0.37V, E{sub LUMO} = −4.28 eV, E{sub ox} = 1.15V, E{sub HOMO} = −5.83 eV, and E{sub band} {sub gap} = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  14. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  15. Removal of remazol brilliant blue R dye from aqueous solutions using yeast biomass as biosorbent

    International Nuclear Information System (INIS)

    Barreda-Reyes, Karen L.; Ortega-López, Jocelyn; Ortega-Regules, Ana E.; Santiago-Santiago, Luis A.; Netzahuatl-Muñoz, Alma R.

    2015-01-01

    The main purpose of this study was to obtain kinetic and equilibrium parameters for the anthraquinone dye r emoval of Remazol Brilliant Blue R dye from aqueous solutions using yeast biomass as biosorbent, and identify the functional groups responsible for biosorption by infrared spectrometry. Biosorption dye kinetics at temperatures of 10 °C, 20 °C, 30 °C and 40 °C were fitted correctly by the pseudo-first and pseudo-second order models. The values of thermodynamic activation parameters indicated that the biosorption process is endothermic and no spontaneous. Sorption isotherm at 20 °C, pH 2,0 and a biomass concentration of 1,0 g L-1 was obtained, finding a value of 127,6 mg g-1 for the saturated monolayer according to the Langmuir model. Infrared studies showed that carboxyl and amide are the main functional groups responsible for dye biosorption. (author)

  16. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  17. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes

    Directory of Open Access Journals (Sweden)

    Hala F. Rizk

    2017-05-01

    Full Text Available 5-Amino-4-heterylazo-3-phenyl-1H-pyrazoles (2a–d were diazotized and coupled with malononitrile to give pyrazoloazo malononitrile which by heating in glacial acetic acid gave novel pyrazolo[5,1-c][1,2,4]triazine dyes (3a–d. Also, some diazopyrazolyl pyrazolone dyes (4a–h were synthesized by diazotization of 2a–d and coupled with some pyrazolone derivatives. The structure of the synthesized dyes was determined by elemental analysis and spectral data. All the synthesized compounds were applied as disperse dyes and their dyeing performance on polyester fabric was studied. The fastness and colorimetric properties were measured. The results revealed that the monoazo dyes have good fastness and good to moderate affinity to polyester fabric than diazo dyes. In addition, the synthesized dyes were screened for their antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa (Gram positive, Bacillus subtitles, Escherichia coli (Gram negative and Candida albicans, Aspergillus niger (Fungi. The results revealed that most of the prepared dyes have high antibacterial activity.

  18. Inclusion of aggregation effect to evaluate the performance of organic dyes in dye-sensitized solar cells

    Science.gov (United States)

    Sun, Kenan; Zhang, Weiyi; Heng, Panpan; Wang, Li; Zhang, Jinglai

    2018-05-01

    Two new indoline-based D-A-π-A dyes, D3F and D3F2 (see Scheme 1), are developed on the basis of the reported D3 by insertion of one or two F atoms on benzothiadiazole group. Our central aim is to explore high-efficiency organic dyes applied in dye-sensitized solar cells by inclusion of a simple group rather than by employment of new complicated groups. The performance of two new designed organic dyes, D3F and D3F2, is compared with that of D3 from various aspects including absorption spectrum, light harvesting efficiency, driving force, and open-circuit voltage. Besides the isolated dye, the interfacial property between dye and TiO2 surface is studied. D3F and D3F2 do not show absolute superiority than D3 not only for the isolated dyes but also for the monomeric adsorption system. However, D3F and D3F2 would effectively reduce the influence of aggregation resulting in the much smaller intermolecular electronic coupling. Although the aggregation has attracted much attention recently, it is studied alone in most of studies. To comprehensively evaluate the performance of dye-sensitized solar cells, it is necessary to consider aggregation along with electron injection time from dye into TiO2 rather than only static items, such as, band gap and absorption region.

  19. Radiative characteristics of CVL pumped dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Uichi; Ishiguro, Takahide

    1987-09-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or ethylene glycol was useful solvent for dye laser.

  20. One-step synthesis of dye-incorporated porous silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qing; DeShong, Philip; Zachariah, Michael R., E-mail: mrz@umd.edu [University of Maryland, Department of Chemistry and Biochemistry (United States)

    2012-07-15

    Fluorescent nanoparticles have a variety of biomedical applications as diagnostics and traceable drug delivery agents. Highly fluorescent porous silica nanoparticles were synthesized in a water/oil phase by a microemulsion method. What is unique about the resulting porous silica nanoparticles is the combination of a single-step, efficient synthesis and the high stability of its fluorescence emission in the resulting materials. The key of the success of this approach is the choice of a lipid dye that functions as a surrogate surfactant in the preparation. The surfactant dye was incorporated at the interface of the inorganic silica matrix and organic environment (pore template), and thus insures the stability of the dye-silica hybrid structure. The resulting fluorescent silica materials have a number of properties that make them attractive for biomedical applications: the availability of various color of the resulting nanoparticle from among a broad spectrum of commercially dyes, the controllablity of pore size (diameters of {approx}5 nm) and particle size (diameters of {approx}40 nm) by adjusting template monomer concentration and the water/oil ratio, and the stability and durability of particle fluorescence because of the deep insertion of surfactant's tail into the silica matrix.

  1. Molecular and excited state properties of isomeric scarlet disperse dyes

    Science.gov (United States)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  2. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  3. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    Energy Technology Data Exchange (ETDEWEB)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboraory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m{sup 2}/g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma.

  4. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    International Nuclear Information System (INIS)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma; Elkak, Assem; Denizli, Adil

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m 2 /g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma

  5. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    Science.gov (United States)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  6. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  7. Radiative characteristics of CVL pumped dye laser

    International Nuclear Information System (INIS)

    Kubo, Uichi; Ishiguro, Takahide.

    1987-01-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or Ethylene Glycol was useful solvent for dye laser. (author)

  8. Influence of styryl dyes on blood erythrocytes

    Science.gov (United States)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  9. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  10. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez. [Department of Physical Chemistry, University of Seville, Seville (Spain)

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  11. Exercise-induced expression of monocarboxylate transporter 2 in the cerebellum and its contribution to motor performance.

    Science.gov (United States)

    Hoshino, Daisuke; Setogawa, Susumu; Kitaoka, Yu; Masuda, Hiroyuki; Tamura, Yuki; Hatta, Hideo; Yanagihara, Dai

    2016-10-28

    Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of lactate transport via MCT2 in the cerebellum affects motor performance. To address this question, we examined motor performance in mice following the inhibition of lactate transport via MCT2 in the cerebellum using α-cyano-4-hydroxycinnamate (4-CIN). 4-CIN or saline was injected into the subarachnoidal space of the cerebellum of mice and motor performance was analyzed by a rotarod test both before and after injection. 4-CIN injection reduced retention time in the rotarod test by approximately 80% at 1h post-injection compared with pre-injection. No effect was observed at 2h post-injection or in mice treated with the vehicle control. Because we observed that MCT2 plays an important role in motor performance, we next investigated the effects of acute exercise on MCT2 transcription and protein levels in mice sampled pre-exercise and at 0 and 5h after 2h of treadmill running. We found a significant increase in MCT2 mRNA levels, but not of protein levels, in the cerebellum at 5h after exercise. Our results indicate that lactate transport via MCT2 in the cerebellum may play an important role in motor performance and that exercise can increase MCT2 expression at the transcriptional level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Organic dye for highly efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Ito, S.; Graetzel, M. [Institut des Sciences et Ingenierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Horiuchi, T.; Miura, H. [Technology Research Laboratory, Corporate Research Center, Mitsubishi Paper Mills Limited, 46, Wadai, Tsukuba City, Ibaraki 300-4247 (Japan); Uchida, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-chome, Aoba-ku, Sendai 980-8577 (Japan)

    2005-04-04

    The feasibility of solid-state dye-sensitized solar cells as a low-cost alternative to amorphous silicon cells is demonstrated. Such a cell with a record efficiency of over 4 % under simulated sunlight is reported, made possible by using a new organic metal-free indoline dye as the sensitizer with high absorption coefficient. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  14. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  15. Electrophoresis-base dye adsorption into titanium dioxide film for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Ratno Nuryadi; Zico Alaia Akbar Junior; Lia Aprilia

    2010-01-01

    Dye Sensitized Solar Cell (DSSC) is one of renewable energy sources which has demanded a substitute non renewable energy sources. The most important factor influencing DSSC performance is dye adsorption into semiconductor nano-porous TiO 2 particles. The purpose of this work is to study the effect of dye eosin Y adsorption on DSSC characteristics by an electrophoresis method. As result, Open Circuit Voltage (V oc ) of DSSC increases as the applied voltage of electrophoresis increases. It is also found that the eosin Y absorbance at wavelength of around 500 nm increases when the electrophoresis voltage is increased. These results indicate that electrophoresis process plays an important role in dye adsorption. (author)

  16. The comparison of spectra and dyeing properties of new azonaphthalimide with analogues azobenzene dyes on natural and synthetic polymers

    Directory of Open Access Journals (Sweden)

    Mozhgan Hosseinnezhad

    2017-05-01

    Full Text Available The aim of the present research was to prepare new acid dyes based on naphthalimides. In this respect a series of monoazo acid dyes have been obtained using 4-amino-N-methyl (alternatively N-butyl-1,8-naphthalimide, aniline and p-nitroaniline as diazo components. 2-Naphthol-6-sulfonic acid (Schaeffer’s acid and 1-naphthol-8-amino-3,6-disulfonic acid (H-acid were used as coupling components. The spectrophotometric properties of the synthesized dyes were investigated in various solvents and compared with analogues azobenzene dyes. It is found, when acid dyes are applied in various solvents and different pH, additional bathochromically shifted bands of different intensity appear in the electronic spectra. This effect is caused by the occurrence of the equilibrium of azo and hydrazone forms in the dyes. The synthesized acid dyes were applied on wool fabrics in order to consider their dyeing properties, fastnesses and the obtainable color gamut. The synthesized dyes represented that they have the ability of dyeing wool and polyamide fabrics and give red to violet hues with good wash, medium light, and good milling and perspiration fastnesses.

  17. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  18. Precise identification and manipulation of adsorption geometry of donor-π-acceptor dye on nanocrystalline TiO₂ films for improved photovoltaics.

    Science.gov (United States)

    Zhang, Fan; Ma, Wei; Jiao, Yang; Wang, Jingchuan; Shan, Xinyan; Li, Hui; Lu, Xinghua; Meng, Sheng

    2014-12-24

    Adsorption geometry of dye molecules on nanocrystalline TiO2 plays a central role in dye-sensitized solar cells, enabling effective sunlight absorption, fast electron injection, optimized interface band offsets, and stable photovoltaic performance. However, precise determination of dye binding geometry and proportion has been challenging due to complexity and sensitivity at interfaces. Here employing combined vibrational spectrometry and density functional calculations, we identify typical adsorption configurations of widely adopted cyanoacrylic donor-π bridge-acceptor dyes on nanocrystalline TiO2. Binding mode switching from bidentate bridging to hydrogen-bonded monodentate configuration with Ti-N bonding has been observed when dye-sensitizing solution becomes more basic. Raman and infrared spectroscopy measurements confirm this configuration switch and determine quantitatively the proportion of competing binding geometries, with vibration peaks assigned using density functional theory calculations. We further found that the proportion of dye-binding configurations can be manipulated by adjusting pH value of dye-sensitizing solutions. Controlling molecular adsorption density and configurations led to enhanced energy conversion efficiency from 2.4% to 6.1% for the fabricated dye-sensitized solar cells, providing a simple method to improve photovoltaic performance by suppressing unfavorable binding configurations in solar cell applications.

  19. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L

    International Nuclear Information System (INIS)

    Agustia, Yuda Virgantara; Suyitno,; Sutanto, Bayu; Arifin, Zainal

    2016-01-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, E_H_O_M_O and E_L_U_M_O was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where E_r_e_d = −0.37V, E_L_U_M_O = −4.28 eV, E_o_x = 1.15V, E_H_O_M_O = −5.83 eV, and E_b_a_n_d _g_a_p = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  20. SFG characterization of a cationic ONLO dye in biological thin films

    Science.gov (United States)

    Johnson, Lewis E.; Casford, Michael T.; Elder, Delwin L.; Davies, Paul B.; Johal, Malkiat S.

    2013-10-01

    Biopolymer-based thin films, such as those composed of CTMA-DNA, can be used as a host material for NLOactive dyes for applications such as electro-optic (EO) switching and second harmonic generation. Previous work by Heckman et al. (Proc. SPIE 6401, 640108-2) has demonstrated functioning DNA-based EO modulators. Improved performance requires optimization of both the first hyperpolarizabilities (β) and degree of acentric ordering exhibited by the chromophores. The cationic dye DANPY-1 (Proc. SPIE 8464, 846409-D) has a high affinity for DNA and a substantial hyperpolarizability; however, its macroscopic ordering has not been previously characterized. We have characterized the acentric ordering of the dye using sum-frequency generation (SFG) vibrational spectroscopy in surface-immobilized DNA and on planar metal and dielectric surfaces.

  1. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  2. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors

    Science.gov (United States)

    Xu, Jie; Zhang, Hui; Wang, Lei; Liang, Guijie; Wang, Luoxin; Shen, Xiaolin; Xu, Weilin

    2010-07-01

    A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption maxima ( λmax) of organic dyes for dye-sensitized solar cells (DSSCs). The entire set of 70 dyes was divided into a training set of 53 dyes and a test set of 17 dyes according to Kennard and Stones algorithm. Three-dimensional (3D) descriptors were calculated to represent the dye molecules. A ten-descriptor model, with a squared correlation coefficient ( R2) of 0.9543 and a standard error of estimation ( s) of 14.7 nm, was produced by using the stepwise multilinear regression analysis (MLRA) on the training set. The reliability of the proposed model was further illustrated using various evaluation techniques: leave-one-out cross-validation procedure, randomization tests, and validation through the external test set. All descriptors involved in the model were derived solely from the chemical structure of the dye molecules, which makes the model very useful to estimate the λmax of dyes before they are actually synthesized.

  3. Photodegradation of polymer-dispersed perylene di-imide dyes

    Science.gov (United States)

    Tanaka, Nobuaki; Barashkov, Nikolay; Heath, Jerry; Sisk, Wade N.

    2006-06-01

    Polymer-dispersed perylene di-imide dye photodegradation is investigated by monitoring the fluorescence intensity as a function of 532 nm laser pulses. Anaerobically irradiated polymer-dye films exhibited an accelerated decrease in fluorescence intensity, which was partially recovered upon exposure to oxygen. Decelerated photodegradation rates were observed for perylene di-imide ethanol solutions upon the addition of a singlet oxygen quenching antioxidant. These observations suggest reversible photoreduction and type II photo-oxidation as important photodegradation mechanisms. Type II photo-oxidation for perylene red 532 nm irradiation is supported by a singlet oxygen quantum yield of 0.09±0.03, determined via detection of time-resolved O2 (a1Δg —> X3∑g-) infrared phosphorescence.

  4. Aggregation modes of anionic oxacarbocyanines with polycations in solution and in ESAMs

    Directory of Open Access Journals (Sweden)

    Andrea Lodi

    2006-01-01

    Full Text Available Interaction of oxacarbocyanines D-G with three polycations in aqueous solutions results in the formation of two types of likely small, distorted aggregates rather than the classical J aggregates. On the contrary, the latter are extensively and almost exclusively obtained in electrostatically self-assembled multilayers (ESAMs prepared by alternate polycation/dye adsorption on quartz substrates. The J-aggregate growth on supported polycations is qualitatively shared by the four cyanines, a fact that reveals the crucial role of the double anionic substitutions on the dyes. On the other hand, films with D and E, which are known to have a stronger tendency to give dimers in water, exhibit higher J-band intensities and stability upon drying relative to those with F and G. Based on these observations, we suggest that energetic factors associated with cofacial dye/dye van der Waals interactions, ultimately related with the degree of planarity of the conjugated chromophores, may still play a major role in controlling aggregation equilibria in these complex systems.

  5. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  6. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi

    Directory of Open Access Journals (Sweden)

    Vicente A. Hernández

    2018-02-01

    Full Text Available Fungal isolates obtained from rotten wood samples were identified and selected by their ability to produce fungal dyes in liquid media. Fungal isolates produced natural extracellular dyes with colors ranging from red to orange, yellow and purple. Dyes from two of these fungi, Talaromyces australis (red and Penicillium murcianum (yellow, were extracted and used to dye wool samples in a Data Color Ahiba IR Pro-Trade (model Top Speed II machine. The protein nature of wool interacted well with the fungal dyes producing colors suitable for textile applications when used to a concentration of 0.1 g·L−1. Results on color fastness when washing confirmed the affinity of the dyes with wool as the dyed samples kept their color in acceptable ranges after washing, without the implementation of mordanting pretreatments or the use of fixing agents.

  7. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  8. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  9. Laser-limiting materials for medical use

    Science.gov (United States)

    Podgaetsky, Vitaly M.; Kopylova, Tat'yana N.; Tereshchenko, Sergey A.; Reznichenko, Alexander V.; Selishchev, Sergey V.

    2004-03-01

    The important problem of modern laser medicine is the decrease of an exposure of biological tissues outside of an operational field and can be solved by optical radiation limiting. Organic dyes with reversibly darkening can be placed onto surfaces of irradiated tissues or can be introduced in solder for laser welding of vessels. The limiting properties of a set of nontoxic organic compounds were investigated. Nonlinear optical properties of dyes having reverse saturable absorption (pyran styryl derivatives, cyanine and porphyrine compounds) were studied under XeCl and YAG:Nd (II harmonics) lasers excitation. The effect of attenuation of a visible laser radiation is obtained for ethanol solutions of cyanines: radiation attenuation coefficient ( AC) = 25-35 at N/S = 100-250 MW/cm2. In water solutions of such compounds in UV spectrum range AC ~ 10. The spectral characteristics of compounds appeared expedient enough to operational use in laser limiters (broad passband in visible range of a spectrum). Under the data of Z-scanning (the scheme F/10) value AC ~ 70 was reached. The limiting of power laser radiation in visible (λ = 532 nm) and UV- (λ = 308 nm) spectral region and nanosecond pulse duration (7 -13 ns) across porphyrine solutions and their complexes with some metals (13 compounds) was investigated too. The comparative study of optical limiting dependence on intensity of laser radiation, solvent type and concentration of solutions was carried out for selecte wavelength. There was shown a possible use of pyran styryl derivatives DCM as limiters of visual laser radiation. To understand a mechanism of laser radiation limitation the light induced processes were experimentally and theoretically studied in organic molecules. The quantum-chemical investigation of one cyanine compound was carried out. There were noted the perspectives of laser radiation limiting by application of inverted schemes of traditional laser shutters. Usage of phenomena of light -induced

  10. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  11. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  12. Dye adsorbates BrPDI, BrGly, and BrAsp on anatase TiO2(001) for dye-sensitized solar cell applications

    Science.gov (United States)

    Çakır, D.; Gülseren, O.; Mete, E.; Ellialtıoǧlu, Ş.

    2009-07-01

    Using the first-principles plane-wave pseudopotential method within density functional theory, we systematically investigated the interaction of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) with both unreconstructed (UR) and reconstructed (RC) anatase TiO2(001) surfaces. All dye molecules form strong chemical bonds with surface in the most favorable adsorption structures. In UR-BrGly, RC-BrGly, and RC-BrAsp cases, we have observed that highest occupied molecular orbital and lowest unoccupied molecular orbital levels of molecules appear within band gap and conduction-band region, respectively. Moreover, we have obtained a gap narrowing upon adsorption of BrPDI on the RC surface. Because of the reduction in effective band gap of surface-dye system and possibly achieving the visible-light activity, these results are valuable for photovoltaic and photocatalytic applications. We have also considered the effects of hydration of surface to the binding of BrPDI. It has been found that the binding energy drops significantly for the completely hydrated surfaces.

  13. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic ß-cells leads to relative hyperinsulinism during exercise

    DEFF Research Database (Denmark)

    Pullen, Timothy J; Sylow, Lykke; Sun, Gao

    2012-01-01

    Exercise-induced hyperinsulinism (EIHI) is an autosomal dominant disorder characterized by inappropriate insulin secretion in response to vigorous physical exercise or pyruvate injection. Activating mutations in the monocarboxylate transporter-1 (MCT1, SLC16A1) promoter have been linked to EIHI....... Expression of this pyruvate transporter is specifically repressed (disallowed) in pancreatic ß-cells, despite nearly universal expression across other tissues. It has been impossible to determine, however, whether EIHI mutations cause MCT1 expression in patient ß-cells. The hypothesis that MCT1 expression...... in ß-cells is sufficient to cause EIHI by allowing entry of pyruvate and triggering insulin secretion thus remains unproven. Therefore, we generated a transgenic mouse capable of doxycycline-induced, ß-cell-specific overexpression of MCT1 to test this model directly. MCT1 expression caused isolated...

  14. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    Science.gov (United States)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  15. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  16. Monocarboxylate Transporters 1 and 4 Are Associated with CD147 in Cervical Carcinoma

    Directory of Open Access Journals (Sweden)

    Céline Pinheiro

    2009-01-01

    Full Text Available Due to the highly glycolytic metabolism of solid tumours, there is an increased acid production, however, cells are able to maintain physiological pH through plasma membrane efflux of the accumulating protons. Acid efflux through MCTs (monocarboxylate transporters constitutes one of the most important mechanisms involved in tumour intracellular pH maintenance. Still, the molecular mechanisms underlying the regulation of these proteins are not fully understood. We aimed to evaluate the association between CD147 (MCT1 and MCT4 chaperone and MCT expression in cervical cancer lesions and the clinico-pathological significance of CD147 expression, alone and in combination with MCTs. The series included 83 biopsy samples of precursor lesions and surgical specimens of 126 invasive carcinomas. Analysis of CD147 expression was performed by immunohistochemistry. CD147 expression was higher in squamous and adenocarcinoma tissues than in the non-neoplastic counterparts and, importantly, both MCT1 and MCT4 were more frequently expressed in CD147 positive cases. Additionally, co-expression of CD147 with MCT1 was associated with lymph-node and/or distant metastases in adenocarcinomas. Our results show a close association between CD147 and MCT1 and MCT4 expressions in human cervical cancer and provided evidence for a prognostic value of CD147 and MCT1 co-expression.

  17. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  18. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  19. Halogen-containing thiazole orange analogues – new fluorogenic DNA stains

    Directory of Open Access Journals (Sweden)

    Aleksey A. Vasilev

    2017-12-01

    Full Text Available Novel asymmetric monomeric monomethine cyanine dyes 5a–d, which are analogues of the commercial dsDNA fluorescence binder thiazole orange (TO, have been synthesized. The synthesis was achieved by using a simple, efficient and environmetally benign synthetic procedure to obtain these cationic dyes in good to excellent yields. Interactions of the new derivatives of TO with dsDNA have been investigated by absorption and fluorescence spectroscopy. The longest wavelength absorption bands in the UV–vis spectra of the target compounds are in the range of 509–519 nm and these are characterized by high molar absorptivities (63000–91480 L·mol−1·cm−1. All investigated dyes from the series are either not fluorescent or their fluorescence is quite low, but they become strongly fluorescent after binding to dsDNA. The influence of the substituents attached to the chromophores was investigated by combination of spectroscopic (UV–vis and fluorescence spectroscopy and theoretical (DFT and TDDFT calculations methods.

  20. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  1. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saltan, Gözde Murat [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Dinçalp, Haluk, E-mail: haluk.dincalp@cbu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Kıran, Merve; Zafer, Ceylan [Solar Energy Institute, Ege University, Bornova, 35100 Izmir (Turkey); Erbaş, Seçil Çelik [Celal Bayar University, Materials Engineering Department, Faculty of Engineering, Yunus Emre, 45140 Manisa (Turkey)

    2015-08-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO{sub 2}-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation.

  2. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Saltan, Gözde Murat; Dinçalp, Haluk; Kıran, Merve; Zafer, Ceylan; Erbaş, Seçil Çelik

    2015-01-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO 2 -coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation

  3. Design of butterfly type organic dye sensitizers with double electron donors: The first principle study

    Science.gov (United States)

    Yang, Zhenqing; Shao, Di; Li, Juan; Tang, Lian; Shao, Changjin

    2018-05-01

    In this work, we designed a series of butterfly type organic dyes, named ME07-ME13 by introducing such as triphenylamine, phenothiazine, coumarin groups etc. as electron donors and further investigated their absorption spectra using density functional theory (DFT) and time-dependent DFT (TDDFT). All designed dyes cover the entire visible absorption spectrum from 300 to 800 nm. It's fascinating that ME13 molecule has two absorption peak and the molar coefficient of two absorption peaks are above 4.645 × 104 M-1·cm-1. The light absorption area of ME13 exhibits an increment of 16.5-19.1% compared to ME07-ME12. Furthermore, we performed a detailed analysis on their geometrical and electronic properties, including molecular structures, energy levels, light harvesting efficiency (LHE), driving force (ΔGinject), regeneration (ΔGregen),electron dipole moments (μnormal), intermolecular electron transfer and dye/(TiO2)38 system electron transitions. The results of calculation reveal that double coumarin donors in ME13 are promising functional groups for butterfly type organic dye sensitizers. It is expected that the design of double donors can provide a new strategy and guidance for the investigation in high efficiency dye-sensitized devices.

  4. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  5. Synthesis and characterization of natural dye and counter electrode thin films with different carbon materials for dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Ho; Chen, Tien-Li; Kao, Mu-Jung; Chen, Chih-Hao; Chien, Shu-Hua; Jiang, Lii-Jenq

    2011-08-01

    This study aims to deal with the film of the counter electrode of dye-sensitized solar cells (DSSCs) and the preparation, structure and characteristics of the extract of natural dye. This study adopts different commercial carbon materials such as black lead, carbon black and self-made TiO2-MWCNT compound nanoparticle as the film of the counter electrodes. Moreover, for the preparation of natural dyes, anthocyanins and chlorophyll dyes are extracted from mulberry and pomegranate respectively. Furthermore, the extracted anthocyanins and chlorophyll are blended into cocktail dye to complete the preparation of natural dye. Results show that the photoelectric conversion efficiency of the single-layer TiO2-MWCNT counter electrode film and the cocktail dye of the DSSCs is 0.462%.

  6. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  7. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brianâ E.; Moon, Soo-Jin; Baranoff, Etienne; Nà ¼ esch, Frank; McGehee, Michaelâ D.; Grà ¤ tzel, Michael; Nazeeruddin, Mohammadâ K.

    2009-01-01

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture

  8. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  9. Newer approach of using alternatives to (Indium doped) metal electrodes, dyes and electrolytes in dye sensitized solar cell

    Science.gov (United States)

    Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.

    2018-04-01

    This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.

  10. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2018-03-01

    The fabrication of dye-sensitized solar cell (DSSC) has been conducted by varying the composition of natural dye from moss chlorophyll (Bryophyte) and synthesis dye from ruthenium complex N719. The sandwich structure of DSSC consists of the working electrode using TiO2, dye, electrolyte, and counter electrode using carbon. The composition of chlorophyll and synthesis dyes mixture were 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80%. The UV-Vis absorption spectra of moss chlorophyll showed the first peak in the wavelength range of 450-500 nm and the second peak at wavelength of 650-700 nm. The peak value of absorbance at wavelengths of 450-500 nm was 6.1004 and at wavelengths of 650-700 nm was 3.5835. The IPCE characteristic curves showed the absorption peak of photon for DSSCs occurred at wavelength of 550-650 nm. It considered that photon in this wavelength can contribute dominantly to produce the optimum electrons. The I-V characteristics of DSSCs with composition of chlorophyll and synthesis dyes mixture of 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80% resulted the efficiency of 0.0022; 0.0194; 0.0239; 0.0342; and 0.0414, respectively. It suggested that the addition of a little composition of the ruthenium complex dye into moss chlorophyll dye can increase the efficiency significantly.

  11. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  12. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures - Can sterically hindered pyridines prevent dye degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Tuyet Nguyen, Phuong; Lund, Torben [Department of Science, Systems and Models, Roskilde University, 4000 Roskilde (Denmark); Rand Andersen, Anders [University of Southern Denmark, Institute of Sensors, Signals and Electrotechnics (SENSE), Niels Bohrs Alle 1, 5230 Odense M (Denmark); Danish Technological Institute, Plastics Technology, Gregersensvej 2630 Taastrup (Denmark); Morten Skou, Eivind [University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2010-10-15

    The homogeneous kinetics of the nucleophilic substitution reactions between the ruthenium dye N719 and eight pyridines and 1-methylbenzimidazole have been investigated in 3-methoxypropionitrile at 100 C. The half lives of N719 with the additives 4-tert-butylpyridine (0.5 M) and 1-methylbenzimidazole (0.5 M) were 57 and 160 h, respectively. Sterically hindered pyridines like 2,6-lutidine did not react with N719. The efficiencies of dye-sensitized solar cells (DSC, area=8.0 cm{sup 2}) prepared with 1-methylbenzimidazole (MBI), 4-tert-butylpyridine (4-TBP), 2,6-lutidine and without any additive were 7.1%, 6.2%, 6.0% and 4.8%, respectively. The cells were stored in dark at 85 C and their I-V curves and impedance spectra were measured at regular time intervals. The N719 dye degradation in the cells were monitored by a new dye extraction protocol combined with analysis of the dye extract by HPLC coupled to mass spectrometry. After 300 h storage in dark at 85 C 40% of the initial amount of N719 dye was degraded in DSC cells prepared with MBI and the efficiency was decreased to 40% of its initial value. DSC cells prepared with 2,6-lutidine or no additives showed smaller thermal dye and efficiency stability at elevated temperatures than DSC cells prepared with the none sterically hindered additives MBI and 4-TBP. In the cells prepared with 2,6-lutidine or no additive higher contents of the iodo products [RuL{sub 2}(NCS)(iodide)]{sup +} and [RuL{sub 2}(3-MPN)(iodide)]{sup +} were found than in cells prepared with 4-TBP and MBI. It is suggested that sterically hindered pyridines have smaller complexation constants with I{sub 3}{sup -} than unsterically hindered additives. This may explain the observed faster nucleophilic substitution rates of uncomplexed I{sub 3}{sup -} with N719 in DSC cells prepared with sterically hindered pyridines. The EIS analysis showed that the lifetime of the injected electrons in the TiO{sub 2}{tau}{sub eff} is reduced by a thermally induced change

  13. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis

    International Nuclear Information System (INIS)

    Annadurai, Gurusamy; Ling, L.Y.; Lee, J.-F.

    2008-01-01

    The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300 mg/L), particle size (0.177, 0.384, 1.651 mm), pH (6.7-9.0), and temperature (30-60 deg. C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (q m ) has been found to be 91.47-130.0 mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212 kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions

  14. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N.; Han, Jin Wook; Han, Sung-Hwan

    2010-01-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm 2 under 80 mW/cm 2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  15. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  16. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix

    2018-01-26

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  17. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix; Kim, Yoojin M.; Zagraniarsky, Yulian; Schlü tter, Florian; Andrienko, Denis; Mü llen, Klaus; Laquai, Fré dé ric

    2018-01-01

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  18. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  19. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  20. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2016-08-01

    Full Text Available The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP, and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE for application to dye-sensitized solar cell (DSSC is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  1. Molecular design of new hydrazone dyes for dye-sensitized solar cells: Synthesis, characterization and DFT study

    KAUST Repository

    Al-Sehemi, Abdullah G.

    2012-07-01

    Three new sensitizers 2-{4-[2-(4-Nitrobenzylidene)hydrazino)]phenyl} ethylene-1,1,2-tricarbonitrile (NBHPET), 2-{4-[2-p-Chlorobenzylidenehydrazino] phenyl}- ethylene-1,1,2-tri carbonitrile (CBHPET) and 2-{4-[2-p- Bromobenzylidenehydrazino] phenyl}ethylene-1,1,2-tricarbonitrile (BBHPET) have been synthesized. The dyes showed pronounced solvatochromic effects as the polarity of the solvents increased. The structures have been optimized at B3LYP/6-31G(d) level of theory. The torsion in E-isomer is smaller than Z-isomer and azo isomers. The highest occupied molecular orbitals are delocalized on whole molecule while lowest unoccupied molecular orbitals are distributed on the tricarbonitrile. The lowest unoccupied molecular orbital energies are above the conduction band of titanium dioxide, highest occupied molecular orbitals of the dyes are below the redox couple of new synthesized dyes and small energy gap revealed these dyes would be better sensitizers for dye-sensitized solar cells. © 2012 Elsevier B.V. All rights reserved.

  2. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chih-Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Yu, Pin-Feng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Wang, Jyhpyng [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Chen, Yen-Mu [SuperbIN Co., Ltd., Taipei 114, Taiwan (China); Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China)

    2016-08-15

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  3. Kinetics of low temperature polyester dyeing with high molecular weight disperse dyes by solvent microemulsion and agrosourced auxiliaries

    OpenAIRE

    Radei, Shahram; Carrión-Fité, Francisco Javier; Ardanuy Raso, Mònica; Canal Arias, José Ma

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  4. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  5. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  6. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  7. Bleaching and diffusion dynamics in optofluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Asger

    2007-01-01

    The authors have investigated the bleaching dynamics that occur in optofluidic dye lasers where the liquid laser dye in a microfluidic channel is locally bleached due to optical pumping. They find that for microfluidic devices, the dye bleaching may be compensated through diffusion of dye molecules...

  8. Contact allergy to common ingredients in hair dyes

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rustemeyer, Thomas; Gonçalo, Margarida

    2013-01-01

    p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed.......p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed....

  9. Dye-enhanced diode laser photocoagulation of choroidal neovascularizations

    Science.gov (United States)

    Klingbeil, Ulrich; Puliafito, Carmen A.; McCarthy, Dan; Reichel, Elias; Olk, Joseph; Lesiecki, Michael L.

    1994-06-01

    Dye-enhanced diode laser photocoagulation, using the dye indocyanine green (ICG), has shown some potential in the treatment of choroidal neovascularizations (CNV). A diode laser system was developed and optimized to emit at the absorption maximum of ICG. In a clinical study at two retinal centers, more than 70 patients, the majority of which had age-related macular degeneration, were treated. Eighteen cases with ill-defined subfoveal CNV were followed an average of 11 months after laser treatment. The results show success in resolving the CNV with an average long-term preservation of visual function equal to or superior to data provided by the Macular Photocoagulation Study for confluent burns of low intensity applied to the CNV. Details of the technique and discussion of the controversies inherent in such a treatment strategy will be presented.

  10. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  11. Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency.

    Science.gov (United States)

    Sun, Bo; Hou, Qingxi; He, Zhibin; Liu, Zehua; Ni, Yonghao

    2014-10-13

    Nanocrystalline cellulose (CNC) as a renewable/sustainable material, has received much attention. Herein we studied CNC as carriers for a hydrophobic spirooxazine (SO)-based dye, 1,3-dihydro-1,3,3-trimethylspiro[2H-indole-2,3'-[3H]naphtha[2,1-b][1,4]oxazine], which may have potential applications in reversible memory photo-devices, textiles, photo-sensitive paper coatings, and inkjet printing inks. Due to the high cost and water-insolubility of this dye, it is desirable to improve its coloration efficiency and water-dispersibility. The experimental approach was to use CNC as carriers for the SO dye, thus obtaining a stable photochromic dye in aqueous systems. Transmission electron microscope (TEM) observation confirmed that the SO dye adsorbed on the surface of the CNC, which functioned as carriers for the photochromic dye. An impregnation process was adopted to anchor the dye onto cellulosic paper. It was found that the use of CNC resulted in a significant improvement in the SO coloration efficiency. The color stability and fatigue resistance were also studied. The use of CNC as carriers for a hydrophobic compound, its enhancement of associated properties, and its subsequent application were demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The use of natural blueberry dye producing butter cream

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2016-01-01

    Full Text Available Creamy сream - finishing semi-finished product in the manufacture of pastry products. Tinting cream mass in different shades of color can improve the aesthetic appearance of the product appearance and make it more attractive. Natural blueberry anthocyanin dye has antioxidant, anti-cancer, anti-sclerotic, anti-allergic and anti-inflammatory properties, P-vitamin activity. The influence of the content of blueberry dye to change the chromaticity characteristics, organoleptic and physico-chemical parameters, shape keeping capacity, antioxidant activity of the samples of butter cream after manufacture and during storage. Based on the analysis of the results to give a butter cream pleasant pink color can be recommended dosage blueberry dye - 2.5 g / kg, with anthocyanin dye in this case is used as an antioxidant and as its use in the recommended amounts increases the antioxidant activity of 12.5 mg / 100 g (62.8% (relative to unstained samples cream. Pastry with a creamy semi-finished product, colored with natural blueberry dye, demand on the food market of confectionery products, and they can be recommended as the first baby food, people with lowered immunity, the elderly and mass consumption, as products contain vitamin E - 30 mg / 100 g of product (satisfaction of the daily requirement for vitamin makes - 75% and a significant amount of antioxidants. The facts make it possible to expand the range of competitive confectionery functionality diversify colors shades of cream, to improve its taste and aroma properties, enhance the nutritional value and shelf life due to the large amount of co-antioxidants.

  13. Dye-sensitized photopolymerization of N,N ...

    Indian Academy of Sciences (India)

    Unknown

    and a primary radical derived from the reducing agent. This radical initiates the vinyl polymerization. (scheme 1). In scheme 1, D is the dye, 1D the first excited singlet state, 3D the triplet state, DH. • the semi- quinone dye, DH2 the leuco dye, RH the reducing agent and R. • the initiating radical. Similar schemes. 1D → 3D,.

  14. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye

    Directory of Open Access Journals (Sweden)

    Warda Hassan

    2017-05-01

    Full Text Available Conventional technologies for the removal of dyes from the waste water are proving expensive due to non-regenerable materials used and their high costs. The use of dried biomass from Haloxylon recurvum plant stems (HRS was studied for the removal of methylene blue, a textile dye, from its aqueous solution. FTIR studies revealed a variety of functional groups on the plant surface including carboxyl and amino groups. The pH at the point of zero charge (pHpzc was found to be 6.3. The dye uptake by the plant increased with increasing pH, time of contact and dye concentration. Lagergren Pseudo first order and the Ho’s pseudo second order models were used to study the kinetics. The Langmuir and Freundlich equilibrium models were studied and the qmax was 22.93 mg/g. The changes in the values of free energy (ΔGo and enthalpy (ΔHo indicated the spontaneous, feasible and exothermic nature of the sorption process. H. recurvum plant is locally available in large quantities, so the powdered stems can act as a cost-effective and ecofriendly biosorbent for the removal of the dye from its aqueous solutions.

  16. Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature.

    Science.gov (United States)

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2017-03-01

    The present work aims to study the effect of the liquid temperature on the performance of ultrasounds (US) in a dyeing process. The approach was both theoretical and experimental. In the theoretical part the simplified model of a single bubble implosion is used to demonstrate that the "maximum implosion pressure" calculated with the well known Rayleigh-Plesset equation for a single bubble can be correlated with the cavitation intensity experimentally measured with an Ultrasonic Energy Meter (by PPB Megasonics). In particular the model was used to study the influence of the fluid temperature on the cavitation intensity. The "relative" theoretical data calculated from the implosion pressure were satisfactorily correlated with the experimental ones and evidence a zone, between 50 and 60°C, were the cavitation intensity is almost constant and still sufficiently high. Hence an experimental part of wool dyeing was carried out both to validate the previous results and to verify the dyeing quality at low temperatures (40-70°C) in presence of US. A prototype dyeing equipment able to treat textile samples with US system of 600W power, was used. The dyeing performances in the presence and absence of US were verified by measuring ΔE (colour variation), R e,% (reflectance percentage), K/S (colour strength) and colour fastness. The US tests performed in the temperature range of 40-70°C were compared with the conventional wool dyeing at 98°C. The obtained results show that a temperature close to 60°C should be chosen as the recommended US dyeing condition, being a compromise between the cavitation intensity and the kinetics which rules the dyestuff diffusion within the fibres. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  18. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  19. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Yeonhee Lee

    2013-05-01

    Full Text Available Time-of-flight secondary ion mass spectrometry (TOF-SIMS and X-ray photoelectron spectroscopy (XPS are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric.

  1. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Science.gov (United States)

    Lee, Jihye; Kang, Min Hwa; Lee, Kang-Bong; Lee, Yeonhee

    2013-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR) measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric. PMID:28809257

  2. Effects of incorporated straw on dye tracer infiltration

    Science.gov (United States)

    Kasteel, R.; Garnier, P.; Vachier, P.; Coquet, Y.

    2003-04-01

    Crop residue incorporation by conventional tillage increases the heterogeneity in the soil surface layer due to the soil tillage itself and to the presence of a zone with a high density of vegetal residues. The objective of this work was to quantify the effect of incorporated straw on the transport behaviour of the dye Brilliant Blue. We used an image analysis technique to calculate the Brilliant Blue concentration from the spectral signature (i.e. RGB values) using a calibration relationship. This method was already successfully applied in soils without organic matter and in this study we want to extend it to soils that contain fresh organic matter. The experiment took place in a loamy bare soil in the north of France at Mons-en-Chaussée in May, 2002. The soil was ploughed under dry conditions to 30 cm depth and straw was incorporated at the content of 10 Tonnes of C/ha. The infiltration experiment was carried out using an infiltrometer of 25 cm diameter at the head potential of -1 cm of water. First, water was infiltrated followed by the dye solution. The day after the infiltration, the soil was cut in horizontal sections of 50 times 50 cm. In total, 15 cross-section were photographed which were separated by a vertical distance of about 2 or 3 cm. Samples of soil and small pieces of straw were taken from the soil surface in order to measure the Brilliant Blue concentration for the calibration procedure. The volumetric water content and bulk density were measured with small cylindrical samples. After geometrical and illumination corrections of the images, we separated the soil from the straw and established a separate second-order polynomial calibration function for both relating the Brilliant Blue content to the spectral signature in each pixel. In this way we obtained spatially highly resolved concentration patterns of the dye tracer. The dye concentration distribution was found to be very heterogeneous in the soil at the local scale. In the plough layer, dye

  3. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    Science.gov (United States)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.

  4. Degradation of azo dyes by environmental microorganisms and helminths

    Energy Technology Data Exchange (ETDEWEB)

    Kingthom Chung; Stevens, S.E. Jr. (Memphis State Univ., TN (United States). Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  5. Dye removal from textile wastewater using bioadsorbent

    International Nuclear Information System (INIS)

    Gardazi, S.M.H.

    2014-01-01

    Textile industries throughout the world produce huge quantities of dyes and pigments annually. Effluents from textile industries are dye wastewater, and disposal of these wastes to freshwater bodies causes damage to the environment. Among the treatment technologies, adsorption is an attractive and viable option, provided that the sorbent is inexpensive and readily available for use. In this study, a typical basic dye, methylene blue, in wastewater was treated using Melia azedarach sawdust. The effects of contact time, adsorbent amount and particle size were investigated on the removal efficiency of adsorbent for methylene blue. Complete removal of the dye were attained at higher adsorbent dose of 3 g/L with 50 mg/L initial dye concentration. The maximum adsorption was at 240 minutes, whereas more than 90% removal with 105 meu m particle size of 1 g/L adsorbent for same initial dye concentration. The experimental data best fits with 2 Langmuir adsorption isotherm (R= 0.991). (author)

  6. Anionic triphenylmethane dye solutions for low-dose food irradiation dosimetry

    International Nuclear Information System (INIS)

    El-Assy, N.B.; Chen Yundong; Walker, M.L.; Al-Sheikly, M.; McLaughlin, W.L.

    1995-01-01

    The radiolytic bleaching of aryl sulfonic-substituted para-dimethyl-amino triphenylmethane dye solutions can be used for dosimetry in the absorbed dose range 10 to 400 Gy. The sulfonic anions provide solubility of these acid dyes in water. Two of these dyes are supplied as stable greenish-blue biological stains when dissolved in weakly-acidic aqueous solution. Light Green SF Yellowish and Fast Green FCF. They have, respectively, linear molar absorption coefficients of 7.14 x 10 3 (at pH 5.4) and 10.0 x 10 3 (at pH 4.2) m 2 mol -1 , when measured at the peaks of the primary absorption bands, 630 nm and 622 nm, respectively. The bleaching due to irradiation with gamma rays shows a linear function with a positive slope between the negative logarithm of the absorbance and the absorbed dose. The effect of pH on the response is studied, as well as the effects of light and temperature on pre- and post-irradiation stability. A mechanism, based mainly on radiolytic oxidation of the protonated phenolic or sulfonated phenyl group by . OH, with the abstraction of H-atom to water, is postulated for neutral to slightly acidic aerated aqueous solutions. The influence of alcohol on diminishing the negative yield is demonstrated. Alkaline aqueous solutions of these dyes (pH 10.2) have a shorter-wavelength absorption maximum than acidic aqueous solutions. The effect of irradiation is to cause acidification (to pH 7) due to displacement of OH groups and degradation of the dye molecule to lower molecular weight organic acids. (author)

  7. Significance of hair-dye base-induced sensory irritation.

    Science.gov (United States)

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  8. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    Directory of Open Access Journals (Sweden)

    Shahram Radei

    2018-02-01

    Full Text Available This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100 °C. Moreover, the dyeing rate constants, correlation coefficient and activation energies were proposed for this system. It was found that o-vanillin yielded higher dye absorption levels than coumarin, leading to exhaustions of 88% and 87% for Disperse Red 167 and Disperse Blue 79, respectively. K/S values of dyed polyester were also found to be higher for dye baths containing o-vanillin with respect to the ones with coumarin. In terms of hot pressing fastness and wash fastness, generally no adverse influence on fastness properties was reported, while o-vanillin showed slightly better results compared to coumarin.

  9. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  10. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  11. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    OpenAIRE

    Shahram Radei; F. Javier Carrión-Fité; Mònica Ardanuy; José María Canal

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  12. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  13. Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode

    Science.gov (United States)

    Oktariza, Lingga Ghufira; Yuliarto, Brian; Suyatman

    2018-05-01

    The extraction of chlorophyll pigment of Syngonium podophyllum Schott leaves which is used as natural dyes in this DSSC devices. The use of dye from nature with its simple production process is very effective to reduce DSSC production cost. Besides being used as a natural dye, chlorophyll can also be used as an alternative counter electrode. Chlorophyll that is used as a counter electrode has been through chemical activation and carbonization processes. The characterization were done using Uv-Vis, Cyclic Voltametry and DSSC device under solar simulator. Characterization of chlorophyll absorbance using UV-Vis has resulted in typical absorbance peak at visible light wavelength of 447 nm and 666 nm. The Tauc equation analysis of the Uv-Vis characterization showed 1.91 eV energy gap of chlorophyll. Chlorophyll carbonized dye is used as an alternative to Pt counter electrode. Carbonized chlorophyll dye resulted in lower conversion efficiency of 0.308% with HSE electrolyte.

  14. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  15. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved.

    Science.gov (United States)

    Gao, Yonglin; Li, Chunmei; Shen, Jingyu; Yin, Huaxian; An, Xiulin; Jin, Haizhu

    2011-08-01

    Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in mice and rats. Animals were administered different doses of tartrazine for a period of 30 d and were evaluated by open-field test, step-through test, and Morris water maze test, respectively. Furthermore, the biomarkers of the oxidative stress and pathohistology were also measured to explore the possible mechanisms involved. The results indicated that tartrazine extract significantly enhanced active behavioral response to the open field, increased the escape latency in Morris water maze test and decreased the retention latency in step-through tests. The decline in the activities of catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) as well as a rise in the level of malonaldehyde (MDA) were observed in the brain of tartrazine-treated rats, and these changes were associated with the brain from oxidative damage. The dose levels of tartrazine in the present study produced a few adverse effects in learning and memory functions in animals. The mechanisms might be attributed to promoting lipid peroxidation products and reactive oxygen species, inhibiting endogenous antioxidant defense enzymes and the brain tissue damage. Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. Since the last assessment carried out by the Joint FAO/WHO Expert Committee on Food Additives in 1964, many new studies have been conducted. However, there is a little information about the effects on learning and memory performance. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in animals and its possible mechanism involved. Based on our results, we believe that more extensive assessment of food additives in current use is warranted. © 2011 Institute of Food

  16. Quirks of dye nomenclature. 1. Evans blue.

    Science.gov (United States)

    Cooksey, C J

    2014-02-01

    The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name.

  17. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents.

    Directory of Open Access Journals (Sweden)

    Femke Streijger

    Full Text Available High fat, low carbohydrate ketogenic diets (KD are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1 expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.

  18. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    Science.gov (United States)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in

  19. Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers

    Science.gov (United States)

    Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey

    1995-02-01

    We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.

  20. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  1. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    International Nuclear Information System (INIS)

    Abdel-Gawad Emara, A.S.; Abdel-Fattah, A.A.; Ebraheem, S.E.; Ali, Z.I.; Gad, H.

    2001-01-01

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k 1 , was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x10 9 to 1.92x10 -7 mol·L -1 '·cm -1 . In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some

  2. Isolasi Dye Organik Alam dan Karakterisasinya Sebagai Sensitizer

    Directory of Open Access Journals (Sweden)

    Nurussaniah Nurussaniah

    2018-03-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui cara mengisolasi dan karakteristik dye organik alam sebagai sensitizer. Penelitian ini dilakukan melalui beberapa tahap yaitu persiapan, isolasi dye organik alam, karakterisasi sifat optik, analisis dan menyimpulkan. Isolasi dye organic alam dilakukan untuk memperoleh sari dari bahan-bahan alam. Penelitian ini menggunakan bahan alam yaitu jagung (Zea mays dan labu kuning (Cucurbita moschata. Karakterisasi optik dye organik alam dalam penelitian ini dilihat dari spektrum absorbansi yang diukur menggunakan Spektrophotometer Uv-Vis. Spektrum absorbansi dye diukur dalam kuvet optik, pada panjang gelombang 350-800 . Hasil penelitian menunjukkan bahwa isolasi dye organik alam diperoleh melalui metode ekstraksi, yaitu suatu metode untuk memperoleh sari dari bahan-bahan alam. Proses ekstraksi dilakukan dengan melarutkan biji jagung (Zea mays dan daging buah labu kuning (Cucurbita moschata dalam pelarut etanol dengan konsentrasi 1:5. Karaktistik optik jagung (Zea mays dan labu kuning (Cucurbita moschata  menunjukkan panjang gelombang yaitu berada pada cahaya tampak dengan rentang panjang gelombang 350 – 500 nm.  Dengan demikian  dye  beta-karoten yang berasal dari jagung (Zea mays dan labu kuning (Cucurbita moschata dapat dimanfaatkan sebagai sensitizer dalam prototipe Dye Sensitized Solar Cell (DSSC.

  3. Radiation induced degradation of dyes-An overview

    International Nuclear Information System (INIS)

    Rauf, M.A.; Ashraf, S. Salman

    2009-01-01

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as ·H, ·OH and e aq - are taken into account as reported by various researchers. Literature citations in this area show that e aq - is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by ·OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  4. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  5. In liquid laser treated graphene oxide for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paola, E-mail: rsspla1@gmail.com [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); D’Urso, Luisa [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Hu, Anming [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 57996-2210 (United States); Zhou, Norman [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); Compagnini, Giuseppe [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy)

    2015-09-01

    Highlights: • Graphene oxide and reduced graphene oxide were tested as adsorbents for dye removal from water. • Reduced graphene oxide was obtained after laser irradiation of a colloidal suspension of graphene oxide. • Methylene blue was chosen as the dye to test graphene oxide and reduced graphene oxide. - Abstract: The presence of dyes, pharmaceuticals and many other pollutants in wastewaters is critical due to severe effects on the human beings and on the environment. Here, solutions of graphene oxide (GO) and reduced graphene oxide (rGO) were tested as adsorbents for the removal of methylene blue (MB), a cationic dye, from aqueous media. The reduced forms of graphene oxide were obtained after laser irradiation of colloidal suspensions of graphene oxide, obtained by the Hummers and Offeman's method. We observed that both graphene oxide and its reduced forms are excellent adsorbents towards methylene blue. In particular, rGO showed a higher adsorption capacity than GO, suggesting that a strict control of laser irradiation time permits to obtain rGO with different degrees of reduction and therefore the residual oxygenated functional groups may influence the adsorption behaviour more or less. Characterization of the samples by atomic force microscopy (AFM) showed that produced rGO sheets via laser irradiation exhibited a discontinuous surface where some holes could be detected contributing to an enhancement of the rGO surface area that is a higher adsorption capacity.

  6. The use of supramolecular chemistry in dye delivery systems

    International Nuclear Information System (INIS)

    Merckel, Daniel Andrew Sturton

    2002-01-01

    This thesis reports an investigation into supramolecular recognition of the sulfate/ sulfonate oxoanionic group, a moiety present in the majority of reactive dyes. In the first section the problems associated with the use of reactive dyes in dyeing cotton fabrics together with a literature review of supramolecular approaches to anion recognition are discussed. Drawing on the current literature concerning anion recognition (in particular the recognition of phosphates), the main body of the thesis concerns the design and synthesis of several series ofC-shaped (tweezer) and tripodal potential sulfate/ sulfonate receptors. These receptors incorporate the H-bond donor groups guanidine and thiourea and to a lesser extent urea and amide functionalities. In addition the behaviour of potential tweezer-like receptor molecules based on s-triazine (derived from cyanuric chloride) has also been investigated. The sulfate/ sulfonate and related phosphonate association properties of these potential receptors have been studied. Particular emphasis has been placed on the solid-state supramolecular structures formed by these complexes as determined by single crystal X-ray structural studies, and several novel and revealing examples have been analysed in detail. NMR titration binding studies have also been undertaken in order to investigate the complexation behaviour of several receptors with ''model dye'' phosphonates and sulfonates in solution. In addition a number of single crystal X-ray crystallographic studies were undertaken for other members of the Grossel research group during the course of this work, and the results of these structural studies are also reported. (author)

  7. PHYSICO-CHEMICAL STUDIES OF DISAZO DYES DERIVED ...

    African Journals Online (AJOL)

    DJFLEX

    with disazo disperse dyes on synthetic polymer-fibres. (Venkataraman, 1974; Otutu et al., 2008). In this present study, the physico-chemical studies of disazo dyes derived from p-aminophenol recently prepared by our research group is described. We also described the kinetics of the dyes on nylon 6 fibre. In another study.

  8. Dye-Sensitized Approaches to Photovoltaics

    Science.gov (United States)

    Grätzel, Michael

    2008-03-01

    Sensitization of wide band-gap semiconductors to photons of energy less than the band-gap is a key step in two technically important processes - panchromatic photography and photoelectrochemical solar cells. In both cases the photosensitive species is not the semiconductor - silver halide or metal oxide - but rather an electrochemically active dye. The gap between the highest occupied molecular level (HOMO) and the lowest unoccupied molecular level (LUMO) is less than the band-gap of the semiconductor with which it is associated. It can therefore absorb light of a wavelength longer than that to which the semiconductor itself is sensitive. The electrochemical process is initiated when the dye molecule relaxes from its photoexcited level by electron injection into the semiconductor, which therefore acts as a photoanode. If the dye is in contact with a redox electrolyte, the negative charge represented by the lost electron can be recovered from the reduced state of the redox system, which in return is regenerated by charge transfer from a cathode. An external load completes the electrical circuit. The system therefore represents a conversion of the energy of absorbed photons into an electrical current by a regenerative device in every functional respect analogous to a solid-state photovoltaic cell. As in any engineering system, choice of materials, their optimization and their synergy are essential to efficient operation. While a semiconductor-electrolyte contact is analogous to a Schottky contact, in that a barrier is established between two materials of different conduction mechanism, with the possibility of optical absorption, charge carrier pair generation and separation, it should be remembered that the photogenerated valence band hole in the semiconductor represents a powerful oxidizing agent. Given that the band-gap is related to the strength and therefore the stability of chemical bonding within the semiconductor, for narrow-gap materials the most likely

  9. Reliable Screening of Dye Phototoxicity by Using a Caenorhabditis elegans Fast Bioassay.

    Directory of Open Access Journals (Sweden)

    Javier Ignacio Bianchi

    Full Text Available Phototoxicity consists in the capability of certain innocuous molecules to become toxic when subjected to suitable illumination. In order to discover new photoactive drugs or characterize phototoxic pollutants, it would be advantageous to use simple biological tests of phototoxicy. In this work, we present a pilot screening of 37 dyes to test for phototoxic effects in the roundworm Caenorhabditis elegans. Populations of this nematode were treated with different dyes, and subsequently exposed to 30 min of white light. Behavioral outcomes were quantified by recording the global motility using an infrared tracking device (WMicrotracker. Of the tested compounds, 17 dyes were classified as photoactive, being phloxine B, primuline, eosin Y, acridine orange and rose Bengal the most phototoxic. To assess photoactivity after uptake, compounds were retested after washing them out of the medium before light irradiation. Dye uptake into the worms was also analyzed by staining or fluorescence. All the positive drugs were incorporated by animals and produced phototoxic effects after washing. We also tested the stress response being triggered by the treatments through reporter strains. Endoplasmic reticulum stress response (hsp-4::GFP strain was activated by 22% of phototoxic dyes, and mitochondrial stress response (hsp-6::GFP strain was induced by 16% of phototoxic dyes. These results point to a phototoxic perturbation of the protein functionality and an oxidative stress similar to that reported in cell cultures. Our work shows for the first time the feasibility of C. elegans for running phototoxic screenings and underscores its application on photoactive drugs and environmental pollutants assessment.

  10. Assessing probe-specific dye and slide biases in two-color microarray data

    Directory of Open Access Journals (Sweden)

    Goldberg Zelanna

    2008-07-01

    Full Text Available Abstract Background A primary reason for using two-color microarrays is that the use of two samples labeled with different dyes on the same slide, that bind to probes on the same spot, is supposed to adjust for many factors that introduce noise and errors into the analysis. Most users assume that any differences between the dyes can be adjusted out by standard methods of normalization, so that measures such as log ratios on the same slide are reliable measures of comparative expression. However, even after the normalization, there are still probe specific dye and slide variation among the data. We define a method to quantify the amount of the dye-by-probe and slide-by-probe interaction. This serves as a diagnostic, both visual and numeric, of the existence of probe-specific dye bias. We show how this improved the performance of two-color array analysis for arrays for genomic analysis of biological samples ranging from rice to human tissue. Results We develop a procedure for quantifying the extent of probe-specific dye and slide bias in two-color microarrays. The primary output is a graphical diagnostic of the extent of the bias which called ECDF (Empirical Cumulative Distribution Function, though numerical results are also obtained. Conclusion We show that the dye and slide biases were high for human and rice genomic arrays in two gene expression facilities, even after the standard intensity-based normalization, and describe how this diagnostic allowed the problems causing the probe-specific bias to be addressed, and resulted in important improvements in performance. The R package LMGene which contains the method described in this paper has been available to download from Bioconductor.

  11. Removal of Organic Dyes by Nanostructure ZnO-Bamboo Charcoal Composites with Photocatalysis Function

    Directory of Open Access Journals (Sweden)

    Xinliang Yu

    2015-01-01

    Full Text Available Composites of nanostructure zinc oxide (nano-ZnO and bamboo charcoal (BC were successfully prepared via impregnation-precipitation method. The products were characterized by XRD, SEM, and EDS. Rhodamine B (RhB and acid fuchsin (AF were selected as the organic dyes of photocatalysis degradation under the irradiation of ultraviolet light (UV. The influence of particle size of BC, irradiation time, pH value of the solution, and additive amount of H2O2 on removal of the dyes has been studied. The results show that smaller particle size of BC in the composites has a better removal effect. The composites possess the highest removal capacity for RhB and AF under the conditions of pH = 2 and pH = 5.4, respectively. The optimum additive amount of H2O2 for 5 mL RhB and AF was 0.050 mL and 0.1 mL, with a removal rate of 93% and 99%, respectively.

  12. The influence of inserted thiophene into the (π-A'-π)-bridge on photovoltaic performances of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zemin; Hu, Weixia; He, Rongxing; Shen, Wei; Li, Ming

    2017-01-01

    A series of metal-free D-π-A'-π-A type organic dyes have been designed by inserting one or two thiophene between the (π-A'-π)-bridge and the donor and/or acceptor moieties based on BZTP-1. The influence of inserted thiophene into the (π-A'-π)-bridge on photovoltaic performances of sensitizer was investigated in detail using the density functional theory (DFT) and its time-dependent density functional theory (TD-DFT) methods. Calculated results show that increasing the length of the conjugated-linker leads to a high planarity and very narrow HOMO-LUMO energy gap. Especially, dye T-T-BZTP-T-T that forms by inserting two thiophenes into two sides of BZTP exhibits the most obvious red-shifted and the strongest absorption, which leads to a high V oc . Moreover, we find that these dyes show a good character of electron injection and dye regeneration owing to the ideal ΔG inject , μ normal and ΔG reg . Therefore, the insertion of thiophene into the (π-A'-π)-bridge has a better influence on photovoltaic performance of designed dyes compared with BZTP-1. We hope the present work will be helpful for future experimental synthesis of organic dyes to improve the performance of DSSCs. - Highlights: • New D-π-A'-π-A type dyes were designed by inserting thiophene into (π-A'-π)-bridge. • The insertion of thiophene induces perfect electronic and photovoltaic performance. • Adsorbed dyes show good coupling interaction and photovoltaic properties on TiO 2 . • These novel dyes provide guiding strategy for improve efficiency of DSSCs.

  13. The influence of inserted thiophene into the (π-A'-π)-bridge on photovoltaic performances of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zemin; Hu, Weixia; He, Rongxing; Shen, Wei; Li, Ming, E-mail: liming@swu.edu.cn

    2017-04-15

    A series of metal-free D-π-A'-π-A type organic dyes have been designed by inserting one or two thiophene between the (π-A'-π)-bridge and the donor and/or acceptor moieties based on BZTP-1. The influence of inserted thiophene into the (π-A'-π)-bridge on photovoltaic performances of sensitizer was investigated in detail using the density functional theory (DFT) and its time-dependent density functional theory (TD-DFT) methods. Calculated results show that increasing the length of the conjugated-linker leads to a high planarity and very narrow HOMO-LUMO energy gap. Especially, dye T-T-BZTP-T-T that forms by inserting two thiophenes into two sides of BZTP exhibits the most obvious red-shifted and the strongest absorption, which leads to a high V{sub oc}. Moreover, we find that these dyes show a good character of electron injection and dye regeneration owing to the ideal ΔG{sub inject}, μ{sub normal} and ΔG{sub reg}. Therefore, the insertion of thiophene into the (π-A'-π)-bridge has a better influence on photovoltaic performance of designed dyes compared with BZTP-1. We hope the present work will be helpful for future experimental synthesis of organic dyes to improve the performance of DSSCs. - Highlights: • New D-π-A'-π-A type dyes were designed by inserting thiophene into (π-A'-π)-bridge. • The insertion of thiophene induces perfect electronic and photovoltaic performance. • Adsorbed dyes show good coupling interaction and photovoltaic properties on TiO{sub 2}. • These novel dyes provide guiding strategy for improve efficiency of DSSCs.

  14. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  15. Treatment of dyeing drainage by radiation

    International Nuclear Information System (INIS)

    Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    Decolorization of artificial dyeing drainage and sewage by radiation treatment. Artifical dyeing drainage was prepared from water, polyvinyl alcohol, starch, urea and several kinds of inorganic salts, and artificial sewage, from water, peptone, broth, urea and several kinds of inorganic salts. The above mentioned sample liquors of artificial dyeing drainage and sewage were exposed to γ-radiation of 5 kCi of 60 Co source by aerating through a ball filter. Absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD) were determined after irradiation to evaluate radiation treatment effect. With the experimental data obtained, it was clarified that absorbance, COD and TOC was decreased with the increase of absorbed dose. Decoloring was made effectively and about 95 % of bleaching ratio was obtained at 5 kGy of radiation. COD was decreased also by irradiation rather slower decreasing rate than that of decolorization, and TOC decrease was very slow at the initial stage of radiation but 40 % of TOC was decomposed by 10 kGy radiation. Dye of chemically stable structure was found more resistant to radiation decolorization. Decomposition efficiency was found less for dyes in the artificial sewage but secondary treated sewage showed no adverse effect. With the obtained understandings, a tentative scheme was planned for the radiation decolorization of dyeing drainage after aeration treatment. (Takagi, S.)

  16. Toxicity Reduction of Reactive Red Dye-238 Using Advanced Oxidation Process by Solar Energy

    Directory of Open Access Journals (Sweden)

    Riyad Al-Anbari

    2017-09-01

    Full Text Available Decolorization of red azo dye (Cibacron Red FN-R from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80 % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.

  17. Biodecolorization of the azo dye Reactive Red 2 by a halotolerant enrichment culture.

    Science.gov (United States)

    Beydilli, M Inan; Pavlostathis, Spyros G

    2007-11-01

    The decolorization of the azo dye Reactive Red 2 (RR2) under anoxic conditions was investigated using a mesophilic (35 degrees C) halotolerant enrichment culture capable of growth at 100 g/L sodium chloride (NaCl). Batch decolorization assays were conducted with the unacclimated halotolerant culture, and dye decolorization kinetics were determined as a function of the initial dye, biomass, carbon source, and an externally added oxidation-reduction mediator (anthraquinone-2,6-disulphonic acid) concentrations. The maximum biomass-normalized RR2 decolorization rate by the halotolerant enrichment culture under batch, anoxic incubation conditions was 26.8 mg dye/mg VSSxd. Although RR2 decolorization was inhibited at RR2 concentrations equal to and higher than 300 mg/L, the halotolerant culture achieved a 156-fold higher RR2 decolorization rate compared with a previously reported, biomass-normalized RR2 decolorization rate by a mixed mesophilic (35 degrees C) methanogenic culture in the absence of NaCl. Decolorization kinetics at inhibitory RR2 levels were described based on the Haldane model (Haldane, 1965). Five repetitive dyeing/decolorization cycles performed using the halotolerant culture and the same RR2 dyebath solution demonstrated the feasibility of biological renovation and reuse of commercial-strength spent reactive azo dyebaths.

  18. Phytoremediation in education: textile dye teaching experiments.

    Science.gov (United States)

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.

  19. The Function of TiO2 with Respect to Sensitizer Stability in Nanocrystalline Dye Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Barkschat

    2008-01-01

    Full Text Available Dyes of characteristically different composition have been tested with respect to long-term stability in operating standardized dye sensitized cells during a time period of up to 3600 hours. Selective solar illumination, the use of graded filters, and imaging of photocurrents revealed that degradation is linked to the density of photocurrent passed. Photoelectrochemical degradation was observed with all sensitizers investigated. Sensitization was less efficient and sensitizers were less photostable with nanostructured ZnO compared to nanostructured TiO2. The best performance was confirmed for cis-RuII(dcbpyH22(NCS2 on TiO2. However, it was 7–10 times less stable under other identical conditions on ZnO. Stability is favored by carboxylate anchoring and metal-centred electron transfer. In presence of TiO2, it is enhanced by formation of a stabilizing charge-transfer complex between oxidized Ru dye and back-bonding interfacial Ti3+ states. This is considered to be the main reason for the ongoing use of expensive Ru complexes in combination with TiO2. The local surface chemistry of the nanocrystalline TiO2 turned out to be a crucial factor for sensitizer stability and requires further investigation.

  20. A Study of Mixed Vegetable Dyes with Different Extraction Concentrations for Use as a Sensitizer for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Ching Cho

    2014-01-01

    Full Text Available Two vegetable dyes are used for the study: chlorophyll dye from sweet potato leaf extract and anthocyanin dye from extracts of blueberry, purple cabbage, and grape. The chlorophyll and anthocyanin dyes are blended in a cocktail in equal proportions, by volume. This study determines the effect of different extraction concentrations and different vegetable dyes on the photoelectric conversion efficiency of dye-sensitized solar cells. In order to make the electrode for the experiments, P25 TiO2 powder was coated on the ITO conducting surface, using a medical blade, to form a thin film with a thickness of around 35 μm. The experimental results show that the cocktail dye blended using extracts of sweet potato leaf and blueberries, in the volumetric proportion 1 : 1, at a weight concentration of 40%, using an extraction temperature of 50°C and an extraction heating time of 10 min produces the greatest photoelectric conversion efficiency (η of up to 1.57%, an open-circuit voltage (VOC of 0.61 V, and a short-circuit current density (JSC of 4.75 mA/cm2.

  1. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli

    2018-02-01

    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  2. Anionic triphenylmethane dye solutions for low-dose food irradiation dosimetry

    International Nuclear Information System (INIS)

    El-Assy, N.B.; Chen Yungdong; Walker, M.L.; Al-Sheikhly, M.; McLaughlin, W.L.

    1995-01-01

    The radiolytic bleaching of aryl sulfonic-substituted para-diethyl-amino triphenylmethane dye solutions can be used for dosimetry in the absorbed dose range 10 to 400 Gy. The sulfonic anions provide solubility of these acid dyes in water. Two of these dyes are supplied as stable greenish-blue biological stains when dissolved in weakly-acidic aqueous solution, Light Green SF Yellowish and Fast Green FCF. They have, respectively, linear molar absorption coefficients of 7.14 x 10 3 (at pH 5.4) and 10.0 x 10 3 (at pH 4.2) m 2 mol -1 , when measured at the peaks of the primary absorption bands, 630 nm and 622 nm, respectively. The bleaching due to irradiation with gamma rays shows a linear function with a positive slope between the negative logarithm of the absorbance and the absorbed dose. The effect of pH on the response is studied, as well as the effects of light and temperature on pre- and post-irradiation stability. A mechanism, based mainly on radiolytic oxidation of the protonated phenolic or sulfonated phenyl group by radicalOH, with the abstraction of H-atom to water, is postulated for neutral to slightly acidic aerated aqueous solutions. The influence of alcohol on diminishing the negative yield is demonstrated. Alkaline aqueous solutions of these dyes (pH 10.2) have a shorter-wavelength absorption maximum than acidic aqueous solutions. The effect of irradiation is to cause acidification (to pH 7) due to displacement of OH groups and degradation of the dye molecule to lower molecular weight organic acids. (author)

  3. Ponceau 6R dye decoloration and chromate reduction simultaneously in acid medium

    Directory of Open Access Journals (Sweden)

    Seddique M. Ahmed

    2015-07-01

    Full Text Available The degradation efficiency and kinetic degradation reaction of Ponceau 6R dye using potassium chromate have been investigated under various experimental conditions: different concentrations of H2SO4 and temperatures. The immediate change of the red coloration (λmax = 518 nm to colorless was observed after addition of inorganic oxidizing agent (K2CrO4 into the protonated form of Ponceau 6R dye after 48 h. This observation could be attributed to the highest oxidized form of this dye obtained (the quinoid one, which undergoes a hydrolysis reaction to produce p-hydroquinone (H2Q by a mechanism similar to Schiff-base hydrolysis. The cationic form of this matrix is a crucial feature for the hydrolysis process. A kinetic model for oxidation of Ponceau 6R by the combination of chromate was developed based on experimental results. The observed kinetic reaction coefficient was determined and correlated as a function of UV spectral intensity of Ponceau 6R at 518 nm. The degradation rate follows pseudo-first order kinetics with respect to dye concentration.

  4. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In{sub 2}S{sub 3} nanoflowers: dye charge-dependent roles of reactive species

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Suxiang [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China); Cai, Lejuan, E-mail: 494169965@qq.com [Central China Normal University, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry (China); Li, Dapeng, E-mail: lidapengabc@126.com; Fa, Wenjun; Zhang, Yange; Zheng, Zhi [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In{sub 2}S{sub 3} nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In{sub 2}S{sub 3} nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  5. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  6. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye.

    Science.gov (United States)

    Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-08-01

    Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Knowledge, attitude, and practice of dyeing and printing workers

    Directory of Open Access Journals (Sweden)

    Paramasivam Parimalam

    2010-01-01

    Full Text Available Background: Millions of workers are occupationally exposed to dyes in the world, but little is known about their knowledge and attitudes toward the effects of dye on their health. Objectives: The aim of this study was to assess the fabric dyers′ and fabric printers′ knowledge, attitude, and practice toward the health hazard of dyes. Materials and Methods: The present study was taken up in the Madurai district which is situated in the Southern Tamil Nadu, India. One hundred and forty-two workers employed in small-scale dyeing and printing units participated in a face-to-face confidential interview . Results: The mean age of fabric dyers and fabric printers was 42 years (΁10.7. When enquired about whether dyes affect body organ(s, all the workers agreed that dye(s will affect skin, but they were not aware that dyes could affect other parts of the body. All the workers believed that safe methods of handling of dyes and disposal of contaminated packaging used for dyes need to be considered. It was found that 34% of the workers were using personal protective equipment (PPE such as rubber hand gloves during work. Conclusion: The workers had knowledge regarding the occupational hazards, and their attitudinal approach toward the betterment of the work environment is positive.

  8. Study of the Leacril Dyeing Process by a Cationic Dye from an Emulsion System.

    Science.gov (United States)

    Chibowski, E.; Ortega, A. Ontiveros; Espinosa-Jiménez, M.; Perea-Carpio, R.; Holysz, L.

    2001-03-15

    Adsorption studies of a cationic dye, Rhodamine B, from an emulsion phase on Leacril fabric at different temperatures were conducted. The emulsion phase consisted of n-hexadecane emulsified by isopropyl alcohol (1 M) and stabilized by tannic acid. In the alcohol solution Rhodamine B was dissolved. The kinetics of its adsorption and desorption is discussed. The changes in Leacril surface free energy components in the dyeing process were also determined. The adsorption data show that the presence of an emulsion increases the dye adsorption at room temperature (293 K) and at 313 K, while at 333 K it is smaller than that from Rhodamine solution alone. However, Rhodamine desorbs more when adsorbed from the solution. Surface free energy components differ for the Leacril samples dyed at different temperatures, and the most hydrophobic surface was obtained for the samples dyed at 333 K, where the electron-donor component is the lowest one. In general, the work of water spreading is close to zero, except for the above sample for which it is relatively highly negative. Possible mechanisms of the dye adsorption are discussed. Copyright 2001 Academic Press.

  9. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  10. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    International Nuclear Information System (INIS)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv

    2011-01-01

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  11. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  12. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Poulsen, Allan K.; Brasen, Jens Christian

    2007-01-01

    We employed the fluorescent cyanine dye DiOC(2)(3) to measure membrane potential in semi-anaerobic yeast cells under conditions where glycolysis was oscillating. Oscillations in glycolysis were studied by means of the naturally abundant nicotinamide adenine dinucleotide (NADH). We found...... studies showed that glycolytic oscillations perturb the mitochondrial membrane potential and that the mitochondria do not have any controlling effect on the dynamics of glycolysis under these conditions. Depolarization of the mitochondrial membrane by addition of FCCP quenched mitochondrial membrane...... potential oscillations and delocalized DiOC(2)(3), while glycolysis continued to oscillate unaffected....

  13. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  14. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Towards the Development of Functionalized PolypyridineLigands for Ru(II Complexes as Photosensitizers inDye-Sensitized Solar Cells (DSSCs

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2014-08-01

    Full Text Available A number of novel ruthenium(II polypyridine complexes have been designedand synthesized for use as photosensitizers in dye-sensitized solar cells (DSSCs due totheir rich photophysical properties such as intense absorption, long-lived lifetimes, highemission quantum yields and unique redox characteristics. Many of these complexesexhibit photophysical behavior that can be readily controlled through a careful choice ofligands and/or substituents. With this perspective, we review the design and general syntheticmethods of some polypyridine ligands based on bipyridine, phenanthroline, terpyridine andquaterpyridine with/without anchoring groups with a view to correlate functionality ofligand structures with the observed photophysical, electroredox and power conversionefficiency of some examples of Ru(II polypyridyl complexes that have been reported andparticularly used in the DSSCs applications. The main interest, however, is focused onshowing the development of new polypyridine ligand materials containing long-rangeelectron transfer motifs such as the alkenyl, alkynyl and polyaromatic donor functionalities.

  16. Diphenyl (4′-(Aryldiazenylbiphenyl-4-ylamino(pyridin-3-ylmethylphosphonates as Azo Disperse Dyes for Dyeing Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Mohamed F. Abdel-Megeed

    2013-01-01

    Full Text Available Diphenyl (4′-aminobiphenyl-4-ylamino(pyridin-3-ylmethylphosphonate (1 was synthesized in 88% yield from reaction of pyridine-3-carboxaldehyde with benzidine and triphenylphosphite in the presence of titanium tetrachloride as a catalyst. Diazotization of 1 gave the corresponding diazonium salt 2 which was coupled with several hydroxyl or amino compounds to give the corresponding azo dyes 3–8 in 82–88% yields after crystallization. The dyes produced were applied to polyesters as disperse dyes and their fastness properties were elevated.

  17. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    International Nuclear Information System (INIS)

    Meral, Kadem; Arik, Mustafa; Onganer, Yavuz

    2016-01-01

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  18. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey)

    2016-04-18

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  19. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    Science.gov (United States)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  20. Effects of kainic acid lesions in lateral geniculate nucleus: activity dependence of retrograde axonal transport of fluorescent dyes.

    Science.gov (United States)

    Woodward, W R; Coull, B M

    1988-06-28

    Kainic acid lesions in the dorsal lateral geniculate nucleus of rats block the retrograde axonal transport of fluorescent dyes in corticogeniculate neurons without affecting the retrograde transport of D-aspartate or the orthograde transport of radiolabelled proteins in these neurons. This blocking of dye transport does not appear to be a consequence of kainic acid-induced damage to axon terminals in the geniculate since retinal ganglion cells are still able to transport dyes retrograde. A more likely explanation for these results is that fluorescent dye transport requires electrical activity in neurons, and elimination of the geniculate afferents to visual cortex reduces impulse traffic in cortical output fibers to a level below that required to support detectable dye transport. This interpretation is supported by the observation that kainic acid lesions also reduce retrograde transport of dyes in cortical neurons which project to the superior colliculus. Electrical stimulation in the subcortical white matter restores the transport of dye compounds in corticogeniculate neurons: evidence consistent with an activity-dependent mechanism of retrograde transport for these substances. These results provide evidence that axon terminals of retinal ganglion cells and corticogeniculate neurons survive in kainate-lesioned geniculates and are capable of normal neuronal function.

  1. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes

    Directory of Open Access Journals (Sweden)

    Osman I. Osman

    2017-02-01

    Full Text Available The structure, reactivity, natural bond orbital (NBO, linear and nonlinear optical (NLO properties of three thiazole azo dyes (A, B and C were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highest occupied molecular orbital,lowest unoccupied molecular orbital energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4 chloroform (CHCl3, dichloromethane (CH2Cl2 and dimethlysulphoxide (DMSO. The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO behaviour.

  2. Studies on Synthesis and Dyeing Preformance of Acid Dyes Based on 4,7-Dihydroxy-1,10-Phenanthroline-2,9-Dione

    Directory of Open Access Journals (Sweden)

    B. V. Patel

    2008-01-01

    Full Text Available Some new azo acid dyes were prepared by coupling various diazotized acid components such as anthranilic acid, sulphanilic acid, laurent acid, peri acid, tobias acid, H-acid, J-acid, gamma acid, sulphotobias acid, 4-aminotoluiene-3-sulphonic acid, 5-sulpho- anthranilic acid, 2-naphthylamine-3,6,8-trisulphonic acid, bronner acid, metanilic acid and cleve acid with 4,7-dihydroxy-1,10-phenanthroline-2,9-dione. The dyes were characterized by elemental, IR and TLC analyses. Their dyeing performance as acid dyes has been assessed on viscose rayon, wool and cotton fibres.

  3. Quirks of dye nomenclature. 5. Rhodamines.

    Science.gov (United States)

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  4. Studies on the use of power ultrasound in leather dyeing.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2003-03-01

    Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal

  5. Multi-signalling cation sensing behaviour of a bis(pyridin-2-yl methyl)aniline based hetarylazo dye

    International Nuclear Information System (INIS)

    Kaur, Paramjit; Sareen, Divya; Kaur, Mandeep; Singh, Kamaljit

    2013-01-01

    Graphical abstract: The chromogenic and electrochemical behaviour of bis(pyridine-2-yl methyl)aniline based hetarylazo dye gets perturbed in the presence of cations, most effective being Cu 2+ . The conversion of ICT to ICT/MLCT is witnessed by TD-DFT calculations. -- Highlights: •Cation sensing of hetarylazo dye based upon visual, absorption and electrochemical changes is described. •Sensing mechanism is based upon perturbation in intramolecular charge-transfer upon interaction with cations. •Sensing protocol is supported by 1 H NMR studies as well as theoretical calculations. •Hetarylazo dye acts as a multichannel sensor. •Response of the dye towards various cations has also been explored in acidic pH window. -- Abstract: We investigated the cation sensing behaviour of a bis(pyridin-2-yl methyl)aniline appended hetarylazo dye via chromogenic and electrochemical transduction channels. The binding pocket constituting both the pyridyl as well as aniline nitrogen atoms acts as recognition site for the cations and consequent perturbation in the intramolecular charge-transfer prevailing in the dye results in the chromogenic response manifested in the form of hypsochromic shift in the intramolecular charge-transfer band and the attendant naked-eye color changes. The dye exhibits significant changes in its electrochemical behaviour in the presence of cations. The experimental results are also rationalized by time-dependent density functional theory (TD-DFT) calculations

  6. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.

    Science.gov (United States)

    Shakir, Kamal; Elkafrawy, Ahmed Faouzy; Ghoneimy, Hussein Fouad; Elrab Beheir, Shokry Gad; Refaat, Mamdoh

    2010-03-01

    The present work deals with removal, by ion flotation, of two dyes: a basic dye (rhodamine B (RB)) and an acidic one (thoron (TH)) from dilute aqueous solutions and simulated wastewaters. These dyes are widely used for analytical and biological staining purposes. Besides, RB is commonly used in dyeing of various industrial products. Therefore, wastewaters emanating from chemical and radiochemical laboratories, and biomedical and biological research laboratories may be contaminated with RB and TH. Ion flotation of these dyes has been investigated over a wide range of pH using the anionic surfactant, sodium lauryl sulfate (NaLS) and the cationic surfactant, cetyltrimethylammonium bromide (CTAB) as collectors. Successful removals could be achieved for RB and TH with the anionic collector, NaLS, and the cationic collector, CTAB, respectively. In addition to the effects of pH and type of collector on the efficiency of removal of each dye, the effects of collector and dye concentrations, frother dosage, ionic strength, bubbling time period and presence of foreign salts were investigated and the optimal removal conditions have been established. Removals exceeding 99.5 % and 99.9% could be achieved for RB and TH, respectively. The results obtained are discussed with respect to dissociation of dye, type of collector, ionic strength and sign and magnitude of charge of added foreign ions. Kinetics of flotation were also studied. Further studies demonstrate that under optimum conditions the developed flotation processes can be applied for the treatment of dye-contaminated wastewaters simulated to those generated at dyeing industries and radiochemical laboratories. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance

    International Nuclear Information System (INIS)

    Fadadu, Kishan B.; Soni, Saurabh S.

    2013-01-01

    Graphical abstract: New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. We have achieved remarkable photovoltage and overall performance of DSSC. Highlights: ► New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. ► Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. ► Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. -- Abstract: New hemicyanine dyes having indole nucleus with different alkyl chain length were synthesized and characterized using 1 H NMR and mass spectroscopy. These dyes were used to sensitize the TiO 2 film in dye sensitized solar cell. Nanocrystalline dye solar cells were fabricated and characterized using various electrochemical techniques. It has been found that the alkyl chain length present in the dye molecules greatly affects the overall performance of dye solar cell. Molecules having longer alkyl chain are having better sensitizers which enhance V oc to significant extent. Chain length dependent performance was further investigated using Tafel polarization and impedance method. Hemicyanine dye having hexyl chain has outperformed by attaining 2.9% solar to electricity conversion efficiency

  8. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  9. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  10. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis.

    Science.gov (United States)

    Diaz, E; Zacarias, A K; Pérez, S; Vanegas, O; Köhidai, L; Padrón-Nieves, M; Ponte-Sucre, A

    2015-11-01

    In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.

  11. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    International Nuclear Information System (INIS)

    Larson, D.M.; Sheridan, J.D.

    1985-01-01

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature

  12. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  13. Basic dye decomposition kinetics in a photocatalytic slurry reactor

    International Nuclear Information System (INIS)

    Wu, C.-H.; Chang, H.-W.; Chern, J.-M.

    2006-01-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO 2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO 2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO 2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 deg. C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO 2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO 2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well

  14. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush

    KAUST Repository

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothsteinb, Jeffrey D.

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

  15. Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study

    Science.gov (United States)

    Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2018-02-01

    Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.

  16. Antibacterial Dyeing of Wool with Natural Cationic Dye Using Metal Mordants

    Directory of Open Access Journals (Sweden)

    Aminoddin HAJI

    2012-09-01

    Full Text Available In this study, Berberine colorant extracted from berberis vulgaris root was applied on wool fiber using alum (aluminum potassium sulfate, copper sulfate and potassium dichromate as mordant. The effect of treatment variables such as amount of mordant, time and temperature on the color strength of dyed fibers was examined. The fastness properties of dyed wool against washing, light and wet rubbing were evaluated. the use of metal mordants increased the color strength of the dyed goods. Increase in dyeing time and temperature caused deeper shades. All mordants, increased the rub fastness and wash fastness of dyed samples, but the light fastness was increased except in case of alum. Berberine is a cationic dye and because of it's quaternary ammonium structure can act as an antibacterial agent. So, dyed samples were tested for antibacterial activity using AATCC test method 100-2004. The dyed wool represented a high level of antibacterial activity. The extract of the berberis vulgaris can be considered as a natural dye of acceptable fastness properties together with excellent antibacterial activity for woolen textiles.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2437

  17. Ultrafast photodynamics of the indoline dye D149 adsorbed to porous ZnO in dye-sensitized solar cells.

    Science.gov (United States)

    Rohwer, Egmont; Richter, Christoph; Heming, Nadine; Strauch, Kerstin; Litwinski, Christian; Nyokong, Tebello; Schlettwein, Derck; Schwoerer, Heinrich

    2013-01-14

    We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I(-)/I(3)(-) redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism.

    Science.gov (United States)

    Badziong, Julia; Ting, Saskia; Synoracki, Sarah; Tiedje, Vera; Brix, Klaudia; Brabant, Georg; Moeller, Lars Christian; Schmid, Kurt Werner; Fuhrer, Dagmar; Zwanziger, Denise

    2017-09-01

    Thyroid hormone (TH) transporters are expressed in thyrocytes and most play a role in TH release. We asked whether expression of the monocarboxylate transporter 8 (MCT8) and the L-type amino acid transporters LAT2 and LAT4 is changed with thyrocyte dedifferentiation and in hyperfunctioning thyroid tissues. Protein expression and localization of transporters was determined by immunohistochemistry in human thyroid specimen including normal thyroid tissue (NT, n  = 19), follicular adenoma (FA, n  = 44), follicular thyroid carcinoma (FTC, n  = 45), papillary thyroid carcinoma (PTC, n  = 40), anaplastic thyroid carcinoma (ATC, n  = 40) and Graves' disease (GD, n  = 50) by calculating the 'hybrid' (H) score. Regulation of transporter expression was investigated in the rat follicular thyroid cell line PCCL3 under basal and thyroid stimulating hormone (TSH) conditions. MCT8 and LAT4 were localized at the plasma membrane, while LAT2 transporter showed cytoplasmic localization. MCT8 expression was downregulated in benign and malignant thyroid tumours as compared to NT. In contrast, significant upregulation of MCT8, LAT2 and LAT4 was found in GD. Furthermore, a stronger expression of MCT8 was demonstrated in PCCL3 cells after TSH stimulation. Downregulation of MCT8 in thyroid cancers qualifies MCT8 as a marker of thyroid differentiation. The more variable expression of LATs in distinct thyroid malignancies may be linked with other transporter properties relevant to altered metabolism in cancer cells, i.e. amino acid transport. Consistent upregulation of MCT8 in GD is in line with increased TH release in hyperthyroidism, an assumption supported by our in vitro results showing TSH-dependent upregulation of MCT8. © 2017 European Society of Endocrinology.

  19. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario

    2010-01-01

    element simulations confirm that lasing occurs in whispering gallery modes which corresponds well to the measured multimode laser-emission. The effect of dye concentration on lasing threshold and lasing wavelength is investigated and can be explained using a standard dye laser model....

  20. Selective oxidation of serotonin and norepinephrine over eriochrome cyanine R film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yao Hong; Li Shaoguang [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China); Tang Yuhai [Institute of Analytical Sciences, Xi' an Jiaotong University, Xi' an 710061 (China); Chen Yan [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China); Chen Yuanzhong [Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001 (China)], E-Mail: chenyz@pub3.fz.fj.cn; Lin Xinhua [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China)], E-mail: xhlin1963@sin.com

    2009-08-01

    A novel ECR-modified electrode is fabricated by electrodeposition of Eriochrome Cyanine R (ECR) at a glassy carbon (GC) electrode by cyclic voltammetry (CV) in double-distilled water. The characterization of the ECR film modified electrode is carried out by atomic force microscopy (AFM), infrared spectra (IR), spectroelectrochemistry and cyclic voltammetry. The results show that a slightly heterogeneous film formed on the surface of the modified electrode, and the calculated surface concentration of ECR is 2 x 10{sup -10} mol/cm{sup -2}. The ECR film modified GC electrode shows excellent electrocatalytic activities toward the oxidation of serotonin (5-HT) and norepinephrine (NE). Furthermore, the modified electrode can separately detect 5-HT and NE, even in the presence of 200-fold concentration of ascorbic acid (AA) and 25-fold concentration of uric acid (UA). Using differential pulse voltammetry (DPV), the peak currents of 5-HT and NE recorded in pH 7 solution are linearly dependent on their concentrations in the range of 0.05-5 {mu}M and 2-50 {mu}M, respectively. The limits of detection are 0.05 and 1.5 {mu}M for 5-HT and NE, respectively. The ECR film modified electrode can be stored stable for at least 1 week in 0.05 M PBS (pH 7) at 4 {sup o}C in a refrigerator. Owing to its excellent selectivity and sensitivity, the modified electrode could provide a promising tool for the simultaneous determination of 5-HT and NE in complex biosamples.

  1. Pulse radiolysis of ethanolic solutions of rhodamine dyes

    International Nuclear Information System (INIS)

    Kartasheva, L.I.; Kucherenko, E.A.; Kozlov, A.S.; Pikaev, A.K.

    1983-01-01

    The primary products of radiolytical transformations of rhodamine 6G, rhodamine B, rhodamine 3B and rhodamine 110 in ethanolic solutions were studied by pulse radiolysis method under various conditions. It was found that the semireduced form of a dye was the only intermediate product of such transformations in ethanolic solutions of all dyes. It was shown that this species was formed by interaction of the dye with esub(s) - and CH 3 CHOH. The properties of this species were investigated and the rate constants of respective reactions for each dye were determined. It was found that nature and position of a substituent in the molecule of the dye have an effect on the rate of formation of the semi-reduced form. (author)

  2. Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid in solution

    Directory of Open Access Journals (Sweden)

    Oliveira Hueder Paulo M. de

    2003-01-01

    Full Text Available Solutions of atactic poly(methacrylic acid, PMAA, with molecular weights in the range of (1.6 to 3.4 x 10(5 g mol-1, and labeled with the fluorescent dyes 9-aminoacridine or Nile blue were studied by photophysical measurements as a function of solvent viscosity and polarity. The conformational behavior of the PMAA chain segments around the fluorescent probe was reported by the change in the rotational diffusion of the dyes. Ethylene glycol swells the polymer chain compared with the more contracted conformation of PMAA in 50% water/ethylene glycol. The change in the rotational relaxation time of the dye bound to PMAA with the decrease of water content in the solvent mixture indicates a progressive expansion of polymer chain to a more open coil form in solution.

  3. Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Suman; Bahadur, Lal, E-mail: lbahadur@bhu.ac.in

    2015-05-15

    A single dye usually absorbs light only in a limited range of solar spectrum. In order to widen the absorption range, a combination of dyes, namely, Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based dye sensitized solar cell (DSSC). It has been found that the DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. It has been ascribed to the enhanced absorption of light particularly in higher energy region (λ=400–550 nm) when both dyes were used together as was evident from the absorption spectra of dyes adsorbed onto ZnO electrode. The DSSC using ZnO electrode sensitized by mixed dyes provided J{sub SC}=5.6 mA cm{sup −2}, V{sub OC}=0.606 V, FF=0.53 and maximum energy conversion efficiency (η) of 1.35% on illuminating the cell with visible light of 150 mW cm{sup −2} intensity. - Highlights: • Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based DSSC. • DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. • Enhanced absorption of light particularly in higher energy region (λ=400–550 nm) have been observed when both dyes were used together. • The DSSC using ZnO electrode sensitized by mixed dyes provided J{sub sc}=5.6 mA cm{sup −2}, V{sub oc}=0.606 V, FF=0.53. • Efficiency of 1.35% is achieved at visible light intensity of 150 mW cm{sup −2}.

  4. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  5. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  6. Increasing Effort in Using the Waste of Mangrove Wood for Natural Dyes

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Sri-Sunaryati; G, Isminingsih; Santosa; Mirtha

    2000-01-01

    The general function of mangrove forest is mainly for protecting thesustain ability of sea shore against the wave toss, however, the fishermenhas often used the mangrove wood to produce their ships, building and otherthings. Among others, this wood also contains of chromophore, tannine,furfurol and phtalic that has the possibility to serve as textile dyes,however its fixation ability to silk fiber in this dyes does not have strongfixation ability to silk fiber. In other to improve its color fastness it wasnecessary to do after treatment with mordant. In this study the waste fromthe mangrove in the form of shredded wood, wood bark or twig and small branchwere used as the raw material of the natural dyes. This materials werechopped as small as possible (into saw form) and being extracted in order toobtain the dyes as much as possible. As the result of this study wasaddressed to the small and medium scale industries, the extraction processwas carried out in a simple way using water as medium with various ratios inthe respected order 1:10; 1:20; 1:30; 1:40; and 1 :50. To obtain theextracted yields, the mangrove waste was extracted until it reached the ratioof 1/5 to the medium, the extracted sample was taken out to be extractedagain in fresh water as medium in the same ratio variation. This process wasrepeated until no more wood color to be extracted (± 9 repeats). Theextracted liquid was then put into evaporation, drying and grinded into dyespowder. The highest extracted yields was obtained by the ratio to medium(1:40 to 1:50) with 9.40% -9.48% extracted yields. The following experimentwas dyeing process to silk fabrics by using dyes powder or dyes liquidextracted from medium with ratio 1:40 mixture from first extraction up toforth extraction. The dyeing process was carried out without mordanting,pre-mordanting and post-mordanting, by means of Tawas (Al 2 K 2 (SO 4 ) 3 ) orTunjung (FeSO 4 . 7 H 2 O) as mordanting material. The dyed silk fabrics werethen tested for

  7. Poly(Poly(Ethylene Glycol Methyl Ether Methacrylate Grafted Chitosan for Dye Removal from Water

    Directory of Open Access Journals (Sweden)

    Bryan Tsai

    2017-03-01

    Full Text Available As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16 from water by adsorption with chitosan grafted poly(poly(ethylene glycol methyl ether methacrylate (CTS-GMA-g-PPEGMA was investigated. The chitosan (CTS was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol methyl ether methacrylate using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g and 150 mg/g, respectively, while the Langmuir equations estimated 232 mg/g and 194 mg/g, respectively. The fundamental assumptions underlying the Langmuir model may not be applicable for azo dye adsorption, which could explain the difference. The Freundlich isotherm parameters, n and K, were determined to be 2.18 and 17.7 for CTS-g-GMA-PPEGMA and 0.14 and 2.11 for chitosan, respectively. An “n” value between one and ten generally indicates favorable adsorption. The adsorption capacities of a chitosan-PPEGMA 50/50 physical mixture and pure PPEGMA were also investigated, and both exhibited significantly lower adsorption capacities than pure chitosan. In this work, CTS-g-GMA-PPEGMA proved to be more effective than its parent chitosan, with a 33% increase in adsorption capacity.

  8. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation of 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.

  9. Design and construction of liquid lasers using organic dyes

    International Nuclear Information System (INIS)

    Hariri, Akbar.

    1984-01-01

    Organic dye solution show great promise of obtaining tunable coherent light over the uv, visible and near infrared portion of spectrum. In this paper we describe various pumping schemes of dye molecules. Design, construction and performance of a pulsed dye laser, transversely pumped by a nitrogen laser and wall-ablation flash lamp-pumped dye lasers are the particular examples which are presented in detail

  10. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  11. Rapid fluorescence assay for Sudan dyes using polyethyleneimine-coated copper nanoclusters

    International Nuclear Information System (INIS)

    Ling, Yu; Li, Jia Xing; Li, Nian Bing; Luo, Hong Qun; Qu, Fei

    2014-01-01

    We report that the intensity of the blue fluorescence of copper nanoclusters coated with polyethyleneimine (PEI) is strongly reduced in the presence of the food dyestuffs Sudan I-IV. This finding was exploited in a label-free fluorescence assay for these Sudan dyes both in ethanol and aqueous solutions. The PEI-capped nanoclusters have an average diameter of 1.8 nm and are displaying, under 355 nm excitation, a blue emission at 480 nm that matches the absorption bands of the Sudan dyes. The clusters are stable in solution for at least 1 month. Under optimum conditions, this assay can be applied to the quantification of the dyes Sudan I, II, III, and IV, respectively, in the 0.1−30, 0.1–30, 0.1–25, and 0.1–25 μM concentration ranges, and the detection limits (3σ/slope) are 65, 70, 45, and 50 nM, respectively. The capability of reducing the fluorescence of the PEI-capped copper nanoclusters is directly related to the number of the functional groups in that Sudan III and IV give lower detection limits. This analytical scheme exhibits a remarkably high selectivity for the Sudan dyes over potentially interfering substances. The method was successfully applied to determine Sudan I, II, III, and IV in hot chilli powder. (author)

  12. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.; Hardin, Brian E.; McGehee, Michael D.

    2010-01-01

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation

  13. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  14. A non-toxic fluorogenic dye for mitochondria labeling.

    Science.gov (United States)

    Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan

    2013-11-01

    Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. © 2013.

  15. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  16. Theoretical Study of the π-Bridge Influence with Different Units of Thiophene and Thiazole in Coumarin Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Rody Soto-Rojo

    2016-01-01

    Full Text Available Eight coumarin derivative dyes were studied by varying the π-bridge size with different thiophene and thiazole units for their potential use in dye-sensitized solar cells (DSSC. Geometry optimization, the energy levels and electron density of the Highest Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital, and ultraviolet-visible absorption spectra were calculated by Density Functional Theory (DFT and Time-Dependent-DFT. All molecular properties were analyzed to decide which dye was the most efficient. Furthermore, chemical reactivity parameters, such as chemical hardness, electrophilicity index, and electroaccepting power, were obtained and analyzed, whose values predicted the properties of the dyes in addition to the rest of the studied molecular properties. Our calculations allow us to qualitatively study dye molecules and choose the best for use in a DSSC. The effects of π-bridges based on thiophenes, thiazoles, and combinations of the two were reviewed; dyes with three units mainly of thiazole were chosen as the best photosensitizers for DSSC.

  17. Photophysical properties of pyronin dyes in reverse micelles of AOT

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktutan, Tuğba; Meral, Kadem; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    2014-01-15

    The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in reverse micelles formed with water/sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane were investigated by UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. This study was carried out a wide range of reverse micelle sizes, with hydrodynamic radii ranging from 1.85 to 9.38 nm. Significant photophysical parameters as band shifts, fluorescence quantum yields and fluorescence lifetimes were determined to understand how photophysical and spectroscopic features of the dye compounds were affected by the variation of reverse micelle sizes. In this regard, control of reverse micelle size by changing W{sub 0}, the molar ratio of water to surfactant, allowed tuning the photophysical properties of the dyes in organic solvent via reverse micelle. Non-fluorescent H-aggregates of pyronin dyes were observed for the smaller reverse micelles whereas an increase in the reverse micelle size induced an increment in the amount of dye monomers instead of dye aggregates. Thus, the fluorescence intensities of the dyes were improved by increasing W{sub 0} due to the predomination of the fluorescent dye monomers. As a result, the fluorescence quantum yields also increased. The fluorescence lifetimes of the dyes in the reverse micelles were determined by the time-resolved fluorescence decay studies. Evaluation of the fluorescence lifetimes calculated for pyronin dyes in the reverse micelles showed that the size of reverse micelle affected the fluorescence lifetimes of pyronin dyes. -- Highlights: • The photophysical properties of pyronin dyes were examined by spectroscopic techniques. • Optical properties of the dyes were tuned by changing of W{sub 0} values. • The fluorescence lifetime and quantum yield values of the dyes in reverse micelles were discussed.

  18. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  19. Experimental test of a four-level kinetic model for excited-state intramolecular proton transfer dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Costela, A; Munnoz, J M; Douhal, A; Figuera, J M; Acuna, A U [Inst. de Quimica Fisica ' ' Rocasolano' ' , C.S.I.C., Madrid (Spain)

    1989-11-01

    The nanosecond pulses of a dye laser oscillator based on the excited-state intramolecular proton-transfer reaction (IPT) of salicylamide and 2'-hydroxylphenyl benzimidazole dyes have been studied as a function of several experimental parameters. To explain the operation of this laser a numerical four-level kinetic model was developed until the lasing properties of these dyes, in the presence of a variable oxygen concentration and pumped with a double pulse technique, could be reproduced. This was possible only by assuming that the efficiency of the laser is controlled by the absorption cross-section of a transient state with a lifetime in the nanosecond-picosecond range, which was tentatively identified as a ground state tautomeric species. (orig.).

  20. Hair dye poisoning and the developing world

    Directory of Open Access Journals (Sweden)

    Sampathkumar Krishnaswamy

    2009-01-01

    Full Text Available Hair dye poisoning has been emerging as one of the important causes of intentional self harm in the developing world. Hair dyes contain paraphenylene-diamine and a host of other chemicals that can cause rhabdomyolysis, laryngeal edema, severe metabolic acidosis and acute renal failure. Intervention at the right time has been shown to improve the outcome. In this article, we review the various manifestations, clinical features and treatment modalities for hair dye poisoning.

  1. Spectral Properties and Orientation of Voltage-Sensitive Dyes in Lipid Membranes

    KAUST Repository

    Matson, Maria

    2012-07-24

    Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decades, the mechanism behind their voltage sensitivity is still obscure. We ask whether the voltage response is due to electrochromism as a result of direct field interaction on the chromophore or to solvatochromism, which is the focus of this study, as result of changed environment or molecular alignment in the membrane. The spectral properties of three styryl dyes, di-4-ANEPPS, di-8-ANEPPS, and RH421, were investigated in solvents of varying polarity and in model membranes using spectroscopy. Using quantum mechanical calculations, the spectral dependence of monomer and dimer ANEPPS on solvent properties was modeled. Also, the kinetics of binding to lipid membranes and the binding geometry of the probe molecules were found relevant to address. The spectral properties of all three probes were found to be highly sensitive to the local environment, and the probes are oriented nearly parallel with the membrane normal. Slow binding kinetics and scattering in absorption spectra indicate, especially for di-8-ANEPPS, involvement of aggregation. On the basis of the experimental spectra and time-dependent density functional theory calculations, we find that aggregate formation may contribute to the blue-shifts seen for the dyes in decanol and when bound to membrane models. In conclusion, solvatochromic and other intermolecular interactions effects also need to be included when considering electrochromic response voltage-sensitive dyes. © 2012 American Chemical Society.

  2. Spectroscopic (FT-IR, FT-Raman and UV-Visible) investigations, NMR chemical shielding anisotropy (CSA) parameters of 2,6-Diamino-4-chloropyrimidine for dye sensitized solar cells using density functional theory.

    Science.gov (United States)

    Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K

    2015-02-05

    The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... Azo dyes generally resist aerobic microbial degra- dation, only organisms with specialized azo dye reducing enzymes were found to degrade azo dyes under fully aerobic ... textile mill, in sterile plastic bottles. Isolation of ...

  4. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  5. Excimer Pumped Pulsed Tunable Dye Laser

    Science.gov (United States)

    Littman, Michael G.

    1988-06-01

    It has been recently shown and reported for the first time at this meeting, that Excimer pumping of a single-mode, short-cavity, grazing-incidence, longitudinally-pumped pulsed dye laser is feasible. In this paper the key concepts upon which this latest development is based are presented and are in a somewhat unusual form. This manuscript describes five specific dye laser examples. The five examples represent a progression from the simplest type of dye laser to the single-mode version mentioned above. The examples thus serve as a tutorial introduction to potential users of dye lasers. The article is organized into five sections or STEPS, each of which describes a different pulsed dye laser. Since the subtle points about dye lasers are best appreciated only after one actually attempts to build a working model, a PROCEDURES category is included in which details about the construction of the particular form of laser are given. As one reads through this category, think of it as looking over the shoulder of the laser builder. The NOTES category which follows is a brief but essential discussion explaining why various components and procedures are used, as well as how laser performance specifications are obtained. This subsection can he viewed as a discussion with the laser builder concerning the reasons for specific actions and choices made in the assembly of the example laser. The last category contains COMMENTS which provide additional related information pertaining to the example laser that goes beyond the earlier annotated discussion. If you like, these are the narrator's comments. At the end of the article, after the five sequential forms of the laser have been presented, there is a brief summation.

  6. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  7. Dyeing of γ-irradiated cotton with natural flavonoid dye extracted from irradiated onion shells (Allium cepa) powder

    Science.gov (United States)

    Rehman, Fazal-ur; Adeel, Shahid; Shahid, Muhammad; Bhatti, Ijaz Ahmad; Nasir, Faiza; Akhtar, Nasim; Ahmad, Zulfiqar

    2013-11-01

    Powder of Onion shells as a source of natural flavonoid dye (Quercetin) and cotton fabrics were exposed to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Irradiated and un-irradiated dye powder was used for extraction of quercetin as well as antibacterial, hemolytic and antioxidant activities were also determined to observe the effect of radiation. Furthermore, color strength and colourfastness of irradiated fabrics were improved by using pre and post-mordants such as alum and iron. It is found that 4 kGy is the optimal absorbed dose for extraction of natural quercetin extracted from onion shells while maximum color strength and acceptable fastness properties are obtained on dyeing of irradiated fabric at 60 °C keeping M:L of 1:30 using 10% alum as pre-mordant and 6% alum as post-mordant. Gamma irradiation has not only improved the color strength of the dye using irradiated cotton but also that of colourfastness properties.

  8. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes.

    Science.gov (United States)

    Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R

    2016-02-01

    Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.

  9. Revealing the influence of Cyano in Anchoring Groups of Organic Dyes on Adsorption Stability and Photovoltaic Properties for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wei-Chieh; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang

    2017-07-10

    Determining an ideal adsorption configuration for a dye on the semiconductor surface is an important task in improving the overall efficiency of dye-sensitized solar cells. Here, we present a detailed investigation of different adsorption configurations of designed model dyes on TiO 2 anatase (101) surface using first principles methods. Particularly, we aimed to investigate the influence of cyano group in the anchoring part of dye on its adsorption stability and the overall photovoltaic properties such as open circuit voltage, electron injection ability to the surface. Our results indicate that the inclusion of cyano group increases the stability of adsorption only when it adsorbs via CN with the surface and it decreases the photovoltaic properties when it does not involve in binding. In addition, we also considered full dyes based on the results of model dyes and investigated the different strength of acceptor abilities on stability and electron injection ability. Among the various adsorption configurations considered here, the bidentate bridging mode (A3) is more appropriate one which has higher electron injection ability, larger V OC value and more importantly it has higher dye loading on the surface.

  10. Physicochemical aspects of the liposome-wool interaction in wool dyeing.

    Science.gov (United States)

    Martí, Meritxell; Barsukov, Leonid I; Fonollosa, Jordi; Parra, José Luis; Sukhanov, Stanislav V; Coderch, Luisa

    2004-04-13

    Despite the promising application of liposomes in wool dyeing, little is known about the mechanism of liposome interactions with the wool fiber and dyestuffs. The kinetics of wool dyeing by two dyes, Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic), were compared in three experimental protocols: (1) without liposomes, (2) in the presence of phosphatidylcholine (PC) liposomes, and (3) with wool previously treated with PC liposomes. Physicochemical interactions of liposomes with wool fibers were studied under experimental dyeing conditions with particular interest in the liposome affinity to the fiber surface and changes in the lipid composition of the wool fibers. The results obtained indicate that the presence of liposomes favors the retention of these two dyes in the dyeing bath, this effect being more pronounced in case of the hydrophobic dye. Furthermore, the liposome treatment is accompanied by substantial absorption of PC by wool fibers with simultaneous partial solubilization of their polar lipids (more evident at higher temperatures). This may result in structural modification of the cell membrane complex of wool fibers, which could account for a high level of the dye exhaustion observed at the end of the liposome dyeing process.

  11. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  12. Incorporation of Kojic Acid-Azo Dyes on TiO2 Thin Films for Dye Sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Carolynne Zie Wei Sie

    2017-01-01

    Full Text Available Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs. A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54% in the series.

  13. Electrochemical degradation of reactive dyes at different DSA compositions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo G. da; Aquino Neto, Sydney; Andrade, Adalgisa R. de, E-mail: ardandra@ffclrp.usp.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia Ciencias e Letras. Dept. de Quimica

    2011-07-01

    This paper investigates the electrochemical oxidation of the reactive dyes reactive blue 4 (RB-4) and reactive orange 16 (RO-16) on RuO{sub 2} dimensionally stable anode (DSA) electrodes. Electrolysis was achieved under galvanostatic control as a function of supporting electrolyte and electrode composition. The electrolyses, performed in either the presence or absence of NaCl, were able to promote efficient color removal; moreover, at low chloride concentration (0.01 mol L{sup -1}), total color removal was obtained after just 10 min of electrolysis, and a significant increase in total dye combustion was achieved for all the studied anodes in chloride medium (reaching ca. 80% - chemical oxygen demand - COD removal). No significant enhancement in dye color removal or mineralization was observed upon increasing chloride concentration. The influence of oxide composition on dye elimination seems to be significant in both media (with or without chloride), being Ti/Ru{sub 0.30}Ti{sub 0.70}O{sub 2}, the most active material for organic compound oxidation. The oxygen evolution reaction was shown to be a limiting reaction in both supporting electrolytes; i.e., NaCl and Na{sub 2}SO{sub 4}, and its competition with organic compound oxidation remained an obstacle. The adsorbable organo halogens formation study revealed that there is slight consumption of the undesirable species formed within the first minutes of the electrolysis, being Ti/(RuO{sub 2}){sub 0.70}(Ta{sub 2}O{sub 5}){sub 0.30} the most environmentally friendly composition. Both anode composition and chloride concentration affect the formation of these undesirable compounds. (author)

  14. Hybrid Monolith of Graphene/TEMPO-Oxidized Cellulose Nanofiber as Mechanically Robust, Highly Functional, and Recyclable Adsorbent of Methylene Blue Dye

    Directory of Open Access Journals (Sweden)

    Asif Hussain

    2018-01-01

    Full Text Available Herein we demonstrate first report on fabrication, characterization, and adsorptive appraisal of graphene/cellulose nanofibers (GO/CNFs monolith for methylene blue (MB dye. Series of hybrid monolith (GO/CNFs were assembled via urea assisted self-assembly method. Hybrid materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, Raman spectroscopy, elemental analysis, thermogravimetric curve analysis, specific surface area, surface charge density measurement, and compressional mechanical analysis. It was proposed that strong chemical interaction (mainly hydrogen bonding was responsible for the formation of hybrid assembly. GO/CNFs monolith showed mechanically robust architecture with tunable pore structure and surface properties. GO/CNFs adsorbent could completely remove trace to moderate concentrations of MB dye and follow pseudo-second-order kinetics model. Adsorption isotherm behaviors were found in the following order: Langmuir isotherm > Freundlich isotherm > Temkin isotherm model. Maximum adsorption capacity of 227.27 mg g−1 was achieved which is much higher than reported graphene based monoliths and magnetic adsorbent. Incorporation of nanocellulose follows exponential relationship with dye uptake capacities. High surface charge density and specific surface area were main dye adsorptive mechanism. Regeneration and recycling efficiency was achieved up to four consecutive cycles with cost-effective recollection and zero recontamination of treated water.

  15. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  16. Hypersensitivity to contrast media and dyes.

    Science.gov (United States)

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    Science.gov (United States)

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf

    Directory of Open Access Journals (Sweden)

    Wuletaw Andargie Ayalew

    2016-12-01

    Full Text Available Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. In this study, dye-sensitized solar cells (DSSCs were fabricated using natural dyes light harvesting materials. The natural dyes were extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. In the as-prepared DSSC, a quasi-solid state electrolyte was sandwiched between the working electrode (photoanode and counter electrode (PEDOT-coated FTO glass. The photoelectrochemical performance of the as-prepared quasi-solid state DSSCs showed open-circuit voltages (VOC varied from 0.475 to 0.507 V, the short-circuit current densities (JSC ranged from 0.352 to 0.642 mA cm−2 and the fill factors (FF varied from 47 to 60% at 100 mWcm−2 light intensity. The dye extracted from A. sennii chiovenda flower, using acidified ethanol (in 1% HCl as extracting solvent, exhibited best conversion efficiency with a maximum open-circuit voltage (VOC of 0.507 V, short-circuit current density (JSC of 0.491 mA cm−2, fill factor (FF of 0.60 and an overall conversion efficiency (η of 0.15%. On the other hand, the maximum power conversion efficiency of the dye extracted from E. cotinifolia leaf was 0.136%. This is the first study that reports the fabrication of DSSC using natural dye sensitizers extracted from these plants in the presence of quasi-solid state electrolyte and PEDOT as a counter electrode.

  19. Spectral-optical characteristics of anthocyanin-containing natural dye staff

    International Nuclear Information System (INIS)

    Astanov, S.; Sharipov, M.Z.; Dalmuradova, N.N.

    2007-01-01

    Spectral-optical characteristics of anthocyanin-containing natural dye staff received from fruit ficus carica are determined. The chromatographic separating of dyeing pigment obtained is performed. The data obtained can be used as passport characteristics of the new food dye staff. (authors)

  20. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dongjun Lv

    2017-02-01

    Full Text Available A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY and allura red (AR, was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity.