WorldWideScience

Sample records for mono-tetrahydrofuran annonaceous acetogenins

  1. Divergence en Route to Nonclassical Annonaceous Acetogenins

    DEFF Research Database (Denmark)

    Strand, Daniel; Norrby, Per-Ola; Rein, Tobias

    2006-01-01

    Syntheses of the nonclassical annonaceous acetogenins, pyranicin, and pyragonicin from common latestage intermediates are presented. The construction of key elements relies on asymmetric HWE reactions, including the desymmetrization of a meso-dialdehyde and a parallel kinetic resolution of a race...

  2. Six cytotoxic annonaceous acetogenins from Annona squamosa seeds.

    Science.gov (United States)

    Chen, Yong; Chen, Jian-Wei; Wang, Yu; Xu, Sha-Sha; Li, Xiang

    2012-12-01

    Custard apple (Annona squamosa L.) is an edible tropical fruit, and its seeds had been used in south China as a folk medicine to treat "malignant sore" (cancer) and as an insecticide. Phytochemical investigation of the ethanol fraction of custard apple seeds led to the isolation of six new annonaceous acetogenins: annosquacins A-D (1-4), annosquatin A (5) and annosquatin B (6). Their structures were elucidated by spectroscopic analysis. Compounds 1-4 are adjacent bistetrahydrofuran annonaceous acetogenins. Compounds 5 and 6 are non-adjacent bistetrahydrofuran annonaceous acetogenins and the first examples in which the tetrahydrofuran ring system is located between C-9 and C-20. The absolute configurations of 1-6 were defined by the application of the Mosher method. Compounds 1-6 exhibited potent cytotoxic activity in vitro against five human tumour cell lines. Compounds 5 and 6 showed a high selectivity toward the MCF-7 and A-549 cell line respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism

    OpenAIRE

    Han, Bing; Wang, Tong-Dan; Shen, Shao-Ming; Yu, Yun; Mao, Chan; Yao, Zhu-Jun; Wang, Li-Shun

    2015-01-01

    Background Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. Methods We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and rel...

  4. Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism.

    Science.gov (United States)

    Han, Bing; Wang, Tong-Dan; Shen, Shao-Ming; Yu, Yun; Mao, Chan; Yao, Zhu-Jun; Wang, Li-Shun

    2015-03-18

    Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and related proteins were characterized by western blot. Immunofluorescence and subcellular fractionation were used to evaluate AIF nuclear translocation. Reactive oxygen species were assessed by using redox-sensitive dye DCFDA. AA005 induces a unique type of cell death in colorectal adenocarcinoma cells, characterized by lack of caspase-3 activation or apoptotic body formation, sensitivity to poly (ADP-ribose) polymerase inhibitor Olaparib (AZD2281) but not pan-caspase inhibitor Z-VAD.fmk, and dependence on apoptosis-inducing factor (AIF). AA005 treatment also reduced expression of mitochondrial Complex I components, and leads to accumulation of intracellular reactive oxygen species (ROS) at the early stage. Blocking ROS formation significantly suppresses AA005-induced cell death in SW620 cells. Moreover, blocking activation of RIP-1 by necroptosis inhibitor necrotatin-1 inhibits AIF translocation and partially suppresses AA005-induced cell death in SW620 cells demonstrating that RIP-1 protein may be essential for cell death. AA005 may trigger the cell death via mediated by AIF through caspase-3 independent pathway. Our work provided new mechanisms for AA005-induced cancer cell death and novel clues for cancer treatment via AIF dependent cell death.

  5. Synthesis of dansyl-labeled probe of thiophene analogue of annonaceous acetogenins for visualization of cell distribution and growth inhibitory activity toward human cancer cell lines.

    Science.gov (United States)

    Kojima, Naoto; Suga, Yuki; Matsumoto, Takuya; Tanaka, Tetsuaki; Akatsuka, Akinobu; Yamori, Takao; Dan, Shingo; Iwasaki, Hiroki; Yamashita, Masayuki

    2015-03-15

    The convergent synthesis of the dansyl-labeled probe of the thiophene-3-carboxamide analogue of annonaceous acetogenins, which shows potent antitumor activity, was accomplished by two asymmetric alkynylations of the 2,5-diformyl THF equivalent with an alkyne having a thiophene moiety and another alkyne tagged with a dansyl group. The growth inhibitory profiles toward 39 human cancer cell lines revealed that the probe retained the biological function of its mother compound, and would be useful for studying cellular activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Alkaloids and acetogenins in Annonaceae development: biological considerations

    Directory of Open Access Journals (Sweden)

    Alma Rosa González-Esquinca

    2014-01-01

    Full Text Available Chemical studies of the plant family Annonaceae have intensified in the last several decades due to the discovery of annonaceous molecules with medicinal potential (e.g., benzylisoquinoline alkaloids and acetogenins. Approximately 500 alkaloids have been identified in 138 Annonaceae species in 43 genera. In addition, until 2004, 593 annonaceous acetogenins (ACGs had been identified, from 51 species in 13 genera.This suggests that plants from this family allocate important resources to the biosynthesis of these compounds. Despite the diversity of these molecules, their biological roles, including their physiological and/or ecological functions, are not well understood. In this study, it was provided new data describing the variety and distribution of certain alkaloids and ACGs in annonaceous plants in distinct stages of development. The potential relationships among some of these compounds and the seasonally climatic changes occurring in the plant habitat are also discussed. These data will improve our understanding of the secondary metabolism of these pharmacologically important molecules and their expression patterns during development, which will help to determine the optimal growth conditions and harvest times for their production.

  7. Annona muricata (Annonaceae: A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2015-07-01

    Full Text Available Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.

  8. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities.

    Science.gov (United States)

    Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Nikzad, Sonia; Mohan, Gokula; Ali, Hapipah Mohd; Kadir, Habsah Abdul

    2015-07-10

    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.

  9. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Circumvention of tumor multidrug resistance by a new annonaceous acetogenin: atemoyacin-B.

    Science.gov (United States)

    Fu, L W; Pan, Q C; Liang, Y J; Huang, H B

    1999-05-01

    To explore the effect of atemoyacin-B (Ate) on overcoming multidrug resistance (MDR). Bullatacin (Bul) was used as a positive control. Cytotoxic effects of Bul and Ate were studied with cell culture of human MDR breast adenocarcinoma cells, MCF-7/Dox and human KBv200 cells, and their parental sensitive cell lines MCF-7 and KB. Cytotoxicity was determined by tetrazolium (MTT) assay. The function of P-glycoprotein (P-gp) was examined by Fura 2-AM assay. Cellular accumulation of doxorubicin (Dox) was determined by fluorescence spectrophotometry. Apoptosis was measured by flow cytometry. IC50 of Ate for MCF-7/Dox, MCF-7, KBv200, and KB cells were 122, 120, 1.34, and 1.27 nmol.L-1, respectively. IC50 of Bul for MCF-7/Dox, MCF-7, KBv200, and KB cells were 0.60, 0.59, 0.04, and 0.04 nmol.L-1, respectively. The cytotoxicities of Bul and Ate to MDR cells were similar to those to parental sensitive cells. Bul and Ate markedly increased cellular Fura-2 and Dox accumulation in MCF-7/Dox cells, but not in MCF-7 cells. The rates of apoptosis in MDR cells were similar to those in sensitive cells induced by Ate. There was no cross-resistance of P-gp positive MCF-7/Dox and KBv200 cell lines to Bul and Ate as compared with their sensitive P-gp negative MCF-7 and KB cell lines. The mechanism of the circumvention of MDR was associated with the decrease of P-gp function and the increase of cellular drug accumulation in MDR cells.

  11. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes.

    Science.gov (United States)

    Salinas-Salazar, Carmen; Hernández-Brenes, Carmen; Rodríguez-Sánchez, Dariana Graciela; Castillo, Elena Cristina; Navarro-Silva, Jesús Manuel; Pacheco, Adriana

    2017-01-01

    High standards regarding Listeria monocytogenes control and consumer demands for food products without synthetic additives represent a challenge to food industry. We determined the antilisterial properties of an enriched acetogenin extract (EAE) from avocado seed, compared it to two commercial antimicrobials (one enriched in avocado acetogenins), and tested purified molecules. Acetogenin composition in pulp and seed of Hass avocado was quantified. EAE were obtained by two sequential centrifuge partition chromatography separations and molecules purified by preparative chromatography and quantified by HPLC-MS-TOF and HPLC-PDA. Avocado seed extracts which are the following two: 1) EAE and 2) the commercially available antimicrobial Avosafe®, presented similar inhibition zones and chemical profiles. Minimum inhibitory concentration (MIC) values of extracts and two isolated acetogenins varied between 7.8 and 15.6 mg/L, were effective at 37 and 4 °C, and showed a bactericidal effect probably caused by increased membrane permeability and lytic effects, evidenced by flow cytometry at 10 and 100× MIC. Activity was comparable to Mirenat®. Most potent acetogenins were Persenone C (5) and A (6), and AcO-avocadenyne (1), the latter exclusively present in seed. Common features of bioactive molecules were the acetyl moiety and multiple unsaturations (2 to 3) in the aliphatic chain, some persenones also featured a trans-enone group. Seeds contained 1.6 times higher levels of acetogenins than pulp (5048.1 ± 575.5 and 3107.0 ± 207.2 mg/kg fresh weight, respectively), and total content in pulp was 199 to 398 times higher than MIC values. Therefore, acetogenin levels potentially consumed by humans are higher than inhibitory concentrations. Results document properties of avocado seed acetogenins as natural antilisterial food additives. © 2016 Institute of Food Technologists®.

  12. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed.

    Science.gov (United States)

    Rodríguez-López, Carlos Eduardo; Hernández-Brenes, Carmen; Treviño, Víctor; Díaz de la Garza, Rocío I

    2017-09-29

    Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are

  13. Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana).

    Science.gov (United States)

    Rodríguez-Sánchez, Dariana; Silva-Platas, Christian; Rojo, Rocío P; García, Noemí; Cisneros-Zevallos, Luis; García-Rivas, Gerardo; Hernández-Brenes, Carmen

    2013-12-30

    Avocado fruit is a rich source of health-related lipophilic phytochemicals such as monounsaturated fatty acids, tocopherols, carotenes, acetogenins and sterols. However, limited information is available on the contribution of specific phytochemicals to the overall antioxidant capacity (AOC) of the fruit. Centrifugal partition chromatography was used as fractionation tool, guided by an in vitro chemical assay of oxygen radical absorbance capacity (ORAC). Subsequent experiments focused on isolation and characterization of the chemical nature of the main contributors to lipophilic AOC of avocado pulp. ORAC values obtained for acetogenins were contrasted with results from an isolated kidney mitochondria membrane lipid peroxidation bioassay. The present study established that lipophilic AOC of the pulp was significantly higher than its hydrophilic AOC. Our results confirmed the presence of acetogenins in the fractions with highest lipophilic AOC, and for the first time linked them as contributors to lipophilic-ORAC values. Further HPLC-PDA/MS-TOF analysis led to structural elucidation of two novel acetogenins, not previously reported as present in avocado pulp, along with five already known related-compounds. Antioxidant properties observed for avocado pulp acetogenins by the ORAC assay suggested that, in the presence of an emulsifying agent, acetogenins could serve as novel lipophilic antioxidants in a food matrix. Results from isolated mitochondria lipid peroxidation bioassay, indicated that L-ORAC values which may have relevance for food matrix applications, should not be interpreted to have a direct relevance in health-related claims, compounds need to be evaluated considering the complexity of biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Sesquiterpene and Acetogenin Derivatives from the Marine Red Alga Laurencia okamurai

    Directory of Open Access Journals (Sweden)

    Bin-Gui Wang

    2012-12-01

    Full Text Available In addition to 13 known compounds, four new bisabolane sesquiterpenes, okamurenes A–D (1–4, a new chamigrane derivative, okamurene E (5, and a new C12-acetogenin, okamuragenin (6, were isolated from the marine red alga Laurencia okamurai. The structures of these compounds were determined through detailed spectroscopic analyses. Of these, okamurenes A and B (1 and 2 are the first examples of bromobisabolane sesquiterpenes possessing a phenyl moiety among Laurencia-derived sesquiterpenes, while okamuragenin (6 was the first acetogenin aldehyde possessing a C12-carbon skeleton. Each of the isolated compounds was evaluated for the brine shrimp (Artemia salina lethal assay and 7-hydroxylaurene displayed potent lethality with LD50 1.8 μM.

  15. Isolaurenidificin and Bromlaurenidificin, Two New C15-Acetogenins from the Red Alga Laurencia obtusa

    Directory of Open Access Journals (Sweden)

    Nahed O. Bawakid

    2017-05-01

    Full Text Available Chromatographic fractionation of the CH2Cl2/MeOH extract of the Red Sea red alga Laurencia obtusa gave two new hexahydrofuro[3,2-b]furan-based C15-acetogenins, namely, isolaurenidificin (1 and bromlaurenidificin (2. The chemical structures were elucidated based on extensive analyses of their spectral data. Compounds 1 and 2 showed no toxicity (LC50 > 12 mM using Artemia salina as test organism. Both compounds showed weak cytotoxicity against A549, HepG-2, HCT116, MCF-7, and PC-3 cells, however, they exhibited a relatively potent cytotoxic activity against peripheral blood neutrophils. This can be attributed partly to induction of apoptosis.

  16. Halogenated Terpenes and a C15-Acetogenin from the Marine Red Alga Laurencia saitoi

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Li

    2008-11-01

    Full Text Available Seven parguerane diterpenes: 15-bromo-2,7,19-triacetoxyparguer-9(11-en-16-ol (1, 15-bromo-2,7,16,19-tetraacetoxyparguer-9(11-ene (2, 15-bromo-2,19-diacetoxyparguer-9(11-en-7,16-diol (3, 15-bromo-2,16,19-triacetoxyparguer-9(11-en-7-ol (4, 15-bromo-2,16-diacetoxyparguer-9(11-en-7-ol (5, 15-bromoparguer-9(11-en-16-ol (6, 15-bromoparguer-7-en-16-ol (7, two polyether triterpenes: thyrsiferol (8 and thyrsiferyl 23-acetate (9, and one C15-acetogenin, neolaurallene (10, were isolated from a sample of marine red alga Laurencia saitoi collected off the coast of Yantai. Their structures were established by detailed NMR spectroscopic analysis and comparison with literature data.

  17. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, Steven M. [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (United States); Han, Chunhua [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Pan, Li; Douglas Kinghorn, A. [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Ding, Haiming, E-mail: ding.29@osu.edu [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not

  18. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    International Nuclear Information System (INIS)

    D'Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Douglas Kinghorn, A.; Ding, Haiming

    2011-01-01

    Highlights: → The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). → Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). → Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. → The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. → Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF

  19. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Science.gov (United States)

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  20. Fulltext PDF

    Indian Academy of Sciences (India)

    System5

    Flowers are solitary, leaf-opposed and sometimes in fascicles. Petals are greenish, 3-6, and often appear like sepals. Fruit is green, resembling that of a custard apple. Seeds are enveloped by fleshy pulp which is sweet when ripe and is edible. The tree is often cultivated. Fruit is rich in annonaceous acetogenins which have ...

  1. New acetogenin peroxides from the Indian sponge Acarnus bicladotylota

    Digital Repository Service at National Institute of Oceanography (India)

    Fontana, A.; d'Ippolito, G.; DeSouza, L.; Mollo, E.; Parameswaran, P.S.; Cimino, G.

    ) 12 position 1 H 13 C 1 H 13 C 1 170.5, s 170.5, s 2 2.52, dd, 16.1 and 7.7 Hz 38.3, t 2.52, dd, 16.0 and 7.7 Hz 38.3, t 2.39, dd, 16.1 and 5.8 Hz 2.39, dd, 16.0 and 5.8 Hz 3 4.49, m 76.8, d 4.49, m 76.8, d 4 1.78, m 25.1, t 1.73, m 25.1, t 1..., 1.78 and 1.65; H 2 -5, 1.84 and 1.62) in the COSY spectrum. The 13 C NMR data, moreover, showed the presence of an ester function ( 170.5, C-1) and two oxygen- bearing carbons at 76.8 (C-3) and 102.3 (C-6). This latter signal, together...

  2. Emerging therapeutic potential of graviola and its constituents in cancers.

    Science.gov (United States)

    Qazi, Asif Khurshid; Siddiqui, Jawed A; Jahan, Rahat; Chaudhary, Sanjib; Walker, Larry A; Sayed, Zafar; Jones, Dwight T; Batra, Surinder K; Macha, Muzafar A

    2018-04-05

    Cancer remains a leading cause of death in the USA and around the world. Although the current synthetic inhibitors used in targeted therapies have improved patient prognosis, toxicity and development of resistance to these agents remain a challenge. Plant-derived natural products and their derivatives have historically been used to treat various diseases, including cancer. Several leading chemotherapeutic agents are directly or indirectly based on botanical natural products. Beyond these important drugs, however, a number of crude herbal or botanical preparations have also shown promising utility for cancer and other disorders. One such natural resource is derived from certain plants of the family Annonaceae, which are widely distributed in tropical and subtropical regions. Among the best known of these is Annona muricata, also known as soursop, graviola or guanabana. Extracts from the fruit, bark, seeds, roots and leaves of graviola, along with several other Annonaceous species, have been extensively investigated for anticancer, anti-inflammatory and antioxidant properties. Phytochemical studies have identified the acetogenins, a class of bioactive polyketide-derived constituents, from the extracts of Annonaceous species, and dozens of these compounds are present in different parts of graviola. This review summarizes current literature on the therapeutic potential and molecular mechanism of these constituents from A.muricata against cancer and many non-malignant diseases. Based on available data, there is good evidence that these long-used plants could have both chemopreventive and therapeutic potential. Appropriate attention to safety studies will be important to assess their effectiveness on various diseases caused or promoted by inflammation.

  3. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Fiaz, Muhammad; Martínez, Luis Carlos; Costa, Marilza da Silva; Cossolin, Jamile Fernanda Silva; Plata-Rueda, Angelica; Gonçalves, Wagner Gonzaga; Sant'Ana, Antônio Euzébio Goulart; Zanuncio, José Cola; Serrão, José Eduardo

    2018-07-30

    Annonaceous acetogenins (Annona squamosa Linnaeus) comprises of a series of natural products which are extracted from Annonaceae species, squamocin proved to be highly efficient among those agents. Squamocin is mostly referred as a lethal agent for midgut cells of different insects, with toxic effects when tested against larva of some insects. In present study, LC 50 and LC 90 of squamocin for A. gemmatalis Hübner (Lepidoptera: Noctuidae) were calculated using probit analysis. Morphological changes in midgut cells were analyzed under light, fluorescence and transmission electron microscopes when larvae were treated with LC 50 and LC 90 of squamocin for 24, 48 and 72 h. Results revealed that the maximum damage to midgut cells was found under LC 90 where it showed digestive cells with enlarged basal labyrinth, highly vacuolated cytoplasm, damaged apical surface, cell protrusions to the gut lumen, autophagy and cell death. The midgut goblet cells showed a strong disorganization of their microvilli. Likewise, in insects treated with squamocin, mitochondria were not marked with Mitotracker fluorescent probe, suggesting some molecular damage in these organelles, which was reinforced by decrease in the respiration rate in these insects. These results demonstrate that squamocin has potential to induce enough morphological changes in midgut through epithelial cell damage in A. gemmatalis. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Characterization of interactions of eggPC lipid structures with different biomolecules.

    Science.gov (United States)

    Corrales Chahar, F; Díaz, S B; Ben Altabef, A; Gervasi, C; Alvarez, P E

    2018-01-01

    In this paper we study the interactions of two biomolecules (ascorbic acid and Annonacin) with a bilayer lipid membrane. Egg yolk phosphatidylcholine (eggPC) liposomes (in crystalline liquid state) were prepared in solutions of ascorbic acid (AA) at different concentration levels. On the other hand, liposomes were doped with Annonacin (Ann), a mono-tetrahydrofuran acetogenin (ACG), which is an effective citotoxic substance. While AA pharmacologic effect and action mechanisms are widely known, those of Ann's are only very recently being studied. Both Fourier Transformed Infrared (FTIR) and Raman spectroscopic techniques were used to study the participation of the main functional groups of the lipid bilayer involved in the membrane-solution interaction. The obtained spectra were comparatively analyzed, studying the spectral bands corresponding to both the hydrophobic and the hydrophilic regions in the lipid bilayer. Electrochemical experiments namely; impedance spectroscopy (EIS) and cyclic voltamperometry (CV) were used as the main characterization techniques to analyse stability and structural changes of a model system of supported EggPC bilayer in connection with its interactions with AA and Ann. At high molar ratios of AA, there is dehydration in both populations of the carbonyl group of the polar head of the lipid. On the other hand, Ann promotes the formation of hydrogen bonds with the carbonyl groups. No interaction between AA and phosphate groups is observed at low and intermediate molar ratios. Ann is expected to be able to induce the dehydration of the phosphate groups without the subsequent formation of H bonds with them. According to the electrochemical analysis, the interaction of AA with the supported lipid membrane does not alter its dielectric properties. This fact can be related to the conservation of structured water of the phosphate groups in the polar heads of the lipid. On the other hand, the incorporation of Ann into the lipid membrane generates

  5. Antitumor activity of Annona squamosa seed oil.

    Science.gov (United States)

    Chen, Yong; Chen, Yayun; Shi, Yeye; Ma, Chengyao; Wang, Xunan; Li, Yue; Miao, Yunjie; Chen, Jianwei; Li, Xiang

    2016-12-04

    Custard apple (Annona squamosa Linn.) is an edible tropical fruit, and its seeds have been used to treat "malignant sore" (cancer) and other usage as insecticide. A comparison of extraction processes, chemical composition analysis and antitumor activity of A. squamosa seed oil (ASO) were investigated. The optimal extraction parameters of ASO were established by comparing percolation, soxhlet, ultrasonic and SFE-CO 2 extraction methods. The chemical composition of fatty acid and content of total annonaceous acetogenins (ACGs) of ASO was investigated by GC-MS and colorimetric assay, and anti-tumor activity of ASO was tested using H 22 xenografts bearing mice. The optimal extraction parameters of ASO were obtained as follows: using soxhlet extraction method with extraction solvent of petroleum ether, temperature of 80°C, and extraction time of 90min. Under these conditions, the yield of ASO was 22.65%. GC-MS analysis results showed that the main chemical compositions of fatty acid of ASO were palmitic acid (9.92%), linoleic acid (20.49%), oleic acid (56.50%) and stearic acid (9.14%). The total ACGs content in ASO was 41.00mg/g. ASO inhibited the growth of H 22 tumor cells in mice with a maximum inhibitory rate of 53.54% by oral administration. Furthermore, it was found that ASO exerted an antitumor effect via decreasing interleukin-6 (IL-6), janus kinase (Jak) and phosphorylated signal transducers and activators of transcription (p-Stat3) expression. The results demonstrated that ASO suppressed the H 22 solid tumor development may due to its main chemical constituents unsaturated fatty acid and ACGs via IL-6/Jak/Stat3 pathway. ASO may be a potential candidate for the treatment of cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Heronapyrrole D: A case of co-inspiration of natural product biosynthesis, total synthesis and biodiscovery

    Directory of Open Access Journals (Sweden)

    Jens Schmidt

    2014-05-01

    Full Text Available The heronapyrroles A–C have first been isolated from a marine-derived Streptomyces sp. (CMB-0423 in 2010. Structurally, these natural products feature an unusual nitropyrrole system to which a partially oxidized farnesyl chain is attached. The varying degree of oxidation of the sesquiterpenyl subunit in heronapyrroles A–C provoked the hypothesis that there might exist other hitherto unidentified metabolites. On biosynthetic grounds a mono-tetrahydrofuran-diol named heronapyrrole D appeared a possible candidate. We here describe a short asymmetric synthesis of heronapyrrole D, its detection in cultivations of CMB-0423 and finally the evaluation of its antibacterial activity. We thus demonstrate that biosynthetic considerations and the joint effort of synthetic and natural product chemists can result in the identification of new members of a rare class of natural products.

  7. Antibacterial Compounds from Red Seaweeds (Rhodophyta)

    OpenAIRE

    Noer Kasanah; Triyanto Triyanto; Drajad Sarwo Seto; Windi Amelia; Alim Isnansetyo

    2015-01-01

    Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta) are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported...

  8. Isolation and chemical identification of lipid derivatives from avocado (Persea americana) pulp with antiplatelet and antithrombotic activities.

    Science.gov (United States)

    Rodriguez-Sanchez, Dariana Graciela; Flores-García, Mirthala; Silva-Platas, Christian; Rizzo, Sheryl; Torre-Amione, Guillermo; De la Peña-Diaz, Aurora; Hernández-Brenes, Carmen; García-Rivas, Gerardo

    2015-01-01

    Platelets play a pivotal role in physiological hemostasis. However, in coronary arteries damaged by atherosclerosis, enhanced platelet aggregation, with subsequent thrombus formation, is a precipitating factor in acute ischemic events. Avocado pulp (Persea americana) is a good source of bioactive compounds, and its inclusion in the diet as a source of fatty acid has been related to reduced platelet aggregability. Nevertheless, constituents of avocado pulp with antiplatelet activity remain unknown. The present study aims to characterize the chemical nature of avocado constituents with inhibitory effects on platelet aggregation. Centrifugal partition chromatography (CPC) was used as a fractionation and purification tool, guided by an in vitro adenosine diphosphate (ADP), arachidonic acid or collagen-platelet aggregation assay. Antiplatelet activity was initially linked to seven acetogenins that were further purified, and their dose-dependent effects in the presence of various agonists were contrasted. This process led to the identification of Persenone-C (3) as the most potent antiplatelet acetogenin (IC₅₀=3.4 mM) among the evaluated compounds. In vivo evaluations with Persenone A (4) demonstrated potential protective effects against arterial thrombosis (25 mg kg⁻¹ of body weight), as coagulation times increased (2-fold with respect to the vehicle) and thrombus formation was attenuated (71% versus vehicle). From these results, avocado may be referred to as a functional food containing acetogenin compounds that inhibit platelet aggregation with a potential preventive effect on thrombus formation, such as those that occur in ischaemic diseases.

  9. Antibacterial Compounds from Red Seaweeds (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Noer Kasanah

    2015-07-01

    Full Text Available Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported such as bromophycolides and neurymenolides. In summary, red seaweeds are potential sources for antibacterial agents and can serve as lead in synthesis of new natural medicines.

  10. Potential of Annona muricata L. seed oil: phytochemical and nutritional characterization associated with non-toxicity

    Directory of Open Access Journals (Sweden)

    L. C. Pinto

    2018-03-01

    Full Text Available The aim of this study was to evaluate the nutritional quality, phenolic compounds, fatty acid and antioxidant activity in vitro as well as a toxicological screening of A. muricata seed oil in vivo. The chemical composition and quantification of phenolic compounds were determined by the Adolfo Lutz Institute normative. The antioxidant activity was evaluated by DPPH, FRAP and ABTS methods. The oil was extracted by chloroform/ methanol and precipitated crude (AmPtO and supernatant oils (AmSO were obtained. The fatty acid profile was evaluated by gas chromatography and total compounds by HPLC-DAD. BALB/C mice received AmPtO and AmSO (0.5 and 1.0mL·Kg-1 for 14 days. Toxicity parameters were assessed. The major fatty acids in the oil were oleic (39.2% and linoleic (33%. HPLC-DAD suggested the presence of acetogenins (annonacin: 595 [M-H]-, with a greater presence in AmPtO. The AmPtO group showed toxicity, which may be related to the acetogenin content in AmPtO. The AmSO group showed no toxicity and this oil has potential for food or medicinal use.

  11. Plants of the Annonaceae traditionally used as antimalarials: a review

    Directory of Open Access Journals (Sweden)

    Gina Frausin

    2014-01-01

    Full Text Available Species of the Annonaceae family are used all over the tropics in traditional medicine in tropical regions for the treatment of malaria and other illnesses. Phytochemical studies of this family have revealed chemical components which could offer new alternatives for the treatment and control of malaria. Searches in scientific reference sites (SciFinder Scholar, Scielo, PubMed, ScienceDirect and ISI Web of Science and a bibliographic literature search for species of Annonaceae used traditionally to treat malaria and fever were carried out. This family contains 2,100 species in 123 genera. We encountered 113 articles reporting medicinal use of one or more species of this family including 63 species in 27 genera with uses as antimalarials and febrifuges. Even though the same species of Annonaceae are used by diverse ethnic groups, different plant parts are often chosen for applications, and diverse methods of preparation and treatment are used. The ethanol extracts of Polyalthia debilis and Xylopia aromatica proved to be quite active against Plasmodium falciparum in vitro (median inhibition concentration, IC50 < 1.5 µg/mL. Intraperitoneal injection of Annickia chlorantha aqueous extracts (cited as Enantia chlorantha cleared chloroquine-resistant Plasmodium yoelii nigeriensis from the blood of mice in a dose-dependant manner. More phytochemical profiles of Annonaceous species are required; especially information on the more commonly distributed antimalarial compounds in this family.

  12. Synergistic Cytotoxicity Effect by Combination Treatment of Polyketide Derivatives from Annona muricata Linn Leaves and Doxorubicin as Potential Anticancer Material on Raji Cell Line

    Science.gov (United States)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.

    2018-03-01

    Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.

  13. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    Science.gov (United States)

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.

  14. Antimicrobial activity of Anonna mucosa (Jacq. grown in vivo and obtained by in vitroculture

    Directory of Open Access Journals (Sweden)

    Thiago José de Souza Barboza

    2015-09-01

    Full Text Available Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances. Annona mucosa has produced substances such as acetogenins and alkaloids that exhibit antimicrobial activities. The widespread use of antibiotics has led to an increase in multidrug-resistant bacteria, which represents a serious risk of infection. In view of this problem, the aim of this work was to evaluate the antibacterial potential of extracts of A. mucosa obtained by in vitro techniques and also cultured under in vivo conditions. Segments from seedlings were inoculated onto different culture media containing the auxin picloram and the cytokinin kinetin at different concentrations. The calluses obtained were used to produce cell suspension cultures. The materials were subjected to methanol extraction and subsequent fractionation in hexane and dichloromethane. The antimicrobial activity against 20 strains of clinical relevance was evaluated by the macrodilution method at minimum inhibitory and minimum bactericidal concentrations. The extracts showed selective antimicrobial activity, inhibiting the growth of Streptococcus pyogenes and Bacillus thuringiensis at different concentrations. The plant tissue culture methods produced plant materials with antibacterial properties, as well as in vivo grown plants. The antibacterial activity of material obtained through biotechnological procedures of A. mucosa is reported here for the first time.

  15. Toxicology of a Peruvian botanical remedy to support healthy liver function.

    Science.gov (United States)

    Semple, Hugh A; Sloley, B Duff; Cabanillas, José; Chiu, Andrea; Aung, Steven K H; Green, Francis H Y

    2016-06-01

    The purpose of these studies was to determine the safety of a botanical treatment for supporting healthy liver function developed in Peru. The formulation, A4+, contains extracts of Curcuma longa L. rhizome (A4R), Cordia lutea Lam. flower (A4F) and Annona muricata L. leaf (A4L). The tests were used to support an application for a non-traditional Natural Health Product Licence from the Natural Health Product Directorate of Health Canada and future clinical trials. Besides reviewing the scientific and clinical information from Peru on the ingredients and conducting an initial Ames test for mutagenicity, we analysed A4+ for its chemical profile and tested genotoxicity (micronucleus test) and general toxicity (28-day repeated dose). A4+ and extracts from the three plants provided distinctive chemical fingerprints. A4L contained acetogenins, requiring a second chromatographic method to produce a specific fingerprint. The Ames test proved positive at the highest concentration (5,000 μg/mL) but A4+ showed no evidence of genotoxicity in the more specific mouse micronucleus test. The 28-day repeated dose (general toxicity) study in rats showed no toxicity at 2,000 mg/kg. We conclude that under the conditions of these studies, A4+ shows no evidence of toxicity at the levels indicated. A no observed adverse effect level (NOAEL) of 2,000 mg/kg was assigned.

  16. Efek antigenotoksik ekstrak etanolik daun sirsak (Annona muricata Linn terhadap frekuensi mikronukleus mukosa bukal tikus Sprague Dawley

    Directory of Open Access Journals (Sweden)

    Tyas Prihatiningsih

    2017-10-01

    Full Text Available The effect of soursop leaves (Annona uricata linn ethanolic extract on micronucleus frequency  of buccal mucosa epithelium of Sprague dawley rats. Polycyclic aromatic hydrocarbons is one of the largest  groups of carcinogen in environment. 7,12-Dimetillbez (α antransena is a compound of PAH class that has genotoxic carcinogen potency. One of the most frequently applied genotoxicity tests is micronucleus test. Soursop is a plant that can grow well in Indonesia. Its leaves contain avonoid and acetogenin assumed to have potential chemopreventive and anticancer activities. The aim of this study was to assess the antigenotoxic effect soursop leaves ethanolic extraction the micronucleus frequency of DMBA-induced buccal mucosa of rat. This research was conducted on 24 male Sprague Dawley rats aged 5 weeks and divided into six groups. Carcinogenesis on the lingual dorsum of group I-III were induced by DMBA topically 3 times a week for 16 weeks, group II and III were not only induced by carcinogenesis, but also were given soursop leaves ethanolic extract of 100 and 200 mg/kg body weight for 18 weeks, group IV was given soursop leaves ethanolic extract 200 mg/kg body weight, group V was given DMSO 1% and group VI was given no treatment. After 18th week, buccal mucosa swab for micronucleus test was conducted and stained with Feulgen-Rossenbeck method. The number of micronucleus is calculated under a light microscope, data were analized using using one-way ANOVA followed by Tukey HSD. The result showed that the average of buccal micronucleus frequency of group II (13 ± 0.82 and group III (12 ± 0.96 were decrease signicantly (p<0,05 than group I (24 ± 1.71. From the experiment,   it is concluded that the soursop leaves ethanolic extract has antigenotoxic effect shown by decreasing of the buccal micronucleus frequency of rat. ABSTRAK Polycyclic aromatic hydrocarbon atau PAH merupakan salah satu kelompok karsinogen terbesar di lingkungan. 7

  17. Annickia affinis and A. chlorantha (Enantia chlorantha)--A review of two closely related medicinal plants from tropical Africa.

    Science.gov (United States)

    Olivier, D K; Van Vuuren, S F; Moteetee, A N

    2015-12-24

    Annickia affinis (Exell) Versteegh & Sosef, closely related to A. chlorantha Setten & P.J.Maas (both species also referred to as Enantia chlorantha Oliv.), from the Annonaceae family, are multi-purpose medicinal plants used widely across tropical Africa. The two Annickia species are morphologically distinct from each other and have different distribution patterns, but are frequently confused. Furthermore, the name Enantia chlorantha is an illegitimate name, but is still used today. A review of the literature was undertaken and an in-depth analysis of previous research and future prospectives are considered. While a myriad of publications cite the species "Enantia chlorantha", this is not the case for A. affinis and A. chlorantha, and no reviews are available for any of the species to date. Consequently, a summary of their ethnobotany, phytochemistry and biological properties is presented here (for the period 1933 - November 2014) in order to substantiate their traditional importance as medicines for rural people in Africa. To this effect, these species seem to be the preferred traditional treatments for malaria in tropical Africa, an area suffering heavily under the malaria pandemic. Their chemical composition is dominated particularly by various isoquinoline alkaloids, as well as by acetogenins and sesquiterpenes, which have been isolated from the bark and leaves. All three of these classes of compounds have been reported to exhibit noteworthy biological activity. Due to their widespread use, especially of the bark, these species have already been categorized as threatened with extinction. Consequently this study further aims to identify areas where more research needs to be conducted involving these important species, and also to suggest possible means of increasing the biological activities of their extracts as a way to conserve the species. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The Laurencia Paradox: An Endless Source of Chemodiversity.

    Science.gov (United States)

    Harizani, Maria; Ioannou, Efstathia; Roussis, Vassilios

    .The chapter addresses: (1) the "Laurencia complex", the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.

  19. Antimycobacterial potency and cytotoxicity study of three medicinal plants.

    Science.gov (United States)

    Tsouh Fokou, Patrick Valere; Appiah-Opong, Regina; Yeboah-Manu, Dorothy; Kissi-Twum, Abena Adomah; Yamthe, Lauve Rachel Tchokouaha; Mokale Kognou, Aristide Laurel; Addo, Phyllis; Boyom, Fabrice Fekam; Nyarko, Alexander Kwadwo

    2016-12-01

    Mycobacterial infections including tuberculosis, leprosy, and buruli ulcer are among the most prevalent, debilitating, and deadly tropical diseases, especially in Sub-Saharan Africa. The development of drug resistance to the currently available drugs and the poor compliance emphasize the need for new chemotherapeutic agents. This study was designed to evaluate the in vitro activity of Cleistopholis patens, Annona reticulata, and Greenwayodendron suaveolens against Mycobacterium smegmatis. The safety on normal liver cells was also assessed. The crude extracts, fractions, and subfractions were tested against M. smegmatis and for cell cytotoxicity on WRL-68, normal human hepatocyte using microdilution resazurin-based assays. The phytochemical screening was performed using standard methods. Most of the extracts, fractions, and subfractions inhibited the growth of M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 6.25μg/mL to 125μg/mL. The subfractions P12 and P29 from G. suaveolens twig were more potent with MIC values of 6.25μg/mL and 25μg/mL, respectively. Fruit crude extract and root CH 2 Cl 2 fraction from A. reticulata also showed activity with MIC values of 50μg/mL and 25μg/mL, respectively. Crude extracts from the twig and stem bark of C. patens displayed inhibition at MIC values of 125μg/mL and 100μg/mL, respectively. Majority of active extracts showed no cell cytotoxicity, except the extract from C. patens with IC 50 ranging from 41.40μg/mL to 93.78μg/mL. The chemical investigation of the promising extracts revealed the presence of phenols, alkaloids, glycosides, triterpenes, and acetogenins. The results achieved from this preliminary antimycobacterial drug discovery study supported the traditional claims of C. patens, A. reticulata, and G. suaveolens in the treatment of mycobacterial infections. Meanwhile, further fractionation is required to characterize the active ingredients. Copyright © 2016.

  20. Comparative analysis of the corps en cerise in several species of Laurencia (Ceramiales, Rhodophyta from the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Mutue T. Fujii

    2012-08-01

    Full Text Available Different species of Laurencia have proven to be a rich source of natural products yielding interesting bioactive halogenated secondary metabolites, such as terpenoids and acetogenins. It is shown that such compounds are accumulated in the spherical, reniform to claviform refractive inclusions called corps en cerise (CC, which are intensively osmiophilic and located mainly in the cortical cells of the thalli and also in trichoblast cells. Up to now, it was believed that CC were present only in these two kinds of cells. Recently, however, a species of Laurencia, L. marilzae, with CC in all cells of the thallus, i.e., cortical, medullary, including the pericentral and axial cells, as well as in the trichoblasts, was described from the Canary Islands, and subsequently also reported to Brazil and Mexico. Within the Laurencia complex, only Laurencia species produce CC. Since the species of Laurencia are targets of interest for the prospection of bioactive substances due to their potential antibacterial, antifungal, anticholinesterasic, antileishmanial, cytotoxic, and antioxidant activities, the present paper carries out a comparative analysis of the corps en cerise in several species of Laurencia from the Atlantic Ocean to obtain basic information that can support natural product bioprospection projects. Our results show that the number and size of the CC are constant within a species, independent of the geographical distribution, corroborating their use for taxonomical purposes to differentiate groups of species that present a lower number from those that have a higher number. In this regard, there was a tendency for the number of CC to be higher in some species of Laurencia from the Canary Islands. The presence of CC can also be used to distinguish species in which these organelles are present in all cells of the thallus from those in which CC are restricted to the cortical cells. Among the species analyzed, L. viridis displayed the most varied

  1. Metabólitos secundários presentes na Annona muricata L e suas propriedades nutricionais e funcionais em oncologia

    Directory of Open Access Journals (Sweden)

    Erlania Carmo Freitas

    2017-01-01

    Full Text Available A nutrição funcional tem ganhado espaço nos últimos anos por sua ação terapêutica, com destaque para o fruto graviola. Vários estudos bem conduzidos sugerem que o fruto possui quantidades consideráveis de minerais, fibras, compostos antioxidantes e substancias que atuam contra células cancerígenas, com destaque para a ação das acetogeninas. Contudo objetivou-se realizar a quantificação dos compostos fenólicos presentes em polpas da graviola in natura e congelada e realizar uma revisão de trabalhos que justifiquem o uso da graviola na diminuição da proliferação do câncer. Foram identificadas quantidades bastante significativas de compostos fenólicos nas amostras de graviola, porém sem diferenciação do tratamento congelado ou in natura. Logo sugere seu uso na prevenção do câncer e necessitam de mais estudos para a sua utilização no tratamento de pacientes oncológicos. ABSTRACT Secondary Metabolitics Present at Annona Muricata L and Its Nutritional and Functional Properties in Oncology Functional nutrition has gained ground in recent years for its therapeutic action, especially the soursop fruit. Several well-conducted studies suggest that the fruit has considerable amounts of minerals, fiber, antioxidants and substances that act against cancer cells, highlighting the action of acetogenins. However it aimed to perform the quantification of the phenolic compounds present in soursop pulp of fresh and frozen and conduct a review of studies that justify the use of soursop in reducing cancer proliferation. They were identified fairly significant amounts of phenolic compounds in the samples of soursop, however no differentiation of treatment or frozen raw. Logo suggests its use in preventing cancer and need further studies for its use in the treatment of cancer patients.