WorldWideScience

Sample records for mono-uranium nitride fuel

  1. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    International Nuclear Information System (INIS)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-01-01

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy and Environment (E and E) and Chemistry and Material Sciences (C and MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E and E and C and MS Directorates co-sponsored this Laboratory Directed Research and Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US

  2. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  3. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  4. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  5. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  6. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  7. Actinide nitride ceramic transmutation fuels for the Futurix-FTA irradiation experiment

    International Nuclear Information System (INIS)

    Voit, St.; McClellan, K.; Stanek, Ch.; Maloy, St.

    2007-01-01

    Full text of publication follows. The transmutation of plutonium and other minor actinides is an important component of an advanced nuclear fuel cycle. The Advanced Fuel Cycle Initiative (AFCI) is currently considering mono-nitrides as potential transmutation fuel material on account of the mutual solubility of actinide mono-nitrides as well as their desirable thermal characteristics. The feedstock is most commonly produced by a carbothermic reduction/nitridisation process, as it is for this programme. Fuel pellet fabrication is accomplished via a cold press/sinter approach. In order to allow for easier investigation of the synthesis and fabrication processes, surrogate material studies are used to compliment the actinide activities. Fuel compositions of particular interest denoted as low fertile (i.e. containing uranium) and non-fertile (i.e. not containing uranium) are (PuAmNp) 0.5 U 0.5 N and (PuAm) 0.42 Zr 0.58 N, respectively. The AFCI programme is investigating the validity of these fuel forms via Advanced Test Reactor (ATR) and Phenix irradiations. Here, we report on the recent progress of actinide-nitride transmutation fuel development and production for the Futurix-FTA irradiation experiment. Furthermore, we highlight specific cases where the complimentary approach of surrogate studies and actinide development aid in the understanding complex material issues. In order to allow for easier investigation of the fundamental materials properties, surrogate materials have been used. The amount of surrogate in each compound was determined by comparing both molar concentration and lattice parameter mismatch via Vegard Law. Cerium was chosen to simultaneously substitute for Pu, Am and Np, while depleted U was chosen to substitute for enriched U. Another goal of this work was the optimisation of added graphite during carbothermic reduction in order to minimise the duration of the carbon removal step (i.e. heat treatment under H 2 containing gas). One proposed

  8. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    Science.gov (United States)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  9. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  10. Study on microstructure change of Uranium nitride coated U-7wt%Mo powder by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Hyoung; Park, Jae Soon; Lee, Hae In; Kim, Woo Jeong; Yang, Jae Ho; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium-molybdenum alloy particle dispersion fuel in an aluminum matrix with a high uranium density has been developed for a high performance research reactor in the RERTR program. In order to retard the fuel-matrix interaction in U-Mo/Al dispersion fuel in which the U-Mo fuel particles were dispersed in Al matrix, nitride layer coated U-Mo fuel particle has been designed and techniques to fabricate nitride-layer coated U-7wt%Mo particles have been developed in our lab. In this study, uranium nitride coated U-Mo particle has heat treatment for several times and degree. And we suggested for interaction layer remedy in U-Mo dispersion fuel. We investigate effect of heat treatment interaction layer evolution on uranium nitride coated U-Mo powder. The EDS and XRD analysis to investigate the phase evolution in uranium nitride coated layer is also a part of the present work

  11. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  12. Nitride fuels irradiation performance data base

    International Nuclear Information System (INIS)

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  13. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  14. A Modified Nitride-Based Fuel for Long Core Life and Proliferation Resistance

    International Nuclear Information System (INIS)

    Ebbinghaus, B; Choi, J; Meier, T

    2003-01-01

    A modified nitride-based uranium fuel to support the small, secured, transportable, and autonomous reactor (SSTAR) concept is initiated at Lawrence Livermore National laboratory (LLNL). This project centers on the evaluation of modified uranium nitride fuels imbedded with other inert (e.g. ZrN), neutron-absorbing (e.g. HfN) , or breeding (e.g. ThN) nitrides to enhance the fuel properties to achieve long core life with a compact reactor design. A long-life fuel could minimize the need for on-site refueling and spent-fuel storage. As a result, it could significantly improve the proliferation resistance of the reactor/fuel systems. This paper discusses the potential benefits and detriments of modified nitride-based fuels using the criteria of compactness, long-life, proliferation resistance, fuel safety, and waste management. Benefits and detriments are then considered in recommending a select set of compositions for further study

  15. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  16. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  17. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  18. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  19. Research and development of nitride fuel cycle technology in Europe

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2004-01-01

    Research and development on nitride fuels for minor actinide burning in accelerator driven systems is performed in Europe in context of the CONFIRM project. Dry and wet methods for fabrication of uranium free nitride fuels have been developed with the assistance of thermo-chemical modelling. Four (Pu, Zr) pins have been fabricated by PSI and will be irradiated in Studsvik at a rating of 40-50 kW/m. The thermal conductivity of (Pu, Zr)N has been measured and was found to be in agreement with earlier theoretical assessments. Safety modeling indicates that americium bearing nitride fuels, in spite of their relatively poor high temperature stability under atmospheric pressure, can survive power transients as long as the fuel cladding remains intact. (author)

  20. Post-irradiation examinations of uranium-plutonium mixed nitride fuel irradiated in JMTR (89F-3A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Arai, Yasuo; Kimura, Yasuhiko; Nagashima, Hisao; Sekita, Noriaki

    2000-03-01

    Two helium-bonded fuel pins filled with uranium-plutonium mixed nitride pellets were encapsulated in 89F-3A and irradiated in JMTR up to 5.5% FIMA at a maximum linear power of 73 kW/m. The capsule cooled for ∼5 months was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pins. Very low fission gas release rate of about 2 ∼ 3% was observed, while the diametric increase of fuel pin was limited to ∼0.4% at the position of maximum reading. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  1. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  2. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  3. Irradiation behaviour of mixed uranium-plutonium carbides, nitrides and carbonitrides; Comportement a l'irradiation de carbures, nitrures et carbonitrures mixtes d'uranium et de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H; Mustelier, J P; Bloch, J; Leclere, J; Hayet, L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    In the framework of the research program of fast reactor fuels two irradiation experiments have been carried out on mixed uranium-plutonium carbides, nitrides and carbo-nitrides. In the first experiment carried out with thermal neutrons, the fuel consisted of sintered pellets sheathed in a stainless steel can with a small gap filled with helium. There were three mixed mono-carbide samples and the maximum linear power was 715 W/cm. After a burn-up slightly lower than 20000 MW day/tonne, a swelling of the fuel which had ruptured the cans was observed. In the second experiment carried out in the BR2 reactor with epithermal neutrons, the samples consisted of sintered pellets sodium bonded in a stainless steel tube. There were three samples containing different fuels and the linear power varies between 1130 and 1820 W/cm. Post-irradiation examination after a maximal burn-up of 1550 MW day/tonne showed that the behaviour of the three fuel elements was satisfactory. (authors) [French] Dans le cadre du programme d'etude des conibustiles pour reacteurs rapides, on a realise deux experiences d'irradiation de carbures, nitrures et carbonitrures mixtes d'uranium et de plutonium. Dans la premiere experience, faite en neutrons thermiques, le combustible etait constitue de,pastilles frittees gainees dans un tube d'acier inoxydable avec un faible jeu rempli d'helium. Il y avait trois echantillons de monocarbures mixtes, et la puissance lineaire maximale etait de 715 W/cm. Apres un taux de combustion legerement inferieur a 20 000 MWj/t, on a observe un gonflement des combustible qui a provoque, la rupture des gaines. Pans la seconde experience, realisee dans le reacteur BR2 en neutrons epithermiques, les echantillons etaient constitues de pastilles frittees gainees dans un tube d'acier avec un joint sodium. Il y avait trois echantillons contenant des combustibles differents, et la puissance lineaire variait de 1130 a 1820 W/cm. Les examens apres irradiation a un taux maximal de

  4. The interaction between nitride uranium and stainless steel

    Science.gov (United States)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  5. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  6. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  7. Nitride Coating Effect on Oxidation Behavior of Centrifugally Atomized U-Mo Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Jin; Cho, Woo Hyoung; Park, Jong Man; Lee, Yoon Sang; Yang, Jae Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium metal and uranium compounds are being used as nuclear fuel materials and generally known as pyrophoric materials. Nowadays the importance of nuclear fuel about safety is being emphasized due to the vigorous exchanges and co-operations among the international community. According to the reduced enrichment for research and test reactors (RERTR) program, the international research reactor community has decided to use low-enriched uranium instead of high-enriched uranium. As a part of the RERTR program, KAERI has developed centrifugally atomized U-Mo alloys as a promising candidate of research reactor fuel. Kang et al. studied the oxidation behavior of centrifugally atomized U-10wt% Mo alloy and it showed better oxidation resistance than uranium. In this study, the oxidation behavior of nitride coated U-7wt% Mo alloy is investigated to enhance the safety against pyrophoricity

  8. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  9. Method of preparing uranium nitride or uranium carbonitride bodies

    International Nuclear Information System (INIS)

    Wilhelm, H.A.; McClusky, J.K.

    1976-01-01

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U 3 O 8 and carbon by varying the weight ratio of carbon to U 3 O 8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies. 6 claims, no drawings

  10. Fuel balance in nuclear power with fast reactors without a uranium blanket

    International Nuclear Information System (INIS)

    Naumov, V.V.; Orlov, V.V.; Smirnov, V.S.

    1994-01-01

    General aspects related to replacing the uranium blanket of a lead-cooled fast reactor burning uranium-plutonium nitride fuel with a more efficient lead reflector are briefly discussed in the article. A study is very briefly summarized, which showed that a breeding ratio of about 1 and electric power of about 300 MW were achievable. A nuclear fuel balance is performed to estimate the increased consumption of uranium to produce power and the gains achievable by eliminating the uranium blanket. Elimination of the uranium blanket has the advantages of simplifying and improving the fast reactor and eliminating the production of weapons quality plutonium. 3 figs

  11. Uranium. Suppl. Vol. C7

    International Nuclear Information System (INIS)

    Keim, R.; Keller, C.

    1982-01-01

    In this supplement volume C7 the nitrogen compounds of uranium-anides, imides, nitrides, nitrites, nitrates are dealt with. Whereas amides, imides and nitrates have only been of scientific interest up to now, uranium nitride and uranylnitrate are of great technological importance. Therefore the description of the chemical and physical characteristics of UN as a potential fuel for future reactors already comprises about 1/4 of this volume. Also the description of uranyl nitrate - as one of the most important commercial forms of uranium and because of its importance in the chemistry of nuclear fuel element reprocessing - comprises many pages. This is supplemented by further uranium nitrides, ternary and polynary nitrides, oxide nitrides, double nitrides of the various valence steps as well as nitrate complexes and ternary and quarternary systems containing uranyl nitrate. The radiation behaviour of UN, and its distribution (liquid/liquid, liquid solid) as well as the complex formation of the uranyl ion with nitrate are described in other volumes of the uranium series. (RB) [de

  12. Uranium sesqui nitride synthesis and its use as catalyst for the thermo decomposition of ammonia

    International Nuclear Information System (INIS)

    Rocha, Soraya Maria Rizzo da

    1996-01-01

    The preoccupation to have a secure destination for metallic uranium scraps and wastes and to search new non-nuclear uses for the huge amount of depleted metal uranium accumulated at the nuclear industry encouraged the study of the uranium sesqui nitride synthesis and its use. The use of uranium sesqui nitride as a catalyst for the thermo decomposition of ammonia for the hydrogen production has enormous significance. One of the most important nuclear cycle step is the reduction of the higher uranium oxides for the production of uranium dioxide and its conversion to uranium tetrafluoride. The reduction of the UO 3 and U 3 O 8 oxides is accomplished by the gas-solid reaction with elementary hydrogen. For economical purposes and for the safety concern the nuclear industry prefers to manufacture the hydrogen gas at the local and at the moment of use, exploring the catalytic decomposition of ammonia vapor. Using metallic uranium scraps as the raw material the obtention of its nitride was achieved by the reaction with ammonia. The results of the chemical and physical characterization of the prepared uranium sesqui nitride and its behavior as a catalyst for the cracking of ammonia are commented. A lower ammonia cracking temperature (550 deg C) using the uranium sesqui nitride compared with recommended industrial catalysts iron nitride (650 deg C) and manganese nitride (700 deg C) sounds reliable and economically advantageous. (author)

  13. Method to manufacture a nuclear fuel from uranium-plutonium monocarbide or uranium-plutonium mononitride

    International Nuclear Information System (INIS)

    Krauth, A.; Mueller, N.

    1977-01-01

    Pure uranium carbide or nitride is converted with plutonium oxide and carbon (all in powder form) to uranium-plutonium monocarbide or mononitride by cold pressing and sintering at about 1600 0 C. Pure uranium carbide or uranium nitride powder is firstly prepared without extensive safety measures. The pure uranium carbide or nitride powder can also be inactivated by using chemical substances (e.g. stearic acid) and be handled in air. The sinterable uranium carbide or nitride powder (or also granulate) is then introduced into the plutonium line and mixed with a nonstoichiometrically adjusted, prereacted mixture of plutonium oxide and carbon, pressed to pellets and reaction sintered. The surface of the uranium-plutonium carbide (higher metal content) can be nitrated towards the end of the sinter process in a stream of nitrogen. The protective layer stabilizes the carbide against the water and oxygen content in air. (IHOE) [de

  14. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  15. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Arai, Yasuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1992-01-01

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N 2 -H 2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  16. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  17. Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex

    Energy Technology Data Exchange (ETDEWEB)

    King, David M.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. [Nottingham Univ. (United Kingdom). School of Chemistry; Tuna, Floriana; McInnes, Eric J.L. [Manchester Univ. (United Kingdom). School of Chemistry

    2013-04-26

    Straightforward oxidation of a triamidoamine uranium(III) complex with trimethyl-N-oxide affords a uranium(V) terminal mono-oxo complex which is the first clear-cut example of a uranium(V) single-molecule magnet (SMM). This monometallic complex unambiguously shows that a strongly axially ligated and thus anisotropic ligand field can be used to overcome the limited magnetic anisotropy of uranium(V). [German] Die direkte Oxidation eines Triamidoamin-Uran(III)-Komplexes mit Trimethyl-N-oxid liefert einen terminalen Uran(V)-Mono(oxo)komplex, der das erste gesicherte Beispiel eines Uran(V)-Einzelmolekuelmagnets ist. Dieser monometallische Komplex zeigt eindeutig, dass ein starkes axiales und somit anisotropes Ligandenfeld die begrenzte magnetische Anisotropie von Uran(V) beseitigen kann.

  18. 1. Mono([8]annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    International Nuclear Information System (INIS)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported

  19. 1. Mono([8]annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, Thomas Richard [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  20. 1. Mono((8)annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono((8)annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono((8)annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  1. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  2. Development of nitride fuel and pyrochemical process for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo; Uno, Masayoshi

    2010-01-01

    Nitride fuel cycle for transmutation of minor actinides has been investigated under the double-strata fuel cycle concept. Mononitride solid solutions containing minor actinides have been prepared and characterised. Thermo-physical properties, such as thermal expansion, heat capacity and thermal diffusivity, have been measured by use of minor actinide nitride and burn-up simulated nitride samples. Irradiation behaviour of nitride fuel has been examined by irradiation tests. Pyrochemical process for treatment of spent nitride fuel has been investigated mainly by electrochemical measurements and nitride formation behaviour in pyrochemical process has been studied for recycled fuel fabrication. Recent results of experimental study on nitride fuel and pyrochemical process are summarised in the paper. (authors)

  3. Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex

    International Nuclear Information System (INIS)

    King, David M.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.; Tuna, Floriana; McInnes, Eric J.L.

    2013-01-01

    Straightforward oxidation of a triamidoamine uranium(III) complex with trimethyl-N-oxide affords a uranium(V) terminal mono-oxo complex which is the first clear-cut example of a uranium(V) single-molecule magnet (SMM). This monometallic complex unambiguously shows that a strongly axially ligated and thus anisotropic ligand field can be used to overcome the limited magnetic anisotropy of uranium(V). [de

  4. Synthesis, reactivity, and electronic structure of molecular uranium nitrides

    OpenAIRE

    Cleaves, Peter A.

    2016-01-01

    The study of metal-ligand multiple bonding offers insight into the electronic structure and bond of metal systems. Until recently, for uranium, such systems were limited to uranyl, and terminal chalcogenide, imide and carbene complexes. In 2012, this was extended to nitrides with the first preparation of a uranium–nitride (U≡N) species isolable under standard conditions, namely [U(TrenTIPS)(N)][Na(12C4)2] (52), which is prepared by the two-electron reduction of sodium azide with a trivalent u...

  5. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  6. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  7. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  8. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  9. Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex

    Energy Technology Data Exchange (ETDEWEB)

    King, David M.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. [School of Chemistry, University of Nottingham (United Kingdom); Tuna, Floriana; McInnes, Eric J.L. [School of Chemistry and Photon Science Institute, University of Manchester (United Kingdom)

    2013-04-26

    Straightforward oxidation of a triamidoamine uranium(III) complex with trimethyl-N-oxide affords a uranium(V) terminal mono-oxo complex which is the first clear-cut example of a uranium(V) single-molecule magnet (SMM). This monometallic complex unambiguously shows that a strongly axially ligated and thus anisotropic ligand field can be used to overcome the limited magnetic anisotropy of uranium(V). (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex

    International Nuclear Information System (INIS)

    King, David M.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.; Tuna, Floriana; McInnes, Eric J.L.

    2013-01-01

    Straightforward oxidation of a triamidoamine uranium(III) complex with trimethyl-N-oxide affords a uranium(V) terminal mono-oxo complex which is the first clear-cut example of a uranium(V) single-molecule magnet (SMM). This monometallic complex unambiguously shows that a strongly axially ligated and thus anisotropic ligand field can be used to overcome the limited magnetic anisotropy of uranium(V). (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Study on the nitride fuel fabrication for FBR cycle (1)

    International Nuclear Information System (INIS)

    Shinkai, Yasuo; Ono, Kiyoshi; Tanaka, Kenya

    2002-07-01

    In the phase-II of JNC's 'Feasibility Study on Commercialized Fuel Reactor Cycle System (the F/S)', the nitride fuels are selected as candidate for fuels for heavy metal cooled reactor, gas cooled reactor, and small scale reactor. In particular, the coated fuel particles are a promising concept for gas cooled reactor. In addition, it is necessary to study in detail the application possibility of pellet nitride fuel and vibration compaction nitride fuel for heavy metal cooled reactor and small scale reactor in the phase-II. In 2001, we studied more about additional equipments for the nitride fuel fabrication in processes from gelation to carbothermic reduction in the vibration compaction method. The result of reevaluation of off-gas mass flow around carbothermic reduction equipment in the palletizing method, showed that quantity of off-gas flow reduced and its reduction led the operation cost to decrease. We studied the possibility of fabrication of large size particles in the coated fuel particles for helium gas cooled reactor and we made basic technical issues clear. (author)

  12. Facile CO cleavage by a multimetallic CsU2 nitride complex

    International Nuclear Information System (INIS)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella; Kefalidis, Christos E.; Maron, Laurent

    2016-01-01

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU 2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU IV -N-U IV core to yield CsU III (OTf) and [MeN=U V ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  13. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    Science.gov (United States)

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex

    Science.gov (United States)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella

    2017-07-01

    Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under

  15. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1991-01-01

    In this paper, the conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design is performed. As a first step, an intensive literature survey is completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins is designed and analyzed using the SIEX computer code. The analysis predicts that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors

  16. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs

  17. Facile CO cleavage by a multimetallic CsU{sub 2} nitride complex

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella [Ecole Polytechnique de Federale de Lausanne (EPFL) (Switzerland). Inst. des Sciences et Ingenierie Chimiques; Kefalidis, Christos E.; Maron, Laurent [Toulouse Univ. (France). LPCNO, CNRS et INSA, UPS

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU{sub 2}(μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU{sup IV}-N-U{sup IV} core to yield CsU{sup III}(OTf) and [MeN=U{sup V}] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  18. Metallographic preparation of sintered oxides, carbides and nitrides of uranium and plutonium

    International Nuclear Information System (INIS)

    Martin, A.; Arles, L.

    1967-12-01

    We describe the methods of polishing, attack and coloring used at the section of plutonium base ceramics studies. These methods have stood the test of experience on the uranium and plutonium carbides, nitrides and carbonitrides as well on the mixed uranium and plutonium oxides. These methods have been particularly adapted to fit to the low dense and sintered samples [fr

  19. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  20. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  1. Imperfections and phase transformations by mono-N-alkylammonium-uranium glimmers

    International Nuclear Information System (INIS)

    Kammermeier, H.

    1982-01-01

    Uranium glimmers have a layered structure. Bimolecular intermediate layered films of parallel ordered alkyl chains can be produced by exchange of the intermediate layer kations with the mono-n-alkylammonium ions and the succession of soaking with n-alkanols. Phase changes can occur in these films that are accompanied by a change of the layer distance of the solid inorganic basic matrix. N-alkyl ammonium-n-alkanol-intercalcation compounds of uranium glimmers represent systems that can conveniently be examined with X-rays. Thermal phase changes can be performed easily. This paper describes how one can derive conclusions on the reaction mechanism of phase changes in bimolecular alkyl chain films by means of a profile analysis of X-ray reflexes. (orig./HBR) [de

  2. Production of 15N for nitride type nuclear fuel

    International Nuclear Information System (INIS)

    Axente, Damian

    2005-01-01

    Full text: Nitride nuclear fuel is the choice for advanced nuclear reactors and ADS, considering its favorable properties as: melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in different nuclear reactors requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Nitride fuel is a promising candidate for transmutation in ADSs of radioactive minor actinides, which are converted into nitrides with 15 N for that purpose. Taking into account that at present the world wide 15 N market is about 20 - 40 Kg 15 N/y, the supply of that isotope for nitride type nuclear fuel, would demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N at 99 at. % 15 N concentration, using present technology of 15 N/ 14 N isotopic exchange in Nitrox system, the first separation stage of the cascade would be fed with 10M HNO 3 solution at a 600 m 3 /h flow-rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for an industrial plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million m 3 /y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle SO 2 is a problem to be solved to compensate the cost of sulfur dioxide and to diminish the amount of sulfuric acid waste solution. It should be taken into consideration an important price reduction of 15 N in order to make possible its utilization for industrial production of nitride type nuclear fuel. (authors)

  3. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1987-08-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced however by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterised by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (author)

  4. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1988-01-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (orig.)

  5. Ab-initio study of C and O impurities in uranium nitride

    International Nuclear Information System (INIS)

    Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär

    2016-01-01

    Uranium nitride (UN) has been considered a potential fuel for Generation IV (GEN-IV) nuclear reactors as well as a possible new fuel for Light Water Reactors (LWR), which would permit an extension of the fuel residence time in the reactor. Carbon and oxygen impurities play a key role in the UN microstructure, influencing important parameters such as creep, swelling, gas release under irradiation, compatibility with structural steel and coolants, and thermal stability. In this work, a systematic study of the electronic structure of UN containing C and O impurities using first-principles calculations by the Density Functional Theory (DFT) method is presented. In order to describe accurately the localized U 5f electrons, the DFT + U formalism was adopted. Moreover, to avoid convergence toward metastable states, the Occupation Matrix Control (OMC) methodology was applied. The incorporation of C and O in the N-vacancy is found to be energetically favorable. In addition, only for O, the incorporation in the interstitial position is energetically possible, showing some degree of solubility for this element in this site. The binding energies show that the pairs (C−N_v_a_c) and (O−N_v_a_c) interact much further than the other defects, which indicate the possible occurrence of vacancy drag phenomena and clustering of these impurities in grain boundaries, dislocations and free surfaces. The migration energy of an impurity by single N-vacancy show that C and O employ different paths during diffusion. Oxygen migration requires significantly lower energy than carbon. This fact is due to flexibility in the U−O chemical bonds, which bend during the diffusion forming a pseudo UO_2 coordination. On the other hand, C and N have a directional and inflexible chemical bond with uranium; always requiring the octahedral coordination. These findings provide detailed insight into how these impurities behave in the UN matrix, and can be of great interest for assisting the development

  6. Ab-initio study of C and O impurities in uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär, E-mail: polsson@kth.se

    2016-09-15

    Uranium nitride (UN) has been considered a potential fuel for Generation IV (GEN-IV) nuclear reactors as well as a possible new fuel for Light Water Reactors (LWR), which would permit an extension of the fuel residence time in the reactor. Carbon and oxygen impurities play a key role in the UN microstructure, influencing important parameters such as creep, swelling, gas release under irradiation, compatibility with structural steel and coolants, and thermal stability. In this work, a systematic study of the electronic structure of UN containing C and O impurities using first-principles calculations by the Density Functional Theory (DFT) method is presented. In order to describe accurately the localized U 5f electrons, the DFT + U formalism was adopted. Moreover, to avoid convergence toward metastable states, the Occupation Matrix Control (OMC) methodology was applied. The incorporation of C and O in the N-vacancy is found to be energetically favorable. In addition, only for O, the incorporation in the interstitial position is energetically possible, showing some degree of solubility for this element in this site. The binding energies show that the pairs (C−N{sub vac}) and (O−N{sub vac}) interact much further than the other defects, which indicate the possible occurrence of vacancy drag phenomena and clustering of these impurities in grain boundaries, dislocations and free surfaces. The migration energy of an impurity by single N-vacancy show that C and O employ different paths during diffusion. Oxygen migration requires significantly lower energy than carbon. This fact is due to flexibility in the U−O chemical bonds, which bend during the diffusion forming a pseudo UO{sub 2} coordination. On the other hand, C and N have a directional and inflexible chemical bond with uranium; always requiring the octahedral coordination. These findings provide detailed insight into how these impurities behave in the UN matrix, and can be of great interest for assisting the

  7. Study of the dissolution of uranium nitrides in nitric acid by measuring the isotope ratios, 15N/14N, of the formed products

    International Nuclear Information System (INIS)

    Hadibi-Olschewski, Nathalie

    1991-01-01

    The aim of this study was to investigate the dissolution behavior of nitride fuels in nitric acid. The use of nitride fuels in nuclear reactor has many advantages compared with the oxide fuels. One problem in employing nitrides as fuels is the formation of radio-toxic 14 C upon irradiation of natural nitrogen ( 14 N:99.64 pc, 15 N:0.36 pc) in a nuclear reactor ( 14 N (n,p) 14 C reaction). The use of 15 N-enriched fuels avoids these drawbacks. This study was undertaken so as to better understand the mechanisms of the dissolution process and also to follow the distribution of the expensive nitrogen isotope 15 N from the point of view of its behaviour during the recycling process. This study is based on previous work, where the evolution of the nitrogen compounds formed during the dissolution was measured as a function of time for different dissolution parameters. Using 15 N-enriched uranium nitrides or 15 N-enriched nitric acid, two methods were developed to study the influence of the dissolution parameters, nitric acid temperature and concentration, on the 15 N/ 14 N ratios of the nitrogen, nitrogen oxides and ammonium ions utilising a coupled gas-chromatograph/mass spectrometer. The main results are: - similar isotopic composition for NH 4 + and UN; - mixed 14 N/ 15 N composition for N 2 and N 2 O; - similar isotopic composition for NO, NO 2 and HNO 3 ; - no influence of the dissolution parameters on the isotopic composition of the products; an exception maybe made for the N 2 case, which contains more 15 N with increasing acidity and temperature. This work confirms that the first dissolution step is the oxidation of UN with HNO 3 to form NH 4 + and HNO 2 and that HNO 2 has a catalytic role in the dissolution to form other products. And we can conclude that to recycle 15 N, the ammonium ions must be recycled, at least for the case where nitrides are dissolved directly in HNO 3 . (author) [fr

  8. High pressure behaviour of uranium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, Poonam; Sanyal, S.P.; Aynyas, Mahendra

    2006-01-01

    The pressure induced structural phase transition of three actinide mono pnictides AX (A=U and X=As, Sb, Bi), have been studied theoretically using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 5f electrons of the actinide (uranium) ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves are compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 17GPa, 9.5GPa and 5.3 GPa respectively. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. (author)

  9. The passivation of uranium metal surfaces by nitrogen bombardment — the formation of uranium nitride

    Science.gov (United States)

    Allen, Geoffrey C.; Holmes, Nigel R.

    1988-05-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air.

  10. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    Science.gov (United States)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  11. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    with reference full UOX core. The fuel cycle analysis has shown that 233 U mono-recycling with U 3 ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If 233 U multi-recycling with U 3 ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

  12. Safety research needs for carbide and nitride fueled LMFBR's. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1975-01-01

    The results of a study initiated at UCLA during the academic year 1974--1975 to evaluate and review the potential safety related research needs for carbide and nitride fueled LMFBR's are presented. The tasks included the following: (1) Review Core and primary system designs for any significant differences from oxide fueled reactors, (2) Review carbide (and nitride) fuel element irradiation behavior, (3) Review reactor behavior in postulated accidents, (4) Examine analytical methods of accident analysis to identify major gaps in models and data, and (5) Examine post accident heat removal. (TSS)

  13. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  14. Present state and problems of uranium fuel fabrication businesses

    International Nuclear Information System (INIS)

    Yuki, Akio

    1981-01-01

    The businesses of uranium fuel fabrication converting uranium hexafluoride to uranium dioxide powder and forming fuel assemblies are the field of most advanced industrialization among nuclear fuel cycle industries in Japan. At present, five plants of four companies engage in this business, and their yearly sales exceeded 20 billion yen. All companies are planning the augmentation of installation capacity to meet the growth of nuclear power generation. The companies of uranium fuel fabrication make the nuclear fuel of the specifications specified by reactor manufacturers as the subcontractors. In addition to initially loaded fuel, the fuel for replacement is required, therefore the demand of uranium fuel is relatively stable. As for the safety of enriched uranium flowing through the farbicating processes, the prevention of inhaling uranium powder by workers and the precaution against criticality are necessary. Also the safeguard measures are imposed so as not to convert enriched uranium to other purposes than peacefull ones. The strict quality control and many times of inspections are carried out to insure the soundness of nuclear fuel. The growth of the business of uranium fuel fabrication and the regulation of the businesses by laws are described. As the problems for the future, the reduction of fabrication cost, the promotion of research and development and others are pointed out. (Kako, I.)

  15. Preliminary developments of MTR plates with uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Durand, J.P.; Laudamy, P. [CERCA, Romans (France); Richter, K. [Institut fuer Transurane, Karlsruhe (Germany)

    1997-08-01

    In the opinion of CERCA, the total weight of Uranium per MTR plate (without changing the external dimensions) cannot be further increased using U{sub 3}Si{sub 2}. Limits have been reached on plates with a thicker meat or loaded to 6g Ut/cm{sup 3}. The use of a denser fuel like Uranium mononitride could permit an increase in these limits. A collaboration between the Institute for Transuranium Elements (ITU), Joint Research Centre of the European Commission, and CERCA has been set ut. The preliminary studies at the ITU to check compatibility between aluminium and UN proved that there are no metallurgical interactions below 500{degrees}C. Feasibility of the manufacturing, on a laboratory scale at CERCA, of depleted Uranium mononitride plates loaded to 7 g Ut/cm{sup 3} has been demonstrated. The manufacturing process, however, is only one aspect of the development of a new fuel. The experience gained in the case of U{sub 3}Si{sub 2} has shown that the development of a new fuel requires considerable time and financial investment. Such a development certainly represents an effort of about 10 years.

  16. Preliminary developments of MTR plates with uranium nitride

    International Nuclear Information System (INIS)

    Durand, J.P.; Laudamy, P.; Richter, K.

    1997-01-01

    In the opinion of CERCA, the total weight of Uranium per MTR plate (without changing the external dimensions) cannot be further increased using U 3 Si 2 . Limits have been reached on plates with a thicker meat or loaded to 6g Ut/cm 3 . The use of a denser fuel like Uranium mononitride could permit an increase in these limits. A collaboration between the Institute for Transuranium Elements (ITU), Joint Research Centre of the European Commission, and CERCA has been set ut. The preliminary studies at the ITU to check compatibility between aluminium and UN proved that there are no metallurgical interactions below 500 degrees C. Feasibility of the manufacturing, on a laboratory scale at CERCA, of depleted Uranium mononitride plates loaded to 7 g Ut/cm 3 has been demonstrated. The manufacturing process, however, is only one aspect of the development of a new fuel. The experience gained in the case of U 3 Si 2 has shown that the development of a new fuel requires considerable time and financial investment. Such a development certainly represents an effort of about 10 years

  17. Solid state processing of massive uranium mononitride, using uranium and uranium higher nitride powders as starting materials (1962); Preparation a l'etat solide de mononitrure d'uranium massif a partir de poudres d'uranium et de nitrures superieurs d'uranium (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    The mechanism and the optimum conditions for preparing uranium mononitride have been studied. The results have been used for hot pressing (250 kg/cm{sup 2}, 1000 deg. C, under vacuum) a mixture of powders of uranium and uranium higher nitrides. The products obtained have been identified by X-ray measurements and may be - at will and depending upon the stoichiometry - either UN, or a cermet a U{sub {alpha}}-UN. As revealed by the curved shape of grain boundaries, the sinters obtained here do not easily evolve towards physico-chemical equilibrium when submitted to heat treatment. This behaviour is quite different from the one observed with uranium monocarbide prepared by a similar method. This fact may be ascribed to the insolubility in the matrix UN of particles of UO{sub 2} being present as impurities. The density, hardness and thermal conductivity of these products are higher than those measured on uranium nitride or cermets U-UN obtained by other methods. (author) [French] Apres une etude prealable du mecanisme et des conditions optimales de nitruration de l'uranium, on a montre qu'il est possible de preparer par frittage sous charge (250 kg/cm{sup 2}, 1000 deg. C sous vide) d'un melange de poudres d'uranium et de nitrures superieurs d'uranium, un produit qui a ete identifie par diffraction de rayons X. On peut ainsi obtenir a volonte, soit le monocarbure UN, soit un cermet U{sub {alpha}}-UN dans le cas de compositions sous-stoechiometriques. Au contraire du monocarbure d'uranium prepare dans des conditions analogues, les produits obtenus ici, soumis a un traitement thermique, n'evoluent pas facilement vers un etat d'equilibre physico-chimique caracterise par l'existence de joints de grains rectilignes. On attribue ce phenomene a l'insolubilite de l'impurete UO{sub 2} dans UN. La densite, la durete, la conductibilite thermique de ces produits se revelent superieures a celles des nitrures d'uranium ou des cermets U-UN obtenus par les autres methodes. (auteur)

  18. Proceedings of the symposium on nitride fuel cycle technology

    International Nuclear Information System (INIS)

    2004-12-01

    This report is the Proceedings of the Symposium of Nitride Fuel Cycle Technology, which was held on July 28, 2004, at the Tokai Research Establishment of the Japan Atomic Energy Research Institute. The purpose of this symposium is to exchange information and views on nitride fuel cycle technology among researchers from foreign and domestic organizations, and to discuss the recent and future research activities. The topics in the symposium are Present State of the Technology Development in the World and Japan, Fabrication Technology, Property Measurement and Pyrochemical Process. The intensive discussion was made among 53 participants. This report consists of 2 papers as invited presentations and 12 papers as contributed papers. (author)

  19. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  20. Neutronic study using oxide and nitride fuels for the Super Phenix 2 reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.

    1991-11-01

    This report presents a neutronic analysis and a description of the Super Phenix 2 reactor, taken as reference. We present the methodology and results for cell and global reactor calculations for oxide (U O 2 - Pu O 2 ) and nitride (U N - Pu N) fuels. To conclude we compare the performance of oxide and nitride fuels for the reference reactor. (author)

  1. Impact of fuel fabrication and fuel management technologies on uranium management

    International Nuclear Information System (INIS)

    Arnsberger, P.L.; Stucker, D.L.

    1994-01-01

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modern pressurized water reactors. 10 refs., 3 tabs., 10 figs

  2. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  3. Slightly enriched uranium fuel for a PHWR

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1997-01-01

    An improved fuel element design for a PHWR using slightly enriched uranium fuel is presented. It maintains the general geometric disposition of the currently used in the argentine NPP's reactors, replacing the outer ring of rods by rods containing annular pellets. Power density reduction is achieved with modest burnup losses and the void volume in the pellets can be used to balance these two opposite effects. The results show that with this new design, the fuel can be operated at higher powers without violating thermohydraulic limits and this means an improvement in fuel management flexibility, particularly in the transition from natural uranium to slightly enriched uranium cycle. (author)

  4. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  5. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  6. Isotopic exchange of nitrogen and ammonia synthesis on uranium nitride

    International Nuclear Information System (INIS)

    Panov, G.I.; Boreskov, G.K.; Kharitonov, A.S.; Moroz, Eh.M.; Sobolev, V.I.

    1984-01-01

    The catalytic properties of uranium nitride samples of different chemical composition: α - U 2 N 3 and UNsub(1, 70) are compared. The isotopic exchange at 553-623 K in both cases is realized by reversible dissociative nitrogen adsorption. Despite the proximity of structural and thermodynamic phase characteristics, the nitrogen adsorption heat differs by 120 kJ/mol which leads to strong differences in catalytic sample properties. It is shown that the isotopic exchange serves a reliable characteristic of activation of molecular nitrogen and its ability to react with the ammonia synthesis

  7. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  8. Potential health hazard of nuclear fuel waste and uranium ore

    International Nuclear Information System (INIS)

    Mehta, K.; Sherman, G.R.; King, S.G.

    1991-06-01

    The variation of the radioactivity of nuclear fuel waste (used fuel and fuel reprocessing waste) with time, and the potential health hazard (or inherent radiotoxicity) resulting from its ingestion are estimated for CANDU (Canada Deuterium Uranium) natural-uranium reactors. Four groups of radionuclides in the nuclear fuel waste are considered: actinides, fission products, activation products of zircaloy, and activation products of fuel impurities. Contributions from each of these groups to the radioactivity and to the potential health hazard are compared and discussed. The potential health hazard resulting from used fuel is then compared with that of uranium ore, mine tailings and refined uranium (fresh fuel) on the basis of equivalent amounts of uranium. The computer code HAZARD, specifically developed for these computations, is described

  9. Steric control of redox events in organo-uranium chemistry: synthesis and characterisation of U(V) oxo and nitrido complexes

    OpenAIRE

    Tsoureas, Nikolaos; Kilpatrick, Alexander; Inman, Christopher; Cloke, Frederick Geoffrey

    2016-01-01

    The synthesis and molecular structures of a U(V) neutral terminal oxo complex and a U(V) sodium uranium nitride contact ion pair are described. The synthesis of the former is achieved by the use of tBuNCO as a mild oxygen transfer reagent, whilst that of the latter is via the reduction of NaN3. Both mono-uranium complexes are stabilised by the presence of bulky silyl substituents on the ligand framework that facilitate a 2e- oxidation of a single U(III) centre. In contrast, when steric hindra...

  10. Evaluation of refractory-metal-clad uranium nitride and uranium dioxide fuel pins after irradiation for times up to 10 450 hours at 990 C

    Science.gov (United States)

    Bowles, K. J.; Gluyas, R. E.

    1975-01-01

    The effects of some materials variables on the irradiation performance of fuel pins for a lithium-cooled space power reactor design concept were examined. The variables studied were UN fuel density, fuel composition, and cladding alloy. All pins were irradiated at about 990 C in a thermal neutron environment to the design fuel burnup. An 85-percent dense UN fuel gave the best overall results in meeting the operational goals. The T-111 cladding on all specimens was embrittled, possibly by hydrogen in the case of the UN fuel and by uranium and oxygen in the case of the UO2 fuel. Tests with Cb-1Zr cladding indicate potential use of this cladding material. The UO2 fueled specimens met the operational goals of less than 1 percent cladding strain, but other factors make UO2 less attractive than low-density UN for the contemplated space power reactor use.

  11. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  12. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  13. Advanced fast reactor fuels program. Second annual progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Baker, R.D.

    1978-12-01

    Results of steady-state (EBR-II) irradiation testing, off-normal irradiation design and testing, fuel-cladding compatibility, and chemical stability of uranium--plutonium carbide and nitride fuels are presented

  14. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  15. Evaluation of plutonium, uranium, and thorium use in power reactor fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.

    1977-01-01

    The increased cost of uranium and separative work has increased the attractiveness of plutonium use in both uranium and thorium fuel cycles in thermal reactors. A technology, fuel utilization, and economic evaluation is given for uranium and thorium fuel cycles in various reactor types, along with the use of plutonium and 238 U. Reactors considered are LWRs, HWRs, LWBRs, HTGRs, and FBRs. Key technology factors are fuel irradiation performance and associated physical property values. Key economic factors are unit costs for fuel fabrication and reprocessing, and for refabrication of recycle fuels; consistent cost estimates are utilized. In thermal reactors, the irradiation performance of ceramic fuels appears to be satisfactory. At present costs for uranium ore and separative work, recycle of plutonium with thorium rather than uranium is preferable from fuel utilization and economic viewpoints. Further, the unit recovery cost of plutonium is lower from LWR fuels than from natural-uranium HWR fuels; use of LWR product permits plutonium/thorium fueling to compete with uranium cycles. Converting uranium cycles to thorium cycles increases the energy which can be extracted from a given uranium resource. Thus, additional fuel utilization improvement can be obtained by fueling all thermal reactors with thorium, but this requires use of highly enriched uranium; use of 235 U with thorium is most economic in HTGRs followed by HWRs and then LWRs. Marked improvement in long-term fuel utilization can be obtained through high thorium loadings and short fuel cycle irradiations as in the LWBR, but this imposes significant economic penalties. Similar operating modes are possible in HWRs and HTGRs. In fast reactors, use of the plutonium-uranium cycle gives advantageous fuel resource utilization in both LMFBRs and GCFRs; use of the thorium cycle provides more negative core reactivity coefficients and more flexibility relative to use of recycle fuels containing uranium of less than 20

  16. Studies and manufacture of plutonium fuel

    International Nuclear Information System (INIS)

    Bussy, P.; Mustelier, J.P.; Pascard, R.

    1964-01-01

    The studies carried out at the C.E.A. on the properties of fast neutron reactor fuels, the manufacture of fuel elements and their behaviour under irradiation are broadly outlined. The metal fuels studied are the ternary alloys U Pu Mo, U Pu Nb, U Pa Ti, U Pa Zr, the ceramic fuels being mixed uranium and plutonium oxides, carbides and nitrides obtained by sintering. Results are given on the manufacture of uranium fuel elements containing a small proportion of plutonium, used in a critical experiment, and on the first experiments in the manufacture of fuel elements for the reactor Rapsodie. Finally the results of irradiation tests carried out on the prototype fuel pins for Rapsodie are described. (authors) [fr

  17. PHWR fuel fabrication with imported uranium - procedures and processes

    International Nuclear Information System (INIS)

    Rao, R.V.R.L.V.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2010-01-01

    Following the 123 agreement and subsequent agreements with IAEA & NSG, Government of India has entered into bilateral agreements with different countries for nuclear trade. Department of Atomic Energy (DAE), Government of India, has entered into contract with few countries for supply of uranium material for use in the safeguarded PHWRs. Nuclear Fuel Complex (NFC), an industrial unit of DAE, established in the early seventies, is engaged in the production of Nuclear Fuel and Zircaloy items required for Nuclear Power Reactors operating in the country. NFC has placed one of its fuel fabrication facilities (NFC, Block-A, INE-) under safeguards. DAE has opted to procure uranium material in the form of ore concentrate and fuel pellets. Uranium ore concentrate was procured as per the ASTM specifications. Since no international standards are available for PHWR fuel pellets, Specifications have to be finalized based on the present fabrication and operating experience. The process steps have to be modified and fine tuned for handling the imported uranium material especially for ore concentrate. Different transportation methods are to be employed for transportation of uranium material to the facility. Cost of the uranium material imported and the recoveries at various stages of fuel fabrication have impact on the fuel pricing and in turn the unit energy costs. Similarly the operating procedures have to be modified for safeguards inspections by IAEA. NFC has successfully manufactured and supplied fuel bundles for the three 220 MWe safeguarded PHWRs. The paper describes various issues encountered while manufacturing fuel bundles with different types of nuclear material. (author)

  18. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    International Nuclear Information System (INIS)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.; Lavender, Curt A.; Montgomery, Robert O.; Omberg, Ronald P.; Smith, Mark T.; Webster, Ryan A.

    2016-01-01

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  19. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  20. Fuel Cycle Impacts of Uranium-Plutonium Co-extraction

    International Nuclear Information System (INIS)

    Taiwo, Temitope; Szakaly, Frank; Kim, Taek-Kyum; Hill, Robert

    2008-01-01

    A systematic investigation of the impacts of uranium and plutonium co-extraction during fuel separations on reactor performance and fuel cycle has been performed. Proliferation indicators, critical mass and radiation source levels of the separation products or fabricated fuel, were also evaluated. Using LWR-spent-uranium-based MOX fuel instead of natural-uranium-based fuel in a PWR MOX core requires a higher initial plutonium content (∼1%), and results in higher Np-237 content (factor of 5) in the spent fuel, and less consumption of Pu-238 (20%) and Am-241 (14%), indicating a reduction in the effective repository space utilization. Additionally, minor actinides continue to accumulate in the fuel cycle, and thus a separate solution is required for them. Differences were found to be quite smaller (∼0.4% in initial transuranics) between the equilibrium cycles of advanced fast reactor cores using spent and depleted uranium for make-up, in additional to transuranics. The critical masses of the co-extraction products were found to be higher than for weapons-grade plutonium (WG-Pu) and the decay heat and radiation sources of the materials (products) were also found to be generally higher than for WG-Pu in the transuranics content range of 10% to 100% in the heavy-metal. (authors)

  1. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  2. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  3. Neutronic analysis concerning the utilization of mixed U N-Pu N nitride fuel for fast reactors

    International Nuclear Information System (INIS)

    Renke, C.A.C.; Batista, J.L.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-08-01

    Neutronic behavior of mixed UN-PuN nitride fuel in substitution of the mixed oxide U O 2 - Pu O 2 for fast reactors is discussed with focus on Super Phenix I. Characteristics parameters of both cores are calculated and compared and the results presented show a great advantage for the nitride fuel, pointing out a larger performance of fuel elements in the core and an effective reduction of reactivity loss during the cycle. (author)

  4. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  5. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  6. Feasibility Study on Nitrogen-15 Enrichment and Recycling System for Innovative FR Cycle System With Nitride Fuel

    International Nuclear Information System (INIS)

    Masaki Inoue; Kiyoshi Ono; Tsuna-aki Fujioka; Koji Sato; Takeo Asaga

    2002-01-01

    Highly-isotopically-enriched nitrogen (HE-N 2 ; 15 N abundance 99.9%) is indispensable for a nitride fueled fast reactor (FR) cycle to minimize the effect of carbon-14 ( 14 C) generated mainly by 14 N(n,p) 14 C reaction in the core on environmental burden. Thus, the development of inexpensive 15 N enrichment and recycling technology is one of the key aspects for the commercialization of a nitride fueled FR cycle. Nitrogen isotope separation by the gas adsorption technique was experimentally confirmed in order to obtain its technological perspective. A conventional pressure swing adsorption technique, which is already commercialized for recovering the nitrogen gas from multi-composition gas-mixture, would be suitable for recovering in both reprocessing and fuel fabrication to recycle the HE-N 2 gas. A couple of the nitride fuel cycle system concepts including the reprocessing and fuel fabrication process flow diagrams with the HE-N 2 gas recycling were newly designed for both aqueous and non-aqueous (pyrochemical) nitride fuel recycle plants, and also the effect of the HE-N 2 gas recycling on the economics of each concept was evaluated. (authors)

  7. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  8. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium; Preparation et etude des nitrures et carbonitrures d'uranium et de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Anselin, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [French] On decrit en detail une methode simple de preparation des nitrures d'uranium et de plutonium par action directe de l'azote sous pression, a temperature moyenne (vers 400 C), sur les metaux massifs partiellement hydrures. On montre que la miscibilite est complete entre les phases UN et PuN. L'evolution des parametres reticulaires des echantillons en fonction de la temperature et en presence d'oxyde a ete utilisee pour detecter et estimer la solubilite de l'oxygene dans les diverses phases. On a etudie le frittage de ces nitrures en fonction des conditions de preparation, avec ou sans additif de

  9. Research Establishment progress report 1978 - uranium fuel cycle

    International Nuclear Information System (INIS)

    1978-12-01

    A report of research programs continuing in the following areas is presented: mining and treatment of uranium ores, uranium enrichment, waste treatment, reprocessing and the uranium fuel cycle. Staff responsible for each project are indicated

  10. Sensitivity study for accident tolerant fuels: Property comparisons and behavior simulations in a simplified PWR to enable ATF development and design

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Kristina Yancey, E-mail: kristina.yancey@gmail.com; Sudderth, Laura; Brito, Ryan A.; Evans, Jordan A.; Hart, Clifford S.; Hu, Anbang; Jati, Andi; Stern, Karyn; McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu

    2016-12-01

    Highlights: • This study compared four accident tolerant fuels against uranium dioxide. • Material property correlations were developed to evaluate fuel performance. • The fuels’ neutronic and thermal hydraulic behaviors were studied in the AP1000. • No fuel type performed better in all areas, but each has strengths and weaknesses. • More research is needed to build a complete model of the fuel performances. - Abstract: Since the events at the Fukushima-Daiichi nuclear power plant, there has been increased interest in developing fuels to better withstand accidents for current light water reactors. Four accident tolerant fuel candidates are uranium oxide with beryllium oxide additives, uranium oxide with silicon carbide matrix additives, uranium nitride, and uranium nitride with uranium silicide composite. The first two candidates represent near-term high performance uranium oxide with high thermal conductivity and neutron transparency, and the second two represent mid-term high-density fuels with highly beneficial thermal properties. This study seeks to understand the benefits and drawbacks of each option in place of uranium dioxide. To assess the material properties for each of the fuel types, an extensive literature review was performed for material property data. Correlations were then made to evaluate the properties during reactor operation. Neutronics and thermal hydraulics studies were also completed to determine the impact of the use of each candidate in an AP1000 reactor. In most cases, the candidate fuels performed more desirably than uranium dioxide, but no fuel type performed better in all aspects. Much more research needs to be performed to build a complete model of the fuel performances, primarily experimental data for uranium silicide. Each of the fuels studied has its own benefits and drawbacks, and the comparisons discussed in this report can be used to aid in determining the most appropriate fuel depending on the desired specifications.

  11. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  12. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  13. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  14. Research on calculation of mixing fraction for natural uranium equivalent fuel

    International Nuclear Information System (INIS)

    Huang Shien; Wang Lianjie; Wei Yanqin; Li Qing; Zheng Jiye

    2013-01-01

    Based on the first-order perturbation theory and reasonable approximations, the calculation method of recycled uranium (RU) and depleted uranium (DU) mixing fraction for natural uranium equivalent (NUE) fuel was studied, so the equivalence between NUE fuel and natural uranium (NU) fuel was assured. The adopted calculation method accurately takes the variation of micro cross sections alone with fuel depletion into account. A computer code named ALPHA was programmed to execute the calculation procedure. Then the ALPHA code and the WIMS-AECL code compose a processing system, which is applicable to the mixing fraction calculation for heavy water reactor NUE fuel. The validation shows that the processing system can accurately calculate the mixing fraction for NUE fuel. (authors)

  15. Uranium Fuel Plant. Applicants environmental report

    International Nuclear Information System (INIS)

    1975-05-01

    The Uranium Fuel Plant, located at the Cimarron Facility, was constructed in 1964 with operations commencing in 1965 in accordance with License No. SNM-928, Docket No. 70-925. The plant has been in continuous operation since the issuance of the initial license and currently possesses contracts extending through 1978, for the production of nuclear fuels. The Uranium Plant is operated in conjunction with the Plutonium Facility, each sharing common utilities and sanitary wastes disposal systems. The operation has had little or no detrimental ecological impact on the area. For the operation of the Uranium Fuel Fabrication Plant, initial equipment provided for the production of UO 2 , UF 4 , uranium metal and recovery of scrap materials. In 1968, the plant was expanded by increasing the UO 2 and pellet facilities by the installation of another complete production line for the production of fuel pellets. In 1969, fabrication facilities were added for the production of fuel elements. Equipment initially installed for the recovery of fully enriched scrap has not been used since the last work was done in 1970. Economically, the plant has benefited the Logan County area, with approximately 104 new jobs with an annual payroll of approximately $1.3 million. In addition, $142,000 is annually paid in taxes to state, local and federal governments, and local purchases amount to approximately $1.3 million. This was all in land that was previously used for pasture land, with a maximum value of approximately 37,000 dollars. Environmental effects of plant operation have been minimal. A monitoring and measurement program is maintained in order to ensure that the ecology of the immediate area is not affected by plant operations

  16. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  18. Security of supply of uranium as nuclear fuel

    International Nuclear Information System (INIS)

    Guzman Gomez-Selles, L.

    2011-01-01

    When we talk about Sustainability related to nuclear fuel, the first concern that comes to our mind is about the possibility of having guarantees on the uranium supply for a sufficient period of time. In this paper we are going to analyze the last Reserves data published by the OCD's Red Book and also how the Reserve concept in fully linked to the uranium price. Additionally, it is demonstrated how the uranium Security of supply is guaranteed for, at least, the next 100 years. finally, some comments are made regarding other sources of nuclear fuel as it is the uranium coming from the phosphates or the thorium. (Author)

  19. Development of high uranium-density fuels for use in research reactors

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori

    1996-01-01

    The uranium silicide U 3 Si 2 possesses uranium density 11.3 gU/cm 3 with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U 3 Si and U 6 Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm 3 , respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U 3 Si 2 . Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm 3 of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U 3 Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  20. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  1. Terminal uranium(V/VI) nitride activation of carbon dioxide and carbon disulfide. Factors governing diverse and well-defined cleavage and redox reactions

    International Nuclear Information System (INIS)

    Cleaves, Peter A.; Gardner, Benedict M.; Liddle, Stephen T.; Kefalidis, Christos E.; Maron, Laurent; Tuna, Floriana; McInnes, Eric J.L.; Lewis, William

    2017-01-01

    The reactivity of terminal uranium(V/VI) nitrides with CE 2 (E=O, S) is presented. Well-defined C=E cleavage followed by zero-, one-, and two-electron redox events is observed. The uranium(V) nitride [U(Tren TIPS )(N)][K(B15C5) 2 ] (1, Tren TIPS =N(CH 2 CH 2 NSiiPr 3 ) 3 ; B15C5=benzo-15-crown-5) reacts with CO 2 to give [U(Tren TIPS )(O)(NCO)][K(B15C5) 2 ] (3), whereas the uranium(VI) nitride [U(Tren TIPS )(N)] (2) reacts with CO 2 to give isolable [U(Tren TIPS )(O)(NCO)] (4); complex 4 rapidly decomposes to known [U(Tren TIPS )(O)] (5) with concomitant formation of N 2 and CO proposed, with the latter trapped as a vanadocene adduct. In contrast, 1 reacts with CS 2 to give [U(Tren TIPS )(κ 2 -CS 3 )][K(B15C5) 2 ] (6), 2, and [K(B15C5) 2 ][NCS] (7), whereas 2 reacts with CS 2 to give [U(Tren TIPS )(NCS)] (8) and ''S'', with the latter trapped as Ph 3 PS. Calculated reaction profiles reveal outer-sphere reactivity for uranium(V) but inner-sphere mechanisms for uranium(VI); despite the wide divergence of products the initial activation of CE 2 follows mechanistically related pathways, providing insight into the factors of uranium oxidation state, chalcogen, and NCE groups that govern the subsequent divergent redox reactions that include common one-electron reactions and a less-common two-electron redox event. Caution, we suggest, is warranted when utilising CS 2 as a reactivity surrogate for CO 2 . (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior

    International Nuclear Information System (INIS)

    Buyers, W.J.L.; Holden, T.M.; Svensson, E.C.; Lander, G.H.

    1977-11-01

    Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the [001] domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along the spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons

  3. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  4. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 1 presents these data for unirradiated fuel, uranium ore and uranium mill tailings. In Part 2 they have been computed for fuel irradiated to levels of burnup ranging from 140 GJ/kg U to 1150 GJ/kg U. (author)

  5. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  6. Research on using depleted uranium as nuclear fuel for HWR

    International Nuclear Information System (INIS)

    Zhang Jiahua; Chen Zhicheng; Bao Borong

    1999-01-01

    The purpose of our work is to find a way for application of depleted uranium in CANDU reactor by using MOX nuclear fuel of depleted U and Pu instead of natural uranium. From preliminary evaluation and calculation, it was shown that MOX nuclear fuel consisting of depleted uranium enrichment tailings (0.25% 235 U) and plutonium (their ratio 99.5%:0.5%) could replace natural uranium in CANDU reactor to sustain chain reaction. The prospects of application of depleted uranium in nuclear energy field are also discussed

  7. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Lane, A.D.; McDonnell, F.N.; Griffiths, J.

    1988-11-01

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors. 22 refs

  8. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  9. Basic research on high-uranium density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Ugajin, M.; Itoh, A.; Akabori, M.

    1992-01-01

    High-uranium density fuels, uranium silicides (U 3 Si 2 , U 3 Si) and U 6 Me-type uranium alloys (Me = Fe, Mn, Ni), were prepared and examined metallurgically as low-enriched uranium (LEU) fuels for research and test reactors. Miniature aluminum-dispersion plate-type fuel (miniplate) and aluminum-clad disk-type fuel specimens were fabricated and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Fuel-aluminum compatibility tests were conducted to elucidate the extent of reaction and to identify reaction products. The relative stability of the fuels in an aluminum matrix was established at 350degC or above. Experiments were also performed to predict the chemical form of the solid fission-products in the uranium silicide (U 3 Si 2 ) simulating a high burnup anticipated for reactor service. (author)

  10. High-uranium-loaded U3O8--Al fuel element development program

    International Nuclear Information System (INIS)

    Martin, M.M.

    1978-01-01

    The High-Uranium-Loaded U 3 O 8 --Al Fuel Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages

  11. 15 N utilization in nitride nuclear fuels for advanced nuclear power reactors and accelerator - driven systems

    International Nuclear Information System (INIS)

    Axente, D.

    2005-01-01

    15 N utilization for nitride nuclear fuels production for nuclear power reactors and accelerator - driven systems is presented. Nitride nuclear fuel is the obvious choice for advanced nuclear reactors and ADS because of its favorable properties: a high melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in nuclear reactors and ADS requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Accelerator - driven system is a recent development merging of accelerator and fission reactor technologies to generate electricity and transmute long - lived radioactive wastes as minor actinides: Np, Am, Cm. A high-energy proton beam hitting a heavy metal target produces neutrons by spallation. The neutrons cause fission in the fuel, but unlike in conventional reactors, the fuel is sub-critical and fission ceases when the accelerator is turned off. Nitride fuel is a promising candidate for transmutation in ADS of minor actinides, which are converted into nitrides with 15 N for that purpose. Tacking into account that the world wide market is about 20 to 40 Kg 15 N annually, the supply of that isotope for nitride fuel production for nuclear power reactors and ADS would therefore demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N, using present technology of isotopic exchange in NITROX system, the first separation stage of the cascade would be fed with 10M HNO 3 solution of 600 mc/h flow - rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for a production plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million mc/y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle of SO 2 is a problem to be solved to compensate the cost of SO 2

  12. Development of high uranium-density fuels for use in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    The uranium silicide U{sub 3}Si{sub 2} possesses uranium density 11.3 gU/cm{sup 3} with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U{sub 3}Si and U{sub 6}Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm{sup 3}, respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U{sub 3}Si{sub 2}. Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm{sup 3} of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U{sub 3}Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  13. Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel

    International Nuclear Information System (INIS)

    Hore-Lacy, Ian

    2016-01-01

    Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, environmentally-benign exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas: • Provides researchers in academia and industry with an authoritative overview of the front end of the nuclear fuel cycle • Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects • Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety

  14. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  15. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  16. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  17. Effect of carbo-nitride-rich and oxide-rich inclusions on the pitting susceptibility of depleted uranium

    International Nuclear Information System (INIS)

    Pu, Zhen; Chen, Xianglin; Meng, Xiandong; Wu, Yanping; Shen, Liang; Wang, Qingfu; Liu, Tianwei; Shuai, Maobing

    2017-01-01

    Highlights: •The Volta potential differences relative to the matrix are positive for both types of inclusions. •Both types of inclusions are cathodic in the “inclusion/matrix” microgalvanic couples. •The oxide-rich inclusions show a larger Volta potential value of about 115 mV than the carbo-nitride-rich inclusions. •The oxide-rich inclusions give stronger local galvanic coupling with the matrix. •The oxide-rich inclusions are more predisposed to initiate pitting corrosion. -- Abstract: The effects of carbo-nitride-rich and oxide-rich inclusions on the pitting susceptibility of depleted uranium were investigated by electrochemical corrosion measurements, optical microscopy, scanning Kelvin probe force microscopy (SKPFM), and SEM. The results of the potentiodynamic polarization tests suggest that oxide-rich inclusions are more likely to induce pitting corrosion than carbo-nitride-rich inclusions. This enhanced corrosion may be explained by the strong local galvanic coupling between the oxide-rich inclusion and the surrounding matrix, which, from the sight of SKPFM analysis, exhibits a 115 V higher Volta potential than the coupling between the carbo-nitride-rich inclusions and the matrix, respectively.

  18. Transition from uranium to denatured uranium/thorium fuel in an existing PWR

    International Nuclear Information System (INIS)

    Walters, M.A.

    1982-01-01

    The purpose of this research was to determine whether it is possible to make a gradual transition from uranium to denatured uranium/thorium (DUTH) fuel in an existing PWR by adding DUTH assemblies during each scheduled refueling and, if the transition is possible, to develop a general procedure for making it. The feasibility of the transition was established by identifying acceptable refueling schemes for a series of transition cores, and in the process, a method for identifying acceptable schemes evolved. The utility of the method was then demonstrated by applying it to a standard reactor operating under normal conditions. The vehicle used to examine proposed fuel mixtures and to select acceptable ones was a set of one-dimensional computer codes. The core was modeled as a set of five concentric fuel zones with a reflector. Fuel mixtures were proposed and the computer codes were used to determine whether a mixture was acceptable, i.e., whether it had the desired k-effective and flux and power distributions. The parameters allowed to vary in selection of proposed fuel mixtures were enrichment of fresh fuel assemblies, number of uranium and DUTH assemblies added during each refueling, and distribution of fuel in the core. Results of the research showed that a gradual transition is possible. Furthermore, there is a method that allows the identification of fuel mixtures that are likely to be acceptable. It requires the calculation of K-infinity for the entire proposed core and for some of its regions. These values of K-infinity and relationships developed in this research can be used to predict the flux distribution and the final k-effective for the proposed fuel mixture

  19. Crystallo-chemistry of actinide nitrides (U1-yPuy)N and effect of impurities

    International Nuclear Information System (INIS)

    Beauvy, M.; Coulon-Picard, E.; Pelletier, M.

    2004-01-01

    Investigations on actinide nitrides has been done in our Laboratories for Fast Breeder Reactors since the seventies and some properties are reported to show the interest for these fuels. Today, the actinide nitrides are reconsidered as possible fuels for the future fission reactors (GFR and LMFR selected by the international forum Generation IV). The results of new investigations on crystal structure of mixed mono-nitrides (U,Pu)N, and the effects of oxygen and carbon contaminations on this structure are presented. The cubic 'NaCl-fcc' type structure of actinide nitrides AnN with space group O5/h-Fm3m does not respect the 'Vegard law' model for the mixed nitrides (U 1-y Pu y )N. These nitrides are usually considered with strong metallic character associated with partial ionic bonding, but the ionic contribution in the An-N bonding determined in this work is very important and near 41.6% for UN and PuN. From results published on resistivity of mixed nitrides, the data on bonding must be also modified for partial covalence. This is in good agreement with the experimental lattice parameters which are not compatible with dominant metallic bonding. The numbers of bonding electrons in the nitrides (U 1-y Pu y )N are reevaluated and the low values proposed comparatively with those previously published confirm the strong ionic character with high concentration of An 3+ ions. The solubility of oxygen and carbon in actinide nitrides (U 1-y Pu y )N are discussed from measurements on volume concentration of actinide oxide phase, total oxygen and carbon contents, and lattice parameter of nitrides. The oxygen solubility limit in UN is near 1000 ppm, with a lightly higher value of 1200 ppm for the mixed nitride (U 0.8 Pu 0.2 )N. The effects of oxygen or carbon atoms in the lattice of (U 1-y Pu y )N are analysed

  20. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  1. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  2. Linking fuel design features ampersand plant management to uranium, SWU savings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article, contributed by Scott Garrett, Manager of Planning and Uranium Operations for Siemens Power Corporation in Bellevue, Washington, explores the impact of advances in fuel design and fuel management strategies on uranium utilization in the United States. Nuclear plant operators are deriving substantial benefits from these changes, including longer fuel cycle lengths, increased burnup, and added capacity - and experiencing cost savings in both uranium and enrichment services at the same time

  3. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  4. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  5. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  6. Once-through uranium thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Ozdemir, S.; Cubukcu, E.

    2000-01-01

    In this study, the performance of the once-through uranium-thorium fuel cycle in CANDU reactors is investigated. (Th-U)O 2 is used as fuel in all fuel rod clusters where Th and U are mixed homogeneously. CANDU reactors have the advantage of being capable of employing various fuel cycle options because of its good neutron economy, continuous on line refueling ability and axial fuel replacement possibility. For lattice cell calculations transport code WIMS is used. WIMS cross-section library is modified to achieve precise lattice cell calculations. For various enrichments and Th-U mixtures, criticality, heavy element composition changes, diffusion coefficients and cross-sections are calculate. Reactor core is modeled by using the diffusion code CITATION. We conclude that an overall saving of 22% in natural uranium demand can be achieved with the use of Th cycle. However, slightly enriched U cycle still consumes less natural Uranium and is a lot less complicated. (author)

  7. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  8. The nuclear fuel cycle, From the uranium mine to waste disposal

    International Nuclear Information System (INIS)

    2002-09-01

    Fuel is a material that can be burnt to provide heat. The most familiar fuels are wood, coal, natural gas and oil. By analogy, the uranium used in nuclear power plants is called 'nuclear fuel', because it gives off heat too, although, in this case, the heat is obtained through fission and not combustion. After being used in the reactor, spent nuclear fuel can be reprocessed to extract recyclable energy material, which is why we speak of the nuclear fuel cycle. This cycle includes all the following industrial operations: - uranium mining, - fuel fabrication, - use in the reactor, - reprocessing the fuel unloaded from the reactor, - waste treatment and disposal. 'The nuclear fuel cycle includes an array of industrial operations, from uranium mining to the disposal of radioactive waste'. Per unit or mass (e.g. per kilo), nuclear fuel supplies far more energy than a fossil fuel (coal or oil). When used in a pressurised water reactor, a kilo of uranium generates 10,000 times more energy than a kilo of coal or oil in a conventional power station. Also, the fuel will remain in the reactor for a long time (several years), unlike conventional fuels, which are burnt up quickly. Nuclear fuel also differs from others in that uranium has to undergo many processes between the time it is mined and the time it goes into the reactor. For the sake of simplicity, the following pages will only look at nuclear fuel used in pressurised water reactors (or PWRs), because nuclear power plants consisting of one or more PWRs are the most widely used around the world. (authors)

  9. Terminal uranium(V/VI) nitride activation of carbon dioxide and carbon disulfide. Factors governing diverse and well-defined cleavage and redox reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cleaves, Peter A.; Gardner, Benedict M.; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Kefalidis, Christos E.; Maron, Laurent [LPCNO, CNRS and INSA, Universite Paul Sabatier, Toulouse (France); Tuna, Floriana; McInnes, Eric J.L. [School of Chemistry and Photon Science Institute, The University of Manchester (United Kingdom); Lewis, William [School of Chemistry, The University of Nottingham (United Kingdom)

    2017-02-24

    The reactivity of terminal uranium(V/VI) nitrides with CE{sub 2} (E=O, S) is presented. Well-defined C=E cleavage followed by zero-, one-, and two-electron redox events is observed. The uranium(V) nitride [U(Tren{sup TIPS})(N)][K(B15C5){sub 2}] (1, Tren{sup TIPS}=N(CH{sub 2}CH{sub 2}NSiiPr{sub 3}){sub 3}; B15C5=benzo-15-crown-5) reacts with CO{sub 2} to give [U(Tren{sup TIPS})(O)(NCO)][K(B15C5){sub 2}] (3), whereas the uranium(VI) nitride [U(Tren{sup TIPS})(N)] (2) reacts with CO{sub 2} to give isolable [U(Tren{sup TIPS})(O)(NCO)] (4); complex 4 rapidly decomposes to known [U(Tren{sup TIPS})(O)] (5) with concomitant formation of N{sub 2} and CO proposed, with the latter trapped as a vanadocene adduct. In contrast, 1 reacts with CS{sub 2} to give [U(Tren{sup TIPS})(κ{sup 2}-CS{sub 3})][K(B15C5){sub 2}] (6), 2, and [K(B15C5){sub 2}][NCS] (7), whereas 2 reacts with CS{sub 2} to give [U(Tren{sup TIPS})(NCS)] (8) and ''S'', with the latter trapped as Ph{sub 3}PS. Calculated reaction profiles reveal outer-sphere reactivity for uranium(V) but inner-sphere mechanisms for uranium(VI); despite the wide divergence of products the initial activation of CE{sub 2} follows mechanistically related pathways, providing insight into the factors of uranium oxidation state, chalcogen, and NCE groups that govern the subsequent divergent redox reactions that include common one-electron reactions and a less-common two-electron redox event. Caution, we suggest, is warranted when utilising CS{sub 2} as a reactivity surrogate for CO{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  11. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project

  12. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  13. Irradiation behavior of uranium-molybdenum dispersion fuel: Fuel performance data from RERTR-1 and RERTR-2

    International Nuclear Information System (INIS)

    Meyer, M.K.; Clark, C.R.; Hayes, S.L.; Strain, R.V.; Hofman, G.L.; Snelgrove, J.L.; Park, J.M.; Kim, K.H.

    1999-01-01

    This paper presents quantitative data on the irradiation behavior of uranium-molybdenum fuels from the low temperature RERTR-1 and -2 experiments. Fuel swelling measurements of U-Mo fuels at ∼40% and ∼70% burnup are presented. The rate of fuel-matrix interaction layer growth is estimated. Microstructures of fuel in the pre- and postirradiation condition were compared. Based on these data, a qualitative picture of the evolution of the U-Mo fuel microstructure during irradiation has been developed. Estimates of uranium-molybdenum fuel swelling and fuel-matrix interaction under high-power research reactor operating conditions are presented. (author)

  14. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO 2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  15. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  16. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  17. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  18. Quantitative determination of uranium distribution homogeneity in MTR fuel type plates

    International Nuclear Information System (INIS)

    Ferrufino, Felipe Bonito Jaldin

    2011-01-01

    IPEN/CNEN-SP produces the fuel to supply its nuclear research reactor IEA-R1. The fuel is assembled with fuel plates containing an U 3 Si 2 -Al composite meat. A good homogeneity in the uranium distribution inside the fuel plate meat is important from the standpoint of irradiation performance. Considering the lower power of reactor IEA-R1, the uranium distribution in the fuel plate has been evaluated only by visual inspection of radiographs. However, with the possibility of IPEN to manufacture the fuel for the new Brazilian Multipurpose Reactor (RMB), with higher power, it urges to develop a methodology to determine quantitatively the uranium distribution into the fuel. This paper presents a methodology based on X-ray attenuation, in order to quantify the uranium concentration distribution in the meat of the fuel plate by using optical densities in radiographs and comparison with standards. The results demonstrated the inapplicability of the method, considering the current specification for the fuel plates due to the high intrinsic error to the method. However, the study of the errors involved in the methodology, seeking to increase their accuracy and precision, can enable the application of the method to qualify the final product. (author)

  19. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  20. Advanced nuclear fuel cycles - Main challenges and strategic choices

    International Nuclear Information System (INIS)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-01-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness

  1. Advanced nuclear fuel cycles - Main challenges and strategic choices

    Energy Technology Data Exchange (ETDEWEB)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  2. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  3. Synthesis of UN coatings on uranium

    International Nuclear Information System (INIS)

    Mar, R.W.; Hastings, J.C.

    1975-04-01

    A single-displacement reaction approach was used to form uranium mononitride as a protective coating for uranium; the source of the nitrogen was a solid nitride, and magnesium nitride was chosen as the most attractive candidate for the experiment. While the goal of synthesizing a single-phase uranium mononitride coating at temperatures lower than 1405 K was met, a number of problems inherent in the process were identified. 6 figures, 2 tables

  4. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Matsui, T.; Ohse, R.W.

    1986-01-01

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  5. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  6. Behavior of metallic uranium-fissium fuel in TREAT transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Klickman, A.E.; Lo, R.K.; Rhodes, E.A.; Robinson, W.R.; Stanford, G.S.; Wright, A.E.

    1986-01-01

    TREAT tests M2, M3, and M4 were performed to obtain information on two key behavior characteristics of fuel under transient overpower accident conditions in metal-fueled fast reactors: the prefailure axial self-extrusion (elongation beyond thermal expansion) of fuel within intact cladding and the margin to cladding breach. Uranium-5 wt% fissium Experimental Breeder Reactor-II driver fuel pins were used for the tests since they were available as suitable stand-ins for the uranium-plutonium-zirconium ternary fuel, which is the reference fuel of the integral fast reactor (IFR) concept. The ternary fuel will be used in subsequent TREAT tests. Preliminary results from tests M2 and M3 were presented earlier. The present report includes significant advances in analysis as well as additional data from test M4. Test results and analysis have led to the development and validation of pin cladding failure and fuel extrusion models for metallic fuel, within reasonable uncertainties for the uranium-fissium alloy. Concepts involved are straightforward and readily extendable to ternary alloys and behavior in full-size reactors

  7. Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Shibata, Toshikazu.

    1982-01-01

    This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)

  8. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  9. Grain growth in uranium nitride prepared by spark plasma sintering

    Science.gov (United States)

    Johnson, Kyle D.; Lopes, Denise Adorno

    2018-05-01

    Uranium mononitride (UN) has long been considered a potential high density, high performance fuel candidate for light water reactor (LWR) and fast reactor (FR) applications. However, deployability of this fuel has been limited by the notable resistance to sintering and subsequent difficulty in producing a desirable microstructure, the high costs associated with 15N enrichment, as well as the known proclivity to oxidation and interaction with steam. In this study, the stimulation of grain growth in UN pellets sintered using SPS has been investigated. The results reveal that by using SPS and controlling temperature, time, and holding pressure, grain growth can be stimulated and controlled to produce a material featuring both a desired porosity and grain size, at least within the range of interest for nuclear fuel candidates. Grain sizes up to 31 μm were obtained using temperatures of 1650 °C and hold times of 15 min. Evaluation by EBSD reveal grain rotation and coalescence as the dominant mechanism in grain growth, which is suppressed by the application of higher external pressure. Moreover, complete closure of the porosity of the material was observed at relative densities of 96% TD, resulting in a material with sufficient porosity to accommodate LWR burnup. These results indicate that a method exists for the economic fabrication of an 15N-bearing uranium mononitride fuel with favorable microstructural characteristics compatible with use in a light water-cooled nuclear reactor.

  10. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    Kuczera, B.; Hennies, H.H.

    1983-01-01

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  11. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  12. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  13. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  14. Critical experiment and analysis for nitride fuel fast reactor using FCA

    International Nuclear Information System (INIS)

    Andoh, Masaki; Iijima, Susumu; Okajima, Shigeaki; Sakurai, Takeshi; Oigawa, Hiroyuki

    2000-03-01

    As a research on FBR with new types of fuel, a series of experiments on a nitride fuel fast reactor was carried out at Fast Critical Assembly (FCA) to evaluate the calculation accuracy on the neutronic characteristics of the reactor. In this study, criticality, sample reactivity worth and sodium void reactivity worth were measured in the FCA XIX-2 core simulating a nitride fuel fast reactor and were analyzed using the standard analysis method for FCA fast reactor cores. The accuracy of the analysis on the effective multiplication factor was the same as those of the other FCA cores. For the plate sample reactivity worth, the calculation on the radial distribution of plutonium plate reactivity worth overestimated the measurement depending on the distance from the center of the core. For the sodium void reactivity worth, the calculation overestimated the experimental value 10 to 20% at the core center, while the overestimation was improved as the voided position was located at the core boundary. It was found that the transport effect was considerable even at the center of the core. It was considered that the calculation accuracy on the non-leakage term of the void reactivity worth and transport correction should be improved. (author)

  15. Natural uranium equivalent fuel an innovative design for proven CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, F.; Ho, K.; Khaial, A.; Boubcher, M.; Cottrell, C.; Kuran, S., E-mail: fabricia.pineiro@candu.com [Candu Energy Inc., Mississauga, ON (Canada); Zhenhua, Z.; Zhiliang, M. [Third Qinshan Nuclear Power Company, Haiyan, Zhejiang (China)

    2015-07-01

    The high neutron economy, on-power refuelling capability and fuel bundle design simplicity in CANDU reactors allow for the efficient utilization of alternative fuels. Candu Energy Inc. (Candu), in collaboration with the Third Qinshan Nuclear Power Company (TQNPC), the China North Nuclear Fuel Corporation (CNNFC), and the Nuclear Power Institute of China (NPIC), has successfully developed an advanced fuel called Natural Uranium Equivalent (NUE). This innovative design consists of a mixture of recycled and depleted uranium, which can be implemented in existing CANDU stations thereby bringing waste products back into the energy stream, increasing fuel resources diversity and reducing fuel costs. (author)

  16. Natural uranium equivalent fuel. An innovative design for proven CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, F.; Ho, K.; Khaial, A.; Boubcher, M.; Cottrell, C.; Kuran, S. [Candu Energy Inc., Mississauga, Ontario (Canada); Zhenhua, Z.; Zhiliang, M. [Third Qinshan Nuclear Power Co., Haiyan, Zhejiang (China)

    2015-09-15

    The high neutron economy, on-power refuelling capability and fuel bundle design simplicity in CANDU® reactors allow for the efficient utilization of alternative fuels. Candu Energy Inc. (Candu), in collaboration with the Third Qinshan Nuclear Power Company (TQNPC), the China North Nuclear Fuel Corporation (CNNFC), and the Nuclear Power Institute of China (NPIC), has successfully developed an advanced fuel called Natural Uranium Equivalent (NUE). This innovative design consists of a mixture of recycled and depleted uranium, which can be implemented in existing CANDU stations thereby bringing waste products back into the energy stream, increasing fuel resources diversity and reducing fuel costs. (author)

  17. Milling uranium silicide powder for dispersion nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, E.; Silva, D.G.; Souza, J.A.B.; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2009-07-01

    Full text: Uranium silicide (U3Si2) is presently considered the best fuel qualified so far in terms of uranium loading and performance. Stability of the U3Si2 fuel with uranium density of 4.8 g/cm3 was confirmed by burnup stability tests performed during the Reduced Enrichment for Research and Test Reactors (RERTR) program. This fuel was chosen to compose the first core of the new Brazilian Multipurpose Research Reactor (RMB), planned to be constructed in the next years. This new reactor will consume bigger quantities of U3Si2 powder, when compared with the small consumption of the IEA-R1 research reactor of IPEN-CNEN/SP, the unique MTR type research reactor operating in the country. At the present time, the milling operation of U3Si2 ingots is made manually. In order to increase the powder production capacity, the manual milling must be replaced by an automated procedure. This paper describes a new milling machine and procedure developed to produce U3Si2 powder with higher efficiency. (author)

  18. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  19. Reactivity feedbacks of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 deg. C to 50 deg. C and 100 deg. C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U 3 O 8 -Al was about 2% more than the original UAl x -Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.

  20. Separation and recovery method for depleted uranium from spent fuel

    International Nuclear Information System (INIS)

    Imoto, Yoshie; Fujita, Reiko.

    1993-01-01

    Spent oxide fuels are reduced in a molten salt of CaCl 2 -CaF 2 to convert them into metals, then melted in an Fe-U bath disposed in an electrolytic refining vessel and brought into contact with molten Mg, to extract transuranium elements and rare earth elements contained in the Fe-U bath as metals in the molten Mg. Then molten Mg is removed and the residue is brought into contact with KCl-LiCl molten salt and electrolyzed using the Fe-U as an anode. Then, uranium is recovered by deposition on an iron cathode disposed in chloride electrolytes of the electrolytic refining vessel. Uranium and transuranium elements can be thus separated and, for example, depleted uranium for use in blanket fuels can be recovered easily. This can greatly reduce the temporary storage amount of depleted uranium, to eliminate requirement for a large-scaled facility used exclusively for storing uranium and long time management for uranium. (T.M.)

  1. The Fabrication Problem Of U3Si2-Al Fuel With Uranium High Loading

    International Nuclear Information System (INIS)

    Supardjo

    1996-01-01

    The quality of U 3 Si 2 -Al dispersion fuel product is the main aim for each fabricator. Low loading of uranium fuel element is easily fabricated, but with the increased, uranium loading, homogeneity of uranium distribution is difficult to achieve and it always formed white spots, blister, and dogboning in the fuel plates. The problem can be eliminated by the increasing treatment of the fuel/Al powder. The precise selection of fuel/Al particles diameter is needed indeed to make easier in the homogeneous process of powder and the porosities arrangement in the fuel plates. The increasing of uranium loading at constant meat thickness will increase the meat hardness, therefore to withdraw the dogboning forming, the use of harder cladding materials is necessity

  2. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  3. Extending the world's uranium resources through advanced CANDU fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    De Vuono, Tony; Yee, Frank; Aleyaseen, Val; Kuran, Sermet; Cottrell, Catherine

    2010-09-15

    The growing demand for nuclear power will encourage many countries to undertake initiatives to ensure a self-reliant fuel source supply. Uranium is currently the only fuel utilized in nuclear reactors. There are increasing concerns that primary uranium sources will not be enough to meet future needs. AECL has developed a fuel cycle vision that incorporates other sources of advanced fuels to be adaptable to its CANDU technology.

  4. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  5. Use of enriched uranium as a fuel in CANDU reactors

    International Nuclear Information System (INIS)

    Zech, H.J.

    1976-08-01

    The use of slightly enriched uranium as a fuel in CANDU-reactors is studied in a simple parametric way. The results show the possibility of 1) about 30% savings in natural uranium consumption 2) about 35% increase in the utilization of the natural uranium 3) a decrease in fuelling costs to about 70 - 80% of the normal case of natural uranium fuelling. (orig.) [de

  6. Loading ion exchange resins with uranium for HTGR fuel kernels

    International Nuclear Information System (INIS)

    Notz, K.J.; Greene, C.W.

    1976-12-01

    Uranium-loaded ion exchange beads provide an excellent starting material in the production of uranium carbide microspheres for nuclear fuel applications. Both strong-acid (sulfonate) and weak-acid (carboxylate) resins can be fully loaded with uranium from a uranyl nitrate solution utilizing either a batch method or a continuous column technique

  7. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  8. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  9. Study of the neutronic performances of cores with mixed nitride fuel [(U,Pu)N] for fast neutron reactors

    International Nuclear Information System (INIS)

    Merzouk, Hamid

    1992-01-01

    This paper proposes a core design of fast reactor using mixed nitride fuel [(U,Pu)N], having small loss of reactivity and reaching a maximum thermal burn-up rate from 150 GWd/t, while being managed in single batch (renewal of the fuel in only one time for all the subassemblies of the core). This work was completed with aid of the studies of sensibilities of the fast reactors cores to principal parameters: general design of the core, volumetric percentages of the various mixture of materials composing the core, initial enrichments of the fuel. A detailed optimization study on the selected core was conducted complying with safety criteria taking into consideration of consequences of nitride material presence on fuel assembly design rules. (author) [fr

  10. Occupational safety data and casualty rates for the uranium fuel cycle

    International Nuclear Information System (INIS)

    O'Donnell, F.R.; Hoy, H.C.

    1981-10-01

    Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10 12 Btu of energy output, and per other appropriate units of output

  11. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk form, on the order of 7 x 10 20 cm -3 , far short of he approximately 20 x 10 20 cm -3 goal established for the RERTR Program. The purpose of the irradiation experiments on silicide fuels in the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix. The first group of experimental 'mini' fuel plates have recently reached the program's goal burnup and are in various stages of examination. Although the results to date indicate some limitations, it appears that within the range of parameters examined thus far the uranium silicide dispersion holds promise for satisfying most of the needs of the RERTR Program. The twelve experimental silicide dispersion fuel plates that were irradiated to approximately their goal exposure show the 30-vol % U 3 Si-Al plates to be in a stage of relatively rapid fission-gas-driven swelling at a fission density of 2 x 10 20 cm -3 . This fuel swelling will likely result in unacceptably large plate-thickness increases. The U 3 Si plates appear to be superior in this respect; however, they, too, are starting to move into the rapid fuel-swelling stage. Analysis of the currently available post irradiation data indicates that a 40-vol % dispersed fuel may offer an acceptable margin to the onset of unstable thickness changes at exposures of 2 x 10 21 fission/cm 3 . The interdiffusion between fuel and matrix

  12. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Science.gov (United States)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  13. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, J.M.; Lee, K.H.; Yoo, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ryu, H.J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ye, B. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-11-15

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  14. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  15. The solubility of solid fission products in carbides and nitrides of uranium and plutonium. Part I: literature review on experimental results

    International Nuclear Information System (INIS)

    Benedict, U.

    1977-01-01

    This review compiles the available data on the solubility of the most important non-volatile fission products in the carbides, nitrides, and carbonitrides of uranium and plutonium. It includes some elements which are not fission products, but belong to a group of the Periodic Table which contains one or more fission products elements

  16. The MONOS memory transistor: application in a radiation-hard nonvolatile RAM

    International Nuclear Information System (INIS)

    Brown, W.D.

    1985-01-01

    The MONOS (metal-oxide-nitride-oxide-silicon) device is a prime candidate for use as the nonvolatile memory element in a radiation-hardened RAM (random-access memory). The endurance, retention and radiation properties of MONOS memory transistors have been studied as a function of post nitride deposition annealing. Following the nitride layer deposition, all devices were subjected to an 800 0 C oxidation step and some were then annealed at 900 0 C in nitrogen. The nitrogen anneal produces an increase in memory window size of approximately 40%. The memory window center of the annealed devices is shifted toward more positive voltages and is more stable with endurance cycling. Endurance cycling to 10 9 cycles produces a 20% increase in memory window size and a 60% increase in decay rate. For a radiation total dose of 10 6 rads (Si), the memory window size is essentially unchanged and the decay rate increases approximately 13%. A combination of 10 9 cycles and 10 6 rads (Si) reduces the decades of retention (in sec) from 6.3 to 4.3 for a +- 23-V 16-μsec write/erase pulse. (author)

  17. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  18. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  19. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  20. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  1. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  2. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  3. Automation of potentiometric titration for the determination of uranium in nuclear fuel materials

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Kapoor, Y.S.; Kumar, Manish; Singh, Mamta; Fulzele, Ajeet; Prakash, Amrit; Afzal, Mohd; Panakkal, J.P.

    2010-01-01

    Advanced Fuel Fabrication Facility is fabricating various types of mixed oxide fuels, namely for PHWR, BWR, FBTR and PFBR. Precise determination of uranium in MOX fuel sample is important to get desired burn up in the reactor. The modified Davies and Gray method is routinely used for the potentiometric titration of uranium

  4. Oxide and nitride TRU-fuels: lessons drawn from the CONFIRM and FUTURE projects of the 5. European framework programme

    International Nuclear Information System (INIS)

    Pillon, S.; Wallenius, J.

    2004-01-01

    The FUTURE and CONFIRM projects address the issue of the design and fabrication of respectively oxide and nitride fuels for the transmutation in accelerator driven system. This paper compares advantages and drawbacks of TRU oxides and nitrides in terms of performance and fabricability. (authors)

  5. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  6. Assessment of Neutronic Characteristics of Accident-Tolerant Fuel and Claddings for CANDU Reactors

    Directory of Open Access Journals (Sweden)

    Simon Younan

    2018-01-01

    Full Text Available The objective of this study was to evaluate accident-tolerant fuel (ATF concepts being considered for CANDU reactors. Several concepts, including uranium dioxide/silicon carbide (UO2-SiC composite fuel, dense fuels, microencapsulated fuels, and ATF cladding, were modelled in Serpent 2 to obtain reactor physics parameters, including important feedback parameters such as coolant void reactivity and fuel temperature coefficient. In addition, fuel heat transfer was modelled, and a simple accident model was tested on several ATF cases to compare with UO2. Overall, several concepts would require enrichment of uranium to avoid significant burnup penalties, particularly uranium-molybdenum (U-Mo and fully ceramic microencapsulated (FCM fuels. In addition, none of the fuel types have a significant advantage over UO2 in terms of overall accident response or coping time, though U-9Mo fuel melts significantly sooner due to its low melting point. Instead, the different ATF concepts appear to have more modest advantages, such as reduced fission product release upon cladding failure, or reduced hydrogen generation, though a proper risk assessment would be required to determine the magnitude of these advantages to weigh against economic disadvantages. The use of uranium nitride (UN enriched in N15 would increase exit burnup for natural uranium, providing a possible economic advantage depending on fuel manufacturing costs.

  7. A Preliminary Study on the Reuse of the Recovered Uranium from the Spent CANDU Fuel Using Pyroprocessing

    International Nuclear Information System (INIS)

    Park, C. J.; Na, S. H.; Yang, J. H.; Kang, K. H.; Lee, J. W.

    2009-01-01

    During the pyroprocessing, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process, which is composed of about 94 weight percent of the spent fuel. In the previous study, a feasibility study has been done to reuse the recovered uranium for the CANDU reactor fuel following the traditional DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) fuel fabrication process. However, the weight percent of U-235 in the recovered uranium is about 1 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economic profit and saving of uranium resources but also an alleviation of the burden on the management and the disposal of the spent fuel. The research on recycling of recovered uranium was carried out 10 years ago and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is the sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. However, the spent CANDU fuel is another issue in the storage and disposal problem. At present, most countries are considering that the spent CANDU fuel is disposed directly due to the low enrichment (∼0.5 wt%) of the discharge fissile content and lots of fission products. If mixing the spent CANDU fuel and the spent PWR fuel, the estimated uranium fissile enrichment will be about 0.6 wt% ∼ 1.0 wt% depending on the mixing ratio, which is sufficiently reusable in a CANDU reactor. Therefore, this paper deals with a feasibility study on the recovered uranium of the mixed spent fuel from the pyroprocessing. With the various mixing ratios between the PWR spent fuel and the CANDU spent fuel, a reactor characteristics including the safety parameters of the CANDU reactor was evaluated

  8. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  9. Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers

    International Nuclear Information System (INIS)

    Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David; Shearing, Paul R.; Howard, Christopher A.; Corà, Furio; Shaffer, Milo; Brett, Daniel J.L.

    2016-01-01

    Highlights: • Graphitic carbon nitride (gCN) describes many materials with different structures. • gCNs can exhibit excellent mechanical, chemical and thermal resistance. • A major obstacle for pure gCN catalyst supports is limited electronic conductivity. • Composite/Hybrid gCN structures show excellent performance as catalyst supports. • gCNs have great potential for use in fuel calls and water electrolyzers. - Abstract: Electrochemical power sources, such as polymer electrolyte membrane fuel cells (PEMFCs), require the use of precious metal catalysts which are deposited as nanoparticles onto supports in order to minimize their mass loading and therefore cost. State-of-the-art/commercial supports are based on forms of carbon black. However, carbon supports present disadvantages including corrosion in the operating fuel cell environment and loss of catalyst activity. Here we review recent work examining the potential of different varieties of graphitic carbon nitride (gCN) as catalyst supports, highlighting their likely benefits, as well as the challenges associated with their implementation. The performance of gCN and hybrid gCN-carbon materials as PEMFC electrodes is discussed, as well as their potential for use in alkaline systems and water electrolyzers. We illustrate the discussion with examples taken from our own recent studies.

  10. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  11. Experiences and Trends of Manufacturing Technology of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    2012-08-01

    The 'Atoms for Peace' mission initiated in the mid-1950s paved the way for the development and deployment of nuclear fission reactors as a source of heat energy for electricity generation in nuclear power reactors and as a source of neutrons in non-power reactors for research, materials irradiation, and testing and production of radioisotopes. The fuels for nuclear reactors are manufactured from natural uranium (∼99.3% 238 U + ∼0.7% 235 U) and natural thorium (∼100% 232 Th) resources. Currently, most power and research reactors use 235 U, the only fissile isotope found in nature, as fuel. The fertile isotopes 238 U and 232 Th are transmuted in the reactor to human-made 239 Pu and 233 U fissile isotopes, respectively. Likewise, minor actinides (MA) (Np, Am and Cm) and other plutonium isotopes are also formed by a series of neutron capture reactions with 238 U and 235 U. Long term sustainability of nuclear power will depend to a great extent on the efficient, safe and secure utilization of fissile and fertile materials. Light water reactors (LWRs) account for more than 82% of the operating reactors, followed by pressurized heavy water reactors (PHWRs), which constitute ∼10% of reactors. LWRs will continue to dominate the nuclear power market for several decades, as long as economically viable natural uranium resources are available. Currently, the plutonium obtained from spent nuclear fuel is subjected to mono recycling in LWRs as uranium-plutonium mixed oxide (MOX), containing up to 12% PuO 2 , in a very limited way. The reprocessed uranium (RepU) is also re-enriched and recycled in LWRs in a few countries. Unfortunately, the utilization of natural uranium resources in thermal neutron reactors is 2 and MOX fuel technology has matured during the past five decades. These fuels are now being manufactured, used and reprocessed on an industrial scale. Mixed uranium- plutonium monocarbide (MC), mononitride (MN) and U-Pu-Zr alloys are recognized as advanced fuels

  12. Apparatus to simulate nuclear heating in advanced fuels

    International Nuclear Information System (INIS)

    Wrona, B.J.; Galvin, T.M.; Johanson, E.

    1976-10-01

    A direct-electrical-heating apparatus has been built to simulate in-reactor temperature gradients and heating conditions in both the mixed nitrides and carbides of uranium and plutonium. The apparatus has the capability for the investigation and direct observation of fuel-behavior phenomena that should significantly enlarge the data base on mixed carbides and nitrides at temperatures near and above their melting points. In addition to heating UC, results of prooftests showed that the apparatus has the capability to heat graphite, 30 vol % ZrC in graphite, B 4 C control-rod pellets, and stainless steel

  13. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  14. Cyclopentadienyl uranium, neptunium and plutonium chemistry

    International Nuclear Information System (INIS)

    Plews, M.J.

    1985-01-01

    The thesis presents the preparation and characterisation of a number of mono, bis and tris(cyclopentadienyl) complexes of uranium(IV), neptunium(IV) and plutonium(IV). The work of previous studies on mono(cyclopentadienyl) thorium and uranium complexes has been extended, and a range of isostructural neptunium species isolated. Their mode of formation and stability in tetrahydrofuran and acetonitrile solutions was investigated. (author)

  15. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  16. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  17. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  18. Development of a recovery process of scraps resulting from the manufacture of metallic uranium fuels

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Kuada, Terezinha A.; Forbicini, Christina A.L.G.O.; Cohen, Victor H.; Araujo, Bertha F.; Lobao, Afonso S.T.

    1996-01-01

    The study of the dissolution of natural metallic uranium fuel samples with aluminium cladding is presented, in order to obtain optimized conditions for the system. The aluminium cladding was dissolved in an alkaline solution of Na OH/Na NO 3 and the metallic uranium with HNO 3 . A fumeless dissolution with total recovery of nitrous gases was achieved. The main purpose of this project was the recovery of uranium from scraps resulting from the manufacture of the metallic uranium fuel or other non specified fuels. (author)

  19. Determination of uranium in coated fuel particle compact by potassium fluoride fusion-gravimetric method

    International Nuclear Information System (INIS)

    Ito, Mitsuo; Iso, Shuichi; Hoshino, Akira; Suzuki, Shuichi.

    1992-03-01

    Potassium fluoride-gravimetric method has been developed for the determination of uranium in TRISO type-coated fuel particle compact. Graphite matrix in the fuel compact is burned off by heating it in a platinum crucible at 850degC. The coated fuel particles thus obtained are decomposed by fusion with potassium fluoride at 900degC. The melt was dissolved with sulfuric acid. Uranium is precipitated as ammonium diuranate, by passing ammonia gas through the solution. The resulting precipitate is heated in a muffle furnace at 850degC, to convert uranium into triuranium octoxide. Uranium in the triuranium octoxide was determined gravimetrically. Ten grams of caoted fuel particles were completely decomposed by fusion with 50 g of potassium fluoride at 900degC for 3 hrs. Analytical result for uranium in the fuel compact by the proposed method was 21.04 ± 0.05 g (n = 3), and was in good agreement with that obtained by non-destructive γ-ray measurement method : 21.01 ± 0.07 g (n = 3). (author)

  20. Phenomenology of uranium-plutonium homogenization in nuclear fuels

    International Nuclear Information System (INIS)

    Marin, J.M.

    1988-01-01

    The uranium and plutonium cations distribution in mixed oxide fuels (U 1-y Pu y )O 2 with y ≤ 0.1 has been studied in laboratory with industrial fabrication methods. Our experiences has showed a slow cations migration. In the substoichiometry (UPu)O 2-x the diffusion is in connection with the plutonium valence which is an indicator of the oxidoreduction state of the crystal lattice. The plutonium valence is in connection with the oxygen ion deficit in order to compensate the electrical charge. The oxygen ratio of the solid depends of the oxygen partial pressure prevailing at the time of product elaboration but it can be modified by impurities. These impurities permit to increase or decrease the fuel characteristics and performances. An homogeneity analysis methodology is proposed, its objective is to classify the mixed oxide fuels according to the uranium and plutonium ions distribution [fr

  1. Kinetic and thermodynamic bases to resolve issues regarding conditioning of uranium metal fuels

    International Nuclear Information System (INIS)

    Johnson, A.B.; Ballinger, R.G.; Simpson, K.A.

    1994-12-01

    Numerous uranium - bearing fuels are corroding in fuel storage pools in several countries. At facilities where reprocessing is no longer available, dry storage is being evaluated to preclude aqueous corrosion that is ongoing. It is essential that thermodynamic and kinetic factors are accounted for in transitions of corroding uranium-bearing fuels to dry storage. This paper addresses a process that has been proposed to move Hanford N-Reactor fuel from wet storage to dry storage

  2. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  3. Fabrication of carbide and nitride pellets and the nitride irradiations Niloc 1 and Niloc 2

    International Nuclear Information System (INIS)

    Blank, H.

    1991-01-01

    Besides the relatively well-known advanced LMFBR mixed carbide fuel an advanced mixed nitride is also an attractive candidate for the optimised fuel cycle of the European Fast Reactor, but the present knowledge about the nitride is still insufficient and should be raised to the level of the carbide. For such an optimised fuel cycle the following general conditions have been set up for the fuel: (i) the burnup of the optimised MN and MC should be at least 15 a/o or even beyond, at moderate linear ratings of less than 75 kW/m (ii) the fuel will be used in a He-bonding pin concept and (iii) as far as available an advanced economic pellet fabrication method should be employed. (iv) The fuel structure must contain 15 - 20% porosity in order to accomodate the fission product swelling at high burnup. This report gives a comprehensive description of fuel and pellet fabrication and characterization, irradiation, and post-irradiation examination. From the results important conclusions can be drawn about future work on nitrides

  4. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-11-01

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions [sr

  5. High-Uranium-Loaded U3O8-Al fuel element development program. Part 1

    International Nuclear Information System (INIS)

    Martin, M.M.

    1993-01-01

    The High-Uranium-Loaded U 3 O 8 -Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U 3 O 8 -Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U 3 O 8 -Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U 3 O 8 ). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % U involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U 3 O 8 and aluminum

  6. Corrosion testing of uranium silicide fuel specimens

    International Nuclear Information System (INIS)

    Bourns, W.T.

    1968-09-01

    U 3 Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300 o C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U 3 5i specimen which corrodes at less than 2 mg/cm 2 h in 300 o C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U 3 Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300 o C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  7. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  8. Feasibility of Low Enriched Uranium Fuel for Space Nuclear Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The purpose of this initial study is to create a baseline with which to perform further analysis and to build a solid understanding of the neutronic characteristics of a solid core for the nuclear thermal rocket. Once consistency with work done at Idaho National Laboratory (INL) is established, this paper will provide a study of other fuel types, such as low and medium-enriched uranium fuels. This paper will examine how the implementation of each fuel type affects the multiplication factor of the reactor, and will then explore different possibilities for alterations needed to accommodate their successful usage. The reactor core analysis was done using the MCNP5 code. While this study has not shown that the SNRE can be easily retrofitted for low-enriched U fuel, it has made a detailed study of the SNRE, and identified the difficulties of the implementation of low-enriched fuels in small nuclear rockets. These difficulties are the need for additional moderation and fuel mass in order to achieve a critical mass. Neither of these is insurmountable. Future work includes finding the best method by which to increase the internal moderation of the reactor balanced with appropriate sizing to prevent neutron leakage. Both of these are currently being studied. This paper will present a study of the Small Nuclear Rocket Engine (SNRE) and the feasibility of using low enriched Uranium (LEU) instead of the traditional high enriched Uranium (HEU) fuels.

  9. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  10. Fabrication and characterization of MX-type fuels and fuel pins

    International Nuclear Information System (INIS)

    Richter, K.; Bartscher, W.; Benedict, U.; Gueugnon, J.F.; Kutter, H.; Sari, C.; Schmidt, H.E.

    1978-01-01

    This paper summarizes the most important fabrication parameters and characterization of fuel and fuel pins obtained during the investigation of uranium-plutonium carbides, oxicarbides, carbonitrides and nitrides in the past years at the European Institute for Transuranium Elements at Karlsruhe. All preparation methods discussed are based on carbothermic reduction of a mechanical blend of uranium-plutonium oxide and carbon powder. General data for carbothermic reduction processes are discussed (influence of starting material, homogeneity, control of degree of reaction, etc). A survey of different preparation methods investigated is given. Limitations with respect to temperature and atmosphere for both carbothermic reduction processes and sintering conditions for the different compounds are summarized. A special preparation process for mixed carbonitrides with low nitrogen content (U,Pu)sub(1-x)Nsub(x) in the range 0.1 0 C to 1400 0 C by means of a modulated electron beam technique. A scheme is proposed, which allows to predict the thermal properties of MX fuels on the basis of their chemical composition and porosity. Preparation, preirradiation characterization and final controls of fuel test pins for pellet and vibrocompacted type of pins are described and the most important data summarized for all advanced fuels irradiated at Dounreay (DN1) and Rapsodie Fast Reactor (DN2) within the TU irradiation programme

  11. The uranium fuel cycle at IPEN - Energy and Nuclear Research Institute, SP, Brazil

    International Nuclear Information System (INIS)

    Abrao, Alcidio

    1994-09-01

    This paper summarizes the progress of research concerning the uranium fuel cycle set up at the IPEN, Sao Paulo, from the raw yellow-cake to the uranium hexafluoride. It covers the reconversion of the hexafluoride to ammonium uranyl tricarbonate and the manufacturing of the fuel elements for the swimming pool IEA-R1 reactor. This review extends the coverage of two pilot plants for uranium purification based upon ion exchange, one demonstration unity for the purification of uranyl nitrate by solvent extraction in pulsed columns, the unity of uranium tetrafluoride into moving bed reactors and a second one based upon the wet chemistry via uranium dioxide and aqueous hydrogen fluoride. The paper mentions the pilot plant for the preparation of uranium trioxide by the thermal decomposition of ammonium diuranate and a second unity by the thermal denitration of uranyl nitrate. The paper outlines the fluorine plant and the unity for the hexafluoride preparation, the unity for the conversion of the hexa to the ammonium uranyl tricarbonate and the fabrication of fuel elements for the IEA-R1 reactor. (author)

  12. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing

    International Nuclear Information System (INIS)

    Cheroux, L.

    2001-01-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  13. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  14. Uranium and plutonium distribution in unirradiated mixed oxide fuel from industrial fabrication

    International Nuclear Information System (INIS)

    Hanus, D.; Kleykamp, H.

    1982-01-01

    Different process variants developed in the last few years by the firm ALKEM to manufacture FBR and LWR mixed oxide fuel are given. The uranium and plutonium distribution is determined on the pellets manufactured with the help of the electron beam microprobe. The stepwise improvement of the uranium-plutonium homogeneity in the short-term developed granulate variants and in the long-term developed new processes are illustrated starting with early standard processes for FBR fuel. An almost uniform uranium-plutonium distribution could be achieved for the long-term developed new processes (OKOM, AuPuC). The uranium-plutonium homogeneity are quantified in the pellets manufactured according to the considered process variants with a newly defined quality number. (orig.)

  15. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  16. UN TRISO Compaction in SiC for FCM Fuel Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.

  17. Corrosion testing of uranium silicide fuel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bourns, W T

    1968-09-15

    U{sub 3}Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300{sup o}C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U{sub 3}5i specimen which corrodes at less than 2 mg/cm{sup 2} h in 300{sup o}C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U{sub 3}Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300{sup o}C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  18. Reversible dihydrogen activation and hydride transfer by a uranium nitride complex

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, Marta; Poon, Lok Nga; Fadaei Tirani, Farzaneh; Mazzanti, Marinella [Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)

    2018-03-26

    Cleavage of dihydrogen is an important step in the industrial and enzymatic transformation of N{sub 2} into ammonia. The reversible cleavage of dihydrogen was achieved under mild conditions (room temperature and 1 atmosphere of H{sub 2}) by the molecular uranium nitride complex, [Cs{U(OSi(O"tBu)_3)_3}{sub 2}(μ-N)], leading to a rare hydride-imide bridged diuranium(IV) complex, [Cs{U(OSi(O"tBu)_3)_3}{sub 2}(μ-H)(μ-NH)], that slowly releases H{sub 2} under vacuum. This complex is highly reactive and quickly transfers hydride to acetonitrile and carbon dioxide at room temperature, affording the ketimide- and formate-bridged U{sup IV} species [Cs{U(OSi(O"tBu)_3)_3}{sub 2}(μ-NH)(μ-CH{sub 3}CHN)] and [Cs{U(OSi(O"tBu)_3)_3}{sub 2}(μ-HCOO)(μ-NHCOO)]. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. The determination of uranium distribution homogeneity in the fuel plates with the uranium loading of 4.80 and 5.20 g/cm3 by X-Ray attenuation

    International Nuclear Information System (INIS)

    Supardjo; Rojak, A.; Boybul; Suyoto; Datam, A. S.

    2000-01-01

    The calibration of X-Ray intensity of the U 3 Si 2 -AI fuel plates with the uranium loading between 3.60 up to 5.20 g/cm 3 and varied thickness of AIMgSi1 reference block have been performed. The measurement with changing variable slit diameter and energy of X-Ray attenuation, are produced enough representative X-Ray intensity at 18 mm slit diameter and energy of 43 kV. From the correlation of X-ray intensities vs variation of uranium loading in the fuel plates and thickness of the AIMgSi1 materials, the equivalence of thickness of the AIMgSi1 block to the uranium loading of fuel plates are determined. By assuming that the tolerance of the homogeneity measurement is + 20 % from normal thickness staircase of the AIMgSi1 standard could be determined and than together with fuel plate were scanned to determine the uranium homogeneity. The test result on the U 3 Si 2 -AI fuel plates with uranium loading of 4.80 and 5.20 g/cm 3 (each 4 fuel plates) indicated that uranium distribution in the fuel plates is relatively homogeneous, with each maximum deviation being 6.30 % and 6.90%. It is showed that measurement method is relatively good, easy, and fast so that this method is suitable to control the uranium homogeneity in the fuel plate. (author)

  20. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  1. Core performance of equilibrium fast reactors for different coolant materials and fuel types

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Sekimoto, Hiroshi

    1998-01-01

    Parametric studies with several coolant and fuel materials in the equilibrium state are performed for fast reactors in which natural uranium is fed and all of the actinides are confined. Sodium, sodium-potassium, lead, lead-bismuth and helium coolant materials, and oxide, nitride and metal fuels are employed to compare the neutronic characteristics in the equilibrium state. As to the criticality performance, sodium-potassium shows the best performance among the liquid metal coolants and the metallic fuel indicates the best performance

  2. Prospect of Uranium Silicide fuel element with hypostoichiometric (Si ≤3.7%)

    International Nuclear Information System (INIS)

    Suripto, A.; Sardjono; Martoyo

    1996-01-01

    An attempt to obtain high uranium-loading in silicide dispersion fuel element using the fabrication technology applicable nowadays can reach Uranium-loading slightly above 5 gU/cm 3 . It is difficult to achieve a higher uranium-loading than that because of fabricability constraints. To overcome those difficulties, the use of uranium silicide U 3 Si based is considered. The excess of U is obtained by synthesising U 3 Si 2 in Si-hypostoichiometric stage, without applying heat treatment to the ingot as it can generate undesired U 3 Si. The U U will react with the matrix to form U al x compound, that its pressure is tolerable. This experiment is to consider possibilities of employing the U 3 Si 2 as nuclear fuel element which have been performed by synthesising U 3 Si 2 -U with the composition of 3.7 % weigh and 3 % weigh U. The ingot was obtained and converted into powder form which then was fabricated into experimental plate nuclear fuel element. The interaction between free U and Al-matrix during heat-treatment is the rolling phase of the fuel element was observed. The study of the next phase will be conducted later

  3. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  4. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  5. Reduction of uranium in disposal conditions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Myllykylae, E.

    2008-02-01

    This literature study is a summary of publications, in which the reduction of uranium by iron has been investigated in anaerobic groundwater conditions or in aqueous solution in general. The basics of the reduction phenomena and the oxidation states, complexes and solubilities of uranium and iron in groundwaters are discussed as an introduction to the subject, as well as, the Finnish disposal concept of spent nuclear fuel. The spent fuel itself mainly (∼96 %) consists of a sparingly soluble uranium(IV) dioxide, UO 2 (s), which is stable phase in the anticipated reducing disposal conditions. If spent fuel gets in contact with groundwater, oxidizing conditions might be induced by the radiolysis of water, or by the intrusion of oxidizing glacial melting water. Under these conditions, the oxidation and dissolution of uranium dioxide to more soluble U(VI) species could occur. This could lead to the mobilization of uranium and other components of spent fuel matrix including fission products and transuranium elements. The reduction of uranium back to oxidation state U(IV) can be considered as a favourable immobilization mechanism in a long-term, leading to precipitation due to the low solubility of U(IV) species. The cast iron insert of the disposal canister and its anaerobic corrosion products are the most important reductants under disposal conditions, but dissolved ferrous iron may also function as reductant. Other iron sources in the buffer or near-field rock, are also considered as possible reductants. The reduction of uranium is a very challenging phenomenon to investigate. The experimental studies need e.g. well-controlled anoxic conditions and measurements of oxidation states. Reduction and other simultaneous phenomena are difficult to distinghuish. The groundwater conditions (pH, Eh and ions) influence on the prevailing complexes of U and Fe and on forming corrosion products of iron and, thus they determine also the redox chemistry. The partial reduction of

  6. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  7. Radiological and environmental safety aspects of uranium fuel fabrication plants at Nuclear Fuel Complex, Hyderabad

    International Nuclear Information System (INIS)

    Viswanathan, S.; Surya Rao, B.; Lakshmanan, A.R.; Krishna Rao, T.

    1991-01-01

    Nuclear Fuel Complex, Hyderabad manufactures uranium dioxide fuel assemblies for PHWRs and BWRs operating in India. Starting materials are magnesium diuranate received from UCIL, Jaduguda and imported UF. Both of these are converted to UO 2 pellets by identical chemical processes and mechanical compacting. Since the uranium handled here is free of daughter product activities, external radiation is not a problem. Inhalation of airborne U compounds is one of the main source of exposure. Engineered protective measures like enclosures around U bearing powder handling equipment and local exhausts reduce worker's exposure. Installation of pre-filters, wet rotoclones and electrostatic precipitators in the ventillation system reduces the release of U into the environment. The criticality hazard in handling slightly enriched uranium is very low due to the built-in control based on geometry and inventory. Where airborne uranium is significant, workers are provided with protective respirators. The workers are regularly monitored for external exposure and also for internal exposure. The environmental releases from the NFC facility is well controlled. Soil, water and air from the NFC environment are routinely collected and analysed for all the possible pollutants. The paper describes the Health Physics experience during the last five years on occupational exposures and on environmental surveillance which reveals the high quality of safety observed in our nuclear fuel fabricating installations. (author). 4 refs., 6 tabs

  8. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  9. Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel

    International Nuclear Information System (INIS)

    Bolon, A.E.; Straka, M.; Freeman, D.W.

    1997-01-01

    The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded

  10. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E.

    1992-01-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl 3 /UCl 3 ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR

  11. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  12. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  13. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  14. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  15. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    Science.gov (United States)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  16. Design of polymetallic uranium assemblies for the development of single molecule magnets

    International Nuclear Information System (INIS)

    Chatelain, Lucile

    2016-01-01

    The study of actinide chemistry is not only essential for the development of nuclear fuel, nuclear fuel reprocessing or environmental clean up, but also for the understanding of fundamental actinide/ligand interactions and multiple bounding. The magnetic properties of polynuclear actinide molecules are of significant interest to investigate the magnetic communication between the metallic centres. Furthermore, they are highly promising for the design of molecular magnets. Uranium undergoes redox reactions due to a wide range of available oxidation states and easily forms polynuclear assemblies. However, only a few controlled synthetic routes towards these polynuclear uranium assemblies are described in the literature. In this context, the first part of this work was dedicated to the synthesis of oxo/hydroxo uranium clusters from the controlled hydrolysis of tetravalent uranium in the presence of an environmentally relevant ligand. This led to the synthesis of clusters with novel topologies, for which size could be varied as a function of the reaction conditions employed. However, the obtained clusters do not behave as SMM. In order to gain a stronger interaction between metallic centres, the cation-cation interaction was used to rationally design polynuclear uranyl(V) complexes. The isolation of uranyl(V) complexes had been limited in the past by its disproportionation, however, a fine tuning of the organic ligand and reaction conditions finally allowed to stabilise uranyl(V). We used stable uranyl(V) units as building block to form heteronuclear complexes with 3d and 4f metals with polymeric or discrete structures. The study of the magnetic properties of the uranium polynuclear assemblies was carried out and revealed single molecule or chain magnet behaviours with high energy barriers. The uranyl(V) unit was also used as a structural model for the more radioactive neptunium element, allowing the isolation of an isostructural trinuclear neptunyl(V) assembly in

  17. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The two books of Volume 1 comprise the first in a three-volume series of compilations on the radioactive decay propertis of CANDU fuel and deal with the natural uranium fuel cycle. Succeeding volumes will deal with fuel cycles based on plutonium recycle and thorium. In Volume 1 which is divided into three parts, the computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 3 contains the data relating to the plutonium product and the high level wastes produced during fuel reprocessing. (author)

  18. Nitridation of U and Pu recovered in liquid Cd cathode by molten salt electrorefining of (U,Pu)N

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takumi; Iwai, Takashi; Arai, Yasuo [Japan Atomic Energy Agency (Japan)

    2009-06-15

    Solid solutions of actinide mono-nitrides have been proposed as a candidate fuel of the accelerator-driven system (ADS) and Gen.IV-type fast reactors because the thermal conductivity and metal density are higher than those of actinide oxides and also they have high melting temperature. Pyrochemical process has several advantages over conventional wet process in treating of spent nitride fuel. One of the key technologies of the pyrochemical reprocessing of nitride fuel is the formation of the nitrides from actinides in the liquid Cd cathode. The nitridation-distillation combined method was developed and has been adopted to convert the actinides to the nitrides. In this method, the nitridation of actinides and the distillation of Cd occurred simultaneously by heating the actinide-Cd alloys in N{sub 2} gas stream. In the present study, the nitride formation behavior of U and Pu recovered in Cd cathode by molten salt electrorefining of (U,Pu)N was experimentally investigated. In addition, the nitride pellet was prepared form the powder obtained by the nitridation of U and Pu recovered in Cd cathode. (U,Pu)N (PuN = 80 mol %) was used as the starting material in the experiment. Molten salt electrorefining of (U,Pu)N pellet was carried out in the LiCl-KCl eutectic salt with 1.2 wt% PuCl{sub 3} and 0.3 wt% UCl{sub 3} of about 110 g at the constant anodic potential of -0.60 to -0.55 V vs. Ag/AgCl for about 9 hours at 773 K. After the electrorefining, about 42 % of U and Pu in the starting (U,Pu)N pellet was dissolved at the anode and recovered into the liquid Cd cathode. The recovered U-Pu-Cd alloy was heated in an alumina crucible at 973 K for 10 hours under N{sub 2} gas (99.999 %) stream (0.015 L/min). Fine black powder was recovered after heating the U-Pu-Cd alloy. The powder was identified as the single phase solid solution of (U,Pu)N by the XRD analysis. After milling in the agate mortar for 1 hour, the powder was compacted into green pellet under a pressure of about

  19. Analysis of fuel cycles with natural uranium; Analiza gorivnih ciklusa sa prirodnim uranom

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-05-15

    A method was developed and a computer code was written for analysis of fuel cycles and it was applied for heavy water and graphite moderated power reactors. Among a variety of possibilities, three methods which enable best utilization of natural uranium and plutonium production were analyzed. Analysis has shown that reprocessing of irradiated uranium and plutonium utilization in the same or similar type of reactor could increase significantly utilization of natural uranium. Increase of burnup is limited exclusively by costs of reprocessing, plutonium extraction and fabrication of new fuel elements.

  20. Effective Uranium (VI) Sorption from Alkaline Solutions Using Bi-Functionalized Silica-Coated Magnetic Nanoparticles

    International Nuclear Information System (INIS)

    Chen, X.; He, L.; Liu, B.; Tang, Y.

    2015-01-01

    High temperature gas reactor is one of generation IV reactors that can adapt the future energy market, of which the preparation of fuel elements will produce a large amount of radioactive wastewater with uranium and high-level ammonia. Sorption treatment is one of the most important method to recover uranium from wastewater. However, there are few report on uranium sorbent that can directly be applied in wastewater with ammonia. Therefore, the development of a sorbent that can recover uranium in basic environment will greatly decrease the cost of fuel element production and the risk of radioactive pollution. In this work, ammonium-phosphonate-bifunctionalized silica-coated magnetic nanoparticles has been developed for effective sorption of uranium from alkaline media, which are not only advantaged in the uranium separation from liquid phase, but also with satisfactory adsorption rate, amount and reusability. The as-prepared sorbent is found to show a maximum uranium sorption capacity of 70.7 mg/g and a fast equilibrium time of 2 h at pH 9.5 under room temperature. Compared with the mono-functionalized (phosphonate alone and ammonium alone) particles, the combination of the bi-functionalized groups gives rise to an excellent ability to remove uranium from basic environment. The sorbent can be used as a promising solid phase candidate for highly-efficient removal of uranium from basic solution. (author)

  1. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-01-01

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  2. Method of chemical reprocessing of irradiated nuclear fuels (especially fuels containing uranium)

    International Nuclear Information System (INIS)

    Koch, G.

    1975-01-01

    The invention deals with a method for the extraction especially of fast breeder fuels of high burn-up. A quaternary ammonium nitrate of high molecular weight is put into an organic diluting medium as extraction agent, corresponding to the general formula NRR'R''R'''NO 3 where R,R' and R'' are aliphatic radicals, R''' a methyl radical and the sum of the C atoms is greater than 16. After the extraction of the aqueous nitric acid containing nuclear fuel solution with this extracting agent, uranium, plutonium (or also thorium) can be found to a very high percentage in the organic phase and can be practically quantitatively back-extracted by means of diluted nitric acid, sulphuric acid or acetic acid. By using 30 volume percent tricapryl methyl ammonium nitrate in diethyl benzene for example, a distribution coefficient of 10.3 is obtained for uranium. (RB/LH) [de

  3. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  4. Uranium loss from BISO-coated weak-acid-resin HTGR fuel

    International Nuclear Information System (INIS)

    Pearson, R.L.; Lindemer, T.B.

    1977-02-01

    Recycle fuel for the High-Temperature Gas-Cooled Reactor (HTGR) contains a weak-acid-resin (WAR) kernel, which consists of a mixture of UC 2 , UO 2 , and free carbon. At 1900 0 C, BISO-coated WAR UC 2 or UC 2 -UO 2 kernels lose a significant portion of their uranium in several hundred hours. The UC 2 decomposes and uranium diffuses through the pyrolytic coating. The rate of escape of the uranium is dependent on the temperature and the surface area of the UC 2 , but not on a temperature gradient. The apparent activation energy for uranium loss, ΔH, is approximately 90 kcal/mole. Calculations indicate that uranium loss from the kernel would be insignificant under conditions to be expected in an HTGR

  5. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  6. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  7. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  8. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  9. Analyses of Interaction Phases of U Mo Dispersion Fuel by Synchrotron X ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong; Nam, Ji Min; Ryu, Ho Jin; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Herve, Palancher; Charollais, Francois [Saint Paul Lez Durance Cedex, Rhone (France); Bonnin, Anne; Honkimaeki, Veijo [Grenoble Cedex, Grenoble (France); Patrick Lemoined [Gif sur Yvette, Paris (France)

    2012-10-15

    Gamma phase U Mo alloys are one of the promising candidates to be used as advanced high uranium density fuel for high power research reactors due to their excellent irradiation performance. However, formation of interaction layers between the U Mo particles and Al matrix degrades the irradiation performance of U Mo dispersion fuel. One of the remedies to the interaction problem is a Si addition to the Al matrix. Recent irradiation tests have shown that the use of Al (2{approx}5wt%)Si matrices retarded the growth of interaction layers effectively during irradiation. Recently, KAERI has proposed silicide or nitride coated U Mo fuel for the minimization of the interaction layer growth. The silicide or nitride coatings are expected to act as interdiffusion barriers and their out of pile tests showed the improved diffusion barrier performances of the silicide and nitride layers. In order to characterize constituent phases in the coated layers on U Mo particles and the interaction layers of coated U Mo particle dispersed fuel, synchrotron X ray diffraction experiments have been performed at the ESRF (European Synchrotron Radiation Facility), France as a KAERI CEA cooperation program.

  10. Fabrication of high-uranium-loaded U/sub 3/O/sub 8/-Al developmental fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, G.L.; Martin, M.M.

    1980-12-01

    A common plate-type fuel for research and test reactors is U/sub 3/O/sub 8/ dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the /sup 235/U enrichment from above 90% to below 20% for these fuels to lessen the risk of diversion of the uranium for nonpeaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. This paper describes work at ORNL to determine the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service.

  11. Optimization of fuel cycle strategies with constraints on uranium availability

    International Nuclear Information System (INIS)

    Silvennoinen, P.; Vira, J.; Westerberg, R.

    1982-01-01

    Optimization of nuclear reactor and fuel cycle strategies is studied under the influence of reduced availability of uranium. The analysis is separated in two distinct steps. First, the global situation is considered within given high and low projections of the installed capacity up to the year 2025. Uranium is regarded as an exhaustible resource whose production cost would increase proportionally to increasing cumulative exploitation. Based on the estimates obtained for the uranium cost, a global strategy is derived by splitting the installed capacity between light water reactor (LWR) once-through, LWR recycle, and fast breeder reactor (FBR) alternatives. In the second phase, the nuclear program of an individual utility is optimized within the constraints imposed from the global scenario. Results from the global scenarios indicate that in a reference case the uranium price would triple by the year 2000, and the price escalation would continue throughout the planning period. In a pessimistic growth scenario where the global nuclear capacity would not exceed 600 GW(electric) in 2025, the uranium price would almost double by 2000. In both global scenarios, FBRs would be introduced, in the reference case after 2000 and in the pessimistic case after 2010. In spite of the increases in the uranium prices, the levelized power production cost would increase only by 45% up to 2025 in the utility case provided that the plutonium is incinerated as a substitute fuel

  12. Low-enriched uranium-molybdenum fuel plate development

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Prokofiev, I.G.

    2000-01-01

    To examine the fabricability of low-enriched uranium-molybdenum powders, full-size 450 x 60 x 0.5-mm (17.7 x 2.4 x 0.020-in.) fuel zone test plates loaded to 6 g U/cm 3 were produced. U-10 wt.% Mo powders produced by two methods, centrifugal atomization and grinding, were tested. These powders were supplied at no cost to Argonne National Laboratory by the Korean Atomic Energy Research Institute and Atomic Energy of Canada Limited, respectively. Fuel homogeneity indicated that both of the powders produced acceptable fuel plates. Operator skill during loading of the powder into the compacting die and fuel powder morphology were found to be important when striving to achieve homogeneous fuel distribution. Smaller, 94 x 22 x 0.6-mm (3.7 x 0.87 x 0.025-in.) fuel zone, test plates were fabricated using U-10 wt.% Mo foil disks instead of a conventional powder metallurgy compact. Two fuel plates of this type are currently undergoing irradiation in the RERTR-4 high-density fuel experiment in the Advanced Test Reactor. (author)

  13. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  14. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  15. Quantification of the effect of in-situ generated uranium metal on the experimentally determined O/U ratio of a sintered uranium dioxide fuel pellet

    International Nuclear Information System (INIS)

    Narasimha Murty, B.; Bharati Misra, U.; Yadav, R.B.; Srivastava, R.K.

    2005-01-01

    This paper describes quantitatively the effect of in-situ generated uranium metal (that could be formed due to the conducive manufacturing conditions) in a sintered uranium dioxide fuel pellet on the experimentally determined O/U ratio using analytical methods involving dissolution of the pellet material. To quantify the effect of in-situ generated uranium metal in the fuel pellet, a mathematical expression is derived for the actual O/U ratio in terms of the O/U ratio as determined by an experiment involving dissolution of the material and the quantity of uranium metal present in the uranium dioxide pellet. The utility of this derived mathematical expression is demonstrated by tabulating the calculated actual O/U ratios for varying amounts of uranium metal (from 5 to 95% in 5% intervals) and different O/U ratio values (from 2.001 to 2.015 in 0.001 intervals). This paper brings out the necessity of care to be exercised while interpreting the experimentally determined O/U ratio and emphasizes the fact that it is always safer to produce the nuclear fuel with oxygen to uranium ratios well below the specified maximum limit of 2.015. (author)

  16. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    James, R.A.

    1980-01-01

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  17. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  18. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  19. Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Bridges, Andrea N.A.; Rudisill, Tracy S.; Hobbs, David T. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Phillip, William A. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Burns, Peter C., E-mail: pburns@nd.edu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-05-15

    Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid–liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing. - Highlights: • Nanoscale control in irradiated fuel reprocessing. • Ultrafiltration to recover uranyl cage clusters. • Alternative to solvent extraction for uranium purification.

  20. IAEA Activities on Uranium Resources and Production, and Databases for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, C.; Slezak, J. [Divison of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Vienna (Austria)

    2014-05-15

    In recent years rising expectation for nuclear power has led to a significant increase in the demand for uranium and in turn dramatic increases in uranium exploration, mining and ore processing activities worldwide. Several new countries, often with limited experience, have also embarked on these activities. The ultimate goal of the uranium raw material industry is to provide an adequate supply of uranium that can be delivered to the market place at a competitive price by environmentally sound, mining and milling practices. The IAEA’s programme on uranium raw material encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and ore processing, environmental issues in the uranium production cycle and databases for the uranium fuel cycle. Radiological safety and environmental protection are major challenges in uranium mines and mills and their remediation. The IAEA has revived its programme for the Uranium Production Site Appraisal Team (UPSAT) to assist Member States to improve operational and safety performances at uranium mines and mill sites. The present paper summarizes the ongoing activities of IAEA on uranium raw material, highlighting the status of global uranium resources, their supply and demand, the IAEA database on world uranium deposit (UDEPO) and nuclear fuel cycle information system (NFCIS), recent IAEA Technical Meetings (TM) and related ongoing Technical Cooperation (TC) projects. (author)

  1. Uranium chloride extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure

  2. Uranium resource utilization improvements in the once-through PWR fuel cycle

    International Nuclear Information System (INIS)

    Matzie, R.A.

    1980-04-01

    In support of the Nonproliferation Alternative Systems Assessment Program (NASAP), Combustion Engineering, Inc. performed a comprehensive analytical study of potential uranium utilization improvement options that can be backfit into existing PWRs operating on the once-through uranium fuel cycle. A large number of potential improvement options were examined as part of a preliminary survey of candidate options. The most attractive of these, from the standpoint of uranium utilization improvement, economic viability, and ease of implementation, were then selected for detailed analysis and were included in a single composite improvement case. This composite case represents an estimate of the total savings in U 3 O 8 consumption that can be achieved in current-design PWRs by implementing improvements which can be developed and demonstrated in the near term. The improvement options which were evaluated in detail and included in the composite case were a new five-batch, extended-burnup fuel management scheme, low-leakage fuel management, modified lattice designs, axial blankets, reinsertion of initial core batches, and end-of-cycle stretchout

  3. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  4. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  5. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  6. Evaluation of bioassay program at uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Biggs, D.

    1981-03-01

    Results of a comprehensive study of urinalysis, lung burden and personal air sample measurements for workers at a uranium fuel fabrication plant are presented. Correlations between measurements were found and regression models used to explain the relationship between lung burden, daily intakes and urinary excretions of uranium. Assuming the ICRP lung model, the lung burden histories of ten workers were used to estimate the amounts in each of the long-term compartments of the lung. Estimates of the half lives of each compartment and of the maximum relative contributions to the urine from each compartment are given. These values were then used to predict urinary excretions from the long-term compartments for workers at another fuel fabrication plant. The standard error of estimate compared well with the daily variation in urinary excretion. (author)

  7. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  8. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  9. Contribution to the study of nuclear fuel materials with a metallic uranium base

    International Nuclear Information System (INIS)

    Englander, M.

    1957-11-01

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the γ phase. (author) [fr

  10. Radiation protection training at uranium hexafluoride and fuel fabrication plants

    International Nuclear Information System (INIS)

    Brodsky, A.; Soong, A.L.; Bell, J.

    1985-05-01

    This report provides general information and references useful for establishing or operating radiation safety training programs in plants that manufacture nuclear fuels, or process uranium compounds that are used in the manufacture of nuclear fuels. In addition to a brief summary of the principles of effective management of radiation safety training, the report also contains an appendix that provides a comprehensive checklist of scientific, safety, and management topics, from which appropriate topics may be selected in preparing training outlines for various job categories or tasks pertaining to the uranium nuclear fuels industry. The report is designed for use by radiation safety training professionals who have the experience to utilize the report to not only select the appropriate topics, but also to tailor the specific details and depth of coverage of each training session to match both employee and management needs of a particular industrial operation. 26 refs., 3 tabs

  11. Development of the uranium recovery process from rejected fuel plates in the fabrication of MTR type nuclear fuel

    International Nuclear Information System (INIS)

    Fleming Rubio, Peter Alex

    2010-01-01

    The current work was made in Conversion laboratory belonging to Chilean Nuclear Energy Commission, CCHEN. This is constituted by the development of three hydrometallurgical processes, belonging to the recovery of uranium from fuel plates based on uranium silicide (U_3Si_2) process, for nuclear research reactors MTR (Material Testing Reactor) type, those that come from the Fuel Elements Manufacture Plant, PEC. In the manufacturing process some of these plates are subjected to destructive tests by quality requirement or others are rejected for non-compliance with technical specifications, such as: lack of homogenization of the dispersion of uraniferous compound in the meat, as well as the appearance of the defects, such as blisters, so-called "dog bone", "fish tail", "remote islands", among others. Because the uranium used is enriched in 19.75% U_2_3_5 isotope, which explains the high value in the market, it must be recovered for reuse, returning to the production line of fuel elements. The uranium silicide, contained in the plates, is dispersed in an aluminum matrix and covered with plates and frames of ASTM 6061 Aluminum, as a sandwich coating, commonly referred to as 'meat' (sandwich meat). As aluminum is the main impurity, the process begins with this metal dissolution, present in meat and plates, by NaOH reaction, followed by a vacuum filtration, washing and drying, obtaining a powder of uranium silicide, with a small impurities percentage. Then, the crude uranium silicide reacts with a solution of hydrofluoric acid, dissolving the silicon and simultaneously precipitating UF_4 by reaction with HNO_3, obtaining an impure UO_2(NO_3)_2 solution. The experimental work was developed and implemented at laboratory scale for the three stages pertaining to the uranium recovery process, determining for each one the optimum operation conditions: temperature, molarity or concentration, reagent excess, among others (author)

  12. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  13. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  14. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  15. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  16. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis

  17. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A - MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled 'Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications' A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled 'Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications' A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled 'Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors' Appendix B - External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, 'Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,' Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, 'Uranium Powder Production Using a Hydride-Dehydride Process,' Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C - Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled 'Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys' presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow

  18. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    International Nuclear Information System (INIS)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-01-01

    The Enhanced CANDU 6 R (ECo R ) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  19. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  20. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  1. Discharge Burnup Evaluation of Natural Uranium Loaded CANFLEX-43 Fuel Bundle

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Kim, Yong Hee; Kim, Won Young; Park, Joo Hwan

    2009-11-01

    Using WIMS-AECL code, which is 2-dimensional lattice core used in CANDU physics calculation, the discharge burnup of the natural uranium loaded CANFLEX-43 fuel bundle was evaluated by comparing the discharge burnup of standard 37 element fuel bundle. When the discharge burnup of the standard 37 element fuel is 7,200 MWd/MTU, that of the CANFLEX 43 fuel bundle was evaluated as 7,077 MWd/MTU, by applying the same lattice conditions for both fuel bundles

  2. Study of ammonia synthesis over uranium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Erofeev, B.V.; Mikhajlenko, I.E.; Gorelkin, I.I.; Ivanov, L.S.

    1980-01-01

    The effect of induced radiactivity and chemical composition of uranium catalysts on their catalytic activity in the ammonia synthesis reaction has been studied. The catalyst samples comprise pieces of metal uranium and chip irradiated in nuclear reactor by the 4.3x10 16 n/cm 2 integral flux of slow neutrons. Studies of catalytic activity was carried out at 1 atm and 340-510 deg C when stoichiometric nitrogen-hydrogen mixture passed through the following installation. At different temperatures uranium nitrides of different composition are shown to be formed. Uranium nitrides with the composition close to UN 2 are the samples with the highest catalYtic activity. The reduction of catalytic activity of uranium catalysts with the increased temperature of their formation above 400 deg C is explained by low catalytic activity of forming UNsub(1.7) in comparison with UN 2 . Catalytic properties of irradiated and nonirradiated samples do not differ from one another

  3. Solvent extraction of uranium(VI), plutonium(VI) and americium(III) with HTTA/HPMBP using mono- and bi-functional neutral donors. Synergism and thermodynamics

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    2000-01-01

    Synergistic extraction of hexavalent uranium and plutonium as well as trivalent americium was studied in HNO 3 with thenoyl, trifluoro-acetone (HTTA)/1-phenyl, 3-methyl, 4-benzoyl pyrazolone-5 (HPMBP) in combination with neutral donors viz. DPSO, TBP, TOPO (mono-functional) and DBDECMP, DHDECMP, CMPO (bi-functional) with wide basicity range using benzene as diluent. A linear correlation was observed when the equilibrium constant log Ks for the organic phase synergistic reaction of both U(VI) and Pu(VI) with either of the chelating agents HTTA or HPMBP was plotted vs. the basicity (log Kh) of the donor (both mono- and bi-functional) indicating bi-functional donors also behave as mono-functional. This was supported by the thermodynamic data (ΔG 0 , ΔH 0 , ΔS 0 ) obtained for these systems. The organic phase adduct formation reactions were identified for the above systems from the thermodynamic data. In the Am(III) HTTA system log K s values of bi-functional donors were found to be very high and deviate from the linear plot (log K s vs. log K h ) obtained for mono-functional donors, indicating that they function as bi-functional for the Am(III)/HTTA) system studied. This was supported by high +ve ΔS 0 values obtained for this system. (author)

  4. The Cigar Lake uranium deposit: Analog information for Canada's nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Cramer, J.J.

    1995-05-01

    The Cigar Lake uranium deposit, located in northern Saskatchewan, has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. The study of these natural structures and processes provides valuable insight toward the eventual design and site selection of a nuclear fuel waste repository. The main feature of this analog is the absence of any indication on the surface of the rich uranium ore 450 m below. This shows that the combination of natural barriers has been effective in isolating the uranium ore from the surface environment. More specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based and general aspects of water-rock interaction. The main geotechnical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. This report reviews and summarizes the analog information and data from the Cigar Lake analog studies for the processes and scenarios expected to occur in the disposal system for used nuclear fuel proposed in Canada. (author). 45 refs., 10 figs

  5. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  6. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  7. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  8. Nuclear fuel cycle in France: today's situation and long term options

    International Nuclear Information System (INIS)

    Boullis, B.; Drevon, C.; Pays, M.

    2015-01-01

    In France plutonium and uranium are recycled as MOX fuel (used in 22 reactors) and URE (enriched uranium from spent fuel). Fission products and minor actinides, that composed ultimate wastes, are vitrified and cast in stainless steel containers. Fuel recycling has reached industrial maturity and about 30.000 tonnes of spent fuels have been processed. This strategy has allowed France to save about 17% of its annual consumption of uranium and to get a least volume of high-level radioactive wastes. This strategy can be pushed forwards by introducing a multi-recycling option in which plutonium and uranium from spent MOX fuels are recycled. Multi-recycling produces a nuclear fuel that is polluted with remainders of actinides and fission products and to compensate this deterioration of its neutronic properties a higher concentration of fissile materials is required. For safety reasons the concentration of plutonium in MOX fuels is limited to 12% so multi-recycling is not a strategy for a fleet of PWRs only. Fast neutron reactors use uranium and plutonium in a more efficiently way and can be a solution for multi-recycling. The study shows that for a constant output of 420 TWh a year a fleet of PWRs need 7600 tonnes of natural uranium. If mono-recycling is allowed this consumption decreases to 6300 tonnes a year and if multi-recycling is allowed by integrating fast reactors in the proportion of 40% of the fleet, this consumption drops to 2700 tonnes a year. The study also shows the changes in the production of wastes in relation with multi-recycling. (A.C.)

  9. Mono- and di-n-butyl phosphates of some metals in spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Solovkin, A.S.

    1982-01-01

    Results of investigations which have been carried out in the Soviet Union for the last 10 years on the determination of the composition, structure, conditions of the formation and solubility of mono- and di-n-butyl phosphates of metals (U/sup 6 +/, Pu/sup 4 +/, Pu/sup 3 +/, Th, Zr, Fe/sup 3 +/, Am, Al, rare-earth elements), which are important for the processes of irradiated nuclear fuel reprocessing, are presented. A conclusion is made that zirconium mono- and di-n-butyl phosphates are the least soluble in aqueous and organic solvents of all investigated compounds. FeA/sub 3/ and AmA/sub 3/ are weakly soluble in aqueous solutions. The other compounds are sufficiently soluble in moderately acidic aqueous solutions or in DBP and TBP with dilutents. The obtained results indicate at the similarity of zirconium and plutonium (4) chemical properties; thorium, in this respect, is not an analogue of plutonium (4). Possible structural formulas of the investigated compounds are considered.

  10. Mixing of Al into uranium silicides reactor fuels

    International Nuclear Information System (INIS)

    Ding, F.R.; Birtcher, R.C.; Kestel, B.J.; Baldo, P.M.

    1996-11-01

    SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the 27 Al(p, γ) 28 Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U 3 Si and U 3 Si 2 after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U 3 Si. At a low dose, the Al layer is converted into UAl 4 type compound while near the interface the phase U(Al .93 Si .07 ) 3 grows. Under irradiation, Al diffuses out of the UAl 4 surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U 3 Si 2 is slower than in U 3 Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed

  11. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  12. Development of very high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-02-01

    The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and first results should be available by end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun

  13. Safety performance comparation of MOX, nitride and metallic fuel based 25-100 MWe Pb-Bi cooled long life fast reactors without on-site refuelling

    International Nuclear Information System (INIS)

    Su'ud, Zaki

    2008-01-01

    In this paper the safety performance of 25-100 MWe Pb-Bi cooled long life fast reactors based on three types of fuels: MOX, nitride and metal is compared and discussed. In the fourth generation NPP paradigm, especially for Pb-Bi cooled fast reactors, inherent safety capability is necessary against some standard accidents such as unprotected loss of flow (ULOF), unprotected rod run-out transient over power (UTOP), unprotected loss of heat sink (ULOHS). Selection of fuel type will have important impact on the overall system safety performance. The results of safety analysis of long life Pb-Bi cooled fast reactors without on-site fuelling using nitride, MOX and metal fuel have been performed. The reactors show the inherent safety pattern with enough safety margins during ULOF and UTOP accidents. For MOX fuelled reactors, ULOF accident is more severe than UTOP accident while for nitride fuelled cores UTOP accident may push power much higher than that comparable MOX fuelled cores. (author)

  14. Uranium Enrichment Determination of the InSTEC Sub Critical Ensemble Fuel by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Borrell Munnoz, Jose L.; LopezPino, Neivy; Diaz Rizo, Oscar; D'Alessandro Rodriguez, Katia; Padilla Cabal, Fatima; Arbelo Penna, Yunieski; Garcia Rios, Aczel R.; Quintas Munn, Ernesto L.; Casanova Diaz, Amaya O.

    2009-01-01

    Low background gamma spectrometry was applied to analyze the uranium enrichment of the nuclear fuel used in the InSTEC Sub Critical ensemble. The enrichment was calculated by two variants: an absolute method using the Monte Carlo method to simulated detector volumetric efficiency, and an iterative procedure without using standard sources. The results confirm that the nuclear fuel of the ensemble is natural uranium without any additional degree of enrichment. (author)

  15. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  16. An overview of the regulation of uranium mining, milling, refining and fuel fabrication

    International Nuclear Information System (INIS)

    Smythe, W.D.

    1980-07-01

    The mining, milling, refining and fabrication of uranium into nuclear fuel are activities that have in common the handling of natural uranium. The occupational and environmental hazards resulting from these activities vary widely. Uranium presents a radiological hazard throughout, but the principal culprit is radium which creates an occupational hazard in the mine and mill and an environmental hazard in the waste products produced in both the mill and the refinery. The chemicals used in both these latter processes also present hazards. Fuel fabrication presents the least potential for occupational and environmental hazards. The Canadian Atomic Energy Control Board licenses eight plants, and one plant for the extraction of uranium from phosphoric acid. The licensing process is characterised by approval in stages, the placing of the burden of proof on the applicant, inspection at all stages, and joint review by all regulatory agencies involved

  17. Computational Design of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-01-01

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  18. Neutronics Studies Of Uranium-Based Fully Ceramic Micro-Encapsulated Fuel For PWRs

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Gehin, Jess C.

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  19. Criticality safety considerations for MSRE fuel drain tank uranium aggregation

    International Nuclear Information System (INIS)

    Hollenbach, D.F.; Hopper, C.M.

    1997-01-01

    This paper presents the results of a preliminary criticality safety study of some potential effects of uranium reduction and aggregation in the Molten Salt Reactor Experiment (MSRE) fuel drain tanks (FDTs) during salt removal operations. Since the salt was transferred to the FDTs in 1969, radiological and chemical reactions have been converting the uranium and fluorine in the salt to UF 6 and free fluorine. Significant amounts of uranium (at least 3 kg) and fluorine have migrated out of the FDTs and into the off-gas system (OGS) and the auxiliary charcoal bed (ACB). The loss of uranium and fluorine from the salt changes the chemical properties of the salt sufficiently to possibly allow the reduction of the UF 4 in the salt to uranium metal as the salt is remelted prior to removal. It has been postulated that up to 9 kg of the maximum 19.4 kg of uranium in one FDT could be reduced to metal and concentrated. This study shows that criticality becomes a concern when more than 5 kg of uranium concentrates to over 8 wt% of the salt in a favorable geometry

  20. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  1. High-uranium-loaded U3O8-Al fuel element development program [contributed by N.M. Martin, ORNL

    International Nuclear Information System (INIS)

    Martin, M.M.

    1993-01-01

    The High-Uranium-Loaded U 3 O 8 -Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U 3 O 8 -Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U 3 O 8 -Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U 3 O 8 ). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U 3 O 8 and aluminum. (author)

  2. Uranium savings on a once through PWR fuel cycle

    International Nuclear Information System (INIS)

    Cupo, J.V.

    1980-01-01

    A number of alternatives which have the greatest potential for near term savings with minimum plant and fuel modifications have been examined at Westinghouse as part of continued internal assessment and part of NASAP study conducted for DOE pertaining to uranium utilization in a once through PWR fuel cycle. The alternatives which could be retrofitted to existing reactors were examined in more detail in the evaluation since they would have the greater near term impact on U savings

  3. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  4. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  5. MUICYCL and MUIFAP: models tracking minor uranium isotopes in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blum, S.R.; McLaren, R.A.

    1979-10-01

    Two computer programs have been written to provide information on the buildup of minor uranium isotopes in the nuclear fuel cycle. The Minor Uranium Isotope Cycle Program, MUICYCL, tracks fuel through a multiyear campaign cycle of enrichment, reactor burnup, reprocessing, enrichment, etc. MUICYCL facilities include preproduction stockpiles, U 235 escalation, and calculation of losses. The Minor Uranium Isotope Flowsheet Analyzer Program, MUIFAP, analyzes one minor isotope in one year of an enrichment operation. The formulation of the enrichment cascade, reactors, and reprocessing facility is presented. Input and output descriptions and sample cases are presented. The programs themselves are documented by short descriptions of each routine, flowcharts, definitions of common blocks and variables, and internal documentation. The programs are written in FORTRAN for use in batch mode

  6. Biamperometric estimation of uranium in input KMP samples of spent fuel reprocessing plant: field experience

    International Nuclear Information System (INIS)

    Gurba, P.B.; Dhakras, S.P.; Chaugule, G.A.; Venugopal, A.K.; Singh, R.K.; Bajpai, D.D.; Nair, P.R.; Xavier, Mary; Aggarwal, S.K.

    2000-01-01

    Feasibility of simple, precise and accurate biamperometric determination of uranium at about 0.1 mg level was earlier established using simulated uranium standards. To evaluate the usefulness of this method for accurate determination of uranium in spent fuel dissolver solution samples, analytical work was carried out

  7. Uranium thiolate complexes

    International Nuclear Information System (INIS)

    Leverd, Pascal C.

    1994-01-01

    This research thesis proposes a new approach to the chemistry of uranium thiolate complexes as these compounds are very promising for various uses (in bio-inorganic chemistry, in some industrial processes like oil desulphurization). It more particularly addresses the U-S bond or more generally bonds between polarizable materials and hard metals. The author thus reports the study of uranium organometallic thiolates (tricyclo-penta-dienic and mono-cyclo-octa-tetraenylic complexes), and of uranium homoleptic thiolates (tetra-thiolate complexes, hexa-thiolate complexes, reactivity of homoleptic thiolate complexes) [fr

  8. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  9. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  10. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  11. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B. [Sandia National Labs. (United States); Billone, M.C.; Tsai, H. [Argonne National Lab. (United States); Koch, W.; Nolte, O. [Fraunhofer Inst. fuer Toxikologie und Experimentelle Medizin (Germany); Pretzsch, G.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (Germany); Autrusson, B.; Loiseau, O. [Inst. de Radioprotection et de Surete Nucleaire (France); Thompson, N.S.; Hibbs, R.S. [U.S. Dept. of Energy (United States); Young, F.I.; Mo, T. [U.S. Nuclear Regulatory Commission (United States)

    2004-07-01

    We provide a detailed overview of an ongoing, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high energy density device, HEDD. The program participants in the U.S. plus Germany, France, and the U.K., part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC have strongly supported and coordinated this research program. Sandia National Laboratories, SNL, has the lead role for conducting this research program; test program support is provided by both the U.S. Department of Energy and Nuclear Regulatory Commission. WGSTSC partners need this research to better understand potential radiological impacts from sabotage of nuclear material shipments and storage casks, and to support subsequent risk assessments, modeling, and preventative measures. We provide a summary of the overall, multi-phase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on ''surrogate'' spent fuel, unirradiated depleted uranium oxide, and forthcoming actual spent fuel tests. The depleted uranium oxide test rodlets were prepared by the Institut de Radioprotection et de Surete Nucleaire, in France. These surrogate test rodlets closely match the diameter of the test rodlets of actual spent fuel from the H.B. Robinson reactor (high burnup PWR fuel) and the Surry reactor (lower, medium burnup PWR fuel), generated from U.S. reactors. The characterization of the spent fuels and fabrication into short, pressurized rodlets has been performed by Argonne National Laboratory, for testing at SNL. The ratio of the aerosol and respirable particles released from HEDD-impacted spent

  12. Setting for technological control of vibropacked uranium-plutonium fuel pins

    International Nuclear Information System (INIS)

    Golushko, V.V.; Semenov, A.L.; Chukhlova, O.P.; Kuznetsov, A.M.; Korchkov, Yu.N.; Kandrashina, T.A.

    1991-01-01

    Scanning set-up providing for control of fuel pins by quality of fuel distribution in them is described. The gamma absorption method of fuel density measurement and the method of its own radiation registration are applied. Scintillation detection blocks are used in the measuring equipment mainly consisting of standard CAMAC blocks. Automation of measurements is performed on the basis of the computer complex MERA-60. A complex of programs for automation of the procedures under way is developed, when the facility operates within the test production line of vibroracked uranium-plutonium fuel pins. 6 refs.; 4 figs.; 1 tabs

  13. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  14. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  15. The use of uranium isotopes and the U/Th ratio to evaluate the fingerprint of plants following uranium releases from fuel cycle settlements

    International Nuclear Information System (INIS)

    Pourcelot, L.; Boulet, B.; Cariou, N.

    2015-01-01

    This paper uses data from the environmental monitoring of fuel cycle settlements. It aims to evaluate uranium released into the terrestrial environment. Measurement of uranium isotopes in terrestrial plants allows illustrating the consequences of chronic and incidental releases of depleted uranium into the atmosphere. However, such an analytical approach reaches its limits when natural uranium is released. Indeed, distinguishing natural uranium from releases and uranium from the radiological background is difficult. For this reason, we propose normalizing uranium activity measured in plants taken in the surroundings of nuclear sites with respect to 232 Th, considering that the source of this latter is the background. (authors)

  16. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  17. About the nitriding of powder uranium by nitrogen - Extract from the proceedings of the sessions of the Academy of Sciences, t. 253, p. 1100-1102, session of the 28 August 1961

    International Nuclear Information System (INIS)

    Moreau, Claude; Philippot, Joseph

    1961-01-01

    The authors report the study of powder uranium nitriding by nitrogen performed by thermogravimetry between 300 and 700 C. Results highlight the complexity of a pulverulent gas-solid reaction, and notably the influence of granulometry. Uranium powder is prepared by calciothermy, and presents nearly spherical grains with a diameter between 2 and 20 microns. Preliminary tests, performed on grains with heterogeneous size, showed that the reaction started between 300 and 350 C. Isotherm curves are discussed [fr

  18. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  19. Development of very-high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snegrove, J.L.; Hofmann, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    The RERTR (=Reduced Enrichment for Research and Test Reactors) program has begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun. (author)

  20. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  1. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  2. Present situation of unused uranium fuel in Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Obara, T.; Ogawa, M.

    2008-01-01

    Present situation of unused enriched uranium fuel in Tokyo Institute of Technology is described. The fuels were for sub-critical experiments. There is no special facility for transportation in the site. But there is no technical problem for it. One of the important issues to be done is a duty by national regulation against nuclear disaster. (author)

  3. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  4. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon; Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig

    2017-01-01

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation

  5. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon [Nuclear Fuel Cycle Analysis, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-08-15

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

  6. Challenges in the front end of the uranium fuel cycle

    International Nuclear Information System (INIS)

    Seitz, Ken

    2010-01-01

    The long-term fundamentals for nuclear remain strong. Climate change and clean air concerns remain high on the agenda of national energy policies, as both developing and developed economies pursue a strategy of energy diversity and energy security. A global industry of 435 reactors is expected to grow to more than 639 reactors within the next 20 years with the potential for even more rapid expansion. This nuclear generating capacity relies on an international fuel cycle that can ensure stable and secure supply for decades to come. As the first step in the fuel cycle, the uranium industry has received various price signals over the past 5 decades, from the birth of an industry with strong demand and stock pile building and the associated robust pricing and new production stimulation, to an industry in decline and a period marked by liquidation of large inventories, to the recent resurgence of nuclear and the associated uranium price signals. In many ways, understanding the current uranium environment and the outlook for the industry requires some understanding of these phases of nuclear. The global nuclear fleet today needs about 65,000 tonnes of uranium per year to meet reactor feed requirements. Primary production meets about two thirds of this requirement while the remainder is drawn from secondary supply. Secondary supply can essentially be described as stockpiles of previously produced uranium. However, secondary supplies are finite and more primary production will be needed. From a long-term perspective, there is no question that there are sufficient uranium resources to support the nuclear industry for many years to come. The IAEA's 'Red Book' estimates that more than 5 million tonnes of known resources could potentially be developed at today's prices. This is enough to supply the global reactor fleet for almost 80 years at current usage rates. Recently higher uranium prices have resulted in some production increases although the rate of growth has been held

  7. DUCTILE URANIUM FUEL FOR NUCLEAR REACTORS AND METHOD OF MAKING

    Science.gov (United States)

    Zegler, S.T.

    1963-11-01

    The fabrication process for a ductile nuclear fuel alloy consisting of uranium, fissium, and from 0.25 to 1.0 wt% of silicon or aluminum or from 0.25 to 2 wt% of titanium or yttrium is presented. (AEC)

  8. AlN powder synthesis via nitriding reaction of aluminum sub-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T.; Nishida, T.; Sugiura, M. (Waseda Univ., Tokyo (Japan). Graduate School); Fuwa, A. (Waseda Univ., Tokyo (Japan))

    1993-06-01

    In order to obtain the pertinent properties of aluminium nitride in its sintered form, it is desirable to have powders of finer sizes with narrower size distribution and higher purity, thereby making the sintering processing easier and the final body denser. Instead of using sublimated aluminum tri-chloride vapor (AlCl3) as an aluminum source in the vapor phase nitriding reaction, the mixed aluminum chloride vapor consisted of aluminum tri-chloride, bi-chloride and mono-chloride are used in the reaction with ammonia at temperatures of 1000 and 1200K. The mixed chloride vapors are produced by reacting chlorine with molten aluminum at 1000 or 1200K under atmospheric pressure. The reaction of this mixed chloride vapor with ammonia is then experimentally investigated to study the aluminum nitride powder morphology. The aluminum nitride powders synthesized under various ammonia concentrations are characterized for size distribution, mean particle size and particle morphology. 24 refs., 8 figs., 2 tabs.

  9. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  10. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  11. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1946-01-01

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  12. Fabrication of Uranium Oxycarbide Kernels for HTR Fuel

    International Nuclear Information System (INIS)

    Barnes, Charles; Richardson, Clay; Nagley, Scott; Hunn, John; Shaber, Eric

    2010-01-01

    Babcock and Wilcox (B and W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-(micro)m, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B and W produced 425-(micro)m, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B and W also produced 500-(micro)m, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B and W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

  13. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  14. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  15. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  16. recovery of enriched uranium from waste solution obtained from fuel fabrication laboratories

    International Nuclear Information System (INIS)

    Othman, S.H.A.

    2003-01-01

    reversed-phase partition chromatography is shown to be a convenient and applicable method for the quantitative recovery of uranium (19.7% enriched with 235 U) from highly impure solution . the processing of uranium compounds for atomic energy project especially in FMPP(Egyptian fuel manufacture pilot plant) gives rise to a variety of wastes in which the uranium content is of considerable importance. the recovery of uranium from concentrated mother liquors produced from ADU (ammonium diuranate ) precipitation, as well as those due to ADU washing is studied in this work. column of poly-trifluoro-monochloro-ethilene (Kel-F) supporting tri-n-butyl-phosphate (TBP) retains uranium .impurities are eluted with 6.5 M HCl, and the uranium is eluted with water and the recovery of uranium is better than 94%. A mathematical model was suggested to stimulate the sorption process of uranium ions (or any other ion ) by column of solvent impregnated resin containing organic extractant (the same as the previous column) . An excellent agreement was founded between the experimental results and the mathematical model

  17. Determination of uranium traces in fuel cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, C.E.; Benavides M, A.M.; Sanchez P, L.A.; Nava S, G.F.

    1997-01-01

    The objective of this work is to quantify the uranium content that as impurity can be found in zircon and zircaloy alloys which are used in the construction of fuel cans. The determination of this serves as a quality control measure due to that the increment of uranium content in alloy, diminishing the corrosion resistance. The fluorimetric method was used to do this determination. It is a very sensitive, reliable, rapid method also high reproducibility and repeatability as well as low detection limits (0.25 mg/kg). (Author)

  18. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  19. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  20. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  1. Evaluation of spectral shift controlled reactors operating on the uranium fuel cycle. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Sider, F.M.

    1979-08-01

    The performance of the spectral shift controlled reactor (SSCR) operating on uranium fuel cycles was evaluated and compared with the conventional pressurized water reactor (PWR). In order to analyze the SSCR, the PSR design methodology was extended to include systems moderated by mixtures of light water and heavy water and these methods were validated by comparison with experimental results. Once the design methods had been formulated, the resouce requirements and power costs were determined for the uranium-fueled SSCR. The ore requirements of the UO 2 once-through fuel cycle and the UO 2 fuel cycle with self-generated recycle (SGR) of plutonium were found to be 10% and 19% less than those of similarly fueled PWRs, respectively. A fuel cycle optimization study was performed for the UO 2 once-through SSCR and the SGR SSCR. By individually altering lattice parameters, discharge exposure or number of in-core batches, savings of less than 8% in resource requirements and less than 1% in power costs were obtained

  2. The measurements of critical mass with uranium fuel elements and thorium rods

    International Nuclear Information System (INIS)

    Yao Zhiquan; Chen Zhicheng; Yao Zewu; Ji Huaxiang; Bao Borong; Zhang Jiahua

    1991-01-01

    The critical experiments with uranium elements and Thorium rods have been performed in zero power reactor at Shanghai Institute of Nuclear Research. The critical masses have been measured in various U/Th ratios. The fuels are 3% 235 U-enriched uranium. The Thorium rods are made from power of ThF 4 . Ratios of calculated values to experimental values are nearly constant at 0.995

  3. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  4. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  5. Swiss R and D on uranium-free LWR fuels for plutonium incineration

    International Nuclear Information System (INIS)

    Stanculescu, A.; Chawla, R.; Degueldre, C.; Kasemeyer, U.; Ledergerber, G.; Paratte, J.M.

    1999-01-01

    The most efficient way to enhance the plutonium consumption in LWRs is to eliminate plutonium production altogether. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. The inert matrix material studied at PSI is zirconium oxide. For reactivity control reasons, adding a burnable poison to this fuel proves to be necessary. The studies performed at PSI have identified erbium oxide as the most suitable candidate for this purpose. With regard to material technology aspects, efforts have concentrated on the evaluation of fabrication feasibility and on the determination of the physicochemical properties of the chosen single phase zirconium/ erbium/plutonium oxide material stabilised as a cubic solution by yttrium. The results to-date, obtained for inert matrix samples containing thorium or cerium as plutonium substitute, confirm the robustness and stability of this material. With regard to reactor physics aspects, our studies indicate the feasibility of uranium-free, plutonium-fuelled cores having operational characteristics quite similar to those of conventional UO 2 -fuelled ones, and much higher plutonium consumption rates, as compared to 100% MOX loadings. The safety features of such cores, based on results obtained from static neutronics calculations, show no cliff edges. However, the need for further detailed transient analyses is clearly recognised. Summarising, PSI's studies indicate the feasibility of a uranium-free plutonium fuel to be considered in 'maximum plutonium consumption LWRs' operating in a 'once-through' mode. With regard to reactor physics, future efforts will concentrate on strengthening the safety case of uranium-free cores, as well as on improving the integral data base for validation of the neutronics calculations. Material technology studies will be continued to investigate the physico-chemical properties of the inert matrix fuel containing plutonium and will focus on the planning and evaluation of

  6. Management and Handling of Rejected Fuel of MTR Type and Process Effluents Contained Uranium at FEPI

    International Nuclear Information System (INIS)

    Ghaib Widodo; Bambang Herutomo

    2007-01-01

    Research Reactor Fuel Element Production Installation (FEPI) - Serpong has performed management and handling of all kinds of rejected fuel material during production (solids, liquids, and gases) and process effluents contained uranium. The methods that has been implemented are precipitation, absorption, evaporation, electrolysis, and electrodialysis. By these methods will finally be obtained forms of product which can be used directly as fuel material feed and solid/liquid radioactive waste that fulfil the requirements (uranium contents < 50 ppm) to be send to Radioactive Waste Management Installation. (author)

  7. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  8. Nondestructive assay of special nuclear material for uranium fuel-fabrication facilities

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Schillebeeckx, P.

    1997-01-01

    A high-quality materials accounting system and effective international inspections in uranium fuel-fabrication facilities depend heavily upon accurate nondestructive assay measurements of the facility's nuclear materials. While item accounting can monitor a large portion of the facility inventory (fuel rods, assemblies, storage items), the contents of all such items and mass values for all bulk materials must be based on quantitative measurements. Weight measurements, combined with destructive analysis of process samples, can provide highly accurate quantitative information on well-characterized and uniform product materials. However, to cover the full range of process materials and to provide timely accountancy data on hard-to-measure items and rapid verification of previous measurements, radiation-based nondestructive assay (NDA) techniques play an important role. NDA for uranium fuel fabrication facilities relies on passive gamma spectroscopy for enrichment and U isotope mass values of medium-to-low-density samples and holdup deposits; it relies on active neutron techniques for U-235 mass values of high-density and heterogeneous samples. This paper will describe the basic radiation-based nondestructive assay techniques used to perform these measurements. The authors will also discuss the NDA measurement applications for international inspections of European fuel-fabrication facilities

  9. Uranium metal and uranium dioxide powder and pellets - Determination of nitrogen content - Method using ammonia-sensing electrode. 1. ed.

    International Nuclear Information System (INIS)

    1994-01-01

    This International Standard specifies an analytical method for determining the nitrogen content in uranium metal and uranium dioxide powder and pellets. It is applicable to the determination of nitrogen, present as nitride, in uranium metal and uranium dioxide powder and pellets. The concentration range within which the method can be used is between 9 μg and 600 μg of nitrogen per gram. Interference can occur from metals which form complex ammines, but these are not normally present in significant amounts

  10. Phonon dispersion relation of uranium nitride above and below the Neel temperature

    International Nuclear Information System (INIS)

    Dolling, G.; Holden, T.M.; Svensson, E.C.; Buyers, W.J.L.; Lander, G.H.

    1977-01-01

    Neutron coherent inelastic scattering measurements have been made of the phonon dispersion relation of uranium nitride both above and below the Neel temperature T N = 50 K. Within the precision of the measurements, about 1% in frequency and 10% in line width and in scattered neutron intensity, no significant changes in these phonon properties were observed as a function of temperature other than those arising from population factor changes and a small stiffening of the lattice as the temperature decreases. At 4.2 K, two acoustic and two optic branches have been determined for each of the [001], [110] and [111] directions. The optic mode measurements revealed (a) a 20% variation in frequency across the Brillouin zone and (b) and interesting disposition of the LO and TO modes, such that ν LO > ν TO along [001] and [11-], while the reverse is true along the [111] directions. Within the experimental resolution, the LO and TO modes are degenerate near q = 0. We have been unable to obtain any satisfactory description of these results on the basis of conventional theoretical treatments (e.g. rigid-ion or shell models). Other possible interpretations of the results are discussed. (author)

  11. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw

    2005-01-01

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: 235 U, which represents the 20% of the fresh uranium, 233 U, which is produced by the transmutation of fertile 232 Th, and 239 Pu, which is produced by the transmutation of fertile 238 U. In order to compensate the depletion of 235 U with the breeding of 233 U and 239 Pu, the quantity of fertile nuclides must be much larger than that one of 235 U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of 235 U. At the same time, the amount of 235 U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k eff and mass evolution, reaction rates, neutron flux and spectrum at the

  12. Post-irradiation examinations of inert matrix nitride fuel irradiated in JMTR (01F-51A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Honda, Junichi; Hatakeyama, Yuichi; Ono, Katsuto; Matsui, Hiroki; Arai, Yasuo

    2007-03-01

    A plutonium nitride fuel pin containing inert matrix such as ZrN and TiN was encapsulated in 01F-51A and irradiated in JMTR. Minor actinides are surrogated by plutonium. Average linear powers and burnups were 408W/cm, 30000MWd/t(Zr+Pu) [132000MWd/t-Pu] for (Zr,Pu)N and 355W/cm, 38000MWd/t(Ti+Pu) [153000MWd/t-Pu] for (TiN,PuN). The irradiated capsule was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pin. Very low fission gas release rate of about 1.6% was measured. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  13. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)], E-mail: mfarhan_73@yahoo.co.uk; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)

    2008-09-15

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.

  14. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  15. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  16. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  17. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  18. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    International Nuclear Information System (INIS)

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; Reif, Tyler J.; Morris, Robert N.; Hunn, John D.

    2017-01-01

    Highlights: • The minimum required uranium carbide content for HTGR UCO fuel kernels is calculated. • More nuclear and chemical factors have been included for more useful predictions. • The effect of transmutation products, like Pu and Np, on the oxygen distribution is included for the first time. - Abstract: Three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from O release when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. In the HTGR kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium apart from UO 2 in the form of a carbide, UC x and this fuel form is designated UCO. Here general oxygen balance formulas were developed for calculating the minimum UC x content to ensure negligible CO formation for 15.5% enriched UCO taken to 16.1% actinide burnup. Required input data were obtained from CALPHAD (CALculation of PHAse Diagrams) chemical thermodynamic models and the Serpent 2 reactor physics and depletion analysis tool. The results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmuted Pu and Np oxides on the oxygen distribution as the fuel kernel composition evolves with burnup.

  19. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel

    International Nuclear Information System (INIS)

    Francois, J.L.; Nunez C, A.

    2003-01-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  20. The compatibility of stainless steels with particles and powders of uranium carbide and low-sulphur UCS fuels

    International Nuclear Information System (INIS)

    Venter, S.

    1978-05-01

    Slightly hyperstoichiometric (U,Pu)C is a potential nuclear fuel for fast breeder reactors. The excess carbon above the stoichiometric amount results in a higher carbon activity in the fuel, and carbon is transferred to the stainless steel cladding, resulting in embrittlement of the cladding. It is with this problem of carbon transfer from the fuel to the cladding that this thesis is concerned. For practical reasons, UC and not (U,Pu)C was used as the fuel. The theory of decarburisation of carbide fuel and the carburisation of stainless steel, the facilities constructed for the project at the Atomic Energy Board, and the experimental techniques used, including preparation of the fuels, are discussed. The effect of a number of variables of uranium carbide fuel on its compatibility behaviour with stainless steels was investigated, as well as the effect om microstructure and type of stainless steel (304, 304 L and 316) on the rate of carburisation. These studies can be briefly summarised under the following headings: powder-particle size; surface oxidation of uranium carbide; preparation temperature of uranium carbide; low sulfur UCS fuels; uranium sulfide and the microstructure and type of steel. The author concludes that: the effect of surface oxidation and particle size must be taken into account when evaluating out-of-pile tests; the possible effects of surface oxidation must be taken into account when considering vibro-compacted carbide fuels; there is no advantage in replacing a fraction of the carbon atoms by sulphur atoms in slightly hyperstoichiometric carbide fuels, and the type and thermo-mechanical treatment of the stainless steel used as cladding material in a fuel pin is not important as far as the rate of carburisation by the fuel is concerned

  1. Conversion of research reactors to low-enrichment uranium fuels

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1983-01-01

    There are at present approximately 350 research reactors in 52 countries ranging in power from less than 1 watt to 100 Megawatt and over. In the 1970's, many people became concerned about the possibility that some fuels and fuel cycles could provide an easy route to the acquisition of nuclear weapons. Since enrichment to less than 20% is internationally recognized as a fully adequate barrier to weapons usability, certain Member States have moved to minimize the international trade in highly enriched uranium and have established programmes to develop the technical means to help convert research reactors to the use of low-enrichment fuels with minimum penalties. This could involve modifications in the design of the reactor and development of new fuels. As a result of these programmes, it is expected that most research reactors can be converted to the use of low-enriched fuel

  2. Difficulties in preparing a standard sample of uranium metal having traces of nitrogen

    International Nuclear Information System (INIS)

    Toteja, R.S.D.; Jangida, B.L.; Sundaresan, M.

    1991-01-01

    Normally in the analysis of uranium for nitrogen, the nitrides are hydrolysed to give NH 3 and that for standardisation purposes to approximate the closest conditions of analysis of ammonia, NH 4 Cl is added to the sample and the recovery is tested. An appropriate method will be to have a standard sample of uranium with known amounts of nitrogen to be used as reference sample. The present work describes the efforts made in the preparation of such a reference sample and a general assessment of such methods available. In present work, known microamounts of nitrogen in an enclosed volume were allowed to react at a temperature of 773 K with a fixed amount of uranium metal of nitrogen content determined chemically. As the reaction of nitrogen with uranium is essentially a surface reaction, a sample had to be homogenised by allowing the nitrided sample to melt at about 1500 K and allow the nitrogen to diffuse through so that the concentration gradient along the profile will disappear. Attempts were made to prepare such samples in the range to 40 to 100 ppm of nitrogen. The density differences of uranium nitride and uranium metal made this diffusion and homogenisation process difficult. The prepared samples were analysed by the micro-kjeldahl's method and the recoveries tested. The equipment used for the preparation of the nitrided samples, for homogenisation and analysis of the results obtained are detailed in the paper together with the assessment of the general methods. (author). 2 refs., 1 fig., 1 tab

  3. Development of Uranium-Carrying Ball method for calibration of fuel element failure detecting systems

    International Nuclear Information System (INIS)

    Liu Yupu; Bao Wanping; Lu Cungang

    1988-01-01

    A Uranium-Carrying Ball method used for the determination of sensitivity, stability of the fuel element failure detecting systems is developed. A special facility for transporting the ball can be carried out by the flow of the cooling water, so that the failure signal can be simulated. Five different types of the Uranium-Carrying Ball have been developed. Type-I to Type-IV may provide failure signal in terms of uranium quantity or exposure area of uranium. Type-V can be used to simulate micro-flaw and examine the detectability of various detective methods for this kind of defect, at the same time it is difficult for the delayed neutron detector to detect micro-flaw. The results of long-time irradiation and washing test show that the working life of the balls is satisfactory. Using the experimentel facility with the balls, detailed study of the capability of various fuel failure detecting systems have been conducted successfully. The operation is easy and safe, the accuracy of this method is higher than that of other methods, the nuclear fuel consumption as well as the radioactive contamination is low. At present, the research on the failure mechanism is being conducted by means of this method

  4. Transient heating and evaporation of moving mono-component liquid fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    of which the flow and energy transport equations are numerically solved using the finite volume method. The computer code for the model is developed in a generic 3D framework and verified in different ways (e.g., by comparison against analytical solutions for simplified cases, and against experimental......This paper presents a complete description of a model for transient heating and evaporation of moving mono-component liquid fuel droplets. The model mainly consists of gas phase heat and mass transfer analysis, liquid phase analysis, and droplet dynamics analysis, which address the interaction...... between the moving droplets and free-stream flow, the flow and heat and mass transfer within the droplets, and the droplet dynamics and size, respectively. For the liquid phase analysis, the droplets are discretized into a number of control volumes along the radial, polar and azimuthal directions, on each...

  5. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  6. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  7. Evaluation of the uranium market and its consequences in the strategy of a nuclear fuel supplier that is also a uranium producer

    International Nuclear Information System (INIS)

    Esteves, R.G.

    2005-01-01

    On January 2005, the uranium spot market price reached the value of $21.00/lbU3O8. One month before, at the end of December, the average price was $20.70/lbU3O8 and in November the spot price registered $20.50. When we review this abstract, on July 2005, the price has reached $30.00/lbU3O8. In 1984, the uranium spot price dropped below the twenties and remained so reaching meanwhile even one-digit values, even considering that the uranium offer in this period was always below the demand. The main reason for that distortion in the market was and still is, the interference of the developing countries governments after the end of the cold war The Industrias Nucleares do Brasil - INB is in an odd situation in the market of fuel suppliers due to being also a uranium producer and in short future will also be an enrichment services supplier. This peculiar position brings additional advantages due to the flexibility to play with the uranium costs versus tail assay to optimize its nuclear fuel costs. That odd position, equivalent only in the market to AREVA, allows INB to exchange uranium by SWU and vice versa according to its uranium cost (not market sell price) and in the future to the SWU's costs obtaining a better margin that can not be reached by other fuel suppliers. In the first part of this paper it is evaluated, based on the recent market information, the consequences in the 2004 uranium spot price, expected to be more emphasized during 2005. This paper also evaluate the market mechanisms for expecting the price to cross the $40/lbU3O8 in short time The market supply mechanisms used up to now to fulfil the market deficit may be interrupted in case the developing countries governments stop the availability of the non civil uranium reserves from its stockpile. Different hypotheses for supplying the primary uranium deficit in this last case are analyzed in this work and evaluated its consequences. The solution of reducing the actual tails assay used aiming at

  8. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.

    1996-01-01

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U 3 Si 2 fuel is about 6.0 g U/cm 3 . The French Commissariat a l'Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L'Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm 3 and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersion fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm 3 . On the other hand, UN is the least reactive fuel because of the relatively large 14 N(n,p) cross section. For a fixed value of k eff , the required 235 U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO 2 dispersions are only useful for uranium densities below 5.0 g/cm 3 . In this density range, however, UO 2 is more reactive than U 3 Si 2

  9. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  10. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  11. Specific features of the WWER Uranium-Gadolinium fuel behavior at BOL

    International Nuclear Information System (INIS)

    Shcheglov, A.; Proselkov, V.; Volkov, B.

    2013-01-01

    The calculated-experimental analysis of the WWER fuel behavior with 5%wt of gadolinium oxide at the beginning of life (BOL) is presented. The results are based on the data on fuel centerline temperature measurements, gas media pressure inside the cladding and fuel elongation obtained during irradiation of the test fuel rods in HBWR (Halden). Computer analysis of experimental data is performed with TOPRA-2, version 2 code. It is shown that specific features of the uranium-gadolinium fuel behavior at the early of life is due to presence of burnable absorber influencing the average linear heat rating, radial power distribution and lower thermal conductivity. In particular, the analysis of “late” relocation effect on the maximum Gd fuel temperature is presented. (authors)

  12. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  13. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  14. Electronic structure of crystalline uranium nitrides UN, U2N3 and UN2: LCAO calculations with the basis set optimization

    International Nuclear Information System (INIS)

    Evarestov, R A; Panin, A I; Bandura, A V; Losev, M V

    2008-01-01

    The results of LCAO DFT calculations of lattice parameters, cohesive energy and bulk modulus of the crystalline uranium nitrides UN, U 2 N 3 and UN 2 are presented and discussed. The LCAO computer codes Gaussian03 and Crystal06 are applied. The calculations are made with the uranium atom relativistic effective small core potential by Stuttgart-Cologne group (60 electrons in the core). The calculations include the U atom basis set optimization. Powell, Hooke-Jeeves, conjugated gradient and Box methods are implemented in the author's optimization package, being external to the codes for molecular and periodic calculations. The basis set optimization in LCAO calculations improves the agreement of the lattice parameter and bulk modulus of UN crystal with the experimental data, the change of the cohesive energy due to the optimization is small. The mixed metallic-covalent chemical bonding is found both in LCAO calculations of UN and U 2 N 3 crystals; UN 2 crystal has the semiconducting nature

  15. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolokol, Alexander S.; Shimkevich, Alexander L. [Russian Research Center ' Kurchatov Institute' , 1 Kurchatov Sq. Moscow 123182 (Russian Federation)

    2008-07-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO{sub 2}+Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  16. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    International Nuclear Information System (INIS)

    Kolokol, Alexander S.; Shimkevich, Alexander L.

    2008-01-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO 2 +Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  17. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab

  18. Conversion and standardization of university reactor fuels using low-enrichment uranium - Options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The U.S. Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the U.S. Department of Energy. (author)

  19. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235 U. Fuel plates containing 33 v/o U 3 Si and U 3 Si 2 behaved very well up to this burnup. Plates containing 33 v/o U 3 Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U 3 Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U 3 Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  20. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  1. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  2. Assessment of uranium dioxide fuel performance with the addition of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Rafael O.R.; Abe, Alfredo; Gomes, Daniel S.; Silva, Antonio T., E-mail: romuniz@usp.br, E-mail: ayabe@ipen.br, E-mail: danieldesouza@gmail.com, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco; Aguiar, Amanda A., E-mail: amanda.abati.aguiar@gmail.com [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The Fukushima Daiichi accident in 2011 pointed the problem related to the hydrogen generation under accident scenarios due to the oxidation of zirconium-based alloys widely used as fuel rod cladding in water-cooled reactors. This problem promoted research programs aiming the development of accident tolerant fuels (ATF) which are fuels that under accident conditions could keep longer its integrity enabling the mitigation of the accident effects. In the framework of the ATF program, different materials have been studied to be applied as cladding to replace zirconium-based alloy; also efforts have been made to improve the uranium dioxide thermal conductivity doping the fuel pellet. This paper evaluates the addition of beryllium oxide (BeO) to the uranium dioxide in order to enhance the thermal conductivity of the fuel pellet. Investigations performed in this area considering the addition of 10% in volume of BeO, resulting in the UO{sub 2}-BeO fuel, have shown good results with the improvement of the fuel thermal conductivity and the consequent reduction of the fuel temperatures under irradiation. In this paper, two models obtained from open literature for the thermal conductivity of UO{sub 2}- BeO fuel were implemented in the FRAPCON 3.5 code and the results obtained using the modified code versions were compared. The simulations were carried out using a case available in the code documentation related to a typical pressurized water reactor (PWR) fuel rod irradiated under steady state condition. The results show that the fuel centerline temperatures decrease with the addition of BeO, when compared to the conventional UO{sub 2} pellet, independent of the model applied. (author)

  3. The improvement of technology for high-uranium-density Al-base dispersion fuel plates

    International Nuclear Information System (INIS)

    Shouhui, Dai; Rongxian, Sun; Hejian, Mao; Baosheng, Zhao; Changgen, Yin

    1987-01-01

    An improved rolling process was developed for manufacturing Al-base dispersion fuel plates. When the fuel content in the meat increased up to 50 vol%, the non-uniformity of uranium is not more than ± 7.2%, and the minimum cladding thickness is not less than 0.32 mm. (Author)

  4. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  5. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se; Gudowski, Waclaw [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)

    2005-11-15

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: {sup 235}U, which represents the 20% of the fresh uranium, {sup 233}U, which is produced by the transmutation of fertile {sup 232}Th, and {sup 239}Pu, which is produced by the transmutation of fertile {sup 238}U. In order to compensate the depletion of {sup 235}U with the breeding of {sup 233}U and {sup 239}Pu, the quantity of fertile nuclides must be much larger than that one of {sup 235}U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of {sup 235}U. At the same time, the amount of {sup 235}U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k {sub eff} and mass

  6. Review of consequences of uranium hydride formation in N-Reactor fuel elements stored in the K-Basins

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.W.

    1994-09-28

    The 105-K Basins on the Hanford site are used to store uranium fuel elements and assemblies irradiated in and discharged from N Reactor. The storage cylinders in KW Basin are known to have some broken N reactor fuel elements in which the exposed uranium is slowly reacting chemically with water in the cylinder. The products of these reactions are uranium oxide, hydrogen, and potentially some uranium hydride. The purpose of this report is to document the results f the latest review of potential, but highly unlikely accidents postulated to occur as closed cylinders containing N reactor fuel assemblies are opened under water in the KW basin and as a fuel assembly is raised from the basin in a shipping cask for transportation to the 327 Building for examination as part of the SNF Characterization Program. The postulated accidents reviews in this report are considered to bound all potential releases of radioactivity and hydrogen. These postulated accidents are: (1) opening and refill of a cylinder containing significant amounts of hydrogen and uranium hydride; and (2) draining of the single element can be used to keep the fuel element submerged in water after the cask containing the can and element is lifted from the KW Basin. Analysis shows the release of radioactivity to the site boundary is significantly less than that allowed by the K Basin Safety Evaluation. Analysis further shows there would be no damage to the K Basin structure nor would there be injury to personnel for credible events.

  7. Estimates of future demand for uranium and nuclear fuel cycle services

    Energy Technology Data Exchange (ETDEWEB)

    Krymm, R; Woite, G [International Atomic Energy Agency, Division of Nuclear Power and Reactors, Economic Studies Section, Vienna (Austria)

    1976-07-01

    As a review of forecasts made over the last few years amply demonstrates, projections of nuclear power capacity on a country, regional or world basis are subject to uncertainties. It summarizes the evolution of estimates made in the recent past, should provide a sobering reminder of the advisability of relying on ranges rather than on single figures. Although they are derived from a relatively narrow range of assumptions for nuclear power capacity, the alternative estimates of demands for uranium and nuclear-fuel-cycle services differ by about 50%. If plausible variations in breeder penetration, load factors, tails assays and fuel performance were taken into account, a ratio of 2 between maximum and minimum possible demands for the 2000 could easily be approached. Thus, for instance, a 15% (instead of 5%) breeder penetration by the year 2000 would decrease annual natural uranium demand by about 10%, a drop of load factor from 0.7 to 0.6 would drop the demand by another 10%, a decrease in tail assay from 0.25% to 0.2% would drop the demand by 8%. These momentous uncertainties, characteristic of medium- and long-term demand projections, offer a sharp contrast to the inflexibility of short-term requirements. Once a nuclear plant is ordered, the demand for the fuel services required for its core and for its replacement loadings is practically fixed (subject to minor trade-offs) and it can only be delayed in time by accepting exceedingly heavy additional costs. The demand for uranium can be characterized as being uncertain in the future and inelastic in the present. It faces sources of supply which, with the exception of fabrication and conversion facilities, are characterized by long planning times, lengthy prospecting and construction times, and above all by heavy capital investments. This combination offers an almost ideal framework for instability and wild price fluctuations if consumers and suppliers operate independently seeking temporary guidance in their

  8. Estimates of future demand for uranium and nuclear fuel cycle services

    International Nuclear Information System (INIS)

    Krymm, R.; Woite, G.

    1976-01-01

    As a review of forecasts made over the last few years amply demonstrates, projections of nuclear power capacity on a country, regional or world basis are subject to uncertainties. It summarizes the evolution of estimates made in the recent past, should provide a sobering reminder of the advisability of relying on ranges rather than on single figures. Although they are derived from a relatively narrow range of assumptions for nuclear power capacity, the alternative estimates of demands for uranium and nuclear-fuel-cycle services differ by about 50%. If plausible variations in breeder penetration, load factors, tails assays and fuel performance were taken into account, a ratio of 2 between maximum and minimum possible demands for the 2000 could easily be approached. Thus, for instance, a 15% (instead of 5%) breeder penetration by the year 2000 would decrease annual natural uranium demand by about 10%, a drop of load factor from 0.7 to 0.6 would drop the demand by another 10%, a decrease in tail assay from 0.25% to 0.2% would drop the demand by 8%. These momentous uncertainties, characteristic of medium- and long-term demand projections, offer a sharp contrast to the inflexibility of short-term requirements. Once a nuclear plant is ordered, the demand for the fuel services required for its core and for its replacement loadings is practically fixed (subject to minor trade-offs) and it can only be delayed in time by accepting exceedingly heavy additional costs. The demand for uranium can be characterized as being uncertain in the future and inelastic in the present. It faces sources of supply which, with the exception of fabrication and conversion facilities, are characterized by long planning times, lengthy prospecting and construction times, and above all by heavy capital investments. This combination offers an almost ideal framework for instability and wild price fluctuations if consumers and suppliers operate independently seeking temporary guidance in their

  9. Fuel component of electricity generation cost for the BN-800 reactor with MOX fuel and uranium oxide fuel with increasing of fuel burnup and removing of radial breeding blanket

    International Nuclear Information System (INIS)

    Raskach, A.

    2001-01-01

    Nowadays there are two completed design concepts of Nuclear Power Plants (NPPs) with the BN-800 type reactors developed with due regard for advanced safety requirements. One of them is the design of the fourth unit of the Beloyarsk Nuclear Power Plant; the other one is the design of three units of the South Ural Nuclear Power Plant. The both concepts are to use mixed oxide fuel (MOX fuel) based on civil plutonium. Studies on any project include economical analyses and cost of fuel is an essential parameter. In the course of the design works on the both projects such evaluations were done. For BN-800 on the Beloyarsk site nuclear fuel costs were taken from actual expenses of the BN-600 reactor and converted to rated thermal power and design capacity factor of the BN-800 and then increased by 20% in connection with turning to MOX fuel. Then this methodology was rewarding, but the ratio of uranium fuel and MOX fuel costs might change for the last years. For the project of three units of the South Ural Nuclear Power Plant nuclear fuel expenses were calculated from the data on a MOX fuel fabrication production facility (Complex-300). However, investigations performed recently shown that the methodology of economical assessments should be revised, as well as design and technology of MOX fuel fabrication at Complex-300 should be revised to meet all the existing safety requirements. Excepting there is a great bulk of civil plutonium to be reproduced, now we came up against the problem to utilize the exceeding ex-weapons plutonium that obviously can be used for MOX fuel fabrication as well. Construction of the MOX fuel fabrication facility - Complex-300 - was started in 1983. Its design output was planned to provide simultaneously 4 fast reactors of the BN-800 type with MOX fuel. By now about 50% of construction works (taking into account auxiliary buildings and arrangements) and 20% of installation works have been done at Complex-300. Along this, first works to construct

  10. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  11. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  12. Changes In Mechanical Properties Of Heat Resisting Alloy For A Satellite Propulsion System After A Nitriding Process

    Science.gov (United States)

    Kagawa, Hideshi; Fujii, Go; Kajiwara, Kenichi; Kuroda, Daisuke; Suzuki, Takuya; Yamabe-Mitarai, Yoko; Murakami, Hideyuki; Ono, Yoshinori

    2012-07-01

    Haynes25 (L-605) is a common heat resistant alloy used in mono-propellant structures and screen materials for catalyst beds. The lifetime requirements for thrusters have expanded dramatically after studies conducted in the 1970s on mono-propellant materials used to extend the service life. The material design had long remained unchanged, and the L-605 was still used as thruster material due to its good heritage. However, some important incidents involving degradation were found during the test-unit break-up inspection following the thruster life tests. The Japanese research team focused on the L-605 degradations found on the catalyst bed screen mesh used for mono-propellant thruster and analysed the surface of the wire material and the cross- section of the wire screen mesh used in the life tests. The investigation showed that the degradation was caused by nitriding L-605 component elements. The team suggested that the brittle fracture was attributable to tungsten (W) carbides, which formed primarily in the grain boundaries, and chromium (Cr) nitride, which formed mainly in the parts in contact with the hot firing gas. The team also suggested the installation of a platinum coating on the material surface as a countermeasure L-605 nitric degradation. Inconel 625 is now selected as a mono-propellant structure material due to its marginal raw material characters and cost. The team believes that Inconel 625 does not form W carbides since it contains no tungsten component, but does contain Cr and Fe, which form nitrides easily. Therefore, the team agreed that for the Inconel 625, there was a need to evaluate changes in the microstructure and mechanical properties following exposure to hot nitrogen gases. This paper will describe these changes of Inconel 625.

  13. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  14. Method to evaluate covariance data for the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Kawano, T.; Chadwick, M.B.

    2003-01-01

    This power point presentation gives an overview about the evaluation strategy for the experimental data for the thorium-uranium fuel cycle. Uncertainties, error propagation and calculation methods are outlined. Covariance evaluation tools and computer codes have been developed and results are presented

  15. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  16. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  17. Standard method of test for atom percent fission in uranium fuel - radiochemical method

    International Nuclear Information System (INIS)

    Anon.

    The determination of the U at. % fission that has occurred in U fuel from an analysis of the 137 Cs ratio to U ratio after irradiation is described. The method is applicable to high-density, clad U fuels (metal, alloys, or ceramic compounds) in which no separation of U and Cs has occurred. The fuels are best aged for several months after irradiation in order to reduce the 13-day 136 Cs activity. The fuel is dissolved and diluted to produce a solution containing a final concentration of U of 100 to 1000 mg U/l. The 137 Cs concentration is determined by ASTM method E 320, for Radiochemical Determination of Cesium-137 in Nuclear Fuel Solutions, and the U concentration is determined by ASTM method E 267, for Determination of Uranium and Plutonium Concentrations and Isotopic Abundances, ASTM method E 318, for Colorimetric Determination of Uranium by Controlled-Potential Coulometry. Calculations are given for correcting the 137 Cs concentration for decay during and after irradiation. The accuracy of this method is limited, not only by the experimental errors with which the fission yield and the half-life of 137 Cs are known

  18. Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles

    Science.gov (United States)

    Hunt, R. D.; Silva, C. M.; Lindemer, T. B.; Johnson, J. A.; Collins, J. L.

    2014-05-01

    The US Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels with diameters of 650 or 800 μm. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN spheres, which could be then sintered into kernels. Recent improvements to the internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed and dried, a simple two-step heat profile was used to produce porous microspheres with a chemical composition of UC0.07-0.10N0.90-0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 h in flowing nitrogen.

  19. Quality assurance in the manufacture of metallic uranium fuel for research reactors

    International Nuclear Information System (INIS)

    Shah, B.K.; Kumar, Arbind; Nanekar, P.P.; Vaidya, P.R.

    2009-01-01

    Two Research Reactors viz. CIRUS and DHRUVA are operating at Trombay since 1960 and 1985 respectively. Cirus is a 40 MWth reactor using heavy water as moderator and light water as coolant. Dhruva is a 100 MWth reactor using heavy water as moderator and coolant. The maximum neutron flux of these reactors are 6.7 x 10 13 n/cm 2 /s (Cirus) and 1.8 x 10 14 n/cm 2 /s (Dhruva). Both these reactors are used for basic research, R and D in reactor technology, isotope production and operator training. Fuel material for these reactors is natural uranium metallic rods claded in finned aluminium (99.5%) tubes. This presentation will discuss various issues related to fabrication quality assurance and reactor behavior of metallic uranium fuel used in research reactors

  20. Analysis of the Range of Applicability of Thermodynamic Calculations in the Engineering of Nitride Fuel Elements

    Science.gov (United States)

    Ivanov, A. S.; Rusinkevich, A. A.; Belov, G. V.; Ivanov, Yu. A.

    2017-12-01

    The domains of applicability of thermodynamic calculations in the engineering of nitride fuel are analyzed. Characteristic values of the following parameters, which affect directly the concentration equilibration time, are estimated: nuclide production rate; characteristic times to local equilibrium in the considered temperature range; characteristic time needed for a stationary temperature profile to be established; characteristic time needed for a quasi-stationary concentration field to be established on a scale comparable to the size of a fuel pellet. It is demonstrated that equilibrium thermodynamic calculations are suitable for estimating the chemical and phase composition of fuel. However, a two-layer kinetic model should be developed in order to characterize the transport processes in condensed and gaseous phases. The process of diffusive transport needs to be taken into account in order to determine the composition in the hot region at the center of a fuel element.

  1. Phase analyses of silicide or nitride coated U–Mo and U–Mo–Ti particle dispersion fuel after out-of-pile annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Palancher, Hervé [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong, Daejeon 305-701 (Korea, Republic of); Park, Jong Man; Nam, Ji Min [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Bonnin, Anne [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Honkimäki, Veijo [ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Charollais, François [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Lemoine, Patrick [CEA, DEN, DISN, 91191 Gif sur Yvette (France)

    2014-03-15

    Highlights: • Silicide or nitride layers were coated on atomized U–Mo or U–Mo–Ti powder. • The constituent phases after annealing were identified through high-energy XRD. • U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2} were identified in the silicide coating layers. • UN was identified for U–Mo particles and UN and U{sub 4}N{sub 7} formed on U–Mo–Ti particles. -- Abstract: The coating of silicide or nitride layers on U–7 wt%Mo or U–7 wt%Mo–1 wt%Ti particles has been proposed for the minimization of the interaction phase growth in U–Mo/Al dispersion fuel during irradiation. Out-of-pile annealing tests show reduced inter-diffusion by forming silicide or nitride protective layers on U–Mo and U–Mo–Ti particles. To characterize the constituent phases of the coated layers on U–Mo and U–Mo–Ti particles and the interaction phases of coated U–Mo and U–Mo–Ti particle dispersed Al matrix fuel, synchrotron X-ray diffraction experiments have been performed. It was identified that silicide coating layers consisted mainly of U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2}, and nitride coating layers were composed of mainly UN and U{sub 4}N{sub 7}. The interaction phases obtained after annealing of coated U–Mo and U–Mo–Ti particle dispersion samples were identical to those found in U–Mo/Al–Si and U–Mo/Al systems. Nitride-coated particles showed less interaction formation than silicide-coated particles after annealing at 580 °C for 1 h owing to the higher susceptibility to breakage of the silicide coating layers during hot extrusion.

  2. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  3. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  4. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath

    International Nuclear Information System (INIS)

    Fernandes, Damaris

    2002-01-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U 3+ /U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al 2 O 3 with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U 3+ /U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U 3+ /U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  5. Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code

    Science.gov (United States)

    Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar

    2018-02-01

    The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.

  6. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  7. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  8. Do we soon run out of uranium? Long-term concepts of nuclear fuel supply

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2008-01-01

    The extension of the worldwide light water reactor fleet will cause the demand for uranium to grow. The static reach of identified resources might soon fall below the life time of new nuclear power plants which are usually designed for 60 years of operation, if the exploration of new uranium deposits will stop resulting in exploitable resources. The article discusses, if, as frequently claimed, the energy consumption in the uranium mines renders impossible to secure the nuclear fuel supply in the long term. (orig.)

  9. Radiation protection of workers in uranium mining, ore processing and fuel fabrication in India

    International Nuclear Information System (INIS)

    Khan, A. H.; Jha, G.; Jha, S.; Srivastava, G. K.; Sadasivan, S.; Raj, Venkat

    2002-01-01

    Low grade of uranium ore mined from three underground mines is processed in a mill at Jaduguda in eastern India to recover uranium concentrate in the form of yellow cake. This concentrate is further processed at the Nuclear Fuel Complex at Hyderabad, in southern India, to produce fuel for use in nuclear power plants. Radiation protection of workers is given due importance at all stages of these operations. Dedicated Health Physics Units and Environmental Survey Laboratories established at each site regularly carry out in-plant and environmental surveillance to keep radiation exposure of workers and the members of public within the limits prescribed by the regulatory body. The limits set by the national regulatory body are based on the international standards suggested by the ICRP and the IAEA. In the uranium mines external gamma radiation, radon and airborne activity due to radioactive dust is monitored. Similarly, in the uranium mill and the fuel fabrication plant gamma radiation and airborne radioactivity due to long-lived α -emitters are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the personal monitoring and area monitoring data. It has been observed that the total radiation dose to workers has been well below 20 mSv.y 1 at all stages of operations. Adequate ventilation is provided during mining, ore processing and fuel fabrication operations to keep the concentrations of airborne radioactivity well below the derived limits. Workers use personal protective appliances, where necessary, as a supplementary means of control. The monitoring methodologies, results and control measures are presented in the paper

  10. Radiation protection of workers in uranium mining, ore processing and fuel fabrication in India

    International Nuclear Information System (INIS)

    Khan, A.H.; Jha, G.; Jha, S.; Srivastava, G.K.; Sadasivan, S.; Venkat Raj, V.

    2002-01-01

    Full text: Low grade of uranium ore mined from three underground mines is processed in a mill at Jaduguda in eastern India to recover uranium concentrate in the form of yellow cake. This concentrate is further processed at the Nuclear Fuel Complex at Hyderabad, in southern India, to produce fuel for use in nuclear power plants. Radiation protection of workers is given due importance at all stages of these operations. Dedicated Health Physics Units and Environmental Survey Laboratories established at each site regularly carry out in-plant and environmental surveillance to keep radiation exposure of workers and the members of public within the limits prescribed by the regulatory body. The limits set by the national regulatory body are based on the international standards suggested by the ICRP and the IAEA. In the uranium mines external gamma radiation, radon and airborne activity due to radioactive dust is monitored. Similarly, in the uranium mill and the fuel fabrication plant gamma radiation and airborne radioactivity due to long-lived a- emitters are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the personal monitoring and area monitoring data. It has been observed that the total radiation dose to workers has been well below 20 mSvy -1 at all stages of operations. Adequate ventilation is provided during mining, ore processing and fuel fabrication operations to keep the concentrations of airborne radioactivity well below the derived limits. Workers use personal protective appliances, where necessary, as a supplementary means of control. The monitoring methodologies, results and control measures are presented in the paper

  11. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  12. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  13. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  14. Direct comparison of the electrical properties in metal/oxide/nitride/oxide/silicon and metal/aluminum oxide/nitride/oxide/silicon capacitors with equivalent oxide thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    An, Ho-Myoung; Seo, Yu Jeong; Kim, Hee Dong; Kim, Kyoung Chan; Kim, Jong-Guk [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Won-Ju; Koh, Jung-Hyuk [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Sung, Yun Mo [Department of Materials and Science Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.k [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2009-07-31

    We examine the electrical properties of metal/oxide/nitride/oxide/silicon (MONOS) capacitors with two different blocking oxides, SiO{sub 2} and Al{sub 2}O{sub 3}, under the influence of the same electric field. The thickness of the Al{sub 2}O{sub 3} layer is set to 150 A, which is electrically equivalent to a thickness of the SiO{sub 2} layer of 65 A, in the MONOS structure for this purpose. The capacitor with the Al{sub 2}O{sub 3} blocking layer shows a larger capacitance-voltage memory window of 8.6 V, lower program voltage of 7 V, faster program/erase speeds of 10 ms/1 {mu}s, lower leakage current of 100 pA and longer data retention than the one with the SiO{sub 2} blocking layer does. These improvements are attributed to the suppression of the carrier transport to the gate electrode afforded by the use of an Al{sub 2}O{sub 3} blocking layer physically thicker than the SiO{sub 2} one, as well as the effective charge-trapping by Al{sub 2}O{sub 3} at the deep energy levels in the nitride layer.

  15. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  16. Reactivity change measurements on plutonium-uranium fuel elements in hector experimental techniques and results

    International Nuclear Information System (INIS)

    Tattersall, R.B.; Small, V.G.; MacBean, I.J.; Howe, W.D.

    1964-08-01

    The techniques used in making reactivity change measurements on HECTOR are described and discussed. Pile period measurements were used in the majority of oases, though the pile oscillator technique was used occasionally. These two methods are compared. Flux determinations were made in the vicinity of the fuel element samples using manganese foils, and the techniques used are described and an error assessment made. Results of both reactivity change and flux measurements on 1.2 in. diameter uranium and plutonium-uranium alloy fuel elements are presented, these measurements being carried out in a variety of graphite moderated lattices at temperatures up to 450 deg. C. (author)

  17. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  18. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-01-01

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  19. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  20. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  1. Physicochemical characteristics of uranium microparticles collected at nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kaurov, G.; Stebelkov, V.; Kolesnikov, O.; Frolov, D.

    2001-01-01

    Any industrial process is accompanied by appearance of some quantity of microparticles of processed matter in the environment in immediate proximity to the manufacturing object. These particles can be transferred in atmosphere and can be collected at some distances from the plant. The determination of characteristics of industrial dust microparticles at nuclear fuel cycle plants (form, size, structure of surface, elemental composition, isotopic composition, presence of fission products, presence of activation products) in conjunction with the ability to connect these characteristics with certain nuclear manufacturing processes can become the main technical method of detecting of undeclared nuclear activity. Systematization of the experimental data on morphology, elemental and isotopic composition of uranium microparticles, collected at nuclear fuel cycle plants, is given. The purpose of this work is to establish the relationship between morphological characteristics of uranium dust microparticles and types of nuclear manufacture and to define the reference attributes of the most informative microparticles

  2. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    Silva Neto, Joao Batista da

    2008-01-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF 6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH 4 HF 2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO 2 , which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF 4 . That returns to the process of metallic uranium production unity to the U 3 Si 2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U 3 Si 2 -Al fuel. (author)

  3. Recent status and future aspect of plate type fuel element technology with high uranium density at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.-W.

    1983-01-01

    According to the present state of development full size test fuel elements with UAl x , U 3 O 8 , and U 3 Si 2 fuel were fabricated at Nukem in production scale. The maximum uranium densities amount to 1.8 g/cc for UAI x , 2.9 g/cc for U 3 O 8 , and 4.76 g/cc for U 3 Si 2 . The irradiation performance of these fuel elements is good: Up to the end of September 1982 the following burnups were achieved: 73% with UA1 x , 60% with U 3 O 8 , 39% with U 3 Si 2 ; no defects could be detected. For an economical fuel element production with reduced 235-U enrichment chemical uranium recycling methods were developed allowing immediate scrap recovery at minimum waste generation. In addition test plates with UAl x and U 3 O 8 fuel were successfully irradiated in the ORR up to a burnup of 75 %. The relatively high uranium meat densities of these test plates amount to 2.2 g/cc for UAI x , and 3.14 g/cc for U 3 O 8 fuel. Apart from plates with standard geometry also plates with increased meat thickness were inserted. (author)

  4. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  5. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  6. Wastes and waste management in the uranium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Costello, J.M.

    1975-08-01

    The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical and radiological wastes produced and the waste management procedures employed. The problems and possible solutions of ultimate disposal of high activity fission products and transuranium elements from reprocessing of irradiated fuel have been reviewed. Quantities of wastes arising in each stage of the fuel cycle have been summarised. Wastes arising from reactor operation have been described briefly. (author)

  7. Uranium/fuel cycle 74, New Orleans, Louisiana, 17--20 March 1974. Program report

    International Nuclear Information System (INIS)

    1974-01-01

    The highlight of papers presented at the conference are summarized. The sessions covered uranium raw material, transportation of spent fuel and radioactive waste, plutonium recycle, waste management, and safeguards. (U.S.)

  8. Uranium, resources, production and demand including other nuclear fuel cycle data

    International Nuclear Information System (INIS)

    1975-12-01

    The uranium reserves exploitable at a cost below 15 dollars/lb U 3 O 8 , are 210,000 tonnes. While present uranium production capacities amount to 26,000 tonnes uranium per year, plans have been announced which would increase this capacity to 44,000 tonnes by 1978. Given an appropriate economic climate, annual capacities of 60,000 tonnes and 87,000 tonnes could be attained by 1980 and 1985, respectively, based on presently known reserves. However, in order to maintain or increase such a capacity beyond 1985, substantial additional resources would have to be identified. Present annual demand for natural uranium amounts to 18,000 tonnes and is expected to establish itself at 50,000 tonnes by 1980 and double this figure by 1985. Influences to increase this demand in the medium term could come from shortages in other fuel cycle capacities, i.e. enrichment (higher tails assays) and reprocessing (no uranium and plutonium recycle). However, the analysis of the near term uranium supply and demand situation does not necessarily indicate a prolongation of the current tight uranium market. Concerning the longer term, the experts believe that the steep increase in uranium demand foreseen in the eighties, according to present reactor programmes, with doubling times of the order of 6 to 7 years, will pose formidable problems for the uranium industry. For example, in order to provide reserves sufficient to support the required production rates, annual additions to reserves must almost triple within the next 15 years. Efforts to expand world-wide exploration levels to meet this challenge would be facilitated if a co-ordinated approach were adopted by the nuclear industry as a whole

  9. Method for the chemical reprocessing of irradiated nuclear fuels, in particular nuclear fuels containing uranium

    International Nuclear Information System (INIS)

    Koch, G.

    1976-01-01

    In the chemical processing of irradiated uranium-containing nuclear fuels which are hydrolyzed with aqueous nitric acid, a suggestion is made to use as quaternary ammonium nitrate trialkyl-methyl ammonium nitrates as extracting agent, in which the sum of C atoms is greater than 16. In the illustrated examples, tricaprylmethylammonium nitrate, trilaurylmethylammonium nitrate and tridecylmethylammonium nitrate are named. (HPH/LH) [de

  10. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  11. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  12. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  13. Possibilities for recycling of weapon-grade uranium and plutonium and its peaceful use as reactor fuel

    International Nuclear Information System (INIS)

    Floeter, W.

    2000-01-01

    At present 90% of the energy production is based on fossil fuels. Since March 1999, however, the peaceful use of weapon-grade uranium as reactor fuel is being discussed politically. Partners of this discussion is a group of some private western companies on one side and a state-owned company of the Russian Federation (GUS) on the other. Main topic of the deal besides the winning of electrical energy is the useful disposal of the surplus on weapon-grade material of both leading nations. According to the deal, about 160,000 t of Russian uranium, expressed as natural uranium U 3 O 8 , would be processed during the next 15 years. Proven processes would be applied. Those methods are being already used in Russian facilities at low capacity rates. There are shortages in the production of low enriched uranium (LEU), because of the low capacity rates in the old facilities. The capacity should be increased by a factor of ten, but there is not enough money available in Russia for financing the remodeling of the plants. Financing should therefore probably be provided by the western clients of this deal. The limited amount of uranium produced could be furnised to the uranium market without major difficulties for the present suppliers of natural uranium. The discussions regarding the security of the details of the deal - however - are not yet finalized. (orig.) [de

  14. Model for the behaviour of thorium and uranium fuels at pelletization

    International Nuclear Information System (INIS)

    Ferreira Neto, Ricardo Alberto

    2000-11-01

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  15. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  16. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  17. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  18. Status of the natural and enriched uranium market: the basic economical factor for the development of the fuel cycle

    International Nuclear Information System (INIS)

    Nochev, T.

    1999-01-01

    Status of the Natural and Enriched Uranium Market - the Basic. Economical Factor for the Development of the Fuel Cycle An overview of the status of the natural and enriched uranium market has been performed and it offers a possibility to estimate the changes and tendencies, the knowledge of which is needed in negotiations about the fresh fuel. The simplified financial analysis presented here demonstrates the economical profitability of the storage of the spent fuel making now the allocations for the future reprocessing

  19. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  20. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  1. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    International Nuclear Information System (INIS)

    Uriarte, A.; Ramos, L.; Estrada, J.; del Val, J. L.

    1962-01-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO 2 F 2 solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs

  2. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte, A; Ramos, L; Estrada, J; Val, J L. del

    1962-07-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO{sub 2}F{sub 2} solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs.

  3. Uranium accountability for ATR fuel fabrication. Part I. A description of the existing system

    International Nuclear Information System (INIS)

    Dolan, C.A.; Nieschmidt, E.B.; Vegors, S.H. Jr.; Wagner, E.P. Jr.

    1977-06-01

    An evaluation of the materials accountability program at the Atomics International fuel fabrication facility in Canoga Park, California, with regard to the fabrication of highly enriched uranium fuel for the Advanced Test Reactor is presented. An analysis is given of the existing standards program, the existing measurements program and the existing statistical analysis procedures. In addition a short discussion is given of our evaluation of the safeguards procedures at Atomics International together with suggestions for possible modifications and improvements. Appendices of this report contain a rather complete description of the Atomics International plant and the flow of highly enriched uranium through the plant as well as the principal documents used for material accountability records

  4. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    Science.gov (United States)

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  5. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  6. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  7. The technique for determination of surface contamination by uranium on U3Si2-Al plate-type fuel elements

    International Nuclear Information System (INIS)

    Li Shulan; He Fengqi; Wang Qingheng; Han Jingquan

    1993-04-01

    The NDT method for determining the surface contamination by uranium on U 3 Si 2 -Al plate-type fuel elements, the process of standard specimen preparation and the graduation curve are described. The measurement results of U 3 Si 2 -Al plate-type fuel elements show that the alpha counting method to measure the surface contamination by uranium on fuel plate is more reliable. The UB-1 type surface contamination meter, which was recently developed, has many advantages such as high sensitivity to determine the uranium pollution, short time in measuring, convenience for operation, and the minimum detectable amount of uranium is 5 x 10 -10 g/cm 2 . The measuring device is controlled by a microcomputer. Besides data acquisition and processing, it has functions of statistics, output data on terminal or to printer and alarm. The procedures of measurement are fully automatic. All of these will meet the measuring needs in batch process

  8. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  9. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  10. Analysis of fuel cycles with natural uranium, Phase I; Analiza gorivnih ciklusa sa prirodnim uranom, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinovic, A; Zivkovic, Z; Raisic, N [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku i dinamiku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This paper contains analyses of fuel cycles with natural uranium for the following cases: plutonium recycling is not done; recycling of plutonium and irradiated uranium with the condition of equal multiplication factor at the beginning of each cycle; and recycling of plutonium only.

  11. Safety analysis report of uranium dioxide fuel laboratory, Nuclear Research Centre Inchas, Egypt

    International Nuclear Information System (INIS)

    Abdel-Azim, M.S.; Abdel-Halim, A.

    1987-07-01

    In the Nuclear Research Center Inchas a uranium dioxide fuel laboratory is planned and built by the AEA Cairo (Atomic Energy Authority). The layout of this fuel lab and the programmatical contents are subject to the bilaterial cooperation between Egypt and the Federal Republic of Germany. In this report the safety analysis as basic items for the approval procedure are started in detail. (orig.) [de

  12. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  13. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  14. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  15. First-principles investigations of the electronic and magnetic structures and the bonding properties of uranium nitride fluoride (UNF)

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, Bordeaux Univ., Pessac (France). ICMCB; Lebanese German Univ. (LGU), Jounieh (Lebanon)

    2017-07-01

    Based on geometry optimization and magnetic structure investigations within density functional theory, a unique uranium nitride fluoride, isoelectronic with UO{sub 2}, is shown to present peculiar differentiated physical properties. These specificities versus the oxide are related to the mixed anionic substructure and the layered-like tetragonal structure characterized by covalent-like [U{sub 2}N{sub 2}]{sup 2+} motifs interlayered by ionic-like [F{sub 2}]{sup 2-} ones and illustrated herein with electron localization function projections. Particularly, the ionocovalent chemical picture shows, based on overlap population analyses, stronger U-N bonding versus U-F and d(U-N)

  16. Production of molybdenum-99 by heterogeneous and homogeneous uranium fueled reactors

    International Nuclear Information System (INIS)

    Carlin, G.E.; Bonin, H.W.

    2012-01-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. At the forefront of the medical isotope list is molybdenum-99 and its daughter isotope technetium-99m, which encompass over 80% of radiopharmaceutical procedures. Fission of uranium-235 to produce molybdenum-99 is the most widely used method for producing this radioisotope. The heterogeneous reactor and the aqueous homogeneous reactor are looked at here with emphasis on the use of low enriched uranium as the fuel source. Methods of technetium-99m generation and its medical use are also reviewed. (author)

  17. Production of molybdenum-99 by heterogeneous and homogeneous uranium fueled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2012-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. At the forefront of the medical isotope list is molybdenum-99 and its daughter isotope technetium-99m, which encompass over 80% of radiopharmaceutical procedures. Fission of uranium-235 to produce molybdenum-99 is the most widely used method for producing this radioisotope. The heterogeneous reactor and the aqueous homogeneous reactor are looked at here with emphasis on the use of low enriched uranium as the fuel source. Methods of technetium-99m generation and its medical use are also reviewed. (author)

  18. Synthesis and sintering of UN-UO{sub 2} fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J., E-mail: BrianJaques@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A. [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Tyburska-Püschel, Beata [Department of Engineering Physics, University of Wisconsin–Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Meyer, Mitch [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Xu, Peng; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA 15235 (United States); Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2015-11-15

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO{sub 2}, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO{sub 2} to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO{sub 2} in a planetary ball mill. UN and UN – UO{sub 2} composite pellets were sintered in Ar – (0–1 at%) N{sub 2} to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO{sub 2} composite pellets were also sintered in Ar – 100 ppm N{sub 2} to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.

  19. Data base for a CANDU-PHW operating on a once-through, natural uranium fuel cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, describes a standard 600 MW(e) CANDU-PHW reactor operating on a once-through natural uranium fuel cycle. Subsequently, data are given for an extrapolated 1000 MW(e) design (the nominal capacity adopted for the INFCE study) operating on the same fuel cycle. (author)

  20. Design of a spherical fuel element for a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Van Rooijen, W.F.G.; Kloosterman, J.L.; Van Dam, H.; Van der Hagen, T.H.J.J.

    2004-01-01

    A study is undertaken to develop a fuel cycle for a gas-cooled fast reactor (GCFR). The design goals are: highly efficient use of (depleted) uranium, application of Pu recycled from LWR discharge as fissile material, high temperature output and simplicity of design. The design focuses on spherical TRISO-like fuel elements, a homogeneous core at start-up, providing for easy fuel fabrication, and self-breeding capability with a flat k eff with burn-up. Nitride fuel ( 15 N > 99%) has been selected because of its favourable thermal conductivity, high heavy metal density and compatibility with PUREX reprocessing. Two core concepts have been studied: one with coated particles embedded inside fuel pebbles, and one with coated particles cooled directly by helium. The result is that a flat k eff can be achieved for a long period of time, using coated particles cooled directly, with a homogeneous core at, start-up, with a closed fuel cycle and a simple refuelling and reprocessing scheme. (author)

  1. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  2. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  3. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  4. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  5. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  6. Process for recovering uranium from wet process phosphoric acid (III)

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, R.S.; Carrington, O.F.

    1983-01-01

    Uranium is conventionally recovered from wet-process phosphoric acid by two liquid ion exchange steps using a mixture of mono- and disubstituted phenyl esters of orthophosphoric acid (OPPA). Efficiency of the process drops as the mono-OPPA is lost preferentially to the aqueous phase. This invention provides a process for the removal of the uranium process organics (OPPA and organic solvents) from the raffinate of the first liquid ion exchange step and their return to the circuit. The process organics are removed by a combination flotation and absorption step, which results in the recovery of the organics on beads of a hydrophobic styrene polymer

  7. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  8. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  9. Calculation of oxygen distribution in uranium-plutonium oxide fuels during irradiation (programme CODIF)

    International Nuclear Information System (INIS)

    Moreno, A.; Sari, C.

    1978-01-01

    Radial gradients of oxygen to metal ratio, O/M, in uranium-plutonium oxide fuel pins, during irradiation and at the end of life, have been calculated on the basis of solid-state thermal diffusion using measured values of the heat of transport. A detailed computer model which includes the calculation of temperature profiles and the variation of the average O/M ratio as a function of burn-up is given. Calculations show that oxygen profiles are affected by the isotopic composition of the fuel, by the temperature profiles and by fuel-cladding interactions

  10. World nuclear fuel supply and demand prospects until 2030. Analysis of demand change factor of natural uranium and uranium separation work and its influence

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    World nuclear power generation continues to spread gently until 2030 from the viewpoint of increase of the electricity demand around Asia, stable energy supply and anti-global warming measure, and the natural uranium demand is predicted to be increased from about 67 ktU in 2004 to 80-100 ktU in 2030. Steps of conversion/separation/reconversion/molding processing of the natural uranium are necessary for nuclear fuel, and the separation work of those is important because it needs high technology. There is a relation of the trade-off through the tale density (0.3% as a standard) between natural uranium and separation work demand. Therefore an analysis was performed of the influence on natural uranium and separation work demand by the change of the tale density and the influence on natural uranium supply and demand prospects by the recovery uranium use. In conclusion it was very likely that the supply and demand of separation work was tight at 0.2%-0.1% as for the cost of most suitable tale density which would appear earlier than natural uranium one and that the recovery uranium could become the backup of the natural uranium. (T. Tanaka)

  11. Radionuclide Inventories for DOE SNF Waste Stream and Uranium/Thorium Carbide Fuels

    International Nuclear Information System (INIS)

    K.L. Goluoglu

    2000-01-01

    The objective of this calculation is to generate radionuclide inventories for the Department of Energy (DOE) spent nuclear fuel (SNF) waste stream destined for disposal at the potential repository at Yucca Mountain. The scope of this calculation is limited to the calculation of two radionuclide inventories; one for all uranium/thorium carbide fuels in the waste stream and one for the entire waste stream. These inventories will provide input in future screening calculations to be performed by Performance Assessment to determine important radionuclides

  12. Neutronics and thermalhydraulics characteristics of the CANDU core fueled with slightly enriched uranium 0.9% U235

    International Nuclear Information System (INIS)

    Raica, V.; Sindile, A.

    1999-01-01

    The interest concerning the slightly enriched uranium (SEU) fuel cycle is due to the possibility to adapt (to convert) the current reactor design using natural uranium fuel to this cycle. Preliminary evaluations based on discharged fuel burnup estimates versus enrichment and on Canadian experience in fuel irradiation suggest that for a 0.93% U-235 enrichment no design modifications are required, not even for the fuel bundle. The purpose of this paper is to resume the results of the studies carried on in order to clarify this problem. The calculation methodology used in reactor physics and thermal-hydraulics analyses that were performed adapted and developed the AECL suggested methodology. In order to prove the possibility to use the SEU 0.93% without any design modification, all the main elements from the CANDU Reactor Physics Design Manual were studied. Also, some thermal-hydraulics analyses were performed to ensure that the operating and safety parameters were respected. The estimations sustain the assumption that the current reactor and fuel bundle design is compatible to the using of the SEU 0.93% fuel. (author)

  13. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  14. What's Mono?

    Science.gov (United States)

    ... mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you're absolutely correct. But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused by the Epstein-Barr virus (EBV), which is a type of herpes ...

  15. Study of internal exposure to uranium compounds in fuel fabrication plants in Brazil

    International Nuclear Information System (INIS)

    Santos, Maristela Souza

    2006-01-01

    The International Commission on Radiological Protection (ICRP) Publication 66 and Supporting Guidance 3) strongly recommends that specific information on lung retention parameters should be used in preference to default values wherever appropriate, for the derivation of effective doses and for bioassay interpretation of monitoring data. A group of 81 workers exposed to UO 2 at the fuel fabrication facility in Brazil was selected to evaluate the committed effective dose. The workers were monitored for determination of uranium content in the urinary and faecal excretion. The contribution of intakes by ingestion and inhalation were assessed on the basis of the ratios of urinary to fecal excretion. For the selected workers it was concluded that inhalation dominated intake. According to ICRP 66, uranium oxide is classified as insoluble Type S compound. The ICRP Supporting Guidance 3 and some recent studies have recommended specific lung retention parameters to UO 2 . The solubility parameters of the uranium oxide compound handled by the workers at the fuel fabrication facility in Brazil was evaluated on the basis of the ratios of urinary to fecal excretion. Excretion data were corrected for dietary intakes. This paper will discuss the application of lung retention parameters recommended by the ICRP models to these data and also the dependence of the effective committed dose on the lung retention parameters. It will also discuss the problems in the interpretation of monitoring results, when the worker is exposed to several uranium compounds of different solubilities. (author)

  16. Uranium: a basic evaluation

    International Nuclear Information System (INIS)

    Crull, A.W.

    1978-01-01

    All energy sources and technologies, including uranium and the nuclear industry, are needed to provide power. Public misunderstanding of the nature of uranium and how it works as a fuel may jeopardize nuclear energy as a major option. Basic chemical facts about uranium ore and uranium fuel technology are presented. Some of the major policy decisions that must be made include the enrichment, stockpiling, and pricing of uranium. Investigations and lawsuits pertaining to uranium markets are reviewed, and the point is made that oil companies will probably have to divest their non-oil energy activities. Recommendations for nuclear policies that have been made by the General Accounting Office are discussed briefly

  17. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  18. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, F.; Permana, S.

    2013-01-01

    Full-text: A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8 % HM. From the neutronic point of view, this design is in compliance with good performance. (author)

  19. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-01-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  20. Contribution to the study of nuclear fuel materials with a metallic uranium base; Contribution a l'etude des materiaux combustibles nucleaires a base d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-11-15

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the {gamma} phase. (author) [French] Dans un reacteur de puissance destine a fournir de l'energie thermique industriellement recuperable, la source de chaleur la plus economique reste constituee par de l'uranium metallique naturel. Or, le materiau combustible nucleaire, employe le plus souvent sous forme de barreaux de 20 a 40 mm de diametre, se trouve soumis a un ensemble de contraintes qui provoque des deformations irreversibles, le plus souvent incompatibles avec l'infrastructure du reacteur. Par consequent, le materiau combustible doit presenter a l'origine un certain nombre de qualites qu'il est necessaire de determiner. Aussi a-t-on d'abord etudie les caracteres technologiques propres a chacune des trois phases allotropiques de l'uranium-metal pur et leurs interactions sur la stabilisation du materiau constitue soit par de l'uranium coule, soit par de l'uranium traite en pile en phase {gamma}. (auteur)