WorldWideScience

Sample records for monoamine neurotransmitter re-uptake

  1. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders.

    Science.gov (United States)

    Ng, J; Heales, S J R; Kurian, M A

    2014-08-01

    Childhood neurotransmitter disorders are increasingly recognised as an expanding group of inherited neurometabolic syndromes. They are caused by disturbance in synthesis, metabolism, and homeostasis of the monoamine neurotransmitters, including the catecholamines (dopamine, norepinephrine, and epinephrine) and serotonin. Disturbances in monoamine neurotransmission will lead to neurological symptoms that often overlap with clinical features of other childhood neurological disorders (such as hypoxic ischaemic encephalopathy, cerebral palsy, other movement disorders, and paroxysmal conditions); consequently, neurotransmitter disorders are frequently misdiagnosed. The diagnosis of neurotransmitter disorders is made through detailed clinical assessment, analysis of cerebrospinal fluid neurotransmitters, and further supportive diagnostic investigations. Early and accurate diagnosis of neurotransmitter disorders is important, as many are amenable to therapeutic intervention. The principles of treatment for monoamine neurotransmitter disorders are mainly directly derived from understanding these metabolic pathways. In disorders characterized by enzyme deficiency, we aim to increase monoamine substrate availability, boost enzyme co-factor levels, reduce monoamine breakdown, and replace depleted levels of monoamines with pharmacological analogs as clinically indicated. Most monoamine neurotransmitter disorders lead to reduced levels of central dopamine and/or serotonin. Complete amelioration of motor symptoms is achievable in some disorders, such as Segawa's syndrome, and, in other conditions, significant improvement in quality of life can be attained with pharmacotherapy. In this review, we provide an overview of the clinical features and current treatment strategies for childhood monoamine neurotransmitter disorders.

  2. The molecular mechanism for overcoming the rate-limiting step in monoamine neurotransmitter transport

    DEFF Research Database (Denmark)

    Sinning, Steffen; Said, Saida; Malinauskaite, Lina

    The monoamine transporter family consists of dopamine (DAT), norepinephrine (NET) and serotonin transporters (SERT) that mediate the reuptake of the monoamine neurotransmitters after their release during neurotransmission. These transporters play prominent roles in psychiatric disorders and are t......The monoamine transporter family consists of dopamine (DAT), norepinephrine (NET) and serotonin transporters (SERT) that mediate the reuptake of the monoamine neurotransmitters after their release during neurotransmission. These transporters play prominent roles in psychiatric disorders...... membrane. The rate-limiting step in monoamine reuptake is the return of the empty transporter from an inward-facing to an outward-facing conformation without neurotransmitter and sodium bound. The molecular mechanism underlying this important conformational transition has not been described. Crystal...

  3. Validity of urinary monoamine assay sales under the "spot baseline urinary neurotransmitter testing marketing model".

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2011-01-01

    Spot baseline urinary monoamine assays have been used in medicine for over 50 years as a screening test for monoamine-secreting tumors, such as pheochromocytoma and carcinoid syndrome. In these disease states, when the result of a spot baseline monoamine assay is above the specific value set by the laboratory, it is an indication to obtain a 24-hour urine sample to make a definitive diagnosis. There are no defined applications where spot baseline urinary monoamine assays can be used to diagnose disease or other states directly. No peer-reviewed published original research exists which demonstrates that these assays are valid in the treatment of individual patients in the clinical setting. Since 2001, urinary monoamine assay sales have been promoted for numerous applications under the "spot baseline urinary neurotransmitter testing marketing model". There is no published peer-reviewed original research that defines the scientific foundation upon which the claims for these assays are made. On the contrary, several articles have been published that discredit various aspects of the model. To fill the void, this manuscript is a comprehensive review of the scientific foundation and claims put forth by laboratories selling urinary monoamine assays under the spot baseline urinary neurotransmitter testing marketing model.

  4. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  5. Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply?

    DEFF Research Database (Denmark)

    Zhang, Mengliang

    2016-01-01

    Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates...... that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects...... that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles...

  6. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU).

    Science.gov (United States)

    Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O

    2016-01-01

    Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Stereoselective effects of MDMA on inhibition of monoamine uptake

    International Nuclear Information System (INIS)

    Steele, T.D.; Nichols, D.E.; Yim, G.K.W.

    1986-01-01

    The R(-)-isomers of hallucinogenic phenylisopropylamines are most active, whereas the S(+)-enantiomers of amphetamine (AMPH) and methylenedioxymethamphetamine (MDMA) are more potent centrally. To determine if MDMA exhibits stereoselective effects at the biochemical level that resemble either those of amphetamine or the potent hallucinogen 2,5-dimethoxy-4-methylamphetamine (DOM), the ability of the isomers of MDMA, AMPH and DOM to inhibit uptake of radiolabelled monoamines into synaptosomes was measured. AMPH was more potent than MDMA in inhibiting uptake of 3 H-norepinephrine (NE) into hypothalamic synaptosomes and 3 H-dopamine (DA) into striatal synaptosomes. The S(+)-isomer was more active in each case. MDMA was more potent than AMPH in inhibiting uptake of 3 H-serotonin (5-HT) into hippocampal synaptosomes and exhibited a high degree of stereoselectivity, in favor of the S(+)-isomer. DOM showed only minimal activity in inhibiting uptake of any monoamine (IC 50 > 10 -5 M). These results suggest that MDMA exhibits stereoselective effects similar to those of amphetamine on monoamine uptake inhibition, a parameter that is unrelated to the mechanism of action of the hallucinogen DOM

  8. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  9. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    Science.gov (United States)

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Andersen, Jacob; Jørgensen, Trine N

    2011-01-01

    The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters...... for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake...... of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy...

  11. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release.

    Science.gov (United States)

    Finberg, John P M

    2014-08-01

    Inhibitors of monoamine oxidase (MAO) were initially used in medicine following the discovery of their antidepressant action. Subsequently their ability to potentiate the effects of an indirectly-acting sympathomimetic amine such as tyramine was discovered, leading to their limitation in clinical use, except for cases of treatment-resistant depression. More recently, the understanding that: a) potentiation of indirectly-acting sympathomimetic amines is caused by inhibitors of MAO-A but not by inhibitors of MAO-B, and b) that reversible inhibitors of MAO-A cause minimal tyramine potentiation, has led to their re-introduction to clinical use for treatment of depression (reversible MAO-A inhibitors and new dose form MAO-B inhibitor) and treatment of Parkinson's disease (MAO-B inhibitors). The profound neuroprotective properties of propargyl-based inhibitors of MAO-B in preclinical experiments have drawn attention to the possibility of employing these drugs for their neuroprotective effect in neurodegenerative diseases, and have raised the question of the involvement of the MAO-mediated reaction as a source of reactive free radicals. Despite the long-standing history of MAO inhibitors in medicine, the way in which they affect neuronal release of monoamine neurotransmitters is still poorly understood. In recent years, the detailed chemical structure of MAO-B and MAO-A has become available, providing new possibilities for synthesis of mechanism-based inhibitors. This review describes the latest advances in understanding the way in which MAO inhibitors affect the release of the monoamine neurotransmitters dopamine, noradrenaline and serotonin (5-HT) in the CNS, with an accent on the importance of these effects for the clinical actions of the drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Porters and neurotransmitter transporters.

    Science.gov (United States)

    Nelson, N; Lill, H

    1994-11-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)-ATPase. Two distinct families of transporters were identified in this group. One cotransports sodium with glutamate and other amino acids and requires additionally an outwardly directed potassium gradient. The second cotransports sodium, chloride and a variety of neurotransmitters, including gamma-aminobutyric acid (GABA), glycine and monoamines. Genes and cDNA encoding several members of the latter family have been cloned and studied in detail. The structure and function as well as the evolutionary relationships among these neurotransmitter transporters are discussed.

  13. Harmane: an atypical neurotransmitter?

    Science.gov (United States)

    Abu Ghazaleh, Haya; Lalies, Maggie D; Nutt, David J; Hudson, Alan L

    2015-03-17

    Harmane is an active component of clonidine displacing substance and a candidate endogenous ligand for imidazoline binding sites. The neurochemistry of tritiated harmane was investigated in the present study examining its uptake and release properties in the rat brain central nervous system (CNS) in vitro. At physiological temperature, [(3)H]harmane was shown to be taken up in rat brain cortex. Further investigations demonstrated that treatment with monoamine uptake blockers (citalopram, nomifensine and nisoxetine) did not alter [(3)H]harmane uptake implicating that the route of [(3)H]harmane transport was distinct from the monoamine uptake systems. Furthermore, imidazoline ligands (rilmenidine, efaroxan, 2-BFI and idazoxan) showed no prominent effect on [(3)H]harmane uptake suggesting the lack of involvement of imidazoline binding sites. Subsequent analyses showed that disruption of the Na(+) gradient using ouabain or choline chloride did not block [(3)H]harmane uptake suggesting a Na(+)-independent transport mechanism. Moreover, higher temperatures (50°C) failed to impede [(3)H]harmane uptake implying a non-physiological transporter. The failure of potassium to evoke the release of preloaded [(3)H]harmane from rat brain cortex indicates that the properties of this putative endogenous ligand for imidazoline binding sites do not resemble that of a conventional neurotransmitter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie Voigt; Hansen, Stine Normann; Tveden-Nyborg, Pernille

    2016-01-01

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical...... of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7 pmol per 2 million cells intracellularly, but only...... the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid...

  15. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.

    Science.gov (United States)

    Roz, Netta; Rehavi, Moshe

    2003-06-13

    Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.

  16. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    Science.gov (United States)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  17. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; Guo Jizhao; Liu Bo; Yu Yuqi [Department of Chemistry, University of Science and Technology of China (USTC), JinZhai Road No: 96, 230026 Hefei, Anhui (China); Cui Hua, E-mail: hcui@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China (USTC), JinZhai Road No: 96, 230026 Hefei, Anhui (China); Mao Lanqun; Lin Yuqing [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100080 Beijing (China)

    2009-07-10

    Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO{sub 3}. In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO{sub 3}-Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO{sub 3} to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.

  18. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence

    International Nuclear Information System (INIS)

    Li Na; Guo Jizhao; Liu Bo; Yu Yuqi; Cui Hua; Mao Lanqun; Lin Yuqing

    2009-01-01

    Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO 3 . In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO 3 -Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO 3 to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.

  19. Vanillin-induced amelioration of depression-like behaviors in rats by modulating monoamine neurotransmitters in the brain.

    Science.gov (United States)

    Xu, Jinyong; Xu, Hui; Liu, Yang; He, Haihui; Li, Guangwu

    2015-02-28

    Olfaction plays an important role in emotions in our daily life. Pleasant odors are known to evoke positive emotions, inducing relaxation and calmness. The beneficial effects of vanillin on depressive model rats were investigated using a combination of behavioral assessments and neurotransmitter measurements. Before and after chronic stress condition (or olfactory bulbectomy), and at the end of vanillin or fluoxetine treatment, body weight, immobility time on the forced swimming test and sucrose consumption in the sucrose consumption test were measured. Changes in these assessments revealed the characteristic phenotypes of depression in rats. Neurotransmitters were measured using ultrahigh-performance liquid chromatography. Our results indicated that vanillin could alleviate depressive symptoms in the rat model of chronic depression via the olfactory pathway. Preliminary analysis of the monoamine neurotransmitters revealed that vanillin elevated both serotonin and dopamine levels in brain tissue. These results provide important mechanistic insights into the protective effect of vanillin against chronic depressive disorder via olfactory pathway. This suggests that vanillin may be a potential pharmacological agent for the treatment of major depressive disorder. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Effect of Zuogui Pill () on monoamine neurotransmitters and sex hormones in climacteric rats with panic attack.

    Science.gov (United States)

    Li, Xiao-Yu; Wang, Xiao-Yun

    2017-03-01

    To explore the effects of Chinese medicine prescription Zuogui Pill (, ZGP) on monoamine neurotransmitters and sex hormones in climacteric rats with induced panic attacks. Forty-eight climacteric female rats were randomized into 6 groups with 8 rats in each group: the control group, the model group, the low-, medium- and high-dose ZGP groups and the alprazolam group. Rats in the low-, medium- and high-dose ZGP groups were administered 4.725, 9.45, or 18.9 g/kg ZGP by gastric perfusion, respectively. The alprazolam group was treated by gastric perfusion with 0.036 mg/kg alprazolam. The control and model groups were treated with distilled water. The animals were pretreated once daily for 8 consecutive weeks. The behaviors of rats in the open fifield test and the elevated T-maze (ETM) were observed after induced panic attack, and the levels of brain monoamine neurotransmitters and the plasma levels of sex hormones were measured. Compared with the control group, the mean ETM escape time and the levels of 5-hydroxytryptamine (5-HT) and noradrenalin (NE) of the model group were signifificantly reduced (P<0.05), Compared with the model group, the mean ETM escape time and the 5-HT and NE levels of all the ZGP groups increased signifificantly (P<0.05 or P<0.01). However, no signifificant difference was observed in the levels of sex hormones between the groups. Pretreatment with ZGP in climacteric rats may improve the behavior of panic attack, which may be related to increased 5-HT and NE in the brain.

  1. [Detection of monoamine neurotransmitters and its metabolites by high performance liquid chromatograph after pre-column derivatization of dansyl chloride column].

    Science.gov (United States)

    Huang, Xiao; Chen, Jia-wen; He, Li-ping; Kang, Xue-jun

    2012-12-01

    To develop a high performance liquid chromatography (HPLC) for detection of monoamine neurotransmitters and its metabolites after pre-column derivatization with dansyl chloride. The C(18) chromatograph column (150 mm×4.6 mm×5 µm) was selected for detection, and derived by dansyl chloride (10 mg/ml) under the condition of 50°C water bath by pH11 buffer solution. 20 µl acetic acid acetone solution (1.0 mol/L) was then mixed in for termination of the reaction. Then the solution was cooling to room temperature, 0.1 mol/L acetic acid zinc-acetonitrile-tetrahydrofuran solution was adopted for mobile phrase, with the volume ratio at 62:35:3. The flow rate was 1.0 ml/min between 0-10 min, 2.0 ml/min between 10-35 min. The ultraviolet detection wavelength was 286 nm. The above method separately detected monoamine neurotransmitters and its metabolites and evaluated the limit of detection, accurate degree and accuracy degree. The linear relations between each component was good in the range of 1 - 20 µg/ml (r = 0.999). The lowest detection limit of norepinephrine, dopamine, 5-hydroxytryptamine and the metabolites 3-methoxy-4-benzoglycols, homovanillic acid and 5-heteroauxin were separately 0.60, 0.80, 0.41, 0.21, 0.19 and 0.1 µg/ml; while the average recovery rates were between 78.5% - 95.9%, and the relative standard deviation (RSD) was 6.62%, 7.64%, 2.98%, 3.60%, 5.09% and 3.09%, respectively. In the process of selection and optimization of the chromatographic conditions, we observed the importance of metal ions to discretion, and discussed the temperature, pH of the buffer solution and dosage of dansyl chloride in derivation. Under the above conditions, the reaction was perfect, and the baseline of the detected materials thoroughly separated. The method to detect monoamine neurotransmitters and its metabolites by HPLC and pre-column derivatization with dansyl chloride was established; and this method could provide reference for the detection of polyamine by HPLC.

  2. Antidepressant like effects of hydrolysable tannins of Terminalia catappa leaf extract via modulation of hippocampal plasticity and regulation of monoamine neurotransmitters subjected to chronic mild stress (CMS).

    Science.gov (United States)

    Chandrasekhar, Y; Ramya, E M; Navya, K; Phani Kumar, G; Anilakumar, K R

    2017-02-01

    Terminalia catappa L. belonging to Combretaceae family is a folk medicine, known for its multiple pharmacological properties, but the neuro-modulatory effect of TC against chronic mild stress was seldom explored. The present study was designed to elucidate potential antidepressant-like effect of Terminalia cattapa (leaf) hydro-alcoholic extract (TC) by using CMS model for a period of 7 weeks. Identification of hydrolysable tannins was done by using LC-MS. After the CMS exposure, mice groups were administered with imipramine (IMP, 10mg/kg, i.p.) and TC (25, 50 and 100mg/kg of TC, p.o.). Behavioural paradigms used for the study included forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT). After behavioural tests, monoamine neurotransmitter, cortisol, AchE, oxidative stress levels and mRNA expression studies relevant to depression were assessed. TC supplementation significantly reversed CMS induced immobility time in FST and other behavioural paradigms. Moreover, TC administration significantly restored CMS induced changes in concentrations of hippocampal neurotransmitters (5-HT, DA and NE) as well as levels of acetyl cholinesterase, cortisol, monoamine oxidases (MAO-A, MAO-B), BDNF, CREB, and p-CREB. It suggests that TC supplementation could supress stress induced depression by regulating monoamine neurotransmitters, CREB, BDNF, cortisol, AchE level as well as by amelioration of oxidative stress. Hence TC can be used as a complementary medicine against depression-like disorder. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Depletion of rat cortical norepinephrine and the inhibition of [3H]norepinephrine uptake by xylamine does not require monoamine oxidase activity

    International Nuclear Information System (INIS)

    Dudley, M.W.

    1988-01-01

    Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline or the pro-drug MDL 72,394 did not block the amine-depleting action of xylamine. Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl, prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974, a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not prevent cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [ 3 H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine

  4. Effects of the Monoamine Uptake Inhibitors RTI-112 and RTI-113 on Cocaine- and Food-Maintained Responding in Rhesus Monkeys

    Science.gov (United States)

    SS, Negus; NK, Mello; HL, Kimmel; LL, Howell; FI, Carroll

    2009-01-01

    Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate “agonist” medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032–0.01 mg/kg/hr) and RTI-113 (0.01–0.056 mg/kg/hr) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212

  5. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    Directory of Open Access Journals (Sweden)

    Golam Mustafa

    2017-01-01

    Full Text Available Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury.

  7. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  8. Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles.

    Science.gov (United States)

    Kuster, Alice; Arnoux, Jean-Baptiste; Barth, Magalie; Lamireau, Delphine; Houcinat, Nada; Goizet, Cyril; Doray, Bérénice; Gobin, Stéphanie; Schiff, Manuel; Cano, Aline; Amsallem, Daniel; Barnerias, Christine; Chaumette, Boris; Plaze, Marion; Slama, Abdelhamid; Ioos, Christine; Desguerre, Isabelle; Lebre, Anne-Sophie; de Lonlay, Pascale; Christa, Laurence

    2018-01-01

    To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.

  9. [Domino principle--monoamines in bottom-view].

    Science.gov (United States)

    Sümegi, András

    2008-06-01

    One of the first neurobiological theories of major depression was the monoamine deficiency hypothesis. The classic monoamine theory of depression suggested that a deficit in monoamine neurotransmitters in the synaptic cleft was the main and primary cause of depression. Recent and newer versions and modifications of the primary classic theory also mainly included this postulate, while other theories of depression preferred departing from the monoamine-based model altogether. Unfortunately, the clear neurobiology of major depression remains an elusive issue, despite intense research. It is clearly held that most, if not all, antidepressant pharmacotherapies treatments produce their therapeutic antidepressant effects, at least in part, by modulating monoamine systems (noradrenergic, serotonergic, and dopaminergic) by a selective or a multi-acting way; however, much less is known about the neurobiological pathology of these monoamine systems in depression. Much of the past 10-15 years of research in the biology of mood disorders has led to considerable evidence in depression implicating multiple system pathology, including abnormalities of monoamine as well as other neurotransmitter systems. These approaches and findings have led researchers to propose broader theories regarding the neurobiology of depression, just like a spreading disorder of specific neuronal networks in the brain. A model for the pathophysiology of depression ill be discussed in the next pages, after describing the main components of depression pathogenesis. Suggestion is that the primary defect emerges in the cross-regulation and vulnerability of special monoaminergic and non-monoaminergic neural networks, which leads to a decrease in the tonic release of neurotransmitters in their projection areas, altering postsynaptic sensitivity, and following, overexaggerated responses to acute increases in the presynaptic firing rate and transmitter release. It is proposed that the primary defect should be

  10. Effect of Schisandra chinensis polysaccharide on intracerebral acetylcholinesterase and monoamine neurotransmitters in a D-galactose-induced aging brain mouse model

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Jianlian Gao; Guangwei Zhang; Xiao Ma; Ying Zhang

    2009-01-01

    BACKGROUND: The most prominent characteristic of brain aging is decreased learning and memory ability. The functions of learning and memory are closely related to intracerebral acetylcholinesterase (ACHE) and monoamine neurotransmitter activity. Previous studies have shown that Schisandra chinensis potysaccharide has an anti-aging effect. OBJECTIVE: To explore the effects of Schisandra chinensis polysaccharide on AChE activity and monoamine neurotransmitter content, as well as learning and memory ability in a D-galactose-induced aging mouse brain model compared with the positive control drug Kangnaoling. DESIGN, TIME AND SETTING: Completely randomized, controlled experiment based on neurobiochemistry was performed at the Pharmacological Laboratory, Henan University of Traditional Chinese Medicine from September to December 2003.MATERIALS: Schisandra chinensis was purchased from Henan Provincial Medicinal Company. Schisandra chinensis polysaccharide was obtained by water extraction and alcohol precipitation. Kangnaoling pellets were provided by Liaoning Tianlong Pharmaceutical (batch No. 20030804;state drug permit No. H21023095). A total of 50 six-week-old Kunming mice were randomly divided into five groups: blank control, model, Kangnaoling, high and low dosage Schisandra chinensis polysaccharide groups, with 10 mice per group. METHODS: Mice in the blank control group were subcutaneously injected with 0.5 mL/20 g normal saline into the nape of the neck each day, while the remaining mice were subcutaneously injected with 5% D-galactose saline solution (0.5 mL/20 g) in the nape for 40 days to induce a brain aging model. On day 11, mice in the high and low dosage Schisandra chinensis polysaccharide groups were intragastrically infused with 20 mg/mL and 10 mg/mL Schisandra chinensis polysaccharide solution (0.2 mL/10 g), respectively. Mice from the Kangnaoling group were intragastrically infused with 35 mg/mL Kangnaoling suspension (0.2 mL/10 g), and the mice in the

  11. [Effect of occupational stress on neurotransmitters in petroleum workers].

    Science.gov (United States)

    Jiang, Yu; Lian, Yulong; Tao, Ning; Ge, Hua; Liu, Jiwen

    2015-09-01

    To explore the effects of occupational stress on neurotransmitters in petroleum workers. 178 petroleum workers with the length of service ≥ 1 year were recruited to the subjects by the questionnaire of OSI-R. The levels of 5-hydroxy tryptamine (5-HT), norepinephrine (NE), neuropeptide Y (NPY) and substance P (SP) in serum were measured. The subjects were classified into 3 groups according to the scores of occupational stress. The levels of 5-HT NE and SP for over 15 working years were higher than those of less than 15 years (P occupational stress degree groups, multiple comparison showed high. occupational stress group was higher than those of low occupational stress group. Multivariate correlation analysis showed that the occupational stress and sleep quality component scores correlated positively with the 5-HT, NE and SP (P Occupational stress in petroleum workers is correlated with serum monoamine and neuropeptides neurotransmitters, and it may affect serum levels of monoamine and neuropeptides neurotransmitters.

  12. Changes in brain monoamine levels and monoamine oxidase activity in the catfish, Clarias batrachus, during chronic treatments with mercurials

    International Nuclear Information System (INIS)

    Kirubagaran, R.; Joy, K.P.

    1990-01-01

    In mammals, the central nervous system is the primary target for CH 3 Hg poisoning which is clinically known as Minamata disease. Hg is a widely recognized neurotoxin and has been reported to impair brain monoamine neurotransmitter metabolism. Reports on effects of Hg on brain monoamine activity in fishes are scarce. In the present study, therefore, changes in the brain monoamine levels and the degradation enzyme, monoamine oxidase (MAO), are described in the catfish, Clarias batrachus, exposed to sublethal concentrations of mercuric chloride (HgCl 2 -inorganic Hg), methylmercuric chloride (CH 3 HgCl-organic Hg), and a commercial mercurial fungicide formulation, emisan 6 (methoxyethyl Hg-organic Hg) for 45, 90 and 180 d during gonadal recrudescence. These intervals correspond to late preparatory, prespawning and spawning phases, respectively, of the annual reproductive cycle of the catfish

  13. An autoradiographic method of mapping the distribution and density of monoamine neurons in mouse brain

    International Nuclear Information System (INIS)

    Masuoka, D.T.; Alcaraz, A.F.

    1975-01-01

    A combined in vitro uptake and autoradiographic procedure as an important complement to the histochemical fluorescence method is described. Slabs of fresh mouse brain were incubated with 14 C-NE, 14 C-DA or 14 C-5-HT, freeze-dried, and placed against X-ray film for autoradiography. Catecholamine nerve terminals were labeled by in vitro incubation with 14 C-NE or 14 C-DA. Dopaminergic terminals were labeled by 14 C-NE incubation preceded by desipramine (to block uptake into NE terminals). With 14 C-5-HT incubation, the uptake pattern indicated the possibility that 5-HT nerve terminals were being labeled. Advantages of this method are that it allows the visualization of overall density and distribution of selected monoamine nerve terminals or uptake sites of other putative neurotransmitters in whole coronal or sagittal sections, so that data are obtained from many areas of brain or spinal cord rather than in only those areas preselected for microscopic viewing

  14. Chronic scream sound exposure alters memory and monoamine levels in female rat brain.

    Science.gov (United States)

    Hu, Lili; Zhao, Xiaoge; Yang, Juan; Wang, Lumin; Yang, Yang; Song, Tusheng; Huang, Chen

    2014-10-01

    Chronic scream sound alters the cognitive performance of male rats and their brain monoamine levels, these stress-induced alterations are sexually dimorphic. To determine the effects of sound stress on female rats, we examined their serum corticosterone levels and their adrenal, splenic, and thymic weights, their cognitive performance and the levels of monoamine neurotransmitters and their metabolites in the brain. Adult female Sprague-Dawley rats, with and without exposure to scream sound (4h/day for 21 day) were tested for spatial learning and memory using a Morris water maze. Stress decreased serum corticosterone levels, as well as splenic and adrenal weight. It also impaired spatial memory but did not affect the learning ability. Monoamines and metabolites were measured in the prefrontal cortex (PFC), striatum, hypothalamus, and hippocampus. The dopamine (DA) levels in the PFC decreased but the homovanillic acid/DA ratio increased. The decreased DA and the increased 5-hydroxyindoleacetic acid (5-HIAA) levels were observed in the striatum. Only the 5-HIAA level increased in the hypothalamus. In the hippocampus, stress did not affect the levels of monoamines and metabolites. The results suggest that scream sound stress influences most physiologic parameters, memory, and the levels of monoamine neurotransmitter and their metabolites in female rats. Copyright © 2014. Published by Elsevier Inc.

  15. A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system.

    Directory of Open Access Journals (Sweden)

    Rafael Romero-Calderón

    2008-11-01

    Full Text Available Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.

  16. Effect of Alkaloids Isolated from Phyllodium pulchellum on Monoamine Levels and Monoamine Oxidase Activity in Rat Brain.

    Science.gov (United States)

    Cai, Lu; Wang, Chao; Huo, Xiao-Kui; Dong, Pei-Pei; Zhang, Bao-Jing; Zhang, Hou-Li; Huang, Shan-Shan; Zhang, Bo; Yu, Sheng-Ming; Zhong, Ming; Ma, Xiao-Chi

    2016-01-01

    Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or β-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 μg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic.

  17. The levels of monoamine neurotransmitters and measures of mental and emotional health in HCV patients treated with ledipasvir (LDV) and sofosbuvir (SOF) with or without ribavirin (RBV).

    Science.gov (United States)

    Golabi, Pegah; Elsheikh, Elzafir; Karrar, Azza; Estep, James M; Younossi, Issah; Stepanova, Maria; Gerber, Lynn; Younossi, Zobair M

    2016-11-01

    Mental and emotional health (MEH) impairment is commonly encountered in hepatitis C patients. Although the exact mechanism remains unknown, alterations in neurotransmitter and cytokine levels maybe associated with hepatitis C virus (HCV)-related MEH issues.The aim of the study was to assess association of serum biomarkers with self-reports of MEH in HCV patients before treatment and after achieving sustained virologic response (SVR).The HCV genotype-1-infected patients who achieved SVR at 12 weeks after treatment with ledipasvir (LDV)/sofosbuvir (SOF) ± ribavirin (RBV) were selected. Frozen serum samples from baseline, end of treatment (EOT), and posttreatment week 4 (PTW4) were used to assay 16 cytokines and monoamine neurotransmitters. Validated self-reports were used to assess MEH.Hundred patients were evaluated. Mean age was 53 years (57% male, 86% white). Compared with baseline, emotional well-being and emotional health significantly increased by EOT, and role emotional, emotional well-being, and emotional health significantly increased at PTW4 in the RBV-containing arm (P neurotransmitters and cytokines were found to be independent predictors of MEH scores in multiple regression analysis.Cytokine and neurotransmitter changes are associated with mental and emotional health. Patient-reported outcome scores change during and after treatment.

  18. Monoamines stimulate sex reversal in the saddleback wrasse.

    Science.gov (United States)

    Larson, Earl T; Norris, David O; Gordon Grau, E; Summers, Cliff H

    2003-02-15

    Monoamine neurotransmitters (norepinephrine, dopamine, and serotonin) play an important role in reproduction and sexual behavior throughout the vertebrates. They are the first endogenous chemical signals in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. In teleosts with behavioral sex determination, much is known about behavioral cues that induce sex reversal. The cues are social, processed via the visual system and depend on the ratio of females to males in the population. The mechanisms by which these external behavioral cues are converted to an internal chemical regulatory process are largely unknown. The protogynous Hawaiian saddleback wrasse, Thalassoma duperrey, was used to investigate the biological pathway mediating the conversion of a social cue into neuroendocrine events regulating sex reversal. Because monoamines play an important role in the regulation of the HPG axis, they were selected as likely candidates for such a conversion. To determine if monoamines could affect sex reversal, drugs affecting monoamines were used in an attempt to either induce sex reversal under non-permissive conditions, or prevent sex reversal under permissive conditions. Increasing norepinephrine or blocking dopamine or serotonin lead to sex reversal in experimental animals under non-permissive conditions. Increasing serotonin blocked sex reversal under permissive conditions, while blocking dopamine or norepinephrine retarded the process. The results presented here demonstrate that monoamines contribute significantly to the control sex reversal. Norepinephrine stimulates initiation and completion of gonadal sex of reversal as well as color change perhaps directly via its effects on the HPG axis. Dopamine exercises inhibitory action on the initiation of sex reversal while 5-HT inhibits both initiation and completion of sex reversal. The serotonergic system appears to be an integral part of the pathway mediating the conversion of a social cue into a

  19. Relationship of neurotransmitters to the symptoms of major depressive disorder.

    Science.gov (United States)

    Nutt, David J

    2008-01-01

    A relationship appears to exist between the 3 main monoamine neurotransmitters in the brain (i.e., dopamine, norepinephrine, and serotonin) and specific symptoms of major depressive disorder. Specific symptoms are associated with the increase or decrease of specific neurotransmitters, which suggests that specific symptoms of depression could be assigned to specific neurochemical mechanisms, and subsequently specific antidepressant drugs could target symptom-specific neurotransmitters. Research on electroconvulsive therapy has supported a correlation between neurotransmitters and depression symptoms. A 2-dimensional model of neurotransmitter functions is discussed that describes depression as a mixture of 2 separate components--negative affect and the loss of positive affect--that can be considered in relation to the 3 amine neurotransmitters. Owing to the different methods of action of available antidepressant agents and the depression symptoms thought to be associated with dopamine, serotonin, and norepinephrine, current treatments can be targeted toward patients' specific symptoms.

  20. Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization.

    Science.gov (United States)

    Aragon, Alvaro; Legradi, Jessica; Ballesteros-Gómez, Ana; Legler, Juliette; van Velzen, Martin; de Boer, Jacob; Leonards, Pim

    2017-04-01

    A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r 2  > 0.9976) in the range of 1-100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5-9.3% for intra-day and 4.8-12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4-0.8 and 1.2-2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development. Graphical abstract ᅟ.

  1. Cognitive Function and Monoamine Neurotransmission in Schizophrenia: Evidence From Positron Emission Tomography Studies

    Directory of Open Access Journals (Sweden)

    Harumasa Takano

    2018-05-01

    Full Text Available Positron emission tomography (PET is a non-invasive imaging technique used to assess various brain functions, including cerebral blood flow, glucose metabolism, and neurotransmission, in the living human brain. In particular, neurotransmission mediated by the monoamine neurotransmitters dopamine, serotonin, and norepinephrine, has been extensively examined using PET probes, which specifically bind to the monoamine receptors and transporters. This useful tool has revealed the pathophysiology of various psychiatric disorders, including schizophrenia, and the mechanisms of action of psychotropic drugs. Because monoamines are implicated in various cognitive processes such as memory and executive functions, some PET studies have directly investigated the associations between monoamine neurotransmission and cognitive functions in healthy individuals and patients with psychiatric disorders. In this mini review, I discuss the findings of PET studies that investigated monoamine neurotransmission under resting conditions, specifically focusing on cognitive functions in patients with schizophrenia. With regard to the dopaminergic system, some studies have examined the association of dopamine D1 and D2/D3 receptors, dopamine transporters, and dopamine synthesis capacity with various cognitive functions in schizophrenia. With regard to the serotonergic system, 5-HT1A and 5-HT2A receptors have been studied in the context of cognitive functions in schizophrenia. Although relatively few PET studies have examined cognitive functions in patients with psychiatric disorders, these approaches can provide useful information on enhancing cognitive functions by administering drugs that modulate monoamine transmission. Moreover, another paradigm of techniques such as those exploring the release of neurotransmitters and further development of radiotracers for novel targets are warranted.

  2. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model.

    Science.gov (United States)

    Arafa, Nadia M S; Marie, Mohamed-Assem S; AlAzimi, Sara Abdullah Mubarak

    2016-10-25

    The rapid economic development in the Arabian Gulf has resulted in lifestyle changes that have increased the prevalence of obesity and type 2 diabetes, with the greatest increases observed in Kuwait. Dyslipidemia and diabetes are risk factors for disruptions in cortical neurotransmitter homeostasis. This study investigated the effect of the antidiabetic medications canagliflozin (CAN) and metformin (MET) on the levels of cortical neurotransmitters in a diabetic rat model. The rats were assigned to the control (C) group, the diabetic group that did not receive treatment (D) or the diabetic group treated with either CAN (10 mg/kg) or MET (100 mg/kg) for 2 or 4 weeks. Blood and urine glucose levels and cortical acetylcholinesterase (AChE) activity were assayed, and amino acid and monoamine levels were measured using HPLC. The diabetic group exhibited a significant increase in AChE activity and a decrease in monoamine and amino acid neurotransmitter levels. In the CAN group, AChE was significantly lower than that in the D and D + MET groups after 2 weeks of treatment. In addition, a significant increase in some cortical monoamines and amino acids was observed in the D + MET and D + CAN groups compared with the D group. Histopathological analysis revealed the presence of severe focal hemorrhage, neuronal degeneration, and cerebral blood vessel congestion, with gliosis in the cerebrum of rats in the D group. The CAN-treated group exhibited severe cerebral blood vessel congestion after 2 weeks of treatment and focal gliosis in the cerebrum after 4 weeks of treatment. Focal gliosis in the cerebrum of rats in the MET-treated group was observed after 2 and 4 weeks of treatment. We conclude that the effect of CAN and MET on neurotransmitters is potentially mediated by their antihyperglycemic and antihyperlipidemic effects. In addition, the effects of CAN on neurotransmitters might be associated with its receptor activity, and the effect of MET on neurotransmitters

  3. Involvement of the Cerebral Monoamine Neurotransmitters System in Antidepressant-Like Effects of a Chinese Herbal Decoction, Baihe Dihuang Tang, in Mice Model

    Directory of Open Access Journals (Sweden)

    Meng-Li Chen

    2012-01-01

    Full Text Available Baihe Dihuang Tang (BDT is a renowned Chinese herbal formula which is commonly used for treating patients with mental instability, absentmindedness, insomnia, deficient dysphoria, and other psychological diseases. These major symptoms closely associated with the depressive disorders. BDT was widely popular use for treating emotion-thought disorders for many years in China. In the present study, the antidepressant-like effect of BDT in mice was investigated by using the forced swim test (FST and the tail suspension test (TST. The underlying mechanism was explored by determining the effect of BDT on the level of cerebral monoamine neurotransmitters. BDT (9 and 18 g/kg, p.o. for 14 days administration significantly reduced the immobility time in both the FST and the TST without changing locomotion in the open field-test (OFT. Moreover, BDT treatment at the dose of 18 g/kg inhibited reserpine-induced ptosis. Meanwhile, BDT enhanced 5-HT and NA levels in mouse cerebrum as well as decreased the ratio of 5-HT compared to its metabolite, 5-HIAA, (turnover, 5-HIAA/5-HT after TST. The results demonstrated that the antidepressant-like effect of BDT is mediated, at least partially, via the central monoaminergic neurotransmitter system.

  4. MRI sensing of neurotransmitters with a crown ether appended Gd(3+) complex.

    Science.gov (United States)

    Oukhatar, Fatima; Même, Sandra; Même, William; Szeremeta, Frédéric; Logothetis, Nikos K; Angelovski, Goran; Tóth, Éva

    2015-02-18

    Molecular magnetic resonance imaging (MRI) approaches that detect biomarkers associated with neural activity would allow more direct observation of brain function than current functional MRI based on blood-oxygen-level-dependent contrast. Our objective was to create a synthetic molecular platform with appropriate recognition moieties for zwitterionic neurotransmitters that generate an MR signal change upon neurotransmitter binding. The gadolinium complex (GdL) we report offers ditopic binding for zwitterionic amino acid neurotransmitters, via interactions (i) between the positively charged and coordinatively unsaturated metal center and the carboxylate function and (ii) between a triazacrown ether and the amine group of the neurotransmitters. GdL discriminates zwitterionic neurotransmitters from monoamines. Neurotransmitter binding leads to a remarkable relaxivity change, related to a decrease in hydration number. GdL was successfully used to monitor neural activity in ex vivo mouse brain slices by MRI.

  5. Phenyl Ring-Substituted Lobelane Analogs: Inhibition of [3H]Dopamine Uptake at the Vesicular Monoamine Transporter-2

    OpenAIRE

    Nickell, Justin R.; Zheng, Guangrong; Deaciuc, Agripina G.; Crooks, Peter A.; Dwoskin, Linda P.

    2011-01-01

    Lobeline attenuates the behavioral effects of methamphetamine via inhibition of the vesicular monoamine transporter (VMAT2). To increase selectivity for VMAT2, chemically defunctionalized lobeline analogs, including lobelane, were designed to eliminate nicotinic acetylcholine receptor affinity. The current study evaluated the ability of lobelane analogs to inhibit [3H]dihydrotetrabenazine (DTBZ) binding to VMAT2 and [3H]dopamine (DA) uptake into isolated synaptic vesicles and determined the m...

  6. [Study on psychoprophylaxis and monoamines neurotransmitter of patients with burning mouth syndrome].

    Science.gov (United States)

    Lin, M; Li, B; Gu, F; Yue, Y; Huang, Y; Chen, Q; Zeng, G; Xia, J

    2001-12-01

    Burning mouth syndrome (BMS) is a chronic ache disease, usually occurring in middle aged and old women. This study sought to understand the psychopathologic aspect and monoamines neurotransmitters in the plasma of the patients with BMS. Thirty cases were selected (26 females, 4 males); 30 normal control subjects were similar to the BMS cases on age and sex. All subjects were required to complete the Eysenck personality questionnaire (EPQ), and the Self-report Symptom Inventory, Symptom Check List-90 (SCL-90) questionnaire. In case a subject's L (lie) score exceeded 50, she (he) would be removed from the test. 2 ml of blood was drawn from the subject under restine conditions with a fast in the morning to examine norepinephrine and epinephrine contents by high efficient liquid chromatography. Chi-square test, analysis of variance and t'-test were performed. The BMS group had higher scores of nervousness (N) and poikilergasia (P) and lower score of extro/introversion (E) as compared with the control (P < 0.05). The personality types in BMS group were focused on introversion and instability, but in the control group the types were focused on extroversion and stability (P < 0.05). The scores of 9 emotional factors of BMS group were significantly higher than those of the control group (P < 0.05), which indicated that the BMS patients had suffered from serial psychic disorders. The level of plasma norepinephrine in the BMS patients was higher than that of the control (P < 0.01). The personality of BMS patients raised body response to harmful stimulations, and obvious psychic disorders in the patient may cause the functional disorders in central and sympathetic nervous systems, which may be associated with BMS' occurrence.

  7. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint.

    Science.gov (United States)

    McNeal, Neal; Anderson, Eden M; Moenk, Deirdre; Trahanas, Diane; Matuszewich, Leslie; Grippo, Angela J

    2018-04-01

    Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.

  8. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes

    NARCIS (Netherlands)

    Lenders, J. W.; Eisenhofer, G.; Abeling, N. G.; Berger, W.; Murphy, D. L.; Konings, C. H.; Wagemakers, L. M.; Kopin, I. J.; Karoum, F.; van Gennip, A. H.; Brunner, H. G.

    1996-01-01

    Monoamine oxidase (MAO) exists as two isoenzymes and plays a central role in the metabolism of monoamine neurotransmitters. In this study we compared the neurochemical phenotypes of previously described subjects with genetically determined selective lack of MAO-A or a lack of both MAO-A and MAO-B

  9. Characterization of taurine binding, uptake, and release in the rat hypothalamus

    International Nuclear Information System (INIS)

    Hanretta, A.T.

    1985-01-01

    The neurotransmitter criteria of specific receptors, inactivation, and release were experimentally examined for taurine in the hypothalamus. Specific membrane binding and synaptosomal uptake of taurine both displayed high affinity and low affinity systems. The neurotransmitter criterion of release was studied in superfused synaptosomes. Exposure of synaptosomes which had been preloaded with a concentration of [ 3 H]taurine in the high affinity uptake range (1.5 μM) to either 56 mM K + or 100 μM veratridine evoked a Ca 2+ -independent release. Exposure of synaptosomes which had been preloaded with a concentration of [ 3 H]taurine in the low affinity uptake range (2 mM) to 56 mM K + induced a Ca 2+ -independent release, whereas 100 + M veratridine did not, either in the presence or absence of Ca 2+ . Based on these results, as well as other observations, a model is proposed in which the high affinity uptake system is located on neuronal membranes and the low affinity uptake system is located on glial membranes. The mechanisms of binding, uptake, and release in relation to the cellular location of each are discussed. We conclude that the neurotransmitter criterion of activation by re-uptake is satisfied for taurine in the hypothalamus. However, the failure to demonstrate both a specific taurine receptor site and a Ca 2+ -dependent evoked release, necessitates that we conclude that taurine appears not to function as a hypothalamic neurotransmitter, at least not in the classical sense

  10. Neurotransmitter properties of the newborn human retina

    International Nuclear Information System (INIS)

    Hollyfield, J.G.; Frederick, J.M.; Rayborn, M.E.

    1983-01-01

    Human retinal tissue from a newborn was examined autoradiographically for the presence of high-affinity uptake and localization of the following putative neurotransmitters: dopamine, glycine, GABA, aspartate, and glutamate. In addition, the dopamine content of this newborn retina was measured by high pressure liquid chromatography. Our study reveals that specific uptake mechanisms for 3 H-glycine, 3 H-dopamine, and 3 H-GABA are present at birth. However, the number and distribution of cells labeled with each of these 3 H-transmitters are not identical to those observed in adult human retinas. Furthermore, the amount of endogenous dopamine in the newborn retina is approximately 1/20 the adult level. Photoreceptor-specific uptake of 3 H-glutamate and 3 H-aspartate are not observed. These findings indicate that, while some neurotransmitter-specific properties are present at birth, significant maturation of neurotransmitter systems occurs postnatally

  11. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    Science.gov (United States)

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  12. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    Directory of Open Access Journals (Sweden)

    Joeri eVan Liefferinge

    2013-08-01

    Full Text Available The vesicular neurotransmitter transporters (VNTs are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3, the vesicular excitatory amino acid transporter (VEAT, the vesicular nucleotide transporter (VNUT, vesicular monoamine transporters (VMAT1/2, the vesicular acetylcholine transporter (VAChT and the vesicular γ-aminobutyric acid (GABA transporter (VGAT in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.

  13. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    Science.gov (United States)

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Determination of monoamine neurotransmitters in human urine by carrier-mediated liquid-phase microextraction based on solidification of stripping phase.

    Science.gov (United States)

    Jiang, Liwei; Chen, Yibang; Chen, Yejun; Ma, Ming; Tan, Yueming; Tang, Hao; Chen, Bo

    2015-11-01

    A novel method was developed for the analysis of monoamine neurotransmitters (MNTs) in human urine by carrier-mediated liquid-phase microextraction based on solidification of stripping phase method (CM-LPME-SSP) coupled with high performance liquid chromatography-electrochemical detector (HPLC-ECD). By adding an appropriate carrier in organic phase, simultaneous extraction of hydrophilic analytes, MNTs, with high enrichment factors (22.6-36.1 folds) and excellent sample cleanup was achieved. A new strategy, solidifying the aqueous stripping phase in the back-extraction process, was developed to facilitate the collection of the stripping phase as small as a few microliters. Combined with HPLC-ECD analysis, the linear ranges of the established method were 0.015-2.0 μg/mL for NE, E, DA, and 0.020-2.0 μg/mL for 5-HT. The limits of detection and quantification were in the range of 5.5-10.8 ng/mL and 15-20 ng/mL, respectively. The relative recoveries were in the range of 87-108%, with intraday and interday relative standard deviations lower than 13%. This method was successfully applied to analysis of MNTs in real urine. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Atypical Neurotransmitters and the Neurobiology of Depression.

    Science.gov (United States)

    Joca, Samia Regiane; Moreira, Fabricio Araujo; Wegener, Gregers

    2015-01-01

    Since the first report that the mechanism of action of antidepressants involves the facilitation of monoaminergic neurotransmission in the brain in the 1960s, the leading hypothesis about the neurobiology of depression has been the so called "monoaminergic hypothesis". However, a growing body of evidence from the last two decades also supports important involvement of non-monoaminergic mechanisms in the neurobiology of depression and antidepressant action. The discovery of nitric oxide (NO) and endocannabinoid signaling in the brain during the 1990s challenged the wellestablished criteria of classical neurotransmission. These transmitters are synthesized and released on demand by the postsynaptic neurons, and may act as a retrograde messenger on the presynaptic terminal, modulating neurotransmitter release. These unconventional signaling mechanisms and the important role as neural messengers have classified NO and endocannabinoids as atypical neurotransmitters. They are able to modulate neural signaling mediated by the main conventional neurotransmitters systems in the brain, including the monoaminergic, glutamatergic and GABAergic signaling systems. This review aims at discussing the fundamental aspects of NO- and endocannabinoid-mediated signaling in the brain, and how they can be related to the neurobiology of depression. Both preclinical and clinical evidence supporting the involvement of these atypical neurotransmitters in the neurobiology of depression, and in the antidepressant effects are presented here. The evidence is discussed on basis of their ability to modulate different neurotransmitter systems in the brain, including monoaminergic and glutamatergic ones. A better comprehension of NO and endocannabinoid signaling mechanisms in the neurobiology depression could provide new avenues for the development of novel non-monoamine based antidepressants.

  16. Porters and neurotransmitter transporters

    NARCIS (Netherlands)

    Nelson, Nathan; Lill, H

    1994-01-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma

  17. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  18. Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors

    Science.gov (United States)

    Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.

    2018-03-01

    Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

  19. Analysis of amino acid and monoamine neurotransmitters and their metabolites in rat urine of Alzheimer's disease using in situ ultrasound-assisted derivatization dispersive liquid-liquid microextraction with UHPLC-MS/MS.

    Science.gov (United States)

    Zhao, Xian-En; He, Yongrui; Li, Meng; Chen, Guang; Wei, Na; Wang, Xiao; Sun, Jing; Zhu, Shuyun; You, Jinmao

    2017-02-20

    Neurotransmitters (NTs) may play an important role in neurodegenerative disorders such as Alzheimer's disease (AD). In order to investigate the potential links, a new simple, fast, accurate and sensitive analytical method, based on in situ ultrasound-assisted derivatization dispersive liquid-liquid microextraction (in situ UA-DDLLME) coupled with ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), has been developed and validated. The quantitation of amino acid neurotransmitters (AANTs) and monoamine neurotransmitters (MANTs) in urine of AD rats were performed in this work. The in situ UA-DDLLME procedure involved the rapid injection of the mixture of low toxic 4-bromoanisole (extractant) and acetonitrile (dispersant), which containing the new designed and synthesized 4'-carbonyl chloride rosamine (CCR) as derivatization reagent, into the aqueous phase of real sample and buffer. Under the selected conditions, the derivatization and microextraction of analytes were simultaneously completed within 1min. Good linearity for each analyte (R>0.992) was observed with low limit of detections (LODs, S/N>3). Moreover, the proposed method was compared with direct detection or other reported methods, and the results showed that low matrix effects and good recoveries results were obtained in this work. Taken together, in situ UA-DDLLME coupled with UHPLC-MS/MS analysis was demonstrated to be a good method for sensitive, accurate and simultaneous monitoring of AANTs and MANTs. This method would be expected to be highly useful in AD diseases' clinical diagnostics and may have potential value in monitoring the efficacy of treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. MultiSimplex optimization of chromatographic separation and dansyl derivatization conditions in the ultra performance liquid chromatography-tandem mass spectrometry analysis of risperidone, 9-hydroxyrisperidone, monoamine and amino acid neurotransmitters in human urine.

    Science.gov (United States)

    Cai, Hua-Lin; Zhu, Rong-Hua; Li, Huan-De; Zhang, Jun; Li, Lan-Fang

    2011-07-01

    A pre-column dansylated ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of risperidone (RIP), 9-hydroxyrisperidone (9-OH-RIP), monoamine and amino acid neurotransmitters in human urine was developed with the aim of providing data on how neurotransmitters may influence each other or change simultaneously in response to risperidone treatment. MultiSimplex based on the simplex algorithm and the fuzzy set theory was applied to the optimization of chromatographic separation and dansyl derivatization conditions during method development. This method exhibited excellent linearity for all the analytes with regression coefficients higher than 0.997. The lower limit of quantification (LLOQ) values for 9-OH-RIP and RIP were 0.11 and 0.06 ng/ml, respectively, and for neurotrasmitters ranged from 0.31 to 12.8 nM. The mean accuracy ranged from 94.7% to 108.5%. The mean recovery varied between 81.6% and 97.5%. All the RSD of precision and stability were below 9.7%. Finally, the optimized method was applied to analyze the first morning urine samples of schizophrenic patients treated with risperidone and healthy volunteers. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Selective enrichment and determination of monoamine neurotransmitters by CU(II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection.

    Science.gov (United States)

    He, Maofang; Wang, Chaozhan; Wei, Yinmao

    2016-01-15

    In this paper, iminodiacetic acid-Cu(II) functionalized Fe3O4@SiO2 magnetic nanoparticles were prepared and used as new adsorbents for magnetic solid phase extraction (MSPE) of six monoamine neurotransmitters (MNTs) from rabbit plasma. The selective enrichment of MNTs at pH 5.0 was motivated by the specific coordination interaction between amino groups of MNTs and the immobilized Cu(II). The employed weak acidic extraction condition avoided the oxidation of MNTs, and thus facilitated operation and ensured higher recoveries. Under optimal conditions, the recoveries of six MNTs from rabbit plasma were in the range of 83.9-109.4%, with RSD of 2.0-10.0%. When coupled the Cu(II) immobilized MSPE with high-performance liquid chromatography-fluorescence detection, the method exhibited relatively lower detection limits than the previously reported methods, and the method was successfully used to determine the endogenous MNTs in rabbit plasma. The proposed method has potential application for the determination of MNTs in biological samples. Also, the utilization of coordination interaction to improve the selectivity might open another way to selectively enrich small alkaloids from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression

    Science.gov (United States)

    Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L.; Olenyuk, Bogdan Z.; Chen, Thomas C.; Hofman, Florence M.; Shih, Jean C.

    2016-01-01

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis. PMID:26871599

  3. Simultaneous determination of amino acid and monoamine neurotransmitters in PC12 cells and rats models of Parkinson's disease using a sensitizing derivatization reagent by UHPLC-MS/MS.

    Science.gov (United States)

    Zhao, Xian-En; Zhu, Shuyun; Yang, Hongmei; You, Jinmao; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2015-07-15

    Multi-analytes simultaneous monitoring of amino acid and monoamine neurotransmitters (NTs) has important scientific significance for their related pathology, physiology and drug screening. In this work, in virtue of a mass spectrometry sensitizing reagent 10-ethyl-acridone-3-sulfonyl chloride (EASC) as derivatization reagent, an Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of six amino acid NTs, two monoamine ones and its one metabolite. The simple and rapid derivatization reaction was innovatively combined with plasma preparation by using EASC acetonitrile solution as protein precipitant. This interesting combination brought the advantages of speediness, simpleness and high-throughput in a cost-effective way. Under the optimized conditions, LODs (0.004-3.80nM) and LOQs (0.014-13.3nM) of EASC derivatized-NTs were calculated and found to be significantly lower than those of direct UHPLC-MS/MS detection about 11.5-275.0 and 14.4-371.4 times, respectively. Moreover, EASC derivatization significantly improved chromatographic resolution and matrix effect when compared with direct UPLC-MS/MS detection method without derivatization. Meanwhile, it also brought acceptable precision (3.0-13.0%, peak area CVs%), accuracy (86.4-112.9%), recovery (88.3-107.8%) and stability (3.8-8.5%, peak area CVs%) results. This method was successfully applied for the antiparkinsonian effect evaluation of levodopa and Ginsenoside Rg1 using PC12 cells and rats models by measuring multiple NTs. This provided a new method for the NTs related studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Kaempferia parviflora rhizome extract and Myristica fragrans volatile oil increase the levels of monoamine neurotransmitters and impact the proteomic profiles in the rat hippocampus: Mechanistic insights into their neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Waluga Plaingam

    2017-10-01

    Full Text Available Potentially useful in the treatment of neurodegenerative disorders, Kaempferia parviflora and Myristica fragrans have been shown to possess a wide spectrum of neuropharmacological activities and neuroprotective effects in vivo and in vitro. In this study, we determined whether and how K. parviflora ethanolic extract and M. fragrans volatile oil could influence the levels of neurotransmitters and the whole proteomic profile in the hippocampus of Sprague Dawley (SD rats. The effects of K. parviflora and M. fragrans on protein changes were analyzed by two-dimensional gel electrophoresis (2D-gel, and proteins were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS. The target proteins were then confirmed by Western blot. The levels of neurotransmitters were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC. The results showed that K. parviflora, M. fragrans and fluoxetine (the control drug for this study increased serotonin, norepinephrine and dopamine in the rat hippocampus compared to that of the vehicle-treated group. Our proteomic data showed that 37 proteins in the K. parviflora group were up-regulated, while 14 were down-regulated, and 27 proteins in the M. fragrans group were up-regulated, while 16 were down-regulated. In the fluoxetine treatment group, we found 29 proteins up-regulated, whereas 14 proteins were down-regulated. In line with the proteomic data, the levels of GFAP, PDIA3, DPYSL2 and p-DPYSL2 were modified in the SD rat groups treated with K. parviflora, M. fragrans and fluoxetine as confirmed by Western blot. K. parviflora and M. fragrans mediated not only the levels of monoamine neurotransmitters but also the proteomic profiles in the rat hippocampus, thus shedding light on the mechanisms targeting neurodegenerative diseases.

  5. The market dynamics of selective serotonin re-uptake inhibitors: a ...

    African Journals Online (AJOL)

    The market dynamics of selective serotonin re-uptake inhibitors: a private sector study in South Africa. Frasia Oosthuizen, Pariksha Jolene Kondiah, Hawa Bibi Moosa, Siddiqa Naroth, Nabeel Ismail Patel, Divashnee Reddy, Amanda Soobramoney ...

  6. Simultaneous extraction and determination of monoamine neurotransmitters in human urine for clinical routine testing based on a dual functional solid phase extraction assisted by phenylboronic acid coupled with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Li, Xiaoguang Sunny; Li, Shu; Kellermann, Gottfried

    2017-04-01

    The major monoamine neurotransmitters, serotonin (5-HT) and catecholamines (i.e., norepinephrine (NE), epinephrine (E), and dopamine (DA)), are critical to the nervous system function, and imbalances of the neurotransmitters have been connected to a variety of diseases, making their measurement useful in a clinical setting. A simple, rapid, robust, sensitive, and specific LC-MS/MS method has been developed and validated for the simultaneous quantitation of urinary serotonin and catecholamines with low cost, which is ideal for routine clinical applications. A simple extraction from complex urine was accomplished using tailored solid phase extraction incorporating phenylboronic acid complexation on a 96-well HLB microplate for the sample extraction and resulted in significantly improved throughput, selectivity, and extraction recovery. Compared to 1-10 mL of urine typically used, this method required only 10 μL. A rapid chromatographic elution with a total cycle time of 6 min per sample compared to reported run times of 19-75 min was achieved on a PFP column. The sensitivity of l and 2 ng mL -1 for the detection of low abundant E and NE combined with the high coverage of 1024 ng mL -1 for DA enabled the multi-analyte detection of these biogenic amines in a single run. Good linearity (2.0-512, 1.0-512, 4.0-1024, and 4.0-1024 ng mL -1 for NE, E, DA, and 5-HT, respectively), accuracy (87.6-104.0%), precision (≤8.0%), extraction recovery (69.6-103.7%), and matrix effect (87.1-113.1% for catecholamines and 63.6-71.4% for 5-HT) were obtained. No autosampler carryover was observed. The analytes were stable for 5 days at 20 °C, 14 days at 4 °C, and 30 days at -20 °C and five freeze-thaw cycles. The easy sample preparation, rapid LC, and multi-analyte MS detection allow two 96-well plates of samples to be extracted within 2 h and analyzed on an LC-MS/MS system within 24 h. The applicability and reliability of the assay were demonstrated by assessment

  7. Fractal analysis of striatal dopamine re-uptake sites

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Bergstroem, K.A.; Tiihonen, J.; Raesaenen, P.; Karhu, J.

    1997-01-01

    Spatial variation in regional blood flow, metabolism and receptor density within the brain and in other organs is measurable even with a low spatial resolution technique such as emission tomography. It has been previously shown that the observed variance increases with increasing number of subregions in the organ/tissue studied. This resolution-dependent variance can be described by fractal analysis. We studied striatal dopamine re-uptake sites in 39 healthy volunteers with high-resolution single-photon emission tomography using iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane ([ 123 I]β-CIT). The mean fractal dimension was 1.15±0.07. The results indicate that regional striatal dopamine re-uptake sites involve considerable spatial heterogeneity which is higher than the uniform density (dimension=1.00) but much lower than complete randomness (dimension=1.50). There was a gender difference, with females having a higher heterogeneity in both the left and the right striatum. In addition, we found striatal asymmetry (left-to-right heterogeneity ratio of 1.19±0.15; P<0.001), suggesting functional hemispheric lateralization consistent with the control of motor behaviour and integrative functions. (orig.). With 5 figs., 1 tab

  8. Fractal analysis of striatal dopamine re-uptake sites

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T.; Bergstroem, K.A. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Tiihonen, J.; Raesaenen, P. [Department of Forensic Psychiatry, University of Kuopio and Niuvanniemi Hospital, Kuopio (Finland); Karhu, J. [Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio (Finland)

    1997-09-01

    Spatial variation in regional blood flow, metabolism and receptor density within the brain and in other organs is measurable even with a low spatial resolution technique such as emission tomography. It has been previously shown that the observed variance increases with increasing number of subregions in the organ/tissue studied. This resolution-dependent variance can be described by fractal analysis. We studied striatal dopamine re-uptake sites in 39 healthy volunteers with high-resolution single-photon emission tomography using iodine-123 labelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ([{sup 123}I]{beta}-CIT). The mean fractal dimension was 1.15{+-}0.07. The results indicate that regional striatal dopamine re-uptake sites involve considerable spatial heterogeneity which is higher than the uniform density (dimension=1.00) but much lower than complete randomness (dimension=1.50). There was a gender difference, with females having a higher heterogeneity in both the left and the right striatum. In addition, we found striatal asymmetry (left-to-right heterogeneity ratio of 1.19{+-}0.15; P<0.001), suggesting functional hemispheric lateralization consistent with the control of motor behaviour and integrative functions. (orig.). With 5 figs., 1 tab.

  9. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  10. Evaluation of Tetrahydrobiopterin Therapy with Large Neutral Amino Acid Supplementation in Phenylketonuria: Effects on Potential Peripheral Biomarkers, Melatonin and Dopamine, for Brain Monoamine Neurotransmitters.

    Directory of Open Access Journals (Sweden)

    Shoji Yano

    Full Text Available Phenylketonuria (PKU is due to a defective hepatic enzyme, phenylalanine (Phe hydroxylase. Transport of the precursor amino acids from blood into the brain for serotonin and dopamine synthesis is reported to be inhibited by high blood Phe concentrations. Deficiencies of serotonin and dopamine are involved in neurocognitive dysfunction in PKU.(1 To evaluate the effects of sapropterin (BH4 and concurrent use of large neutral amino acids (LNAA on the peripheral biomarkers, melatonin and dopamine with the hypothesis they reflect brain serotonin and dopamine metabolism. (2 To evaluate synergistic effects with BH4 and LNAA. (3 To determine the effects of blood Phe concentrations on the peripheral biomarkers concentrations.Nine adults with PKU completed our study consisting of four 4-week phases: (1 LNAA supplementation, (2 Washout, (3 BH4 therapy, and (4 LNAA with BH4 therapy. An overnight protocol measured plasma amino acids, serum melatonin, and 6-sulfatoxymelatonin and dopamine in first void urine after each phase.(1 Three out of nine subjects responded to BH4. A significant increase of serum melatonin levels was observed in BH4 responders with decreased blood Phe concentration. No significant change in melatonin, dopamine or Phe levels was observed with BH4 in the subjects as a whole. (2 Synergistic effects with BH4 and LNAA were observed in serum melatonin in BH4 responders. (3 The relationship between serum melatonin and Phe showed a significant negative slope (p = 0.0005 with a trend toward differing slopes among individual subjects (p = 0.066. There was also a negative association overall between blood Phe and urine 6-sulfatoxymelatonin and dopamine (P = 0.040 and 0.047.Blood Phe concentrations affected peripheral monoamine neurotransmitter biomarker concentrations differently in each individual with PKU. Melatonin levels increased with BH4 therapy only when blood Phe decreased. Monitoring peripheral neurotransmitter metabolites may assist in

  11. The market dynamics of selective serotonin re-uptake inhibitors: a ...

    African Journals Online (AJOL)

    re-uptake inhibitors: a private sector study in South Africa. Afri Health ... the public and private sectors to reduce medicine costs, and increase ... Fig 1: Comparison between the market volume of generics vs. originators for the period June 2009 ...

  12. Radiotracers for per studies of neurotransmitter binding sites: Design considerations

    International Nuclear Information System (INIS)

    Kilbourn, M.R.

    1991-01-01

    Neurotransmitter binding sites, such as receptors, neuronal uptake systems, and vesicular uptake systems, are important targets for new radiopharmaceutical design. Selection of potential radioligands can be guided by in vitro laboratory data including such characteristics as selectivity and affinity for specific binding sites. However, development of PET radiotracers for use in vivo must include considerations of in vivo pharmacokinetics and metabolism. Introduction of potential radioligands is further narrowed by the demands of the radiochemical synthesis, which must produce radioligands of high chemical and radiochemical purity and of high specific activity. This paper will review examples of previous and current attempts by radiopharmaceutical chemists to meet these demands for new positron emitter-labeled radioligands for PET studies of a wide array of neurotransmitter binding sites

  13. General principles of neurotransmitter detection. Problems and application to catecholamines

    International Nuclear Information System (INIS)

    Taxi, Jacques

    1976-01-01

    The use of radioautography for neurotransmitter studies requires two preliminary conditions (in addition to the availability of tritiated molecules): there must be a selective uptake of the neurotransmitter itself, or of a related substance (precursor or false transmitter); the labelled substance must be preserved in situ by fixation and must not be removed by further treatments. Since the putative neurotransmitters are generally small, hydrosoluble molecules, they can be maintained in situ only if they are bound to structure made insoluble by the fixative. The technical indications are summarized so that the successive stages of experimentation can be considered in an attempt to answer the major questions posed by the experimenter

  14. The use of monoamine pharmacological agents in the treatment of sexual dysfunction: evidence in the literature.

    Science.gov (United States)

    Moll, Jennifer L; Brown, Candace S

    2011-04-01

    The monoamine neurotransmitters serotonin, dopamine, and norepinephrine play an important role in many medical and psychological conditions, including sexual responsiveness and behavior. Pharmacological agents that modulate monoamines may help alleviate sexual dysfunction. To provide an overview of pharmacological agents that modulate monoamines and their use in the treatment of sexual dysfunction. EMBASE and PubMed search for articles published between 1950 and 2010 using key words "sexual dysfunction,"monoamines,"monoaminergic receptors," and "generic names for pharmacological agents." To assess the literature evaluating the efficacy of monoamine pharmacologic agents used in the treatment of sexual dysfunction. The literature primarily cites the use of monoaminergic agents to treat sexual side effects from serotonergic reuptake inhibitors (SSRIs), with bupropion, buspirone and ropinirole providing the most convincing evidence. Controlled trials have shown that bupropion improves overall sexual dysfunction, but not frequency of sexual activity in depressed and nondepressed patients. Nefazodone and apomorphine have been used to treat sexual dysfunction, but their use is limited by significant side effect and safety profiles. New research on pharmacologic agents with subtype selectivity at dopaminergic and serotonergic receptors and those that possess dual mechanisms of action are being investigated. There has been tremendous progress over the past 50 years in understanding the role of monoamines in sexual function and the effect of pharmacologic agents which stimulate or antagonize monoaminergic receptors on sexual dysfunction. Nevertheless, large, double-blind, placebo-controlled studies evaluating the efficacy of currently available agents in populations without comorbid disorders are limited, preventing adequate interpretation of data. Continued research on sexual function and specific receptor subtypes will result in the development of more selective

  15. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  16. Direct assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state NMR

    DEFF Research Database (Denmark)

    Erlendsson, Simon; Gotfryd, Kamil; Larsen, Flemming Hofmann

    2017-01-01

    The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been...

  17. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    Science.gov (United States)

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity.

    Science.gov (United States)

    Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L; Campopiano, Rosa; Griguoli, Anna M P; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco

    2017-01-01

    The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson's disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.

  19. Radiopharmaceuticals for neurotransmitter imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jun [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin transporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmaceuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with [{sup 123}I] {beta} -CIT, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, [{sup 123}I]PE2I, [18F]FE-CNT, [{sup 123}I]FP-CIT and [{sup 18}F]FP-CIT were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. [{sup 11}C]McN 5652 was developed for serotonin transporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, [{sup 11}C]AFM and [{sup 11}C]DASB showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuticals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.

  20. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    Science.gov (United States)

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    Science.gov (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  2. Monoamine re-uptake sites in the human brain evaluated in vivo by means of /sup 11/C-nomifensine and positron emission tomography: the effects of age and Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tedroff, J; Aquilonius, S -M; Hartvig, P; Lundqvist, H; Gee, A G; Uhlin, J; Laangstroem, B

    1988-01-01

    Six patients with Parkinson's disease, selected to cover a range of clinical features, and 7 healthy volunteers aged 24-81 years, were examined by positron emission tomography after i.v. injection of racemic /sup 11/C-nomifensine, a catecholamine re-uptake blocking drug. After injection the radiotracer, radioactivity was rapidly distributed to the brain. The highest accumulation of radioactivity was found in areas rich in dopamineric and noradrenergic innervation, such as the striatum and the thalamus. In regions with negible dopaminergic and noradrenergic innervation, such as the cerebellum, radioactivity was lower and evenly distributed. In all investigated brain regions a marked age-related decline in /sup 11/C-nomifensinederived radioactivity relative to the cerebellum was observed in the group of healthy volunteers. Parkinsonian patients did not show such a decline with age. In the group of parkinsonian patients with mainly unilateral involvement, the contralateral putamen exhibited the most pronounced decrease. Only the 3 parkinsonian patients aged 63 and younger showed markedly lower /sup 11/C-nomifensine binding in striatal areas than age-matched healthy volunteers. /sup 11/C-nomifensine seems to be a valuable tool for investigating noradrenergic and dopaminergic re-uptake sites in vivo. Further achievements will most likely be made when the active enantioimer becomes available.

  3. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone.

    Science.gov (United States)

    Lee, Hyun Woo; Ryu, Hyung Won; Kang, Myung-Gyun; Park, Daeui; Oh, Sei-Ryang; Kim, Hoon

    2017-03-01

    Monoamine oxidase (MAO) catalyzes the oxidation of monoamines that act as neurotransmitters. During a target-based screening of natural products using two isoforms of recombinant human MAO-A and MAO-B, purpurin (an anthraquinone derivative) was found to potently and selectively inhibit MAO-A, with an IC 50 value of 2.50μM, and not to inhibit MAO-B. Alizarin (also an anthraquinone) inhibited MAO-A less potently with an IC 50 value of 30.1μM. Furthermore, purpurin was a reversible and competitive inhibitor of MAO-A with a K i value of 0.422μM. A comparison of their chemical structures suggested the 4-hydroxy group of purpurin might play an important role in its inhibition of MAO-A. Molecular docking simulation showed that the binding affinity of purpurin for MAO-A (-40.0kcal/mol) was higher than its affinity for MAO-B (-33.9kcal/mol), and that Ile 207 and Gly 443 of MAO-A were key residues for hydrogen bonding with purpurin. The findings of this study suggest purpurin is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a new potential lead compound for development of novel reversible inhibitors of MAO-A (RIMAs). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson’s Disease Owing Genetic and Anatomical Specificity

    Science.gov (United States)

    Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L.; Campopiano, Rosa; Griguoli, Anna M. P.; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco

    2017-01-01

    The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented. PMID:28458632

  5. Monoamine oxidase and agitation in psychiatric patients.

    Science.gov (United States)

    Nikolac Perkovic, Matea; Svob Strac, Dubravka; Nedic Erjavec, Gordana; Uzun, Suzana; Podobnik, Josip; Kozumplik, Oliver; Vlatkovic, Suzana; Pivac, Nela

    2016-08-01

    Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals.

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Galkin, Maxim; Borysov, Arsenii; Borisova, Tatiana

    2016-03-31

    Nanodiamonds are one of the most perspective nano-sized particles with superb physical and chemical properties, which are mainly composed of carbon sp(3) structures in the core with sp(2) and disorder/defect carbons on the surface. The research team recently demonstrated neuromodulatory properties of carbon nanodots with other than nanodiamonds hybridization types, i.e., sp(2) hybridized graphene islands and diamond-like sp(3) hybridized elements. In this study, neuroactive properties of uncoated nanodiamonds produced by detonation synthesis were assessed basing on their effects on transporter-mediated uptake and the ambient level of excitatory and inhibitory neurotransmitters, glutamate and γ-aminobutyric acid (GABA), in isolated rat brain nerve terminals. It was shown that nanodiamonds in a dose-dependent manner attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake and accumulation of L-[(14)C]glutamate and [(3)H]GABA by nerve terminals and increased the ambient level of these neurotransmitters. Also, nanodiamonds caused a weak reduction in acidification of synaptic vesicles and depolarization of the plasma membrane of nerve terminals. Therefore, despite different types of hybridization in nanodiamonds and carbon dots, they exhibit very similar effects on glutamate and GABA transport in nerve terminals and this common feature of both nanoparticles is presumably associated with their nanoscale size. Observed neuroactive properties of pure nanodiamonds can be used in neurotheranostics for simultaneous labeling/visualization of nerve terminals and modulation of key processes of glutamate- and GABAergic neurotransmission. In comparison with carbon dots, wider medical application involving hypo/hyperthermia, external magnetic fields, and radiolabel techniques can be perspective for nanodiamonds.

  7. Cochlear Damage Affects Neurotransmitter Chemistry in the Central Auditory System

    Directory of Open Access Journals (Sweden)

    Donald Albert Godfrey

    2014-11-01

    Full Text Available Tinnitus, the perception of a monotonous sound not actually present in the environment, affects nearly 20% of the population of the United States. Although there has been great progress in tinnitus research over the past 25 years, the neurochemical basis of tinnitus is still poorly understood. We review current research about the effects of various types of cochlear damage on the neurotransmitter chemistry in the central auditory system and document evidence that different changes in this chemistry can underlie similar behaviorally measured tinnitus symptoms. Most available data have been obtained from rodents following cochlear damage produced by cochlear ablation, loud sound, or ototoxic drugs. Effects on neurotransmitter systems have been measured as changes in neurotransmitter level, synthesis, release, uptake, and receptors. In this review, magnitudes of changes are presented for neurotransmitter-related amino acids, acetylcholine, and serotonin. A variety of effects have been found in these studies that may be related to animal model, survival time, type of cochlear damage, or methodology. The overall impression from the evidence presented is that any imbalance of neurotransmitter-related chemistry could disrupt auditory processing in such a way as to produce tinnitus.

  8. [The interaction between gamma-aminobutyric acid and other related neurotransmitters in depression].

    Science.gov (United States)

    Li, Zhen; An, Shu-Cheng; Li, Jiang-Na

    2014-06-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system (CNS) in mammalian, which involved in several mood disorders such as anxiety, depression and schizophrenia. Nowadays, there are growing evidences showed that the depression is concerned with a deficiency in brain GABA. However, there are numerous studies based on the monoamine hypothesis and glutamatergic dysfunction, while the study on GABA is relatively less and scattered. Our aim is to discuss the relationship between depression and GABA by introducing the role of GABA receptors and the interaction between GABA and 5-hydroxytryptamine, dopamine and glutamic acid. It provides new ideas for further study on the pathogenesis and therapy of depression.

  9. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.

    Science.gov (United States)

    Levite, Mia

    2008-08-01

    Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y. T-cells express many neurotransmitter receptors. These are regulated by TCR-activation, cytokines, or the neurotransmitters themselves, and are upregulated/downregulated in some human diseases. The context - whether the T-cells are naïve/resting or antigen/mitogen/cytokine-activated, the T-cell subset (CD4/CD8/Th1/Th2/Teff/Treg), neurotransmitter dose (low/optimal or high/excess), exact neurotransmitter receptors expressed, and the cytokine milieu - is crucial, and can determine either activation or suppression of T-cells by the same neurotransmitter. T-cells also produce many neurotransmitters. In summary, neurotransmitters activate vital T-cell functions in a direct, potent and specific manner, and may serve for communicating between the brain and the immune system to elicit an effective and orchestrated immune function, and for new therapeutic avenues, to improve T-cell eradication of cancer and infectious organisms.

  11. Early Infant Exposure to Excess Multivitamin: A Risk Factor for Autism?

    OpenAIRE

    Zhou, Shi-Sheng; Zhou, Yi-Ming; Li, Da; Ma, Qiang

    2013-01-01

    Autism, a neurodevelopmental disorder that affects boys more than girls, is often associated with altered levels of monoamines (serotonin and catecholamines), especially elevated serotonin levels. The monoamines act as both neurotransmitters and signaling molecules in the gastrointestinal and immune systems. The evidence related to monoamine metabolism may be summarized as follows: (i) monoamine neurotransmitters are enzymatically degraded/inactivated by three mechanisms: oxidative deaminatio...

  12. Effect of anxiety and depression on serum neurotransmitters and immune function in patients with cervical cancer chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Yi-Qun He; Fa-Qun He; Shao-Long Wang

    2017-01-01

    Objective:To study the effect of anxiety and depression on serum neurotransmitters and immune function in patients with cervical cancer chemotherapy.Methods:Patients with advanced cervical cancer who received chemotherapy in the First Affiliated Hospital of Chengdu Medical College between May 2014 and June 2016 were selected, HAMA scores and HAMD scores were used to assess anxiety and depression and divide the patients into control group, depression group, anxiety group and depression + anxiety group. The contents of monoamine neurotransmitters and immune cytokines in serum as well as the expression of immune transcription factors in peripheral blood mononuclear cells were detected.Results:Serum NE, E, 5-HT, 5-HIAA and DOPAC contents of depression group and depression + anxiety group were significantly lower than those of control group, and serum NE, E, 5-HT, 5-HIAA and DOPAC contents of anxiety group were significantly higher than those of control group; peripheral blood T-bet mRNA expression as well as serum IFN-γ and TNF-α contents of depression group, anxiety group and depression + anxiety group were significantly lower than those of control group while GATA3, Foxp3 and RORγt mRNA expression as well as serum IL-4, TGF-β and IL-17 contents were significantly higher than those of control group; peripheral blood T-bet mRNA expression as well as serum IFN-γ and TNF-α contents of depression + anxiety group were significantly lower than those of depression group and anxiety group while GATA3, Foxp3 and RORγt mRNA expression as well as serum IL-4, TGF-β and IL-17 contents were significantly higher than those of depression group and anxiety group. Conclusion: Anxiety and depression in patients with cervical cancer chemotherapy can affect the secretion of monoamine neurotransmitters, the differentiation of CD4+T cell subsets and the antitumor immune response mediated by them.

  13. Early Infant Exposure to Excess Multivitamin: A Risk Factor for Autism?

    Directory of Open Access Journals (Sweden)

    Shi-Sheng Zhou

    2013-01-01

    Full Text Available Autism, a neurodevelopmental disorder that affects boys more than girls, is often associated with altered levels of monoamines (serotonin and catecholamines, especially elevated serotonin levels. The monoamines act as both neurotransmitters and signaling molecules in the gastrointestinal and immune systems. The evidence related to monoamine metabolism may be summarized as follows: (i monoamine neurotransmitters are enzymatically degraded/inactivated by three mechanisms: oxidative deamination, methylation, and sulfation. The latter two are limited by the supply of methyl groups and sulfate, respectively. (ii A decrease in methylation- and sulfation-mediated monoamine inactivation can be compensated by an increase in the oxidative deamination catalyzed by monoamine oxidase, an X-linked enzyme exhibiting higher activity in females than in males. (iii Vitamins can, on one hand, facilitate the synthesis of monoamine neurotransmitters and, on the other hand, inhibit their inactivation by competing for methylation and sulfation. Therefore, we postulate that excess multivitamin feeding in early infancy, which has become very popular over the past few decades, may be a potential risk factor for disturbed monoamine metabolism. In this paper, we will focus on the relationship between excess multivitamin exposure and the inactivation/degradation of monoamine neurotransmitters and its possible role in the development of autism.

  14. Early infant exposure to excess multivitamin: a risk factor for autism?

    Science.gov (United States)

    Zhou, Shi-Sheng; Zhou, Yi-Ming; Li, Da; Ma, Qiang

    2013-01-01

    Autism, a neurodevelopmental disorder that affects boys more than girls, is often associated with altered levels of monoamines (serotonin and catecholamines), especially elevated serotonin levels. The monoamines act as both neurotransmitters and signaling molecules in the gastrointestinal and immune systems. The evidence related to monoamine metabolism may be summarized as follows: (i) monoamine neurotransmitters are enzymatically degraded/inactivated by three mechanisms: oxidative deamination, methylation, and sulfation. The latter two are limited by the supply of methyl groups and sulfate, respectively. (ii) A decrease in methylation- and sulfation-mediated monoamine inactivation can be compensated by an increase in the oxidative deamination catalyzed by monoamine oxidase, an X-linked enzyme exhibiting higher activity in females than in males. (iii) Vitamins can, on one hand, facilitate the synthesis of monoamine neurotransmitters and, on the other hand, inhibit their inactivation by competing for methylation and sulfation. Therefore, we postulate that excess multivitamin feeding in early infancy, which has become very popular over the past few decades, may be a potential risk factor for disturbed monoamine metabolism. In this paper, we will focus on the relationship between excess multivitamin exposure and the inactivation/degradation of monoamine neurotransmitters and its possible role in the development of autism.

  15. NEUROPHYSIOLOGICAL STUDY ON THE EFFECT OF ARTIFICIAL FOOD COLOUR AND SWEETENER IN ADULT MALE ALBINO MICE

    International Nuclear Information System (INIS)

    ABDEL-RAHMAN, M.; EL-KHADRAGY, M.F.; ABDEL-AZIZ, R.L.

    2008-01-01

    This study aims to investigate the effect of aspartame (artificial sweetener) and sunset yellow (artificial colour) on monoamines content in different brain areas of the adult male albino mice (cerebellum, brain stem, striatum, hypothalamus and cerebral cortex), and also on testosterone level in serum.The present study showed that the daily intraperitoneal injection of aspartame with dose of 200 mg/kg caused significant increase in monoamines content and testosterone level at most experimental periods. The elevation of monoamines content may be due to increase in phenylalanine concentration which leading to increase the synthesis of monoamines. The elevation of testosterone level may be due to the increment of DA content in hypothalamus which led to increase the release of LHRH. On the other hand, the daily intraperitoneal injection of sunset yellow with a dose of 2.5 mg/kg caused significant decrease in monoamines content and non-significant change in serum testosterone level at most experimental periods. The decrement in monoamines content may be due to the decrease in its uptake by the neurotransmitters or decrease in its synthesis

  16. [Effect of Kaixinsan on monoamine oxidase activity].

    Science.gov (United States)

    Wang, Shi; Dong, Xian-Zhe; Tan, Xiao; Wang, Yu-Ning; Liu, Ping

    2016-05-01

    To observe the effect of antidepressant medicine prescription, Kaixinsan (KXS) on monoamine oxidase (MAO) activity, and explore the mechanism of KXS in elevating the levels of monoamine neurotransmitter from the perspective of metabolism, in vitro enzyme reaction system and C6 neuroglial cells, the effect of KXS at different concentrations on MAO-A and MAO-B activity was observed. In animal studies, the effect of KXS at different concentrations on MAO-A and MAO-B activities of brain mitochondrialin normal rats and solitary chronic unpredictable moderate stress (CMS) model rats after intragastric administration for 1, 2, 3 weeks. Results showed that 10 g•L⁻¹ KXS could significantly reduce the activity of MAO-A and MAO-B in enzyme reaction system; and in C6 cells, KXS within 0.625-10 g•L⁻¹ concentration range had no significant effect on the activity of MAO-A, but had obvious inhibitory effect on the activity of MAO-B in a dose dependent manner. KXS had no significant effect on the activity of MAO-A and MAO-B in brains of normal rats after action for 1, 2, 3 weeks. After 2 and 3 weeks treatment with 338 mg•kg⁻¹ dose KXS, MAO-A activity in the brain of CMS rats was decreased as compared with the model group (PMAO-B activity after 1, 2, 3 weeks of treatment. The results indicated that KXS had certain effect on in vitro MAO-A and MAO-B activity, had no effect on brain MAO-A and MAO-B activity in vivo in normal rats, and had certain inhibitory effect on MAO-A activity in brains of CMS rats. Copyright© by the Chinese Pharmaceutical Association.

  17. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    Science.gov (United States)

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  18. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  19. Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats.

    Science.gov (United States)

    Alfaro-Rodríguez, Alfonso; González-Piña, Rigoberto; Bueno-Nava, Antonio; Arch-Tirado, Emilio; Ávila-Luna, Alberto; Uribe-Escamilla, Rebeca; Vargas-Sánchez, Javier

    2011-09-01

    The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.

  20. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  1. In vitro labelled neurotransmitters release for the study of neuro toxins

    International Nuclear Information System (INIS)

    Camillo, Maria A.P.; Rogero, Jose R.; Troncone, Lanfranco R.P.

    1995-01-01

    There is an increasing concern in the replacement of in vivo by in vitro methods in Pharmacology. Looking for a method which involves the most of the physiological aspects related to neural functions, a super fusion system designed to evaluate in vitro neurotransmitter release from brain striatal tissue is here described. The method is based on the basal and stimulated release of pre-loaded tritium-labelled neurotransmitters. This procedure bears an active uptake/release function which is fairly changed by membrane polarisation state, ion channel activation and enzymatic activity, as well as other still unknown steps involved in neurotransmission. Calcium dependency of dopamine and acetylcholine release induced by high potassium depolarization or glutamate (Glu) stimulation was demonstrated employing calcium-free (+EGTA) super fusion or lanthanum/cadmium addition. Glutamate stimulation involved NMDA receptors since magnesium or MK801 blocks stimulated release. Uptake of DA and Ach was evidenced by using bupropione or hemicolinium-3. presynaptic inhibition of Ach release was evidenced by physostigmine-induced inhibitions of acetylcholinesterase. (author). 3 refs., 6 figs

  2. Cataplexy and monoamine oxidase deficiency in Norrie disease.

    Science.gov (United States)

    Vossler, D G; Wyler, A R; Wilkus, R J; Gardner-Walker, G; Vlcek, B W

    1996-05-01

    Norrie disease (ND) is an X-linked recessive disorder causing ocular atrophy, mental retardation, deafness, and dysmorphic features. Virtually absent monoamine oxidase (MAO) type-A and -B activity has been found in some boys with chromosome deletions. We report the coexistence of cataplexy and abnormal REM sleep organization with ND. Three related boys, referred for treatment of medically refractory atonic spells and apneas, underwent extended EEG-video-polysomnographic monitoring. They demonstrated attacks of cataplexy and inappropriate periods of REM sleep during which they were unarousable. One boy also had generalized tonic-clonic seizures. Previous testing revealed that all three have complete ND gene deletions. In all subjects, platelet MAO-B activity was absent, serum serotonin levels were markedly increased, and plasma catecholamine levels were normal. Data from the canine narcolepsy syndrome model implicate abnormal catecholaminergic and cholinergic activities in the pathogenesis of cataplexy. Our findings suggest that abnormal MAO activity or an imbalance between serotonin and other neurotransmitter levels may be involved in the pathogenesis of human cataplexy.

  3. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development.

    Science.gov (United States)

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna-Zboińska, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2016-12-01

    The present study was designed to clarify the effect of prenatal and postnatal paracetamol administration on the neurotransmitter level and balance of amino acids in the cerebellum. Biochemical analysis to determine the concentration of neurotransmitters in this brain structure was performed on two-month-old Wistar male rats previously exposed to paracetamol in doses of 5 (P5, n=10) or 15mg/kg (P15, n=10) throughout the entire prenatal period, lactation and until the completion of the second month of life, when the experiment was terminated. Control animals were given tapped water (Con, n=10). The cerebellar concentration of monoamines, their metabolites and amino acids were assayed using High Performance Liquid Chromatography (HPLC). The present experiment demonstrates that prenatal and postnatal paracetamol exposure results in modulation of cerebellar neurotransmission with changes concerning mainly 5-HIAA and MHPG levels. The effect of paracetamol on monoaminergic neurotransmission in the cerebellum is reflected by changes in the level of catabolic end-products of serotonin (5-HIAA) and noradrenaline (MHPG) degradation. Further work is required to define the mechanism of action and impact of prenatal and postnatal exposure to paracetamol in the cerebellum and other structures of the central nervous system (CNS). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Release of [3H]-monoamines from superfused rat striatal slices by methylenedioxymethamphetamine (MDMA)

    International Nuclear Information System (INIS)

    Levin, J.A.; Schmidt, C.J.; Lovenberg, W.

    1986-01-01

    MDMA is a phenylisopropylamine which is reported to have unique behavioral effects in man. Because of its structural similarities to the amphetamines the authors have compared the effects of MDMA and two related amphetamines on the spontaneous release of tritiated dopamine (DA) and serotonin (5HT) from superfused rat striatal slices. At concentrations of 10 -7 - 10 -5 M MDMA and the serotonergic neurotoxin, p-chloroamphetamine, were equipotent releasers of [ 3 H]5HT being approximately 10x more potent than methamphetamine. However, methamphetamine was the more potent releaser of [ 3 H]DA by a factor of approximately 10x. MDMA-induced release of both [ 5 H]5HT and [ 3 H]DA was Ca 2+ -independent and inhibited by selective monoamine uptake blockers suggesting a carrier-dependent release mechanism. Synaptosomal uptake experiments with (+)[ 3 H]MDMA indicated no specific uptake of the drug further suggesting the effect of uptake blockers may be to inhibit the carrier-mediated export of amines displaced by MDMA

  5. Effects of clomipramine treatment on cerebrospinal fluid monoamine metabolites and platelet 3H-imipramine binding and serotonin uptake and concentration in major depressive disorder

    International Nuclear Information System (INIS)

    Maartensson, B.; Waegner, A.; Aasberg, M.; Beck, O.; Brodin, K.; Monterio, D.

    1991-01-01

    In an open study of 12 inpatients who met the DSM-III criteria for a major depressive episode, the effects of clomipramine (CI) on the monoamine metabolites 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), 4-hydroxy-3-methoxyphenyl glycol (HMPG) in cerebrospinal fluid (CSF) were measured simultaneously with the effects on 3 H-imipramine binding, serotonin (5-HT) uptake and 5-HT concentration in platelets after 3 and 6 weeks of treatment. Drug (CI and desmethylclomipramine) plasma concentrations were determined. The concentrations of 5-HIAA and HMPG decreased substantially, and the concentration of HVA remained unchanged. There was also a large and significant reduction of the number of imipramine binding sites (B max ) and of the platelet 5-HT concentration. The 5-HT uptake was not measurable aftet 3 weeks of treatment. None of the parameters changed significantly between weeks 3 and 6. There were no significant correlations between antidepressant effect (measured by the Montgomery-Aasberg Depression Rating Scale) and plasma drug concentrations, although a tendency to a significant correlation between antidepressant effect and CI was observed at 3 weeks. There were no significant intercorrelations between the different 5-HT parameters and no other significant correlations between the biochemical measures and clinical outcome. (author)

  6. Neurotransmitter transporters in schistosomes: structure, function and prospects for drug discovery.

    Science.gov (United States)

    Ribeiro, Paula; Patocka, Nicholas

    2013-12-01

    Neurotransmitter transporters (NTTs) play a fundamental role in the control of neurotransmitter signaling and homeostasis. Sodium symporters of the plasma membrane mediate the cellular uptake of neurotransmitter from the synaptic cleft, whereas proton-driven vesicular transporters sequester the neurotransmitter into synaptic vesicles for subsequent release. Together these transporters control how much transmitter is released and how long it remains in the synaptic cleft, thereby regulating the intensity and duration of signaling. NTTs have been the subject of much research in mammals and there is growing interest in their activities among invertebrates as well. In this review we will focus our attention on NTTs of the parasitic flatworm Schistosoma mansoni. Bloodflukes of the genus Schistosoma are the causative agents of human schistosomiasis, a devastating disease that afflicts over 200 million people worldwide. Schistosomes have a well-developed nervous system and a rich diversity of neurotransmitters, including many of the small-molecule ("classical") neurotransmitters that normally employ NTTs in their mechanism of signaling. Recent advances in schistosome genomics have unveiled numerous NTTs in this parasite, some of which have now been cloned and characterized in vitro. Moreover new genetic and pharmacological evidence suggests that NTTs are required for proper control of neuromuscular signaling and movement of the worm. Among these carriers are proteins that have been successfully targeted for drug discovery in other organisms, in particular sodium symporters for biogenic amine neurotransmitters such as serotonin and dopamine. Our goal in this chapter is to review the current status of research on schistosome NTTs, with emphasis on biogenic amine sodium symporters, and to evaluate their potential for anti-schistosomal drug targeting. Through this discussion we hope to draw attention to this important superfamily of parasite proteins and to identify new

  7. In Vivo Metabolic Trapping Radiotracers for Imaging Monoamine Oxidase-A and –B Enzymatic Activity

    Science.gov (United States)

    Brooks, Allen F.; Shao, Xia; Quesada, Carole A.; Sherman, Phillip; Scott, Peter J.H.; Kilbourn, Michael R.

    2017-01-01

    The isozymes of monoamine oxidase (MAO-A and MAO-B) are important enzymes involved in the metabolism of numerous biogenic amines, including the neurotransmitters serotonin, dopamine and norepinephrine. Recently, changes in concentrations of MAO-B have been proposed as an in vivo marker of neuroinflammation associated with Alzheimer’s disease. Previous developments of in vivo radiotracers for imaging changes in MAO enzyme expression or activity have utilized the irreversible propargylamine-based suicide inhibitors, or high-affinity reversibly-binding inhibitors. As an alternative approach, we have investigated 1-[11C]methyl-4-aryloxy-1,2,3,6-tetrahydropyridines as metabolic trapping agents for the monoamine oxidases. MAO-mediated oxidation and spontaneous hydrolysis yields 1-[11C]methyl-2,3-dihydro-4-pyridinone as a hydrophilic metabolite that is trapped within brain tissues. Radiotracers with phenyl, biphenyl and 7-coumarinyl ethers were evaluated using microPET imaging in rat and primate brain. No isozyme selectivity for radiotracer trapping was observed in the rat brain for any compound, but in the monkey brain the phenyl ether demonstrated MAO-A selectivity, and the coumarinyl ether showed MAO-B selectivity. These are lead compounds for further development of 1-[11C]methyl-4-aryloxy-1,2,3,6-tetrahydropyridines with optimized brain pharmacokinetics and isozyme selectivity. PMID:26393369

  8. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine

    DEFF Research Database (Denmark)

    Larsen, Marianne Hald; Rosenbrock, Holger; Sams-Dodd, Frank

    2007-01-01

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved...... in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days......) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and Neuro...

  9. Effect of adjuvant acupuncture therapy on serum cytokines and neurotransmitters in patients with post-stroke depression

    Directory of Open Access Journals (Sweden)

    Wan Feng

    2017-07-01

    Full Text Available Objective: To study the effect of adjuvant acupuncture therapy on serum cytokines and neurotransmitters in patients with post-stroke depression. Methods: Patients with poststroke depression who were treated in Traditional Chinese Medicine Hospital of Yuyang District Yulin City between May 2014 and February 2017 were selected as the research subjects and divided into two groups by random number table, control group of patients received neurotrophy, rehabilitation exercise, antidepressant drugs and other symptomatic treatment, and the acupuncture group received auxiliary acupuncture treatment on the basis of symptomatic treatment. The serum levels of nerve cytokines, inflammatory cytokines and neurotransmitters were detected before treatment as well as 2 weeks and 4 weeks after treatment. Results: 2 weeks and 4 weeks after treatment, serum BDNF, NGF, IGF-1, FGF-2, NE, DA and 5-HT levels of both groups of patients were higher than those before treatment while HCY, IL- 1β, IL-2, sIL-2R, TNF-α levels were lower than those before treatment, and serum BDNF, NGF, IGF-1, FGF-2, NE, DA and 5-HT levels of acupuncture group were higher than those of control group while HCY, IL-1β, IL-2, sIL-2R, TNF-α levels were lower than those of control group. Conclusion: Adjuvant acupuncture therapy for post-stroke depression can increase the secretion of nerve cytokines, reduce the secretion of inflammatory cytokines and regulate the function of monoamine neurotransmitters.

  10. Perivascular neurotransmitters

    DEFF Research Database (Denmark)

    Frederiksen, Simona D; Haanes, Kristian A; Warfvinge, Karin

    2018-01-01

    In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders...... (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions...... such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders....

  11. Monoamine transporter availability in Parkinson's disease patients with or without depression

    International Nuclear Information System (INIS)

    Hesse, Swen; Meyer, Philipp M.; Barthel, Henryk; Sabri, Osama; Strecker, Karl; Wegner, Florian; Isaias, Ioannis Ugo; Schwarz, Johannes; Oehlwein, Christian

    2009-01-01

    Depression is a common symptom in patients suffering from Parkinson's disease (PD) and markedly reduces their quality of life. As post-mortem studies have shown, its presence may reflect extensive cell loss in the midbrain and brainstem with imbalances in monoaminergic neurotransmitters. However, in vivo evidence of specific monoaminergic deficits in depressed PD patients is still sparse. Therefore, we studied PD patients with depression (PD+D) and without depression (PD-D) using high-resolution single-photon emission computed tomography (SPECT) and the monoamine transporter marker [ 123 I]FP-CIT. A magnetic resonance imaging-based region-of-interest analysis was applied to quantify the specific-to-nondisplaceable [ 123 I]FP-CIT binding coefficient V 3 '' in the striatum, thalamus and midbrain/brainstem regions. PD+D patients had significantly lower V 3 '' compared with PD-D patients in the striatum (p 3 '' than controls (p 3 '' nor midbrain/brainstem V 3 '' differed from those in PD-D patients (p=0.168, p=0.201) or controls (p=0.384, p=0.318). Our data indicate that depression in PD is associated with a more pronounced loss of striatal dopamine transporter availability that is most likely secondary to increased dopaminergic degeneration. In addition, depressed PD patients have a lower availability of midbrain/brainstem monoamine transporters than nondepressed PD patients. These findings provide in vivo evidence in support of the known post-mortem data demonstrating more extensive nerve cell loss in PD with depression and indicate that SPECT imaging can help to identify pathophysiological changes underlying nonmotor symptoms in this common movement disorder. (orig.)

  12. Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by CX157

    Science.gov (United States)

    Fowler, Joanna S; Logan, Jean; Azzaro, Albert J; Fielding, Robert M; Zhu, Wei; Poshusta, Amy K; Burch, Daniel; Brand, Barry; Free, James; Asgharnejad, Mahnaz; Wang, Gene-Jack; Telang, Frank; Hubbard, Barbara; Jayne, Millard; King, Payton; Carter, Pauline; Carter, Scott; Xu, Youwen; Shea, Colleen; Muench, Lisa; Alexoff, David; Shumay, Elena; Schueller, Michael; Warner, Donald; Apelskog-Torres, Karen

    2010-01-01

    Reversible inhibitors of monoamine oxidase-A (RIMA) inhibit the breakdown of three major neurotransmitters, serotonin, norepinephrine and dopamine, offering a multi-neurotransmitter strategy for the treatment of depression. CX157 (3-fluoro-7-(2,2,2-trifluoroethoxy)phenoxathiin-10,10-dioxide) is a RIMA, which is currently in development for the treatment of major depressive disorder. We examined the degree and reversibility of the inhibition of brain monoamine oxidase-A (MAO-A) and plasma CX157 levels at different times after oral dosing to establish a dosing paradigm for future clinical efficacy studies, and to determine whether plasma CX157 levels reflect the degree of brain MAO-A inhibition. Brain MAO-A levels were measured with positron emission tomography (PET) imaging and [11C]clorgyline in 15 normal men after oral dosing of CX157 (20–80 mg). PET imaging was conducted after single and repeated doses of CX157 over a 24-h time course. We found that 60 and 80 mg doses of CX157 produced a robust dose-related inhibition (47–72%) of [11C]clorgyline binding to brain MAO-A at 2 h after administration and that brain MAO-A recovered completely by 24 h post drug. Plasma CX157 concentration was highly correlated with the inhibition of brain MAO-A (EC50: 19.3 ng/ml). Thus, CX157 is the first agent in the RIMA class with documented reversible inhibition of human brain MAO-A, supporting its classification as a RIMA, and the first RIMA with observed plasma levels that can serve as a biomarker for the degree of brain MAO-A inhibition. These data were used to establish the dosing regimen for a current clinical efficacy trial with CX157. PMID:19890267

  13. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the

  14. Exclusion of close linkage between the synaptic vesicular monoamine transporter locus and schizophrenia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Persico, A.M.; Uhl, G.R. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Wang, Zhe Wu [Universitario Campus Bio-Medico, Rome (Italy)] [and others

    1995-12-18

    The principal brain synaptic vesicular monoamine transporter (VMAT2) is responsible for the reuptake of serotonin, dopamine, norepinephrine, epinephrine, and histamine from the cytoplasm into synaptic vesicles, thus contributing to determination of the size of releasable neurotransmitter vesicular pools. Potential involvement of VMAT2 gene variants in the etiology of schizophrenia and related disorders was tested using polymorphic VMAT2 gene markers in 156 subjects from 16 multiplex pedigrees with schizophrenia, schizophreniform, schizoaffective, and schizotypal disorders and mood incongruent psychotic depression. Assuming genetic homogeneity, complete ({theta} = 0.0) linkage to the schizophrenia spectrum was excluded under both dominant and recessive models. Allelic variants at the VMAT2 locus do not appear to provide major genetic contributions to the etiology of schizophrenia spectrum disorders in these pedigrees. 16 refs.

  15. Vascular dysfunction in Chronic Mild Stress (CMS) induced depression model in rats: monoamine homeostasis and endothelial dysfunction

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Wiborg, Ove; Aalkjær, Christian

    Major depression and cardiovascular diseases have strong co-morbidity but the reason for this is unknown. In CMS model of depression only some rats develop depression-like symptoms (i.e. anhedonia, measured by sucrose intake) while others are resilient to 8 weeks of CMS. Anhedonic rats have...... decreased cardiac output and unchanged blood pressure, suggesting increased total peripheral resistance. Small mesenteric and femoral arteries from CMS and non-stressed rats responded similarly to noradrenaline (NA) under control conditions but inhibition of neuronal reuptake with cocaine increased NA...... sensitivity stronger in anhedonic than in resilient and non-stressed groups. In contrast, corticosterone-sensitive extra-neuronal monoamine uptake was diminished in rats exposed to CMS. These changes in monoamine homeostasis were associated with upregulation neuronal NA transporter and reduced expression...

  16. Nanosensors for neurotransmitters.

    Science.gov (United States)

    Polo, Elena; Kruss, Sebastian

    2016-04-01

    Neurotransmitters are an important class of messenger molecules. They govern chemical communication between cells for example in the brain. The spatiotemporal propagation of these chemical signals is a crucial part of communication between cells. Thus, the spatial aspect of neurotransmitter release is equally important as the mere time-resolved measurement of these substances. In conclusion, without tools that provide the necessary spatiotemporal resolution, chemical signaling via neurotransmitters cannot be studied in greater detail. In this review article we provide a critical overview about sensors/probes that are able to monitor neurotransmitters. Our focus are sensing concepts that provide or could in the future provide the spatiotemporal resolution that is necessary to 'image' dynamic changes of neurotransmitter concentrations around cells. These requirements set the bar for the type of sensors we discuss. The sensor must be small enough (if possible on the nanoscale) to provide the envisioned spatial resolution and it should allow parallel (spatial) detection. In this article we discuss both optical and electrochemical concepts that meet these criteria. We cover techniques that are based on fluorescent building blocks such as nanomaterials, proteins and organic dyes. Additionally, we review electrochemical array techniques and assess limitations and possible future directions.

  17. Study of a possible role of the monoamine oxidase A (MAOA) gene in paranoid schizophrenia among a Chinese population.

    Science.gov (United States)

    Sun, Yuhui; Zhang, Jiexu; Yuan, Yanbo; Yu, Xin; Shen, Yan; Xu, Qi

    2012-01-01

    Monoamine oxidase A (MAOA) is the enzyme responsible for degradation of several monoamines, such as dopamine and serotonin that are considered as being two of the most important neurotransmitters involved in the pathophysiology of schizophrenia. To study a possible role of the MAOA gene in conferring susceptibility to schizophrenia, the present study genotyped the variable number of tandem repeat (VNTR) polymorphism and 41 SNPs across this gene among 555 unrelated patients with paranoid schizophrenia and 567 unrelated healthy controls. Quantitative real-time PCR analysis was employed to quantify expression of MAOA mRNA in 73 drug-free patients. While none of these genotyped DNA markers showed allelic association with paranoid schizophrenia, haplotypic association was found for the VNTR-rs6323, VNTR-rs1137070, and VNTR-rs6323-rs1137070 haplotypes in female subjects. Nevertheless, no significant change of the expression of MAOA mRNA was detected in either female or male patients with paranoid schizophrenia. Our study suggests that the interaction between genetic variants within the MAOA gene may contribute to an increased risk of paranoid schizophrenia, but the precise mechanism needs further investigation. Copyright © 2011 Wiley Periodicals, Inc.

  18. What do monoamines do in pain modulation?

    Science.gov (United States)

    Bannister, Kirsty; Dickenson, Anthony H

    2016-06-01

    Here, we give a topical overview of the ways in which brain processing can alter spinal pain transmission through descending control pathways, and how these change in pain states. We link preclinical findings on the transmitter systems involved and discuss how the monoamines, noradrenaline, 5-hydroxytryptamine (5-HT), and dopamine, can interact through inhibitory and excitatory pathways. Descending pathways control sensory events and the actions of the neurotransmitters noradrenaline and 5-HT in the dorsal horn of the spinal cord are chiefly implicated in nociception or antinociception according to the receptor that is activated. Abnormalities in descending controls effect central pain processing. Following nerve injury a noradrenaline-mediated control of spinal excitability is lost, whereas its restoration reduces neuropathic hypersensitivity. The story with 5-HT remains more complex because of the myriad of receptors that it can act upon; however the most recent findings support that facilitations may dominate over inhibitions. The monoaminergic system can be manipulated to great effect in the clinic resulting in improved treatment outcomes and is the basis for the actions of the antidepressant drugs in pain. Looking to the future, prediction of treatment responses will possible by monitoring a form of inhibitory descending control for optimized pain relief.

  19. Turning off neurotransmitters.

    Science.gov (United States)

    Snyder, Solomon H

    2006-04-07

    The historic discovery that the catecholamine neurotransmitters of the sympathetic nervous system, norepinephrine and epinephrine, are inactivated through their reuptake by presynaptic nerve terminals provided new insights into neurotransmitter action and paved the way for the development of modern antidepressant drugs.

  20. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2017-10-01

    Monoamine oxidases (MAOs) catalyze the metabolism of monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine, and are key regulators for brain function. In this study, we analyzed the activities of MAO-A and MAO-B in the cerebellum and frontal cortex from subjects with autism and age-matched control subjects. In the cerebellum, MAO-A activity in subjects with autism (aged 4-38 years) was significantly lower by 20.6% than in controls. When the subjects were divided into children (aged 4-12 years) and young adults (aged 13-38 years) subgroups, a significant decrease by 27.8% in the MAO-A activity was observed only in children with autism compared with controls. When the 95% confidence interval of the control group was taken as a reference range, reduced activity of MAO-A was observed in 70% of children with autism. In the frontal cortex, MAO-A activity in children with autism was also lower by 30% than in the control group, and impaired activity of MAO-A was observed in 55.6% of children with autism, although the difference between the autism and control groups was not significant when all subjects were considered. On the contrary, there was no significant difference in MAO-B activity in both the cerebellum and frontal cortex between children with autism and the control group as well as in adults. These results suggest impaired MAO-A activity in the brain of subjects with autism, especially in children with autism. Decreased activity of MAOs may lead to increased levels of monoaminergic neurotransmitters, such as serotonin, which have been suggested to have a critical role in autism. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Propping Peter

    2004-03-01

    Full Text Available Abstract Background Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. Methods We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C, the serotonin 3A receptor (HTR3A, the dopamine D4 receptor (DRD4, and the dopamine β-hydroxylase (DBH genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA, homovanillic acid (HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG in healthy volunteers (n = 90. Results The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02. The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005 and HVA (p = 0.009 concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. Conclusions The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system.

  2. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?

    Science.gov (United States)

    Truman, Penelope; Grounds, Peter; Brennan, Katharine A

    2017-03-01

    Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Focus On: Neurotransmitter Systems

    Science.gov (United States)

    Valenzuela, C. Fernando; Puglia, Michael P.; Zucca, Stefano

    2011-01-01

    Neurotransmitter systems have been long recognized as important targets of the developmental actions of alcohol (i.e., ethanol). Short- and long-term effects of ethanol on amino acid (e.g., γ-aminobutyric acid and glutamate) and biogenic amine (e.g., serotonin and dopamine) neurotransmitters have been demonstrated in animal models of fetal alcohol spectrum disorders (FASD). Researchers have detected ethanol effects after exposure during developmental periods equivalent to the first, second, and third trimesters of human pregnancy. Results support the recommendation that pregnant women should abstain from drinking—even small quantities—as effects of ethanol on neurotransmitter systems have been detected at low levels of exposure. Recent studies have elucidated new mechanisms and/or consequences of the actions of ethanol on amino acid and biogenic amine neurotransmitter systems. Alterations in these neurotransmitter systems could, in part, be responsible for many of the conditions associated with FASD, including (1) learning, memory, and attention deficits; (2) motor coordination impairments; (3) abnormal responsiveness to stress; and (4) increased susceptibility to neuropsychiatric disorders, such as substance abuse and depression, and also neurological disorders, such as epilepsy and sudden infant death syndrome. However, future research is needed to conclusively establish a causal relationship between these conditions and developmental dysfunctions in neurotransmitter systems. PMID:23580048

  5. A legacy of discovery: from monoamines to GABA.

    Science.gov (United States)

    Enna, S J

    2011-06-01

    Seldom does a single individual have such a profound effect on the development of a scientific discipline as Erminio Costa had on neuropharmacology. During nearly sixty years of research, Costa and his collaborators helped established many of the basic principles of the pharmacodynamic actions of psychotherapeutics. His contributions range from defining basic neurochemical, physiological and behavioral properties of neurotransmitters and their receptors, to the development of novel theories for drug discovery. Outlined in this report is a portion of his work relating to the involvement of monoamines and GABA in mediating the symptoms of neuropsychiatric disorders and as targets for drug therapies. These studies were selected for review because of their influence on my own work and as an illustration of his logical and insightful approach to research and his clever use of techniques and technologies. Given the significance of his work, the legions of scientist who collaborated with him, and those inspired by his reports, his research will continue to have an impact as long as there is a search for new therapeutics to alleviate the pain and suffering associated with neurological and psychiatric disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    Science.gov (United States)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  7. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  8. Neurotransmitter signaling in white matter.

    Science.gov (United States)

    Butt, Arthur M; Fern, Robert F; Matute, Carlos

    2014-11-01

    White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function. © 2014 Wiley Periodicals, Inc.

  9. Neurotransmitters, more than meets the eye--neurotransmitters and their perspectives in cancer development and therapy.

    Science.gov (United States)

    Li, Zhi Jie; Cho, Chi Hin

    2011-09-30

    The neurotransmitter/receptor system has been shown to modulate various aspects of tumor development including cell proliferation, angiogenesis, invasion, migration and metastasis. It has been found that tumor tissues can not only synthesize and release a wide range of neurotransmitters but also produce different biological effects via respective receptors. These tissues are also innervated by nerve fibers but the biological significance is unknown. Nevertheless neurotransmitters can produce either stimulatory or inhibitory effect in normal and tumor tissues. These effects are dependent on the types of tissues and the kinds of neurotransmitter as well as the subtypes of corresponding receptors being involved. These findings clearly extend the conventional role of neurotransmitters in nervous system to the actions in oncogenesis. In this regard, intervention or stimulation of these neuronal pathways in different cancer diseases would have significant clinical implications in cancer treatments. Here, we summarize the influences of various well-characterized neurotransmitters and their receptors on tumor growth and further discuss the respective possible strategies and perspectives for cancer therapy in the future. Copyright © 2011. Published by Elsevier B.V.

  10. Unconventional neurotransmitters, neurodegeneration and neuroprotection

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2009-01-01

    Full Text Available Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

  11. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  12. Amperometric biosensor for total monoamines using a glassy carbon paste electrode modified with human monoamine oxidase B and manganese dioxide particles

    International Nuclear Information System (INIS)

    Aigner, Maximilian; Telsnig, Dietlind; Teubl, Christian; Ortner, Astrid; Kalcher, Kurt; Macheroux, Peter; Wallner, Silvia; Edmondson, Dale

    2015-01-01

    We have prepared a biosensor for the determination of the total monoamine content in complex matrices by immobilizing a human monoamine oxidase B (hMAO B) on a glassy carbon paste electrode and adding manganese dioxide microparticles as the mediator. The enzyme hMAO B (expressed in Pichia pastoris and immobilized by using a dialysis membrane) catalyzes the oxidative deamination of monoamines, and this results in the formation of the corresponding aldehyde, ammonia and hydrogen peroxide. The latter was detected at pH 7.5 at a working voltage of 400 mV (vs. Ag/AgCl) by differential pulse voltammetry and amperometrically by applying flow injection analysis. Analytical parameters were established by using phenylethylamine (PEA) as a standard substrate. Peak height and concentration of PEA are linearly related in the 0.5 to 150 μg mL −1 concentration range, and the limits of detection and of quantification are 0.15 and 0.5 μg mL −1 of PEA, respectively. Substrate specificity was investigated with different monoamines including PEA, serotonin, benzylamine, dopamine, tyramine, and norepinephrine. The applicability of the biosensor was successfully tested in a commercial fish sauce that served as a complex matrix. The total monoamine content was calculated as PEA-equivalents. (author)

  13. Neurotransmitter receptor imaging

    International Nuclear Information System (INIS)

    Cordes, M.; Hierholzer, J.; Nikolai-Beyer, K.

    1993-01-01

    The importance of neuroreceptor imaging in vivo using single photon emission tomography (SPECT) and positron emission tomography (PET) has increased enormously. The principal neurotransmitters, such as dopamine, GABA/benzodiazepine, acetylcholine, and serotonin, are presented with reference to anatomical, biochemical, and physiological features. The main radioligands for SPECT and PET are introduced, and methodological characteristics of both PET and SPECT presented. Finally, the results of neurotransmitter receptor imaging obtained so far will be discussed. (orig.) [de

  14. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons.

    Science.gov (United States)

    Guillot, Thomas S; Miller, Gary W

    2009-04-01

    Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.

  15. Fluorinated phenmetrazine "legal highs" act as substrates for high-affinity monoamine transporters of the SLC6 family.

    Science.gov (United States)

    Mayer, Felix P; Burchardt, Nadine V; Decker, Ann M; Partilla, John S; Li, Yang; McLaughlin, Gavin; Kavanagh, Pierce V; Sandtner, Walter; Blough, Bruce E; Brandt, Simon D; Baumann, Michael H; Sitte, Harald H

    2018-05-15

    A variety of new psychoactive substances (NPS) are appearing in recreational drug markets worldwide. NPS are compounds that target various receptors and transporters in the central nervous system to achieve their psychoactive effects. Chemical modifications of existing drugs can generate NPS that are not controlled by current legislation, thereby providing legal alternatives to controlled substances such as cocaine or amphetamine. Recently, 3-fluorophenmetrazine (3-FPM), a derivative of the anorectic compound phenmetrazine, appeared on the recreational drug market and adverse clinical effects have been reported. Phenmetrazine is known to elevate extracellular monoamine concentrations by an amphetamine-like mechanism. Here we tested 3-FPM and its positional isomers, 2-FPM and 4-FPM, for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We found that 2-, 3- and 4-FPM inhibit uptake mediated by DAT and NET in HEK293 cells with potencies comparable to cocaine (IC 50 values 80 μM). Experiments directed at identifying transporter-mediated reverse transport revealed that FPM isomers induce efflux via DAT, NET and SERT in HEK293 cells, and this effect is augmented by the Na + /H + ionophore monensin. Each FPM evoked concentration-dependent release of monoamines from rat brain synaptosomes. Hence, this study reports for the first time the mode of action for 2-, 3- and 4-FPM and identifies these NPS as monoamine releasers with marked potency at catecholamine transporters implicated in abuse and addiction. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  17. Therapeutics of Neurotransmitters in Alzheimer's Disease.

    Science.gov (United States)

    Kandimalla, Ramesh; Reddy, P Hemachandra

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.

  18. Platelet monoamine oxidase: specific activity and turnover number in headache

    International Nuclear Information System (INIS)

    Summers, K.M.; Brown, G.K.; Craig, I.W.; Peatfield, R.; Rose, F.C.

    1982-01-01

    Monoamine oxidase turnover numbers (molecules of substrate converted to product per minute per active site) have been calculated for the human platelet enzyme using [ 3 H]pargyline. Headache patients with high and low monoamine oxidase specific activities relative to controls were found to have turnover numbers very close to those for controls. This finding suggests that their specific activities vary because of differences in the concentration of active monoamine oxidase molecules, rather than differences in the ability of those enzyme molecules to catalyse the deamination reaction. (Auth.)

  19. Evaluation of the monoamine uptake site ligand [123I]methyl 3β-(4-iodophenyl)-tropane-2β-carboxylate ([123I]β-CIT) in non-human primates: pharmacokinetics, biodistribution and SPECT brain imaging coregistered with MRI

    International Nuclear Information System (INIS)

    Baldwin, R.M.; Zea-Ponce, Y.; Zoghbi, S.S.

    1993-01-01

    The in vivo properties of a new radioiodinated probe of the dopamine and serotonin transporter, [ 123 I]methyl 3β-(4-iodophenyl)tropane-2β-carboxylate ([ 123 I]β-CIT) were evaluated in baboons and vervet monkeys. The labeled product was prepared in 65.2 ± 2.8% yield (mean ± SEM; n = 8) by reaction of the tributylstannyl precursor with [ 123 I]NaI in the presence of peracetic acid followed by high pressure liquid chromatography (HPLC) purification to give a product with radiochemical purity of 97.5 ± 0.5% and specific activity of 500-1200 Ci/mmol. [ 123 I]β-CIT promises to be a useful marker for SPECT study of the monoamine uptake system in primate brain. (author)

  20. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  1. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  2. Quantum chemical modeling of the inhibition mechanism of monoamine oxidase by oxazolidinone and analogous heterocyclic compounds.

    Science.gov (United States)

    Erdem, Safiye Sağ; Özpınar, Gül Altınbaş; Boz, Ümüt

    2014-02-01

    Monoamine oxidase (MAO, EC 1.4.3.4) is responsible from the oxidation of a variety of amine neurotransmitters. MAO inhibitors are used for the treatment of depression or Parkinson's disease. They also inhibit the catabolism of dietary amines. According to one hypothesis, inactivation results from the formation of a covalent adduct to a cysteine residue in the enzyme. If the adduct is stable enough, the enzyme is inhibited for a long time. After a while, enzyme can turn to its active form as a result of adduct breakdown by β-elimination. In this study, the proposed inactivation mechanism was modeled and tested by quantum chemical calculations. Eight heterocyclic methylthioamine derivatives were selected to represent the proposed covalent adducts. Activation energies related to their β-elimination reactions were calculated using ab initio and density functional theory methods. Calculated activation energies were in good agreement with the relative stabilities of the hypothetical adducts predicted in the literature by enzyme inactivation measurements.

  3. Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters

    Directory of Open Access Journals (Sweden)

    Li-Li Wu

    2016-01-01

    Full Text Available The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA and water-EtOH soluble fraction (Fraction B, FB prepared from the Danzhi-xiaoyao-san (DZXYS by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats.

  4. The emergence of neurotransmitters as immune modulators.

    Science.gov (United States)

    Franco, Rafael; Pacheco, Rodrigo; Lluis, Carmen; Ahern, Gerard P; O'Connell, Peta J

    2007-09-01

    Initially, the idea that neurotransmitters could serve as immunomodulators emerged with the discovery that their release and diffusion from nervous tissue could lead to signaling through lymphocyte cell-surface receptors and the modulation of immune function. It is now evident that neurotransmitters can also be released from leukocytes and act as autocrine or paracrine modulators. Here, we review the data indicating that leukocytes synthesize and release 'neurotransmitters' and we also discuss the diverse effects that these compounds exert in a variety of immune cells. The role of neurotransmitters in immune-related diseases is also reviewed succinctly. Current and future developments in understanding the cross-talk between the immune and nervous systems will probably identify new avenues for treating immune-mediated diseases using agonists or antagonists of neurotransmitter receptors.

  5. Antidepressant-like effects of Gan-Mai-Dazao-Tang via monoamine regulatory pathways on forced swimming test in rats.

    Science.gov (United States)

    Huang, Hsiang-Ling; Lim, Swee-Ling; Lu, Kuan-Hung; Sheen, Lee-Yan

    2018-01-01

    Depression is a highly prevalent and recurrent mental disorder that impacts all aspects of human life. Undesirable effects of the antidepressant drugs led to the development of complementary and alternative therapies. Gan-Mai-Da-Zao-Tang (, gān mài dà zǎo tang) is a traditional herbal formula commonly used for the treatment of depression, but lack of scientific proof on its mechanism. It consisted of Glycyrrhiza uralensis Fisch. (licorice), Triticum aestivum L. (wheat) and Zizphus jujuba Mill. (jujube). The objective of this study is to investigate the antidepressant effects of Gan-Mai-Dazao-Tang and its ingredients in rats exposed to forced swimming test (FST). The 72 of male Nerl: Wistar rats (8 weeks old) were randomized into control (10 mL/kg bw H 2 O), licorice (0.4 g/kg bw), wheat (1.6 g/kg bw), jujube (0.5 g/kg bw), Gan-Mai-Da-Zao-Tang (2.5 g/kg bw of licorice: wheat: jujube in ratio of 5:20:6) and Prozac (18 mg/kg bw) groups. Samples were administered by oral gavage for 21 days. FST was performed on 21st day, with 15 min for pretest followed by 5 min for real test. Then, the animals were sacrificed and brain tissues were collected for monoamines analyses. The Gan-Mai-Da-Zao-Tang (LWJ) showed significantly down-regulation of immobility time, 3,4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/dopamine (DA) turnover rates, and also enhanced the concentration of serotonin (5-HT) and DA in brain tissues, as compared with the control. The LWJ stated the potent antidepressant-like effect by modulating these monoamines concentration, while the licorice, wheat and jujube did not reported significant results as compared with control group. The positive control (Prozac) was noted with significantly reduction in body weight and appetite. In conclusion, the antidepressant-like effects of LWJ might be mediated by the regulation of monoamine neurotransmitters. Thus, it could beneficial in depression treatment as a complementary approach.

  6. Morphological alterations and acetylcholinesterase and monoamine oxidase inhibition in liver of zebrafish exposed to Aphanizomenon flos-aquae DC-1 aphantoxins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, De Lu, E-mail: deluzh@163.com [Department of Lifescience and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Jing [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hu, Chun Xiang, E-mail: cxhu@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Gao Hong; Li, Dun Hai; Liu, Yong Ding [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China)

    2014-12-15

    Highlights: • Aphantoxins induced zebrafish hepatic physiological and morphological changes. • AChE and MAO inhibition reflected abnormality of neurotransmitter inactivation. • ROS advance and T-AOC reduction suggested oxidative stress. • ALT, AST, histological and ultrastructural alterations indicated hepatic damage. - Abstract: Aphanizomenon flos-aquae is a cyanobacterium that produces neurotoxins or paralytic shellfish poisons (PSPs) called aphantoxins, which present threats to environmental safety and human health via eutrophication of water bodies worldwide. Although the molecular mechanisms of this neurotoxin have been studied, many questions remain unsolved, including those relating to in vivo hepatic neurotransmitter inactivation, physiological detoxification and histological and ultrastructural alterations. Aphantoxins extracted from the natural strain of A. flos-aquae DC-1 were analyzed by high-performance liquid chromatography. The main components were gonyautoxins 1 and 5 (GTX1, GTX5) and neosaxitoxin (neoSTX), which comprised 34.04%, 21.28%, and 12.77% respectively. Zebrafish (Danio rerio) were exposed intraperitoneally to 5.3 or 7.61 μg STX equivalents (eq)/kg (low and high doses, respectively) of A. flos-aquae DC-1 aphantoxins. Morphological alterations and changes in neurotransmitter conduction functions of acetylcholinesterase (AChE) and monoamine oxidase (MAO) in zebrafish liver were detected at different time points 1–24 h post-exposure. Aphantoxin significantly enhanced hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histological and ultrastructural damage in zebrafish liver at 3–12 h post-exposure. Toxin exposure increased the reactive oxygen species content and reduced total antioxidative capacity in zebrafish liver, suggesting oxidative stress. AChE and MAO activities were significantly inhibited, suggesting neurotransmitter inactivation/conduction function abnormalities in zebrafish

  7. The increasing role of monoamine oxidase type B inhibitors in Parkinson's disease therapy.

    Science.gov (United States)

    Elmer, Lawrence W; Bertoni, John M

    2008-11-01

    The role of monoamine oxidase type B inhibitors in the treatment of Parkinson's disease has expanded with the new monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets. As primary therapy in early disease monoamine oxidase B inhibitors reduce motor disability and delay the need for levodopa. In more advanced disease requiring levodopa, adjunctive monoamine oxidase B inhibitors reduce 'off' time and may improve gait and freezing. Rasagiline and selegiline oral disintegrating tablets may reduce the safety risks associated with the amfetamine and methamfetamine metabolites of conventional oral selegiline while retaining or improving therapeutic efficacy. Articles were identified by searches of PubMed and searches on the Internet and reviewed. All articles and other referenced materials were retrieved using the keywords 'Parkinson's disease', 'treatment' and 'monoamine oxidase B inhibitor' and were published between 1960 and 2007, with older references selected for historical significance. Only papers published in English were reviewed. Accumulating data support the use of monoamine oxidase B inhibitors as monotherapy for early and mild Parkinson's disease and as adjunctive therapy for more advanced Parkinson's disease with levodopa-associated motor fluctuations. The recently released monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets, have potential advantages over conventional oral selegiline.

  8. Dynamic SERS nanosensor for neurotransmitter sensing near neurons.

    Science.gov (United States)

    Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François

    2017-12-04

    Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.

  9. Zn2+ modulation of neurotransmitter transporters

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, K.; Gether, U.

    2006-01-01

    of neurotransmitter transporters have been identified based on sequence homology: (1) the neurotransmitter sodium symporter family (NSS), which includes the Na+/C1(-)-dependent transporters for dopamine, norepinephrine, and serotonin; and (2) the dicarboxylate/amino acid cation symporter family (DAACS), which...

  10. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  11. The dual-gate lumen model of renal monoamine transport

    Directory of Open Access Journals (Sweden)

    Marty Hinz

    2010-07-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc. Cape Coral, Florida, USA; 2Stein Orthopedic Associates, Plantation, Florida, USA; 3DBS Labs, Duluth, Minnesota, USAAbstract: The three-phase response of urinary serotonin and dopamine in subjects ­simultaneously taking amino acid precursors of serotonin and dopamine has been defined.1,2 No model exists regarding the renal etiology of the three-phase response. This writing outlines a model explaining the origin of the three-phase response of urinary serotonin and dopamine. A “dual-gate lumen transporter model” for the basolateral monoamine transporters of the kidneys is proposed as being the etiology of the three-phase urinary serotonin and dopamine responses.Purpose: The purpose of this writing is to document the internal renal function model that has evolved in research during large-scale assay with phase interpretation of urinary serotonin and dopamine.Patients and methods: In excess of 75,000 urinary monoamine assays from more than 7,500 patients were analyzed. The serotonin and the dopamine phase were determined for specimens submitted in the competitive inhibition state. The phase determination findings were then correlated with peer-reviewed literature.Results: The correlation between the three-phase response of urinary serotonin and dopamine with internal renal processes of the bilateral monoamine transporter and the apical monoamine transporter of the proximal convoluted renal tubule cells is defined.Conclusion: The phase of urinary serotonin and dopamine is dependent on the status of the serotonin gate, dopamine gate, and lumen of the basolateral monoamine transporter while in the competitive inhibition state.Keywords: serotonin, dopamine, basolateral, apical, kidney, proximal

  12. A Critical Assessment of Research on Neurotransmitters in Alzheimer's Disease.

    Science.gov (United States)

    Reddy, P Hemachandra

    2017-01-01

    The purpose of this mini-forum, "Neurotransmitters and Alzheimer's Disease", is to critically assess the current status of neurotransmitters in Alzheimer's disease. Neurotransmitters are essential neurochemicals that maintain synaptic and cognitive functions in mammals, including humans, by sending signals across pre- to post-synaptic neurons. Authorities in the fields of synapses and neurotransmitters of Alzheimer's disease summarize the current status of basic biology of synapses and neurotransmitters, and also update the current status of clinical trials of neurotransmitters in Alzheimer's disease. This article discusses the prevalence, economic impact, and stages of Alzheimer's dementia in humans.

  13. Quantitative densitometry of neurotransmitter receptors

    International Nuclear Information System (INIS)

    Rainbow, T.C.; Bleisch, W.V.; Biegon, A.; McEwen, B.S.

    1982-01-01

    An autoradiographic procedure is described that allows the quantitative measurement of neurotransmitter receptors by optical density readings. Frozen brain sections are labeled in vitro with [ 3 H]ligands under conditions that maximize specific binding to neurotransmitter receptors. The labeled sections are then placed against the 3 H-sensitive LKB Ultrofilm to produce the autoradiograms. These autoradiograms resemble those produced by [ 14 C]deoxyglucose autoradiography and are suitable for quantitative analysis with a densitometer. Muscarinic cholinergic receptors in rat and zebra finch brain and 5-HT receptors in rat brain were visualized by this method. When the proper combination of ligand concentration and exposure time are used, the method provides quantitative information about the amount and affinity of neurotransmitter receptors in brain sections. This was established by comparisons of densitometric readings with parallel measurements made by scintillation counting of sections. (Auth.)

  14. Vascular dysfunction associated with major depression-like symptoms: monoamine homeostasis and endothelial dysfunction

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Andresen, Jørgen; Wiborg, Ove

    Major depression and cardiovascular diseases have strong co-morbidity but the reason for this is unknown. In Chronic Mild Stress (CMS) model of depression only some rats develop depression-like symptoms (i.e. anhedonia, measured by sucrose intake) while others are resilient to 8 weeks of CMS...... and reduced expression of extra-neuronal transporter (OCT-2) in anhedonic arteries. The contractility of middle cerebral arteries to 5-HT was reduced by CMS but recovered by anti-depressant treatment. Resistance arteries from anhedonic rats were less sensitive to acetylcholine compared to non......-like response) was significantly reduced in anhedonic rats. This was associated with decreased transcription of intermediate-conductance Ca2+-activated K+ channels. Our results indicate that CMS-induced depression-like symptoms in rats are associated with changes in monoamine uptake and endothelial dysfunctions...

  15. Monoamine transporter availability in Parkinson's disease patients with or without depression

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Swen; Meyer, Philipp M.; Barthel, Henryk; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Strecker, Karl; Wegner, Florian; Isaias, Ioannis Ugo; Schwarz, Johannes [University of Leipzig, Department of Neurology, Leipzig (Germany); Oehlwein, Christian [Specialized Parkinson' s Disease Outpatient Centre, Gera (Germany)

    2009-03-15

    Depression is a common symptom in patients suffering from Parkinson's disease (PD) and markedly reduces their quality of life. As post-mortem studies have shown, its presence may reflect extensive cell loss in the midbrain and brainstem with imbalances in monoaminergic neurotransmitters. However, in vivo evidence of specific monoaminergic deficits in depressed PD patients is still sparse. Therefore, we studied PD patients with depression (PD+D) and without depression (PD-D) using high-resolution single-photon emission computed tomography (SPECT) and the monoamine transporter marker [{sup 123}I]FP-CIT. A magnetic resonance imaging-based region-of-interest analysis was applied to quantify the specific-to-nondisplaceable [{sup 123}I]FP-CIT binding coefficient V{sub 3}'' in the striatum, thalamus and midbrain/brainstem regions. PD+D patients had significantly lower V{sub 3}'' compared with PD-D patients in the striatum (p<0.001), thalamus (p=0.002), and midbrain/brainstem (p=0.025). Only PD+D patients without selective serotonin reuptake inhibitor (SSRI) treatment showed lower thalamic and midbrain V{sub 3}'' than controls (p<0.001, p=0.029). In a small sub-group of SSRI-treated PD+D patients neither thalamic V{sub 3}'' nor midbrain/brainstem V{sub 3}'' differed from those in PD-D patients (p=0.168, p=0.201) or controls (p=0.384, p=0.318). Our data indicate that depression in PD is associated with a more pronounced loss of striatal dopamine transporter availability that is most likely secondary to increased dopaminergic degeneration. In addition, depressed PD patients have a lower availability of midbrain/brainstem monoamine transporters than nondepressed PD patients. These findings provide in vivo evidence in support of the known post-mortem data demonstrating more extensive nerve cell loss in PD with depression and indicate that SPECT imaging can help to identify pathophysiological changes underlying nonmotor

  16. [Preliminary research on multi-neurotransmitters' change regulation in 120 depression patients' brains].

    Science.gov (United States)

    Chi, Ming; Qing, Xue-Mei; Pan, Yan-Shu; Xu, Feng-Quan; Liu, Chao; Zhang, Cheng; Xu, Zhen-Hua

    2014-04-01

    In view of the effective traditional Chinese medicine (TCM) in the treatment of clinical depression, the mechanism is not clear, this study attempts to research the cause of depression in a complex situation to lay the foundation for the next step of TCM curative effect evaluation. Based on the brain wave of 120 depression patients and 40 ordinary person, the change regulation of acetylcholine, dopamine, norepinephrine, depression neurotransmitters and excited neurotransmitters in the whole and various encephalic regions' multi-neurotransmitters of depression patients-serotonin are analysed by search of encephalo-telex (SET) system, which lays the foundation for the diagnosis of depression. The result showed that: contrased with the normal person group, the mean value of the six neurotransmitters in depression patients group are: (1) in the whole encephalic region of depression patients group the dopamine fall (P neurotransmitters and neurotransmitters: (1) the three antagonizing pairs of neurotransmitters-serotonin and dopamine, acetylcholine and norepinephrine, depression neurotransmitters and excited neurotransmitters, in ordinary person group and depression patients group are characterizeed by middle or strong negative correlation. Serotonin and dopamine, which are characterized by weak negative correlation in the right rear temporal region of ordinary person group, are characterized by strong negative correlation in the other encephalic regions and the whole encephalic (ordinary person group except the right rear temporal region: the range of [r] is [0.82, 0.92], P neurotransmitters and excited neurotransmitters are characterized by middle strong negative correlation (ordinary person group: the range of [r] is [0.57, 0.80], P neurotransmitters which are not antagonizing pairs of neurotransmitters, serotonin and excited neurotransmitters, or acetylcholine and depression neurotra-nsmitters, or dopamine and depression neurotransmitters in the various encephalic

  17. Dynamic regulation of neurotransmitter specification: Relevance to nervous system homeostasis

    Science.gov (United States)

    Borodinsky, Laura N.; Belgacem, Yesser Hadj; Swapna, Immani; Sequerra, Eduardo Bouth

    2013-01-01

    During nervous system development the neurotransmitter identity changes and coexpression of several neurotransmitters is a rather generalized feature of developing neurons. In the mature nervous system, different physiological and pathological circumstances recreate this phenomenon. The rules of neurotransmitter respecification are multiple. Among them, the goal of assuring balanced excitability appears as an important driving force for the modifications in neurotransmitter phenotype expression. The functional consequences of these dynamic revisions in neurotransmitter identity span a varied range, from fine-tuning the developing neural circuit to modifications in addictive and locomotor behaviors. Current challenges include determining the mechanisms underlying neurotransmitter phenotype respecification and how they intersect with genetic programs of neuronal specialization. PMID:23270605

  18. Antidepressant-like effects of Gan-Mai-Dazao-Tang via monoamine regulatory pathways on forced swimming test in rats

    Directory of Open Access Journals (Sweden)

    Hsiang-Ling Huang

    2018-01-01

    Full Text Available Depression is a highly prevalent and recurrent mental disorder that impacts all aspects of human life. Undesirable effects of the antidepressant drugs led to the development of complementary and alternative therapies. Gan-Mai-Da-Zao-Tang (甘麥大棗湯, gān mài dà zǎo tang is a traditional herbal formula commonly used for the treatment of depression, but lack of scientific proof on its mechanism. It consisted of Glycyrrhiza uralensis Fisch. (licorice, Triticum aestivum L. (wheat and Zizphus jujuba Mill. (jujube. The objective of this study is to investigate the antidepressant effects of Gan-Mai-Dazao-Tang and its ingredients in rats exposed to forced swimming test (FST. The 72 of male Nerl: Wistar rats (8 weeks old were randomized into control (10 mL/kg bw H2O, licorice (0.4 g/kg bw, wheat (1.6 g/kg bw, jujube (0.5 g/kg bw, Gan-Mai-Da-Zao-Tang (2.5 g/kg bw of licorice: wheat: jujube in ratio of 5:20:6 and Prozac (18 mg/kg bw groups. Samples were administered by oral gavage for 21 days. FST was performed on 21st day, with 15 min for pretest followed by 5 min for real test. Then, the animals were sacrificed and brain tissues were collected for monoamines analyses. The Gan-Mai-Da-Zao-Tang (LWJ showed significantly down-regulation of immobility time, 3,4-dihydroxyphenylacetic acid (DOPAC and DOPAC/dopamine (DA turnover rates, and also enhanced the concentration of serotonin (5-HT and DA in brain tissues, as compared with the control. The LWJ stated the potent antidepressant-like effect by modulating these monoamines concentration, while the licorice, wheat and jujube did not reported significant results as compared with control group. The positive control (Prozac was noted with significantly reduction in body weight and appetite. In conclusion, the antidepressant-like effects of LWJ might be mediated by the regulation of monoamine neurotransmitters. Thus, it could beneficial in depression treatment as a complementary approach.

  19. Radio-isotopic determination of platelet monoamine oxidase and regulation of its activity by an indigenous drug

    International Nuclear Information System (INIS)

    Dubey, G.P.; Srivastava, V.K.; Agrawal, A.; Udupa, K.N.

    1988-01-01

    Platelet monoamine oxidase is a mitochondrial enzyme taking part in the deamination reaction of total catecholamine. Recent studies of monoamine oxidase inhibitors have gained its importance in the control of variety of psychosomatic disorders like mental depression, arterial hypertension and anxiety neurosis. 30 apparently normal individuals and 42 diagnosed cases of essential hypertension were selected for the present study. The platelet monoamine oxidase activity was measured by using 14 C-tryptamine bisuccinate. Comparatively low activity of platelet monoamine oxidase was noticed in hypertension cases than in the normal. After oral administration of an indigenous drug 'Geriforte' for three months, a significant rise in platelet monoamine oxidase activity was noticed in hypertension cases. It can be concluded that this indigenous formulation has the capacity to regulate the monoamine oxidase activity, as such, it may provide an alternative remedy in the management of psychosomatic disorders. (author). 11 refs

  20. Efficacy evaluation of fluoxetine combined with conventional drug treatment on unstable angina patients complicated with depression

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Liao

    2015-01-01

    Objective:To study the efficacy of fluoxetine combined with conventional drug treatment on unstable angina patients complicated with depression. Methods:120 cases of unstable angina patients with depression were randomly divided into two groups. The anti-depression group received fluoxetine combined with conventional drug therapy; the conventional group received conventional drug therapy. Then contents of monoamine neurotransmitters and their metabolites, antioxidants and inflammatory mediators of both groups were compared. Results:Serum monoamine neurotransmitters NE, 5-HT and HA levels of the anti-depression group were higher than those of the conventional group and metabolites 5-HIAA and HVA contents were lower than those of the conventional group; serum SOD, CAT, GSH and HSP-70 contents of the anti-depression group were higher than those of the conventional group, and hs-CRP, MMP9, MCP1 and HMGB1 contents were lower than those of the conventional group. Conclusion:Fluoxetine combined with conventional drug therapy can increase the contents of monoamine neurotransmitters and antioxidants, and reduce oxidative stress response and inflammatory response; it is an ideal method for treating unstable angina complicated with depression.

  1. Neurotransmitter: Sodium Symporters: Caught in the Act!

    DEFF Research Database (Denmark)

    Malinauskaite, Lina

    The neurotransmitter: sodium symporters in the neurons. Communication between neurons is mediated by the release of molecules called neurotransmitters (blue dots) from first neuron and sensed by receptors on the surface of the second (purple sphere). The signal is ended by active reuptake...

  2. Therapeutics of Neurotransmitters in Alzheimer’s Disease

    Science.gov (United States)

    Kandimalla, Ramesh; Reddy, P. Hemachandra

    2018-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters’ agonists/antagonists in AD. PMID:28211810

  3. Association study of monoamine oxidase A/B genes and schizophrenia in Han Chinese

    Directory of Open Access Journals (Sweden)

    Li Sheng-Bin

    2011-10-01

    Full Text Available Abstract Background Monoamine oxidases (MAOs catalyze the metabolism of dopaminergic neurotransmitters. Polymorphisms of isoforms MAOA and MAOB have been implicated in the etiology of mental disorders such as schizophrenia. Association studies detected these polymorphisms in several populations, however the data have not been conclusive to date. Here, we investigated the association of MAOA and MAOB polymorphisms with schizophrenia in a Han Chinese population. Methods Two functional single nucleotide polymorphisms (SNPs, rs6323 of MAOA and rs1799836 of MAOB, were selected for association analysis in 537 unrelated schizophrenia patients and 536 healthy controls. Single-locus and Haplotype associations were calculated. Results No differences were found in the allelic distribution of rs6323. The G allele of rs1799836 was identified as a risk factor in the development of schizophrenia (P = 0.00001. The risk haplotype rs6323T-rs1799836G was associated with schizophrenia in female patients (P = 0.0002, but the frequency difference was not significant among male groups. Conclusions Our results suggest that MAOB is a susceptibility gene for schizophrenia. In contrast, no significant associations were observed for the MAOA functional polymorphism with schizophrenia in Han Chinese. These data support further investigation of the role of MAO genes in schizophrenia.

  4. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  5. Synthesis and characterization of [{sup 125}I]N-(2-aminoethyl)-4-iodobenzamide as a selective monoamine oxidase B inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Rafii, Hamid; Chalon, Sylvie; Ombetta, Jean-Edouard; Frangin, Yves; Garreau, Lucette; Dognon, Anne-Marie; Lena, Isabelle; Bodard, Sylvie; Vilar, Marie-Paule; Besnard, Jean-Claude; Guilloteau, Denis

    1995-07-01

    We described the radiosynthesis of an analog of Ro 16-6491, [{sup 125}I]N-(2-aminoethyl)-4-iodobenzamide, for SPECT exploration of the monoamine oxidase B (MAO-B) in human brain. The radiolabelling was carried out by nucleophilic exchange of the brominated precursor at solid-state phase in presence of ammonium sulphate. The radiochemical purity of radioiodinated product was higher than 95%. In comparison with Ro 16-6491, the in vitro studies showed a good selectivity of stable N-(2-aminoethyl)-4-iodobenzamide for MAO-B but a slightly lower affinity. Biodistribution studies in the rat showed a high and selective uptake of this compound in the pineal gland 1 h after i.v. injection. The cerebral uptake was low, but the coupling of [{sup 125}I]N-(2-aminoethyl)-4-iodobenzamide with a lipophilic radical to enhance the passage through the blood-brain barrier can be envisaged.

  6. Biodistribution of a positron-emitting suicide inactivator of monoamine oxidase, carbon-11 pargyline, in mice and a rabbit

    International Nuclear Information System (INIS)

    Ishiwata, K.; Ido, T.; Yanai, K.; Kawashima, K.; Miura, Y.; Monma, M.; Watanuki, S.; Takahashi, T.; Iwata, R.

    1985-01-01

    Carbon-11 ( 11 C) pargyline, which is a suicide inactivator of Type B monoamine oxidase (MAO), was synthesized by the reaction of N-demethylpargyline with 11 CH 3 l. Biodistribution was investigated in mice, and positron tomographic images of the heart and lung in a rabbit were obtained. The distribution of 11 C after administration of [ 11 C]pargyline was measured in several organs and blood at various time intervals. After 30 min its concentrations in the organs were constant. Subcellular distribution studies in the brain, lung, liver, and kidney showed that 59-70% of the 11 C became acid-insoluble and 9-33% was present in the crude mitochondrial fraction at 60 min after injection. The uptakes of the 11 C in each organ except for the kidney and spleen seemed to correlate with the in vitro enzymatic activity of Type B MAO. At high loading dose a nonspecific uptake was observed

  7. A Critical Assessment of Research on Neurotransmitters in Alzheimer’s Disease

    Science.gov (United States)

    Reddy, P. Hemachandra

    2018-01-01

    The purpose of this mini-forum, “Neurotransmitters and Alzheimer’s Disease”, is to critically assess the current status of neurotransmitters in Alzheimer’s disease. Neurotransmitters are essential neurochemicals that maintain synaptic and cognitive functions in mammals, including humans, by sending signals across pre- to post-synaptic neurons. Authorities in the fields of synapses and neurotransmitters of Alzheimer’s disease summarize the current status of basic biology of synapses and neurotransmitters, and also update the current status of clinical trials of neurotransmitters in Alzheimer’s disease. This article discusses the prevalence, economic impact, and stages of Alzheimer’s dementia in humans. PMID:28409748

  8. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  9. Dynamic, adaptive changes in MAO-A binding after alterations in substrate availability: an in vivo [11C]-harmine positron emission tomography study

    Science.gov (United States)

    Sacher, Julia; Rabiner, Eugenii A; Clark, Michael; Rusjan, Pablo; Soliman, Alexandra; Boskovic, Rada; Kish, Stephen J; Wilson, Alan A; Houle, Sylvain; Meyer, Jeffrey H

    2012-01-01

    Monoamine oxidase A (MAO-A) is an important target in the pathophysiology and therapeutics of major depressive disorder, aggression, and neurodegenerative conditions. We measured the effect of changes in MAO-A substrate on MAO-A binding in regions implicated in affective and neurodegenerative disease with [11C]-harmine positron emission tomography in healthy volunteers. Monoamine oxidase A VT, an index of MAO-A density, was decreased (mean: 14%±9%) following tryptophan depletion in prefrontal cortex (PMAO-A in maintaining monoamine neurotransmitter homeostasis by rapidly compensating fluctuating monoamine levels. PMID:22186668

  10. Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3',4'-methylenedioxy-4-methylaminorex (MDMAR).

    Science.gov (United States)

    McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V; Power, John D; Twamley, Brendan; O'Brien, John; Talbot, Brian; Dowling, Geraldine; Mahony, Olivia; Brandt, Simon D; Patrick, Julian; Archer, Roland P; Partilla, John S; Baumann, Michael H

    2015-07-01

    The recent occurrence of deaths associated with the psychostimulant cis-4,4'-dimethylaminorex (4,4'-DMAR) in Europe indicated the presence of a newly emerged psychoactive substance on the market. Subsequently, the existence of 3,4-methylenedioxy-4-methylaminorex (MDMAR) has come to the authors' attention and this study describes the synthesis of cis- and trans-MDMAR followed by extensive characterization by chromatographic, spectroscopic, mass spectrometric platforms and crystal structure analysis. MDMAR obtained from an online vendor was subsequently identified as predominantly the cis-isomer (90%). Exposure of the cis-isomer to the mobile phase conditions (acetonitrile/water 1:1 with 0.1% formic acid) employed for high performance liquid chromatography analysis showed an artificially induced conversion to the trans-isomer, which was not observed when characterized by gas chromatography. Monoamine release activities of both MDMAR isomers were compared with the non-selective monoamine releasing agent (+)-3,4-methylenedioxymethamphetamine (MDMA) as a standard reference compound. For additional comparison, both cis- and trans-4,4'-DMAR, were assessed under identical conditions. cis-MDMAR, trans-MDMAR, cis-4,4'-DMAR and trans-4,4'-DMAR were more potent than MDMA in their ability to function as efficacious substrate-type releasers at the dopamine (DAT) and norepinephrine (NET) transporters in rat brain tissue. While cis-4,4'-DMAR, cis-MDMAR and trans-MDMAR were fully efficacious releasing agents at the serotonin transporter (SERT), trans-4,4'-DMAR acted as a fully efficacious uptake blocker. Currently, little information is available about the presence of MDMAR on the market but the high potency of ring-substituted methylaminorex analogues at all three monoamine transporters investigated here might be relevant when assessing the potential for serious side-effects after high dose exposure. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Escitalopram and Neuroendocrine Response in Healthy First-Degree Relatives to epressed Patients – A Randomized Placebo-Controlled Trial

    DEFF Research Database (Denmark)

    Knorr, Ulla Benedichte Søsted; Vinberg, Maj; Hansen, Allan

    2011-01-01

    Abstract Introduction: The mechanisms by which selective serotonin re-uptake inhibitors (SSRI) act in depressed patients remain unknown. The serotonergic neurotransmitter system and the hypothalamic-pituitary-adrenal (HPA) system may interact. The aim of the AGENDA trial was to investigate whether...

  12. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Department of Pharmaceutical Chemistry, North-West University, Private Bag X6001, Potchefstroom 2520, ..... on the inhibition of the catabolism of serotonin, .... Structure of human monoamine oxidase B, a drug target for.

  13. In vitro antiplasmodial activities of semisynthetic N,N-spacer-linked oligomeric ergolines

    Czech Academy of Sciences Publication Activity Database

    Jenett-Siems, K.; Kohler, I.; Kraft, C.; Pertz, H. H.; Křen, Vladimír; Fišerová, Anna; Kuzma, Marek; Ulrichová, J.; Bienzle, U.; Eich, E.

    2004-01-01

    Roč. 12, - (2004), s. 817-824 ISSN 0968-0896 R&D Projects: GA AV ČR IAA4020901 Institutional research plan: CEZ:AV0Z5020903; CEZ:MSM 151100003 Keywords : monoamine neurotransmitters * dopamine * neurotransmitters Subject RIV: EE - Microbiology, Virology Impact factor: 2.018, year: 2004

  14. A chiral synthesis of dapoxetine hydrochloride, a serotonin re-uptake inhibitor, and its 14C isotopomer

    International Nuclear Information System (INIS)

    Wheeler, W.J.; O'Bannon, D.D.

    1992-01-01

    The 14 C-isotopmer of dapoxetine-[ 14 C] HCl (S (+) -N,N-dimethyl-α[2-(1-naphthalenyloxy)ethyl-2- 14 C]benzenemeth a-n amine hydrochloride, 1a), a potent serotonin re-uptake inhibitor has been prepared by a chiral synthesis, starting with tert. -butyloxyphenylglycine (3). Borane reduction, followed by activation of the resulting alcohol 4 as its mesylate 5b, provided the chiral starting material. The radiolabel was introduced by reaction of 5b with sodium cyanide-[ 14 C]. The desired product (1) was then elaborated from nitrile 6a,b via a five step synthesis in an overall 19.5% radiochemical yield. (Author)

  15. Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class.

    Science.gov (United States)

    Binda, Claudia; Hubálek, Frantisek; Li, Min; Herzig, Yaacov; Sterling, Jeffrey; Edmondson, Dale E; Mattevi, Andrea

    2004-03-25

    Monoamine oxidase B (MAO B) is an outer mitochondrial membrane enzyme that catalyzes the oxidation of arylalkylamine neurotransmitters. The crystal structures of MAO B in complex with four of the N-propargylaminoindan class of MAO covalent inhibitors (rasagiline, N-propargyl-1(S)-aminoindan, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan) have been determined at a resolution of better than 2.1 A. Rasagiline, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan adopt essentially the same conformation with the extended propargyl chain covalently bound to the flavin and the indan ring located in the rear of the substrate cavity. N-Propargyl-1(S)-aminoindan binds with the indan ring in a flipped conformation with respect to the other inhibitors, which causes a slight movement of the Tyr326 side chain. Four ordered water molecules are an integral part of the active site and establish H-bond interactions to the inhibitor atoms. These structural studies may guide future drug design to improve selectivity and efficacy by introducing appropriate substituents on the rasagiline molecular scaffold.

  16. Escitalopram and neuroendocrine response in healthy first-degree relatives to depressed patients--a randomized placebo-controlled trial

    DEFF Research Database (Denmark)

    Knorr, Ulla; Vinberg, Maj; Hansen, Allan

    2011-01-01

    Introduction The mechanisms by which selective serotonin re-uptake inhibitors (SSRI) act in depressed patients remain unknown. The serotonergic neurotransmitter system and the hypothalamic-pituitary-adrenal (HPA) system may interact. The aim of the AGENDA trial was to investigate whether long-ter...

  17. Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF.

    Science.gov (United States)

    Wang, Jun-Ming; Pei, Li-Xin; Zhang, Yue-Yue; Cheng, Yong-Xian; Niu, Chun-Ling; Cui, Ying; Feng, Wei-Sheng; Wang, Gui-Fang

    2018-06-01

    The dried roots of Rehmannia glutinosa Libosch. (Scrophulariaceae) are of both medicinal and nutritional importance. Our previous study has found that the 80% ethanol extract of R. glutinosa (RGEE) produced antidepressant-like activities in mouse behavioral despair depression models. However, its mechanisms are still unclear. The present study aimed to observe the antidepressant-like mechanisms of RGEE on a rat chronic unpredictable mild stress (CUMS) model by involving monoaminergic neurotransmitters and brain-derived neurotrophic factor (BDNF). CUMS-stressed rats were orally given RGEE daily (150, 300, and 600 mg/kg) or fluoxetine hydrochloride (FH) for 3 weeks after starting the CUMS procedure. Sucrose preference test was carried out to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. Results demonstrated that CUMS induced depression-like behavior, whereas RGEE and FH administration inhibited this symptom. Furthermore, CUMS caused excessively elevated levels of serum corticosterone (CORT), an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, in a manner attenuated by RGEE and FH administration. RGEE administration also further elevated monoamine neurotransmitters and BDNF levels, up-regulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB) in hippocampus of rats suffering CUMS. Together, our findings suggest that RGEE can improve CUMS-evoked depression-like behavior, and indicate its mechanisms may partially be associated with restoring HPA axis dysfunctions, enhancing monoamineergic nervous systems, and up-regulating BDNF and TrkB expression.

  18. Laminar and Cellular Distribution of Monoamine Receptors in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Noemí Santana

    2017-09-01

    Full Text Available The prefrontal cortex (PFC is deeply involved in higher brain functions, many of which are altered in psychiatric conditions. The PFC exerts a top-down control of most cortical and subcortical areas through descending pathways and is densely innervated by axons emerging from the brainstem monoamine cell groups, namely, the dorsal and median raphe nuclei (DR and MnR, respectively, the ventral tegmental area and the locus coeruleus (LC. In turn, the activity of these cell groups is tightly controlled by afferent pathways arising from layer V PFC pyramidal neurons. The reciprocal connectivity between PFC and monoamine cell groups is of interest to study the pathophysiology and treatment of severe psychiatric disorders, such as major depression and schizophrenia, inasmuch as antidepressant and antipsychotic drugs target monoamine receptors/transporters expressed in these areas. Here we review previous reports examining the presence of monoamine receptors in pyramidal and GABAergic neurons of the PFC using double in situ hybridization. Additionally, we present new data on the quantitative layer distribution (layers I, II–III, V, and VI of monoamine receptor-expressing cells in the cingulate (Cg, prelimbic (PrL and infralimbic (IL subfields of the medial PFC (mPFC. The receptors examined include serotonin 5-HT1A, 5-HT2A, 5-HT2C, and 5-HT3, dopamine D1 and D2 receptors, and α1A-, α1B-, and α1D-adrenoceptors. With the exception of 5-HT3 receptors, selectively expressed by layers I–III GABA interneurons, the rest of monoamine receptors are widely expressed by pyramidal and GABAergic neurons in intermediate and deep layers of mPFC (5-HT2C receptors are also expressed in layer I. This complex distribution suggests that monoamines may modulate the communications between PFC and cortical/subcortical areas through the activation of receptors expressed by neurons in intermediate (e.g., 5-HT1A, 5-HT2A, α1D-adrenoceptors, dopamine D1 receptors and deep

  19. Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements

    OpenAIRE

    Whibley, Annabel; Urquhart, Jill; Dore, Jonathan; Willatt, Lionel; Parkin, Georgina; Gaunt, Lorraine; Black, Graeme; Donnai, Dian; Raymond, F Lucy

    2010-01-01

    Monoamine oxidases (MAO-A and MAO-B) have a key role in the degradation of amine neurotransmitters, such as dopamine, norepinephrine and serotonin. We identified an inherited 240 kb deletion on Xp11.3–p11.4, which encompasses both monoamine oxidase genes but, unlike other published reports, does not affect the adjacent Norrie disease gene (NDP). The brothers who inherited the deletion, and thus have no monoamine oxidase function, presented with severe developmental delay, intermittent hypoton...

  20. Strategies for sensing neurotransmitters with responsive MRI contrast agents.

    Science.gov (United States)

    Angelovski, Goran; Tóth, Éva

    2017-01-23

    A great deal of research involving multidisciplinary approaches is currently dedicated to the understanding of brain function. The complexity of physiological processes that underlie neural activity is the greatest hurdle to faster advances. Among imaging techniques, MRI has great potential to enable mapping of neural events with excellent specificity, spatiotemporal resolution and unlimited tissue penetration depth. To this end, molecular imaging approaches using neurotransmitter-sensitive MRI agents have appeared recently to study neuronal activity, along with the first successful in vivo MRI studies. Here, we review the pioneering steps in the development of molecular MRI methods that could allow functional imaging of the brain by sensing the neurotransmitter activity directly. We provide a brief overview of other imaging and analytical methods to detect neurotransmitter activity, and describe the approaches to sense neurotransmitters by means of molecular MRI agents. Based on these initial steps, further progress in probe chemistry and the emergence of innovative imaging methods to directly monitor neurotransmitters can be envisaged.

  1. Cocaine adulteration.

    Science.gov (United States)

    Kudlacek, Oliver; Hofmaier, Tina; Luf, Anton; Mayer, Felix P; Stockner, Thomas; Nagy, Constanze; Holy, Marion; Freissmuth, Michael; Schmid, Rainer; Sitte, Harald H

    2017-10-01

    Cocaine is a naturally occurring and illicitly used psychostimulant drug. Cocaine acts at monoaminergic neurotransmitter transporters to block uptake of the monoamines, dopamine, serotonin and norepinephrine. The resulting increase of monoamines in the extracellular space underlies the positively reinforcing effects that cocaine users seek. In turn, this increase in monoamines underlies the development of addiction, and can also result in a number of severe side effects. Currently, cocaine is one of the most common illicit drugs available on the European market. However, cocaine is increasingly sold in impure forms. This trend is driven by cocaine dealers seeking to increase their profit margin by mixing ("cutting") cocaine with numerous other compounds ("adulterants"). Importantly, these undeclared compounds put cocaine consumers at risk, because consumers are not aware of the additional potential threats to their health. This review describes adulterants that have been identified in cocaine sold on the street market. Their typical pharmacological profile and possible reasons why these compounds can be used as cutting agents will be discussed. Since a subset of these adulterants has been found to exert effects similar to cocaine itself, we will discuss levamisole, the most frequently used cocaine cutting agent today, and its metabolite aminorex. Copyright © 2017. Published by Elsevier B.V.

  2. Evaluation of the monoamine uptake site ligand [123I]methyl 3β-(4-iodophenyl)-tropane-2β-carboxylate ([123I]β-CIT) in non-human primates: pharmacokinetics, biodistribution and SPECT brain imaging coregistered with MRI

    International Nuclear Information System (INIS)

    Baldwin, R.M.; Zea-Ponce, Yolanda; Zoghbi, S.S.

    1993-01-01

    The in vivo properties of a new radioiodinated probe of the dopamine and serotonin transporter, [ 123 )I] methyl 3β-(4-iodophenyl)tropane-2β - carboxylate ([ 123 I]β-CIT) were evaluated in baboons and vervet monkeys. The labeled product was prepared by reaction of the tributylstannyl precursor with [ 123 I] NaI in the presence of peracetic acid followed by high pressure liquid chromatography (HPLC) purification. After intravenous administration, whole brain activity peaked at 6-10% injected dose within 1 h post injection (p.i.) and washed out in a biphasic manner with clearance half-lives of 1-2 and 7-35 h for the rapid and slow components, respectively. Excretion occurred primarily through the hepatobiliary route, with about 30% of the injected dose appearing in the GI tract after 5 h. Estimates of radiation absorbed dose gave 0.01, 0.1, 0.2 and 0.03 mGy/MBq to the brain, gall bladder wall, lower large intestine wall and urinary bladder wall, respectively. High resolution SPECT imaging in a baboon demonstrated high uptake of tracer in the region of the striatum in the hypothalamus and in a midbrain region comprising raphe, substantia nigra and superior colliculus with regional brain uptakes measured at 210 min p.i. of [ 123 I]β-CIT. The anatomical locations of the regions on the SPECT image were confirmed by coregistration with MRI. Plasma metabolites and pharmacokinetics were analyzed in baboons and vervets by ethyl acetate extraction and HPLC. [ 123 I]β-CIT promises to be a useful marker for SPECT study of the monoamine uptake system in primate brain. (Author)

  3. [11C]Harmine Binding to Brain Monoamine Oxidase A: Test-Retest Properties and Noninvasive Quantification.

    Science.gov (United States)

    Zanderigo, Francesca; D'Agostino, Alexandra E; Joshi, Nandita; Schain, Martin; Kumar, Dileep; Parsey, Ramin V; DeLorenzo, Christine; Mann, J John

    2018-02-08

    Inhibition of the isoform A of monoamine oxidase (MAO-A), a mitochondrial enzyme catalyzing deamination of monoamine neurotransmitters, is useful in treatment of depression and anxiety disorders. [ 11 C]harmine, a MAO-A PET radioligand, has been used to study mood disorders and antidepressant treatment. However, [ 11 C]harmine binding test-retest characteristics have to date only been partially investigated. Furthermore, since MAO-A is ubiquitously expressed, no reference region is available, thus requiring arterial blood sampling during PET scanning. Here, we investigate [ 11 C]harmine binding measurements test-retest properties; assess effects of using a minimally invasive input function estimation on binding quantification and repeatability; and explore binding potentials estimation using a reference region-free approach. Quantification of [ 11 C]harmine distribution volume (V T ) via kinetic models and graphical analyses was compared based on absolute test-retest percent difference (TRPD), intraclass correlation coefficient (ICC), and identifiability. The optimal procedure was also used with a simultaneously estimated input function in place of the measured curve. Lastly, an approach for binding potentials quantification in absence of a reference region was evaluated. [ 11 C]harmine V T estimates quantified using arterial blood and kinetic modeling showed average absolute TRPD values of 7.7 to 15.6 %, and ICC values between 0.56 and 0.86, across brain regions. Using simultaneous estimation (SIME) of input function resulted in V T estimates close to those obtained using arterial input function (r = 0.951, slope = 1.073, intercept = - 1.037), with numerically but not statistically higher test-retest difference (range 16.6 to 22.0 %), but with overall poor ICC values, between 0.30 and 0.57. Prospective studies using [ 11 C]harmine are possible given its test-retest repeatability when binding is quantified using arterial blood. Results with SIME of

  4. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  5. Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors.

    Science.gov (United States)

    Mann, Florian A; Herrmann, Niklas; Meyer, Daniel; Kruss, Sebastian

    2017-06-28

    Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmitters, including dopamine. This approach provides a high spatial and temporal resolution, but it is not understood if these sensors are able to distinguish dopamine from similar catecholamine neurotransmitters, such as epinephrine or norepinephrine. In this work, the organic phase (DNA sequence) around SWCNTs was varied to create sensors with different selectivity and sensitivity for catecholamine neurotransmitters. Most DNA-functionalized SWCNTs responded to catecholamine neurotransmitters, but both dissociation constants ( K d ) and limits of detection were highly dependent on functionalization (sequence). K d values span a range of 2.3 nM (SWCNT-(GC) 15 + norepinephrine) to 9.4 μM (SWCNT-(AT) 15 + dopamine) and limits of detection are mostly in the single-digit nM regime. Additionally, sensors of different SWCNT chirality show different fluorescence increases. Moreover, certain sensors (e.g., SWCNT-(GT) 10 ) distinguish between different catecholamines, such as dopamine and norepinephrine at low concentrations (50 nM). These results show that SWCNTs functionalized with certain DNA sequences are able to discriminate between catecholamine neurotransmitters or to detect them in the presence of interfering substances of similar structure. Such sensors will be useful to measure and study neurotransmitter signaling in complex biological settings.

  6. Age-related ultrastructural and monoamine oxidase changes in the rat optic nerve.

    Science.gov (United States)

    Taurone, S; Ripandelli, G; Minni, A; Lattanzi, R; Miglietta, S; Pepe, N; Fumagalli, L; Micera, A; Pastore, F S; Artico, M

    2016-01-01

    The aim of this paper is to study the morphology and the distribution of the monoamine oxidase enzymatic system in the optic nerve of 4 month-old Wistar (young) and 28 month-old Wistar (old) rats. The optic nerve was harvested from 20 young and old rats. The segment of optic nerve was divided longitudinally into two pieces, each 0.1 mm in length. The first piece was used for transmission electron microscopy. The second piece was stained with histochemical reaction for monoamine oxidase. The agerelated changes in the optic nerve of rats include micro-anatomical details, ultrastructure and monoamine oxidase histochemical staining. A strong decrease of the thin nerve fibers and a swelling of the thick ones can be observed in optic nerve fibers of old rats. Increased monoamine oxidase histochemical staining of the optic nerve of aged rats is well demonstrated. The increase of meningeal shealth and the decrease of thin nerve fibers of the optic nerve in old rats are well documented. Morphological, ultrastructural and histochemical changes observed in optic nerve fibers of the old rats show a close relation with aging.

  7. Calcium-sensing beyond neurotransmitters

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Han, Weiping

    2009-01-01

    Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most....... Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems....... synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function...... as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion...

  8. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.

    Science.gov (United States)

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-08-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    Tarchonanthus camphoratus (camphor bush) has been widely used for numerous medicinal purposes. The aim of the present study was to evaluate the antioxidant properties, cytotoxicity and monoamine oxidase inhibition activities of the crude dichloromethane leaf extract of T. camphoratus. The antioxidant activities were ...

  11. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies

    NARCIS (Netherlands)

    Ruhe, H. G.; Mason, N. S.; Schene, A. H.

    2007-01-01

    Dysfunction in the monoamine systems of serotonin (5-HT), norepinephrine (NE) and dopamine (DA) may causally be related to major depressive disorder (MDD). Monoamine depletion studies investigate the direct effects of monoamines on mood. Acute tryptophan depletion (ATD) or para-chlorophenylalanine

  12. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.

    2011-01-01

    . The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer-mediated......Weak interactions of neurotransmitters and the lipid matrix in the synaptic membrane have been hypothesized to play a role in synaptic transmission of nerve signals, particularly with respect to receptor desensitization (Cantor, R. S. Biochemistry 2003, 42, 11891). The strength of such interactions......, however, was not measured, and this is an obvious impediment for further evaluation and understanding of a possible role for desensitization. We have used dialysis equilibrium to directly measure the net affinity of selected neurotransmitters for lipid membranes and analyzed this affinity data...

  13. Functional genetic variants in the vesicular monoamine transporter 1 (VMAT1) modulate emotion processing

    Science.gov (United States)

    Lohoff, Falk W.; Hodge, Rachel; Narasimhan, Sneha; Nall, Aleksandra; Ferraro, Thomas N.; Mickey, Brian J.; Heitzeg, Mary M.; Langenecker, Scott A.; Zubieta, Jon-Kar; Bogdan, Ryan; Nikolova, Yuliya S.; Drabant, Emily; Hariri, Ahmad R.; Bevilacqua, Laura; Goldman, David; Doyle, Glenn A.

    2012-01-01

    SUMMARY Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits, and risk for psychopathology. PMID:23337945

  14. Effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1979-01-01

    The origin of fibers containing different neurotransmitter candidates in the nucleus accumbens of rat brain has been studied with surgical and chemical lesion techniques. Destruction of the medial forebrain bundle decreased the activity of aromatic amino acid decarboxylase by 80% in the nucleus. Cutting of the fornix or a hemitransection decreased the high affinity uptake of glutamate by 45% and the endogenous level of glutamate by 33%. The high affinity uptake of glutamate was concentrated in the synaptosomal fraction and the decrease after the lesion was most pronounced in this fraction. Restricted lesions indicated that fibers in the fimbria/fornix coming from the subiculum were responsible for this part of the glutamate uptake in the nucleus. Local injection of kainic acid into the nucleus was accompanied by a 75% decrease in choline acetyltransferase and a 35% decrease in acetylcholineserase activities, a 70% decrease in glutamate decarboxylase activity and a 60% decrease in the high affinity uptake of ..gamma..-aminobutyrate, a 45% decrease in high affinity glutamate uptake, and no change in aromatic amino acid decarboxylase activity. Performing a lesion of the fornix after kainic acid injection led to an 85% decrease in high affinity glutamate uptake, without further affecting the other neuronal markers. The results indicate that all aminergic fibers to the nucleus accumbens are ascending in the medial forebrain bundle, that the subiculum-accumbens fibers are glutamergic and the nucleus also contains intrinsic glutamergic or aspartergic cells. Cholinergic and ..gamma..-aminobutyrate-containing cells are wholly intrinsic to the nucleus.

  15. Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: How to improve the antiepileptic effect?

    Science.gov (United States)

    Werner, Felix-Martin; Coveñas, Rafael

    2017-06-01

    Here, we describe in generalized epilepsies the alterations of classical neurotransmitters and neuropeptides acting at specific subreceptors. In order to consider a network context rather than one based on focal substrates and in order to make the interaction between neurotransmitters and neuropeptides and their specific subreceptors comprehensible, neural networks in the hippocampus, thalamus, and cerebral cortex are described. In this disease, a neurotransmitter imbalance between dopaminergic and serotonergic neurons and between presynaptic GABAergic neurons (hypoactivity) and glutaminergic neurons (hyperactivity) occurs. Consequently, combined GABA A agonists and NMDA antagonists could furthermore stabilize the neural networks in a multimodal pharmacotherapy. The antiepileptic effect and the mechanisms of action of conventional and recently developed antiepileptic drugs are reviewed. The GASH:Sal animal model can contribute to examine the efficacy of antiepileptic drugs. The issues of whether the interaction of classical neurotransmitters with other subreceptors (5-HT 7 , metabotropic 5 glutaminergic, A 2A adenosine, and alpha nicotinic 7 cholinergic receptors) or whether the administration of agonists/antagonists of neuropeptides might improve the therapeutic effect of antiepileptic drugs should be addressed. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Labelling of Re-ABP with 188Re for bone pain palliation

    International Nuclear Information System (INIS)

    Arteaga de Murphy, Consuelo; Ferro-Flores, Guillermina; Pedraza-Lopez, Martha; Melendez-Alafort, Laura; Croft, B.Y.Barbara Y.; Ramirez, Flor de Maria; Padilla, Juan

    2001-01-01

    Etidronate and medronate have been labelled with technetium-99m ( 99m Tc-HEDP, 99m Tc-MDP) for bone scanning and, with rhenium-188 ( 188 Re-HEDP) to palliate the pain resulting from bone metastases. The objective of this study was to label alendronate, ABP, a new bisphosphonate, with SnF 2 -reduced- 188 Re. The reagents for the 5 mg ABP kit were SnF 2 , KReO 4 and gentisic acid at acid pH. The chemical, spectroscopic and microscopic characteristics, quality control, rat bone uptake of [ 188 Re]Re-ABP and similarities with 99m Tc-ABP are presented. We conclude that this is a promising new radiopharmaceutical for bone metastases pain palliation

  17. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression

    Directory of Open Access Journals (Sweden)

    Manami Yamashita

    2018-03-01

    Full Text Available Summary: Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression. : Recovery of inhibitory synaptic transmission from activity-dependent depression requires refilling of vesicles with GABA. Yamashita et al. find that vesicular uptake rate of GABA is a slow process, limiting the recovery rate of IPSCs from depression.

  18. Synthesis of symmetrical and non-symmetrical bivalent neurotransmitter ligands

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Andersen, Jacob; Thygesen, Mikkel Boas

    2016-01-01

    A novel procedure for synthesis of bivalent neurotransmitter ligands was developed by reacting O-benzyl protected N-nosylated dopamine and serotonin with alkyl- or PEG-linked diols under Fukuyama-Mitsunobu conditions in the presence of DIAD/PPh3 generating three different bivalent neurotransmitte...

  19. Cortical enlargement in autism is associated with a functional VNTR in the monoamine oxidase A gene.

    Science.gov (United States)

    Davis, Lea K; Hazlett, Heather C; Librant, Amy L; Nopoulos, Peggy; Sheffield, Val C; Piven, Joesph; Wassink, Thomas H

    2008-10-05

    Monoamine oxidase A (MAOA) is an enzyme expressed in the brain that metabolizes dopamine, norepinephrine, epinephrine, and serotonin. Abnormalities of serotonin neurotransmission have long been implicated in the psychopathology of autism. A polymorphism exists within the promoter region of the MAOA gene that influences MAOA expression levels so that "low activity" alleles are associated with increased neurotransmitter levels in the brain. Individuals with autism often exhibit elevated serotonin levels. Additional studies indicate that the "low activity" allele may be associated with lower IQ and more severe autistic symptoms. In this study we genotyped the MAOA promoter polymorphism in a group of 29 males (age 2-3 years) with autism and a group of 39 healthy pediatric controls for whom brain MRI data was available. We found a consistent association between the "low activity" allele and larger brain volumes for regions of the cortex in children with autism but not in controls. We did not find evidence for over-transmission of the "low activity" allele in a separate sample of 114 affected sib pair families. Nor did we find any unknown SNPs in yet another sample of 96 probands. Future studies will determine if there is a more severe clinical phenotype associated with both the "low activity" genotype and the larger brain volumes in our sample.

  20. Cerebrospinal Fluid Levels of Monoamine Metabolites in the Epileptic Baboon

    Science.gov (United States)

    Szabó, C. Ákos; Patel, Mayuri; Uteshev, Victor V.

    2016-01-01

    The baboon represents a natural model for genetic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). In this retrospective study, cerebrospinal fluid (CSF) monoamine metabolites and scalp electroencephalography (EEG) were evaluated in 263 baboons of a pedigreed colony. CSF monoamine abnormalities have been linked to reduced seizure thresholds, behavioral abnormalities and SUDEP in various animal models of epilepsy. The levels of 3-hydroxy-4-methoxyphenylglycol, 5-hydroxyindolacetic acid and homovanillic acid in CSF samples drawn from the cisterna magna were analyzed using high-performance liquid chromatography. These levels were compared between baboons with seizures (SZ), craniofacial trauma (CFT) and asymptomatic, control (CTL) baboons, between baboons with abnormal and normal EEG studies. We hypothesized that the CSF levels of major monoaminergic metabolites (i.e., dopamine, serotonin and norepinephrine) associate with the baboons’ electroclinical status and thus can be used as clinical biomarkers applicable to seizures/epilepsy. However, despite apparent differences in metabolite levels between the groups, usually lower in SZ and CFT baboons and in baboons with abnormal EEG studies, we did not find any statistically significant differences using a logistic regression analysis. Significant correlations between the metabolite levels, especially between 5-HIAA and HVA, were preserved in all electroclinical groups. While we were not able to demonstrate significant differences in monoamine metabolites in relation to seizures or EEG markers of epilepsy, we cannot exclude the monoaminergic system as a potential source of pathogenesis in epilepsy and SUDEP. A prospective study evaluating serial CSF monoamine levels in baboons with recently witnessed seizures, and evaluation of abnormal expression and function of monoaminergic receptors and transporters within epilepsy-related brain regions, may impact the electroclinical status. PMID:26924854

  1. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.

    Science.gov (United States)

    Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B

    2017-09-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genetic susceptibility and neurotransmitters in Tourette syndrome.

    Science.gov (United States)

    Paschou, Peristera; Fernandez, Thomas V; Sharp, Frank; Heiman, Gary A; Hoekstra, Pieter J

    2013-01-01

    Family studies have consistently shown that Tourette syndrome (TS) is a familial disorder and twin studies have clearly indicated a genetic contribution in the etiology of TS. Whereas early segregation studies of TS suggested a single-gene autosomal dominant disorder, later studies have pointed to more complex models including additive and multifactorial inheritance and likely interaction with genetic factors. While the exact cellular and molecular base of TS is as yet elusive, neuroanatomical and neurophysiological studies have pointed to the involvement of cortico-striato-thalamocortical circuits and abnormalities in dopamine, glutamate, gamma-aminobutyric acid, and serotonin neurotransmitter systems, with the most consistent evidence being available for involvement of dopamine-related abnormalities, that is, a reduction in tonic extracellular dopamine levels along with hyperresponsive spike-dependent dopamine release, following stimulation. Genetic and gene expression findings are very much supportive of involvement of these neurotransmitter systems. Moreover, intriguingly, genetic work on a two-generation pedigree has opened new research pointing to a role for histamine, a so far rather neglected neurotransmitter, with the potential of the development of new treatment options. Future studies should be aimed at directly linking neurotransmitter-related genetic and gene expression findings to imaging studies (imaging genetics), which enables a better understanding of the pathways and mechanisms through which the dynamic interplay of genes, brain, and environment shapes the TS phenotype. © 2013 Elsevier Inc. All rights reserved.

  3. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    Science.gov (United States)

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  4. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

    Science.gov (United States)

    Harding, Cary O.; Winn, Shelley R.; Gibson, K. Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-01-01

    Summary Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  5. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach.

    Science.gov (United States)

    Szymańska, Krystyna; Kuśmierska, Katarzyna; Demkow, Urszula

    2015-01-01

    Neurotransmitters (NTs) play a central role in the efficient communication between neurons necessary for normal functioning of the nervous system. NTs can be divided into two groups: small molecule NTs and larger neuropeptide NTs. Inherited disorders of NTs result from a primary disturbance of NTs metabolism or transport. This group of disorders requires sophisticated diagnostic procedures. In this review we discuss disturbances in the metabolism of tetrahydrobiopterin, biogenic amines, γ-aminobutyric acid, foliate, pyridoxine-dependent enzymes, and also the glycine-dependent encephalopathy. We point to pathologic alterations of proteins involved in synaptic neurotransmission that may cause neurological and psychiatric symptoms. We postulate that synaptic receptors and transporter proteins for neurotransmitters should be investigated in unresolved cases. Patients with inherited neurotransmitters disorders present various clinical presentations such as mental retardation, refractory seizures, pyramidal and extrapyramidal syndromes, impaired locomotor patterns, and progressive encephalopathy. Every patient with suspected inherited neurotransmitter disorder should undergo a structured interview and a careful examination including neurological, biochemical, and imaging.

  6. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol.

    Science.gov (United States)

    Lovinger, David M

    2008-01-01

    Nerve cells (i.e., neurons) communicate via a combination of electrical and chemical signals. Within the neuron, electrical signals driven by charged particles allow rapid conduction from one end of the cell to the other. Communication between neurons occurs at tiny gaps called synapses, where specialized parts of the two cells (i.e., the presynaptic and postsynaptic neurons) come within nanometers of one another to allow for chemical transmission. The presynaptic neuron releases a chemical (i.e., a neurotransmitter) that is received by the postsynaptic neuron's specialized proteins called neurotransmitter receptors. The neurotransmitter molecules bind to the receptor proteins and alter postsynaptic neuronal function. Two types of neurotransmitter receptors exist-ligand-gated ion channels, which permit rapid ion flow directly across the outer cell membrane, and G-protein-coupled receptors, which set into motion chemical signaling events within the cell. Hundreds of molecules are known to act as neurotransmitters in the brain. Neuronal development and function also are affected by peptides known as neurotrophins and by steroid hormones. This article reviews the chemical nature, neuronal actions, receptor subtypes, and therapeutic roles of several transmitters, neurotrophins, and hormones. It focuses on neurotransmitters with important roles in acute and chronic alcohol effects on the brain, such as those that contribute to intoxication, tolerance, dependence, and neurotoxicity, as well as maintained alcohol drinking and addiction.

  7. Detection and monitoring of neurotransmitters--a spectroscopic analysis.

    Science.gov (United States)

    Manciu, Felicia S; Lee, Kendall H; Durrer, William G; Bennet, Kevin E

    2013-01-01

    We demonstrate that confocal Raman mapping spectroscopy provides rapid, detailed, and accurate neurotransmitter analysis, enabling millisecond time resolution monitoring of biochemical dynamics. As a prototypical demonstration of the power of the method, we present real-time in vitro serotonin, adenosine, and dopamine detection, and dopamine diffusion in an inhomogeneous organic gel, which was used as a substitute for neurologic tissue.  Dopamine, adenosine, and serotonin were used to prepare neurotransmitter solutions in distilled water. The solutions were applied to the surfaces of glass slides, where they interdiffused. Raman mapping was achieved by detecting nonoverlapping spectral signatures characteristic of the neurotransmitters with an alpha 300 WITec confocal Raman system, using 532 nm neodymium-doped yttrium aluminum garnet laser excitation. Every local Raman spectrum was recorded in milliseconds and complete Raman mapping in a few seconds.  Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific microscale image regions. Such information is particularly important for complex, heterogeneous samples, where changes in composition can influence neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.  Accurate nondestructive characterization for real-time detection of neurotransmitters in inhomogeneous environments without the requirement of sample labeling is a key issue in neuroscience. Our work demonstrates the capabilities of Raman spectroscopy in biological applications, possibly providing a new tool for elucidating the mechanism and kinetics of deep brain stimulation. © 2012 International Neuromodulation Society.

  8. A new model for separation between brain dopamine and serotonin transporters in {sup 123}I-{beta}-CIT SPECT measurements: normal values and sex and age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, Erik; Rosen, Ingmar [Department of Clinical Neurophysiology, University Hospital, Lund (Sweden); Lindstroem, Mats; Bosson, Peter; Traeskman-Bendz, Lil [Department of Psychiatry, University Hospital, Lund (Sweden); Braadvik, Bjoern; Grabowski, Martin [Department of Neurology, University Hospital, Lund (Sweden)

    2004-08-01

    {sup 123}I-{beta}-CIT is a radioactive ligand for single-photon emission computed tomography (SPECT) imaging of the pre-synaptic (transporter) re-uptake sites for dopamine (DAT) and serotonin (5HTT), and it is widely used to visualize monoamine turnover. Since {sup 123}I-{beta}-CIT uptake occurs at 5HTT and DAT sites in conjunction with the presence of freely soluble {sup 123}I-{beta}-CIT in brain tissue, adequate separation of these three components is necessary. However, only partial separation is possible with current methods. Two main strategies have previously been used for {sup 123}I-{beta}-CIT component separation, based on the following considerations: (1) the faster uptake rate for 5HTT compared with DAT enables temporal separation by performing 5HTT imaging at 1-2 h and DAT imaging at 20-24 h; (2) blocking the 5HTT re-uptake with citalopram renders {sup 123}I-{beta}-CIT imaging DAT (non-5HTT) specific. In a new analytical model, we combined these two approaches with methods to isolate the passively dissolved {sup 123}I-{beta}-CIT in brain tissue from the monoamine transporter uptake, and to correct the 5HTT and DAT values for concomitant uptake. The new analytical model was used to study brain 5HTT and DAT in 23 normal subjects, with the aim of clarifying the effect of age and sex. A significant correlation between 5HTT and DAT values was found only in the thalamus, indicating successful component separation. Negative correlations between age and DAT were found for basal ganglia, thalami, brain stem and temporal lobes, but not for the frontal, parietal or occipital regions. No correlation with age was found for 5HTT. We found no sex difference for 5HTT or DAT. (orig.)

  9. 丹酰氯柱前衍生化-高效液相色谱法测定单胺类神经递质及其代谢物%Detection of monoamine neurotransmitters and its metabolites by high performance liquid chromatograph after pre-column derivatization of dansyl chloride column

    Institute of Scientific and Technical Information of China (English)

    黄晓; 陈佳文; 贺莉萍; 康学军

    2012-01-01

    Objective To develop a high performance liquid chromatography (HPLC) for detection of monoamine neurotransmitters and its metabolites after pre-column derivatization witb dansyl chloride.Methods The C18 chromatograph column (150 mm × 4.6 mm × 5 μm) was selected for detection,and derived by dansyl chloride (10 mg/ml) under the condition of 50 ℃ water bath by pH11 buffer solution.20 μl acetic acid acetone solution (1.0 mol/L) was then mixed in for termination of the reaction.Then the solution was cooling to room temperature,0.1 mol/L acetic acid zinc-acetonitrile-tetrahydrofuran solution was adopted for mobile phrase,with tbe volume ratio at 62∶ 35∶ 3.The flow rate was 1.0 ml/min between 0-10 min,2.0 ml/min between 10-35 min.The ultraviolet detection wavelength was 286 nm.The above method separately detected monoamine neurotransmitters and its metabolites and evaluated the limit of detection,accurate degree and accuracy degree.Results The linear relations between each component was good in the range of 1-20 μg/ml (r =0.999).The lowest detection limit of norepinephrine,dopamine,5-hydroxytryptamine and the metabolites 3-methoxy-4-benzoglycols,homovanillic acid and 5-heteroauxin were separately 0.60,0.80,0.41,0.21,0.19 and 0.1 μg/ml; while the average recovery rates were between 78.5%-95.9%,and the relative standard deviation (RSD) was 6.62%,7.64%,2.98%,3.60%,5.09% and 3.09%,respectively.In the process of selection and optimization of the chromatographic conditions,we observed the importance of metal ions to discretion,and discussed the temperature,pH of the buffer solution and dosage of dansyl chloride in derivation.Under the above conditions,the reaction was perfect,and the baseline of the detected materials thoroughly separated.Conclusion The method to detect monoamine neurotransmitters and its metabolites by HPLC and pre-column derivatization with dansyl chloride was established ; and this method could provide reference for the detection

  10. An improved automated synthesis and in vivo evaluation of PET radioligand for serotonin re-uptake sites. [11C]McN5652X

    International Nuclear Information System (INIS)

    Sasaki, Masahiro; Suhara, Tetsuya; Suzuki, Kazutoshi; Kubodera, Akiko.

    1996-01-01

    Carbon-11 labeled serotonin (5-HT) re-uptake inhibitor, [ 11 C]McN5 652X ((6S,10bR)-trans-( + )-1,2,3,5,6,10b-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]-isoquinoline), has recently been reported to be favorable for studying human 5-HT re-uptake site by positron emission tomography (PET) because of its rapid and high specific binding characteristics as radioligands. [ 11 C]McN5652X has been synthesized by S-methylation of the corresponding des-methyl precursor A with [ 11 C]iodomethane. One serious disadvantage of this procedure, however, is the lack of stability of A. The improved method for the synthesis of A has been desired. We have found that the decomposition of A is significantly reduced by adding a protecting agent for SH groups, dithiothreitol (DTT), into the reaction medium immediately after the demethylation of McN5652X. By using this stabilized precursor A, we have developed an automated procedure giving [ 11 C]McN5652X with 98.6±0.4% radiochemical purity in high specific activity (181.3±7.4GBq/μmol). Preclinical evaluation of the produ ct was carried out by injecting the solution of [ 11 C]McN5652X obtained by this procedure into mice. [ 11 C]McN5652X showed the high accumulation into mouse thalamus, striatum and cerebral cortex, organs known to have high level of 5-HT receptor density, after intravenous injection. Human PET studies also showed the high uptakes of this radioligand into the thalamus, striatum and midbrain

  11. Antidepressant-Like Effect of Isorhynchophylline in Mice.

    Science.gov (United States)

    Xian, Yan-Fang; Fan, Ding; Ip, Siu-Po; Mao, Qing-Qiu; Lin, Zhi-Xiu

    2017-02-01

    Isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.

  12. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites

    International Nuclear Information System (INIS)

    Battaglia, G.; Yeh, S.Y.; O'Hearn, E.; Molliver, M.E.; Kuhar, M.J.; De Souza, E.B.

    1987-01-01

    This study examines the effects of repeated systemic administration (20 mg/kg s.c., twice daily for 4 days) of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on levels of brain monoamines, their metabolites and on the density of monoamine uptake sites in various regions of rat brain. Marked reductions (30-60%) in the concentration of 5-hydroxyindoleacetic acid were observed in cerebral cortex, hippocampus, striatum, hypothalamus and midbrain at 2 weeks after a 4-day treatment regimen of MDMA or MDA; less consistent reductions in serotonin (5-HT) content were observed in these brain regions. In addition, both MDMA and MDA caused comparable and substantial reductions (50-75%) in the density of [ 3 H]paroxetine-labeled 5-HT uptake sites in all brain regions examined. In contrast, neither MDMA nor MDA caused any widespread or long-term changes in the content of the catecholaminergic markers (i.e., norepinephrine, dopamine, 3,4 dihydroxyphenylacetic acid and homovanillic acid) or in the number of [ 3 H]mazindol-labeled norepinephrine or dopamine uptake sites in the brain regions examined. These data demonstrate that MDMA and MDA cause long-lasting neurotoxic effects with respect to both the functional and structural integrity of serotonergic neurons in brain. Furthermore, our measurement of reductions in the density of 5-HT uptake sites provides a means for quantification of the neurodegenerative effects of MDMA and MDA on presynaptic 5-HT terminals

  13. Pattern recognition of neurotransmitters using multimode sensing.

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Moldoveanu, Iuliana; van Staden, Jacobus Frederick

    2014-05-30

    Pattern recognition is essential in chemical analysis of biological fluids. Reliable and sensitive methods for neurotransmitters analysis are needed. Therefore, we developed for pattern recognition of neurotransmitters: dopamine, epinephrine, norepinephrine a method based on multimode sensing. Multimode sensing was performed using microsensors based on diamond paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrine, hemin and protoporphyrin IX in stochastic and differential pulse voltammetry modes. Optimized working conditions: phosphate buffer solution of pH 3.01 and KCl 0.1mol/L (as electrolyte support), were determined using cyclic voltammetry and used in all measurements. The lowest limits of quantification were: 10(-10)mol/L for dopamine and epinephrine, and 10(-11)mol/L for norepinephrine. The multimode microsensors were selective over ascorbic and uric acids and the method facilitated reliable assay of neurotransmitters in urine samples, and therefore, the pattern recognition showed high reliability (RSDneurotransmitters on biological fluids at a lower determination level than chromatographic methods. The sampling of the biological fluids referees only to the buffering (1:1, v/v) with a phosphate buffer pH 3.01, while for chromatographic methods the sampling is laborious. Accordingly with the statistic evaluation of the results at 99.00% confidence level, both modes can be used for pattern recognition and quantification of neurotransmitters with high reliability. The best multimode microsensor was the one based on diamond paste modified with protoporphyrin IX. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer's disease.

    Science.gov (United States)

    Knez, Damijan; Sova, Matej; Košak, Urban; Gobec, Stanislav

    2017-05-01

    Accumulating evidence indicates a solid relationship between several enzymes and Alzheimer's disease. Cholinesterases and monoamine oxidases are closely associated with the disease symptomatology and progression and have been tackled simultaneously using several multifunctional ligands. This design strategy offers great chances to alter the course of Alzheimer's disease, in addition to alleviation of the symptoms. More than 15 years of research has led to the identification of various dual cholinesterase/monoamine oxidase inhibitors, while some showing positive outcomes in clinical trials, thus giving rise to additional research efforts in the field. The aim of this review is to provide an update on the novel dual inhibitors identified recently and to shed light on their therapeutic potential.

  15. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  16. Development of clinical study and application on dopaminergic neurotransmitters and neuroreceptor imaging

    International Nuclear Information System (INIS)

    Wang Rongfu

    2000-01-01

    In recent years, the neurotransmitter mapping has been rapidly developed from a lot of fundamental researches to the studies of clinical applications. At present, the dopaminergic neurotransmitter and receptor imaging in the central neurotransmitter mapping study are the most active area including dopaminergic receptor, dopaminergic neurotransmitter and dopaminergic transporter imaging, etc,. The nuclear medicine functional imaging technique with positron emission tomography and single photon emission computed tomography possesses potential advantages in the diagnosis and distinguished diagnosis of neuropsychiatric disorders and movement disorders, and in the study of recognition function

  17. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats

    Science.gov (United States)

    Clarke, M. S.; Prendergast, M. A.; Terry, A. V. Jr

    1999-01-01

    A substantial body of evidence indicates that aged-related changes in the fluidity and lipid composition of the plasma membrane contribute to cellular dysfunction in humans and other mammalian species. In the CNS, reductions in neuronal plasma membrane order (PMO) (i.e., increased plasma membrane fluidity) have been attributed to age as well as the presence of the beta-amyloid peptide-25-35, known to play an important role in the neuropathology of Alzheimer's disease (AD). These PMO increases may influence neurotransmitter synthesis, receptor binding, and second messenger systems as well as signal transduction pathways. The effects of neuronal PMO on learning and memory processes have not been adequately investigated, however. Based on the hypothesis that an increase in PMO may alter a number of aspects of synaptic transmission, we investigated several neurochemical and behavioral effects of the membrane ordering agent, PF-68. In cell culture, PF-68 (nmoles/mg SDS extractable protein) reduced [3H]norepinephrine (NE) uptake into differentiated PC-12 cells as well as reduced nicotine stimulated [3H]NE release. The compound (800-2400 microg/kg, i.p., resulting in nmoles/mg SDS extractable protein in the brain) decreased step-through latencies and increased the frequencies of crossing into the unsafe side of the chamber in inhibitory avoidance training. In the Morris water maze, PF-68 increased the latencies and swim distances required to locate a hidden platform and reduced the time spent and distance swam in the previous target quadrant during transfer (probe) trials. PF-68 did not impair performance of a well-learned working memory task, the rat delayed stimulus discrimination task (DSDT), however. Studies with 14C-labeled PF-68 indicated that significant (pmoles/mg wet tissue) levels of the compound entered the brain from peripheral (i.p.) injection. No PF-68 related changes were observed in swim speeds or in visual acuity tests in water maze experiments, rotorod

  18. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis.

    Directory of Open Access Journals (Sweden)

    Nabanita Chatterjee

    2011-01-01

    Full Text Available The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl, is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.

  19. A study of monoamine oxidase activity in fetal membranes.

    Science.gov (United States)

    Sekizawa, A; Ishikawa, H; Morimoto, T; Hirose, K; Suzuki, A; Saito, H; Yanaihara, T; Arai, Y; Oguchi, K

    1996-05-01

    To study the role of decidual monoamine oxidase (MAO)-A and -B activities before delivery, the relationship between MAO activity in fetal membranes and catecholamine (CA) concentration in amniotic fluid (AF) was determined. Fetal membranes and AF were obtained at the time of elective Cesarean section (CS group, n = 11) and Cesarean section due to fetal distress without labor pains (FD group, n = 5). MAO-A and -B activities were radiometrically measured using 14C-5-hydroxytriptamine for MAO-A substrate and 14C-benzylamine for MAO-B substrate. CA concentrations in AF were measured by high performance liquid chromatograph with an electro-chemical detector. Both MAO-A and -B activities in decidua obtained from CS were significantly lower than those obtained from FD. Both norepinephrine (NE) and epinephrine (EP) concentrations were significantly lower in the CS group than the FD group. A significant positive correlation between decidual MAO-A activity and NE concentration in AF was observed. No significant correlation was observed between MAO-B activity and the concentration of NE in AF. There was no correlation between EP concentrations and MAO activities. These results suggest that CA concentration in AF may be related to the activity of MAO in fetal membranes, determined by certain physiological processes during pregnancy. It has been suggested that metabolism of monoamines in fetal membranes also plays an important role in reducing monoamine influx into maternal myometrium from the AF.

  20. Monoamine oxidase inhibitors from Gentiana lutea.

    Science.gov (United States)

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  1. Liquid chromatography-mass spectrometry platform for both small neurotransmitters and neuropeptides in blood, with automatic and robust solid phase extraction

    Science.gov (United States)

    Johnsen, Elin; Leknes, Siri; Wilson, Steven Ray; Lundanes, Elsa

    2015-03-01

    Neurons communicate via chemical signals called neurotransmitters (NTs). The numerous identified NTs can have very different physiochemical properties (solubility, charge, size etc.), so quantification of the various NT classes traditionally requires several analytical platforms/methodologies. We here report that a diverse range of NTs, e.g. peptides oxytocin and vasopressin, monoamines adrenaline and serotonin, and amino acid GABA, can be simultaneously identified/measured in small samples, using an analytical platform based on liquid chromatography and high-resolution mass spectrometry (LC-MS). The automated platform is cost-efficient as manual sample preparation steps and one-time-use equipment are kept to a minimum. Zwitter-ionic HILIC stationary phases were used for both on-line solid phase extraction (SPE) and liquid chromatography (capillary format, cLC). This approach enabled compounds from all NT classes to elute in small volumes producing sharp and symmetric signals, and allowing precise quantifications of small samples, demonstrated with whole blood (100 microliters per sample). An additional robustness-enhancing feature is automatic filtration/filter back-flushing (AFFL), allowing hundreds of samples to be analyzed without any parts needing replacement. The platform can be installed by simple modification of a conventional LC-MS system.

  2. Functional relevance of neurotransmitter receptor heteromers in the central nervous system.

    Science.gov (United States)

    Ferré, Sergi; Ciruela, Francisco; Woods, Amina S; Lluis, Carme; Franco, Rafael

    2007-09-01

    The existence of neurotransmitter receptor heteromers is becoming broadly accepted and their functional significance is being revealed. Heteromerization of neurotransmitter receptors produces functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Neurotransmitter receptor heteromers can function as processors of computations that modulate cell signaling. Thus, the quantitative or qualitative aspects of the signaling generated by stimulation of any of the individual receptor units in the heteromer are different from those obtained during coactivation. Furthermore, recent studies demonstrate that some neurotransmitter receptor heteromers can exert an effect as processors of computations that directly modulate both pre- and postsynaptic neurotransmission. This is illustrated by the analysis of striatal receptor heteromers that control striatal glutamatergic neurotransmission.

  3. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    Science.gov (United States)

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  4. Insomnia, platelet serotonin and platelet monoamine oxidase in chronic alcoholism.

    Science.gov (United States)

    Nenadic Sviglin, Korona; Nedic, Gordana; Nikolac, Matea; Mustapic, Maja; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2011-08-18

    Insomnia is a common sleep disorder frequently occurring in chronic alcoholic patients. Neurobiological basis of insomnia, as well as of alcoholism, is associated with disrupted functions of the main neurotransmitter systems, including the serotonin (5-hydroxytryptamine, 5-HT) system. Blood platelets are considered a limited peripheral model for the central 5-HT neurons, since both platelets and central 5-HT synaptosomes have similar dynamics of 5-HT. Platelet 5-HT concentration and platelet monoamine oxidase type B (MAO-B) are assumed to represent biomarkers for particular symptoms and behaviors in psychiatric disorders. The hypothesis of this study was that platelet 5-HT concentration and platelet MAO-B activity will be altered in chronic alcoholic patients with insomnia compared to comparable values in patients without insomnia. The study included 498 subjects: 395 male and 103 female medication-free patients with alcohol dependence and 502 healthy control subjects: 325 men and 177 women. The effects of early, middle and late insomnia (evaluated using the Hamilton Depression Rating Scale), as well as sex, age and smoking on platelet 5-HT concentration and platelet MAO-B activity were evaluated using one-way ANOVA and multiple regression analysis by the stepwise method. Platelet 5-HT concentration, but not platelet MAO-B activity, was significantly reduced in alcoholic patients with insomnia compared to patients without insomnia. Multiple regression analysis revealed that platelet 5-HT concentration was affected by middle insomnia, smoking and sex, while platelet MAO activity was affected only by sex and age. The present and previous data suggest that platelet 5-HT concentration might be used, after controlling for sex and smoking, as a biomarker for insomnia in alcoholism, PTSD and in rotating shift workers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  6. Reducing renal uptake of 9Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues

    International Nuclear Information System (INIS)

    Miao Yubin; Fisher, Darrell R.; Quinn, Thomas P.

    2006-01-01

    Objective: The purpose of this study was to improve the tumor-to-kidney uptake ratios of 9 Y- and 177 Lu-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Re-Cys 3,4,1 , D-Phe 7 , Arg 11 ]α-melanocyte stimulating hormone 3-13 {DOTA-Re(Arg 11 )CCMSH} through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. Methods: A new peptide of DOTA-Re(Glu 2 , Arg 11 )CCMSH was designed, synthesized and labeled with 9 Y and 177 Lu. Pharmacokinetics of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH was determined in B16/F1 murine melanoma-bearing C57 mice. Results: 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH exhibited significantly (P 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH at 30 min and at 2, 4 and 24 h after dose administration. The renal uptake values of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH were 28.16% and 28.81% of those of 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH, respectively, at 4 h postinjection. 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH displayed higher tumor-to-kidney uptake ratios than 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH at 30 min and at 2, 4 and 24 h after dose administration. The tumor-to-kidney uptake ratio of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH was 2.28 and 1.69 times of 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH, respectively, at 4 h postinjection. The 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH activity accumulation was low in normal organs except for kidney. Conclusions: Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma

  7. Positron emission tomography shows high specific uptake of racemic carbon-11 labelled norepinephrine in the primate heart

    International Nuclear Information System (INIS)

    Farde, L.; Halldin, C.; Naagren, K.; Suhara, Tetsuya; Karlsson, P.; Schoeps, K.O.; Swahn, C.G.; Bone, D.

    1994-01-01

    (-)-Norepinephrine is the predominant neurotransmitter of the sympathetic innervation of the heart. Racemic norepinephrine was labelled with carbon-11 and injected i.v. into Cynomolgus monkeys. Five minutes after injection there was a more than tenfold higher radioactivity in the heart than in adjacent tissue. Pretreatment with the norepinephrine reuptake inhibitor desipramine reduced the uptake by more than 80%. The high specific uptake of racemic [ 11 C]norepinephrine indicates that enatiomerically pure(-)-[ 11 C]norepinephrine has promising potential for detailed mapping of the sympathetic innervation of the human myocardium. (orig.)

  8. Positron emission tomography shows high specific uptake of racemic carbon-11 labelled norepinephrine in the primate heart

    Energy Technology Data Exchange (ETDEWEB)

    Farde, L [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden); Halldin, C [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden); Naagren, K [Turku Univ., Cyclotron/PET Center (Finland); Suhara, Tetsuya [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden); Karlsson, P [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden); Schoeps, K O [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden); Swahn, C G [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden); Bone, D [Dept. of Clinical Neuroscience, Karolinska Inst., Stockholm (Sweden)

    1994-04-01

    (-)-Norepinephrine is the predominant neurotransmitter of the sympathetic innervation of the heart. Racemic norepinephrine was labelled with carbon-11 and injected i.v. into Cynomolgus monkeys. Five minutes after injection there was a more than tenfold higher radioactivity in the heart than in adjacent tissue. Pretreatment with the norepinephrine reuptake inhibitor desipramine reduced the uptake by more than 80%. The high specific uptake of racemic [[sup 11]C]norepinephrine indicates that enatiomerically pure(-)-[[sup 11]C]norepinephrine has promising potential for detailed mapping of the sympathetic innervation of the human myocardium. (orig.)

  9. NEUROTRANSMITTER ABNORMALITIES AND RESPONSE TO SUPPLEMENTATION IN SPG11

    Science.gov (United States)

    Vanderver, Adeline; Tonduti, Davide; Auerbach, Sarah; Schmidt, Johanna L.; Parikh, Sumit; Gowans, Gordon C.; Jackson, Kelly E.; Brock, Pamela L.; Patterson, Marc; Nehrebecky, Michelle; Godfrey, Rena; Zein, Wadih M.; Gahl, William; Toro, Camilo

    2012-01-01

    Objective To report the detection of secondary neurotransmitter abnormalities in a group of SPG11 patients and describe treatment with L-dopa/carbidopa and sapropterin. Design Case reports Setting National Institutes of Health in the context of the Undiagnosed Disease Program; Children’s National Medical Center in the context of Myelin Disorders Bioregistry Program Patients Four SPG11 patients with a clinical picture of progressive spastic paraparesis complicated by extrapyramidal symptoms and maculopathy Interventions L-dopa/carbidopa and sapropterin Results 3/4 patients presented secondary neurotransmitter abnormalities; 4/4 partially responded to L-dopa as well as sapropterin Conclusions In the SPG11 patient with extrapyramidal symptoms, a trial of L-dopa/carbidopa and sapropterin and/or evaluation of cerebrospinal fluid neurotransmitters should be considered. PMID:22749184

  10. Liquid Chromatography-Tandem Mass Spectrometry in Studies of Neurotransmitters and Their Metabolites in the Brain

    OpenAIRE

    Uutela, Päivi

    2009-01-01

    Neurotransmitters transfer chemically the electrical impulse from one neuron to another in the brain. The concentration of neurotransmitters in many neurological disorders is altered. The measurement of neurotransmitters in the brain is needed to understand how these diseases develop and how they can be treated. Neurotransmitters can be extracted from the brains of freely moving, alert animals by microdialysis technique. The concentration of neurotransmitters and their metabolites in brain mi...

  11. Effect of carrier on labeling and biodistribution of Re-188-Hydroxyethylidene diphosphonate

    International Nuclear Information System (INIS)

    Chang, Young Soo; Jeong, Jae Min; Kim, Bo Kwang; Cho, Jung Hyuk; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Lee, Seung Jin; Jin, Ren Jie; Lee, Sang Eun

    2000-01-01

    Re-188-Hydroxyethylidene diphosphonate (HEDP) is a new cost-effective agent for systemic radioisotope therapy of metastatic bone pain. We investigated the influence of carrier for labeling and biodistribution of Re-188-HEDP using HEDP kit with or without carrier (KReO 4 ). The kits (HEDP 15 mg, gentisic acid 4 mg and SnC1 2 .2H 2 O 4.5 mg) with or without carrier (KReO 4 0.1 mg) were labeled with Re-188 solution, made available from an in-house generator by boiling for 15 min. We compared the labeling efficiency and stability of carrier-added and carrier-free preparations of Re-188-HEDP. Biodistribution and imaging studies of each preparation were performed in ICR mice (1.85-3.7 MBq/0.1 ml) and SD rats (74.1-85.2 MBq/0.5 ml). The carrier-added preparation showed high labeling efficiency (95% at pH 5) and high stability in serum (88%, 3hr). However, the carrier-free preparation showed low labeling efficiency (59% at pH 5) and low stability (43%, 3 hr). The carrier-added preparation showed high uptake in bone and low uptake in stomach and kidneys. However, the carrier-free preparation showed lower uptake in bone and higher uptake in both stomach and kidneys, which is supposed to be due to released perrhenate. The carrier-added preparation also showed better images with higher skeletal accumulation, lower uptake in other organs and lower soft tissue uptake than the carrier-free preparation. The results of these studies clearly demonstrate that addition of carrier perrhenate is required for high labeling efficiency, stability, bone uptake and good image quality of Re-188-HEDP.=20

  12. Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions

    Directory of Open Access Journals (Sweden)

    Alain M Gardier

    2013-08-01

    Full Text Available Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of Selective serotonin reuptake inhibitors (SSRIs in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and to identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 90s, and since then in conscious wild-type or knockout mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines, and re-uptake by selective transporters (e.g., SERT for serotonin 5-HT. Complementary to electrophysiology, this technique reflects presynaptic monoamines release and intrasynaptic events corresponding to ≈ 80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limit the antidepressant-like activity of Selective Serotonin Reuptake Inhibitors (SSRI. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed Rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in Human, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and hetero-receptors and ICM helped to clarify the role of the

  13. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.

    Science.gov (United States)

    Klockow, Jessica L; Hettie, Kenneth S; Secor, Kristen E; Barman, Dipti N; Glass, Timothy E

    2015-08-03

    Tunable dual-analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary-amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin-3-aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn-on fluorescence output. A pH-functionality was directly integrated into the fluorophore π-system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters. By altering the pH-sensitive unit with various electron-donating and -withdrawing sulfonamide substituents, we identified a correlation between the pKa of the pH-sensitive group and the fluorescence output from the activated fluorophore. In doing so, we achieved a twelvefold fluorescence enhancement upon evaluating the ExoSensors under conditions that mimic exocytosis. ExoSensors are aptly suited to serve as molecular imaging tools that allow for the direct visualization of only the neurotransmitters that are released from secretory vesicles upon exocytosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of carrier on labeling and biodistribution of Re-188-hydroxyethylidene disphosphonate (HEDP)

    International Nuclear Information System (INIS)

    Jang, Y. S.; Jeong, J. M.; Kim, B. K.; Lee, D. S.; Jeong, J. K.; Lee, M. C.; Cho, J. H.

    1998-01-01

    Re-188- hydroxyethylidene disphosphonate (HEDP) is a new cost-effective agent for systemic radioisotope therapy of metastatic bone pain. We investigated the influence of carrier for labeling and biodistribution of Re-188-HEDP using HEDP kit(HEDP 15 mg, gentisic acid 4 mg and SnCl 2 2H 2 O 4.5 mg) with or without carrier (KReO 4 0.1 mg). The kits labeled with Re-188 solution available from an in-house generator by boiling for 15 min. The generator provides high 70-80 % equil yields and has an indefnite self-life. We compared the stability of carrier-added(CA) and carrier-free(CF) preparations of Re-188-HEDP. Biodistribution and imaging studies of each preparation were performed in ICR mice(1.85-3.7 MBq/0.1 ml) and SD rats(74.1-85.2 MBq/0.5 ml). The CA preparation showed high labeling efficiency(95% at pH 5) and high stability in serum(88%, 3 hr). However, the CF preparation showed low labeling efficiency(59% at pH 5) and low stability(43%, 3 hr). The CA preparation showed high uptake in bone and low uptake in stomach and kidneys. However, the CF preparation showed lower uptake in bone and higher uptake in both stomach and kidney, which is supposed to be due to released perrhenate. The CA preparation also showed better images with higher skeletal accumulation, lower uptake in other organs and lower soft tissue uptake than the CF preparation of carrier perrhenate is required for high labeling efficiency, stability, bone uptake and good image quality of Re-188-HEDP

  15. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs

    Directory of Open Access Journals (Sweden)

    Dubravka Svob Strac

    2016-11-01

    Full Text Available A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions and comorbid psychiatric disorders commonly seen in people with epilepsy. However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine and melatonin in epilepsy. Recent experimental, clinical and genetic evidence, will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of one-molecule-one-target, have turned out to be effective only in a percentage of people with epilepsy. Although no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins present on both neurons and glia cells may represent a new approach in the management of seizures and their generation as well as comorbid neuropsychiatric disorders.

  16. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs

    Science.gov (United States)

    Svob Strac, Dubravka; Pivac, Nela; Smolders, Ilse J.; Fogel, Wieslawa A.; De Deurwaerdere, Philippe; Di Giovanni, Giuseppe

    2016-01-01

    A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of “one-molecule-one-target,” have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders. PMID:27891070

  17. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors

    Directory of Open Access Journals (Sweden)

    Vladimir S. Naumenko

    2018-01-01

    Full Text Available The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs and ligand-gated ion channels (LICs. From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.

  18. Bone uptake by di and tetraphosphonates labeled with Rhenium-188

    International Nuclear Information System (INIS)

    Faintuch, B.L.; Osso, J.A. Jr.; Muramoto, E.; Faintuch, S.

    2002-01-01

    MDP (methylenediphosphonate) and HEDP (hydroxyethylidenediphosphonate), both diphosphonates, and EDTMP (ethylenediamine tetramethylene phosphonic acid) a tetraphosphonate ligand, have been labeled with 188 Re for use in metastatic bone-pain palliation. The aim of this study was a comparison between the three complexes 188 Re-MDP, 188 Re-HEDP and 188 Re-EDTMP concerning the complexation conditions, in order to achieve maximum yield, stability and bone uptake. Methods: MDP was dissolved in water and HEDP and EDTMP were dissolved in NaOH 1N followed by decreasing pH with HCl 1N. To all mixtures stannous chloride and 188 ReO 4 were added in a nitrogen atmosphere. The preparations were heated in a boiling water bath for 15 min. The yields as well as the radiochemical stability were estimated by ITLC. Different concentrations of phosphonates and stannous chloride were evaluated. Biodistribution studies in swiss mice were done for the three 188 Re-phosphonates that presented the best radiochemical yield. Results: For 188 Re-MDP and 188 Re-HEDP the optimal ligand concentration for maximum complexation was 30 mg whereas for 188 Re-EDTMP, it was 40 mg. The best amount of SnCl 2 .2H 2 O was 2 mg/mL for MDP, 3 mg/mL for HEDP and 1 mg/mL for EDTMP. In these conditions the three complexes showed a complexation yield above 95%. All of them presented 4-hour radiochemical stability without the need for ascorbic acid solution, but for 24 hours this stability existed only in the presence of that substance otherwise re-oxidation of 188 Re occurred. All products showed a great uptake by the kidneys. 188 Re-EDTMP had the greatest uptake by the bone (3.13 ± 0.18% ID/g) followed by 188 Re-MDP (1.18 ± 0.05%ID/g) and 188 Re-HEDP (1.03 ± 0.12 %ID/g), 4 hour postinjection. 188 Re-EDTMP displayed a bone/muscle ratio of 28.5, 188 Re-MDP 4.9 and 188 Re-HEDP 4.9. Conclusion: 188 Re-EDTMP demonstrated the best potential as a radiopharmaceutical for bone cancer pain relief, encouraging further

  19. Monoamine oxidase B single-photon emission tomography with [123I]Ro 43-0463: imaging in volunteers and patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Buck, A.; Frey, L.D.; Blaeuenstein, P.; Schubiger, P.; Kraemer, G.; Siegel, A.; Weber, B.; Wieser, H.G.

    1998-01-01

    Imaging of monoamine oxidase of subtype B (MAO B) is of interest in various neurological diseases. In the past non-invasive assessment of MAO B has only been possible with positron emission tomography (PET) ligands. Given the limited availability of PET, a single-photon emission tomography (SPET) ligand would be desirable. In this study SPET imaging with the new MAO B inhibitor [ 123 I]Ro 43-0463 was performed in five volunteers and nine patients with temporal lobe epilepsy (TLE). In two volunteers a second study was performed 12 h following blockade with deprenyl. In the TLE patients the tracer was administered as bolus (n = 4) or as prolonged infusion (n = 5). The regional uptake pattern correlated well with the known distribution of MAO B. In the two blocking studies ligand uptake was substantially reduced compared with baseline. In the TLE patients increased uptake was found in the ipsilateral mesial temporal lobe and, surprisingly, in the ipsilateral putamen. This study indicates the potential of the new SPET ligand [ 123 I]Ro 43-0463 to map MAO B concentration in the human brain. The new finding of increased MAO B in the putamen of TLE patients needs further studies to elucidate its exact pathophysiology. (orig.)

  20. Macrocyclic Gd(3+) complexes with pendant crown ethers designed for binding zwitterionic neurotransmitters.

    Science.gov (United States)

    Oukhatar, Fatima; Meudal, Hervé; Landon, Céline; Logothetis, Nikos K; Platas-Iglesias, Carlos; Angelovski, Goran; Tóth, Éva

    2015-07-27

    A series of Gd(3+) complexes exhibiting a relaxometric response to zwitterionic amino acid neurotransmitters was synthesized. The design concept involves ditopic interactions 1) between a positively charged and coordinatively unsaturated Gd(3+) chelate and the carboxylate group of the neurotransmitters and 2) between an azacrown ether appended to the chelate and the amino group of the neurotransmitters. The chelates differ in the nature and length of the linker connecting the cyclen-type macrocycle that binds the Ln(3+) ion and the crown ether. The complexes are monohydrated, but they exhibit high proton relaxivities (up to 7.7 mM(-1)  s(-1) at 60 MHz, 310 K) due to slow molecular tumbling. The formation of ternary complexes with neurotransmitters was monitored by (1) H relaxometric titrations of the Gd(3+) complexes and by luminescence measurements on the Eu(3+) and Tb(3+) analogues at pH 7.4. The remarkable relaxivity decrease (≈80 %) observed on neurotransmitter binding is related to the decrease in the hydration number, as evidenced by luminescence lifetime measurements on the Eu(3+) complexes. These complexes show affinity for amino acid neurotransmitters in the millimolar range, which can be suited to imaging concentrations of synaptically released neurotransmitters. They display good selectivity over non-amino acid neurotransmitters (acetylcholine, serotonin, and noradrenaline) and hydrogenphosphate, but selectivity over hydrogencarbonate was not achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity.

    Science.gov (United States)

    Di Chiara, G.; Tanda, G.; Carboni, E.

    1996-11-01

    Although microdialysis is commonly understood as a method of sampling low molecular weight compounds in the extracellular compartment of tissues, this definition appears insufficient to specifically describe brain microdialysis of neurotransmitters. In fact, transmitter overflow from the brain into dialysates is critically dependent upon the composition of the perfusing Ringer. Therefore, the dialysing Ringer not only recovers the transmitter from the extracellular brain fluid but is a main determinant of its in-vivo release. Two types of brain microdialysis are distinguished: quantitative micro-dialysis and conventional microdialysis. Quantitative microdialysis provides an estimate of neurotransmitter concentrations in the extracellular fluid in contact with the probe. However, this information might poorly reflect the kinetics of neurotransmitter release in vivo. Conventional microdialysis involves perfusion at a constant rate with a transmitter-free Ringer, resulting in the formation of a steep neurotransmitter concentration gradient extending from the Ringer into the extracellular fluid. This artificial gradient might be critical for the ability of conventional microdialysis to detect and resolve phasic changes in neurotransmitter release taking place in the implanted area. On the basis of these characteristics, conventional microdialysis of neurotransmitters can be conceptualized as a model of the in-vivo release of neurotransmitters in the brain. As such, the criteria of face-validity, construct-validity and predictive-validity should be applied to select the most appropriate experimental conditions for estimating neurotransmitter release in specific brain areas in relation to behaviour.

  2. Dynamic neurotransmitter interactions measured with PET

    International Nuclear Information System (INIS)

    Schiffer, W.K.; Dewey, S.L.

    2001-01-01

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  3. Dynamic neurotransmitter interactions measured with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  4. 188Re-SSS lipiodol: radiolabelling and biodistribution following injection into the hepatic artery of rats bearing hepatoma.

    Science.gov (United States)

    Garin, Etienne; Denizot, Benoit; Noiret, Nicolas; Lepareur, Nicolas; Roux, Jerome; Moreau, Myriam; Herry, Jean-Yves; Bourguet, Patrick; Benoit, Jean-Pierre; Lejeune, Jean-Jacques

    2004-10-01

    Although intra-arterial radiation therapy with 131I-lipiodol is a useful therapeutic approach to the treatment of hepatocellular carcinoma, various disadvantages limit its use. To describe the development of a method for the labelling of lipiodol with 188Re-SSS (188Re (S2CPh)(S3CPh)2 complex) and to investigate its biodistribution after injection into the hepatic artery of rats with hepatoma. 188Re-SSS lipiodol was obtained after dissolving a chelating agent, previously labelled with 188Re, in cold lipiodol. The radiochemical purity (RCP) of labelling was checked immediately. The 188Re-SSS lipiodol was injected into the hepatic artery of nine rats with a Novikoff hepatoma. They were sacrificed 1, 24 and 48 h after injection, and used for ex vivo counting. Labelling of 188Re-SSS lipiodol was achieved with a yield of 97.3+/-2.1%. The immediate RCP was 94.1+/-1.7%. Ex vivo counting confirmed a predominantly hepatic uptake, with a good tumoral retention of 188Re-SSS lipiodol, a weak pulmonary uptake and a very faint digestive uptake. The 'tumour/non-tumoral liver' ratio was high at 1, 24 and 48 h after injection (2.9+/-1.5, 4.1+/-/4.1 and 4.1+/-0.7, respectively). Using the method described here, 188Re-SSS lipiodol can be obtained with a very high yield and a satisfactory RCP. The biodistribution in rats with hepatoma indicates a good tumoral retention of 188Re-SSS lipiodol associated with a predominant hepatic uptake, a weak pulmonary uptake and a very faint digestive uptake. This product should be considered for intra-arterial radiation therapy in human hepatoma.

  5. [{sup 11}C]S.L.(25.1188), a new radioligand to study the monoamine oxidase type B with PET: preclinical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Saba, W.; Valette, H.; Peyronneau, M.A.; Bramoulle, Y.; Coulon, C.; Dolle, F.; Bottlaender, M. [Service Hospitalier Frederic Joliot, IIBM/DSV, 91 - Orsay (France); Curet, O.; George, P. [Sanofi-Aventis, 92 - Bagneux (France)

    2008-02-15

    Introduction. - Monoamine oxidase (M.A.O.) is a flavin containing enzyme, that catalyzes the oxidative deamination of various amines and neurotransmitters. Two isoforms exist, M.A.O.-A and M.A.O.-B. Variations in M.A.O. activity may be associated to human disease such as Parkinson and Alzheimer disease. Few radiotracers have been developed for M.A.O. PET studies such as [{sup 11}C]deprenyl, an irreversible M.A.O.-B inhibitor. Recently an oxazolidinone derivative, S.L.- 25.1188 ((S)-5-methoxy-methyl-3-[6-(4,4,4-tri-fluoro butoxy)- benzo[d]isoxazol-3-yl]-oxazolidin-2-one), belonging to a new generation of selective and reversible M.A.O.-B inhibitors was developed and showed in vitro a high selectivity for M.A.O.B. [1]. The aim of this study was to characterize [{sup 11}C]S.L.- 25.1188 as radioligand for in vivo PET examination of M.A.O.-B. Materials and methods. - PET studies of the brain distribution were carried out in male Papio anubis baboons. Selectivity and reversibility of [{sup 11}C]S.L.-25.1188 binding for M.A.O.-B was assessed by pre-treatment or displacement experiments (30 min before and after tracer injection, respectively) using reference ligands for M.A.O.-B (deprenyl: 2 mg/kg i.v. and lazabemide: 0.5 mg/kg i.v.) or by displacement experiments using unlabelled S.L.-25.1188 (1 mg/kg, i.v., 30 min after tracer injection). Distribution volume (D.V.) was calculated using 2-tissue-compartment model. The saturable binding following pre-treatment with deprenyl was considered as the specific binding. Results. - After injection, [1{sup 1C}]S.L.-25.1188 presents a rapid phase of distribution in blood (about 5 min), followed by a elimination with T1/2 of 75 min. The Blood to plasma concentration ratio was constant during the experimentation (0.9 {+-} .04) consistent with a similar kinetic of [{sup 11}C]S.L.- 25.1188 in both blood and plasma. Metabolism analysis showed that [{sup 11}C]S.L.-25.1188 is stable in vivo. In the brain, uptake in different areas was

  6. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells.

    Science.gov (United States)

    Nagatsu, T; Sawada, M

    2006-01-01

    Monoamine oxidases A and B (MAO A and MAO B) are the major enzymes that catalyze the oxidative deamination of monoamine neurotaransmitters such as dopamine (DA), noradrenaline, and serotonin in the central and peripheral nervous systems. MAO B is mainly localized in glial cells. MAO B also oxidizes the xenobiotic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to a parkinsonism-producing neurotoxin, 1-methyl-4-phenyl-pyridinium (MPP+). MAO B may be closely related to the pathogenesis of Parkinson's disease (PD), in which neuromelanin-containing DA neurons in the substantia nigra projecting to the striatum in the brain selectively degenerate. MAO B degrades the neurotransmitter DA that is deficient in the nigro-striatal region in PD, and forms H2O2 and toxic aldehyde metabolites of DA. H2O2 produces highly toxic reactive oxygen species (ROS) by Fenton reaction that is catalyzed by iron and neuromelanin. MAO B inhibitors such as L-(-)-deprenyl (selegiline) and rasagiline are effective for the treatment of PD. Concerning the mechanism of the clinical efficacy of MAO B inhibitors in PD, the inhibition of DA degradation (a symptomatic effect) and also the prevention of the formation of neurotoxic DA metabolites, i.e., ROS and dopamine derived aldehydes have been speculated. As another mechanism of clinical efficacy, MAO B inhibitors such as selegiline are speculated to have neuroprotective effects to prevent progress of PD. The possible mechanism of neuroprotection of MAO B inhibitors may be related not only to MAO B inhibition but also to induction and activation of multiple factors for anti-oxidative stress and anti-apoptosis: i.e., catalase, superoxide dismutase 1 and 2, thioredoxin, Bcl-2, the cellular poly(ADP-ribosyl)ation, and binding to glyceraldehydes-3-phosphate dehydrogenase (GAPDH). Furthermore, it should be noted that selegiline increases production of neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial

  7. Limited energy supply in Müller cells alters glutamate uptake

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Poulsen, Kristian Arild

    2014-01-01

    The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study...... evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins...... were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose...

  8. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice

    DEFF Research Database (Denmark)

    Von Linstow, C. U.; Severino, Maurizio; Metaxas, Athanasios

    2017-01-01

    , but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APPSWE/PS1δE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild......-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels...... of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice...

  9. Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance.

    Science.gov (United States)

    Christian, Catherine A; Huguenard, John R

    2013-10-01

    Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.

  10. Selectivity of phenothiazine cholinesterase inhibitors for neurotransmitter systems.

    Science.gov (United States)

    Darvesh, Sultan; Macdonald, Ian R; Martin, Earl

    2013-07-01

    Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer's disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer's disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of x-irradiation induced loss of cerebellar granule cells on the synaptosomal levels and the high affinity uptake of amino acids

    International Nuclear Information System (INIS)

    Rohde, B.H.; Rea, M.A.; Simon, J.R.; McBride, W.J.

    1979-01-01

    Crude synaptosomal (P 2 ) preparations were obtained from the cerebella of rats in which the granule cell population had been selectively reduced by X-irradiation treatment and from the cerebella of control animals. In the P 2 fraction form control cerebella, the level of glutamate was greater than any other of the 5 amino acids measured and was 2-fold higher than taurine. The content of taurine, GABA, glycine, and alanine were not changed by the X-irradiation treatment. The uptake of 1.0 micrometers-L-[ 3 H]glutamate and L-[ 3 H]aspartate was reduced approx 20% by X-irradiation treatment, whereas the uptake of 1.0 micrometers-[ 3 H]GABA and [ 3 H]taurine was unchanged. In a second study, the uptake of L-[ 3 H]glutamate, L-[ 3 H]aspartate and [ 3 H]GABA was measured using P 2 fractions obtained from the cerebella of rats in which the population of granule, stellate and basket cells had been reduced by X-irradiation treatment. The uptake of 1.0 micrometers-L-[ 3 H]glutamate, L-[ 3 H]aspartate and [ 3 H]GABA was significantly (P < 0.05) reduced to 57.68 and 59% respectively, of control values. The data are discussed in terms of glutamate being the excitatory neurotransmitter released from granule cells and GABA being the inhibitory neurotransmitter released from basket cells. (author)

  12. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  13. Pharmacological approaches for Alzheimer's disease: neurotransmitter as drug targets.

    Science.gov (United States)

    Prakash, Atish; Kalra, Jaspreet; Mani, Vasudevan; Ramasamy, Kalavathy; Majeed, Abu Bakar Abdul

    2015-01-01

    Alzheimer's disease (AD) is the most common CNS disorder occurring worldwide. There is neither proven effective prevention for AD nor a cure for patients with this disorder. Hence, there is an urgent need to develop safer and more efficacious drugs to help combat the tremendous increase in disease progression. The present review is an attempt at discussing the treatment strategies and drugs under clinical trials governing the modulation of neurotransmitter. Therefore, looking at neurotransmitter abnormalities, there is an urge for developing the pharmacological approaches aimed at correcting those abnormalities and dysfunctioning. In addition, this review also discusses the drugs that are in Phase III trials for the treatment of AD. Despite advances in treatment strategies aimed at correcting neurotransmitter abnormalities, there exists a need for the development of drug therapies focusing on the attempts to remove the pathogenomic protein deposits, thus combating the disease progression.

  14. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  15. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-01-01

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  16. A neurotransmitter transporter encoded by the Drosophila inebriated gene

    Science.gov (United States)

    Soehnge, Holly; Huang, Xi; Becker, Marie; Whitley, Penn; Conover, Diana; Stern, Michael

    1996-01-01

    Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron. PMID:8917579

  17. Effects of antibiotics on uptake of calcium into isolated nerve terminals

    International Nuclear Information System (INIS)

    Atchison, W.D.; Adgate, L.; Beaman, C.M.

    1988-01-01

    The goal of the present study was to determine whether several antibiotics which are known to block neuromuscular transmission would impair depolarization-dependent and/or -independent uptake of calcium into isolated nerve terminals prepared from forebrain synaptosomes of rats by conventional methods. Antibiotics tested for potential block of Ca++ uptake included the aminoglycosides neomycin and streptomycin, the lincosamide clindamycin, oxytetracycline and polymyxin B. Drugs were applied in concentrations ranging from 1 to 1000 microM. Uptake of 45Ca was determined during depolarization induced by an elevated K+ concentration (77.5 mM). Influxes of 45Ca during 1 and 10 sec of depolarization were used to assess Ca++ uptake via a fast, inactivating path and total uptake, respectively. Uptake of 45Ca during 10 sec of depolarization into synaptosomes which were previously depolarized for 10 sec in the presence of 77.5 mM K+ but in the absence of external Ca++ was used to measure uptake during a slow, noninactivating path. Total depolarization-dependent uptake of 45Ca was depressed significantly by all antibiotics tested except oxytetracycline; however, the various agents differed with respect to their efficacy and potency as blockers of Ca influx. The fast component of uptake, which is thought to be associated with neurotransmitter release, was decreased significantly by all antibiotics. Neomycin and polymyxin were the most potent and most effective at lowering fast phase 45Ca influx; streptomycin, was intermediate in effectiveness whereas clindamycin and oxytetracycline were only effective at concentrations greater than or equal to 100 microM. Only clindamycin, streptomycin and polymyxin B caused significant reductions in the slow phase of 45Ca uptake

  18. Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure.

    Science.gov (United States)

    Tufi, Sara; Leonards, Pim; Lamoree, Marja; de Boer, Jacob; Legler, Juliette; Legradi, Jessica

    2016-03-15

    During early development, neurotransmitters are important stimulants for the development of the central nervous system. Although the development of different neuronal cell types during early zebrafish (Danio rerio) development is well-studied, little is known of the levels of neurotransmitters, their precursors and metabolites during development, and how these levels are affected by exposure to environmental contaminants. A method based on hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry has been applied for the first time to zebrafish embryos and larvae to study five neurotransmitter systems in parallel, including the dopaminergic-andrenergic, glutaminergic-GABAnergic, serotoninergic, histaminergic, and cholinergic systems. Our method enables the quantification of neurotransmitters and their precursors and metabolites in whole zebrafish from the period of zygote to free-swimming larvae 6 days postfertilization (dpf). We observed a developmental stage-dependent pattern with clear differences between the first 2 days of development and the following days. Whereas the neurotransmitter levels steadily increased, the precursors showed a peak at 3 dpf. After exposure to several pesticides, significant differences in concentrations of neurotransmitters and precursors were observed. Our study revealed new insights about neurotransmitter systems during early zebrafish development and showed the usefulness of our approach for environmental neurotoxicity studies.

  19. Temperature dependence of electrical properties of mixture of exogenous neurotransmitters dopamine and epinephrine

    Science.gov (United States)

    Patki, Mugdha; Patil, Vidya

    2016-05-01

    Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.

  20. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research.

    Science.gov (United States)

    Otsuka, Masanori

    2007-03-01

    PART I DESCRIBES IMPORTANT CONTRIBUTIONS MADE BY SOME JAPANESE PIONEERS IN THE FIELD OF NEUROTRANSMITTERS: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in striatum, its reduction in a patient with Parkinson's disease and the treatment with DOPA). In Part II, I present some of my reflections on my research on neurotransmitters. The work of my colleagues and myself has made some significant contributions to the establishment of neurotransmitter roles played by GABA and substance P, the first amino acid and the first peptide neurotransmitters, respectively. By the early 1960s, 3 substances, i.e., acetylcholine, noradrenaline, and adrenaline, had been established as neurotransmitters. Now the number of neurotransmitters is believed to be as many as 50 or even more mainly due to the inclusion of several amino acids and a large number of peptide transmitters.

  1. Psychotropic and neurotropic drugs and neurotransmitter receptors

    International Nuclear Information System (INIS)

    Takahashi, Ryo

    1986-01-01

    Neurotransmitters are important in nervous and mental diseases because of their part in the pathogenesis of such diseases; at the same time, they play significant roles in the actions of effective therapeutic drugs. Studies of the mechanisms involved in the actions of such drugs not only generate useful methods to elucidate the pathogenesis of nervous and mental disorders but also serve as indispensable means of developing new drugs. In this field, investigations using both animal models of certain diseases and healthy animals are essential. Development of these animal models is urgently required. In this workshop, studies were presented of the mechanisms of action of major neuropsychotropic drugs such as anxiolytics, antidepressants, and antipsychotics, assessed in terms of the parts played by neurotransmitters and receptors. (Auth.)

  2. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD

    Directory of Open Access Journals (Sweden)

    Dervola Kine S

    2012-12-01

    Full Text Available Abstract Background Previous reports suggest that omega-3 (n-3 polyunsaturated fatty acids (PUFA supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. Methods We used spontaneously hypertensive rats (SHR. SHR dams were given n-3 PUFA (EPA and DHA-enriched feed (n-6/n-3 of 1:2.7 during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY control rats were given control-feed (n-6/n-3 of 7:1. During postnatal days (PND 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. Results n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. Conclusions Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms

  3. The Anti-Inflammatory Effects of Blueberries in an Animal Model of Post-Traumatic Stress Disorder (PTSD).

    Science.gov (United States)

    Ebenezer, Philip J; Wilson, C Brad; Wilson, Leslie D; Nair, Anand R; J, Francis

    2016-01-01

    Post-traumatic stress disorder (PTSD) is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC) and hippocampus (HC). The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs), but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE) as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2%) or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS), gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD.

  4. The Anti-Inflammatory Effects of Blueberries in an Animal Model of Post-Traumatic Stress Disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Philip J Ebenezer

    Full Text Available Post-traumatic stress disorder (PTSD is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC and hippocampus (HC. The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs, but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2% or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS, gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD.

  5. Biological Background of Kh.DIC Mice and Their Learning and Memory Defects

    Institute of Scientific and Technical Information of China (English)

    潘卫松; 邢东明; 秦川; 孙虹; 高虹; 金文; 杜力军

    2003-01-01

    The learning ability of the Kh.DIC mice, a mutant of the Kunming mice, was studied to analyze its memory development.The mice's brain function was evaluated using a water maze with the amount of monoamines measured by fluorospectrophotometry and enzyme activities detected by ultraviolet spectrophotometry.The mice were found to have spacial learning and memory defects at the age of 1 month in both ordinary animals and in special pathogen free (SPF) animals.At the same time, the amount of monoamines and the activities of monoamine oxidase-B and dopamine-β-hydroxylase differed from those of the Kunming mice.The defects might be related to the differences in the monoamine neurotransmitter system.The results suggest that the DIC mice may be useful economic animal models for the study of brain defects.

  6. Rapid screening of selective serotonin re-uptake inhibitors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry.

    Science.gov (United States)

    Salgado-Petinal, Carmen; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2005-07-01

    In this paper a solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)-venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline-in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, detection limits achieved were detected and tentatively identified.

  7. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Qian; Yang, Deyi; Zhang, Jingshu; Wang, Fengshan; Gu, Qing

    2013-09-01

    To estimate hearing loss, neurobehavioral function, and neurotransmitter alteration induced by ethylbenzene in petrochemical workers. From two petrochemical plants, 246 and 307 workers exposed to both ethylbenzene and noise were recruited-290 workers exposed to noise only from a power station plant and 327 office personnel as control group, respectively. Hearing and neurobehavioral functions were evaluated. Serum neurotransmitters were also determined. The prevalence of hearing loss was much higher in petrochemical groups than that in power station and control groups (P workers (P hearing loss, neurobehavioral function impairment, and imbalance of neurotransmitters.

  8. Bepaling van enkele neurotransmitters, monoaminen, en metabolieten, met behulp van Continuous Flowapparatuur

    NARCIS (Netherlands)

    Eigeman L; Schonewille F; Borst M; van der Laan JW

    1986-01-01

    Bij het onderzoek in de psychofarmacologie kan kennis van de effecten van stoffen op de omzettingssnelheid van neurotransmitters een belangrijk aspect zijn. Met de huidige psychofarmaca lijken vooral de klassieke neurotransmitters zoals de monoaminen, noradrenaline, dopamine en serotonine van

  9. Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter

    DEFF Research Database (Denmark)

    Billesbølle, Christian B; Mortensen, Jonas S; Sohail, Azmat

    2016-01-01

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K...

  10. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    Science.gov (United States)

    2009-01-01

    Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats. PMID:19930677

  11. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats.

    Science.gov (United States)

    Kinawy, Amal A

    2009-11-24

    This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  12. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    Directory of Open Access Journals (Sweden)

    Kinawy Amal A

    2009-11-01

    Full Text Available Abstract Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel. The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD, acetylcholinesterase (AChE, total protein, reduced glutathione (GSH, and lipid peroxidation (TBARS in the cerebral cortex, and monoamine neurotransmitters dopamine (DA, norepinephrine (NE and serotonin (5-HT in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  13. In vivo imaging of vesicular monoamine transporter 2 in pancreas using an {sup 18}F epoxide derivative of tetrabenazine

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kunghf@sunmac.spect.upenn.edu; Lieberman, Brian P. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhuang Zhiping [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Oya, Shunichi; Kung Meiping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Choi, Seok Rye [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Poessl, Karl; Blankemeyer, Eric; Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-11-15

    Objectives: Development of imaging agents for pancreatic beta cell mass may provide tools for studying insulin-secreting beta cells and their relationship with diabetes mellitus. In this paper, a new imaging agent, [{sup 18}F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7, 11b-hexahydro-1H-pyrido[2,1-a]isoquinoline [{sup 18}F](+)4, which displays properties targeting vesicular monoamine transporter 2 (VMAT2) binding sites of beta cells in the pancreas, was evaluated as a positron emission tomography (PET) agent for estimating beta cell mass in vivo. The hydrolyzable epoxide group of (+)4 may provide a mechanism for shifting biodistribution from liver to kidney, thus reducing the background signal. Methods: Both {sup 18}F- and {sup 19}F-labeled (+) and (-) isomers of 4 were synthesized and evaluated. Organ distribution was carried out in normal rats. Uptake of [{sup 18}F](+)4 in pancreas of normal rats was measured and correlated with blocking studies using competing drugs, (+)dihydrotetrabenazine [(+)-DTBZ] or 9-fluoropropyl-(+)dihydro tetrabenazine [FP-(+)-DTBZ, (+)2]. Results: In vitro binding study of VMAT2 using rat brain striatum showed a K{sub i} value of 0.08 and 0.15 nM for the (+)4 and ({+-})4, respectively. The in vivo biodistribution of [{sup 18}F](+)4 in rats showed the highest uptake in the pancreas (2.68 %ID/g at 60 min postinjection). In vivo competition experiments with cold FP-(+)-DTBZ, (+)2, (3.5 mg/kg, 5 min iv pretreatment) led to a significant reduction of pancreas uptake (85% blockade at 60 min). The inactive isomer [{sup 18}F](-)4 showed significantly lower pancreas uptake (0.22 %ID/g at 30 min postinjection). Animal PET imaging studies of [{sup 18}F](+)4 in normal rats demonstrated an avid pancreatic uptake in rats. Conclusion: The preliminary results suggest that the epoxide, [{sup 18}F](+)4, is highly selective in binding to VMAT2 and it has an excellent uptake in the pancreas of rats. The liver uptake was significantly

  14. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...

  15. Complexation of 188Re-phosphonates: in vitro and in vivo studies

    International Nuclear Information System (INIS)

    Faintuch, B.L.; Muramoto, E.; Faintuch, S.

    2003-01-01

    MDP (methylenediphosphonate) and HEDP (hydroxyethylidene diphosphonate), both disphosphonates, and EDTMP (ethylenediamine tetramethylene phosphonic acid), a tetraphosphonate ligand, have been previously labeled with 188 Re for use in metastatic bone-pain palliation. The aim of this study was a comparison between the three complexes 188 Re-MDP, 188 Re-HEDP and 188 Re-EDTMP concerning the complexation conditions, in order to achieve maximum yield, stability and bone uptake. Methods: MDP was dissolved in water and HEDP and EDTMP were dissolved in NaOH 1 N followed by reduction of pH with HCl 1 N. To all mixtures stannous chloride and 188 ReO 4 - were added in a nitrogen atmosphere. The preparations were heated in boiling water bath for 15 min. Yield as well as radiochemical stability was estimated by ITLC. Different concentrations of phosphonates and stannous chloride were evaluated. Biodistribution studies in Swiss mice were done for the three 188 Re-phosphonates that presented the best radiochemical yield. The optimal ligand concentration for maximum complexation was 85.2 mM for MDP, 72.8 mM for HEDP and 45.8 mM for EDTMP. The best amount of SnCl 2 .2H 2 O was 1.5 mg/mL for 188 Re-HEDP and 1 mg/mL for both 188 Re-MDP and 188 Re-EDTMP. In these conditions the three complexes showed a complexation rate above 95%. Reasonable radiochemical stability for 24 hours was achieved by 188 Re-EDTMP when employing ascorbic acid. All products showed a great uptake by the kidneys. 188 Re-EDTMP had the greatest uptake by femur (3.1 ± 0.2% ID/g) followed by 188 Re-MDP (1.2 ± 0.1% ID/g) and 188 Re-HEDP (1.0 ± 0.1% ID/g), 4 hours post injection. 188 Re-EDTMP displayed a femur bone/muscle ratio of 28.5, 188 Re-MDP 4.9 and 188 Re-HEDP 4.9. In conclusion 188 Re-EDTMP demonstrated the best potential as a radiopharmaceutical for bone cancer pain relief, encouraging further dosimetric studies and clinical trials. (orig.)

  16. A Life of Neurotransmitters.

    Science.gov (United States)

    Snyder, Solomon H

    2017-01-06

    Development of scientific creativity is often tied closely to mentorship. In my case, two years with Julius Axelrod, the sum total of my research training, was transformative. My mentoring generations of graduate students and postdoctoral fellows has been as nurturing for me as it has been for them. Work in our lab over fifty years has covered the breadth of neurotransmitters and related substances, focusing on the discovery and characterization of novel messenger molecules. I can't conceptualize a more rewarding professional life.

  17. [Brain repair after ischemic stroke: role of neurotransmitters in post-ischemic neurogenesis].

    Science.gov (United States)

    Sánchez-Mendoza, Eduardo; Bellver-Landete, Víctor; González, María Pilar; Merino, José Joaquín; Martínez-Murillo, Ricardo; Oset-Gasque, María Jesús

    2012-11-01

    Brain ischemia and reperfusion produce alterations in the microenvironment of the parenchyma, including ATP depletion, ionic homeostasis alterations, inflammation, release of multiple cytokines and abnormal release of neurotransmitters. As a consequence, the induction of proliferation and migration of neural stem cells towards the peri-infarct region occurs. The success of new neurorestorative treatments for damaged brain implies the need to know, with greater accuracy, the mechanisms in charge of regulating adult neurogenesis, both under physiological and pathological conditions. Recent evidence demonstrates that many neurotransmitters, glutamate in particular, control the subventricular zone, thus being part of the complex signalling network that influences the production of new neurons. Neurotransmitters provide a link between brain activity and subventricular zone neurogenesis. Therefore, a deeper knowledge of the role of neurotransmitters systems, such as glutamate and its transporters, in adult neurogenesis, may provide a valuable tool to be used as a neurorestorative therapy in this pathology.

  18. Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Loland, Claus Juul; Goldberg, Naomi

    2005-01-01

    The extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6...... proximity between TM 7 and 8 in the tertiary structure of TnaT as previously suggested for the mammalian counterparts. Furthermore, the inhibition of uptake upon cross-linking the two cysteines provides indirect support for a conserved conformational role of these transmembrane domains in the transport...

  19. Neurotransmitter alteration in a testosterone propionate-induced polycystic ovarian syndrome rat model.

    Science.gov (United States)

    Chaudhari, Nirja K; Nampoothiri, Laxmipriya P

    2017-02-01

    Polycystic ovarian syndrome (PCOS), one of the leading causes of infertility seen in women, is characterized by anovulation and hyperandrogenism, resulting in ovarian dysfunction. In addition, associations of several metabolic complications like insulin resistance, obesity, dyslipidemia and psychological co-morbidities are well known in PCOS. One of the major factors influencing mood and the emotional state of mind is neurotransmitters. Also, these neurotransmitters are very crucial for GnRH release. Hence, the current study investigates the status of neurotransmitters in PCOS. A PCOS rat model was developed using testosterone. Twenty-one-day-old rats were subcutaneously injected with 10 mg/kg body weight of testosterone propionate (TP) for 35 days. The animals were validated for PCOS characteristics by monitoring estrus cyclicity, serum testosterone and estradiol levels and by histological examination of ovarian sections. Neurotransmitter estimation was carried out using fluorometric and spectrophotometric methods. TP-treated animals demonstrated increased serum testosterone levels with unaltered estradiol content, disturbed estrus cyclicity and many peripheral cysts in the ovary compared to control rats mimicking human PCOS. Norepinephrine (NE), dopamine, serotonin, γ-amino butyric acid (GABA) and epinephrine levels were significantly low in TP-induced PCOS rats compared to control ones, whereas the activity of acetylcholinesterase in the PCOS brain was markedly elevated. Neurotransmitter alteration could be one of the reasons for disturbed gonadotropin-releasing hormone (GnRH) release, consequently directing the ovarian dysfunction in PCOS. Also, decrease in neurotransmitters, mainly NE, serotonin and dopamine (DA) attributes to mood disorders like depression and anxiety in PCOS.

  20. Striatal output markers do not alter in response to circling behaviour in 6-OHDA lesioned rats produced by acute or chronic administration of the monoamine uptake inhibitor BTS 74 398.

    Science.gov (United States)

    Lane, E L; Cheetham, S; Jenner, P

    2008-01-01

    The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.

  1. Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity.

    Science.gov (United States)

    Taylor, Tonya N; Caudle, W Michael; Shepherd, Kennie R; Noorian, AliReza; Jackson, Chad R; Iuvone, P Michael; Weinshenker, David; Greene, James G; Miller, Gary W

    2009-06-24

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression. Previously, we have shown that mice with a 95% genetic reduction in vesicular monoamine transporter expression (VMAT2-deficient, VMAT2 LO) display progressive loss of striatal dopamine, L-DOPA-responsive motor deficits, alpha-synuclein accumulation, and nigral dopaminergic cell loss. We hypothesized that since these animals exhibit deficits in other monoamine systems (norepinephrine and serotonin), which are known to regulate some of these behaviors, the VMAT2-deficient mice may display some of the nonmotor symptoms associated with PD. Here we report that the VMAT2-deficient mice demonstrate progressive deficits in olfactory discrimination, delayed gastric emptying, altered sleep latency, anxiety-like behavior, and age-dependent depressive behavior. These results suggest that the VMAT2-deficient mice may be a useful model of the nonmotor symptoms of PD. Furthermore, monoamine dysfunction may contribute to many of the nonmotor symptoms of PD, and interventions aimed at restoring monoamine function may be beneficial in treating the disease.

  2. Chapter 54: the discovery of neurotransmitters, and applications to neurology.

    Science.gov (United States)

    Sourkes, Theodore L

    2010-01-01

    The theory of chemical transmission has proved to be a powerful tool in the analysis of many aspects of neurological function, and its implications loom large on the horizon of neurology and psychiatry. Neurotransmitters are released at neuronal endings, diffuse rapidly across the synaptic cleft, and then act upon receptor proteins embedded in the membrane of the post-synaptic neuron or gland. Drugs are evaluated for their ability to stimulate or to block specific receptors, and in that way modify activity of the postsynaptic organ in order to achieve some desirable therapeutic effect. This chapter is concerned with our knowledge of some of the principal neurotransmitters, namely the primary amines: dopamine, noradrenaline, and serotonin; the quaternary amine: acetylcholine; and the aminoacids: gamma-aminobutyric acid, glutamic acid and glycine. The historical background to the discovery of these molecules as physiological neurotransmitters is presented, and their relation to various clinical states is discussed.

  3. Proton MR Spectroscopy—Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications

    Science.gov (United States)

    Agarwal, N.; Renshaw, P.F.

    2015-01-01

    SUMMARY Neurotransmitters are chemical substances that, by definition, allow communication between neurons and permit most neuronal-glial interactions in the CNS. Approximately 80% of all neurons use glutamate, and almost all interneurons use GABA. A third neurotransmitter, NAAG, modulates glutamatergic neurotransmission. Concentration changes in these molecules due to defective synthetic machinery, receptor expression, or errors in their degradation and metabolism are accepted causes of several neurologic disorders. Knowledge of changes in neurotransmitter concentrations in the brain can add useful information in making a diagnosis, helping to pick the right drug of treatment, and monitoring patient response to drugs in a more objective manner. Recent advances in 1H-MR spectroscopy hold promise in providing a more reliable in vivo detection of these neurotransmitters. In this article, we summarize the essential biology of 3 major neurotransmitters: glutamate, GABA, and NAAG. Finally we illustrate possible applications of 1H-MR spectroscopy in neuroscience research. PMID:22207303

  4. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  5. Neurotransmitter measures in the cerebrospinal fluid of patients with Alzheimer's disease: a review.

    Science.gov (United States)

    Strac, Dubravka Svob; Muck-Seler, Dorotea; Pivac, Nela

    2015-03-01

    Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by progressive cognitive and functional decline, as well as by a variety of neuropsychiatric and psychological symptoms and behavioral dysfunctions. Various studies proposed the role of different neurotransmitter systems not only in AD-related cognitive, but also psychotic symptoms and behavioral and emotional deficits. Due to the close proximity, pathological neurochemical changes in brain occurring in AD are likely to be reflected in the cerebrospinal fluid (CSF). The purpose of this review is to provide a summary of the CSF neurotransmitter correlates of AD in order to get further insights into the potential role of altered neurotransmitters in the pathophysiology of AD and to offer novel AD biomarkers. PubMed and MEDLINE data bases were searched for English-language articles by using "Alzheimer's disease", "CSF" and "neurotransmitter" as primary terms. No time or article type constraints were applied. Moreover, the lists of references were searched manually for additional articles. Changes in various correlates of cholinergic, monoaminergic and amino acid neurotransmitter systems, as well as neuropeptides, have been observed in CSF of AD patients. However, as the results of these studies have been controversial, the importance of CSF neurotransmitter parameters as potential biomarkers in AD remains quite unclear. The observed discrepancies could be bypassed by implementation of new sensitive methods, such as novel proteomics approaches that include protein separation techniques, mass spectroscopy and targeted multiplex panels of specific analytes. Although no individual CSF neurotransmitter correlate was demonstrated as suitable biomarker of AD, a combined profile of several CSF neurochemical parameters might show enhanced sensitivity and specificity and thus contribute to earlier and more accurate diagnosis of AD, crucial for application of effective treatments.

  6. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Katz, D.M.; Kimelberg, H.K.

    1985-01-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; [ 3 H]-5-HT). At concentrations in the range of 0.01 to 0.7 microM [ 3 H]-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM [ 3 H]-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of [ 3 H]-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of [ 3 H]-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate [ 3 H]-5-HT up to 44-fold at an external [ 3 H]-5-HT concentration of 10(-7) M. Inhibition of [ 3 H]-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of [ 3 H]-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on [ 3 H]-5-HT uptake

  7. Interaction of neurotransmitters with a phospholipid bilayer

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved

    2014-01-01

    We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABAneu) and the osmolyte molecule glycerol...

  8. The protective effect of ginko bilboa leaves injection on the brain ...

    African Journals Online (AJOL)

    ObjectiveAim: To evaluate the Ginkgo Bilboa injection's therapeutic role towards ischemia/ reperfusion (I/R) injury through determination of monoamine neurotransmitter dopamine (DA) in corpus striatum. Methods: After the incomplete global cerebral ischemia and reperfusion models were prepared, rats were randomly ...

  9. Studies of HEDP labelled with 188Re from different generators of 188W /188Re

    International Nuclear Information System (INIS)

    Marczewski, Barbara Szot

    2006-01-01

    The widespread interest in 188 Re for therapeutic applications, is due to its attractive 16,9 hours half-life, emission of a β - particle with maximum energy of 2.12 MeV and gamma-ray of 155 keV suitable for imaging. This work presents the radiolabelling of HEDP (etidronate) with 188 Re eluted from alumina-based 188 W/ 188 Re generators and tungstate-based 188 W/ 188 Re gel generators. Dependence of the yield of the 18 '8Re-HEDP on the concentration of the reduction agent, p H, reaction time, temperature and addition of carrier Re 2 O 7 were evaluated. The radiolabelling of 188 Re-HEDP procedure using the optimum conditions resulted a yield >= 98% for liquid and lyophilized kits. This basic formulation contains: 30 mg de HEDP, 7 mg de SnCl 2 , 3 mg de ascorbic acid and addition of 20 mug of Re 2 O 7 . The reactions were carried out with heating in boiling water for 30 minutes followed by 60 minutes of incubation. Another important aspect of this work was the radiochemical quality control comparing the results of PC, TLC and ion chromatography, along with the experiments with HPLC. The biological distribution proved the adequate bone uptake and in vivo stability of 188 Re-HEDP complexes. (author)

  10. Thin film microelectrodes for electrochemical detection of neurotransmitters

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard

    An important signaling process in the nervous system is the release of chemical messengers called neurotransmitters from neurons. In this thesis alternative thin film electrode materials for applications targeting electrochemical detection of neurotransmitters in chip devices were evaluated...... and conductive polymer microelectrodes made of Pedot:Pss were also fabricated and used successfully to measure transmitter release from cells. The use of different thin film electrodes for low-noise amperometric measurements of single events of transmitter release from neuronal cells was studied....... For this application a very low current noise is needed together with a large temporal resolution. It was shown, that resistive and capacitive properties of thin film electrode materials are determining their usefulness in low-noise amperometric measurements. An analytical expression for the noise was derived...

  11. The building of the neocortex with non-hyperpolarizing neurotransmitters.

    Science.gov (United States)

    Ascenzi, Matteo; Bony, Guillaume

    2017-09-01

    The development of the neocortex requires the synergic action of several secreted molecules to achieve the right amount of proliferation, differentiation, and migration of neural cells. Neurons are well known to release neurotransmitters (NTs) in adult and a growing body of evidences describes the presence of NTs already in the embryonic brain, long before the generation of synapses. NTs are classified as inhibitory or excitatory based on the physiological responses of the target neuron. However, this view is challenged by the fact that glycine and GABA NTs are excitatory during development. Many reviews have described the role of nonhyperpolarizing GABA at this stage. Nevertheless, a global consideration of the inhibitory neurotransmitters and their downstream signaling during the embryonic cortical development is still needed. For example, taurine, the most abundant neurotransmitter during development is poorly studied regarding its role during cortical development. In the light of recent discoveries, we will discuss the functions of glycine, GABA, and taurine during embryonic cortical development with an emphasis on their downstream signaling. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1023-1037, 2017. © 2017 Wiley Periodicals, Inc.

  12. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Altered neurotransmitter expression profile in the ganglionic bowel in Hirschsprung's disease.

    Science.gov (United States)

    Coyle, David; O'Donnell, Anne Marie; Gillick, John; Puri, Prem

    2016-05-01

    Despite having optimal pull-through (PT) surgery for Hirschsprung's disease (HSCR), many patients experience persistent bowel symptoms with no mechanical/histopathological cause. Murine models of HSCR suggest that expression of key neurotransmitters is unbalanced proximal to the aganglionic colonic segment. We aimed to investigate expression of key enteric neurotransmitters in the colon of children with HSCR. Full-length PT specimens were collected fresh from children with HSCR (n=10). Control specimens were collected at colostomy closure from children with anorectal malformation (n=8). The distributions of neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and substance P (SP) were evaluated using immunofluorescence and confocal microscopy. Neurotransmitter quantification was with Western blot analysis. ChAT expression was high in aganglionic bowel and transition zone but reduced in ganglionic bowel in HSCR relative to controls. Conversely, nNOS expression was markedly reduced in aganglionic bowel but high in ganglionic bowel in HSCR relative to controls. VIP expression was similar in ganglionic HSCR and control colon. SP expression was similar in all tissue types. Imbalance of key excitatory and inhibitory neurotransmitters in the ganglionic bowel in HSCR may explain the basis of bowel dysmotility after an optimal pull-through operation in some patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    Science.gov (United States)

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  15. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats.

    Science.gov (United States)

    Abbas, Ghulam; Naqvi, Sabira; Mehmood, Shahab; Kabir, Nurul; Dar, Ahsana

    2011-10-01

    The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration). Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C. The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 +/- 5), (220 +/- 4) and (231 +/- 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment. The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

  16. Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice

    Science.gov (United States)

    Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.

    2012-01-01

    Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542

  17. Urinary Neurotransmitters Are Selectively Altered in Children With Obstructive Sleep Apnea and Predict Cognitive Morbidity

    Science.gov (United States)

    Kheirandish-Gozal, Leila; McManus, Corena J. T.; Kellermann, Gottfried H.; Samiei, Arash

    2013-01-01

    Background: Pediatric obstructive sleep apnea (OSA) is associated with cognitive dysfunction, suggesting altered neurotransmitter function. We explored overnight changes in neurotransmitters in the urine of children with and without OSA. Methods: Urine samples were collected from children with OSA and from control subjects before and after sleep studies. A neurocognitive battery assessing general cognitive ability (GCA) was administered to a subset of children with OSA. Samples were subjected to multiple enzyme-linked immunosorbent assays for 12 neurotransmitters, and adjusted for creatinine concentrations. Results: The study comprised 50 children with OSA and 20 control subjects. Of the children with OSA, 20 had normal GCA score (mean ± SD) (101.2 ± 14.5) and 16 had a reduced GCA score (87.3 ± 13.9; P neurotransmitters enabled prediction of OSA (area under the curve [AUC]: 0.923; P neurotransmitters in urine may not only predict OSA but also the presence of cognitive deficits. Larger cohort studies appear warranted to confirm these findings. PMID:23306904

  18. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  19. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters

    International Nuclear Information System (INIS)

    Sanghavi, Bankim J.; Swami, Nathan S.; Wolfbeis, Otto S.; Hirsch, Thomas

    2015-01-01

    Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pK a values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The

  20. Monoamine levels in the nucleus accumbens correlate with male sexual behavior in middle-aged rats.

    Science.gov (United States)

    Tsai, Houng-Wei; Shui, Hao-Ai; Liu, Hang-Shen; Tai, Mei-Yun; Tsai, Yuan-Feen

    2006-02-01

    The correlation between monoamine levels in the nucleus accumbens (NAcc) and male sexual behavior was studied in middle-aged rats. Male rats (18-19months) were assigned to three groups: (1) Group MIE consisted of rats showing mounts, intromissions, and ejaculations; (2) Group MI was composed of rats showing mounts and intromissions, but no ejaculation; and (3) Group NC were non-copulators showing no sexual behavior. Young adult rats (4-5months), displaying complete copulatory behavior, were used as the control group. Levels of dopamine (DA), serotonin, and norepinephrine and their metabolites in the NAcc were measured by high-pressure liquid chromatography with electrochemical detection. No difference was seen in DA levels between MIE rats and young controls, whereas DA levels in NC rats were significantly lower than those in both MIE and MI rats. Serotonin levels in NC rats were significantly higher than those in MIE and MI rats. Conversely, norepinephrine levels in NC rats were lower than those in MIE rats. These results suggest that monoamine levels in the NAcc correlate with sexual performance in male rats and that changes in NAcc monoamine levels might affect male sexual behavior in middle-aged rats.

  1. Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.

    Science.gov (United States)

    Mamalyga, M L; Mamalyga, L M

    2017-07-01

    Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.

  2. Xiaochaihutang attenuates depressive/anxiety-like behaviors of social isolation-reared mice by regulating monoaminergic system, neurogenesis and BDNF expression.

    Science.gov (United States)

    Ma, Jie; Wang, Fang; Yang, Jingyu; Dong, Yingxu; Su, Guangyue; Zhang, Kuo; Pan, Xing; Ma, Ping; Zhou, Tingshuo; Wu, Chunfu

    2017-08-17

    Xiaochaihutang (XCHT), as a classical herbal formula for the treatment of "Shaoyang syndrome" has been demonstrated to exert an antidepressant effect in multiple animal models of depression as shown in our previous studies. However, the effects of XCHT on social isolation (SI)-reared mice have not been investigated. This study aims to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice, and its implicated mechanisms, including alterations in the monoaminergic system, neurogenesis and neurotrophin expression. Male C57 BL/6J mice (aged 4 weeks after weaning) were reared isolatedly for 8 weeks and XCHT (0.8, 2.3, 7.0g/kg) were given by gavage once a day. Forced swimming test (FST), tail suspension test (TST), open field test (OFT), elevated-plus maze test (EPM) and intruder-induced aggression test were used to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice after administration of XCHT for 6 weeks. HPLC-MS/MS was performed to quantify the levels of neurotransmitters in the hippocampus by in vivo microdialysis, while western immunoblotting was used to evaluate the action of XCHT on the synthesis, transport and degradation of monoamine neurotransmitters. Immunofluorescence was used to study the effects of XCHT on neurogenesis and neurotrophin expression, including Ki-67, DCX, BrdU and BDNF. Our results showed that administration of XCHT (0.8, 2.3 and 7.0g/kg) for 6 weeks significantly attenuated the increase in immobility time in TST and FST, improved the anxiety-like behaviors in OFT and EPM, and improved the aggressive behaviors of SI-reared mice. XCHT significantly elevated monoamine neurotransmitters levels and inhibited 5-HT turnover (5-HIAA/5-HT) in hippocampal microdialysates of SI-reared mice. In addition, we found XCHT enhanced monoamine neurotransmitter synthesis enzymes (TPH2 and TH) expressions, inhibited serotonin transporter (SERT) expression and decreased monoamine neurotransmitter

  3. Autoradiographic localization of drug and neurotransmitter receptors in the brain

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1981-01-01

    By combining and adapting various methodologies, it is possible to develop radiohistochemical methods for the light microscopic localization of drug and neurotransmitter receptors in the brain. These methods are valuable complements to other histochemical methods for mapping neurotransmitters; they provide a unique view of neuroanatomy and they can be used to provide valuable new hypotheses about how drugs produce various effects. Interesting 'hot spots' of receptor localizations have been observed in some sensory and limbic areas of the brain. Because most available methods are light microscopic, the development of ultrastructural methods will be a necessary and important extension of this field. (Auth.)

  4. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    Energy Technology Data Exchange (ETDEWEB)

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-12-14

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. /sup 3/H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table.

  5. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    International Nuclear Information System (INIS)

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-01-01

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. 3 H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table

  6. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.

    Science.gov (United States)

    Shen, Chun; Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2017-03-17

    The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor.

    Science.gov (United States)

    Coetzee, Dirk D; López, Víctor; Smith, Carine

    2016-01-11

    Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Caffeine and the olfactory bulb.

    Science.gov (United States)

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  9. A Novel Heterocyclic Compound CE-104 Enhances Spatial Working Memory in the Radial Arm Maze in Rats and Modulates the Dopaminergic System.

    Science.gov (United States)

    Aher, Yogesh D; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H; Leban, Johann J; Lubec, Gert

    2016-01-01

    Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug's ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM.

  10. A novel heterocyclic compound CE-104 enhances spatial working memory in the radial arm maze in rats and modulates the dopaminergic system

    Directory of Open Access Journals (Sweden)

    Yogesh D Aher

    2016-02-01

    Full Text Available Various psychostimulants targeting monoamine neurotransmitter transporters (MAT have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthetized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl-4-methylthiazole (named as CE-104. The efficacy of CE-104 in blocking MAT (DAT – dopamine transporter, SERT – serotonin transporter and NET – norepinephrine transporter was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10mg/kg on spatial memory was studied in male rats in the radial arm maze (RAM. Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE. The drug inhibited dopamine (IC50: 27.88µM and norepinephrine uptake (IC50: 160.40µM, but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3 and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on dopamine transporter and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM.

  11. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.

    Science.gov (United States)

    Moody, Amber S; Sharma, Bhavya

    2018-04-05

    The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10 5 -10 6 . The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.

  12. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model.

    Directory of Open Access Journals (Sweden)

    Fei Shen

    Full Text Available Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid

  13. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Science.gov (United States)

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  14. Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis.

    Science.gov (United States)

    Schulze, H G; Greek, L S; Gorzalka, B B; Bree, A V; Blades, M W; Turner, R F

    1995-02-01

    Identification of individual components in biological mixtures can be a difficult problem regardless of the analytical method employed. In this work, Raman spectroscopy was chosen as a prototype analytical method due to its inherent versatility and applicability to aqueous media, making it useful for the study of biological samples. Artificial neural networks (ANNs) and the classical least-squares (CLS) method were used to identify and quantify the Raman spectra of the small-molecule neurotransmitters and mixtures of such molecules. The transfer functions used by a network, as well as the architecture of a network, played an important role in the ability of the network to identify the Raman spectra of individual neurotransmitters and the Raman spectra of neurotransmitter mixtures. Specifically, networks using sigmoid and hyperbolic tangent transfer functions generalized better from the mixtures in the training data set to those in the testing data sets than networks using sine functions. Networks with connections that permit the local processing of inputs generally performed better than other networks on all the testing data sets. and better than the CLS method of curve fitting, on novel spectra of some neurotransmitters. The CLS method was found to perform well on noisy, shifted, and difference spectra.

  15. Characterizing Enzymatic Deposition for Microelectrode Neurotransmitter Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hosein, W. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yorita, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tolosa, V. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    The enzyme immobilization process, one step in creating an enzymatic biosensor, was characterized and analyzed as a function of its physical properties. The neural glutamic biosensor is a flexible device, effectively minimizing trauma to the area of implantation. The Multielectrode Array (MEA) is composed primarily of a proprietary polymer which has been successfully implanted into human subjects in recent years. This polymer allows the device the pliability that other devices normally lack, though this poses some challenges to implantation. The electrodes are made of Platinum (Pt), and can range in number from eight to thirty two electrodes per device. These electrodes are electroplated with a semipermeable polymer layer to improve selectivity of the electrode to the neurotransmitter of interest, in this case glutamate. A signal is created from the interaction of glutamate in the brain with the glutamate oxidase (GluOx) which is immobilized on the surface of the electrode by using crosslinking chemistry in conjunction with glutaraldehyde and Bovine Serum Albumin (BSA). The glutamate is oxidized by glutamate oxidase, producing α-ketoglutarate and hydrogen peroxide (H2O2) as a by-product. The production of H2O2 is crucial for detection of the presence of the glutamate within the enzymatic coating, as it diffuses through the enzyme layer and oxidizes at the surface of the electrode. This oxidation is detectable by measurable change in the current using amperometry. Hence, the MEA allows for in vivo monitoring of neurotransmitter activity in real time. The sensitivity of the sensor to these neurotransmitters is dependent on the thickness of the layer, which is investigated in these experiments in order to optimize the efficacy of the device to detecting the substrate, once implanted.

  16. The protective effect of ginko bilboa leaves injection on the brain ...

    African Journals Online (AJOL)

    level of monoamine neurotransmitters dopamineDA was determined by high performance liquid chromatography (HPLC) with electrochemical detector (ECD). Results: The dopamineDA content in cerebral ischemia model group was significantly higher than that in the sham-operat- ed group (P<0.05) at the 30 min. However ...

  17. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    Science.gov (United States)

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-28

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS 2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS 2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  18. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  19. Rare Autism-Associated Variants Implicate Syntaxin 1 (STX1 R26Q) Phosphorylation and the Dopamine Transporter (hDAT R51W) in Dopamine Neurotransmission and Behaviors

    OpenAIRE

    Cartier, Etienne; Hamilton, Peter J.; Belovich, Andrea N.; Shekar, Aparna; Campbell, Nicholas G.; Saunders, Christine; Andreassen, Thorvald F.; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S.; Ulery-Reynolds, Paula G.; Erreger, Kevin; Matthies, Heinrich J.G.; Galli, Aurelio

    2015-01-01

    Background: Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. Methods: We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gen...

  20. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L; Suozzo, M; Ryan, K A; Napp, D; Schneider, A S

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  1. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology.

    Science.gov (United States)

    Grässel, Susanne; Muschter, Dominique

    2017-04-28

    The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.

  2. Article Neurotransmitters – A biochemical view | Shalayel | Sudan ...

    African Journals Online (AJOL)

    The neurotransmission at most if not all synapses is chemical and is of great biochemical, physiological and pharmacological importance. Neurons communicate with each other at synapses by a process called synaptic transmission in which the release of small quantities of chemical messengers, called neurotransmitters ...

  3. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    Science.gov (United States)

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  4. Monoamine Oxidase A Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study.

    Science.gov (United States)

    Ziegler, Christiane; Wolf, Christiane; Schiele, Miriam A; Feric Bojic, Elma; Kucukalic, Sabina; Sabic Dzananovic, Emina; Goci Uka, Aferdita; Hoxha, Blerina; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend; Kravic, Nermina; Muminovic Umihanic, Mirnesa; Cima Franc, Ana; Jaksic, Nenad; Babic, Romana; Pavlovic, Marko; Warrings, Bodo; Bravo Mehmedbasic, Alma; Rudan, Dusko; Aukst-Margetic, Branka; Kucukalic, Abdulah; Marjanovic, Damir; Babic, Dragan; Bozina, Nada; Jakovljevic, Miro; Sinanovic, Osman; Avdibegovic, Esmina; Agani, Ferid; Dzubur-Kulenovic, Alma; Deckert, Jürgen; Domschke, Katharina

    2018-05-01

    Posttraumatic stress disorder is characterized by an overactive noradrenergic system conferring core posttraumatic stress disorder symptoms such as hyperarousal and reexperiencing. Monoamine oxidase A is one of the key enzymes mediating the turnover of noradrenaline. Here, DNA methylation of the monoamine oxidase A gene exonI/intronI region was investigated for the first time regarding its role in posttraumatic stress disorder risk and severity. Monoamine oxidase A methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells in a total sample of N=652 (441 male) patients with current posttraumatic stress disorder, patients with remitted posttraumatic stress disorder, and healthy probands (comparison group) recruited at 5 centers in Bosnia-Herzegovina, Croatia, and the Republic of Kosovo. Posttraumatic stress disorder severity was measured by means of the Clinician-Administered Posttraumatic Stress Disorder Scale and its respective subscores representing distinct symptom clusters. In the male, but not the female sample, patients with current posttraumatic stress disorder displayed hypermethylation of 3 CpGs (CpG3=43656362; CpG12=43656514; CpG13=43656553, GRCh38.p2 Assembly) as compared with remitted Posttraumatic Stress Disorder patients and healthy probands. Symptom severity (Clinician-Administered Posttraumatic Stress Disorder Scale scores) in male patients with current posttraumatic stress disorder significantly correlated with monoamine oxidase A methylation. This applied particularly to symptom clusters related to reexperiencing of trauma (cluster B) and hyperarousal (cluster D). The present findings suggest monoamine oxidase A gene hypermethylation, potentially resulting in enhanced noradrenergic signalling, as a disease status and severity marker of current posttraumatic stress disorder in males. If replicated, monoamine oxidase A hypermethylation might serve as a surrogate marker of a hyperadrenergic subtype of

  5. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ

    2015-07-01

    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  6. Interaction of organic cation transporter 3 (SLC22A3) and amphetamine.

    Science.gov (United States)

    Zhu, Hao-Jie; Appel, David I; Gründemann, Dirk; Markowitz, John S

    2010-07-01

    -AMPH is unlikely to inhibit the uptake of monoamines mediated by OCT3 in the brain. Differentiated neuropharmacological effects of AMPHs noted between Oct3 KO and WT mice appear to be due to the absence of Oct3 mediated uptake of neurotransmitters in the KO mice.

  7. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  8. Preparation of cyclotron-produced {sup 186}Re and comparison with reactor-produced {sup 186}Re and generator-produced {sup 188}Re for the labeling of bombesin

    Energy Technology Data Exchange (ETDEWEB)

    Moustapha, Moustapha E. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia, MO 65211 (United States); Ehrhardt, Gary J. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia, MO 65211 (United States); Smith, Charles J. [Department of Radiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia, MO 65211 (United States); Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Szajek, Lawrence P. [Positron Emission Tomography Department, National Institutes of Health, Bethesda, MD 20892-1180 (United States); Eckelman, William C. [Positron Emission Tomography Department, National Institutes of Health, Bethesda, MD 20892-1180 (United States); Jurisson, Silvia S. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States)]. E-mail: jurissons@missouri.edu

    2006-01-15

    -expressing cells. This study showed that the N{sub 3}S-5-Ava-BBN(7-14)NH{sub 2} could be labeled with {sup 186,188}Re following the preconjugation, postmetallation approach. The {sup 186,188}Re{sup V}O-N{sub 3}S-5-Ava-BBN(7-14)NH{sub 2} complexes were found to form stable complexes following the reduction of perrhenate (Re{sup VII}O{sub 4} {sup -}) with stannous chloride at room temperature, as verified by HPLC and stability studies. The radiolabeling yield was found to be >90%. The HPLC chromatograms of {sup 186,188}Re-N{sub 3}S-5-Ava-BBN(7-14)NH{sub 2} complexes revealed two peaks for each conjugate, reflecting the presence of syn- and anti-isomers, which were resolvable by HPLC but re-isomerized on separation. The biodistribution studies showed that the compounds were excreted through the renal and hepatobiliary systems and demonstrated receptor-specific uptake with an average pancreas accumulation of 8.15% ID/g at 1 h postinjection. Administration of cold BBN effectively blocked pancreatic uptake and further reflects the high specificity this conjugate has for the GRP receptors. At low levels of radioactivity, radiolysis effects were not observed. Scale-up may or may not elicit this effect, particularly for the higher energy {beta} emitter {sup 188}Re. The biodistribution studies demonstrated that the CA and NCA {sup 186,188}Re conjugates behaved similarly, raising the question of whether NCA {sup 186,188}Re is necessary for specific tumor receptor targeting.

  9. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  10. Development of new radiopharmaceuticals for imaging monoamine oxidase B

    International Nuclear Information System (INIS)

    Vasdev, Neil; Sadovski, Oleg; Moran, Matthew D.; Parkes, Jun; Meyer, Jeffrey H.; Houle, Sylvain; Wilson, Alan A.

    2011-01-01

    Introduction: Imaging monoamine oxidase B (MAO-B) in the central nervous system with PET is an important goal for psychiatric studies. We here report an improved and automated radiosynthesis of N-(6-[ 18 F]-fluorohexyl)-N-methylpropargylamine ([ 18 F]FHMP; [ 18 F]-1), as well as the radiosynthesis of two new promising candidates for imaging cerebral MAO-B, namely, carbon-11-labeled 3-(4-[ 11 C]-methoxyphenyl)-6-methyl-2H-1-benzopyran-2-one ([ 11 C]-2) and N-((1H-pyrrol-2-yl)methyl)-N-[ 11 C]-methyl-1-phenylmethanamine ([ 11 C]-3). Methods: Fluorine-18-labeled 1 was prepared via a tosyloxy precursor in 29%±5% uncorrected radiochemical yield, relative to [ 18 F]-fluoride. Both carbon-11-labeled compounds were prepared with [ 11 C]CH 3 I using the 'LOOP' method in 11% and 18% uncorrected radiochemical yields, respectively, relative to starting [ 11 C]CO 2 . All radiotracers had specific activities >37 GBq/μmol and were >98% radiochemically pure at end of synthesis ( 18 F]-1. While [ 11 C]-2 had moderate brain penetration and good clearance from normal brain tissue, distribution of radioactivity in brain was indicative of free and nonspecific binding. Good brain uptake was observed with [ 11 C]-3 (0.8%-1.4% injected dose per gram at 5 min postinjection), binding appeared to be reversible and distribution conformed with regional distribution of MAO-B in the rat brain. Preinjection of 3 or L-deprenyl showed a modest reduction (up to 25%) of brain activity. Conclusion: Carbon-11-labeled 3 was found to have the most favorable properties of the radiotracers evaluated; however, the signal-to-noise ratio was too low to warrant further in vivo imaging studies. Alternative radiotracers for imaging MAO-B are under development.

  11. Kinetic analysis of [11C]befloxatone in the human brain, a selective radioligand to image monoamine oxidase A.

    Science.gov (United States)

    Zanotti-Fregonara, Paolo; Leroy, Claire; Roumenov, Dimitri; Trichard, Christian; Martinot, Jean-Luc; Bottlaender, Michel

    2013-11-25

    [11C]Befloxatone measures the density of the enzyme monoamine oxidase A (MAO-A) in the brain. MAO-A is responsible for the degradation of different neurotransmitters and is implicated in several neurologic and psychiatric illnesses. This study sought to estimate the distribution volume (VT) values of [11C]befloxatone in humans using an arterial input function. Seven healthy volunteers were imaged with positron emission tomography (PET) after [11C]befloxatone injection. Kinetic analysis was performed using an arterial input function in association with compartmental modeling and with the Logan plot, multilinear analysis (MA1), and standard spectral analysis (SA) at both the regional and voxel level. Arterialized venous samples were drawn as an alternative and less invasive input function. An unconstrained two-compartment model reliably quantified VT values in large brain regions. A constrained model did not significantly improve VT identifiability. Similar VT results were obtained using SA; however, the Logan plot and MA1 slightly underestimated VT values (about -10%). At the voxel level, SA showed a very small bias (+2%) compared to compartmental modeling, Logan severely underestimated VT values, and voxel-wise images obtained with MA1 were too noisy to be reliably quantified. Arterialized venous blood samples did not provide a satisfactory alternative input function as the Logan-VT regional values were not comparable to those obtained with arterial sampling in all subjects. Binding of [11C]befloxatone to MAO-A can be quantified using an arterial input function and a two-compartment model or, in parametric images, with SA.

  12. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    Science.gov (United States)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  13. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile.

    Science.gov (United States)

    Chaudhari, Nirja; Dawalbhakta, Mitali; Nampoothiri, Laxmipriya

    2018-04-11

    GnRH is the master molecule of reproduction that is influenced by several intrinsic and extrinsic factors such as neurotransmitters and neuropeptides. Any alteration in these regulatory loops may result in reproductive-endocrine dysfunction such as the polycystic ovarian syndrome (PCOS). Although low dopaminergic tone has been associated with PCOS, the role of neurotransmitters in PCOS remains unknown. The present study was therefore aimed at understanding the status of GnRH regulatory neurotransmitters to decipher the neuroendocrine pathology in PCOS. PCOS was induced in rats by oral administration of letrozole (aromatase inhibitor). Following PCOS validation, animals were assessed for gonadotropin levels and their mRNA expression. Neurotrasnmitter status was evaluated by estimating their levels, their metabolism and their receptor expression in hypothalamus, pituitary, hippocampus and frontal cortex of PCOS rat model. We demonstrate that GnRH and LH inhibitory neurotransmitters - serotonin, dopamine, GABA and acetylcholine - are reduced while glutamate, a major stimulator of GnRH and LH release, is increased in the PCOS condition. Concomitant changes were observed for neurotransmitter metabolising enzymes and their receptors as well. Our results reveal that increased GnRH and LH pulsatility in PCOS condition likely result from the cumulative effect of altered GnRH stimulatory and inhibitory neurotransmitters in hypothalamic-pituitary centre. This, we hypothesise, is responsible for the depression and anxiety-like mood disorders commonly seen in PCOS women.

  14. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen.

    Science.gov (United States)

    Sullivan, Kelly G; Levin, Michael

    2016-10-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, results are reported from a loss- and gain-of-function survey, using pharmacological modulators of several neurotransmitter pathways to examine possible roles for these pathways in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations, including craniofacial defects, hyperpigmentation, muscle mispatterning and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. © 2016 Anatomical Society.

  15. DISTRIBUTION OF MONOAMINES AND THEIR METABOLITES IN BOTH SIDES OF THE RAT BRAIN AND ITS RELATION WITH FUNCTIONAL MOTOR ASYMMETRY

    OpenAIRE

    E.D. Morenkov; V.S. Kudrin

    2013-01-01

    The purpose of this neurochemical study was to quantitatively determine the regional distribution of monoamines (DA, 5HT, and NE) and their metabolites (DOPAC, HVA, and 5HIAA) in paired brain structures (the frontomedial cortex, hypothalamus, amygdala, hippocampus, striatum, and brainstem tegmentum) of the rat by performing HPLC/ED assays. Further, we aimed to relate these distributions to neuronal mechanisms of lateralized motor behavior. We found differences in monoamine levels and their...

  16. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    International Nuclear Information System (INIS)

    Guastella, J.; Stretton, A.O.

    1991-01-01

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA

  17. In-vitro studies with 188Re-HEDP, a clinically used bone pain palliating agent, on bone cancer cells

    International Nuclear Information System (INIS)

    Sharma, Rohit; Kumar, Chandan; Mallia, Madhava B.; Banerjee, Sharmila; Kameswaran, Mythili

    2017-01-01

    Rhenium-188 is an attractive radioisotope for a wide variety of radiotherapy applications. 188 Re-HEDP (HEDPhydroxyethylidene- 1,1-diphosphonic acid) is one such, clinically useful, radiopharmaceutical for palliation of bone pain due to osseous metastasis. Herein, our aim was to study the uptake and retention of 188 Re-HEDP in mineralized bone and to assess its cellular toxicity, along with its underlying mechanism in human osteocarcinoma (MG-63 and Soas-2) cell lines. 188 Re-HEDP uptake was found to be significantly higher in mineralized bone. The 188 Re-HEDP complex also induces G2-M cell cycle arrest and thus contributing to apoptosis and cellular toxicity in bone cancer cells. (author)

  18. Electroconvulsive therapy in patients taking monoamine oxidase inhibitors.

    Science.gov (United States)

    Dolenc, Tamara J; Habl, Samar S; Barnes, Roxann D; Rasmussen, Keith G

    2004-12-01

    Concerns have been expressed regarding the use of general anesthesia for electroconvulsive therapy (ECT) in patients taking monoamine oxidase inhibitors (MAOIs). We review the published literature and present 4 new cases and conclude that there is no evidence of a dangerous interaction between ECT and MAOI use. In general, a cautious approach would be to discontinue MAOIs before ECT if the medication has not been helpful; however, there is no need for a washout interval before starting ECT. Furthermore, if there is otherwise a reason for continuing the MAOI, it can be continued during index ECT or initiated during maintenance ECT.

  19. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid.

    Science.gov (United States)

    Al-Wadei, Hussein A N; Plummer, Howard K; Schuller, Hildegard M

    2009-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality in Western countries. We have shown previously that four representative human PDAC cell lines were regulated by beta-adrenoreceptors via cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. In the current study, we have tested the hypothesis that nicotine stimulates the growth of PDAC xenografts in nude mice by increasing the systemic levels of the stress neurotransmitters adrenaline and noradrenaline, which are the physiological agonists for beta-adrenoreceptors and that inhibition by gamma-aminobutyric acid (GABA) of the adenylyl cyclase-dependent pathway downstream of adrenoreceptors blocks this effect. The size of xenografts from PDAC cell line Panc-1 was determined 30 days after inoculation of the cancer cells. Stress neurotransmitters in serum as well as cAMP in the cellular fraction of blood and in tumor tissue were assessed by immunoassays. Levels of GABA, its synthesizing enzymes GAD65 and GAD67 and beta-adrenergic signaling proteins in the tumor tissue were determined by western blotting. Nicotine significantly increased the systemic levels of adrenaline, noradrenaline and cAMP while increasing xenograft size and protein levels of cAMP, cyclic AMP response element-binding protein and p-extracellular signal-regulated kinase 1/2 in the tumor tissue. Nicotine additionally reduced the protein levels of both GAD isozymes and GABA in tumor tissue. Treatment with GABA abolished these responses to nicotine and blocked the development of xenografts in mice not exposed to nicotine. These findings suggest that the development and progression of PDAC is subject to significant modulation by stimulatory stress neurotransmitters and inhibitory GABA and that treatment with GABA may be useful for marker-guided cancer intervention of PDAC.

  20. ISSUES OF THE ACCOUNTING OF A WEAK NEUROTRANSMITTER COMPONENT IN THE PHARMACOTHERAPY OF POSTCOMATOSE STATES

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2016-01-01

    Full Text Available The principle in the accounting of a weak neurotransmitter component is considered as one of the most specific and promising ones for the study and practical introduction of therapy for postcomatous states. The paper outlines problems in the accurate determination of the lack and excess of neurotransmitters by up-to-date techniques (biochemical and neurophysiological tests, magnetic resonance spectroscopy. It gives the reasons for clinical doubts and difficulties in the practical use of ideas about the relationship of the clinical picture to one or another disorder of neurotransmitter metabolism and to the feasibilities of its effective correction. It is concluded that the main method for the individualized therapy of postcomatous states is the clinical analysis of neurological and psychiatric symptoms, only upon its completion, the consideration of a weak neurotransmitter component can be taken into account. The main possible and currently preferable ways to correct cholinergic and GABAergic deficiency and redundancy and deficiency in glutamate and dopamine are considered.

  1. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  2. Elevated CO2 and O3 Levels Influence the Uptake and Leaf Concentration of Mineral N, P, K in Phyllostachys edulis (Carrière J.Houz. and Oligostachyum lubricum (wen King f.

    Directory of Open Access Journals (Sweden)

    Minghao Zhuang

    2018-04-01

    Full Text Available Rising CO2 and O3 concentrations significantly affect plant growth and can alter nutrient cycles. However, the effects of elevated CO2 and O3 concentrations on the nutrient dynamics of bamboo species are not well understood. In this study, using open top chambers (OTCs, we examined the effects of elevated CO2 and O3 concentrations on leaf biomass and nutrient (N, P, and K dynamics in two bamboo species, Phyllostachys edulis (Carrière J.Houz. and Oligostachyum lubricum (wen King f. Elevated O3 significantly decreased leaf biomass and nutrient uptake of both bamboo species, with the exception of no observed change in K uptake by O. lubricum. Elevated CO2 increased leaf biomass, N and K uptake of both bamboo species. Elevated CO2 and O3 simultaneously had no significant influence on leaf biomass of either species but decreased P and N uptake in P. edulis and O. lubricum, respectively, and increased K uptake in O. lubricum. The results indicate that elevated CO2 alleviated the damage caused by elevated O3 in the two bamboo species by altering the uptake of certain nutrients, which further highlights the potential interactive effects between the two gases on nutrient uptake. In addition, we found differential responses of nutrient dynamics in the two bamboo species to the two elevated gases, alone or in combination. These findings will facilitate the development of effective nutrient management strategies for sustainable management of P. edulis and O. lubricum under global change scenarios.

  3. Simultaneous quantification of seven hippocampal neurotransmitters in depression mice by LC-MS/MS.

    Science.gov (United States)

    Huang, Fei; Li, Jia; Shi, Hai-Lian; Wang, Ting-ting; Muhtar, Wahaf; Du, Min; Zhang, Bei-bei; Wu, Hui; Yang, Li; Hu, Zhi-bi; Wu, Xiao-jun

    2014-05-30

    There is no method available to simultaneously detect GABA, Glu, Epi, NE, DA, 5-HT and 5-HIAA in mouse hippocampus. A rapid and sensitive LC-MS/MS method has been developed for simultaneously measuring seven neurotransmitters in mouse hippocampus. The analytes were detected in positive mode with multiple reaction monitoring (MRM) and the procedure was completed in less than 9min. This method exhibited excellent linearity for all of the analytes with regression coefficients higher than 0.99, and showed good intra- and inter-day precisions (RSDneurotransmitters in a mouse depression model induced by successive methylprednisolone injections. The results indicated that this depression model was closely associated with the decreased level of Epi (p=0.002) and elevated ratio of 5-HIAA/5-HT (p=0.01), which has never been reported elsewhere. Compared with previous methods, current approach is more convenient without any pre-column derivatization of the analytes but enhances detectability with incremental neurotransmitter profile and shortens detection time. This work represents the first accurate simultaneous determination of seven neurotransmitters in the mouse depression model induced by methylprednisolone. The reliable method will benefit the research of neurological diseases with the altered neurotransmitter profile in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Overexpression of the DYRK1A Gene (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Induces Alterations of the Serotoninergic and Dopaminergic Processing in Murine Brain Tissues.

    Science.gov (United States)

    London, Jacqueline; Rouch, Claude; Bui, Linh Chi; Assayag, Elodie; Souchet, Benoit; Daubigney, Fabrice; Medjaoui, Hind; Luquet, Serge; Magnan, Christophe; Delabar, Jean Maurice; Dairou, Julien; Janel, Nathalie

    2018-05-01

    Trisomy 21 (T21) or Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and affects around 5 million persons worldwide. Neuroanatomical phenotypes associated with T21 include slight reduction of brain size and weight, abnormalities in several brain areas including spines dysgenesis, dendritic morphogenesis, and early neuroanatomical characteristics of Alzheimer's disease. Monoamine neurotransmitters are involved in dendrites development, functioning of synapses, memory consolidation, and their levels measured in the cerebrospinal fluid, blood, or brain areas that are modified in individuals with T21. DYRK1A is one of the recognized key genes that could explain some of the deficits present in individuals with T21. We investigated by high-performance liquid chromatography with electrochemical detection the contents and processing of monoamines neurotransmitters in four brain areas of female and male transgenic mice for the Dyrk1a gene (mBactgDyrk1a). DYRK1A overexpression induced dramatic deficits in the serotonin contents of the four brain areas tested and major deficits in dopamine and adrenaline contents especially in the hypothalamus. These results suggest that DYRK1A overexpression might be associated with the modification of monoamines content found in individuals with T21 and reinforce the interest to target the level of DYRK1A expression as a therapeutic approach for persons with T21.

  5. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A.

    1990-01-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of [3H] gamma-aminobutyric acid and [113mIn] transferrin were calculated using [14C] butanol as the highly extracted reference compound. The [113mIn] transferrin data were also used to correct the brain uptake index of [3H] gamma-aminobutyric acid for intravascular retention of [3H] gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid [3H] gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy

  6. Computational approaches for the study of serotonin and its membrane transporter SERT: implications for drug design in neurological sciences.

    Science.gov (United States)

    Pratuangdejkul, J; Schneider, B; Launay, J-M; Kellermann, O; Manivet, P

    2008-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), a monoamine neurotransmitter of the central nervous and peripheral systems (CNS), plays a critical role in a wide variety of physiological and behavioral processes. In the serotonergic system, deregulation of the tightly controlled extracellular concentration of 5-HT appears to be at the origin of a host of metabolic and psychiatric disorders. A key step that regulates 5-HT external level is the re-uptake of 5-HT into cells by the 5-HT transporter (SERT), which is besides the target of numerous drugs interacting with the serotonergic system. Therapeutic strategies have mainly focused on the development of compounds that block the activity of SERT, for instance reuptake inhibitors (e.g. tricyclics, "selective" serotonin reuptake inhibitors) and in the past, specific substrate-type releasers (e.g. amphetamine and cocaine derivatives). Today, generation of new drugs targetting SERT with enhanced selectivity and reduced toxicity is one of the most challenging tasks in drug design. In this context, studies aiming at characterizing the physicochemical properties of 5-HT as well as the biological active conformation of SERT are a prerequisite to the design of new leads. However, the absence of a high-resolution 3D-structure for SERT has hampered the design of new transporter inhibitors. Using computational approaches, numerous efforts were made to shed light on the structure of 5-HT and its transporter. In this review, we compared several in silico methods dedicated to the modeling of 5-HT and SERT with an emphasis on i) quantum chemistry for study of 5-HT conformation and ii) ligand-based (QSAR and pharmacophore models) and transporter-based (homology models) approaches for studying SERT molecule. In addition, we discuss some methodological aspects of the computational work in connection with the construction of putative but reliable 3D structural models of SERT that may help to predict the mechanisms of neurotransmitter transport.

  7. Nitric oxide production and monoamine oxidase activity in cancer patients during interferon-a therapy

    NARCIS (Netherlands)

    D. Fekkes (Durk); A.R. van Gool (Arthur); M. Bannink (Marjolein); S. Sleijfer (Stefan); W.H.J. Kruit (Wim); B. van der Holt (Bronno); A.M.M. Eggermont (Alexander); M.W. Hengeveld (Michiel); G. Stoter (Gerrit)

    2009-01-01

    textabstractAbstract Both increased and decreased nitric oxide (NO) synthesis have been reported in patients treated with interferon-alpha (IFN-alpha). Animal studies showed that IFN-alpha administration results in increased levels of biogenic amines, subsequent activation of monoamine oxidases

  8. Probe-pin device for optical neurotransmitter sensing in the brain

    Science.gov (United States)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  9. Compartmental modeling alternatives for kinetic analysis of pet neurotransmitter receptor studies

    International Nuclear Information System (INIS)

    Koeppe, R.A.

    1991-01-01

    With the increased interest in studying neurotransmitter and receptor function in vivo, imaging procedures using positron emission tomography have presented new challenges for kinetic modeling and analysis of data. The in vivo behavior of radiolabeled markers for examining these neurotransmitter systems can be quite complex and, therefore, the implementation of compartmental models for data analysis is similarly complex. Often, the variability in the estimates of model parameters representing neurotransmitter or receptor densities, association and dissociation rates, or rates of incorporation or turnover does not permit reliable interpretation of the data. When less complex analyses are used, these model parameters may be biased and thus also do not yield the information being sought. Examination of trade-offs between uncertainty and bias in the parameters of interest may be used to select a compartmental model configuration with an appropriate level of complexity. Modeling alternatives will be discussed for radioligands with varying kinetic properties, such as those that bind reversibly and rapidly and others that bind nearly irreversibly. Specific problems, such as those occurring when a radioligand is open-quotes flow limitedclose quotes also will be discussed

  10. High affinity (3H) β-Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    International Nuclear Information System (INIS)

    Robitaille, Y.; Sherwin, A.

    1984-01-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for β-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated ( 3 H) β-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with ( 3 H) β-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table

  11. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  12. The Top 5 Neurotransmitters from a Clinical Neurologist's Perspective

    DEFF Research Database (Denmark)

    Kondziella, Daniel

    2017-01-01

    that we routinely prescribe. Most of us can hardly come up with more than a handful of relevant neurochemicals. From our point of view the most important neurotransmitters are, in alphabetical order, acetylcholine (associated with Alzheimer's disease and myasthenia gravis), dopamine (Parkinson's disease...

  13. A linear model for estimation of neurotransmitter response profiles from dynamic PET data

    OpenAIRE

    Normandin, M.D.; Schiffer, W.K.; Morris, E.D.

    2011-01-01

    The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET data with receptor-ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally efficient and can be applied to single-scan data. lp-ntPET employs a non-invasive reference region input function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of neurotransmitter activation. In simulation studies, the temporal p...

  14. Radiosynthesis of [11C]brofaromine, a potential tracer for imaging monoamine oxidase A

    International Nuclear Information System (INIS)

    Ametamey, S.M.; Beer, H.-F.; Guenther, I.; Antonini, A.; Leenders, K.L.; Waldmeier, P.C.; Schubiger, P.A.

    1996-01-01

    Brofaromine(4-5(-methoxy-7-bromobenzofuranyl)-2-piperidine-HCl) is a potent and selective inhibitor of monoamine oxidase (MAO) A. Two methods for its synthesis and a preliminary positron emission tomography (PET) evaluation in monkey brain are described. The first method, at low carrier concentration of CO 2 , consisted of direct O-methylation of (4-(5-hydroxy-7-bromobenzofuranyl)-2-piperidine). The total radiochemical yield achieved ranged from 30 to 50% (from end of bombardment [EOB] and decay corrected) with an overall synthesis time of 45 min. The second approach, with high carrier amounts of CO 2 arising from inherent target problems, was accomplished in a three-step route involving protection of secondary amino functionality, O-methylation and deprotection. The total radiochemical yield was 10% (from EOB and decay corrected) with a total synthesis time of 70 min. For both methods methylation was achieved using the classical methylating agent [ 11 C]CH 3 I, and radiochemical purity was higher than 98%. PET evaluation of the radioligand in a Rhesus monkey showed a high uptake of radioactivity in the brain. Using the irreversible MAO-A inhibitor clorgyline and reversible MAO-A inhibitors moclobemide and brofaromine, three blockade experiments were designed to determine the extent of specific binding of [ 11 C]brofaromine to MAO-A. No apparent decrease in accumulation of radioactivity in the monkey brain was observed when compared to a baseline scan

  15. Combined Norepinephrine / Serotonergic Reuptake Inhibition: Effects on Maternal Behavior, Aggression and Oxytocin in the Rat

    Directory of Open Access Journals (Sweden)

    Elizabeth Thomas Cox

    2011-06-01

    Full Text Available BACKGROUND: Few systematic studies exist on the effects of chronic reuptake of monoamine neurotransmitter systems during pregnancy on the regulation of maternal behavior, although many drugs act primarily through one or more of these systems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation on subsequent maternal behavior in rodents indicated significant alterations in postpartum maternal care, aggression and oxytocin levels. In this study, we extended our studies to include chronic gestational treatment with desipramine or amitriptyline to examine differential effects of reuptake inhibition of norepinephrine and combined noradrenergic and serotonergic systems on maternal behavior, aggression, and oxytocin system changes. METHODS: Pregnant Sprague-Dawley rats were treated throughout gestation with saline or one of three doses of either desipramine, which has a high affinity for the norepinephrine monoamine transporter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin monoamine transporters. Maternal behavior and postpartum aggression were assessed on postpartum days one and six respectively. Oxytocin levels were measured in relevant brain regions on postpartum day seven. Predictions were that amitriptyline would decrease maternal behavior and increase aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was expected to decrease with increased aggression. RESULTS: Amitriptyline and desiprimine differentially reduced maternal behavior, and at higher doses reduced aggressive behavior. Hippocampal oxytocin levels were lower after treatment with either drug but were not correlated with specific behavioral effects. These results, in combination with previous findings following gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight the diverse effects of multiple monoamine systems thought to be involved in

  16. Neurotransmitter synthesis from CNS glutamine for central control of breathing

    International Nuclear Information System (INIS)

    Hoop, B.; Systrom, D.; Chiang, C.H.; Shih, V.E.; Kazemi, H.

    1986-01-01

    The maximum rate at which CNS glutamine (GLN) derived from glutamate (GLU) can be sequestered for synthesis of neurotransmitter GLU and/or γ-aminobutyric acid (GABA) has been determined in pentobarbital-anesthetized dogs. A total of 57 animals were studied under normal, hypoxic (Pa/sub O2/ greater than or equal to 20 mmHg), or hypercapnic (Pa/sub CO2/ less than or equal to 71 mm Hg) conditions. Thirteen of these were bilaterally vagotomized and carotid body denervated and studied only under normoxic or hypoxic conditions. In 5 animals cerebrospinal fluid GLN transfer rate constant k was measured using 13 N-ammonia tracer. Measured cerebral cortical (CC) and medullary (MED) GLN concentrations c are found to vary with GLU metabolic rate r according to c-C/sub m/r/(r+R), where r, the product of k and corresponding tissue GLU concentration, is assumed equal to the maximum GLN metabolic rate via pathways other than for neurotransmitter synthesis. The constants C/sub m/ and R are the predicted maximum GLN concentration and its maximum rate of sequestration for neurotransmitter synthesis, respectively. For both CNS tissue types in all animals, C/sub m/ = 20.9 +- 7.4 (SD) mmoles/kg wet wt(mM) and R = 6.2 +- 2.3 mM/min. These values are consistent with results obtained in anesthetized rats

  17. Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks

    OpenAIRE

    Coba, Marcelo P; Pocklington, Andrew J; Collins, Mark O; Kopanitsa, Maksym V; Uren, Rachel T; Swamy, Sajani; Croning, Mike D R; Choudhary, Jyoti S; Grant, Seth G N

    2009-01-01

    The mammalian postsynaptic density (PSD) comprises a complex collection of approximately 1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-D-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic an...

  18. Functional imaging of neurotransmitter systems in movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ilgin, N. [Ankara, Gazi Univ. Medical School (Turkey). Dept. of Nuclear Medicine

    1998-09-01

    PET and SPECT enable the direct measurement of components of the dopaminergic and other systems in the living human brain and offer unique opportunity for the in vivo quantification on the dopaminergic function in PD and other movement disorders. The need to establish the early and differential diagnosis of PD is increasingly important given the recent evidence that early pharmacologic intervention may slow progression of this progressive degenerative disease. Accordingly, imaging with PET and SPECT using specific neuro markers has been increasingly important to biochemically identify the loss of specific neurotransmitters, their synthesizing enzymes and their receptors in movement disorders. Through the parallel development of new radiotracers, kinetic models and better instruments, PET and SPECT technology is enabling investigation of increasingly more complex aspects of the human brain neurotransmitter systems. This paper summarizes the results of different PET-SPECT studies used to evaluate the various elements of the dopamine system in the human brain with PET and intends to introduce the newly emerging specific tracers and their applications to clinical research in movement disorders.

  19. Functional imaging of neurotransmitter systems in movement disorders

    International Nuclear Information System (INIS)

    Ilgin, N.

    1998-01-01

    PET and SPECT enable the direct measurement of components of the dopaminergic and other systems in the living human brain and offer unique opportunity for the in vivo quantification on the dopaminergic function in PD and other movement disorders. The need to establish the early and differential diagnosis of PD is increasingly important given the recent evidence that early pharmacologic intervention may slow progression of this progressive degenerative disease. Accordingly, imaging with PET and SPECT using specific neuro markers has been increasingly important to biochemically identify the loss of specific neurotransmitters, their synthesizing enzymes and their receptors in movement disorders. Through the parallel development of new radiotracers, kinetic models and better instruments, PET and SPECT technology is enabling investigation of increasingly more complex aspects of the human brain neurotransmitter systems. This paper summarizes the results of different PET-SPECT studies used to evaluate the various elements of the dopamine system in the human brain with PET and intends to introduce the newly emerging specific tracers and their applications to clinical research in movement disorders

  20. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.

    Science.gov (United States)

    Tong, Junchao; Rathitharan, Gausiha; Meyer, Jeffrey H; Furukawa, Yoshiaki; Ang, Lee-Cyn; Boileau, Isabelle; Guttman, Mark; Hornykiewicz, Oleh; Kish, Stephen J

    2017-09-01

    See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the

  1. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact

    Directory of Open Access Journals (Sweden)

    Margot Van de Bor

    2013-08-01

    Full Text Available In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD. Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies.

  2. Role of 188Re(V)DMSA in the diagnosis and therapy of medullary thyroid carcinoma: a pilot study in an animal model

    International Nuclear Information System (INIS)

    Learoyd, D.L.; Roach, P.J.; Snowdon, G.M.; Dadachova, K.; Moreau, A.M.; Robinson, B.G.

    1999-01-01

    Full text: 99 Tc m (V)DMSA has been reported to be highly sensitive in the diagnosis of medullary thyroid cancer (MTC). Rhenium-188, a beta emitter, has potential for therapy of MTC. However, initial studies with 188 Re indicate high renal uptake which may interfere with potential therapeutic applications of this radiopharmaceutical. A modified radiolabelling method has been shown to reduced the renal uptake of 188 Re(V)DMSA in control animals. The aims of this study were to determine whether there is uptake of modified 188 Re(V)DMSA in nude mice injected with an MTC cell line and whether there is potential for MTC therapy. Two groups of mice were injected in the left flank (SC) with TT cell line, and in mice showing tumour growth a low-dose (400 kBq) of 188 Re(V)DMSA was injected via a tail vein 8 weeks later. Biodistribution was performed on several mice and several others were given 'therapy' injections (8 MBq) to determine whether tumour shrinkage could be objectively observed. Tracer uptake was highest in bone and kidneys but tumour uptake was relatively low. However, no new tumour growth was seen in any of the mice subsequent to therapy injections and 1 mouse showed complete remission within 5 weeks of injection. Further animal and human studies will need to be performed to determine the potential role of this modified 118 Re(V)DMSA in patients with MTC

  3. Analysis of drug effects on neurotransmitter release

    International Nuclear Information System (INIS)

    Rowell, P.; Garner, A.

    1986-01-01

    The release of neurotransmitter is routinely studied in a superfusion system in which serial samples are collected and the effects of drugs or other treatments on the amount of material in the superfusate is determined. With frequent sampling interval, this procedure provides a mechanism for dynamically characterizing the release process itself. Using automated data collection in conjunction with polyexponential computer analysis, the equation which describes the release process in each experiment is determined. Analysis of the data during the nontreated phase of the experiment allows an internal control to be used for accurately assessing any changes in neurotransmitter release which may occur during a subsequent treatment phase. The use of internal controls greatly improves the signal to noise ratio and allows determinations of very low concentrations of drugs on small amounts of tissue to be made. In this presentation, the effects of 10 μM nicotine on 3 H-dopamine release in rat nucleus accumbens is described. The time course, potency and efficacy of the drug treatment is characterized using this system. Determinations of the exponential order of the release as well as the rate constants allow one to study the mechanism of the release process. A description of 3 H-dopamine release in normal as well as Ca ++ -free medium is presented

  4. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice.

    Science.gov (United States)

    Gruss, Michael; Braun, Katharina

    2004-07-01

    The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.

  5. Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology

    Directory of Open Access Journals (Sweden)

    Li XinMin

    2007-09-01

    Full Text Available Abstract Background Calcium (Ca2+ has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A, a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD. Results Incubation with Ca2+ selectively increases MAO-A enzymatic activity in protein extracts from mouse hippocampal HT-22 cell cultures. Treatment of HT-22 cultures with the Ca2+ ionophore A23187 also increases MAO-A activity, whereas overexpression of calbindin-D28K (CB-28K, a Ca2+-binding protein in brain that is greatly reduced in AD, decreases MAO-A activity. The effects of A23187 and CB-28K are both independent of any change in MAO-A protein or gene expression. The toxicity (via production of peroxyradicals and/or chromatin condensation associated with either A23187 or the AD-related β-amyloid peptide, which also increases free intracellular Ca2+, is attenuated by MAO-A inhibition in HT-22 cells as well as in primary hippocampal cultures. Conclusion These data suggest that increases in intracellular Ca2+ availability could contribute to a MAO-A-mediated mechanism with a role in AD-related oxidative stress.

  6. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    Science.gov (United States)

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  7. Table S1 Basic characteristics of 32 SNPs of neurotransmitter ...

    Indian Academy of Sciences (India)

    微软用户

    Basic characteristics of 32 SNPs in neurotransmitter-related genes. Gene .... rs45435444, rs80837467 and rs80980072, significant differences (P. *** * ... At the same age and environments, skin lesion scores on the ears (P < 0.001), front (P <.

  8. Implementing effective policy in a national mental health re-engagement program for Veterans

    Science.gov (United States)

    Smith, Shawna N.; Lai, Zongshan; Almirall, Daniel; Goodrich, David E.; Abraham, Kristen M.; Nord, Kristina M.; Kilbourne, Amy M.

    2016-01-01

    Policy is a powerful motivator of clinical change, but implementation success can depend on organizational characteristics. This paper used validated measures of organizational resources, culture and climate to predict uptake of a nationwide VA policy aimed at implementing Re-Engage, a brief care management program that re-establishes contact with Veterans with serious mental illness lost to care. Patient care databases were used to identify 2,738 Veterans lost to care. Local Recovery Coordinators (LRCs) were to update disposition for 2,738 Veterans at 158 VA facilities and, as appropriate, facilitate a return to care. Multivariable regression assessed organizational culture and climate as predictors of early policy compliance (via LRC presence) and uptake at six months. Higher composite climate and culture scores were associated with higher odds of having a designated LRC, but were not predictive of higher uptake. Sites with LRCs had significantly higher rates of updated documentation than sites without LRCs. PMID:27668352

  9. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, Susana [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain); Alonso, Rocio [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain); Gimeno, Benjamin S. [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain)]. E-mail: benjamin.gimeno@ciemat.es

    2007-04-15

    The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O{sub 3}) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O{sub 3} stomatal conductance model used to estimate tree O{sub 3} uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O{sub 3} treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l{sup -1}. The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g {sub max}, f {sub min}, and new f {sub VPD}, f {sub temp} and f {sub phen} functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version. - Current EMEP stomatal uptake module needs to be re-parameterised for Mediterranean tree species.

  10. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake

    International Nuclear Information System (INIS)

    Elvira, Susana; Alonso, Rocio; Gimeno, Benjamin S.

    2007-01-01

    The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O 3 ) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O 3 stomatal conductance model used to estimate tree O 3 uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O 3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l -1 . The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g max , f min , and new f VPD , f temp and f phen functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version. - Current EMEP stomatal uptake module needs to be re-parameterised for Mediterranean tree species

  11. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples.

    Science.gov (United States)

    Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz

    2016-01-29

    A simple and sensitive method using dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography coupled to mass spectrometry (LC-MS) with a hydrophilic interaction chromatography (HILIC) column was developed for the simultaneous determination of 13 compounds of different polarities, comprising monoamine neurotransmitters (dopamine, norepinephrine, epinephrine and serotonin) along with their respective precursors and metabolites, in human urine samples. The microextraction procedure was based on the fast injection of a mixture of ethanol (disperser solvent) and dichloromethane (extraction solvent) into a human urine sample, forming a cloudy solution in the Eppendorf tube. After centrifugation, the sedimented phase was collected and subsequently analyzed by LC-HILIC-MS in about 12min without a derivatization step. The separation was performed on an XBridge Amide™ BEH column 3.0×100mm, 3.5mm and the mobile phase consisted of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10 mM ammonium formate buffer in acetonitrile, under gradient program elution. Tyrosine, tryptophan, 5-hydroxytryptophan, dopamine, epinephrine, norepinephrine, serotonin, 3-methoxytyramine, 5-hydroxyindole-3-acetic acid, 3,4-dihydroxy-l-phenylalanine and norvaline (internal standard) were detected in the positive ionization mode. While vanillylmandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxybenzylamine (internal standard) were detected in the negative ionization mode. Parameters influencing DLLME and LC-HILIC-MS were investigated. Under the optimum conditions, the proposed method exhibited a low detection limit (5-10ngmL(-1)), and good linearity with R between 0.9991 and 0.9998. The recoveries in human urine samples were 99.0%±3.6%. for the 13 studied biogenic amines with intra- and inter-day RSDs of 0.24-9.55% and 0.31-10.0%, respectively. The developed DLLME-LC-MS method could be successfully applied for the

  12. Improved conditions for labeling EDTMP with 188Re for bone pain palliation

    International Nuclear Information System (INIS)

    Faintuch, B.L.; Osso, J.A. Jr.; Muramoto, E.; Faintuch, S.

    2002-01-01

    Introduction: Ethilenediamine tetramethylene phosphonate (EDTMP) is a tetraphosphonate ligand which, when labeled with 188 Re, can be used for relief of metastatic bone pain. The preferential localization of phosphonate complexes in bone is attributed to their affinity for calcium, and tetraphosphonates may be equal or superior to diphosphonates in this regard. In the present study, it was aimed to determine optimal conditions for preparation of a kit of EDTMP to be labeled with 188 Re. Methods: EDTMP was dissolved in NaOH 1N, and alkalinity was reversed with HCl till pH 2, when SnCl 2 . 2H 2 0 and also ascorbic acid were introduced in the mixture, followed by Na 188 ReO 4 . The preparation was incubated in water bath for 30 minutes and after cooling radiochemical purity was assessed. Optimization of the process consisted in varying the values of EDTMP mass (20, 30, 40 mg) SnCl 2 .2H 2 0 concentration (0.5, 1.0, 2.0 and 3.0 mg/mL), and reaction time (15 and 30 minutes). Radiochemical purity and stability were ascertained in vitro and also in Swiss mice. Bone/muscle uptake ratio was calculated from %ID/g of these organs. Results: The best 188 Re-EDTMP complex was obtained with 40 mg of the ligand and 2 mg/mL of stannous chloride heated during 15 minutes, and the product was radiochemically stable during 24 hours. Kidney and bone uptake were very significant (respectively 4.5 ± 0.5% and 3.1 ± 0.3 %ID/g). Bone/muscle ratio observed four hours post-injection was also very adequate (28.5). Conclusions: A stable and biologically useful complex of 188 Re-EDTMP can be prepared with high concentration of EDTMP and considerable uptake by bone. It compares favorably with 153 Sm-EDTMP, as 188 Re has more advantageous radioisotopic properties than 153 Sm, and it can be recommended for further studies in conditions of painful bone metastases

  13. The effect of selective serotonin reuptake inhibitors in healthy first-degree relatives of patients with major depressive disorder - an experimental medicine blinded controlled trial

    DEFF Research Database (Denmark)

    Knorr, Ulla Benedichte

    2012-01-01

    .37). In univariate analyses, no statistically significant correlations were found between change in the primary and secondary outcomes, respectively, and the covariates age, sex, Hamilton depression score 17-items, and plasma escitalopram levels. In conclusion, the present trial does not support an effect......The mechanisms of action for selective serotonin re-uptake in-hibitors (SSRI) in depressed patients remain widely unknown. The serotonergic neurotransmitter system and the hypothalamic-pituitary-adrenal (HPA) system may interact. Further, the serotonergic neurotransmitter system seems closely...... linked to personality and cognition. It is not known if SSRIs have a direct effect on the HPA system, personality or cognition that is independent of their effect on depression. Thus, healthy individuals with a genetic liability for depression represent a group of particular interest when investigating...

  14. Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Bradley J Robottom

    2011-01-01

    Full Text Available Bradley J RobottomDepartment of Neurology, University of Maryland School of Medicine, Baltimore, MD, USAAbstract: Parkinson's disease (PD is the second most common neurodegenerative disease and the most treatable. Treatment of PD is symptomatic and generally focuses on the replacement or augmentation of levodopa. A number of options are available for treatment, both in monotherapy of early PD and to treat complications of advanced PD. This review focuses on rasagiline and selegiline, two medications that belong to a class of antiparkinsonian drugs called monoamine oxidase B (MAO-B inhibitors. Topics covered in the review include mechanism of action, efficacy in early and advanced PD, effects on disability, the controversy regarding disease modification, safety, and patient preference for MAO-B inhibitors.Keywords: monoamine oxidase inhibitors, rasagiline, selegiline, Parkinson's disease, efficacy, safety

  15. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters.

    Science.gov (United States)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.

  16. The neuropharmacology of serotonin and noradrenaline in depression.

    Science.gov (United States)

    Nutt, David J

    2002-06-01

    Several classes of antidepressant drug exist, divided into three broad families, the monoamine reuptake inhibitors, the monoamine oxidase inhibitors and the monoamine receptor antagonists. All these drugs have a common pharmacological effect, to raise the synaptic concentrations of noradrenaline and serotonin. Although different drugs have different relative selectivity for noradrenaline and serotonin systems, these two neurotransmitter pathways work in parallel and in a coherent manner to produce the same final antidepressant response. The lag-time in the onset of action of antidepressants can be explained by the activation of inhibitory autoreceptors on serotonergic and noradrenergic neurones which initially attenuate the effects of antidepressants on synaptic transmitter levels. Over time, these autoreceptors desensitize, allowing the emergence of an overt antidepressant response. This theory has led to the proposition that antagonists at these autoreceptors such as pindolol may be useful adjuncts to antidepressant treatment, in order to hasten the appearance of a clinical response. Evidence for the clinical validity of this idea remains equivocal, however. The use of central monoamine depletion studies has demonstrated that it is elevated synaptic monoamine levels themselves, rather than some downstream postsynaptic changes in, for example, receptor sensitivity, that are responsible for the therapeutic effect of antidepressant drugs. Taken together, the data collected over the last 40 years have allowed the emergence of a unified monoamine hypothesis of antidepressant drug action.

  17. Impact of aspartame consumption on neurotransmitters in rat brain ...

    African Journals Online (AJOL)

    Background: Aspartame (APM), a common artificial sweetener, has been used for diabetic subjects and body weight control for a long time. The goal of the present study was to evaluate the impact of APM consumption on neurotransmitters and oxidative stress in rat's brain. Materials and Methods: Four groups of male ...

  18. Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter

    DEFF Research Database (Denmark)

    Larsen, Philip J; Holst, Jens Juul

    2005-01-01

    normal and pathophysiological role of GLP-1 have been published over the last two decades and our understanding of GLP-1 action has widened considerably. In the present review, we have tried to cover our current understanding of GLP-1 actions both as a peripheral hormone and as a central neurotransmitter...

  19. Identification of catecholamine neurotransmitters using fluorescence sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Forough [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahmoudi, Morteza, E-mail: mahmoudi@stanford.edu [Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551 (Iran, Islamic Republic of); Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101 (United States)

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and L-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L{sup −1}. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. - Highlights: • We have proposed a fluorescence sensor array to detect catecholamine neurotransmitters. • Visual differentiation of catecholamines is provided by fluorescence array fingerprints. • Discrimination of catecholamines from each other, and from their mixture is obtained on a PCA plot. • Proposed sensor array can be used for detection of catecholamines in urine samples.

  20. Regional cerebral metabolic rate for glucose and cerebrospinal fluid monoamine metabolites in subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Yanai, Kazuhiko; Miyabayashi, Shigeaki; Iinuma, Kazuie; Tada, Keiya; Fukuda, Hiroshi; Ito, Masatoshi; Matsuzawa, Taiju.

    1987-01-01

    Regional cerebral metabolic rate for glucose (rCMRglu) and cerebrospinal fluid monoamine metabolites were measured in two cases of subacute sclerosing panencephalitis (SSPE) with different clinical courses. A marked decrease in rCMRglu was found in the cortical gray matter of a patient with rapidly developing SSPE (3.6 - 4.2 mg/100 g brain tissue/min). However, the rCMRglu was preserved in the caudate and lenticular nuclei of the patient (7.7 mg/100 g/min). The rCMRglu in a patient with slowly developing SSPE revealed patterns and values similar to those of the control. Cerebrospinal fluid monoamine metabolites ; homovanilic acid and 5-hydroxyindoleacetic acid, were decreased in both rapidly and slowly developing SSPE. These data indicated that rCMRglu correlated better with the neurological and psychological status and that dopaminergic and serotonergic abnormalities have been implicated in pathophysiology of SSPE. (author)

  1. Neuroendocrine tests of monoamine function in man: a review of basic theory and its application to the study of depressive illness.

    Science.gov (United States)

    Checkley, S A

    1980-02-01

    Neuroendocrine tests are now available for studying monoamine function in the brains of patients with mental illness. Great care is required in the selection of drugs which act upon specific monoamine receptors to produce specific hormonal responses. Equal care is required in the control of biological variables which may influence hormonal release. Recently reported neuroendocrine studies of depressive illness are assessed in these terms. The results of these studies support the hypothesis that there is defective noradrenergic function in the brains of some patients with depressive illness.

  2. Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors

    International Nuclear Information System (INIS)

    Herraiz, Tomas; Chaparro, Carolina

    2005-01-01

    Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two β-carboline alkaloids, norharman (β-carboline) and harman (1-methyl-β-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that β-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K i = 1.2 ± 0.18 μM) and MAO-B (K i = 1.12 ± 0.19 μM), and harman of MAO-A (K i = 55.54 ± 5.3 nM). β-Carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that β-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like β-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking

  3. Imaging neurotransmitter release by drugs of abuse.

    Science.gov (United States)

    Martinez, Diana; Narendran, Rajesh

    2010-01-01

    Previous studies have shown that imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers that are specific for brain dopamine receptors can be used to indirectly image the change in the levels of neurotransmitters within the brain. Most of the studies in addiction have focused on dopamine, since the dopamine neurons that project to the striatum have been shown to play a critical role in mediating addictive behavior. These imaging studies have shown that increased extracellular dopamine produced by psychostimulants can be measured with PET and SPECT. However, there are some technical issues associated with imaging changes in dopamine, and these are reviewed in this chapter. Among these are the loss of sensitivity, the time course of dopamine pulse relative to PET and SPECT imaging, and the question of affinity state of the receptor. In addition, animal studies have shown that most drugs of abuse increase extracellular dopamine in the striatum, yet not all produce a change in neurotransmitter that can be measured. As a result, imaging with a psychostimulant has become the preferred method for imaging presynaptic dopamine transmission, and this method has been used in studies of addiction. The results of these studies suggest that cocaine and alcohol addiction are associated with a loss of dopamine transmission, and a number of studies show that this loss correlates with severity of disease.

  4. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    Science.gov (United States)

    Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.

  5. Cardiac retention of PET neuronal imaging agent LMI1195 in different species: Impact of norepinephrine uptake-1 and -2 transporters

    International Nuclear Information System (INIS)

    Yu, Ming; Bozek, Jody; Kagan, Mikhail; Guaraldi, Mary; Silva, Paula; Azure, Michael; Onthank, David; Robinson, Simon P.

    2013-01-01

    Introduction: Released sympathetic neurotransmitter norepinephrine (NE) in the heart is cleared by neuronal uptake-1 and extraneuronal uptake-2 transporters. Cardiac uptake-1 and -2 expression varies among species, but the uptake-1 is the primary transporter in humans. LMI1195 is an NE analog labeled with 18 F for PET evaluation of cardiac neuronal function. This study investigated the impact of cardiac neuronal uptake-1 associated with different species on LMI1195 heart uptake. Methods: Cardiac uptake-1 was blocked by desipramine, a selective uptake-1 inhibitor, and sympathetic neuronal denervation was induced by 6-hydroxydopamine, a neurotoxin, in rats, rabbits and nonhuman primates (NHP). Tissue biodistribution and cardiac imaging of LMI1195 and 123 I-metaiodobenzylguanidine (MIBG) were performed. Results: In rats, uptake-1 blockade did not alter LMI1195 heart uptake compared to the control at 60-min post injection [1.41 ± 0.07 vs. 1.47 ± 0.23 % injected dose per gram tissue (%ID/g)]. In contrast, LMI1195 heart uptake was reduced by 80% in uptake-1 blocked rabbits. In sympathetically denervated rats, LMI1195 heart uptake was similar to the control (2.18 ± 0.40 vs. 2.58 ± 0.76 %ID/g). However, the uptake decreased by 79% in denervated rabbits. Similar results were found in MIBG heart uptake in rats and rabbits with uptake-1 blockade. Consistently, LMI1195 cardiac imaging showed comparable myocardial activity in uptake-1 blocked or sympathetically denervated rats to the control, but marked activity reduction in uptake-1 blocked or denervated rabbits and NHPs. Conclusions: LMI1195 is retained in the heart of rabbits and NHPs primarily via the neuronal uptake-1 with high selectivity and can be used for evaluation of cardiac sympathetic denervation. Similar to the human, the neuronal uptake-1 is the dominant transporter for cardiac retention of NE analogs in rabbits and NHPs, but not in rats

  6. Development of new radiopharmaceuticals for imaging monoamine oxidase B

    Energy Technology Data Exchange (ETDEWEB)

    Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca; Sadovski, Oleg; Moran, Matthew D.; Parkes, Jun; Meyer, Jeffrey H.; Houle, Sylvain; Wilson, Alan A.

    2011-10-15

    Introduction: Imaging monoamine oxidase B (MAO-B) in the central nervous system with PET is an important goal for psychiatric studies. We here report an improved and automated radiosynthesis of N-(6-[{sup 18}F]-fluorohexyl)-N-methylpropargylamine ([{sup 18}F]FHMP; [{sup 18}F]-1), as well as the radiosynthesis of two new promising candidates for imaging cerebral MAO-B, namely, carbon-11-labeled 3-(4-[{sup 11}C]-methoxyphenyl)-6-methyl-2H-1-benzopyran-2-one ([{sup 11}C]-2) and N-((1H-pyrrol-2-yl)methyl)-N-[{sup 11}C]-methyl-1-phenylmethanamine ([{sup 11}C]-3). Methods: Fluorine-18-labeled 1 was prepared via a tosyloxy precursor in 29%{+-}5% uncorrected radiochemical yield, relative to [{sup 18}F]-fluoride. Both carbon-11-labeled compounds were prepared with [{sup 11}C]CH{sub 3}I using the 'LOOP' method in 11% and 18% uncorrected radiochemical yields, respectively, relative to starting [{sup 11}C]CO{sub 2}. All radiotracers had specific activities >37 GBq/{mu}mol and were >98% radiochemically pure at end of synthesis (<40 min). All radiotracers were evaluated by ex vivo biodistribution studies in conscious rodents. Results: A major radioactive metabolite in the rodent brain was observed following administration of [{sup 18}F]-1. While [{sup 11}C]-2 had moderate brain penetration and good clearance from normal brain tissue, distribution of radioactivity in brain was indicative of free and nonspecific binding. Good brain uptake was observed with [{sup 11}C]-3 (0.8%-1.4% injected dose per gram at 5 min postinjection), binding appeared to be reversible and distribution conformed with regional distribution of MAO-B in the rat brain. Preinjection of 3 or L-deprenyl showed a modest reduction (up to 25%) of brain activity. Conclusion: Carbon-11-labeled 3 was found to have the most favorable properties of the radiotracers evaluated; however, the signal-to-noise ratio was too low to warrant further in vivo imaging studies. Alternative radiotracers for imaging MAO

  7. 10B uptake by cells for boron neutron capture synovectomy

    International Nuclear Information System (INIS)

    Binello, E.; Yanch, J.C.; Shortkroff, S.

    2000-01-01

    Boron Neutron Capture Synovectomy (BNCS) proposes to use the 10 B(n,α) 7 Li reaction to ablate inflamed synovium (a tissue lining articular joints) in patients with Rheumatoid Arthritis. Boron uptake is an important parameter for treatment design. In this study, a simple method was developed to determine K 2 B 12 H 12 (KBH) uptake in vitro by non-adhering monocytic cells (representative of synovial cells in inflamed joints). Uptake was quantified as a function of incubation time and boron concentration, as well as following washout: no significant difference was found between incubation times tested; average uptake ranged from 55 to 60% of 10 B incubation concentrations varying from 1000 to 5000 ppm: approximately 15% of the 10 B concentration was measured upon re-incubation in boron-free medium. These results agree well with those obtained ex vivo using human arthritic synovium, a significant finding in light of the difficulty typically associated with obtaining such tissue. The full characterization of 10 B uptake for BNCS (with KBH) is discussed. (author)

  8. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  9. Active uptake of substance P carboxy-terminal heptapeptide (5-11) into rat brain and rabbit spinal cord slices

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Y; Kusaka, Y; Yajima, H; Segawa, T

    1981-12-01

    We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with (3H)(5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.

  10. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington's like symptoms in rats: Possible neurotransmitters modulation.

    Science.gov (United States)

    Gill, Jaskamal Singh; Jamwal, Sumit; Kumar, Puneet; Deshmukh, Rahul

    2017-04-01

    Huntington Disease is autosomal, fatal and progressive neurodegenerative disorder for which clinically available drugs offer only symptomatic relief. Emerging strides have indicated that antidepressants improve motor performance, restore neurotransmitters level, ameliorates striatal atrophy, increases BDNF level and may enhance neurogenesis. Therefore, we investigated sertraline and venlafaxine, clinically available drugs for depression with numerous neuroprotective properties, for their beneficial effects, if any, in quinolinic acid induced Huntington's like symptoms in rats. Rats were administered quinolinic acid (QA) (200 nmol/2μl saline) intrastriatal bilaterally on 0day. Sertraline and venlafaxine (10 and 20mg/kg, po) each were administered for 21days once a day. Motor performance was assessed using rotarod test, grip strength test, narrow beam walk test on weekly basis. On day 22, animals were sacrificed and rat striatum was isolated for biochemical (LPO, GSH and Nitrite), neuroinflammation (TNF-α, IL-1β and IL-6) and neurochemical analysis (GABA, glutamate, norepinephrine, dopamine, serotonin, DOPAC, HVA and 5-HIAA). QA treatment significantly altered body weight, motor performance, oxidative defense (increased LPO, nitrite and decreased GSH), pro-inflammatory cytokines levels (TNF-α, IL-6 and IL-1β), neurochemical level (GABA, glutamate, nor-epinephrine, dopamine, serotonin, HVA, DOPAC, 5-HIAA). Sertraline and venlafaxine at selected doses significantly attenuated QA induced alterations in striatum. The present study suggests that modulation of monoamines level, normalization of GABA and glutamatergic signaling, anti-oxidant and anti-inflammatory properties could underlie the neuroprotective effect of sertraline and venlafaxine in QA induced Huntington's like symptoms. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  11. Spectroscopic Analysis of Neurotransmitters: A Theoretical and Experimental Raman Study

    Science.gov (United States)

    Alonzo, Matthew

    Surface-enhanced Raman spectroscopy (SERS) was applied to investigate the feasibility in the detection and monitoring of the dopamine (DA) neurotransmitter adsorbed onto silver nanoparticles (Ag NPs) at 10-11 molar, a concentration far below physiological levels. In addition, density functional theory (DFT) calculations were obtained with the Gaussian-09 analytical suite software to generate the theoretical molecular configuration of DA in its neutral, cationic, anionic, and dopaminequinone states for the conversion of computer-simulated Raman spectra. Comparison of theoretical and experimental results show good agreement and imply the presence of dopamine in all of its molecular forms in the experimental setting. The dominant dopamine Raman bands at 750 cm-1 and 795 cm-1 suggest the adsorption of dopaminequinone onto the silver nanoparticle surface. The results of this experiment give good insight into the applicability of using Raman spectroscopy for the biodetection of neurotransmitters.

  12. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research

    OpenAIRE

    Otsuka, Masanori

    2007-01-01

    Part I describes important contributions made by some Japanese pioneers in the field of neurotransmitters: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in ...

  13. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    International Nuclear Information System (INIS)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K.; Kim, Grace E.; Lin, Lawrence; Giacomini, Kathy; Naranjo, Arlene; Van Ryn, Collin; Yanik, Gregory A.; Kreissman, Susan G.; Hogarty, Michael; DuBois, Steven G.

    2016-01-01

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  15. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); Kim, Grace E. [UCSF School of Medicine, Department of Pathology, San Francisco, CA (United States); Lin, Lawrence; Giacomini, Kathy [UCSF School of Pharmacy, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA (United States); Naranjo, Arlene; Van Ryn, Collin [University of Florida, Children' s Oncology Group Statistics and Data Center, Gainesville, FL (United States); Yanik, Gregory A. [University of Michigan, CS Mott Children' s Hospital, Ann Arbor, MI (United States); Kreissman, Susan G. [Duke University Medical Center, Durham, NC (United States); Hogarty, Michael [University of Pennsylvania, Children' s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA (United States); DuBois, Steven G. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); UCSF School of Medicine, San Francisco, CA (United States)

    2016-03-15

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  16. What is the role of neurotransmitter systems in cortical seizures?

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana

    2008-01-01

    Roč. 57, Suppl.3 (2008), S111-S120 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : neurotransmitters * cerebral cortex * seizures Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  17. Fetal growth-retardation and brain-sparing by malnutrition are associated to changes in neurotransmitters profile.

    Science.gov (United States)

    García-Contreras, C; Valent, D; Vázquez-Gómez, M; Arroyo, L; Isabel, B; Astiz, S; Bassols, A; Gonzalez-Bulnes, A

    2017-04-01

    The present study assesses possible changes in the levels of different neurotransmitters (catecholamines and indoleamines) in fetuses affected by nutrient shortage. Hence, we determined the concentration of catecholamines and indoleamines at the hypothalamus of 56 swine fetuses obtained at both 70 and 90days of pregnancy (n=33 and 23 fetuses, respectively). The degree of fetal development and the fetal sex affected the neurotransmitters profile at both stages. At Day 70, there were found higher mean concentrations of l-DOPA in both female and male fetuses with severe IUGR; male fetuses with severe IUGR also showed higher concentrations of TRP than normal male littermates. At Day 90 of pregnancy, the differences between sexes were more evident. There were no significant effects from either severe IUGR on the neurotransmitter profile in male fetuses. However, in the females, a lower body-weight was related to lower concentrations of l-DOPA and TRP and those female fetuses affected by severe IUGR evidenced lower HVA concentration. In conclusion, the fetal synthesis and use of neurotransmitters increase with time of pregnancy but, in case of IUGR, both catecholamines and indoleamines pathways are affected by sex-related effects. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    Science.gov (United States)

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  19. Magnetic field effects on brain monoamine oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.

    1985-03-01

    In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.

  20. Synthesis of [11C]dapoxetine·HCl, a serotonin re-uptake inhibitor: biodistribution in rat and preliminary PET imaging in the monkey

    International Nuclear Information System (INIS)

    Livni, E.; Satterlee, W.; Robey, R.L.

    1994-01-01

    [ 11 C]Dapoxetine · HCl, S-(+)-N,N-dimethyl-a-[2-(naphthalenyloxy)ethyl] benzenemethanamine hydrochloride, a potent serotonin re-uptake inhibitor was prepared from its mono-methyl precursor, S-(+)-N-methyl-a-[2-(naphthalenyloxy)ethyl]benzene methanamine hydrochloride. Biodistribution was determined in rats at 5, 30 and 60 min after injection and preliminary PET studies were performed in a Rhesus monkey. 11 CH 3 I was bubbled into a solution of S-(+)-N-methyl-α-[2-(naphthalenyloxy)ethyl]benzene methanamine hydrochloride (3.0 mg in DMSO) and the mixture was heated at 110 o C for 8 min. [ 11 C]Dapoxetine · HCl was purified by HPLC on a C 18 cartridge eluted with MeOH: phosphate buffer, pH 7.2 (75:25) with a 10% yield (end of synthesis). The time required for the synthesis was 40 min, from the end of bombardment. Radiochemical purity of the final product was > 99% and specific activity was routinely > 400 mCi/μmol [EOS]. (author)

  1. Neuroglobin in the rat brain (II): co-localisation with neurotransmitters

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Dewilde, Sylvia

    2008-01-01

    In an accompanying article, we found that neuroglobin (Ngb) was expressed in a few well-defined nuclei in the rat brain. Here, we show by use of immunohistochemistry and in situ hybridisation (ISH) that Ngb co-localise with several specific neurotransmitters. Ngb co-localise consistently with tyr...

  2. Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat.

    Science.gov (United States)

    Zhou, Xueyan; Zhu, Qiuxiang; Han, Xiaowen; Chen, Renguo; Liu, Yaowu; Fan, Hongbin; Yin, Xiaoxing

    2015-11-01

    Diabetic encephalopathy (DE) is one of the most prevalent chronic complications of diabetes mellitus (DM), with neither effective prevention nor proven therapeutic regimen. This study aims to uncover the potential dysregulation pattern of the neurotransmitters in a rat model of streptozotocin (STZ)-induced experimental DE. For that purpose, male Sprague-Dawley (SD) rats were treated with a single intraperitoneal injection of STZ. Cognitive performance was detected with the Morris water maze (MWM) test. Serum, cerebrospinal fluid (CSF), and brain tissues were collected to measure the levels of neurotransmitters. Compared with the control rats, the acetylcholine (ACh) levels in serum, CSF, hippocampus, and cortex were all significantly down-regulated as early as 6 weeks in the STZ treatment group. In contrast, the glutamate (Glu) levels were decreased in CSF and the hippocampus, but unaffected in the serum and cortex of STZ-treated rats. As for γ-aminobutyric acid (GABA), it was down-regulated in serum, but up-regulated in CSF, hippocampus, and the cortex in the STZ-treated group. The mRNA expressions of neurotransmitter-related rate limiting enzymes (including AChE, GAD1, and GAD2) and pro-inflammatory cytokines (including IL-1β and TNF-α) were all increased in the DE rats. Our data suggest that DM induces isoform-dependent and tissue-specific neurotransmitter abnormalities, and that neuroinflammation may underlay the nervous system dysfunction observed in the progression of DE.

  3. New mechanisms of the TCM spleen-based treatment of immune thrombocytopenia purpura from the perspective of blood neurotransmitters

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-04-01

    Conclusions: The JYS prescription may regulate the expression levels of blood neurotransmitters via the brain-gut axis in patients with “spleen deficiency” ITP and thus activate hemostatic mechanisms to promote hemostasis. β-EP and VIP are key neurotransmitters of the JYS-induced functional regulation.

  4. Computational Model of Antidepressant Response Heterogeneity as Multi-pathway Neuroadaptation

    Directory of Open Access Journals (Sweden)

    Mariam B. Camacho

    2017-12-01

    Full Text Available Current hypotheses cannot fully explain the clinically observed heterogeneity in antidepressant response. The therapeutic latency of antidepressants suggests that therapeutic outcomes are achieved not by the acute effects of the drugs, but rather by the homeostatic changes that occur as the brain adapts to their chronic administration. We present a computational model that represents the known interactions between the monoaminergic neurotransmitter-producing brain regions and associated non-monoaminergic neurotransmitter systems, and use the model to explore the possible ways in which the brain can homeostatically adjust to chronic antidepressant administration. The model also represents the neuron-specific neurotransmitter receptors that are known to adjust their strengths (expressions or sensitivities in response to chronic antidepressant administration, and neuroadaptation in the model occurs through sequential adjustments in these receptor strengths. The main result is that the model can reach similar levels of adaptation to chronic administration of the same antidepressant drug or combination along many different pathways, arriving correspondingly at many different receptor strength configurations, but not all of those adapted configurations are also associated with therapeutic elevations in monoamine levels. When expressed as the percentage of adapted configurations that are also associated with elevations in one or more of the monoamines, our modeling results largely agree with the percentage efficacy rates of antidepressants and antidepressant combinations observed in clinical trials. Our neuroadaptation model provides an explanation for the clinical reports of heterogeneous outcomes among patients chronically administered the same antidepressant drug regimen.

  5. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    Science.gov (United States)

    Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David

    2017-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT 2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT 2a,b,c and NE α2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT 2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT 2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC 50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT 2a,c receptors as compared to MDMA.

  6. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1976-08-11

    Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.

  7. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    Science.gov (United States)

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  8. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    Science.gov (United States)

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  10. Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones

    Science.gov (United States)

    Sirois, Jay E; Lynch, Carl; Bayliss, Douglas A

    2002-01-01

    Neurotransmitters and volatile anaesthetics have opposing effects on motoneuronal excitability which appear to reflect contrasting modulation of two types of subthreshold currents. Neurotransmitters increase motoneuronal excitability by inhibiting TWIK-related acid-sensitive K+ channels (TASK) and shifting activation of a hyperpolarization-activated cationic current (Ih) to more depolarized potentials; on the other hand, anaesthetics decrease excitability by activating a TASK-like current and inducing a hyperpolarizing shift in Ih activation. Here, we used whole-cell recording from motoneurones in brainstem slices to test if neurotransmitters (serotonin (5-HT) and noradrenaline (NA)) and an anaesthetic (halothane) indeed compete for modulation of the same ion channels - and we determined which prevails. When applied together under current clamp conditions, 5-HT reversed anaesthetic-induced membrane hyperpolarization and increased motoneuronal excitability. Under voltage clamp conditions, 5-HT and NA overcame most, but not all, of the halothane-induced current. When Ih was blocked with ZD 7288, the neurotransmitters completely inhibited the K+ current activated by halothane; the halothane-sensitive neurotransmitter current reversed at the equilibrium potential for potassium (EK) and displayed properties expected of acid-sensitive, open-rectifier TASK channels. To characterize modulation of Ih in relative isolation, effects of 5-HT and halothane were examined in acidified bath solutions that blocked TASK channels. Under these conditions, 5-HT and halothane each caused their characteristic shift in voltage-dependent gating of Ih. When tested concurrently, however, halothane decreased the neurotransmitter-induced depolarizing shift in Ih activation. Thus, halothane and neurotransmitters converge on TASK and Ih channels with opposite effects; transmitter action prevailed over anaesthetic effects on TASK channels, but not over effects on Ih. These data suggest that

  11. Evidence for cysteine sulfinate as a neurotransmitter

    International Nuclear Information System (INIS)

    Recasens, M.; Varga, V.; Nanopoulos, D.; Saadoun, F.; Vincendon, G.; Benavides, J.

    1982-01-01

    The Na + -independent binding of L-[ 3 H]cysteine sulfinate and L-[ 3 H]cysteine sulfinate uptake were investigated in rat brain membranes and vesicles. Specific binding of L-[ 3 H]cysteine sulfinate was saturable and occurred by a single high affinity process with a Ksub(b) of 100 nM +- 9 and a capacity (Bsub(max)) of 2.4 +- 0.22 pmol/mg protein. The regional distribution of the binding of L-[ 3 H]cysteine sulfinate in the brain was found to be heterogeneous. The rate of L-[ 3 H]cysteine sulfinate uptake shows a biphasic dependence on the concentration of L-cysteine sulfinate, corresponding to a high affinity (27.2 μM) and a low affinity (398 μM) transport system. The maximum L-[ 3 H]cysteine sulfinate uptake is reached at 2min and the uptake increases as a function of the sodium concentration. Chloride and potassium ions stimulate the uptake. (Auth.)

  12. Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level.

    Science.gov (United States)

    Paulose, Cheramadathukudiyil Skaria; John, Ponnezhathu Sebastian; Chinthu, Romeo; Akhilraj, Puthenveetil Raju; Anju, Thoppil Raveendran

    2017-04-01

    Spinal cord injury results in disruption of brain-spinal cord fibre connectivity, leading to progressive tissue damage at the site of injury and resultant paralysis of varying degrees. The current study investigated the role of autologous bone marrow modulated with neurotransmitters and neurotransmitter stimulating agent, Citicholine, in spinal cord of spinal cord injured rats. Radioreceptor assay using [3H] ligand was carried out to quantify muscarinic receptor. Gene expression studies were done using Real Time PCR analysis. Scatchard analysis of muscarinic M1 receptor showed significantly decreased B max (p neurotransmitters combination along with bone marrow or Citicholine with bone marrow can reverse the muscarinic receptor alterations in the spinal cord of spinal cord injured rats, which is a promising step towards a better therapeutic intervention for spinal cord injury because of the positive role of cholinergic system in regulation of both locomotor activity and synaptic plasticity. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  13. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry

    OpenAIRE

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Kallbäck, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J. A.; Andrén, Per E.

    2016-01-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyr...

  14. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    Science.gov (United States)

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  15. Genetic KCa3.1-deficiency produces locomotor hyperactivity and alterations in cerebral monoamine levels

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Gramsbergen, Jan Bert; Sivasaravanaparan, Mithula

    2012-01-01

    The calmodulin/calcium-activated K(+) channel KCa3.1 is expressed in red and white blood cells, epithelia and endothelia, and possibly central and peripheral neurons. However, our knowledge about its contribution to neurological functions and behavior is incomplete. Here, we investigated whether...... genetic deficiency or pharmacological activation of KCa3.1 change behavior and cerebral monoamine levels in mice....

  16. Development of radioiodinated ligands for exploration of brain monoamine oxidase by tomo-scintigraphy; Developpement de ligands radioactifs pour l'exploration des monoamines oxydases cerebrales en tomoscintigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Rafii, H

    1996-07-01

    Monoamine oxidases, MAO, are important in the regulation of monoaminergic neuro-transmissions. The fluctuations in MAO activities has been observed in some psychiatric and neuro-degenerative diseases. Thus, quantification of cerebral MAO activity would be useful for diagnosis and the therapeutic follow-up of these disorders. With the object of doing an in vivo scintigraphic exploration of cerebral MAO by SPECT, we have undertaken to synthesize some radioiodinated MAO inhibitors. In the first part of this work, we have discussed the general properties of the monoamine oxidases and their inhibitors. In the second part we have described the scintigraphic methods. the ligands to be used for MAO exploration, and the radioiodination methods. At last in the third part, the development of three radioiodinated ligands has been presented: - [{sup 125}I]3-iodopargyline. In vivo results showed that, this radioligand blocked the cerebral MAO-B with moderate selectivity. However, complementary in vivo studies would be needed to define precisely its activity.- [{sup 125}I]Ro 16-6491. The cerebral fixation of this radioligand was in accordance with the MAO-B sites in the rat brains, but its fixation was too low for scintigraphic exploration in vivo with iodine-123. - [{sup 125}I]Ro 11-9900. In vivo studies of rat brains showed that the MAO-A sites were bound preferentially by this radioligand. The cerebral biodistribution of this ligand labelled with iodine-123 is considered for use in a model animal nearest to human pathology. (author)

  17. Electrophoresis of platelet monoamine oxidase in schizophrenia and manic-depressive illness

    International Nuclear Information System (INIS)

    Belmaker, R.H.; Ebstein, R.; Rimon, R.; Wyatt, R.J.; Murphy, D.L.

    1976-01-01

    Monoamine oxidase is an important enzyme in the catabolism of biogenic amines and can be measured in human platelets. Platelet MAO has been reported to be reduced in schizophrenic and manic-depressive patients, though other reports are contradictory. The present study evaluated the possibility that qualitative genetic enzyme abnormalities of MAO could be responsible for the different enzyme activities of platelet MAO in different populations. However, polyacrylamide gel electrophoresis of platelet MAO from 10 manic-depressive, 12 schizophrenic, and 11 normal individuals did not reveal any genetic mutant forms. (author)

  18. The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    International Nuclear Information System (INIS)

    Fitsanakis, Vanessa A.; Aschner, Michael

    2005-01-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and γ-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb

  19. [The association between plasma neurotransmitters levels and depression in acute hemorrhagic stroke].

    Science.gov (United States)

    Yuan, Huai-wu; Zhang, Ning; Wang, Chun-xue; Shi, Yu-zhi; Qi, Dong; Luo, Ben-yan; Wang, Yong-jun

    2013-08-01

    To explore the relation between plasma neurotransmitters (Glutamic acid, GAA; γ-aminobutyric acid, GABA; 5-hydroxytryptamine, 5-HT; and noradrenaline, NE) and depression in acute hemorrhagic stroke. Objectives were screened from consecutive hospitalized patients with acute stroke. Fasting blood samples were taken on the day next to hospital admission, and neurotransmitters were examined by the liquid chromatography-high resolution mass spectrometry (LC-HRMS). The fourth edition of Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) was used to diagnose depression at two weeks after onset of stroke. The modified Ranking Scale (mRS) was followed up at 1 year. Pearson test was used to analyse the correlation between serum concentration of neurotransmitters and the Hamilton Depression scale-17-items (HAMD-17) score. Logistic regression was used to analyse the relation of serum concentration of neurotransmitters and depression and outcome of stroke. One hundred and eighty-one patients were included in this study. GABA significantly decreased [6.1(5.0-8.2) µg/L vs 8.1(6.3-14.7) µg/L, P depression in hemorrhagic stroke, and there was no significant difference in GAA, 5-HT, or NE. GABA concentration was negatively correlated with HAMD-17 score (r = -0.131, P depression in acute phase of hemorrhagic stroke was reduced by 5.6% (OR 0.944, 95%CI 0.893-0.997). While concentration of serum GAA rose by 1 µg/L, risk of worse outcome at 1 year was raised by 0.1%, although a statistic level was on marginal status (OR 1.001, 95%CI 1.000-1.002). In patients with depression in the acute phase of hemorrhagic stroke, there was a significant reduction in plasma GABA concentration. GABA may have a protective effect on depression in acute phase of hemorrhagic stroke. Increased concentrations of serum GAA may increase the risk of worse outcomes at 1 year after stroke.

  20. {sup 186}Re-maSGS-Z{sub HER2:342}, a potential affibody conjugate for systemic therapy of HER2-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Anna; Tran, Thuy A. [Uppsala University, Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Ekblad, Torun; Karlstroem, Amelie Eriksson [Royal Institute of Technology, School of Biotechnology, Division of Molecular Biotechnology, Stockholm (Sweden); Tolmachev, Vladimir [Uppsala University, Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Division of Nuclear Medicine, Department of Medical Sciences, Uppsala (Sweden)

    2010-02-15

    Affibody molecules are a novel class of tumour-targeting proteins, which combine small size (7 kDa) and picomolar affinities. The Affibody molecule Z{sub HER2:342} has been suggested for imaging of HER2 expression in order to select patients for trastuzumab therapy. When optimizing chelators for {sup 99m}Tc-labelling, we have found that synthetic Z{sub HER2:342} conjugated with mercaptoacetyl-glycyl-glycyl-glycyl (maGGG) and mercaptoacetyl-glycyl-seryl-glycyl (maGSG) chelators provides relatively low renal uptake of radioactivity and could be suitable for therapy. maGGG-Z{sub HER2:342} and maGSG-Z{sub HER2:342} were labelled with {sup 186}Re and their biodistribution was studied in normal mice. Dosimetric evaluation and tumour targeting to HER2-overexpressed xenografts (SKOV-3) by {sup 186}Re-maGSG-Z{sub HER2:342} were studied. Gluconate-mediated labelling of maGGG-Z{sub HER2:342} and maGSG-Z{sub HER2:342} with {sup 186}Re provided a yield of more than 95% within 60 min. The conjugates were stable and demonstrated specific binding to HER2-expressing SKOV-3 cells. Biodistribution in normal mice demonstrated rapid blood clearance, low accumulation of radioactivity in the kidney and other organs, accumulating free perrhenate. Both {sup 186}Re-maGGG-Z{sub HER2:342} and {sup 186}Re-maGSG-Z{sub HER2:342} demonstrated lower renal uptake than their {sup 99m}Tc-labelled counterparts. {sup 186}Re-maGSG-Z{sub HER2:342} provided the lowest uptake in healthy tissues. Biodistribution of {sup 186}Re-maGSG-Z{sub HER2:342} in nude mice bearing SKOV-3 xenografts showed specific targeting of tumours. Tumour uptake 24 h after injection (5.84{+-}0.54%ID/g) exceeded the concentration in blood by more than 500-fold, and uptake in kidneys by about 8-fold. Preliminary dosimetric evaluation showed that dose-to-tumour should exceed dose-to-kidney by approximately 5-fold. Optimization of chelators improves biodistribution properties of rhenium-labelled small scaffold proteins and enables

  1. The Met receptor tyrosine kinase prevents zebrafish primary motoneurons from expressing an incorrect neurotransmitter

    Directory of Open Access Journals (Sweden)

    Eisen Judith S

    2008-07-01

    Full Text Available Abstract Background Expression of correct neurotransmitters is crucial for normal nervous system function. How neurotransmitter expression is regulated is not well-understood; however, previous studies provide evidence that both environmental signals and intrinsic differentiation programs are involved. One environmental signal known to regulate neurotransmitter expression in vertebrate motoneurons is Hepatocyte growth factor, which acts through the Met receptor tyrosine kinase and also affects other aspects of motoneuron differentiation, including axonal extension. Here we test the role of Met in development of motoneurons in embryonic zebrafish. Results We found that met is expressed in all early developing, individually identified primary motoneurons and in at least some later developing secondary motoneurons. We used morpholino antisense oligonucleotides to knock down Met function and found that Met has distinct roles in primary and secondary motoneurons. Most secondary motoneurons were absent from met morpholino-injected embryos, suggesting that Met is required for their formation. We used chemical inhibitors to test several downstream pathways activated by Met and found that secondary motoneuron development may depend on the p38 and/or Akt pathways. In contrast, primary motoneurons were present in met morpholino-injected embryos. However, a significant fraction of them had truncated axons. Surprisingly, some CaPs in met morpholino antisense oligonucleotide (MO-injected embryos developed a hybrid morphology in which they had both a peripheral axon innervating muscle and an interneuron-like axon within the spinal cord. In addition, in met MO-injected embryos primary motoneurons co-expressed mRNA encoding Choline acetyltransferase, the synthetic enzyme for their normal neurotransmitter, acetylcholine, and mRNA encoding Glutamate decarboxylase 1, the synthetic enzyme for GABA, a neurotransmitter never normally found in these motoneurons, but

  2. The discovery of chemical neurotransmitters.

    Science.gov (United States)

    Valenstein, Elliot S

    2002-06-01

    Neurotransmitters have become such an intrinsic part of our theories about brain function that many today are unaware of how difficult it was to prove their existence or the protracted dispute over the nature of synaptic transmission. The story is important not only because it is fascinating science history, but also because it exemplifies much of what is best in science and deserving to be emulated. The friendships formed among such major figures in this history as Henry Dale, Otto Loewi, Wilhelm Feldberg, Walter Cannon, and others extended over two world wars, enriching their lives and facilitating their research. Even the dispute-the "war of the sparks and the soups"--between neurophysiologists and pharmacologists over whether synaptic transmission is electrical or chemical played a positive role in stimulating the research needed to provide convincing proof. Copyright 2002 Elsevier Science (USA).

  3. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  4. Preparation of 186Re complexes of dimercaptosuccinic acid hydroxy ethylidine diphosphonate

    International Nuclear Information System (INIS)

    Kothari, K.; Pillai, M.R.A.; Unni, P.R.; Mathakar, A.R.; Shimpi, H.H.; Noronha, O.P.D.; Samuel, A.M.

    1998-01-01

    99m Tc(V)-DMSA and 99m Tc-HEDP are widely used for imaging medullary carcinoma and bone, respectively. 186 Re-HEDP is now well established as a therapeutic radiopharmaceutical for palliation of pain due to bone metastases. It is expected that 186/188 Re(V)-DMSA could find application for treating medullary carcinoma. In the present paper we report the work carried out for the preparation of 186 Re complexes of DMSA and HEDP and their bio-distribution studies in Wistar rats. 186 Re was prepared by irradiation of natural Re metal at a flux of 3x10 13 neutrons/cm 2 /s for seven days and processed after a cooling period of four days. The specific activity of 186 Re formed was ∼35 mCi/mg. Complexes with RC purity >98% could be prepared in both the cases by carefully optimizing the reaction conditions. Bio-distribution studies carried out in rats revealed that pharmacological behaviour of 186 Re(V)-DMSA was similar to that of 99m Tc(V)-DMSA. 186 Re-HEDP showed a bone uptake of ∼ 30% at 3 h post injection which remained almost constant for 48 h. (author)

  5. Long-term exposure to xenoestrogens alters some brain monoamines and both serum thyroid hormones and cortisol levels in adult male rats

    Directory of Open Access Journals (Sweden)

    Nashwa M. Saied

    2014-10-01

    Full Text Available The present study was designed to examine the effect of long-term treatment with the phytoestrogen soy isoflavone [(SIF; 43 mg/kg body weight/day] and/or the plastics component bisphenol-A [(BPA; 3 mg/kg body weight/day] on some monoamines in the forebrain and both serum thyroid hormones and cortisol levels of adult rats. Significant increases in serotonin (5-HT and norepinephrine (NE level, and significant decreases in 5-hydroxyindoleacetic acid (5-HIAA level and 5-HIAA/5-HT ratio, were observed after treatment with SIF or BPA. Level of dopamine (DA was increased in SIF-treated group and decreased in BPA-treated group. Activity of monoamine oxidase (MAO was decreased in all treated groups. The level of serum thyroid hormones (fT3 and fT4 was increased after treatment with SIF and decreased after exposure to BPA, while cortisol level was increased in all treated groups. It may be concluded that long-term exposure to SIF or BPA disrupts monoamine levels in the forebrain of adult rats through alteration in the metabolic pathways of amines and disorders of thyroid hormones and cortisol levels.

  6. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection

    International Nuclear Information System (INIS)

    Miyazaki, Celina Massumi; Pereira, Tamyris Paschoal; Mascagni, Daniela Branco Tavares; Leite de Moraes, Marli; Ferreira, Marystela

    2016-01-01

    In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm −2 )/(mmol L −1 ) and a detection limit of 0.33 mmol L −1 . - Highlights: • Monoamine oxidase B incorporation in liposomes was proposed to preserve the enzyme. • Layer-by-layer films composed of MAO-B (free and in liposomes) were fabricated. • Amperometric response using ITO/Prussian Blue covered with the MAO-B films was studied. • Sensitivity, limit of detection and apparent Michaelis–Menten constant were compared.

  8. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Celina Massumi; Pereira, Tamyris Paschoal [Universidade Federal de São Carlos, UFSCar, CCTS, Sorocaba, São Paulo (Brazil); Mascagni, Daniela Branco Tavares [Universidade Estadual de São Paulo — UNESP, Sorocaba, São Paulo (Brazil); Leite de Moraes, Marli [Universidade Federal de São Paulo, Unifesp, São José dos Campos, São Paulo (Brazil); Ferreira, Marystela, E-mail: marystela@ufscar.br [Universidade Federal de São Carlos, UFSCar, CCTS, Sorocaba, São Paulo (Brazil)

    2016-01-01

    In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm{sup −2})/(mmol L{sup −1}) and a detection limit of 0.33 mmol L{sup −1}. - Highlights: • Monoamine oxidase B incorporation in liposomes was proposed to preserve the enzyme. • Layer-by-layer films composed of MAO-B (free and in liposomes) were fabricated. • Amperometric response using ITO/Prussian Blue covered with the MAO-B films was studied. • Sensitivity, limit of detection and apparent Michaelis–Menten constant were compared.

  9. Detection of viability by percent thallium uptake with conventional thallium scintigraphy

    International Nuclear Information System (INIS)

    Imai, Kamon; Araki, Yasushi; Horiuchi, Kou-ichi; Yumikura, Sei; Saito, Satoshi; Ozawa, Yukio; Kan-matsuse, Katsuo; Hagiwara, Kazuo.

    1994-01-01

    Thallium myocardial scintigraphy (TMS) is used for diagnosis of viability in infarcted myocardium before coronary revascularization. Underestimation of viability by TMS has been reported by many investigators. To evaluate viability precisely, thallium re-injection method or 24 hour delayed imaging is performed. However, these techniques are not convenient and are difficult to perform in clinical practice. Percent T1-uptake method was developed for predicting myocardial viability. To evaluate usefulness of this method, TMS was performed before and after PTCA in 23 patients with myocardial infarction. Left ventricle was divided into 3 layers, then each layer was divided into 4 segments (12 segments in total). Forth three segments showed recovery of perfusion on TMS after PTCA. Viability in infarcted myocardium is predicted by 1) redistribution (RD), 2) %T1-uptake≥45% on the image immediately after exercise (TE), and 3) %T1-uptake≥45% on delayed image (TD). Sensitivity was RD: 60%, TE: 90% and TD: 95% (p<0.001 vs. RD). Specificity was RD: 74%, TE: 68%, and TD: 60% (NS). Predictive accuracy (PA) was RD: 69%, TE: 77%, TD: 73% (NS). Compared with RD, %T1-uptake, either TE or TD, increased sensitivity with slightly improved PA, but decreased specificity slightly. Therefore %T1-uptake would be a sensitive and useful predictor to find patients who are most likely to benefit from re-vascularization. (author)

  10. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  11. Young coconut water ameliorates depression via modulation of neurotransmitters: possible mechanism of action.

    Science.gov (United States)

    Rao, Sadia Saleem; Najam, Rahila

    2016-10-01

    In the current era, plants are frequently tested for its antidepressant potential. Therefore young coconut water, a commonly used plant based beverage, was selected to explore its antidepressant potential. Rodents were selected for this study and forced swim test was conducted to explore antidepressant activity. Analysis of brain biogenic amines using high performance liquid chromatography coupled with electrochemical detection and potentiation of noradrenaline toxicity model were also incorporated in this study to demonstrate probable antidepressant mechanism of action. Coconut water was administered orally at the dose of 4 ml/100 g. Young coconut water showed highly significant increase in struggling time (p coconut water. In noradrenaline toxicity model, it was observed that young coconut water is not a good adrenergic component as its lethality percentage in this test was observed 0 % unlike imipramine which showed lethality of 100 %. High performance liquid chromatography-electrochemical detection of rodent's brain revealed decline in 5-hydroxytryptamine, noradrenaline and dopamine, with concomitant decline in metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, homovanillic acid and increase in 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio. Findings from the exploration of monoamines suggest antidepressant effect of young coconut water via homeostasis of monoamines synthesis.

  12. The monoaminergic pathways and inhibition of monoamine transporters interfere with the antidepressive-like behavior of ketamine

    Directory of Open Access Journals (Sweden)

    Glauce Socorro de Barros Viana

    2018-06-01

    Full Text Available Ketamine (KET, a NMDA receptor antagonist, has been studied for its rapid and efficacious antidepressant effect, even for the treatment-resistant depression. Although depression is a major cause of disability worldwide, the treatment can be feasible, affordable and cost-effective, decreasing the population health burden. We evaluated the antidepressive-like effects of KET and its actions on monoamine contents (DA and its metabolites, as well as 5-HT and on tyrosine hydroxylase (TH. In addition DAT and SERT (DA and 5-HT transporters, respectively were also assessed. Male Swiss mice were divided into Control and KET-treated groups. The animals were acutely treated with KET (2, 5 or 10 mg/kg, i.p. and subjected to the forced swimming test, for evaluation of the antidepressive-like behavior. Imipramine and fluoxetine were used as references. The results showed that KET decreased dose-dependently the immobility time and shortly after the test, the animals were euthanized for striatal dissections and monoamine determinations. In addition, the brain (striata, hippocampi and prefrontal cortices was immunohistochemically processed for TH, DAT and SERT. KET at its higher dose increased DA and its metabolites (DOPAC and HVA and mainly 5-HT contents, in mice striata, effects associated with increases in TH and decreases in DAT immunoreactivities. Furthermore, reductions in SERT immunoreactivities were observed in the striatum and hippocampus. The results indicate that KET antidepressive-like effect probably involves, among other factors, monoaminergic pathways, as suggested by the increased striatal TH immunoreactivity and reduced brain DA (DAT and 5-HT (SERT transporters. Keywords: Ketamine, Antidepressive effect, Dopaminergic neurotransmission, Serotonergic neurotransmission, Monoamine transporters

  13. Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking.

    Science.gov (United States)

    Zhang, Yan; Zhang, Yi; Wang, Guan; Chen, Wujuan; Li, Yi; Zhang, Yating; He, Pingang; Wang, Qingjiang

    2016-07-01

    Microchip electrophoresis (MCE) is particularly attractive as it provides high sensitivity and selectivity, short analysis time and low sample consumption. An on-line preconcentration strategy combining field-amplified stacking (FASS) and reversed-field stacking (RFS) was developed for efficient and sensitive analysis of neurotransmitters in real urine samples by MCE with laser induced fluorescence (LIF) detection. In this study, the multiple-preconcentration strategy greatly improves the sensitivity enhancement and surpass other conventional analytical methods for neurotransmitters detection. Under optimal conditions, the separation of three neurotransmitters (dopamine, norepinephrine and serotonin), was achieved within 3min with limits of detection (S/N=3) of 1.69, 2.35, and 2.73nM, respectively. The detection sensitivities were improved by 201-, 182-, and 292-fold enhancement, for the three neurotransmitters respectively. Other evaluation parameters such as linear correlation coefficients were considered as satisfactory. A real urine sample was analyzed with recoveries of 101.8-106.4%. The proposed FASS-RFS-MCE method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of three neurotransmitters in human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake: reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time the basic differences in the two processes, and the differences in their measurement, the authors conclude that the Nr activity measures the current nitrate-reducing potential, which reflects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling

  15. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Mitchell, M.J.; Harik, S.I.

    1987-01-01

    Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, the authors hypothesized that systemic MPTP may be metabolized by monoamine oxidase and/or other enzymes in rat brain capillaries and possibly other peripheral organs and thus prevented from reaching its neuronal sites of toxicity. They tested this hypothesis by assessing monoamine oxidase in isolated cerebral microvessels of humans, rats, and mice by measuring the specific binding of [ 3 H]pargyline, an irreversible monoamine oxidase inhibitor, and by estimating the rates of MPTP and benzylamine oxidation. [ 3 H]Pargyline binding to rat cerebral microvessels was about 10-fold higher than to human or mouse microvessels. Also, MPTP oxidation by rat brain microvessels was about 30-fold greater than by human microvessels; mouse microvessels yielded intermediate values. These results may explain, at least in part, the marked species differences in susceptibility to systemic MPTP. They also suggest the potential importance of enzyme barriers at the blood-brain interface that can metabolize toxins not excluded by structural barriers, and may provide biological bases for developing therapeutic strategies for the prevention of MPTP-induced neurotoxicity and other neurotoxic conditions including, possibly, Parkinson's disease

  16. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde

  17. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Neurotransmitters and Neuropeptides: New Players in the Control of Islet of Langerhans' Cell Mass and Function.

    Science.gov (United States)

    Di Cairano, Eliana S; Moretti, Stefania; Marciani, Paola; Sacchi, Vellea Franca; Castagna, Michela; Davalli, Alberto; Folli, Franco; Perego, Carla

    2016-04-01

    Islets of Langerhans control whole body glucose homeostasis, as they respond, releasing hormones, to changes in nutrient concentrations in the blood stream. The regulation of hormone secretion has been the focus of attention for a long time because it is related to many metabolic disorders, including diabetes mellitus. Endocrine cells of the islet use a sophisticate system of endocrine, paracrine and autocrine signals to synchronize their activities. These signals provide a fast and accurate control not only for hormone release but also for cell differentiation and survival, key aspects in islet physiology and pathology. Among the different categories of paracrine/autocrine signals, this review highlights the role of neurotransmitters and neuropeptides. In a manner similar to neurons, endocrine cells synthesize, accumulate, release neurotransmitters in the islet milieu, and possess receptors able to decode these signals. In this review, we provide a comprehensive description of neurotransmitter/neuropetide signaling pathways present within the islet. Then, we focus on evidence supporting the concept that neurotransmitters/neuropeptides and their receptors are interesting new targets to preserve β-cell function and mass. A greater understanding of how this network of signals works in physiological and pathological conditions would advance our knowledge of islet biology and physiology and uncover potentially new areas of pharmacological intervention. J. Cell. Physiol. 231: 756-767, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Sex and intrauterine growth restriction modify brain neurotransmitters profile of newborn piglets.

    Science.gov (United States)

    Vázquez-Gómez, M; Valent, D; García-Contreras, C; Arroyo, L; Óvilo, C; Isabel, B; Bassols, A; González-Bulnes, A

    2016-12-01

    The current study aimed to determine, using a swine model of intrauterine growth restriction (IUGR), whether short- and long-term neurological deficiencies and interactive dysfunctions of Low Birth-Weight (LBW) offspring might be related to altered pattern of neurotransmitters. Hence, we compared the quantities of different neurotransmitters (catecholamines and indoleamines), which were determined by HPLC, at brain structures related to the limbic system (hippocampus and amygdala) in 14 LBW and 10 Normal Body-Weight (NBW) newborn piglets. The results showed, firstly, significant effects of sex on the NBW newborns, with females having higher dopamine (DA) concentrations than males. The IUGR processes affected DA metabolism, with LBW piglets having lower concentrations of noradrenaline at the hippocampus and higher concentrations of the DA metabolites, homovanillic acid (HVA), at both the hippocampus and the amygdala than NBW neonates. The effects of IUGR were modulated by sex; there were no significant differences between LBW and NBW females, but LBW males had higher HVA concentration at the amygdala and higher concentration of 5-hydroxyindoleacetic acid, the serotonin metabolite, at the hippocampus than NBW males. In conclusion, the present study shows that IUGR is mainly related to changes, modulated by sex, in the concentrations of catecholamine neurotransmitters, which are related to adaptation to physical activity and to essential cognitive functions such as learning, memory, reward-motivated behavior and stress. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Low platelet monoamine oxidase activity in pathological gambling

    International Nuclear Information System (INIS)

    Carrasco, J.L.; Saiz-Ruiz, J.; Hollander, E.; Cesar, J.; Lopez-Ibor, J.J. Jr.

    1994-01-01

    Decreased platelet monoamine oxidase (MAO) activity has been reported in association with sensation-seeking personality type and in some mental disorders associated with a lack of impulse control. Pathological gambling itself has been related with both sensation-seeking and reduced impulse control. Platelet MAO activity was investigated in 15 DSM-III-R pathological gamblers from our outpatient clinic. Gamblers had a significantly lower platelet MAO activity than a group of 25 healthy controls. The range of MAO levels in gamblers was also significantly shorter than in controls. In controls, platelet MAO levels showed the previously described negative correlations with sensation-seeking scores but not in gamblers. The findings are consistent with previous studies showing an association of low platelet MAO activity with impulse control disorders and raise some interesting therapeutic alternatives for pathological gambling. (au) (40 refs.)

  1. Low platelet monoamine oxidase activity in pathological gambling

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, J.L. [Department of Psychiatry, Centro de Salud Mental, Parla Madrid (Spain); Saiz-Ruiz, J. [Department of Psychiatry and Haematology, Hospital Ramon y Cajal, Madrid (Spain); Hollander, E. [Department of Psychiatry, Mount Sinai School of Medicine, Queens Hospital Center, New York (United States); Cesar, J. [Department of Haematology, Hospital Ramon y Cajal, Madrid (Spain); Lopez-Ibor, J.J. Jr. [Department of Psychiatry, Hospital San Carlos, Complutense University, Madrid (Spain)

    1994-12-01

    Decreased platelet monoamine oxidase (MAO) activity has been reported in association with sensation-seeking personality type and in some mental disorders associated with a lack of impulse control. Pathological gambling itself has been related with both sensation-seeking and reduced impulse control. Platelet MAO activity was investigated in 15 DSM-III-R pathological gamblers from our outpatient clinic. Gamblers had a significantly lower platelet MAO activity than a group of 25 healthy controls. The range of MAO levels in gamblers was also significantly shorter than in controls. In controls, platelet MAO levels showed the previously described negative correlations with sensation-seeking scores but not in gamblers. The findings are consistent with previous studies showing an association of low platelet MAO activity with impulse control disorders and raise some interesting therapeutic alternatives for pathological gambling. (au) (40 refs.).

  2. Discovery of novel-scaffold monoamine transporter ligands via in silico screening with the S1 pocket of the serotonin transporter.

    Science.gov (United States)

    Nolan, Tammy L; Geffert, Laura M; Kolber, Benedict J; Madura, Jeffry D; Surratt, Christopher K

    2014-09-17

    Discovery of new inhibitors of the plasmalemmal monoamine transporters (MATs) continues to provide pharmacotherapeutic options for depression, addiction, attention deficit disorders, psychosis, narcolepsy, and Parkinson's disease. The windfall of high-resolution MAT structural information afforded by X-ray crystallography has enabled the construction of credible computational models. Elucidation of lead compounds, creation of compound structure-activity series, and pharmacologic testing are staggering expenses that could be reduced by using a MAT computational model for virtual screening (VS) of structural libraries containing millions of compounds. Here, VS of the PubChem small molecule structural database using the S1 (primary substrate) ligand pocket of a serotonin transporter homology model yielded 19 prominent "hit" compounds. In vitro pharmacology of these VS hits revealed four structurally unique MAT substrate uptake inhibitors with high nanomolar affinity at one or more of the three MATs. In vivo characterization of three of these hits revealed significant activity in a mouse model of acute depression at doses that did not elicit untoward locomotor effects. This constitutes the first report of MAT inhibitor discovery using exclusively the primary substrate pocket as a VS tool. Novel-scaffold MAT inhibitors offer hope of new medications that lack the many classic adverse effects of existing antidepressant drugs.

  3. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA

    DEFF Research Database (Denmark)

    Schousboe, Arne; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2013-01-01

    Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis....... Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA...... related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA - glutamine cycle the operation of which...

  4. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    Science.gov (United States)

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  5. Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons

    DEFF Research Database (Denmark)

    Ehrhart-Bornstein, M; Treiman, M; Hansen, Gert Helge

    1991-01-01

    Primary cultures of GABAergic cerebral cortex neurons and glutamatergic cerebellar granule cells were used to study the expression of synaptophysin, a synaptic vesicle marker protein, along with the ability of each cell type to release neurotransmitter upon stimulation. The synaptophysin expression...... by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons....... The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase...

  6. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

    Science.gov (United States)

    Spasojevic, Natasa; Jovanovic, Predrag; Dronjak, Sladjana

    2015-03-01

    We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  7. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment

    Directory of Open Access Journals (Sweden)

    NATASA SPASOJEVIC

    2015-03-01

    Full Text Available We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  8. Self-assembly of SiO2 nanoparticles for the potentiometric detection of neurotransmitter acetylcholine and its inhibitor.

    Science.gov (United States)

    Arruda, Izabela G; Guimarães, Francisco E G; Ramos, Romildo J; Vieira, Nirton C S

    2014-09-01

    The detection and quantification of neurotransmitter acetylcholine (ACh) are relevant because modifications in the ACh levels constitute a threat to human health. The biological regulator of this neurotransmitter is acetylcholinesterase (AChE), an enzyme that catalyzes the hydrolysis of ACh to choline and acetic acid. However, its activity is inhibited in the presence of organophosphate and carbamate pesticides, compromising the degradation of the neurotransmitter. There has been a growing interest in faster and more sensitive detection systems that include new methods and materials for the determination of the ACh concentration. This paper proposes a potentiometric biosensor for the detection of neurotransmitter ACh and its inhibitors, specifically organophosphate pesticide methamidophos. The biosensor is based on a self-assembled platform formed by poly(allylamine) hydrochloride (PAH) and silicon dioxide nanoparticles (SiO2-Np) that contains the immobilized enzyme AChE. First, the responses of the biosensor were investigated for different concentrations of ACh in buffer solutions. After quantifying ACh, the inhibition of AChE in the presence of methamidophos was determined, enabling the quantification of methamidophos expressed as the percentage of enzyme inhibition. The potential advantages of this biosensor include simplicity in building the electrode, possible production on an industrial scale, limited need for qualified personnel to operate the device and low processing cost.

  9. Behavioural and Neuroendocrine Effects of Stress in Salmonid Fish

    OpenAIRE

    Øverli, Øyvind

    2001-01-01

    Stress can affect several behavioural patterns, such as food intake and the general activity level of an animal. The central monoamine neurotransmitters serotonin, dopamine, and norepinephrine are important in the mediation of both behavioural and neuroendocrine stress effects. This thesis describes studies of two salmonid fish model systems: Fish that become socially dominant or subordinate when reared in pairs, and rainbow trout (Oncorhynchus mykiss) genetically selected for high (HR) and l...

  10. Preparation of 188 Re-lanreotide as a potential tumor therapeutic agent

    International Nuclear Information System (INIS)

    Bai Hongsheng; Jin Xiaohai; Fan Hongqiang; Jia Bing; Wang Yuqing; Lu Weiwei

    2001-01-01

    Radiolabeled peptides hold unlimited potential in diagnostic applications and therapy of malignant tumor. Somatostatin analogue peptide (Lanreotide) is labeled directly with 188 Re via the mixture of citrate and tartrate. The influences of reaction conditions such as pH, temperature, amount of stannous chloride, Lanreotide quantity, reaction time on labeling yield are investigated in detail. At the same time, the stability in vitro, quality control and animal test are evaluated. The experimental results show that Lanreotide reacts with 188 Re for 40 min at pH 2 - 3 and 60 degree C, the labeling yield is at range of 88% - 94%. After purification of 188 Re-Lanreotide with Sep-Pak C 18 reverse phase extraction cartridge, the radiochemical purity (RP) is more than 95%. 188 Re-Lanreotide is eliminated rapidly from the blood and is excreted through liver, the uptake of lung and intestine is high

  11. Synthesis, characterization and biological evaluation of [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand complexes as prototypes for the development of {sup 188}Re(N)-based target-specific radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Stefan [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Agostini, Stefania [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Bergmann, Ralf; Pietzsch, Jens; Pietzsch, Hans-Juergen [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Carta, Davide; Salvarese, Nicola [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Refosco, Fiorenzo [ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Bolzati, Cristina, E-mail: bolzati@icis.cnr.i [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-04-15

    We report on an efficient procedure for the preparation of [{sup 188}Re(N)(PNP)]-based complexes (where PNP is diphosphinoamine) useful in the development of target-specific radiopharmaceuticals. The radiochemical yield of the compounds was optimized considering such reaction parameters as nature of the nitrido nitrogen donor, reaction times and pH level. The chemical identity of the {sup 188}Re agents was determined by high-performance liquid chromatography comparison with the corresponding well-characterized cold Re compounds. {sup 188}Re(N) mixed compounds have been evaluated with regard to stability toward transchelation with GSH and degradation by serum enzymes. The clearance of selected radiocompounds from normal tissues and their in vivo stability were evaluated in rats by biodistribution and imaging studies. [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand compounds were efficiently prepared in aqueous solution from perrhenate using a multistep procedure based on the preliminary formation of the labile {sup 188}Re{sup III}-EDTA species, which easily undergo oxidation/ligand exchange reaction to afford the [{sup 188}Re{sup V{identical_to}}N]{sup 2+} core in the presence of dithiocarbazate. The final mixed-ligand compounds were obtained, at 100{sup o}C, by adding the two bidentate ligands to the buffered [{sup 188}Re{sup V{identical_to}}N]{sup 2+} solution (pH 3.2-3.6). However, a relatively high amount of cys{approx} ligand was required to obtain a quantitative radiochemical yield. The complexes were stable toward reoxidation to perrhenate and ligand exchange reactions. In vivo studies showed rapid distribution and elimination of the complexes from the body. No specific uptakes in sensitive tissues/organs were detected. A positive correlation of the distribution of the complexes estimated with biodistribution studies (%ID) and with micro-SPECT semiquantification imaging analysis (standard uptake values) was observed. These results support the

  12. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy.

    Science.gov (United States)

    Nomura, Sadahiro; Inoue, Takao; Imoto, Hirochika; Suehiro, Eiichi; Maruta, Yuichi; Hirayama, Yuya; Suzuki, Michiyasu

    2017-04-01

    Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r 2 = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r 2 = 0.11). Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. [Changes in the monoamine content in different parts of hypothalamus depending on the stages of the estrous cycle].

    Science.gov (United States)

    Babichev, V N; Adamskaia, E I

    1976-01-01

    Fluorimetric determination of monoamines in various regions of the hypothalamus and at different stages of the estral cycle in rats showed that the serotonin, noradrenaline, and particularly dophamine content changed both in the course of the cycle and at different time (10, 15 and 18 hours) of the same stage of the cycle. Dophamine concentration in the arcuate area--the centre of the tonic activity--reached its maximum at 18 hours of the diestrus-2 (D2) and fell to the minimum at 10 hours of the proestrus (P). Noradrenaline level in the preoptic area increased at 18 hours of the D2 and fell at 10 hours of the P. It is supposed that in the hypothalamic regulation of the estral cycle at least two monoamines (dopamine and noradrenaline) took part; the trigger role belongs to noradrenaline of the preoptic area (the cyclic centre).

  14. Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.

    Science.gov (United States)

    Truong, Jannine G; Wilkins, Diana G; Baudys, Jakub; Crouch, Dennis J; Johnson-Davis, Kamisha L; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2005-09-01

    Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen species formation. The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and perhaps protection against dopamine-associated oxidative consequences. Accordingly, aberrant VMAT-2 function may contribute to the methamphetamine-induced persistent dopaminergic deficits. Hence, this study examined effects of methamphetamine on VMAT-2 in adolescent (postnatal day 40) and young adult (postnatal day 90) rats. Results revealed that high-dose methamphetamine treatment caused greater acute (within 1 h) decreases in vesicular dopamine uptake in postnatal day 90 versus 40 rats, as determined in a nonmembrane-associated subcellular fraction. Greater basal levels of VMAT-2 at postnatal day 90 versus 40 in this purified fraction seemed to contribute to the larger effect. Basal tissue dopamine content was also greater in postnatal day 90 versus 40 rats. In addition, postnatal day 90 rats were more susceptible to methamphetamine-induced persistent dopaminergic deficits as assessed by measuring VMAT-2 activity and dopamine content 7 days after treatment, even if drug doses were adjusted for age-related pharmacokinetic differences. Together, these data demonstrate dynamic changes in VMAT-2 susceptibility to methamphetamine as a function of development. Implications with regard to methamphetamine-induced dopaminergic deficits, as well as dopamine-associated neurodegenerative disorders such as Parkinson's disease, are discussed.

  15. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells

    Science.gov (United States)

    Li, Xianchan; Mohammadi, Amir Saeid; Ewing, Andrew G.

    2016-01-01

    We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids. PMID:28579928

  16. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting.

    Science.gov (United States)

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Myoung Hyoun; Kim, Dae-Weung; Park, Cho Rong; Park, Ji Yong; Lee, Yun-Sang; Youn, Hyewon; Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key

    2016-06-01

    The purpose of the present study was to prepare isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu (folate-GGCE), and to evaluate the feasibility of their use for folate receptor (FR)-targeted molecular imaging and as theranostic agents in a mouse tumor model. Folate-GGCE was synthesized using solid-phase peptide synthesis and radiolabeled with Tc-99m or Re-188. Radiochemical characterization was performed by radio-high-performance liquid chromatography. The biodistribution of Tc-99m-folate-GGCE was studied, with or without co-injection of excess free folate, in mice bearing both FR-positive (KB cell) and FR-negative (HT1080 cell) tumors. Biodistribution of Re-188-folate-GGCE was studied in mice bearing KB tumors. Serial planar scintigraphy was performed in the dual tumor mouse model after intravenous injection of Tc-99m-folate-GGCE. Serial micro-single photon emission computed tomography/computed tomography (SPECT/CT) studies were performed, with or without co-injection of excess free folate, in the mouse tumor model after injection of Tc-99m-folate-GGCE or Re-188-folate-GGCE. The radiolabeling efficiency and radiochemical stability of Tc-99m- and Re-188-folate-GGCE were more than 95 % for up to 4 h after radiolabeling. Uptake of Tc-99m-folate-GGCE at 1, 2, and 4 h after injection in KB tumor was 16.4, 23.2, and 17.6 % injected dose per gram (%ID/g), respectively. This uptake was suppressed by 97.4 % when excess free folate was co-administered. Tumor:normal organ ratios at 4 h for blood, liver, lung, muscle, and kidney were 54.3, 25.2, 38.3, 97.8, and 0.3, respectively. Tumor uptake of Re-188-folate-GGCE at 2, 4, 8, and 16 h after injection was 17.4, 21.7, 24.1, and 15.6 %ID/g, respectively. Tumor:normal organ ratios at 8 h for blood, liver, lung, muscle, and kidney were 126.8, 21.9, 54.8, 80.3, and 0.4, respectively. KB tumors were clearly visualized at a high intensity using serial scintigraphy and micro-SPECT/CT in mice injected with Tc-99m- or Re

  17. Rhenium Uptake as Analogue 96Tc by Steel Corrosion Products

    International Nuclear Information System (INIS)

    K.M. Krupka; C.F. Brown; H. Todd Schaef; S. M. Heald; M. M. Valenta; B. W. Arey

    2006-01-01

    Static batch experiments were used to examine the sorption of dissolved perrhenate [Re(VII)], as a surrogate for pertechnetate [Tc(VII)], on corrosion products of A-516 carbon steel coupons contacted with synthetic groundwater or dilute water. After 109 days of contact time, the concentration of dissolved Re(VII) in the synthetic groundwater matrix decreased by approximately 26%; the dilute water matrix experienced a 99% decrease in dissolved Re(VII) over the same time period. Bulk x-ray diffraction (XRD) results for the corroded steel coupons showed that the corrosion products consisted primarily of maghemite, lepidocrocite, and goethite. Analyses of the coupons by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) indicated that Re was present with the morphologically complex assemblages of Fe oxide/hydroxide corrosion products for samples spiked with the highest dissolved Re(VII) concentration (1.0 mmol/L) used for these experiments. Analyses of corroded steel coupons contacted with solutions containing 1.0 mmol/L Re(VII) by synchrotron-based methods confirmed the presence of Re sorbed with the corrosion product on the steel coupons. Analyses showed that the Re sorbed on these corroded coupons was in the +7 oxidation state, suggesting that the Re(VII) uptake mechanism did not involve reduction of Re to a lower oxidation state, such as +4. The results of our studies using Re(VII) as an analogue for 99 Tc(VII) suggest that 99 Tc(VII) would also be sorbed with steel corrosion products and that the inventory of 99 Tc(VII) released from breached waste packages would be lower than what is now conservatively estimated

  18. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii.

    Directory of Open Access Journals (Sweden)

    Kendra B Sewall

    Full Text Available Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM, because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA, because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.

  19. Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis

    Science.gov (United States)

    Shaw, J.C.; Korzan, W.J.; Carpenter, R.E.; Kuris, A.M.; Lafferty, K.D.; Summers, C.H.; Overli, O.

    2009-01-01

    California killifish (Fundulus parvipinnis) infected with the brain-encysting trematode Euhaplorchis californiensis display conspicuous swimming behaviours rendering them more susceptible to predation by avian final hosts. Heavily infected killifish grow and reproduce normally, despite having thousands of cysts inside their braincases. This suggests that E. californiensis affects only specific locomotory behaviours. We hypothesised that changes in the serotonin and dopamine metabolism, essential for controlling locomotion and arousal may underlie this behaviour modification. We employed micropunch dissection and HPLC to analyse monoamine and monoamine metabolite concentrations in the brain regions of uninfected and experimentally infected fish. The parasites exerted density-dependent changes in monoaminergic activity distinct from those exhibited by fish subjected to stress. Specifically, E. californiensis inhibited a normally occurring, stress-induced elevation of serotonergic metabolism in the raphae nuclei. This effect was particularly evident in the experimentally infected fish, whose low-density infections were concentrated on the brainstem. Furthermore, high E. californiensis density was associated with increased dopaminergic activity in the hypothalamus and decreased serotonergic activity in the hippocampus. In conclusion, the altered monoaminergic metabolism may explain behavioural differences leading to increased predation of the infected killifish by their final host predators. ?? 2008 The Royal Society.

  20. Relationships of Cerebrospinal Fluid Monoamine Metabolite Levels With Clinical Variables in Major Depressive Disorder.

    Science.gov (United States)

    Yoon, Hyung Shin; Hattori, Kotaro; Ogawa, Shintaro; Sasayama, Daimei; Ota, Miho; Teraishi, Toshiya; Kunugi, Hiroshi

    Many studies have investigated cerebrospinal fluid (CSF) monoamine metabolite levels in depressive disorders. However, their clinical significance is still unclear. We tried to determine whether CSF monoamine metabolite levels could be a state-dependent marker for major depressive disorder (MDD) based on analyses stratified by clinical variables in a relatively large sample. Subjects were 75 patients with MDD according to DSM-IV criteria and 87 healthy controls, matched for age, sex, and ethnicity (Japanese). They were recruited between May 2010 and November 2013. We measured homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in CSF samples by high-performance liquid chromatography. We analyzed the relationships of the metabolite levels with age, sex, diagnosis, psychotropic medication use, and depression severity. There was a weak positive correlation between age and 5-HIAA levels in controls (ρ = 0.26, P 12) were significantly lower than those in controls (P .1), were related to depression severity. CSF 5-HIAA and HVA levels could be state-dependent markers in MDD patients. Since 5-HIAA levels greatly decrease with the use of antidepressants, HVA levels might be more useful in the clinical setting. © Copyright 2017 Physicians Postgraduate Press, Inc.

  1. Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array.

    Science.gov (United States)

    Li, Nantao; Lu, Yanli; Li, Shuang; Zhang, Qian; Wu, Jiajia; Jiang, Jing; Liu, Gang Logan; Liu, Qingjun

    2017-07-15

    In this study, a novel spectroelectrochemical method was proposed for neurotransmitters detection. The central sensing device was a hybrid structure of nanohole array and gold nanoparticles, which demonstrated good conductivity and high localized surface plasmon resonance (LSPR) sensitivity. By utilizing such specially-designed nanoplasmonic sensor as working electrode, both electrical and spectral responses on the surface of the sensor could be simultaneously detected during the electrochemical process. Cyclic voltammetry was implemented to activate the oxidation and recovery of dopamine and serotonin, while transmission spectrum measurement was carried out to synchronously record to LSPR responses of the nanoplasmonic sensor. Coupling with electrochemistry, LSPR results indicated good integrity and linearity, along with promising accuracy in qualitative and quantitative detection even for mixed solution and in brain tissue homogenates. Also, the detection results of other negatively-charged neurotransmitters like acetylcholine demonstrated the selectivity of our detection method for transmitters with positive charge. When compared with traditional electrochemical signals, LSPR signals provided better signal-to-noise ratio and lower detection limits, along with immunity against interference factors like ascorbic acid. Taking the advantages of such robustness, the coupled detection method was proved to be a promising platform for point-of-care testing for neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    NARCIS (Netherlands)

    Boonstra, E.; Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S.

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer

  3. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides/neurotransmitters

  4. Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion.

    Science.gov (United States)

    Cabbia, Rafael; Consoli, Amanda; Suchecki, Deborah

    2018-04-01

    Maternal deprivation (MD) disinhibits the adrenal glands, rendering them responsive to various stressors, including saline injection, and this increased corticosterone (CORT) response can last for as long as 2 h. In the present study, we tested the hypothesis that association of MD on day 11 with a saline injection would alter emotional behavior, CORT response, and brain monoamine levels, in male and female adult rats. Rats were submitted to the novelty suppressed feeding (NSF), the sucrose negative contrast test (SNCT), social investigation test (SIT), and the elevated plus maze (EPM). One quarter of each group was not tested (providing basal values of CORT and brain monoamines) and the remainder was decapitated 15, 45, or 75 min after the EPM, to assess CORT reactivity. Monoamine levels were determined in the hypothalamus (HPT), frontal cortex (FC), amygdala (AMY), ventral, and dorsal hippocampus (vHPC, dHPC, respectively). MD reduced food intake, in the home-cage, and latency to eat in the NSF in both sexes; females explored less the target animal in the SIT and explored more the open arms of the EPM than males; the CORT response to the EPM was greater in maternally-deprived males and females than in their control counterparts, and this response was further elevated in maternally-deprived females injected with saline. Regarding monoamine levels, females were less affected, showing isolated effects of the stressors, while in males, MD increased 5-HT levels in the HPT and decreased this monoamine in the FC, MD associated with saline reduced dopamine levels in all brain regions, except the HPT. MD at 11 days did not alter emotional behaviors in adult rats, but had an impact in neurobiological parameters associated with this class of behaviors. The impact of MD associated with saline on dopamine levels suggests that males may be vulnerable to motivation-related disorders.

  5. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-04-01

    Full Text Available Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively as words with length equal to three. Then the frequency of each word (here eight words is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms.

  6. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    Science.gov (United States)

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. © 2015 UICC.

  7. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells.

    Science.gov (United States)

    Roshchina, Victoria V

    2016-01-01

    The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.

  8. Radioenzymatic and immunhistochemical demonstration of mono-amine oxidase in different mammals with regard to degenerative disorders of the central nervous system

    International Nuclear Information System (INIS)

    Konradi, C.

    1987-05-01

    Monoamine oxidase (MAO), an enzyme of the outer mitochondrial membrane, is involved in the degradation of biogenic amines. Its role in the metabolism of neurotransmitters in the brain like catecholamines and serotonin is of special importance. Pharmacological interests in neurological and psychiatric disorders require detailed investigations, especially through the discovery of two MAO-subtypes (MAO-A and MAO-B). Thus MAO-inhibitors offer the possibility of specific medical therapies. Activity of MAO-subtypes in several animal species and different tissues including human brain was determined biochemically via a radioenzymatic method. Examination was carried out for mode of action of both subtypes and response to several substrates and inhibitors. Aim was a survey about distinctive characteristics of MAO-A and MAO-B in one species as well as to others. Furthermore investigations about neuronal and glial distribution took place by histochemical and immuncyto-chemical methods. The histochemical method, which proofs the advantage to clear off pharmacological questions was carried out in the locus coeruleus of Meriones unguiculatus. Monoclonal antibodies against both MAO-subtypes were applied in the human brainstem and compared to polyclonal antibodies against tyrosine hydroxylase (TH). The most striking outcome was a lack of MAO in the neurons of substantia nigra, although TH-antibodies gave positive results. Hence questions remain open to explain the beneficial effect MAO-B-inhibitor l-deprenyl in dopamine-neuron degenerative disorders affecting substantia nigra. In particular the results require rethinking of the roles of MAO-A and MAO-B in human brain and the mode and site of action of drugs affecting their efficacy. Furthermore biochemical MAO-models in animals and their transferability to pharmacology in humans should be applied with limitations. This work is a further development of techniques applicable for human post mortem brain analysis. 152 refs., 21 figs

  9. Unexpected Formation of Naphtyl 1,3-Diaminopropane-2-ol Derivative through Azetidinium Ion Intermediate

    International Nuclear Information System (INIS)

    Han, Minsoo; Hahn, Hohgyu

    2012-01-01

    The cause of depression is commonly associated with a deficiency of monoamine neurotransmitters such as serotonin, norepinephrine and dopamine in the brain. Inhibition of monoamine reuptake has been an effective pharmacological treatment of various CNS disorders.1 As a part of our continuing efforts to develop novel antidepressants for multiple therapeutic utilities, we designed diaminopropan-2-ol 1 through structure analysis and molecular modification and of currently marketed reuptake transporter based antidepressants. 3-amino-1,2-diol derivatives 7 were converted to the corresponding diaminopropan-2-ol derivatives 9 by the reaction with MsCl in the presence of triethylamine followed by the treatment of either amine or thiol. We proposed azetdinium ion 11 or azetidinium ylide 12 as an intermediate in the reaction, and prepared 7 analogues by similar manner

  10. Unexpected Formation of Naphtyl 1,3-Diaminopropane-2-ol Derivative through Azetidinium Ion Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Minsoo; Hahn, Hohgyu [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The cause of depression is commonly associated with a deficiency of monoamine neurotransmitters such as serotonin, norepinephrine and dopamine in the brain. Inhibition of monoamine reuptake has been an effective pharmacological treatment of various CNS disorders.1 As a part of our continuing efforts to develop novel antidepressants for multiple therapeutic utilities, we designed diaminopropan-2-ol 1 through structure analysis and molecular modification and of currently marketed reuptake transporter based antidepressants. 3-amino-1,2-diol derivatives 7 were converted to the corresponding diaminopropan-2-ol derivatives 9 by the reaction with MsCl in the presence of triethylamine followed by the treatment of either amine or thiol. We proposed azetdinium ion 11 or azetidinium ylide 12 as an intermediate in the reaction, and prepared 7 analogues by similar manner.

  11. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  12. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shang Li; Dong Shaojun

    2008-01-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10 -7 M, 3.5 x 10 -7 M, 4.1 x 10 -7 M, and 7.7 x 10 -7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields

  13. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Li; Dong Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: dongsj@ciac.jl.cn

    2008-03-05

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10{sup -7} M, 3.5 x 10{sup -7} M, 4.1 x 10{sup -7} M, and 7.7 x 10{sup -7} M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  14. Monoamines and sexual function in rats bred for increased catatonic reactivity.

    Science.gov (United States)

    Klochkov, D V; Alekhina, T A; Kuznetsova, E G; Barykina, N N

    2009-07-01

    Body weight, ovary and uterus weight, the nature of estral cycles, and hypothalamus dopamine and noradrenaline levels and plasma testosterone levels were studied in female GC rats, bred for increased catatonic reactivity, at different stages of the estral cycle (estrus, proestrus). The outbred Wistar strain served as controls. On the background of decreased body weight, GC females showed impairments to the morphological cyclical changes in the ovaries and uterus, with a reduction in ovary weight in diestrus (p rats showed higher levels of these monoamines in estrus and lower levels in diestrus. Plasma testosterone levels in female GC rats were higher in diestrus than in estrus and in Wistar rats.

  15. Neurotransmitter receptors as signaling platforms in anterior pituitary cells

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Stojilkovic, S. S.

    2018-01-01

    Roč. 463, C (2018), s. 49-64 ISSN 0303-7207 R&D Projects: GA ČR(CZ) GA16-12695S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : pituitary * ligand-gated receptor channels * G protein -coupled receptors * neurotransmitters * action potentials * calcium signaling * hormone secretion Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.754, year: 2016

  16. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009

    DEFF Research Database (Denmark)

    Pilegaard, Kim; Ibrom, Andreas; Courtney, Michael

    2011-01-01

    and atmospheric CO2 concentration. The net CO2 exchange (NEE) was measured by the eddy covariance method. Ecosystem respiration (RE) was estimated from nighttime values and gross ecosystem exchange (GEE) was calculated as the sum of RE and NEE. Over the years the beech forest acted as a sink of on average of 157...... g C m−2 yr−1. In one of the years only, the forest acted as a small source. During 1996–2009 a significant increase in annual NEE was observed. A significant increase in GEE and a smaller and not significant increase in RE was also found. Thus the increased NEE was mainly attributed to an increase...... in GEE. The overall trend in NEE was significant with an average increase in uptake of 23 g C m−2 yr−2. The carbon uptake period (i.e. the period with daily net CO2 gain) increased by 1.9 days per year, whereas there was a non significant tendency of increase of the leafed period. This means...

  17. Use of neurotransmitter regulators in functional gastrointestinal disorders based on symptom analysis.

    Science.gov (United States)

    Luo, Qing Qing; Chen, Sheng Liang

    2017-04-01

    It has been a great challenge for gastroenterologists to cope with functional gastrointestinal disorders (FGIDs) in clinical practice due to the contemporary increase in stressful events. A growing body of evidence has shown that neuroregulators such as anti-anxiety agents and antidepressants function well on FGIDs, particularly in cases that are refractory to classical gastrointestinal (GI) medications. Among these central-acting agents, small individualized doses of tricyclic antidepressants and selective serotonin reuptake inhibitors are usually recommended as a complement to routine GI management. When these drugs are chosen to treat FGIDs, both their central effects and the modulation of peripheral neurotransmitters should be taken into consideration. In this article we recommend strategies for choosing drugs based on an analysis of psychosomatic GI symptoms. The variety and dosage of the neurotransmitter regulators are also discussed. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  18. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Atkin, Kate E. [Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Reiss, Renate; Turner, Nicholas J. [School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Brzozowski, Andrzej M.; Grogan, Gideon, E-mail: grogan@ysbl.york.ac.uk [Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW (United Kingdom)

    2008-03-01

    Crystals of A. niger monoamine oxidase variants display P2{sub 1} or P4{sub 1}2{sub 1}2/P4{sub 3}2{sub 1}2 symmetry, with eight or two molecules in the asymmetric unit, respectively. Monoamine oxidase from Aspergillus niger (MAO-N) is an FAD-dependent enzyme that catalyses the conversion of terminal amines to their corresponding aldehydes. Variants of MAO-N produced by directed evolution have been shown to possess altered substrate specificity. Crystals of two of these variants (MAO-N-3 and MAO-N-5) have been obtained; the former displays P2{sub 1} symmetry with eight molecules per asymmetric unit and the latter has P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 symmetry and two molecules per asymmetric unit. Solution of these structures will help shed light on the molecular determinants of improved activity and high enantioselectivity towards a broad range of substrates.

  19. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    OpenAIRE

    Gantz, Stephanie C.; Levitt, Erica S.; Llamosas Muñozguren, Nerea; Neve, Kim A.; Williams, John T.

    2015-01-01

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigr...

  20. Depolarization-dependent 45Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    International Nuclear Information System (INIS)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr.

    1990-01-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain

  1. Foods and food constituents that affect the brain and human behavior

    Science.gov (United States)

    Lieberman, Harris R.; Wurtman, Richard J.

    1986-01-01

    Until recently, it was generally believed that brain function was usually independent of day-to-day metabolic changes associated with consumption of food. Although it was acknowledged that peripheral metabolic changes associated with hunger or satiety might affect brain function, other effects of foods on the brain were considered unlikely. However, in 1971, Fernstrom and Wurtman discovered that under certain conditions, the protein-to-carbohydrate ratio of a meal could affect the concentration of a particular brain neurotransmitter. That neurotransmitter, serotonin, participates in the regulation of a variety of central nervous system (CNS) functions including sleep, pain sensitivity, aggression, and patterns of nutrient selection. The activity of other neurotransmitter systems has also been shown to be, under certain conditions, affected by dietary constituents which are given either as ordinary foods or in purified form. For example, the CNS turnover of two catecholamine neurotransmitters, dopamine and norepinephrine, can be altered by ingestion of their amino acid precursor, tyrosine, when neurons that release these monoamines are firing frequently. Similarly, lecithin, a dietary source of choline, and choline itself have been shown to increase the synthesis of acetylcholine when cholinergic neurons are very active. It is possible that other neurotransmitters could also be affected by precursor availability or other, as yet undiscovered peripheral factors governed by food consumption. The effects of food on neurotransmitters and behavior are discussed.

  2. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats.

    Science.gov (United States)

    Smirnov, M S; Kiyatkin, E A

    2010-01-20

    Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such

  3. Lower Monoamine Oxidase-A Total Distribution Volume in Impulsive and Violent Male Offenders with Antisocial Personality Disorder and High Psychopathic Traits: An [(11)C] Harmine Positron Emission Tomography Study.

    Science.gov (United States)

    Kolla, Nathan J; Matthews, Brittany; Wilson, Alan A; Houle, Sylvain; Bagby, R Michael; Links, Paul; Simpson, Alexander I; Hussain, Amina; Meyer, Jeffrey H

    2015-10-01

    Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [(11)C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=-0.50 to -0.52, all P-valuesdisorder marked by pathological aggression and impulsivity.

  4. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    Science.gov (United States)

    Schultz, Melissa M.; Painter, Meghan M.; Bartell, Stephen E.; Logue, Amanda; Furlong, Edward T.; Werner, Stephen L.; Schoenfuss, Heiko L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimeplwles promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish—a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.

  5. [THE INFLUENCE OF SEROTONIN TRANSPORTER AND MONOAMINE OXIDASE A GENES POLYMORPHISM ON PSYCHO-EMOTION AND KARYOLOGICAL STABILITY OF ATHLETES].

    Science.gov (United States)

    Kalaev, V N; Nechaeva, M S; Korneeva, O S; Cherenkov, D A

    2015-11-01

    The influence of polymorphism of the serotonin transporter and monoamine oxidase A genes, associated with man's aggressiveness on the psycho-emotional state and karyological status of single combat athletes. It was revealed that the carriers of less active ("short"), monoamine oxidase A gene variant have a high motivation to succeed and less rigidity and frustrated, compared to the carriers of more active ("long") version of the gene. Heterozygote carriers of less active ("short") variant of the serotonin transporter gene 5-HTTL had more physical aggression, guilt and were less frustrated compared with carriers of two long alleles. It has been revealed the association of studied genes with the karyological status of athletes. So fighters who are carriers of the short and long alleles of the serotonin transporter gene had more cells with nuclear abnormalities in the buccal epithelium than single combat athletes which both alleles were long.

  6. Effects of trace elements and mono- and dithiols on mitochondrial monoamine oxidase of rats

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N.; Horton, C.

    1978-01-01

    The effects of several trace elements on mitochondrial monoamine oxidase (MAO) were studied. Elements were studied at a concentration of 1 mM; only mercury, cadmium, and copper were significantly effective in reducing the activity of this enzyme. Of several thiols tested, only dithiothreitol could reverse the inhibition of MAO by these elements. Evidence is also presented in this report to show that cysteine, homocysteine, and reduced glutathione inhibit this MAO, whereas dithiothreitol or dithioerythritol evoke stimulatory responses.

  7. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events

    International Nuclear Information System (INIS)

    Brinkmann, Markus; Eichbaum, Kathrin; Kammann, Ulrike; Hudjetz, Sebastian; Cofalla, Catrina; Buchinger, Sebastian; Reifferscheid, Georg; Schüttrumpf, Holger; Preuss, Thomas

    2014-01-01

    Highlights: • A PBTK model for trout was coupled with a sediment equilibrium partitioning model. • The influence of physical exercise on pollutant uptake was studies using the model. • Physical exercise during flood events can increase the level of biliary metabolites. • Cardiac output and effective respiratory volume were identified as relevant factors. • These confounding factors need to be considered also for bioconcentration studies. - Abstract: As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24 °C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios

  8. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Markus; Eichbaum, Kathrin [Department of Ecosystem Analysis, Institute for Environmental Research,ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kammann, Ulrike [Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg (Germany); Hudjetz, Sebastian [Department of Ecosystem Analysis, Institute for Environmental Research,ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Cofalla, Catrina [Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Buchinger, Sebastian; Reifferscheid, Georg [Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz (Germany); Schüttrumpf, Holger [Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Preuss, Thomas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research,ABBt- Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); and others

    2014-07-01

    Highlights: • A PBTK model for trout was coupled with a sediment equilibrium partitioning model. • The influence of physical exercise on pollutant uptake was studies using the model. • Physical exercise during flood events can increase the level of biliary metabolites. • Cardiac output and effective respiratory volume were identified as relevant factors. • These confounding factors need to be considered also for bioconcentration studies. - Abstract: As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24 °C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios.

  9. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake:reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time, the basic differences in the two processes, and the differences in their measurement, the authors conclude that the NR activity measures the current nitrate-reducing potential, which relfects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling. Thus, considering the sampling time as a point of reference, the former is a measure of the past and the latter is a measure of the future

  10. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters

    DEFF Research Database (Denmark)

    Løland, Claus Juul

    2015-01-01

    Background: The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters...... (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure......–function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. Scope of review: To provide an update on what is known about the binding sites for substrates and inhibitors in the Leu...

  11. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    Science.gov (United States)

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  12. RADIOAUTOGRAPHIC DEMONSTRATION OF 5-HYDROXYTRYPTAMINE-3H UPTAKE BY PULMONARY ENDOTHELIAL CELLS

    Science.gov (United States)

    Strum, Judy M.; Junod, Alain F.

    1972-01-01

    The lung is able to rapidly remove 5-hydroxytryptamme (5-HT) from the circulation by a Na+-dependent transport mechanism. In order to identify the sites of uptake, radioautographic studies were done on rat lungs which had been isolated and perfused with 5-HT-3H and 0 5 mM iproniazid, a monoamine oxidase inhibitor. In control experiments 10-4 M imipramine was added to the perfusate to inhibit the membrane transport of 5-HT At the light microscope level, silver grains were seen concentrated near capillaries and in the endothelium of large vessels From electron microscope radioautographs a semiquantitative grain count was made and 90% of the silver grains were observed over capillary endothelial cells. The grains were found over the nucleus and cytoplasm of the cell and shewed no preferential association with any particular cytoplasmic inclusion bodies, organelles, or vesicles Other cell types were unlabeled except for a few mast cells, certain vascular smooth muscle cells, and one nerve ending. This radioautographic demonstration of the cell type responsible for the rapid removal of 5-HT from the lung circulation clearly establishes the existence of a new metabolic role for pulmonary endothelial cells. PMID:5044755

  13. Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative.

    Science.gov (United States)

    Wu, Xiaomeng; Wang, Rui; Jiang, Qingqing; Wang, Shue; Yao, Yao; Shao, Lihua

    2014-04-01

    A simple, rapid and accurate high-performance liquid chromatography method with ultraviolet-visible detection was developed for the determination of five amino acid neurotransmitters - aspartate, glutamic acid, glycine, taurine and γ-aminobutyric acid - in rat hippocampi with pre-column derivatization with 4-fluoro-7-nitrobenzofurazan. Several conditions which influenced derivatization and separation, such as pH, temperature, acetonitrile percentage mobile phase and flow rate, were optimized to obtain a suitable protocol for amino acids quantification in samples. The separation of the five neurotransmitter derivatives was performed on a C18 column using a mobile phase consisting of phosphate buffer (0.02 mol/L, pH 6.0)-acetonitrile (84:16, v/v) at a flow rate of 1.0 mL/min with the column temperature at 30°C. The detection wavelength was 472 nm. Without gradient elution, the five neurotransmitter derivatives were completely separated within 15 min. The linear relation was good in the range from 0.50 to 500 µmol/L, and the correlation coefficients were ≥0.999. Intra-day precision was between 1.8 and 3.2%, and inter-day precision was between 2.4 and 4.7%. The limits of detection (signal-to-noise ratio 3) were from 0.02 to 0.15 µmol/L. The established method was used to determine amino acid neurotransmitters in rat hippocampi with satisfactory recoveries varying from 94.9 to 105.2%. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice

    Science.gov (United States)

    Waters, R.Parrish; Pringle, R.B.; Forster, G.L.; Renner, K.J.; Malisch, J.L.; Garland, T.; Swallow, J.G.

    2013-01-01

    Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. PMID:23352668

  15. Development of radioiodinated ligands for exploration of brain monoamine oxidase by tomo-scintigraphy

    International Nuclear Information System (INIS)

    Rafii, H.

    1996-01-01

    Monoamine oxidases, MAO, are important in the regulation of monoaminergic neuro-transmissions. The fluctuations in MAO activities has been observed in some psychiatric and neuro-degenerative diseases. Thus, quantification of cerebral MAO activity would be useful for diagnosis and the therapeutic follow-up of these disorders. With the object of doing an in vivo scintigraphic exploration of cerebral MAO by SPECT, we have undertaken to synthesize some radioiodinated MAO inhibitors. In the first part of this work, we have discussed the general properties of the monoamine oxidases and their inhibitors. In the second part we have described the scintigraphic methods. the ligands to be used for MAO exploration, and the radioiodination methods. At last in the third part, the development of three radioiodinated ligands has been presented: - [ 125 I]3-iodopargyline. In vivo results showed that, this radioligand blocked the cerebral MAO-B with moderate selectivity. However, complementary in vivo studies would be needed to define precisely its activity.- [ 125 I]Ro 16-6491. The cerebral fixation of this radioligand was in accordance with the MAO-B sites in the rat brains, but its fixation was too low for scintigraphic exploration in vivo with iodine-123. - [ 125 I]Ro 11-9900. In vivo studies of rat brains showed that the MAO-A sites were bound preferentially by this radioligand. The cerebral biodistribution of this ligand labelled with iodine-123 is considered for use in a model animal nearest to human pathology. (author)

  16. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Monoamine Oxidase-A Genetic Variants and Childhood Abuse Predict Impulsiveness in Borderline Personality Disorder.

    Science.gov (United States)

    Kolla, Nathan J; Meyer, Jeffrey; Sanches, Marcos; Charbonneau, James

    2017-11-30

    Impulsivity is a core feature of borderline personality disorder (BPD) and antisocial personality disorder (ASPD) that likely arises from combined genetic and environmental influences. The interaction of the low activity variant of the monoamine oxidase-A (MAOA-L) gene and early childhood adversity has been shown to predict aggression in clinical and non-clinical populations. Although impulsivity is a risk factor for aggression in BPD and ASPD, little research has investigated potential gene-environment (G×E) influences impacting its expression in these conditions. Moreover, G×E interactions may differ by diagnosis. Full factorial analysis of variance was employed to investigate the influence of monoamine oxidase-A (MAO-A) genotype, childhood abuse, and diagnosis on Barratt Impulsiveness Scale-11 (BIS-11) scores in 61 individuals: 20 subjects with BPD, 18 subjects with ASPD, and 23 healthy controls. A group×genotype×abuse interaction was present (F(2,49)=4.4, p =0.018), such that the interaction of MAOA-L and childhood abuse predicted greater BIS-11 motor impulsiveness in BPD. Additionally, BPD subjects reported higher BIS-11 attentional impulsiveness versus ASPD participants (t(1,36)=2.3, p =0.025). These preliminary results suggest that MAOA-L may modulate the impact of childhood abuse on impulsivity in BPD. Results additionally indicate that impulsiveness may be expressed differently in BPD and ASPD.

  18. Nutrient Uptake and Metabolism Along a Large Scale Tropical Physical-Chemical Gradient

    Science.gov (United States)

    Tromboni, F.; Neres-Lima, V.; Saltarelli, W. A.; Miwa, A. C. P.; Cunha, D. G. F.

    2016-12-01

    Nutrient spiraling is a whole-system approach for estimating nutrient uptake that can be used to assess aquatic ecosystems' responses to environmental change and anthropogenic impacts. Historically research on nutrient dynamic uptake in streams has focused on single nutrient dynamics and only rarely the stoichiometric uptake has been considered and linked to carbon metabolism driven by autotrophic and heterotrophic production. We investigated the relationship between uptake of phosphate (PO43-), nitrate (NO3-) ammonium (NH4+) and total dissolve nitrogen (DIN)/ PO43-; and gross primary production (GPP), respiration (R), and net ecosystem productivity (NEP) in six relatively pristine streams with differences regarding canopy cover and physical characteristics, located in a large scale gradient from tropical Atlantic Forest to an Atlantic forest/Cerrado (Brazilian Savanna) transition. We carried out whole stream instantaneous additions of PO43-, NO3- and NH4+ added to each stream in combination, using the TASCC (Tracer Additions for Spiraling Curve Characterization) method. Metabolism measurements were performed in the same streams right after uptake was measured, using one-station open channel method and re-aeration estimations for those sites. We found different background concentrations in the streams located in the Atlantic forest compared with the transition area with Cerrado. In general PO43- and NO3- uptake increased with the decreasing of canopy cover, while a positive relation with background concentration better explained NH4+uptake. DIN/PO43- uptake increased with increasing R and NEP. Little work on functional characteristics of pristine streams has been conducted in this region and this work provides an initial characterization on nitrogen and phosphorus dynamics as well as their stoichiometric uptake in streams.

  19. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine.

  20. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    International Nuclear Information System (INIS)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine