WorldWideScience

Sample records for mono-sized spherical particles

  1. Fabrication and Application of Mono-sized Spherical Micro Particles by Pulsated Orifice Ejection Method

    Directory of Open Access Journals (Sweden)

    DONG Wei

    2018-02-01

    Full Text Available A novel technology called pulsated orifice ejection method(POEM and used for preparing mono-sized and high-precision spherical micro particles was introduced in this article. The working principle of the technique was illustrated and it was in two modes:low-melting point diaphragm mode and high-melting point rod mode, depending on the different melting points of materials. The particles prepared by POEM have the advantages of mono-sized, uniform and controllable particle size, high sphericity, and consistent thermal history. By introducing the application of particles prepared by this method, showing the huge application prospects of this technology in electronic packaging, bioengineering, micro-fabrication, rapid solidification analysis of metal droplets, additive manufacturing and so on.With the development of POEM, this technology is predicted to have wider prospects due to its unique characteristics.

  2. Electro-spray of high viscous liquids for producing mono-sized spherical alginate beads

    Institute of Scientific and Technical Information of China (English)

    Hamid Moghadam; Mohsen Samimi; Abdolreza Samimi; Mohamad Khorram

    2008-01-01

    Alginate beads, often used for controlled release of enzymes and drugs, are usually produced by spraying sodium alginate liquid into a gelling agent using mechanical vibration nozzle or air jet. In this work an alternative method of electro-spray was employed to form droplets with desired size from a highly viscous sodium alginate solution using constant DC voltage. The droplets were then cured in a calcium chloride solution. The main objective was to produce mono-sized beads from such a highly viscous and non-Newtonian liquid (1000-5000 mPa s). The effects of nozzle diameter, flow rate and concentration of liquid on the size of the beads were investigated. Among the parameters studied, voltage had a pronounced effect on the size of beads as compared to flow rate zzle diameter and concentration of alginate liquid. The size of beads was reduced to a minimum value with increasing the voltage in the range of 0-10 kV. At the early stages of voltage increase (I.e. Up to about 4 kV), the rate of size reduction was relatively low, while the dripping mode dominated. However, in the middle part of the range of applied voltage, where the rate of size reduction was high (I.e. About 4-7 kV), an unstable transition occurred between dripping and jetting. At the end part of the range (I.e. 7-10 kV) jet mode of spray was observed. Increasing the height of fall of the droplets was found to improve the sphericity of the beads, because of the increased time of flight for the droplets. This was especially identifiable at higher concentrations of the alginate liquid (I.e. 3 w/v%)

  3. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  4. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    Science.gov (United States)

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  5. Preparation of spherical particles by vibrating orifice technique

    Science.gov (United States)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki

    2000-05-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  6. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  7. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent

    International Nuclear Information System (INIS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2015-01-01

    Highlights: • Submicron-sized spherical particles of gold were prepared using laser irradiation for the source gold nanoparticles stabilized by NaCl. • The source gold nanoparticles agglomeration was controlled both by the NaCl concentration of and by laser irradiation. • The formation process and the laser-fluence dependence of the particle size of gold nanoparticles in NaCl solutions differs from those in citrate solutions. • We revealed that properties of ligands are significantly important to prepare submicron-sized spherical particles and to control their size. - Abstract: Laser-induced melting in liquids (LIML) was applied to prepare spherical submicron-sized particles of gold (AuSMPs) from gold nanoparticles (AuNPs) stabilized using NaCl. Because undesirable byproducts, which might be generated when organic reagents such as citrate are used as the stabilizing reagent, are not generated from NaCl by laser irradiation, AuSMPs fabricated from AuNPs stabilized by NaCl will be low toxic. The AuSMPs were obtained by laser irradiation of the source AuNPs in NaCl solutions stabilized by NaCl at the proper concentration. Similar to the preparation of AuSMPs from AuNPs stabilized by citrate, the agglomeration of the source AuNPs, which is necessary to obtain AuSMPs, was controlled both by the NaCl concentration and by laser irradiation. However, the formation process and the laser-fluence dependence of the particle size of AuSMPs differed for various NaCl solutions and citrate solutions

  8. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  9. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  10. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif......, different dihedral angles and the evolution of relative density and sintering stresses are studied....

  11. Toward single-mode random lasing within a submicrometre-sized spherical ZnO particle film

    International Nuclear Information System (INIS)

    Niyuki, Ryo; Fujiwara, Hideki; Sasaki, Keiji; Ishikawa, Yoshie; Koshizaki, Naoto; Tsuji, Takeshi

    2016-01-01

    We had recently reported unique random laser action such as quasi-single-mode and low-threshold lasing from a submicrometre-sized spherical ZnO nanoparticle film with polymer particles as defects. The present study demonstrates a novel approach to realize single-mode random lasing by adjusting the sizes of the defect particles. From the dependence of random lasing properties on defect size, we find that the average number of lasing peaks can be modified by the defect size, while other lasing properties such as lasing wavelengths and thresholds remain unchanged. These results suggest that lasing wavelengths and thresholds are determined by the resonant properties of the surrounding scatterers, while the defect size stochastically determines the number of lasing peaks. Therefore, if we optimize the sizes of the defects and scatterers, we can intentionally induce single-mode lasing even in a random structure (Fujiwara et al 2013 Appl. Phys. Lett. 102 061110). (paper)

  12. Characterization of spherical core–shell particles by static light scattering. Estimation of the core- and particle-size distributions

    International Nuclear Information System (INIS)

    Clementi, Luis A.; Vega, Jorge R.; Gugliotta, Luis M.; Quirantes, Arturo

    2012-01-01

    A numerical method is proposed for the characterization of core–shell spherical particles from static light scattering (SLS) measurements. The method is able to estimate the core size distribution (CSD) and the particle size distribution (PSD), through the following two-step procedure: (i) the estimation of the bivariate core–particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem through a generalized Tikhonov regularization strategy, and (ii) the calculation of the CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the basis of several simulated examples, with polystyrene–poly(methyl methacrylate) core–shell particles of different CSDs and PSDs. Then, two samples of hematite–Yttrium basic carbonate core–shell particles were successfully characterized. In all analyzed examples, acceptable estimates of the PSD and the average diameter of the CSD were obtained. Based on the single-scattering Mie theory, the proposed method is an effective tool for characterizing core–shell colloidal particles larger than their Rayleigh limits without requiring any a-priori assumption on the shapes of the size distributions. Under such conditions, the PSDs can always be adequately estimated, while acceptable CSD estimates are obtained when the core/shell particles exhibit either a high optical contrast, or a moderate optical contrast but with a high ‘average core diameter’/‘average particle diameter’ ratio. -- Highlights: ► Particles with core–shell morphology are characterized by static light scattering. ► Core size distribution and particle size distribution are successfully estimated. ► Simulated and experimental examples are used to validate the numerical method. ► The positive effect of a large core/shell optical contrast is investigated. ► No a-priori assumption on the shapes of the size distributions is required.

  13. Pair distribution function and structure factor of spherical particles

    International Nuclear Information System (INIS)

    Howell, Rafael C.; Proffen, Thomas; Conradson, Steven D.

    2006-01-01

    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed

  14. Neutron-optical effects at very cold neutrons scattering on the spherical particles of different sizes

    International Nuclear Information System (INIS)

    Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.

    2006-01-01

    Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ

  15. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    International Nuclear Information System (INIS)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg; Lin, Binhua; Meron, Mati

    2015-01-01

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles

  16. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  17. Laser Pulse Heating of Spherical Metal Particles

    Directory of Open Access Journals (Sweden)

    Michael I. Tribelsky

    2011-12-01

    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  18. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  19. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles

    International Nuclear Information System (INIS)

    Mu Jin; Wei Qinglian; Yao Pingping; Zhao Xueling; Kang Shizhao; Li Xiangqing

    2012-01-01

    Highlights: ► CdIn 2 S 4 monodispersed spherical particles were prepared by a soft solution method. ► Mercaptoacetic acid was used as capping agent to hinder the fast crystal growth. ► Thioacetamide as sulfur source resulted in the slow growth of particles. ► CdIn 2 S 4 spheres showed high visible light photocatalytic activity. - Abstract: We developed a facile method to prepare CdIn 2 S 4 monodispersed spherical particles by using mercaptoacetic acid as capping agent and thioacetamide as sulfur source. The results indicated that the size and morphology of CdIn 2 S 4 particles were related to reaction time. The CdIn 2 S 4 spherical particles with an average size of about 236 nm and a narrow size distribution were formed after reacting for 7 h. The photocatalytic activity of as-synthesized CdIn 2 S 4 spherical particles was evaluated by the photocatalytic degradation of methyl orange under visible light illumination. The results showed that the photocatalytic activity increased with prolonging reaction time in the preparation of CdIn 2 S 4 spherical particles. The CdIn 2 S 4 spherical particles prepared after reacting for 7 h exhibited a 98% degradation efficiency of methyl orange after 15 min visible light irradiation.

  20. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  1. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    Science.gov (United States)

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  2. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection

    International Nuclear Information System (INIS)

    Ao Yiwei; Yang Yunxia; Yuan Shuanglong; Ding Lihua; Chen Guorong

    2007-01-01

    Spherical silver particles used in electronic paste for solar cell were prepared using the chemical reduction method with ammonia as a complex agent, hydrazine hydrate as a reducing agent, and gelatin as a protective agent. The gelatin protective mechanism in the preparing process of spherical silver particles was studied. Observations of SEM and results of laser particle size analysis and ultraviolet absorption spectra demonstrate the formation of the coordinative complex of silver ions with gelatin in aqueous solution which accelerated the reduction of silver ions. Moreover, gelatin can promote the nucleation of the metallic silver particles, thus beneficiating availability of the monodisperse spherical silver particles

  3. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin; Schade, Nicholas B.; Sun, Li; Fan, Jonathan A.; Bae, Doo Ri; Mariscal, Marcelo M.; Lee, Gaehang; Capasso, Federico; Sacanna, Stefano; Manoharan, Vinothan N.; Yi, Gi-Ra

    2013-01-01

    isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even

  4. Scattering by non-spherical particles of size comparable to a wavelength - A new semi-empirical theory. [atmospheric radiative transfer

    Science.gov (United States)

    Pollack, J. B.; Cuzzi, J. N.

    1978-01-01

    Mie theory, which is generally used to describe the scattering behavior of particles at a certain wavelength, is only rigorously correct for spherical particles. Particles found as atmospheric constituents, with the exception of cloud droplets, are, however, decidedly nonspherical. An investigation is, therefore, conducted regarding the significant ways in which the scattering behavior of irregularly shaped particles differs from that of spheres. A systematic method is formulated for treating the real scalar scattering behavior. A description is presented of a new semiempirical theory based on simple physical principles and data obtained in laboratory measurements, which successfully reproduces the single scattering phase function for a wide range of particle shapes, sizes, and refractive indices.

  5. Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias

    This study deals with the interaction between turbulence and non-spherical particles and represents an extension of the modeling framework for particleladen flows. The effect of turbulence on particles is commonly referred to as turbulent dispersion while the effect of particles on the carrier....... This study encompass an outlook on existing work, an experimental study, development of a numerical model and a case study advancing the modeling techniques for pulverized coal combustion to deal with larger non-spherical biomass particles. Firstly, existing knowledge concerning the motion of non......-spherical particles and turbulence modulation are outlined. A complete description of the motion of non-spherical particles is still lacking. However, evidence suggests that the equation of motion for a sphere only represent an asymptotical value for a more general, but yet unformulated, description of the motion...

  6. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  7. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  8. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  9. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-05-04

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiC x /Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiC x /Cu composite had higher ultimate compression strength (σ UCS ), yield strength (σ 0.2 ), and electric conductivity, compared with those of spherical-TiC x /Cu composite. The σ UCS , σ 0.2 , and electrical conductivity of cubic-TiC x /Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiC x /Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiC x /Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiC x /Cu composite with 46 nm in size. The σ UCS , σ 0.2 , and electrical conductivity of spherical-TiC x /Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiC x /Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiC x particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiC x particles with small size led to the compression strength reduction of the composites.

  10. Effects of locust bean gum and mono- and diglyceride concentrations on particle size and melting rates of ice cream.

    Science.gov (United States)

    Cropper, S L; Kocaoglu-Vurma, N A; Tharp, B W; Harper, W J

    2013-06-01

    The objective of this study was to determine how varying concentrations of the stabilizer, locust bean gum (LBG), and different levels of the emulsifier, mono- and diglycerides (MDGs), influenced fat aggregation and melting characteristics of ice cream. Ice creams were made containing MDGs and LBG singly and in combination at concentrations ranging between 0.0% to 0.14% and 0.0% to 0.23%, respectively. Particle size analysis, conducted on both the mixes and ice cream, and melting rate testing on the ice cream were used to determine fat aggregation. No significant differences (P ice cream mixes. However, higher concentrations of both LBG and MDG in the ice creams resulted in values that were larger than the control. This study also found an increase in the particle size values when MDG levels were held constant and LBG amounts were increased in the ice cream. Ice creams with higher concentrations of MDG and LBG together had the greatest difference in the rate of melting than the control. The melting rate decreased with increasing LBG concentrations at constant MDG levels. These results illustrated that fat aggregation may not only be affected by emulsifiers, but that stabilizers may play a role in contributing to the destabilization of fat globules. © 2013 Institute of Food Technologists®

  11. Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lin, Jing; Zhang, Xinghua; Huang, Yang; Xu, Xuewen; Xue, Yanming; Zou, Jin; Tang, Chengchun

    2013-01-01

    We report on the synthesis of single-crystalline spherical β-Ga 2 O 3 particles by a simple method in ambient atmosphere. No pre-treatment, catalyst, substrate, or gas flow was required during the synthesis process. The well-dispersed Ga 2 O 3 particles display uniform spherical morphology with an average diameter of ∼200 nm. Photoluminescence studies indicate that the Ga 2 O 3 particles exhibit a broad blue-green light emission and an interesting red light emission at room temperature. The red light emission can be further tuned by post-annealing of the particles in ammonia atmosphere. The present single-crystalline β-Ga 2 O 3 particles with spherical morphology, uniform sub-micrometer sizes and tunable light emission are envisaged to be of high promise for applications in white-LED phosphors and optoelectronic devices. -- Highlights: ► We prepared single-crystalline spherical β-Ga 2 O 3 particles in ambient atmosphere. ► The particles display uniform spherical morphology with an average diameter of ∼200 nm. ► The Ga 2 O 3 particles exhibit a broad blue-green light and an interesting red light emission. ► The red light emission can be further tuned by post-annealing of the particles

  12. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  13. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  14. Automatic particle-size analysis of HTGR nuclear fuel microspheres

    International Nuclear Information System (INIS)

    Mack, J.E.

    1977-01-01

    An automatic particle-size analyzer (PSA) has been developed at ORNL for measuring and counting samples of nuclear fuel microspheres in the diameter range of 300 to 1000 μm at rates in excess of 2000 particles per minute, requiring no sample preparation. A light blockage technique is used in conjunction with a particle singularizer. Each particle in the sample is sized, and the information is accumulated by a multi-channel pulse height analyzer. The data are then transferred automatically to a computer for calculation of mean diameter, standard deviation, kurtosis, and skewness of the distribution. Entering the sample weight and pre-coating data permits calculation of particle density and the mean coating thickness and density. Following this nondestructive analysis, the sample is collected and returned to the process line or used for further analysis. The device has potential as an on-line quality control device in processes dealing with spherical or near-spherical particles where rapid analysis is required for process control

  15. Erosion and damage by hard spherical particles on glass

    NARCIS (Netherlands)

    Slikkerveer, P.J.; Verspui, M.A.; Skerka, G.J.E.

    1999-01-01

    Solid particle impact of hard spherical particles on glass is of fundamental interest because of the presence of a number of different impact regimes. Understanding the impact of spherical particles is also a step toward modeling the behavior of rounded particles. This paper verifies theoretical

  16. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    Science.gov (United States)

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  17. Method of air-particles determination, by remote capacity measurement

    International Nuclear Information System (INIS)

    Sadigzadeh, A.; Moniri, F.

    2001-01-01

    In this paper, experimental results along with the calibration method used in opacimetry for determining atmospheric aerosol are presented. For our investigation, liquid, spherical mono dispersed particles of diocty le pha late (Dop) with particle sizes ranging for 0.07 to 1 μm is used. The light source is a He/Ne laser with the wavelength of 6328 A d eg. The range of particle concentrations is practically between 0 and 4 x 10 6 particles per cm 3 . The measured laser output transmitted through the aerosol cloud varies from 0 to 2.45 MW and is a function of particle concentration, particle sizes and the depth of aerosol cloud. It is observed that the light transmission decreases exponent rally as the particle concentration increases. The effect of particle sizes for the light transmitted through the aerosol was also studied

  18. Demagnetization factor for a powder of randomly packed spherical particles

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian R.H.

    2013-01-01

    The demagnetization factors for randomly packed spherical particle powders with different porosities, sample aspect ratios, and monodisperse, normal, and log-normal particle size distributions have been calculated using a numerical model. For a relative permeability of 2, comparable to room...... temperature Gd, the calculated demagnetization factor is close to the theoretical value. The normalized standard deviation of the magnetization in the powder was 6.0%-6.7%. The demagnetization factor decreased significantly, while the standard deviation of the magnetization increased, for increasing relative...

  19. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    Science.gov (United States)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  20. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  1. Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size

    International Nuclear Information System (INIS)

    Matarrubia, J; García-Cabañes, A; Plaza, J L; Agulló-López, F; Carrascosa, M

    2014-01-01

    The role of light modulation m and particle size on the morphology and spatial resolution of nano-particle patterns obtained by photovoltaic tweezers on Fe : LiNbO 3 has been investigated. The impact of m when using spherical as well as non-spherical (anisotropic) nano-particles deposited on the sample surface has been elucidated. Light modulation is a key parameter determining the particle profile contrast that is optimum for spherical particles and high-m values (m ∼ 1). The minimum particle periodicities reachable are also investigated obtaining periodic patterns up to 3.5 µm. This is a value at least one order of magnitude shorter than those obtained in previous reported experiments. Results are successfully explained and discussed in light of the previous reported models for photorefraction including nonlinear carrier transport and dielectrophoretic trapping. From the results, a number of rules for particle patterning optimization are derived. (paper)

  2. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    International Nuclear Information System (INIS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-01-01

    Spherical SiO 2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd 2 O 3 :Yb 3+ /Er 3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd 2 O 3 :Yb 3+ /Er 3+ @SiO 2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO 2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er 3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd 2 O 3 :Yb 3+ /Er 3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO 2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO 2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO 2 core sizes

  3. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  4. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    Science.gov (United States)

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  5. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  6. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...

  7. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  8. Evaluation of instruments used in particle size analysis by using the sedimentation technique

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abdrahman, A.A.M.; Ahmed, A.Z.

    2007-01-01

    This study is carried out to evaluate the performance of some instruments in which the sedimentation technique is used for the determination of particle size distribution using Stoke's law. A mathematical formula has been developed to calculate the particle size distribution for different cases and the results were compared to the real ones. The results revealed unsatisfactory agreement between the calculated and the measured values. In addition, illogic results were obtained indicating that the instruments in which the sedimentation technique is used are not the proper ones to provide accurate measurements except for mono particle size cases. More above, the results obtained represent the sedimentation rate but not the particle size distribution.

  9. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  10. Intrinsic speckle noise in in-line particle holography due to polydisperse and continuous particle sizes

    Science.gov (United States)

    Edwards, Philip J.; Hobson, Peter R.; Rodgers, G. J.

    2000-08-01

    In-line particle holography is subject to image deterioration due to intrinsic speckle noise. The resulting reduction in the signal to noise ratio (SNR) of the replayed image can become critical for applications such as holographic particle velocimetry (HPV) and 3D visualisation of marine plankton. Work has been done to extend the mono-disperse model relevant to HPV to include poly-disperse particle fields appropriate for the visualisation of marine plankton. Continuous and discrete particle fields are both considered. It is found that random walk statistics still apply for the poly-disperse case. The speckle field is simply the summation of the individual speckle patters due to each scatter size. Therefor the characteristic speckle parameter (which encompasses particle diameter, concentration and sample depth) is alos just the summation of the individual speckle parameters. This reduces the SNR calculation to the same form as for the mono-disperse case. For the continuous situation three distributions, power, exponential and Gaussian are discussed with the resulting SNR calcuated. The work presented here was performed as part of the Holomar project to produce a working underwater holographic camera for recording plankton.

  11. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  12. Plate-out rates of radon progeny and particles in a spherical chamber

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Chen, B.T.

    1990-01-01

    In indoor and mining environments, deposition or ''plate-out'' of radon progeny onto walls occurs simultaneously with attachment of the radon progeny to airborne particles. Attachment and plate-out processes affect the atmosphere in which radon exposures takes place by reducing concentrations and shifting activity size distributions. Both processes have important consequences in determining the deposition pattern and initial dose of inhaled radon progeny. Theoretical deposition models show that turbulence and natural convection in a room are the major factors that influence plate-out rates. Here we describe plate-out measurements for radon progeny and aerosol particles in a spherical chamber under controlled laboratory conditions. The temperature and velocity profiles in still and turbulent air were monitored. A 161-liter spherical aluminum chamber was used to study the mixing. During mixing, air velocity was detected when rotational speeds were higher than 500 rpm. Monodisperse silver aerosols and polystyrene latex particles in the size range of 5 nm to 2 μm were used in the deposition study. Radon-220 progeny were generated by passing Rn-220 gas into the chamber and letting the gas decay into 212 Pb. The deposition rates of the particles and radon progeny ( 212 Pb) in the chamber were determined by monitoring the concentration decay of the aerosol as a function of time

  13. Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2015-01-01

    Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,

  14. A prediction model for the effective thermal conductivity of mono-sized pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • One new method to couple the contact area with bed strain is developed. • The constant coefficient to correlate the effect of gas flow is determined. • This model is valid for various cases, and its advantages are showed obviously. - Abstract: A model is presented here to predict the effective thermal conductivity of porous medium packed with mono-sized spherical pebbles, and it is valid when pebbles’ size is far less than the characteristic length of porous medium just like the fusion pebble beds. In this model, the influences of parameters such as properties of pebble and gas materials, bed porosity, pebble size, gas flow, contact area, thermal radiation, contact resistance, etc. are all taken into account, and one method to couple the contact areas with bed strains is also developed and implemented preliminarily. Compared with available theoretical models, CFD numerical simulations and experimental data, this model is verified to be successful to forecast the bed effective thermal conductivity in various cases and its advantages are also showed obviously. Especially, the convection in pebble beds is focused on and a constant coefficient C to correlate the effect of gas flow is determined for the fully developed region of beds by numerical simulation, which is close to some experimental data.

  15. Spherical and cylindrical particle resonator as a cloak system

    Science.gov (United States)

    Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.

    2018-05-01

    The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.

  16. Effect of particle size distribution on sintering of tungsten

    International Nuclear Information System (INIS)

    Patterson, B.R.; Griffin, J.A.

    1984-01-01

    To date, very little is known about the effect of the nature of the particle size distribution on sintering. It is reasonable that there should be an effect of size distribution, and theory and prior experimental work examining the effects of variations in bimodal and continuous distributions have shown marked effects on sintering. Most importantly, even with constant mean particle size, variations in distribution width, or standard deviation, have been shown to produce marked variations in microstructure and sintering rate. In the latter work, in which spherical copper powders were blended to produce lognormal distributions of constant geometric mean particle size by weight frequency, blends with larger values of geometric standard deviation, 1nσ, sintered more rapidly. The goals of the present study were to examine in more detail the effects of variations in the width of lognormal particle size distributions of tungsten powder and determine the effects of 1nσ on the microstructural evolution during sintering

  17. Estimation of particle size distribution of nanoparticles from electrical ...

    Indian Academy of Sciences (India)

    ... blockade (CB) phenomena of electrical conduction through atiny nanoparticle. Considering the ZnO nanocomposites to be spherical, Coulomb-blockade model of quantum dot isapplied here. The size distribution of particle is estimated from that model and compared with the results obtainedfrom AFM and XRD analyses.

  18. Particle Entrainment in Spherical-Cap Wakes

    Energy Technology Data Exchange (ETDEWEB)

    Warncke, Norbert G W; Delfos, Rene; Ooms, Gijs; Westerweel, Jerry, E-mail: n.g.w.warncke@tudelft.nl [Laboratory for Aero- and Hydrodynamics, Delft University of Technology (Netherlands)

    2011-12-22

    In this work we study the preferential concentration of small particles in the turbulent wake behind a spherical-cap object. We present a model predicting the mean particle concentration in the near-wake as a function of the characteristic Stokes number of the problem, the turbulence level and the Froude number. We compare the model with our experimental results on this flow, measured in a vertical water tunnel.

  19. Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles

    Science.gov (United States)

    Schmidbauer, E.

    1988-05-01

    Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.

  20. Development of an ejecta particle size measurement diagnostic based on Mie scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Martin Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buttler, William Tillman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Frayer, Daniel K. [National Security Tech, Inc., Los Alamos, NM (United States); Grover, Michael [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Monfared, Shabnam Kalighi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Gerald D. [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Stone, Benjamin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turley, William Dale [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.

    2017-09-27

    The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived by Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.

  1. Influence of particle size distributions on magnetorheological fluid performances

    International Nuclear Information System (INIS)

    Chiriac, H; Stoian, G

    2010-01-01

    In this paper we investigate the influence that size distributions of the magnetic particles might have on the magnetorheological fluid performances. In our study, several size distributions have been tailored first by sieving a micrometric Fe powder in order to obtain narrow distribution powders and then by recomposing the new size distributions (different from Gaussian). We used spherical Fe particles (mesh -325) commercially available. The powder was sieved by means of a sieve shaker using a series of sieves with the following mesh size: 20, 32, 40, 50, 63, 80 micrometers. All magnetic powders were characterized through Vibrating Sample Magnetometer (VSM) measurements, particle size analysis and also Scanning Electron Microscope (SEM) images were taken. Magnetorheological (MR) fluids based on the resulted magnetic powders were prepared and studied by means of a rheometer with a magnetorheological module. The MR fluids were measured in magnetic field and in zero magnetic field as well. As we noticed in our previous experiments particles size distribution can also influence the MR fluids performances.

  2. Preparation of non-spherical particles by shell-shield etching for near-field nanopatterning

    International Nuclear Information System (INIS)

    Ye, Jian; Liesbet, Lagae

    2014-01-01

    The shape of polymer particles plays an important role in determining their function. In this paper, we describe a simple and unconventional method called shell-shield etching (SSE) that allows us to prepare freestanding submicrometer- or micrometer-sized polymer particles with various shapes. By precisely varying the time of ultraviolet ozone treatment under the partial shielding effect of the silica shell, we controllably reshape polymer spheres into symmetry-reduced polymer peaches, mushrooms, bowls, and plates. Finite difference time domain simulations indicate that the non-spherical particles obtained from the SSE method might have potential for near-field nanopatterning applications. (papers)

  3. Optical properties of non-spherical desert dust particles in the terrestrial infrared – An asymptotic approximation approach

    International Nuclear Information System (INIS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-01-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz–Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz–Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz–Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz–Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex. - Highlights: • A fast and simple method for estimating optical properties of dust. • Can be used with non-spherical particles of arbitrary size distributions. • Comparison with Mie simulations and

  4. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  5. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  6. Extinction by a Homogeneous Spherical Particle in an Absorbing Medium

    Science.gov (United States)

    Mishchenko, Michael I.; Videen, Gorden; Yang, Ping

    2017-01-01

    We use a recent computer implementation of the first principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wave front resulting from the blockage of the incident plane wave by the particle's geometrical projection.

  7. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.

  8. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall

    2000-01-01

    ) engines fueled by the gas. The implications of the findings on engine wear are discussed.The majority (85%) of the total particulate matter (TPM) mass was identified, using scanning electron microscopy (SEM), as mono-sized spherical primary soot particles with diameters of 70 nm. Soot agglomerates, up...... to 30 um were present. 77% of the TPM was determined, by thermogravimetric analysis (TGA) to be carbon structures.The dichloromethane (DCM)-soluble fraction (11% of the TPM) was extracted, separated into fractions of varying polarities using adsorption column chromatography and analyzed using gas...... of the particles showed that a 3-7% of the DCM-insoluble TPM was dissolved using this solvent....

  9. Mechanics of binary and polydisperse spherical pebble assembly

    International Nuclear Information System (INIS)

    Annabattula, R.K.; Gan, Y.; Kamlah, M.

    2012-01-01

    The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is studied using discrete element method (DEM) accounting for microscopic interactions between individual pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The effect of relative radii and volume fraction of the pebbles on the macroscopic stress–strain response is discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress–strain behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also another influencing parameter. For a very small shear stiffness the system shows a strong dependence on the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during loading compared to binary assembly. However, the simulations do not show a significant difference between the two behaviors in contrast to the observations made in the experiments. The discrepancy can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interaction (constant shear stiffness) implemented in the present model which needs further modification as a function of the load history on the pebbles. Evolution of other micromechanical characteristics such as coordination number, contact force distribution and stored elastic energy of individual pebbles as a function of external load and system parameters is presented which can be used to estimate important macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.

  10. Mechanics of binary and polydisperse spherical pebble assembly

    Energy Technology Data Exchange (ETDEWEB)

    Annabattula, R.K., E-mail: ratna.annabattula@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen (Germany); Gan, Y., E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, University of Sydney, 2006 NSW, Sydney (Australia); Kamlah, M., E-mail: marc.kamlah@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen (Germany)

    2012-08-15

    The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is studied using discrete element method (DEM) accounting for microscopic interactions between individual pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The effect of relative radii and volume fraction of the pebbles on the macroscopic stress-strain response is discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress-strain behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also another influencing parameter. For a very small shear stiffness the system shows a strong dependence on the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during loading compared to binary assembly. However, the simulations do not show a significant difference between the two behaviors in contrast to the observations made in the experiments. The discrepancy can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interaction (constant shear stiffness) implemented in the present model which needs further modification as a function of the load history on the pebbles. Evolution of other micromechanical characteristics such as coordination number, contact force distribution and stored elastic energy of individual pebbles as a function of external load and system parameters is presented which can be used to estimate important macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.

  11. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  12. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  13. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong, E-mail: hdjang@kigam.re.kr; Cho, Kuk, E-mail: kukcho@pusan.ac.kr [Korea Institute of Geoscience and Mineral Resources (Korea, Republic of)

    2013-09-15

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO{sub 2}, TiO{sub 2}, and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying.

  14. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    International Nuclear Information System (INIS)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong; Cho, Kuk

    2013-01-01

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO 2 , TiO 2 , and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying

  15. Numerical determination of the effective moments of non-spherical particles

    International Nuclear Information System (INIS)

    Green, Nicolas G; Jones, Thomas B

    2007-01-01

    Dielectric characterisation of polarisable particles, and prediction of the forces and torques exerted upon them, relies on the knowledge of the effective, induced dipole moment. In turn, through the mechanism of depolarisation, the induced dipole moment of a particle is strongly dependent upon its shape. Since realistic shapes create modelling difficulties, the 'spherical particle' approximation is often invoked. However, in many cases, including biological dielectric spectroscopy and dielectrophoresis, this assumption is a poor one. For example, human erythrocytes are essentially oblate spheroids with indented sides, while viruses and bacteria often have elongated cigar shapes. Since shape-dependent polarisation both strongly influences the accuracy of conventional dielectric characterisation methods using Maxwell's mixture formula and confounds accurate prediction of dielectrophoretic forces and torques, it is important to develop means to treat non-spherical particles. In this paper, we demonstrate a means to extract the dipole moment directly from numerical solutions of the induced electrostatic potential when a particle is placed in a uniform electric field. The accuracy of the method is demonstrated for a range of particle shapes: spherical, ellipsoidal, truncated cylinders and an approximation of an erythrocyte, the red blood cell

  16. Volume of the domain visited by N spherical Brownian particles

    International Nuclear Information System (INIS)

    Berezhkovskii, A.M.

    1994-01-01

    The average value and variance of the volume of the domain visited in time t by N spherical Brownian particles starting initially at the same point are presented as quadratures of the solutions of simple diffusion problems of the survival of a point Brownian particle in the presence of one and two spherical traps. As an illustration, explicit time dependences are obtained for the average volume in one and three dimensions

  17. Fluorescence of molecules placed near a spherical particle: Rabi splitting

    Directory of Open Access Journals (Sweden)

    M.M. Dvoynenko

    2017-12-01

    Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.

  18. Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang, Min; Liu, Qi; Zhao, Hongsheng; Li, Ziqiang; Liu, Bing; Li, Xingdong; Meng, Fanyong

    2014-01-01

    As a core unit of HTGRs (high-temperature gas-cooled reactors), the quality of spherical fuel elements is directly related to the safety and reliability of HTGRs. In line with the design and performance requirements of the spherical fuel elements, no coated fuel particles are permitted to enter the fuel-free zone of a spherical fuel element. For fast and accurate detection of escaped coated fuel particles, X-ray DR (digital radiography) imaging with a step-by-step circular scanning trajectory was adopted for Chinese 10 MW HTGRs. The scanning parameters dominating the volume of the blind zones were optimized to ensure the missing detection of the escaped coated fuel particles is as low as possible. We proposed a dynamic calibration method for tracking the projection of the fuel-free zone accurately, instead of using a fuel-free zone mask of fixed size and position. After the projection data in the fuel-free zone were extracted, image and graphic processing methods were combined for automatic recognition of escaped coated fuel particles, and some practical inspection results were presented. - Highlights: • An X-ray DR imaging system for quality inspection of spherical fuel elements was introduced. • A method for optimizing the blind-zone-related scanning parameter was proposed. • A dynamic calibration method for tracking the fuel-free zone accurately was proposed. • Some inspection results of the disqualified spherical fuel elements with escaped coated fuel particles were presented

  19. Detection based on rainbow refractometry of droplet sphericity in liquid-liquid systems.

    Science.gov (United States)

    Lohner, H; Lehmann, P; Bauckhage, K

    1999-03-01

    The shape of droplets in liquid-liquid systems influences their mass and momentum transfer processes. The deviation from sphericity of rising droplets in liquid-liquid systems was investigated for different droplet sizes. Rainbow refractometry permits one to test, in this case, whether the use of laser-optical particle sizing will be correct or faulty. Since the assumption of spherical particle geometry is a general basis of laser-optical particle-sizing techniques such as rainbow refractometry or phase Doppler anemometry, deviation from the spherical shape results in a measuring error. A sphericity check based on rainbow refractometry is introduced.

  20. Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets.

    Science.gov (United States)

    Onofri, F; Bergougnoux, L; Firpo, J L; Misguich-Ripault, J

    1999-07-20

    The principle of an optical technique for simultaneous velocity, size, and concentration in suspension measurements of spherical droplets and cylindrical jets is proposed. This technique is based on phase Doppler anemometry working in the dual burst technique configuration. The particle size and velocity are deduced from the reflected signal phase and frequency, whereas the amplitude ratio between the refracted and the reflected signals is used for measuring the concentration of small scatterers inside the particles. Numerical simulations, based on geometrical optics and a Monte Carlo model, and an experimental validation test on cylindrical jets made of various suspensions, are used to validate the principle of the proposed technique. It is believed that this new technique could be useful in investigating processes in which liquid suspensions are sprayed for surface coating, drying, or combustion applications.

  1. MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2013-08-01

    Full Text Available The aim of this study is to theoretically investigate the sensitivity of the Multi-angle Imaging SpectroRadiometer (MISR operational (version 22 Dark Water retrieval algorithm to aerosol non-sphericity over the global oceans under actual observing conditions, accounting for current algorithm assumptions. Non-spherical (dust aerosol models, which were introduced in version 16 of the MISR aerosol product, improved the quality and coverage of retrievals in dusty regions. Due to the sensitivity of the retrieval to the presence of non-spherical aerosols, the MISR aerosol product has been successfully used to track the location and evolution of mineral dust plumes from the Sahara across the Atlantic, for example. However, the MISR global non-spherical aerosol optical depth (AOD fraction product has been found to have several climatological artifacts superimposed on valid detections of mineral dust, including high non-spherical fraction in the Southern Ocean and seasonally variable bands of high non-sphericity. In this paper we introduce a formal approach to examine the ability of the operational MISR Dark Water algorithm to distinguish among various spherical and non-spherical particles as a function of the variable MISR viewing geometry. We demonstrate the following under the criteria currently implemented: (1 Dark Water retrieval sensitivity to particle non-sphericity decreases for AOD below about 0.1 primarily due to an unnecessarily large lower bound imposed on the uncertainty in MISR observations at low light levels, and improves when this lower bound is removed; (2 Dark Water retrievals are able to distinguish between the spherical and non-spherical particles currently used for all MISR viewing geometries when the AOD exceeds 0.1; (3 the sensitivity of the MISR retrievals to aerosol non-sphericity varies in a complex way that depends on the sampling of the scattering phase function and the contribution from multiple scattering; and (4 non-sphericity

  2. Particles size distribution effect on 3D packing of nanoparticles in to a bounded region

    International Nuclear Information System (INIS)

    Farzalipour Tabriz, M.; Salehpoor, P.; Esmaielzadeh Kandjani, A.; Vaezi, M. R.; Sadrnezhaad, S. K.

    2007-01-01

    In this paper, the effects of two different Particle Size Distributions on packing behavior of ideal rigid spherical nanoparticles using a novel packing model based on parallel algorithms have been reported. A mersenne twister algorithm was used to generate pseudo random numbers for the particles initial coordinates. Also, for this purpose a nano sized tetragonal confined container with a square floor (300 * 300 nm) were used in this work. The Andreasen and the Lognormal Particle Size Distributions were chosen to investigate the packing behavior in a 3D bounded region. The effects of particle numbers on packing behavior of these two Particle Size Distributions have been investigated. Also the reproducibility and the distribution of packing factor of these Particle Size Distributions were compared

  3. Novel Discrete Element Method for 3D non-spherical granular particles.

    Science.gov (United States)

    Seelen, Luuk; Padding, Johan; Kuipers, Hans

    2015-11-01

    Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.

  4. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  5. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  6. Influence of the particle size dispersion on gamma-raidation absorption

    International Nuclear Information System (INIS)

    Bonchev, Ts.; Amin, S.S.

    1985-01-01

    The dependence of the value of the Moessbauer absorption on the patricle size of the absorbing material was investigated. It was assumed that: a) the investigated substance is with homogenious composition and that it consists of spherical particles; b) the particles are considered to be uniformly distributed in a matter practically negligible mass-absorption coefficient. The experiment was performed by using X-rays of Ni and Cu generated by the 14,4125 KeV resonance radiation of 57 Co

  7. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  8. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration

    NARCIS (Netherlands)

    De Jong, Wim H.; Hagens, Werner I.; Krystek, Petra; Burger, Marina C.; Sips, Adriënne J A M; Geertsma, Robert E.

    2008-01-01

    A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the

  9. Transmission and fractionation of micro-sized particle suspensions

    NARCIS (Netherlands)

    Brans, G.B.P.W.; Dinther, van A.M.C.; Odum, B.; Schroën, C.G.P.H.; Boom, R.M.

    2007-01-01

    In processes aimed at the fractionation of a multi-component feed stream, transmission of particles through the membrane is at least as important as retention of larger particles. In this paper, we describe the mechanisms of transmission of mono-disperse latex particles through a polymer membrane.

  10. On the motion of non-spherical particles at high Reynolds number

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...

  11. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  12. Automatic size analysis of coated fuel particles

    International Nuclear Information System (INIS)

    Wallisch, K.; Koss, P.

    1977-01-01

    The determination of the diameter, coating thickness, and sphericity of coated fuel particles by conventional methods is very time consuming. Therefore, statistical data can only be obtained with limited accuracy. An alternative method is described that avoids these disadvantages by utilizing a fast optical data-collecting system of high accuracy. This system allows the determination of the diameter of particles in the range between 100 and 1500 μm, with an accuracy of better than +-2 μm and with a rate of 100 particles per second. The density and thickness of coating layers can be determined by comparing the data obtained before and after coating, taking into account the relative increase of weight. A special device allows the automatic determination of the sphericity of single particles as well as the distribution in a batch. This device measures 50 to 100 different diameters of each particle per second. An on-line computer stores the measured data and calculates all parameters required, e.g., number of particles measured, particle diameter, standard deviation, diameter limiting values, average particle volume, average particle surface area, and the distribution of sphericity in absolute and percent form

  13. Rotation of a Spherical Particle with Electrical Dipole Moment Induced by Steady Irradiation in a Static Electric Field

    Science.gov (United States)

    Grachev, A. I.

    2018-04-01

    Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.

  14. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Science.gov (United States)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  15. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    Science.gov (United States)

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  16. Saltation movement of large spherical particles

    Science.gov (United States)

    Chara, Z.; Dolansky, J.; Kysela, B.

    2017-07-01

    The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.

  17. Device for the separation of spherically shaped fuel or breeding material particles for nuclear reactors

    International Nuclear Information System (INIS)

    Gyarmati, E.; Muenzer, R.

    1974-01-01

    Spherical fuel or blanket material particles are graded by diameter. The particles, which are present in a loose pebble bed, are singulized by means of a drum and by pneumatic suction. Next they pass through a drop section past an optical barrier which generates pulses corresponding to the number of particles. The particles then run through an eccentric wheel. This generates an electric voltage across a potentiometer which corresponds to the size of the particles. The slider of the potentiometer is connected with the axle of the eccentric wheel whose distance to the wall of the drop canal varies between the largest and the smallest possible diameters of the particles over half a revolution. Another barrier downstream of the eccentric wheel causes the particles to be graded in different containers in accordance with their diameters determined in this way. (DG) [de

  18. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles

    NARCIS (Netherlands)

    Feng, Lili; Cohen Stuart, Martien; Adachi, Yasuhisa

    2015-01-01

    The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and

  19. Validation of the erosion map for spherical particle impacts on glass

    NARCIS (Netherlands)

    Verspui, M.A.; Slikkerveer, P.J.; Skerka, G.J.E.; Oomen, I.; With, de G.

    1998-01-01

    Hard spherical particles may exhibit a variation in impact damage on a softer target depending on the particle diameter and particle velocity. In this paper quantitative equations will be derived for these transitions in material behaviour. These equations have been presented in an erosion map of

  20. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  1. Particles in spherical electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Mitter, H.; Thaller, B.

    1984-03-01

    If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)

  2. In Vivo Evaluation of a New Embolic Spherical Particle (HepaSphere) in a Kidney Animal Model

    International Nuclear Information System (INIS)

    Luis, Esther de; Bilbao, Jose I.; Ciercoles, Jose A. Garcia Jalon de; Martinez-Cuesta, Antonio; Martino Rodriguez, Alba de; Lozano, Maria D.

    2008-01-01

    HepaSphere is a new spherical embolic material developed in a dry state that absorbs fluids and adapts to the vessel wall, leaving no space between the particle and the arterial wall. The aim of this study was to elucidate the final in vivo size, deformation, final location, and main properties of the particles when reconstituted with two different contrast media (Iodixanol and Ioxaglate) in an animal model. Two sizes of 'dry-state' particles (50-100 and 150-200 μm) were reconstituted using both ionic and nonionic contrast media. The mixture was used to partly embolize both kidneys in an animal model (14 pigs). The animals were sacrificed 4 weeks after the procedure and the samples processed. The final size of the particles was 230.2 ± 62.5 μm for the 50- to 100-μm dry-state particles and 314.4 ± 71 μm for the 150- to 200-μm dry-state particles. When the contrast medium (ionic versus nonionic) used for the reconstitution was studied to compare (Student's t-test) the final size of the particles, no differences were found (p > 0.05). The mean in vivo deformation for HepaSphere was 17.1% ± 12.3%. No differences (p > 0.05) were found in the deformation of the particle regarding the dry-state size or the contrast medium (Mann-Whitney test). We conclude that HepaSphere is stable, occludes perfectly, and morphologically adapts to the vessel lumen of the arteries embolized. There is no recanalization of the arteries 4 weeks after embolization. Its final in vivo size is predictable and the particle has the same properties in terms of size and deformation with the two different contrast media (Iodixanol and Ioxaglate)

  3. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  4. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  5. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles.

    Science.gov (United States)

    Tanaka, Takuya; Komatsu, Yoshifumi; Fujibayashi, Teruhisa; Minami, Hideto; Okubo, Masayoshi

    2010-03-16

    Micrometer-sized, monodisperse dimple and hemispherical polystyrene (PS) particles were successfully prepared by heating (55-70 degrees C) of spherical PS particles dispersed in methanol/water media (40/60 to 80/20, w/w) in the presence of decane droplets, and subsequent cooling down to room temperature. Decane was absorbed by the PS particles during the heating process. Decane-absorbed PS particles phase-separated into PS and decane phases in the inside during the cooling process, and eventually dimple and/or hemispherical particles were formed by removal of the decane phase from phase-separated PS/decane particles by evaporation. The size of the dimple, which is determined by the volume of decane phase-separated from decane-absorbed PS particles during the cooling process, increased with increases in the heating temperature and the methanol content.

  6. Two-phase flow in beds of spherical particles

    International Nuclear Information System (INIS)

    Schulenberg, T.; Mueller, U.

    1984-02-01

    A refined model for two-phase flow in beds of uniform spherical particles is presented. It includes the influence of interfacial drag forces between liquid and gas, which are important in beds of coarse particles, and an incrase of porosity due to vapour channels or similiar irreversible bed disturbances, which occur in beds of fine particles. The model is based on the momentum equations for separated flow, which are closed with empirical relations for wall shear stress and interfacial drag. To improve this model it is applied to volumetrically heated beds on a adiabatic bottom, which are saturated and superimposed with a boiling liquid. In case of fine particles only an impermeable bottom is considered, whereas in case of coarse particles also beds on a permeable support are discussed. (orig.) [de

  7. Measurement of the size of spherical nanoparticles by means of atomic force microscopy

    International Nuclear Information System (INIS)

    Couteau, O; Roebben, G

    2011-01-01

    Several techniques are nowadays available to determine the size distribution of nanoparticulate matter. Among these techniques, atomic force microscopy (AFM) is especially valuable because it can provide three-dimensional information on the shape of individual nanoparticles. This paper describes a new method to determine the size distribution of a population of spherical nanoparticles deposited on a hard substrate. The method is based on the acquisition and analysis of topographical AFM images. The size of individual nanoparticles is obtained by fitting the topographical region associated with the nanoparticle with a sphere. Tests on model systems based on nanoparticle reference materials consisting of polystyrene (PS) latex suspensions show promising results. The measured mean particle size is larger than the reference value, but this is a predictable effect of the AFM tip shape. Tests on a bi-modal mixture of two PS latex reference materials show the impact of the quality of the dispersion of the nanoparticles on the results obtained with the new technique

  8. Scattering by non-spherical particles of size comparable to a wavelength - A new semi-empirical theory

    Science.gov (United States)

    Pollack, J. B.; Cuzzi, J. N.

    1980-01-01

    An approximate method is proposed for evaluating the interaction of randomly oriented, nonspherical particles with the total intensity component of electromagnetic radiation. When the particle size parameter, x, the ratio of particle circumference to wavelength, is less than some upper bound x(o) (about 5), Mie theory is used. For x greater than x(o), the interaction is divided into three components: diffraction, external reflection, and transmission. Physical optics theory is used to obtain the first of these components; geometrical optics theory is applied to the second; and a simple parameterization is employed for the third. The predictions of this theory are found to be in very good agreement with laboratory measurements for a wide variety of particle shapes, sizes, and refractive indexes. Limitations of the theory are also noted.

  9. New phase method of measuring particle size with laser Doppler radar

    Science.gov (United States)

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  10. A Proposal of New Spherical Particle Modeling Method Based on Stochastic Sampling of Particle Locations in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Kim, Do Hyun; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of); Noh, Jea Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    To the high computational efficiency and user convenience, the implicit method had received attention; however, it is noted that the implicit method in the previous studies has low accuracy at high packing fraction. In this study, a new implicit method, which can be used at any packing fraction with high accuracy, is proposed. In this study, the implicit modeling method in the spherical particle distributed medium for using the MC simulation is proposed. A new concept in the spherical particle sampling was developed to solve the problems in the previous implicit methods. The sampling method was verified by simulating the sampling method in the infinite and finite medium. The results show that the particle implicit modeling with the proposed method was accurately performed in all packing fraction boundaries. It is expected that the proposed method can be efficiently utilized for the spherical particle distributed mediums, which are the fusion reactor blanket, VHTR reactors, and shielding analysis.

  11. Searching for Dark Matter in the Mono-Jet and Mono-Photon Channels with the ATLAS Detector

    CERN Document Server

    Ratti, Maria Giulia; Carminati, Leonardo

    This work presents searches for dark matter particles in the mono-jet and mono-photon final states using the data collected by the ATLAS experiment during 2015 and 2016. The thesis starts with an introduction to the basic concepts of the Standard Model, followed by a discussion of the dark matter problem and the WIMP hypothesis. The focus then shifts to the description of the experimental facilities to collect the data and reconstruct the collision events. Particular focus is put on the reconstruction and performance of the missing transverse momentum. After characterizing a few theoretical models predicting dark matter particles in the mono-photon and mono-jet final states, the searches in these two signatures are thoroughly discussed, with particular focus on the background estimation techniques. While no significant deviations from the Standard Model predictions are found, the results obtained by these searches further restrict the phase-space where the dark matter particles can lie.

  12. Scattering and extinction by spherical particles immersed in an absorbing host medium

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.

    2018-05-01

    Many applications of electromagnetic scattering involve particles immersed in an absorbing rather than lossless medium, thereby making the conventional scattering theory potentially inapplicable. To analyze this issue quantitatively, we employ the FORTRAN program developed recently on the basis of the first-principles electromagnetic theory to study far-field scattering by spherical particles embedded in an absorbing infinite host medium. We further examine the phenomenon of negative extinction identified recently for monodisperse spheres and uncover additional evidence in favor of its interference origin. We identify the main effects of increasing the width of the size distribution on the ensemble-averaged extinction efficiency factor and show that negative extinction can be eradicated by averaging over a very narrow size distribution. We also analyze, for the first time, the effects of absorption inside the host medium and ensemble averaging on the phase function and other elements of the Stokes scattering matrix. It is shown in particular that increasing absorption significantly suppresses the interference structure and can result in a dramatic expansion of the areas of positive polarization. Furthermore, the phase functions computed for larger effective size parameters can develop a very deep minimum at side-scattering angles bracketed by a strong diffraction peak in the forward direction and a pronounced backscattering maximum.

  13. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion...... data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  14. Optical levitation and long-working-distance trapping: From spherical up to high aspect ratio ellipsoidal particles

    International Nuclear Information System (INIS)

    Mihiretie, Besira; Loudet, Jean-Christophe; Pouligny, Bernard

    2013-01-01

    Radiation pressure forces from a moderately focused vertical laser beam are used to levitate transparent particles, a few micrometers in size. Having recalled basic results about levitation of spheres, and applications to long-working distance trapping, we turn to ellipsoid-shaped particles. Experiments are carried out with polystyrene particles, inside a glass chamber filled with water. The particles are lifted up to contact with the chamber top surface. We examine particle equilibrium in such conditions and show that the system “bifurcates” between static on-axis equilibrium with short ellipsoids, to sustained oscillations with longer ones. A similar Hopf bifurcation is found using a simple ray-optics model of the laser-ellipsoid interaction, providing a qualitative account of the observed oscillations. -- Highlights: ► We study optical levitation of non-spherical micrometer-sized particles. ► Short ellipsoids get trapped on laser beam axis, similarly to spheres. ► Long ellipsoids oscillate, through coupled translation and tilt motions. ► We propose a simple ray-optics model of light interaction with an ellipsoid. ► From computed radiation pressure forces, we explain the observed oscillations

  15. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  16. Chemical compositions of spherical titanium powders prepared by RF induction plasma

    International Nuclear Information System (INIS)

    Gu Zhongtao; Jin Yuping; Ye Gaoying

    2012-01-01

    Spherical titanium powders were prepared by RF induction plasma technology. The particle size is essentially un- changed, while the particle size distribution is relatively narrow after spheroidization processing. X-ray diffraction (XRD) random testing of the spherical titanium powders shows no structure and phase changes. The content of O, H, N and C decreases, while the content of Ti increases slightly. It indicates that spheroidization with RF plasma can enhance powder purity. (authors)

  17. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  18. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  19. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

    Science.gov (United States)

    Reske, Rulle; Mistry, Hemma; Behafarid, Farzad; Roldan Cuenya, Beatriz; Strasser, Peter

    2014-05-14

    A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

  20. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  1. Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles

    Directory of Open Access Journals (Sweden)

    Che-Kai Yeh

    2017-06-01

    Full Text Available The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST, cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc. and some published experimental data.

  2. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  3. Effects of fuel particle size distributions on neutron transport in stochastic media

    International Nuclear Information System (INIS)

    Liang, Chao; Pavlou, Andrew T.; Ji, Wei

    2014-01-01

    Highlights: • Effects of fuel particle size distributions on neutron transport are evaluated. • Neutron channeling is identified as the fundamental reason for the effects. • The effects are noticeable at low packing and low optical thickness systems. • Unit cells of realistic reactor designs are studied for different size particles. • Fuel particle size distribution effects are not negligible in realistic designs. - Abstract: This paper presents a study of the fuel particle size distribution effects on neutron transport in three-dimensional stochastic media. Particle fuel is used in gas-cooled nuclear reactor designs and innovative light water reactor designs loaded with accident tolerant fuel. Due to the design requirements and fuel fabrication limits, the size of fuel particles may not be perfectly constant but instead follows a certain distribution. This brings a fundamental question to the radiation transport computation community: how does the fuel particle size distribution affect the neutron transport in particle fuel systems? To answer this question, size distribution effects and their physical interpretations are investigated by performing a series of neutron transport simulations at different fuel particle size distributions. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. A total of 15 parametric cases are constructed by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k eff ) and the spatial distribution of fission power density along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution shows a noticeable effect on neutron

  4. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  5. On the phase diagram of non-spherical nanoparticles

    CERN Document Server

    Wautelet, M; Hecq, M

    2003-01-01

    The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.

  6. The use of rotating electric arc for spherical particle production

    International Nuclear Information System (INIS)

    Bica, I.

    2000-01-01

    This work presents and experimental device designed to obtain spherical particles by mans of a rotating electric arc. A rotation frequency of the electric arc of 750 s''-1, a voltage of 50 V(dc) and a current of 100 A was used. The mass flow rate was 3 g.min''-1. Under these conditions particles of 15 to 20 μm in diameter were obtained. (Author) 8 refs

  7. Particle Trapping and Dropouts in Magnetic Turbulence in a Spherical Geometry

    Science.gov (United States)

    Tooprakai, P.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2006-12-01

    The observed dropouts of solar energetic particles from impulsive solar events (i.e., the inhomogeneity and sharp gradients in particle density) indicate the partial filamentation of magnetic connection from small regions of the corona to Earth orbit. This can be understood in terms of persistent trapping of field lines due to small- scale topological structures in the solar wind. We further explore how this turbulence structure should be manifest in particle observations, by evaluating particle trajectories obtained from the Newton-Lorentz equations. By adapting a two-component model of turbulence to spherical geometry, we include the adiabatic focusing of particles. The 2D magnetic field is generated by either 1) a 2D fast Fourier transform, a valid approximation over a small angular region, or 2) a spherical harmonic series with ℓ up to 2000. Dropout features at 1 AU are clearly indicated for low-energy particles, but these features are washed out for E >~ 100 MeV. Different time-intensity profiles are found at locations at 1 AU that are distinct with regard to the small-scale topology. Partially supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NNG05GG83G.

  8. Electrostatics of spherical metallic particles in cylinder electrostatic separators/sizers

    International Nuclear Information System (INIS)

    Lu Hongzhou; Li Jia; Guo Jie; Xu Zhenming

    2006-01-01

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/sizers (ESSs). A computational algorithm is employed to depict the cylinder-type electrode arrangements applied in some electrostatic processes generating non-uniform electric fields. The ESS consists of a pair of conducting cylinders. The upper cylinder is energized by HVdc, while the lower one is grounded and mounted horizontally on a revolvable axis. The aim of this paper is to present a new electrode configuration and demonstrate the usefulness of numerical techniques for the evaluation of the particle's motion. A computer program was employed for analysing the behavior of spherical particles in a two-dimensional electrode arrangement that models the actual electric field configuration of cylinder-type electrostatic separators/sizers. The analysis is needed for the development of any new application of this cylinder-type electrode arrangement as an electrostatic separation method. The results reveal that the particle's motion depends on its radius and density and amplitude of the applied voltage. The actual granular mixtures with different specific mass and radius could be separated applying this cylinder-type electrostatic separation method; the lift voltage is an important parameter for separation. With a program for two-dimensional analysis of the electric field, the computational procedure presented in this paper could be employed for any particle shapes

  9. Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion

    International Nuclear Information System (INIS)

    Zhang Huayong; Liao Tongqing

    2011-01-01

    A generalized Lorenz-Mie theory framework (GLMT) is applied to the study of Gaussian beam scattering by a spherical particle with an embedded spheroid at the center. By virtue of a transformation between the spherical and spheroidal vector wave functions, a theoretical procedure is developed to deal with the boundary conditions. Numerical results of the normalized differential scattering cross section are presented.

  10. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    Science.gov (United States)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  11. Parking simulation of three-dimensional multi-sized star-shaped particles

    International Nuclear Information System (INIS)

    Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin

    2014-01-01

    The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape. (paper)

  12. Local lubrication model for spherical particles within incompressible Navier-Stokes flows

    Science.gov (United States)

    Lambert, B.; Weynans, L.; Bergmann, M.

    2018-03-01

    The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.

  13. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.

    Science.gov (United States)

    Lambert, B; Weynans, L; Bergmann, M

    2018-03-01

    The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.

  14. Shape effects on time-scale divergence at athermal jamming transition of frictionless non-spherical particles

    Science.gov (United States)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2017-10-01

    The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.

  15. Behaviour of non-spherical particles in the TSI aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Marshall, I.A.

    1991-02-01

    The TSI Aerodynamic Particle Sizer (APS33B) is a real-time monitor which is capable of measuring aerosols in terms of this most relevant size parameter for the assessment of occupational risk. The influence of particle shape on APS33B performance has been investigated using a range of monodisperse, regular-shaped and non-porous solid particles in the size range from about 6 to 14 μm aerodynamic diameter. (author)

  16. A Study on the Preparation of Spherical PCM Particle and Its Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K. [Dept. of Chemical Engineering, Konyang University (Korea); Yoon, W.S.; Jung, K.T.; Shul, Y.G. [Dept. of Chemical Engineering, Yonsei University, Seoul (Korea); Joo, H.K.; Jeon, M.S.; Lee, T.K. [Korea Institute of Energy Research, Taejon (Korea)

    1999-04-01

    Spherical shape of phase change materials(PCM) were prepared by using sodium acetate trihydrate as a latent heat storage medium and then encapsulated with PMMA and wax. Gelatin was used as an effective thickener to prevent undesirable phase separation and sodium pyrophosphate decahydrate was used as nucleator to decrease the degree of supercooling in the thickened PCM. The optimal composition of PCM was 2 wt% thickener and 2wt% nucleator. Spherical shape of PCM particles of 3-3.5 mm in diameter were continuously manufactured varing the effluent velocity of molten PCM from 1.3 to 1.8 ml/min. Tertiary coatings of PMMA-wax-PMMA onto the PCM particles obtained were 0.03 mm, 0.25 mm, and 0.4 mm. Freezing-thaw cycle test of the coated PCM particle was done using dodecane as heat transfer medium by the experimental apparatus and DSC. 15 refs., 11 figs., 5 tabs.

  17. Thermal conductivity of U–Mo/Al dispersion fuel. Effects of particle shape and size, stereography, and heat generation

    International Nuclear Information System (INIS)

    Cho, Tae Won; Sohn, Dong-Seong; Kim, Yeon Soo

    2015-01-01

    This paper describes the effects of particle sphericity, interfacial thermal resistance, stereography, and heat generation on the thermal conductivity of U–Mo/Al dispersion fuel. The ABAQUS finite element method (FEM) tool was used to calculate the effective thermal conductivity of U–Mo/Al dispersion fuel by implementing fuel particles. For U–Mo/Al, the particle sphericity effect was insignificant. However, if the effect of the interfacial thermal resistance between the fuel particles and Al matrix was considered, the thermal conductivity of U–Mo/Al was increased as the particle size increases. To examine the effect of stereography, we compared the two-dimensional modeling and three-dimensional modeling. The results showed that the two-dimensional modeling predicted lower than the three-dimensional modeling. We also examined the effect of the presence of heat sources in the fuel particles and found a decrease in thermal conductivity of U–Mo/Al from that of the typical homogeneous heat generation modeling. (author)

  18. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    Science.gov (United States)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  19. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    International Nuclear Information System (INIS)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-01-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi 3.25 La 0.75 Ti 3 O 12 , BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi 3+ , La 3+ and Ti 4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi 3.25 La 0.75 Ti 3 O 12 ) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization

  20. On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

    Directory of Open Access Journals (Sweden)

    S. Otto

    2011-05-01

    Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.

  1. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment

    International Nuclear Information System (INIS)

    Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao

    2014-01-01

    The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations

  2. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES

    International Nuclear Information System (INIS)

    Schraepler, Rainer; Blum, Juergen

    2011-01-01

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik pointed out for the first time the difficulty in explaining the strong mid-infrared excess of classical T Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect, the erosion halts for impact velocities up to ∼30 m s -1 within our error bars. For higher velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step, we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally, we use the stationary solution of this model to explain the amount of micrometer-sized particles in the observational infrared data of Furlan et al.

  3. Deposition and detection of particles during integrated circuit manufacturing

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Kelly, John J.; Kuper, F.G.

    2006-01-01

    Abstract—Deposition mechanism of silica particles on silicon wafers was investigated by depositing specially prepared mono-dispersed particles (mean diameter = 330 nm). To measure particles of the size below the detection limit of our particle measurement tools, silica particles with luminance core

  4. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique

    International Nuclear Information System (INIS)

    Palanisamy, Prakash; Raichur, Ashok M.

    2009-01-01

    Spherical nickel oxide nanoparticles were synthesized by microemulsion technique using rhamnolipids as the surfactant along with n-heptane and water. Nickel hydroxide (Ni(OH) 2 ) particles were first formed which were then calcined to obtain nickel oxide (NiO) particles. Scanning Electron Microscopy (SEM) studies revealed that the synthesized nickel hydroxide particles were spherical in shape with stacked lamellar sheets. Nickel hydroxide was converted to nickel oxide by calcinations at 600 deg. C for 3 h and was confirmed by X-ray Diffraction (XRD) analysis. Transmission Electron Microscopy (TEM) showed that the nickel oxide particles were crystalline and of uniform size. The effect of pH on particle size was investigated and it was found that the particle size decreased from 86 ± 8 nm at pH 11.6 to 47 ± 5 nm at pH 12.5. A novel method using rhamnolipid biosurfactant for microemulsion synthesis has been demonstrated which offers an eco-friendly alternative to conventional microemulsion technique based on organic surfactants

  5. Synthesis of Uncarbonised Coconut Shell Nanoparticles: Characterisation and Particle Size Determination

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-06-01

    Full Text Available The possibility of using mechanical milling for the synthesis of uncarbonised coconut shell nanoparticles (UCSNPs has been investigated. UCSNPs were synthesized from discarded coconut shells (CSs using top down approach. The sundried CSs were crushed, ground and then sieved using hammer crusher, a two disc grinder and set of sieves with shine shaker respectively. The CS powders retained in the pan below 37 µm sized sieve were milled for 70 hours to obtain UCSNPS. Samples for analysis were taken at 16 and 70 hours. UCSNPs were analyzed using transmission electron microscope (TEM, scanning electron microscope (SEM with attached EDS and Gwyddion software. Samples of UCSNPs obtained at 16 and 70hours show that the deep brown colour of the initial CS powder became fading as the milling hour increased. The size determination from TEM image revealed spherical particles with an average size of 18.23 nm for UCSNPs obtained at 70 hour milling. The EDS spectrographs revealed an increase in the carbon counts with increased milling hours. This is attributable to dryness of the CS powders by the heat generated during the milling process due to absorption of kinetic energy by the CS powders from the milling balls. SEM micrographs revealed UCSNPs in agglomerated networks. The SEM micrograph/Gyweddion particles size determination showed average particles of 170.5 ±3 and 104.9 ±4.1 nm for UCSNPs obtained at 16 and 70 hours respectively. Therefore, production of UCSNPs through mechanical milling using mixture of ceramic balls of different sizes has been established especially when the particles of the sourced/initial CS powders falls below 37 µm.

  6. The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits

    Science.gov (United States)

    Mele, Daniela; Dioguardi, Fabio

    2018-03-01

    Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.

  7. SEM analysis of particle size during conventional treatment of CMP process wastewater

    International Nuclear Information System (INIS)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A.

    2015-01-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles

  8. Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis

    Science.gov (United States)

    Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.

    2017-10-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.

  9. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    Science.gov (United States)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  10. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol-gel approach

    Science.gov (United States)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-09-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol-gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi3+, La3+ and Ti4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol-gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil-water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles.

  11. Spherical wave particle velocities in geologic materials from laboratory experiments

    International Nuclear Information System (INIS)

    Cizek, J.C.; Florence, A.L.

    1983-01-01

    Particle velocity records that describe spherical waves in rock simulants, tuffs, salt, and granite have been obtained in laboratory experiments. The records aid the modeling of constitutive equations for continuum mechanics codes used in DNA containment research. The technique has also been applied to investigate containment-related problems involving material poperties, failure criteria, scaling, decoupling, and residual strain field relaxation. 22 figures

  12. Luminescence studies of CdS spherical particles via hydrothermal synthesis

    Science.gov (United States)

    Xu, Guo Qin; Liu, Bing; Xu, Shi Jie; Chew, Chwee Har; Chua, Soo Jin; Gana, Leong Ming

    2000-06-01

    The spherical particles of CdS consisting of nanoparticles (∼100 nm) were synthesized by a hydrothermal process. The particle formation and growth depend on the rate of sulfide-ion generation and diffusion-controlled aggregation of nanoparticles. As demonstrated in the profiles of powder X-ray diffraction, the crystalline phases are governed by the reaction temperature. Photoluminescence studies on CdS particles show two emission bands at the room temperature. The red emission at 680 nm is due to sulfur vacancies, and a new infrared red (IR) emission at 760 nm is attributed to self-activated centers. A red shift of IR band with the decrease of temperature was explained with a configurational coordinate model. The different saturation limits for the red and IR bands are discussed in terms of the formation of donor-acceptor pairs and exciton in CdS particles.

  13. The drag and lift of different non-spherical particles from low to high Re

    Science.gov (United States)

    Sanjeevi, Sathish K. P.; Padding, Johan

    2017-11-01

    The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).

  14. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  15. An analytical investigation on unsteady motion of vertically falling spherical particles in non-Newtonian fluid by Collocation Method

    Directory of Open Access Journals (Sweden)

    M. Rahimi-Gorji

    2015-06-01

    Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.

  16. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  17. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-12-15

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulas are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.

  18. A study of the effect of non-spherical dust particles on Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.

    2017-12-01

    Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.

  19. Spherical particle Brownian motion in viscous medium as non-Markovian random process

    International Nuclear Information System (INIS)

    Morozov, Andrey N.; Skripkin, Alexey V.

    2011-01-01

    The Brownian motion of a spherical particle in an infinite medium is described by the conventional methods and integral transforms considering the entrainment of surrounding particles of the medium by the Brownian particle. It is demonstrated that fluctuations of the Brownian particle velocity represent a non-Markovian random process. The features of Brownian motion in short time intervals and in small displacements are considered. -- Highlights: → Description of Brownian motion considering the entrainment of medium is developed. → We find the equations for statistical characteristics of impulse fluctuations. → Brownian motion at small time intervals is considered. → Theoretical results and experimental data are compared.

  20. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  1. Dynamic response of sand particles impacted by a rigid spherical object

    Directory of Open Access Journals (Sweden)

    P. Youplao

    2018-06-01

    Full Text Available A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force. Keywords: Sand particle, Collision response, Dynamic force, Inertial mass, Optical interferometer

  2. Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li+ Intercalation Particles

    NARCIS (Netherlands)

    Huang, R.W.J.M.; Chung, F.; Kelder, E.M.

    2006-01-01

    We present a semimathematical model for the simulation of the impedance spectra of a rechargeable lithium batteries consisting of porous electrodes with spherical Li+ intercalation particles. The particles are considered to have two distinct homogeneous phases as a result of the intercalation and

  3. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    Science.gov (United States)

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  4. Particle size determination in small solid propellant rocket motors using the diffractively scattered light method.

    OpenAIRE

    Cramer, Robert Grewelle.

    1982-01-01

    Approved for public release; distribution unlimited A dual beam apparatus was developed which simultaneously measured particle size (D32) at the entrance and exit of an exhaust nozzle of a small solid propellant rocket motor. The diameters were determined using measurements of dif fractiveiy scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide powder. Measurements were successfully made at both locations. Because of...

  5. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    Directory of Open Access Journals (Sweden)

    Liu Wenwei

    2017-01-01

    Full Text Available Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  6. Particle size, morphology and color tunable ZnO:Eu{sup 3+} nanophosphors via plant latex mediated green combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar, M. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Department of Physics, Acharya Institute of Technology, Bangalore 560 107 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Sharma, S.C. [B.S. Narayan Centre of Excellence for Advanced Materials, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Department of Mechanical Engineering, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Sudheer kumar, K.H. [Department of Environmental Science, Kuvempu University, Shankarghatta, Shimoga 577 451 (India); Department of Chemistry, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); B.S. Narayan Centre of Excellence for Advanced Materials, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Dhananjaya, N. [Department of Physics, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); B.S. Narayan Centre of Excellence for Advanced Materials, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Sunitha, D.V. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Shivakumara, C. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054 (India)

    2014-01-25

    Highlights: • ZnO:Eu{sup 3+} phosphors were prepared by green synthesis route. • Morphology and particle size was tuned by varying the concentration of plant latex. • The phosphor show excellent chromaticity coordinates in the white region. -- Abstract: Efficient ZnO:Eu{sup 3+} (1–11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu{sup 3+} (7 mol%) was found to be in the range 27–47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at ∼590, 615, 648 and 702 nm were attributed to the {sup 5}D{sub 0} → {sup 7}F{sub j(j=1,2,3,4)} transitions of Eu{sup 3+} ions. The highest PL intensity was recorded for 7 mol% with Eu{sup 3+} ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED’s. Further, present method was reliable, environmentally friendly and alternative to economical routes.

  7. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    Science.gov (United States)

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  8. Method to manufacture spherical fuel and breeder particles

    International Nuclear Information System (INIS)

    Huschka, H.; Kadner, M.

    1976-01-01

    Optimum properties of the pyrolytic carbon cladding layer deposited on fuel and breeder cores are best achieved by forming the layers into exact spherical shells. It is necessary to have a uniform shperical shape of the cores to be coated. This is achieved by converting an oscillating liquid jet flowing out of one or several nozzles, of uranium and/or thorium solutions which drop into an ammonia solution at a quantity of over 3000 drops per minute. The drops prior to plunging into the ammonia solution, according to the invention, firstly run through an ammonia gasfree fall to acquire the shperical shape, then they fall through a zone flowed-through by ammonia gas. The ammonia gas is introduced into the dropping zone so that it flows in the opposite direction to falling and so that in addition a horizontal cross-flowing of the gas between the drops is guaranteed. The spherical drops are thus hardened before entering the ammonia solution. They are then washed as usual, dried and sintered. 4 examples are given to prepare thorium dioxide, uranium carbide and (U,Th) mixed oxide particles. (IHOE) [de

  9. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  10. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    Science.gov (United States)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  11. Synthesis and characterization of spherical 2-diazo-4,6-dinitrophenol (DDNP)

    International Nuclear Information System (INIS)

    Yang Zongwei; Liu Yucun; Liu Dengcheng; Yan Liwei; Chen Ji

    2010-01-01

    Spherical 2-diazo-4,6-dinitrophenol (DDNP) with good flowability and controlled bulk density (0.65-0.95 g/cm 3 ) has been prepared at factory scale by the modified method using 4-methylphenol as crystal control ingredient. Results showed that the yield of product was increased by 5-10%, and the waste water was significantly decreased due to circulation use of waste water compared with traditional method. Synthesized spherical DDNP was characterized by IR, laser granularity measurement, SEM, HPLC and XRD. IR spectrum confirmed the structural features of spherical DDNP. The particle analysis revealed that the modified method could offer spherical DDNP with average particle size of 350 μm and high purity (>98.52%). The XRD peaks of spherical DDNP have similar diffraction angles as those of traditional DDNP. The DSC profile of spherical DDNP showed the exothermic decomposition in the temperature range of 161.2-188.5 deg. C. The product can be pressed at over 40 MPa without dead pressed phenomenon, and the minimum detonating charge of spherical DDNP was measured to be about 0.15 g. Furthermore, impact sensitivity test suggested that spherical DDNP is less sensitive than traditional DDNP.

  12. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  13. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  14. Influence of internal refractive index gradients on size measurements of spherically symmetric particles by phase Doppler anemometry.

    Science.gov (United States)

    Schneider, M; Hirleman, E D

    1994-04-20

    A model based on geometric optics for predicting the response of interferometric (phase Doppler) instruments for size measurements of particles with radially symmetric but inhomogeneous internal refractive index profiles is developed. The model and results are important for applications in which heat or mass transfer from the particles or droplets is significant, for example, in liquid-fuel combustion. To quantify the magnitude of potential bias errors introduced by the classical assumption of uniform internal properties on phase Doppler measurements, we compute calibration curves for a sequence of times during the evaporation of a decane droplet immersed in an environment of T = 2000 K and p = 10 bars. The results reveal considerable effects on the relation between phase difference and droplet diameter caused by the refractive index gradients present. The model provides an important tool to assess sizing uncertainties that can be expected when applying conventional (based on uniform properties) phase Doppler calibration curves in spray combustion and similar processes.

  15. The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.

    Science.gov (United States)

    1986-07-30

    means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the...photodecomposition of water (e.g. see (32-41)). It should be noted that the size range of the particles which will be most frequently used in dispersion

  16. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  17. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    Science.gov (United States)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  18. Porous spherical shells and microspheres by electrodispersion precipitation

    International Nuclear Information System (INIS)

    Harris, M.T.; Sisson, W.G.; Basaran, O.A.; Hayes, S.M.; Bobrowski, S.J.

    1994-01-01

    The ability to reproduce the synthesis of dense- and porous-microspheres and micron-sized spherical shells is very important in (a) the development of ceramics for structural, electronic, catalyst and thermal applications; and (b) the encapsulation of products for controlled-release of drugs, flavors and perfumes, and inks and dyes, and the protection of light-sensitive components and mechanical support of fragile materials. Larger metallic- and ceramic-spherical shells have been used in inertial confinement fusion (ICF) experiments and as catalyst supports. The current paper will focus on a recent technique that has been developed for synthesizing ceramic microspheres and micro-shells. Pulsed electric fields have been used to enhance the dispersion of aqueous metal (Zr and Al) salt solutions from a nozzle and into a nonconducting liquid continuous phase that is immiscible with the aqueous phase. The diameter of the resulting microdroplets ranged in size from approximately 0.1 to 10 μm. Precipitation of hydrous metal oxides occurred as ammonia, which was dissolved in varying amounts in the continuous phase, diffused into the aqueous microdroplets. Spherical shells were formed at higher ammonia concentrations and microspheres were produced at lower ammonia concentrations. Upon drying, dimples appeared in the particles that were synthesized at higher ammonia concentrations. The latter result accords with the well known fact that under certain conditions spherical shells collapse when a fluid is extracted from the core of the particle. No dimples were observed in the microspheres that were produced at lower ammonia concentrations. Analog X-ray dot maps for aluminum and zirconium were done to determine the spatial distribution of each metal in the particles

  19. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    Science.gov (United States)

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  20. Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    R.B. White; Yu.V. Yakovenko; Ya.I. Kolesnichenko

    2002-06-21

    The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the firs t cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found.

  1. Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Yakovenko, Yu.V.; Kolesnichenko, Ya.I.

    2002-01-01

    The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the first cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found

  2. An Analysis of Spherical Particles Distribution Randomly Packed in a Medium for the Monte Carlo Implicit Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Yong; Kim, Song Hyun; Shin, Chang Ho; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    In this study, as a preliminary study to develop an implicit method having high accuracy, the distribution characteristics of spherical particles were evaluated by using explicit modeling techniques in various volume packing fractions. This study was performed to evaluate implicitly simulated distribution of randomly packed spheres in a medium. At first, an explicit modeling method to simulate random packed spheres in a hexahedron medium was proposed. The distributed characteristics of l{sub p} and r{sub p}, which are used in the particle position sampling, was estimated. It is analyzed that the use of the direct exponential distribution, which is generally used in the implicit modeling, can cause the distribution bias of the spheres. It is expected that the findings in this study can be utilized for improving the accuracy in using the implicit method. Spherical particles, which are randomly distributed in medium, are utilized for the radiation shields, fusion reactor blanket, fuels of VHTR reactors. Due to the difficulty on the simulation of the stochastic distribution, Monte Carlo (MC) method has been mainly considered as the tool for the analysis of the particle transport. For the MC modeling of the spherical particles, three methods are known; repeated structure, explicit modeling, and implicit modeling. Implicit method (called as the track length sampling method) is a modeling method that is the sampling based modeling technique of each spherical geometry (or track length of the sphere) during the MC simulation. Implicit modeling method has advantages in high computational efficiency and user convenience. However, it is noted that the implicit method has lower modeling accuracy in various finite mediums.

  3. Highly dispersed spherical Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun; Zeng, Yanwei, E-mail: zengyw-njut@126.com, E-mail: stephen-zeng@njtech.edu.cn, E-mail: stephen-zeng@163.com; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering (China)

    2015-09-15

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi{sup 3+}, La{sup 3+} and Ti{sup 4+} ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization.

  4. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  5. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  6. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  7. Effect of geometric base roughness on size segregation

    Directory of Open Access Journals (Sweden)

    Jing L.

    2017-01-01

    Full Text Available The geometric roughness at boundaries has a profound impact on the dynamics of granular flows. For a bumpy base made of fixed particles, two major factors have been separately studied in the literature, namely, the size and spatial distribution of base particles. A recent work (Jing et al. 2016 has proposed a roughness indicator Ra, which combines both factors for any arbitrary bumpy base comprising equally-sized spheres. It is shown in mono-disperse flows that as Ra increases, a transition occurs from slip (Ra 0.62 conditions. This work focuses on such a phase transition in bi-disperse flows, in which Ra can be a function of time. As size segregation takes place, large particles migrate away from the bottom, leading to a variation of size ratio between flow- and base-particles. As a result, base roughness Ra evolves with the progress of segregation. Consistent with the slip/non-slip transition in mono-disperse flows, basal sliding arises at low values of Ra and the development of segregation might be affected; when Ra increases to a certain level (Ra > 0.62, non-slip condition is respected. This work extends the validity of Ra to bi-disperse flows, which can be used to understand the geometric boundary effect during segregation.

  8. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release

    International Nuclear Information System (INIS)

    Szegedi, A.; Popova, M.; Goshev, I.; Mihaly, J.

    2011-01-01

    MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N 2 physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choice of mesoporous material with the appropriate structural characteristics and surface functionality. -- Graphical Abstract: Ibuprofen delivery from the parent and amino-modified spherical MCM-41 materials with 100 nm (small) and 500 nm (large) particle sizes. Display Omitted Highlights: → Spherical type MCM-41 and SBA-15 with different particle sizes were modified by APTES. → Adsorption and release rate of ibuprofen were compared. → High degree of ibuprofen loading, slow release rate for MCM-41, the opposite for SBA-15. → MCM-41 with 100 nm particles was more stable and showed slower release rate

  9. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    Science.gov (United States)

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  10. Studies of mono-crystalline CVD diamond pixel detectors

    CERN Document Server

    Bartz, E; Atramentov, O; Yang, Z; Hall-Wilton, R; Schnetzer, S; Patel, R; Bugg, W; Hebda, P; Halyo, V; Hunt, A; Marlow, D; Steininger, H; Ryjov, V; Hits, D; Spanier, S; Pernicka, M; Johns, W; Doroshenko, J; Hollingsworth, M; Harrop, B; Farrow, C; Stone, R

    2011-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLTs mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope. Published by Elsevier B.V.

  11. Studies of mono-crystalline CVD diamond pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W. [University of Tennessee, Knoxville (United States); Hollingsworth, M., E-mail: mhollin3@utk.edu [University of Tennessee, Knoxville (United States); Spanier, S.; Yang, Z. [University of Tennessee, Knoxville (United States); Bartz, E.; Doroshenko, J.; Hits, D.; Schnetzer, S.; Stone, R.; Atramentov, O.; Patel, R.; Barker, A. [Rutgers University, Piscataway (United States); Hall-Wilton, R.; Ryjov, V.; Farrow, C. [CERN, Geneva (Switzerland); Pernicka, M.; Steininger, H. [HEPHY, Vienna (Austria); Johns, W. [Vanderbilt University, Nashville (United States); Halyo, V.; Harrop, B. [Princeton University, Princeton (United States); and others

    2011-09-11

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLT's mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope.

  12. Particle contamination effects in EUVL: enhanced theory for the analytical determination of critical particle sizes

    Science.gov (United States)

    Brandstetter, Gerd; Govindjee, Sanjay

    2012-03-01

    Existing analytical and numerical methodologies are discussed and then extended in order to calculate critical contamination-particle sizes, which will result in deleterious effects during EUVL E-chucking in the face of an error budget on the image-placement-error (IPE). The enhanced analytical models include a gap dependant clamping pressure formulation, the consideration of a general material law for realistic particle crushing and the influence of frictional contact. We present a discussion of the defects of the classical de-coupled modeling approach where particle crushing and mask/chuck indentation are separated from the global computation of mask bending. To repair this defect we present a new analytic approach based on an exact Hankel transform method which allows a fully coupled solution. This will capture the contribution of the mask indentation to the image-placement-error (estimated IPE increase of 20%). A fully coupled finite element model is used to validate the analytical models and to further investigate the impact of a mask back-side CrN-layer. The models are applied to existing experimental data with good agreement. For a standard material combination, a given IPE tolerance of 1 nm and a 15 kPa closing pressure, we derive bounds for single particles of cylindrical shape (radius × height < 44 μm) and spherical shape (diameter < 12 μm).

  13. Retrieval of size distribution for urban aerosols using multispectral optical data

    International Nuclear Information System (INIS)

    Kocifaj, M; Horvath, H

    2005-01-01

    We are dealing with retrieval of aerosol size distribution using multispectral extinction data collected in highly industrialized urban region. Especially, a role of the particle morphology is in the focus of this work. As well known, at present, still many retrieval algorithms are based on simple Lorenz-Mie's theory applicable for perfectly spherical and homogeneous particles, because that approach is fast and can handle the whole size distribution of particles. However, the solid-phase aerosols never render simple geometries, and rather than being spherical or spheroidal they are quite irregular. It is shown, that identification of the modal radius a M of both, the size distribution f(a) and the distribution of geometrical cross section s(a) of aerosol particles is not significantly influenced by the particle's morphology in case the aspect ratio is smaller than 2 and the particles are randomly oriented in the atmospheric environment. On the other hand, the amount of medium-sized particles (radius of which is larger than the modal radius) can be underestimated if distribution of non-spherical grains is substituted by system of volume equivalent spheres. Retrieved volume content of fine aerosols (as characterized by PM 2.5 and PM 1.0 ) can be potentially affected by inappropriate assumption on the particle shape

  14. Encapsulation of resveratrol in spherical particles of food grade hydrogels

    Directory of Open Access Journals (Sweden)

    Balanč Bojana D.

    2017-01-01

    Full Text Available The paper reports about the preparation and characterization of hydrogel particles containing liposomes loaded with resveratrol as an active compound. The materials used for preparation of the particles were chosen to be suitable for food industry. Different polymer concentrations affect particles shape, size, size distribution, as well as the release kinetics of resveratrol. The diameter of particles varied from 360 to 754 μm, while the narrow size distribution was observed for all types of particles. Release studies were performed in Franz diffusion cell and the results showed the prolonged release of resveratrol from all samples, but the sample with the highest content of polymer (2.5% w/w in particular stood out. The research provides useful information about liposomes containing active compound encapsulated in hydrogel matrices and offers the basis for its application in the food industry.

  15. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...

  16. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  17. Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs

    International Nuclear Information System (INIS)

    Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung

    2008-01-01

    This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges

  18. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    International Nuclear Information System (INIS)

    Jr, R M Marinho; Magalhaes, N S; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection

  19. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    CERN Document Server

    Marinho, R M; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection.

  20. Cr/alpha-Cr2O3 monodispersed spherical core-shell particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-07-01

    Full Text Available as reported. The coated Cr/alpha-Cr2O3 spherical particles on rough copper substrates by a simple self-assembly-like method were characterized by scanning electron microscopy, energy dispersive spectrometry, Raman spectroscopy, and diffuse reflectance UV...

  1. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    International Nuclear Information System (INIS)

    Hu Jun; Dong Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-01-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer–Emmett–Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of ∼100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter (D 50% ) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m 2 /g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  2. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun; Dong Yuancai [Institute of Chemical and Engineering Sciences (Singapore); Pastorin, Giorgia, E-mail: phapg@nus.edu.sg [National University of Singapore, Department of Pharmacy (Singapore); Ng, Wai Kiong, E-mail: ng_wai_kiong@ices.a-star.edu.sg; Tan, Reginald B. H. [Institute of Chemical and Engineering Sciences (Singapore)

    2013-04-15

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of {approx}100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter (D{sub 50%}) of 2.25 {+-} 0.08 {mu}m and a specific surface area of 158.63 {+-} 3.27 m{sup 2}/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  3. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    Science.gov (United States)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  4. Optical Response of CeB_6 Nanoparticles with Different Sizes and Shapes from Discrete-Dipole Approximation

    International Nuclear Information System (INIS)

    Chao Luo-Meng; Bao Li-Hong; Tegus, O.

    2015-01-01

    The discrete dipole approximation is used to investigate the optical response of CeB_6 nanoparticles with different sizes and different shapes. The extinction valley in the visible light range becomes narrower and the extinction peak at the near infrared region (NIR) is red-shifted with the increasing particle size. In addition, the extinction peak value of the spherical particle decreases more rapidly than that of cubic-shaped particle with an increase in the particle size, and the cubic-shaped particles exhibit better performance on blocking NIR radiation than spherical-shaped particles. The calculation results coincide well with the reported experimental results. (paper)

  5. Developement of Spherical Polyurethane Beads

    Institute of Scientific and Technical Information of China (English)

    K. Maeda; H. Ohmori; H. Gyotoku

    2005-01-01

    @@ 1Results and Discussion We established a new method to produce the spherical polyurethane beads which have narrower distribution of particle size. This narrower distribution was achieved by the polyurethane prepolymer which contains ketimine as a blocked chain-extending agent. Firstly, the prepolymer is dispersed into the aqueous solution containing surfactant. Secondaly, water comes into the inside of prepolymer as oil phase. Thirdly, ketimine is hydrolyzed to amine, and amine reacts with prepolymer immediately to be polyurethane.Our spherical polyurethane beads are very suitable for automotive interior parts especially for instrument panel cover sheet producing under the slush molding method, because of good process ability, excellent durability to the sunlight and mechanical properties at low temperature. See Fig. 1 ,Fig. 2 and Fig. 3 (Page 820).

  6. Spheronization process particle kinematics determined by discrete element simulations and particle image velocimentry measurements.

    Science.gov (United States)

    Koester, Martin; García, R Edwin; Thommes, Markus

    2014-12-30

    Spheronization is an important pharmaceutical manufacturing technique to produce spherical agglomerates of 0.5-2mm diameter. These pellets have a narrow size distribution and a spherical shape. During the spheronization process, the extruded cylindrical strands break in short cylinders and evolve from a cylindrical to a spherical state by deformation and attrition/agglomeration mechanisms. Using the discrete element method, an integrated modeling-experimental framework is presented, that captures the particle motion during the spheronization process. Simulations were directly compared and validated against particle image velocimetry (PIV) experiments with monodisperse spherical and dry γ-Al2O3 particles. demonstrate a characteristic torus like flow pattern, with particle velocities about three times slower than the rotation speed of the friction plate. Five characteristic zones controlling the spheronization process are identified: Zone I, where particles undergo shear forces that favors attrition and contributes material to the agglomeration process; Zone II, where the static wall contributes to the mass exchange between particles; Zone III, where gravitational forces combined with particle motion induce particles to collide with the moving plate and re-enter Zone I; Zone IV, where a subpopulation of particles are ejected into the air when in contact with the friction plate structure; and Zone V where the low poloidal velocity favors a stagnant particle population and is entirely controlled by the batch size. These new insights in to the particle motion are leading to deeper process understanding, e.g., the effect of load and rotation speed to the pellet formation kinetics. This could be beneficial for the optimization of a manufacturing process as well as for the development of new formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  8. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  9. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  10. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  11. Effect of annealing on particle size, microstructure and gas sensing properties of Mn substituted CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ranjith, E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Kamzin, A.S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Janani, K. [Department of Physics, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu (India)

    2016-11-01

    Microstructure, morphological and gas sensor studies of Mn substituted cobalt ferrite nanoparticles synthesized by a simple evaporation method and auto- combustion method. The influence of heat treatment on phase and particle size of spinel ferrite nanoparticles were determined by X-ray diffraction and Mossbauer spectroscopy. The XRD study reveals that the lattice constant and crystallite size of the samples increases with the increase of annealing temperature. Last one was confirmed by Mossbauer data. The lowest size of particles of MnCoFe{sub 2}O{sub 4} (~3 nm) is obtained by auto combustion method. The spherical shaped nanoparticles are recorded by TEM. Furthermore, conductance response of Mn–Co ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG) which showed a sensor response of ~0.19 at an optimum operating temperature of 250 °C. - Highlights: • ~3 nm sized particles were prepared by auto combustion method. • Mossbauer study was analyzed for different annealed samples. • The size of the particles increased with increasing annealing temperature.

  12. Controlled electrosprayed formation of non-spherical microparticles

    Science.gov (United States)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.

    2017-11-01

    Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.

  13. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries

    International Nuclear Information System (INIS)

    Schmuelling, Guido; Meyer, Hinrich-Wilhelm; Placke, Tobias; Winter, Martin; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen

    2014-01-01

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnO x and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry. (paper)

  14. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  15. Fly ash particles spheroidization using low temperature plasma energy

    OpenAIRE

    Shekhovtsov, V. V.; Volokitin, O. G.; Vitske, Rudolf Evaldovich; Kondratyuk, Alexey Alekseevich

    2016-01-01

    The paper presents the investigations on producing spherical particles 65-110 [mu]m in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition ...

  16. A novel process route for the production of spherical SLS polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina; Winzer, Bettina; Toni, Franziska; Wirth, Karl-Ernst; Peukert, Wolfgang [Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen (Germany)

    2015-05-22

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particle size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.

  17. A novel process route for the production of spherical SLS polymer powders

    International Nuclear Information System (INIS)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina; Winzer, Bettina; Toni, Franziska; Wirth, Karl-Ernst; Peukert, Wolfgang

    2015-01-01

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particle size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads

  18. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    Science.gov (United States)

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L-polylactide

    Directory of Open Access Journals (Sweden)

    Kalani M

    2011-05-01

    Full Text Available Mahshid Kalani, Robiah Yunus, Norhafizah AbdullahChemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor Darul Ehsan, MalaysiaBackground: The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.Methods and results: The optimized process parameters resulted in production of nanoencapsulated paracetamol in L-polylactide with a mean diameter of approximately 300 nm at 120 bar, 30°C, and a polymer concentration of 16 ppm. Thermogravimetric analysis illustrated the thermal characteristics of the nanoparticles. The high electrical charge on the surface of the nanoparticles caused the particles to repel each other, with the high negative zeta potential preventing flocculation.Conclusion: Our results illustrate the effect of different process parameters on particle size and morphology, and validate results obtained via RSM statistical software. Furthermore, the in vitro drug-release profile is consistent with a Korsmeyer–Peppas kinetic model.Keywords: supercritical, antisolvent, encapsulation, nanoparticles, biodegradable polymer, optimization, drug delivery

  20. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    Science.gov (United States)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  1. Dynamic response of sand particles impacted by a rigid spherical object

    Science.gov (United States)

    Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.

    2018-06-01

    A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.

  2. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  3. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  4. Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor

    Science.gov (United States)

    Liao, L.; Meneghini, R.

    2009-04-01

    The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric

  5. Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at $\\sqrt{s}$=0.9, 2.76 and 7 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sul-Ah; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Carrillo Montoya, Camilo Andres; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, Mihir Ranjan; Dutta Majumdar, AK; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonschior, Alexey; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Innocenti, Pier Giorgio; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Marian; Ivanov, Andrey; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jang, Haeng Jin; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Palash; Khan, Mohisin Mohammed; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Mimae; Kim, Minwoo; Kim, Seon Hee; Kim, Dong Jo; Kim, Se Yong; Kim, Jonghyun; Kim, Jin Sook; Kim, Beomkyu; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, AB; Kurepin, A; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lazzeroni, Cristina; Lea, Ramona; Le Bornec, Yves; Lechman, Mateusz; Lee, Sung Chul; Lee, Ki Sang; Lee, Graham Richard; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Mohanty, Ajit Kumar; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Satoshi; Sano, Masato; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Sharma, Rohini; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Tinku; Sinha, Bikash; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Vladimir; Wagner, Boris; Wan, Renzhuo; Wang, Mengliang; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilk, Alexander; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Haitao; Zhou, Fengchu; Zhou, Daicui; Zhou, You; Zhu, Jianhui; Zhu, Jianlin; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2012-09-18

    Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\\sqrt{s}$=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\\rm T}\\geq0.5$ GeV/c in $|\\eta|\\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\\rm ch}$) is reported for events with different $p_{\\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\\rm ch}...

  6. Dark matter searches with a mono-Z′ jet

    International Nuclear Information System (INIS)

    Bai, Yang; Bourbeau, James; Lin, Tongyan

    2015-01-01

    We study collider signatures of a class of dark matter models with a GeV-scale dark Z ′ . At hadron colliders, the production of dark matter particles naturally leads to associated production of the Z ′ , which can appear as a narrow jet after it decays hadronically. Contrary to the usual mono-jet signal from initial state radiation, the final state radiation of dark matter can generate the signature of a mono-Z ′ jet plus missing transverse energy. Performing a jet-substructure analysis to tag the Z ′ jet, we show that these Z ′ jets can be distinguished from QCD jets at high significance. Compared to mono-jets, a dedicated search for mono-Z ′ jet events can lead to over an order of magnitude stronger bounds on the interpreted dark matter-nucleon scattering cross sections.

  7. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  8. Prediction of the thermal behavior of a particle spherical fuel element using GITT

    International Nuclear Information System (INIS)

    Pessoa, C.V.; Oliveira, Claudio L. de; Jian, Su

    2008-01-01

    In this work, the transient and steady state heat conduction in a spherical fuel element of a pebble-bed high temperature were studied. This pebble element is composed by a particulate region with spherical inclusions, the fuel UO 2 particles, dispersed in a graphite matrix. A convective heat transfer by helium occurs on the outer surface of the fuel element. The two-energy equation model for the case of pure conduction was applied to this particulate spherical element, generating two macroscopic temperatures, respectively, of the inclusions and of the matrix. The transient analysis was carried out by using the Generalized Integral Transform Technique (GITT) that requires low computational efforts and allows a fast evaluation of the two macroscopic transient temperatures of the particulate region. The solution by GITT leads to a system of ordinary differential equations with the unknown transformed potentials. The mechanical properties (thermal conductivity and specific heat) of the materials were supposed not to depend on the temperature and to be uniform in each region. (author)

  9. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    NARCIS (Netherlands)

    Paquay, S.; Both, G.-J.; Van Der Schoot, P.P.A.M.

    2017-01-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms

  10. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    Science.gov (United States)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  11. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  12. What's Mono?

    Science.gov (United States)

    ... mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you're absolutely correct. But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused by the Epstein-Barr virus (EBV), which is a type of herpes ...

  13. Glass-liquid-glass reentrance in mono-component colloidal dispersions

    International Nuclear Information System (INIS)

    Ramirez-Gonzalez, P E; Medina-Noyola, M; Vizcarra-Rendon, A; Guevara-Rodriguez, F de J

    2008-01-01

    The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is employed to describe the ergodic-non-ergodic transition in model mono-disperse colloidal dispersions whose particles interact through hard-sphere plus short-ranged attractive forces. The ergodic-non-ergodic phase diagram in the temperature-concentration state space is determined for the hard-sphere plus attractive Yukawa model within the mean spherical approximation for the static structure factor by solving a remarkably simple equation for the localization length of the colloidal particles. Finite real values of this property signals non-ergodicity and determines the non-ergodic parameters f(k) and f s (k). The resulting phase diagram for this system, which involves the existence of reentrant (repulsive and attractive) glass states, is compared with the corresponding prediction of mode coupling theory. Although both theories coincide in the general features of this phase diagram, there are also clear qualitative differences. One of the most relevant is the SCGLE prediction that the ergodic-attractive glass transition does not preempt the gas-liquid phase transition, but always intersects the corresponding spinodal curve on its high-concentration side. We also calculate the ergodic-non-ergodic phase diagram for the sticky hard-sphere model to illustrate the dependence of the predicted SCGLE dynamic phase diagram on the choice of one important constituent element of the SCGLE theory

  14. Glass-liquid-glass reentrance in mono-component colloidal dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Gonzalez, P E; Medina-Noyola, M [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, SLP (Mexico); Vizcarra-Rendon, A [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Paseo la Bufa y Calzada Solidaridad, 98600, Zacatecas, Zac. (Mexico); Guevara-Rodriguez, F de J [Coordinacion de IngenierIa Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)

    2008-05-21

    The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is employed to describe the ergodic-non-ergodic transition in model mono-disperse colloidal dispersions whose particles interact through hard-sphere plus short-ranged attractive forces. The ergodic-non-ergodic phase diagram in the temperature-concentration state space is determined for the hard-sphere plus attractive Yukawa model within the mean spherical approximation for the static structure factor by solving a remarkably simple equation for the localization length of the colloidal particles. Finite real values of this property signals non-ergodicity and determines the non-ergodic parameters f(k) and f{sub s}(k). The resulting phase diagram for this system, which involves the existence of reentrant (repulsive and attractive) glass states, is compared with the corresponding prediction of mode coupling theory. Although both theories coincide in the general features of this phase diagram, there are also clear qualitative differences. One of the most relevant is the SCGLE prediction that the ergodic-attractive glass transition does not preempt the gas-liquid phase transition, but always intersects the corresponding spinodal curve on its high-concentration side. We also calculate the ergodic-non-ergodic phase diagram for the sticky hard-sphere model to illustrate the dependence of the predicted SCGLE dynamic phase diagram on the choice of one important constituent element of the SCGLE theory.

  15. The magnetohydrodynamic force experienced by spherical iron particles in liquid metal

    International Nuclear Information System (INIS)

    Ščepanskis, Mihails; Jakovičs, Andris

    2016-01-01

    The paper contains a theoretical investigation of magnetohydrodynamic force experienced by iron particles (well-conducting and ferromagnetic) in well-conducting liquid. The investigation is performed by extending the Leenov and Kolin's theory to take into account the second-order effect. Therefore, the limits of the parent model are taken over to the present results. It is found that the effective conductivity of iron particles in liquid metal, which is important for practical application of the theoretically obtained force, is approximately equal to 1.5·10"6 S/m. The last result is obtained using a quasi-empirical approach – a comparison of experimental results with the results of the numerical simulation that was performed for various conductivities of the iron particles. - Highlights: • We found the expression of an MHD force experienced by a spherical iron particle in a liquid metal taking into account the second order effect additionally to Leenov & Kolin’s theoretical solution. • We found the effective conductivity of an iron particle in a liquid metal in quasi-empirical way equal to 1.5·10"6 S/m. • It is important to use the expression of an MHD force, which takes into account the second-order effect, as well as the correction for effective conductivity of a particle, to describe behaviour of iron particles in liquid metal flows, which are under influence or induced by the Lorentz force.

  16. Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport

    International Nuclear Information System (INIS)

    Kotiluoto, P.

    2007-05-01

    A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications. (orig.)

  17. Neutronic calculations of AFPR-100 reactor based on Spherical Cermet Fuel particles

    International Nuclear Information System (INIS)

    Benchrif, A.; Chetaine, A.; Amsil, H.

    2013-01-01

    Highlights: • AFPR-100 reactor considered as a small nuclear reactor without on-site refueling originally based on TRISO micro-fuel element. • The AFPR-100 reactor was re-designed using the new Spherical Cermet fuel element. • The adoption of the Cermet fuel instead of TRISO fuel reduces the core lifetime operation by 3.1 equivalent full power years. • We discussed the new micro-fuel element candidate for small and medium sized reactors. - Abstract: The Atoms For Peace Reactor (AFPR-100), as a 100 MW(e) without the need of on-site refueling, was originally based on UO2 TRISO fuel coated particles embedded in a carbon matrix directly cooled by light water. AFPR-100 is considered as a small nuclear reactor without open-vessel refueling which is proposed by Pacific Northwest National Laboratory (PNNL). An account of significant irradiation swelling in the silicon carbide fission product barrier coating layer of TRISO fuel element, a Spherical Cermet Fuel element has been proposed. Indeed, the new fuel concept, which was developed by PNNL, consists of changing the pyro-carbon and ceramic coatings that are incompatible with low temperature by Zirconium. The latter was chosen to avoid any potential Wigner energy effect issues in the TRISO fuel element. Actually, the purpose of this study is to assess the goal of AFPR-100 concept using the Cermet fuel; undeniably, the fuel core lifetime prediction may be extended for reasonably long period without on-site refueling. In fact, we investigated some neutronic parameters of reactor core by the calculation code SRAC95. The results suggest that the core fuel lifetime beyond 12 equivalent full power years (EFPYs) is possible. Hence, the adoption of Cermet fuel concept shows a core lifetime decrease of about 3.1 EFPY

  18. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    Science.gov (United States)

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  19. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    Science.gov (United States)

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  20. The role of soil's particle-size fractions in the adsorption of heavy metals

    Directory of Open Access Journals (Sweden)

    Saglara Mandzhieva

    2014-08-01

    Full Text Available The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by southern chernozem and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and poly-element contamination decreased with the decreasing proportion of fine fractions in the soil. The aim of this work was to study the effect of the particle-size distribution and the silt and physical clay fractions on the adsorption of copper, lead, and zinc by chernozems. The objects of study included the upper humus horizons of different southern chernozems of the Rostov oblast. To study the ion-exchange adsorption of the Cu2+, Pb2+, and Zn2+ cations, the soil in the natural ionic form was disaggregated using a pestle with a rubber head and sieved through a 1mm sieve. The soil samples were treated with solutions of Cu2+, Pb2+, and Zn2+ nitrates and acetates at the separate and simultaneous presence of heavy metals (HMs. In the solutions with the simultaneous presence of HMs, their molar concentrations were similar. The concentrations of the initial solutions varied in the range from 0.05 to 1 mM/l. The soil: solution ratio was 1:10. The contents of HMs in the filtrates were determined by atomic absorption spectrophotometry. The contents of adsorbed HM cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The increase in the degree of dispersion of the particle-size fractions in similar soils resulted not only in an increase in the content of adsorbed HMs but also in an enhancement of their fixation on the surface of the fine particles. Therefore, the adsorption capacity of the Lower Don soils for Cu2+, Pb2+, and Zn2+ decreased in the following sequence: clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. This was related to the qualitative differences in the mineralogy and chemistry of

  1. Influence of zeolite shape and particle size on their capacity to adsorb uremic toxin as powders and as fillers in membranes.

    Science.gov (United States)

    Lu, Limin; Chen, Chen; Samarasekera, Champika; Yeow, John T W

    2017-08-01

    Membranes with zeolites are promising for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the size and the shape of zeolite particles can potentially influence the performance of the membranes with respect of creatinine uptake level, it is not clear what sizes and shapes lead to better performance. In this paper, we carry out experiments to answer this question. Spherical microparticle 840, spherical nanoparticle P-87 and rod-like nanoparticle P-371 zeolites were chosen to be used in all the experiments. Their creatinine uptake levels were first measured as powders in creatinine solutions with different concentrations, volumes and adsorption times. Then, nanofibrous membranes with zeolites were electrospun and their ability to adsorb creatinine was measured and compared against their respective powders' creatinine uptake level. The experiment shows that the zeolites have similar creatinine uptake ability as powders. However, they have significantly different creatinine uptake ability after being incorporated inside the membranes. Spherical microparticle 840 in the membrane presented the best creatinine uptake ability, at 8957 µg g -1 , which was half of its powders'. On the other hand, P-87 presented largely decreased, while P-371 presented even lower creatinine uptake ability in membranes when compared to respective powders'. The results shows that microparticle and sphere shaped particles perform better inside the membranes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1594-1601, 2017. © 2016 Wiley Periodicals, Inc.

  2. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Bakhshayesh, A.M.; Mohammadi, M.R.

    2013-01-01

    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO 2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO 2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film had nanostructured and porous morphology containing uniform spherical particles with diameter about 2.5 μm. The spherical particles were made of small nanoparticles with average grain size of 60 nm improving light scattering and dye loading of the DSSC. Moreover, atomic force microscope (AFM) analysis verified that the roughness mean square of prepared electrode was low, enhancing electron transport to the counter electrode. Photovoltaic measurements showed that solar cell made of polymeric gel process had higher photovoltaic performance than that made of conventional paste. An enhancement of power conversion efficiency from 4.54%, for conventional paste, to 6.21%, for polymeric gel process, was achieved. Electrochemical impedance spectroscopy (EIS) study showed that the recombination process in solar cell made of polymeric gel process was slower than that in solar cell made of conventional paste. The presented strategy would open up new insight into fabrication of low-cost TiO 2 DSSCs with high power conversion efficiency

  3. Initiation of explosive mixtures having multi-sized structures

    Science.gov (United States)

    Vasil'ev, A. A.; Vasiliev, V. A.; Trotsyuk, A. V.

    2016-10-01

    Theory of strong blast was used as the basis for the experimental method of determining of the energy of source which provides the initiation of combustible mixture. For mono-fuel mixtures the following parameters were experimentally determined at testing: the critical initiation energy of a cylindrical detonation wave in mixtures 2H2+O2 and C2H2+2.5O2 (exploding wire); the critical initiation energy of a spherical detonation in a mixture of C2H2+2.5O2 (electrical discharge). Similarly, for the double-fuel mixtures of acetylene - nitrous oxide - oxygen (having bifurcation cellular structures) the critical initiation energy of spherical wave was determined also. It was found that for the stoichiometric mixture on both fuel components the critical energy of mixture with the bifurcation structure was undervalued by several times in comparison with the value of the critical energy for the mono-fuel mixture, in which the cell size at a given pressure is determined by the large scale of bifurcation cells. This result shows the decrease of the critical energy with an increase of the number of "hot spots", which are the numerous areas of collision of the transverse waves of large and small scales in a mixture with bifurcation properties.

  4. Vibro-spring particle size distribution analyser

    International Nuclear Information System (INIS)

    Patel, Ketan Shantilal

    2002-01-01

    This thesis describes the design and development of an automated pre-production particle size distribution analyser for particles in the 20 - 2000 μm size range. This work is follow up to the vibro-spring particle sizer reported by Shaeri. In its most basic form, the instrument comprises a horizontally held closed coil helical spring that is partly filled with the test powder and sinusoidally vibrated in the transverse direction. Particle size distribution data are obtained by stretching the spring to known lengths and measuring the mass of the powder discharged from the spring's coils. The size of the particles on the other hand is determined from the spring 'intercoil' distance. The instrument developed by Shaeri had limited use due to its inability to measure sample mass directly. For the device reported here, modifications are made to the original configurations to establish means of direct sample mass measurement. The feasibility of techniques for measuring the mass of powder retained within the spring are investigated in detail. Initially, the measurement of mass is executed in-situ from the vibration characteristics based on the spring's first harmonic resonant frequency. This method is often erratic and unreliable due to the particle-particle-spring wall interactions and the spring bending. An much more successful alternative is found from a more complicated arrangement in which the spring forms part of a stiff cantilever system pivoted along its main axis. Here, the sample mass is determined in the 'static mode' by monitoring the cantilever beam's deflection following the wanton termination of vibration. The system performance has been optimised through the variations of the mechanical design of the key components and the operating procedure as well as taking into account the effect of changes in the ambient temperature on the system's response. The thesis also describes the design and development of the ancillary mechanisms. These include the pneumatic

  5. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  6. Understanding the polarization signal of spherical particles for microwave limb radiances

    International Nuclear Information System (INIS)

    Teichmann, C.; Buehler, S.A.; Emde, C.

    2006-01-01

    This paper presents a simple conceptual model to explain that even spherical scatterers lead to a polarization difference signal for microwave limb radiances. The conceptual model relates the polarization difference measured by a limb-looking sensor situated inside a cloud with the anisotropy of the radiation. In the simulations, it was assumed that the cloud consists of spherical ice particles with a radius of 68.5μm which were situated between 10.6 and 12.3km altitude. The frequencies 318 and 500GHz were considered. The results of the conceptual model were compared to the results of the fully polarized scattering model ARTS-1-1. The comparison showed a good qualitative agreement. The polarization difference decreases inside the cloud with increasing height and changes sign. This behavior can be related to a different amount of radiation coming from the atmosphere above and below the cloud, compared to the amount of radiation coming from the sides. The sign of polarization difference of the scattered radiation is opposite for these two radiation sources

  7. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  8. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  9. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2016-01-01

    Full Text Available Application of Enhanced Oil Recovery (EOR in oil and gas industry is very important to increase oil recovery and prolong the lifetime of a reservoir but it has been very costly and losing properties of EOR agent due to harsh condition. Nanoparticles have been used in EOR application since they are not degradable in reservoir condition and used in smaller amount compared to polymer usage. Commonly, EOR techniques are focusing on increasing the sweep efficiency by controlling the mobility ratio between reservoir fluid and injected fluid. Thus, this research aimed to analyze the nanofluid viscosity at different particle size and shape, volumetric concentration and types of dispersing fluid, as well as to determine the oil recovery performance at different nanofluid concentration. The nanofluid viscosity was investigated at nanoparticle sizes of 15nm and 60nm and shapes of 15nm spherical-solid and porous. Five nanofluid samples with concentration ranging from 0.1wt.% to 7wt.% were used to investigate the effect of volumetric concentration. Distilled water, ethanol, ethylene glycol (EG and brine were used for the effect of dispersing fluids. Oil recovery was investigated at five different concentrations of nanofluid samples through flooding test. It was found that viscosity of nanofluid increased with decreasing particle size and increasing volumetric concentration. Solid shape particle and increasing dispersing fluid viscosity resulted in higher nanofluid viscosity. The higher the nanofluid concentration, the higher the oil recovery obtained. It can be concluded that nanofluid properties have been significantly affected by the environment and the particle used for potential EOR application.

  10. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    Science.gov (United States)

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest

  11. Particle effects on fish gills

    DEFF Research Database (Denmark)

    Lu, Cao; Kania, Per W.; Buchmann, Kurt

    2018-01-01

    Particles composed of inorganic, organic and/or biological materials occur in both natural water bodies and aquaculture facilities. They are expected to affect fish health through a direct chemical, mechanical and biological interaction with gills during ventilation but the nature of the reactions...... and the relative importance of mechanical versus chemical and biological stimulation are unknown. The present work presents an immune gene expression method for evaluation of gill disturbance and sets a baseline for the mechanical influence on fish gills of chemically inert spherical particles. The method may...... be applied to investigate particle impact at different combinations of temperature, fish size, water quality and particle composition. Spherical polystyrene particles (diameters 0.2 μm, 1 μm, 20 μm, 40 μm and 90 μm) were adopted as the particle model and the rainbow trout (Oncorhynchus mykiss) fingerlings...

  12. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  13. Field dependent response of magnetorheological elastomers utilizing spherical Fe particles versus Fe nanowires

    International Nuclear Information System (INIS)

    Song, H J; Wereley, N M; Bell, R C; Planinsek, J L; II, J A Filer

    2009-01-01

    This study compares the dynamic response of nanowire-based magnetorheological elastomers (MREs), to those containing conventional spherical particles. MRE samples were fabricated by curing the iron particle laden elastomeric material in a magnetic field. Material characteristics of the MRE samples were evaluated using a material test machine that was modified to measure static and frequency dependent characteristics of these samples under different magnetic fields. The MRE samples consisted of a silicone rubber matrix containing various weight fractions of iron particles of differing morphology. Nanowires were used to enhance the interaction forces and contact area between particles. The static and dynamic properties of the MREs were evaluated under a compressive load for the various compositions and weight fractions. The stress vs. strain characteristics were measured for each sample. The equivalent damping coefficient of the MRE samples was measured and characterized under magnetic fields of differing intensities. The dynamic characteristic (dynamic stiffness) was measured under sinusoidal excitation in the frequency domain.

  14. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. EFFECTS OF EFFECTS OF PARTICLE SIZE DISTRIBUTION ...

    African Journals Online (AJOL)

    eobe

    The parameters examined were: moisture content, particle size distribution, total isture content, particle size distribution, total hydrocarbon content, soil pH, available nitrogen, available phosphorus, total heterotrophic bacteria and fungi count. The analysis of the soil characteristics throughout the remediation period showed ...

  17. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  18. Limitation of the Mellin transform for small angle scattering by nearly spherical particles

    International Nuclear Information System (INIS)

    Melone, S.; Puliti, P.

    1983-01-01

    An analysis of the limit of validity of the Mellin transform when applied to small angle scattering curves produced by nearly spherical particles, i.e. by ellipsoids of semi-axes, a, a, va, was performed. The width of the assumed Gaussian distribution for the v values was used as a parameter. When this width tends to zero the inaccuracy of the Mellin transform vanishes as expected. However the inaccuracy becomes appreciable for large values of the width. In spite of this, the total volume fraction and the average radius of the scattering particles is also obtained by the Mellin transform with very high accuracy for large values of the width of the Gaussian distribution. (orig.)

  19. A proposal on alternative sampling-based modeling method of spherical particles in stochastic media for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Lee, Jae Yong; KIm, Do Hyun; Kim, Jong Kyung [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Chord length sampling method in Monte Carlo simulations is a method used to model spherical particles with random sampling technique in a stochastic media. It has received attention due to the high calculation efficiency as well as user convenience; however, a technical issue regarding boundary effect has been noted. In this study, after analyzing the distribution characteristics of spherical particles using an explicit method, an alternative chord length sampling method is proposed. In addition, for modeling in finite media, a correction method of the boundary effect is proposed. Using the proposed method, sample probability distributions and relative errors were estimated and compared with those calculated by the explicit method. The results show that the reconstruction ability and modeling accuracy of the particle probability distribution with the proposed method were considerably high. Also, from the local packing fraction results, the proposed method can successfully solve the boundary effect problem. It is expected that the proposed method can contribute to the increasing of the modeling accuracy in stochastic media.

  20. A proposal on alternative sampling-based modeling method of spherical particles in stochastic media for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Lee, Jae Yong; KIm, Do Hyun; Kim, Jong Kyung; Noh, Jae Man

    2015-01-01

    Chord length sampling method in Monte Carlo simulations is a method used to model spherical particles with random sampling technique in a stochastic media. It has received attention due to the high calculation efficiency as well as user convenience; however, a technical issue regarding boundary effect has been noted. In this study, after analyzing the distribution characteristics of spherical particles using an explicit method, an alternative chord length sampling method is proposed. In addition, for modeling in finite media, a correction method of the boundary effect is proposed. Using the proposed method, sample probability distributions and relative errors were estimated and compared with those calculated by the explicit method. The results show that the reconstruction ability and modeling accuracy of the particle probability distribution with the proposed method were considerably high. Also, from the local packing fraction results, the proposed method can successfully solve the boundary effect problem. It is expected that the proposed method can contribute to the increasing of the modeling accuracy in stochastic media

  1. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  2. Spherical oligo-silicic acid SOSA disclosed as possible endogenous digitalis-like factor

    Directory of Open Access Journals (Sweden)

    Franz eKerek

    2015-01-01

    Full Text Available Na+/K+-ATPase is a membrane ion-transporter protein, specifically inhibited by digitalis glycosides used in cardiac-therapy. The existence in mammals of some endogenous digitalis-like factors (EDLF as presumed ATPase ligands is generally accepted. But the chemical structure of these factors remained elusive because no weighable amounts of pure EDLF have been isolated. Recent high resolution crystal structure data of Na+/K+-ATPase have located the hydrophobic binding pocket of the steroid glycoside ouabain. Our recently disclosed spherical oligo-silicic acids (SOSA fulfill the main criteria to be identified with the presumed EDL factor. SOSA was found as a very potent inhibitor of the Na+/K+-ATPase, Ca2+-ATPase, H+/K+-ATPase and of K-dp-ATPase, with IC50 values between 0.2-0.5µg/ml. These findings are even more astonishing while so far, neither mono silicic acid nor its poly-condensed derivatives have been remarked biologically active. With the diameter ϕ between 1 - 3nm, SOSA still belong to molecular species definitely smaller than silica nano-particles with ϕ >5nm. In SOSA molecules almost all Si-OH bonds are displayed on the external shell which facilitates the binding to hydrophilic ATPase domains. SOSA is stable for long-term in solution but is sensitive to freeze-drying which could explain the failure of countless attempts to isolate pure EDLF. There is a strong resemblance between SOSA and vanadates, the previously known general inhibitors of P-type ATPases. SOSA may be generated endogenously by spherical oligomerization of the mono-silicic acid ubiquitously present in animal cells and fluids. Based on the finding that the SOSA structure is sensitive to the concentration and nature of the cationic species a presumably archaic mechanism to regulate the activity of the ATPase pumps is proposed.

  3. Suppression of coffee ring: (Particle) size matters

    Science.gov (United States)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  4. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    International Nuclear Information System (INIS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-01-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n  = −1 or −2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction. (paper)

  5. Hindrance Velocity Model for Phase Segregation in Suspensions of Poly-dispersed Randomly Oriented Spheroids

    Science.gov (United States)

    Faroughi, S. A.; Huber, C.

    2015-12-01

    Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with

  6. Shape Modification and Size Classification of Microcrystalline Graphite Powder as Anode Material for Lithium-Ion Batteries

    Science.gov (United States)

    Wang, Cong; Gai, Guosheng; Yang, Yufen

    2018-03-01

    Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.

  7. Interference of guiding modes in 'traffic' circle waveguides composed of dielectric spherical particles

    International Nuclear Information System (INIS)

    Polishchuk, I.Ya.; Gozman, M.I.; Samoylova, O.M.; Burin, A.L.

    2009-01-01

    The interference of guiding polariton modes propagating through the waveguide composed of dielectric spherical particles forming a 'traffic' circle docked by two linear entrance and exit chains is investigated. The dependence of intensity of the polariton wave on the position of the particle on the circle was studied using the multisphere Mie scattering formalism. We show that, if the frequency of light belongs to the pass-band of the circular part of this waveguide, the electromagnetic waves may be considered as two optical beams running along the circle in opposite directions and interfering with each other. Indeed, the obtained intensity behavior can be represented as a simple superposition of two waves propagating along the circle in opposite directions. The applications of this interference are discussed

  8. EFFECTS OF ULTRASOUND ON THE MORPHOLOGY, PARTICLE SIZE, CRYSTALLINITY, AND CRYSTALLITE SIZE OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    SUMARI SUMARI

    2014-05-01

    Full Text Available The aim of this study is to optimize ultrasound treatment to produce fragment of cellulose that is low in particles size, crystallite size, and crystallinity. Slurry of 1 % (w/v the cellulose was sonicated at different time periods and temperatures. An ultrasonic reactor was operated at 300 Watts and 28 kHz to cut down the polymer into smaller particles. We proved that ultrasound damages and fragments the cellulose particles into shorter fibers. The fiber lengths were reduced from in the range of 80-120 µm to 30-50 µm due to an hour ultrasonication and became 20-30 µm after 5 hours. It was also found some signs of erosion on the surface and stringy. The acoustic cavitation also generated a decrease in particle size, crystallinity, and crystallite size of the cellulose along with increasing sonication time but it did not change d-spacing. However, the highest reduction of particle size, crystallite size, and crystallinity of the cellulose occurred within the first hour of ultrasonication, after which the efficiency was decreased. The particle diameter, crystallite size, and crystallinity were decreased from 19.88 µm to 15.96 µm, 5.81 Å to 2.98 Å, and 77.7% to 73.9% respectively due to an hour ultrasound treatment at 40 °C. The treatment that was conducted at 40 °C or 60 °C did not give a different effect significantly. Cellulose with a smaller particle and crystallite size as well as a more amorphous shape is preferred for further study.

  9. Application of spherical fly-ash particles to study spatial deposition of atmospheric pollutants in northen-eastern Estonia

    International Nuclear Information System (INIS)

    Alliksaar, T.

    2000-01-01

    Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)

  10. Permeability of different size waste particles

    Directory of Open Access Journals (Sweden)

    Sabina Gavelytė

    2015-10-01

    Full Text Available The world and life style is changing, but the most popular disposal route for waste is landfill globally until now. We have to think about waste prevention and preparing for re-use or recycling firstly, according to the waste disposal hierarchy. Disposed waste to the landfill must be the last opportunity. In a landfill, during waste degradation processes leachate is formed that can potentially cause clogging of bottom drainage layers. To ensure stability of a landfill construction, the physical properties of its components have to be controlled. The hydrology of precipitation, evaporation, runoff and the hydraulic performance of the capping and liner materials are important controls of the moisture content. The water balance depends also on the waste characteristics and waste particle size distribution. The aim of this paper is to determine the hydraulic permeability in a landfill depending on the particle size distribution of municipal solid waste disposed. The lab experiment results were compared with the results calculated with DEGAS model. Samples were taken from a landfill operated for five years. The samples particle sizes are: >100 mm, 80 mm, 60 mm, 40 mm, 20 mm, 0.01 mm and <0.01 mm. The permeability test was conducted using the column test. The paper presents the results of experiment and DEGAS model water permeability with waste particle size.

  11. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  12. Influence of particle size of wear metal on the spectrometric oil analysis programme (SOAP), demonstrated by the determination of iron by AAS

    Energy Technology Data Exchange (ETDEWEB)

    Klaegler, S.H.; Jantzen, E.

    1982-02-01

    The possibility that there might be a relation between particle size of wear metal and spectrometric determination, (e.g. of the iron content in used lubricating oils) has been examined. In this connection it had to be clarified from which particle size of the iron wear the Fe content determined by direct AAS (solution of the oil sample) is in agreement with the true value in the used oil. The determination of the absolute iron content was performed by a colorimetric method preceded by an incineration of the used oil. Contrary to other publications, in which work is based on spherical iron particles as a simulated wear, the test described here relates to true wear particles. To obtain the total iron wear from a gear oil it was filtered off from the used oil and afterwards separated into defined particle size ranges by a procedure specially developed for this purpose. The different groups of scaly particles, which were collected in this way, were then mixed homogeneously into fresh luboil samples according to their sizes. The determination of the iron content from these newly mixed luboil samples was carried out 1. by direct AAS, 2. by AAS after incineration of the oil samples and 3. by a colorimetric method (to obtain the absolute value of the iron content). The results showed a recovery of the iron of only 50% if the wear particles were bigger than about 2 ..mu..m. That means that the true value of the iron content in a used lubricating oil is found by direct AAS only if the particle size is <=1 ..mu..m.

  13. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  14. Dependence of the Internal Structure on Water/Particle Volume Ratio in an Amphiphilic Janus Particle-Water-Oil Ternary System: From Micelle-like Clusters to Emulsions of Spherical Droplets.

    Science.gov (United States)

    Noguchi, Tomohiro G; Iwashita, Yasutaka; Kimura, Yasuyuki

    2017-01-31

    Amphiphilic Janus particles (AJP), composed of hydrophilic and hydrophobic hemispheres, are one of the simplest anisotropic colloids, and they exhibit higher surface activities than particles with homogeneous surface properties. Consequently, a ternary system of AJP, water, and oil can form extremely stable Pickering emulsions, with internal structures that depend on the Janus structure of the particles and the system composition. However, the detail of these structures has not been fully explored, especially for the composition range where the amount of the minority liquid phase and AJP are comparable, where one would expect the Janus characteristics to be directly reflected. In this study, we varied the volume ratio of the particles and the minority liquid phase, water, by 2 orders of magnitude around the comparable composition range, and observed the resultant structures at the resolution of the individual particle dimensions by optical microscopy. When the volume ratio of water is smaller than that of the Janus particles, capillary interactions between the hydrophilic hemispheres of the particles induce micelle-like clusters in which the hydrophilic sides of the particles face inward. With increasing water content, these clusters grow into a rodlike morphology. When the water volume exceeds that of the particles, the structure transforms into an emulsion state composed of spherical droplets, colloidosomes, because of the surface activity of particles at the liquid-liquid interface. Thus, we found that a change in volume fraction alters the mechanism of structure formation in the ternary system, and large resulting morphological changes in the self-assembled structures reflect the anisotropy of the particles. The self-assembly shows essential commonalities with that in microemulsions of surfactant molecules, however the AJP system is stabilized only kinetically. Analysis of the dependence of the emulsion droplet size on composition shows that almost all the

  15. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tubes, Mono Jets, Squeeze Out and CME

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-23

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  17. Distribution Of Natural Radioactivity On Soil Size Particles

    International Nuclear Information System (INIS)

    Tran Van Luyen; Trinh Hoai Vinh; Thai Khac Dinh

    2008-01-01

    This report presents a distribution of natural radioactivity on different soil size particles, taken from one soil profile. On the results shows a range from 52% to 66% of natural radioisotopes such as 238 U, 232 Th, 226 Ra and 40 K concentrated on the soil particles below 40 micrometers in diameter size. The remained of natural radioisotopes were distributed on a soil particles with higher diameter size. The study is available for soil sample collected to natural radioactive analyze by gamma and alpha spectrometer methods. (author)

  18. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    International Nuclear Information System (INIS)

    Sodha, M. S.; Mishra, S. K.

    2011-01-01

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  19. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  20. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.

    2009-01-01

    Dry deposition of atmospheric particles is critically dependent on particle size and plays a key role in dictating the mass and number distributions of atmospheric particles. However, modeling dry deposition is constrained by a lack of understanding of controlling dependencies and accurate size......-resolved observations. We present size-resolved particle number fluxes for sub-100-nm particle diameters (Dp) over a deciduous forest derived using eddy covariance applied to data from a fast mobility particle sizer. The size-resolved particle number fluxes in 18 diameters between 8 and 100 nm were collected during...... leaf-on and are statistically robust. Particle deposition velocities normalized by friction velocity (v d +) are approximately four times smaller than comparable values for coniferous forests reported elsewhere. Comparison of the data with output from a new one-dimensional mechanistic particle...

  1. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  2. Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium

    Science.gov (United States)

    Saad, E. I.; Faltas, M. S.

    2018-04-01

    An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.

  3. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  4. Particle size control of detergents in mixed flow spray dryers

    Directory of Open Access Journals (Sweden)

    Mark Jonathan Crosby

    2015-03-01

    Full Text Available Particle size is a key quality parameter of a powder detergent as it determines its performance, the bulk density and the look and feel of the product. Consequently, it is essential that particle size is controlled to ensure the consistency of performance when comparing new formulations. The majority of study reported in the literature relating to particle size control, focuses on the spray produced by the atomisation technique. One approach advocated to achieve particle size control is the manipulation of the ratio of the mass slurry rate and mass flow rate of gas used for atomisation. Within this study, ratio control was compared with an automatic cascade loop approach using online measurements of the powder particle size on a small-scale pilot plant. It was concluded that cascade control of the mean particle size, based on manipulating the mass flow rate of gas, resulted in tighter, more responsive control. The effect of a ratio change varied with different formulations and different slurry rates. Furthermore, changes in slurry rate caused complications, as the impact on particle size growth in the dryer is non-linear and difficult to predict. The cascade loop enables further study into the effect of particle size on detergent performance.

  5. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    Science.gov (United States)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  6. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551 ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.089, year: 2016

  7. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer

    Science.gov (United States)

    Nishimura, K.; Hunt, J. C. R.

    2000-08-01

    Experiments were conducted in a wind tunnel in which a turbulent boundary layer was naturally grown over flat beds of three types of nearly mono-disperse spherical particles with different diameters, densities and coefficient of restitution (r) (snow, 0.48 mm, 910 kg m[minus sign]3; mustard seeds, 1.82 mm, 1670 kg m[minus sign]3, r = 0.7; ice particles, 2.80 mm, 910 kg m[minus sign]3, r = 0.8 0.9). The surface wind speeds (defined by the friction velocity u[low asterisk]) were varied between 1.0 and 1.9 times the threshold surface wind speed (defined by u[low asterisk]t). The trajectories, and ejection and impact velocities of the particles were recorded and analysed, even those that were raised only about one diameter into the flow.

  8. Preparation of UO2 dense spherical particles by sol-gel technique

    International Nuclear Information System (INIS)

    Urbanek, V.; Dolezal, J.

    1977-01-01

    The results of the basic research and development of processes of preparation of dense UO 2 spherical particles by sol-gel technique are presented. Attention was paid to the study of chemistry of internal gelation step in the uranylnitrate-urea-hexamethylentetramine system. The existence regions of several stable gels with different properties were established in connection with variable ratio of basic gel's components and the appropriate ''Phase diagrams'' were drawn. From these diagrams, two of the most interesting types of uranyl gels were chosen for the subsequent thermal processing which included drying, reduction and sintering. The detailed studies of each step of the whole process enabled preparation of UO 2 dense spheres with well defined microstructure

  9. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  10. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  11. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    Science.gov (United States)

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.

  12. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  13. Contribution to the study of nuclear aerosol: looking for the dynamic form factor of the aerosol of primary particles of sodium oxide

    International Nuclear Information System (INIS)

    Barbe, M.

    1982-09-01

    The dynamical form factor describes the entrainment of any non spherical particle, of inhomogeneous density, in relation to the entrainment of a spherical particle with the same volume and some sedimentation speed. Experimental study of the form factor and particle size distribution of sodium peroxide primary aerosols [fr

  14. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  15. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  16. Particle sizes in slash fire smoke.

    Science.gov (United States)

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  17. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  18. Morphology of ductile metals eroded by a jet of spherical particles impinging at normal incidence

    Science.gov (United States)

    Veerabhadra Rao, P.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used, together with surface profile measurements, in the present morphological study of the erosion of an aluminum alloy and copper by the normal impact of spherical glass erodent particles. The morphology of the damage pattern is a manifestation of the flow pattern of erodent particles, and yields insight into the mechanisms that may be active at different stages of erosion. The simultaneous appearance of radial cracks and concentric rings is reported, together with wave crests which contain an accumulation of metallic flakes. A preliminary analysis is advanced to explain the formation of the various damage patterns observed.

  19. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    Science.gov (United States)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  20. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions

    International Nuclear Information System (INIS)

    Kamerlin, Natasha; Elvingson, Christer

    2016-01-01

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution. (paper)

  1. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  2. An approach for automated analysis of particle holograms

    Science.gov (United States)

    Stanton, A. C.; Caulfield, H. J.; Stewart, G. W.

    1984-01-01

    A simple method for analyzing droplet holograms is proposed that is readily adaptable to automation using modern image digitizers and analyzers for determination of the number, location, and size distributions of spherical or nearly spherical droplets. The method determines these parameters by finding the spatial location of best focus of the droplet images. With this location known, the particle size may be determined by direct measurement of image area in the focal plane. Particle velocity and trajectory may be determined by comparison of image locations at different instants in time. The method is tested by analyzing digitized images from a reconstructed in-line hologram, and the results show that the method is more accurate than a time-consuming plane-by-plane search for sharpest focus.

  3. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  4. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    Science.gov (United States)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  5. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  6. Are Nanoparticles Spherical or Quasi-Spherical?

    Science.gov (United States)

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by 222 Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  8. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  9. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.

    Science.gov (United States)

    Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón

    2014-06-28

    The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  10. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  11. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    Science.gov (United States)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  12. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part I: Modelling results within the LIPIKA project

    Directory of Open Access Journals (Sweden)

    M. Ketzel

    2007-08-01

    Full Text Available A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17–20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm–10 μm (aerodynamic diameter by the Electrical Low Pressure Impactor (ELPI and in the size range of 3–50 nm (mobility diameter by Scanning Mobility Particle Sizer (SMPS, total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC, temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes. We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of

  13. A study of particle size distribution in zirconia-alumina powders

    International Nuclear Information System (INIS)

    Ramakrishnan, K.N.; Venkadesan, S.; Nagarajan, R.

    1996-01-01

    Powder particles, in general are characterized in terms of particle size, size distributions and composition for reasons associated with manufacturing problem based upon product quality, manufacturing convenience, cost and product handling convenience. Particle size analysis or the measurement of particle size distribution is a common effort in any physical, chemical or mechanical processes. This information and processing methods are intricate factors that relate to material behavior and/or physical properties of the fabricated product. The requirements for the formation of a product of particulate solids and its strength varies as the particle size and the size distribution changes. Also the transport properties and the chemical activity are related to the particle size and the size distribution. The choice of a distribution to represent a physical system is generally motivated by an understanding of the nature of underlying phenomenon and is verified by the available data. After a model has been chosen, its parameter must be determined. The reasonableness of a selected model on the basis of given data is especially important when the model is to be used for prediction. Two different approaches in this problem are probability plotting and statistical tests

  14. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    Science.gov (United States)

    Balden, M.; Endstrasser, N.; Humrickhouse, P. W.; Rohde, V.; Rasinski, M.; von Toussaint, U.; Elgeti, S.; Neu, R.; the ASDEX Upgrade Team

    2014-07-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007-2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ˜50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B-C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  15. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Balden, M.; Endstrasser, N.; Rohde, V.; Rasinski, M.; Von Toussaint, U.; Elgeti, S.; Neu, R.; Humrickhouse, P.W.

    2014-01-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ∼50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG. (paper)

  16. Production of uranium-molybdenum particles by spark-erosion

    International Nuclear Information System (INIS)

    Cabanillas, E.D.; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J.

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO 2 with a distinctive size distribution with peaks centered at 70 and 10 μm were obtained. The particles have central inclusions of U and Mo compounds

  17. Production of uranium-molybdenum particles by spark-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E.D. E-mail: cabanill@cnea.gov.ar; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO{sub 2} with a distinctive size distribution with peaks centered at 70 and 10 {mu}m were obtained. The particles have central inclusions of U and Mo compounds.

  18. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no rest...... as to handling of nanoparticles in lab-on-a-chip systems.......We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well...

  19. Experimental evaluation of the drag force and drag torque acting on a rotating spherical particle moving in fluid

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Kvurt, Y.; Kharlamov, Alexander; Chára, Zdeněk; Vlasák, Pavel

    2008-01-01

    Roč. 56, č. 2 (2008), s. 88-94 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600603 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * spherical particle * rotational movement * translational movement Subject RIV: DA - Hydrology ; Limnology

  20. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  1. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  2. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  3. The angle of repose of spherical grains in granular Hele–Shaw cells: a molecular dynamics study

    International Nuclear Information System (INIS)

    Maleki, Hamed; Ebrahimi, Fatemeh; Oskoee, Ehsan Nedaaee

    2008-01-01

    We report the results of three-dimensional molecular dynamic simulations on the angle of repose of a sandpile formed by pouring mono-sized cohesionless spherical grains into a granular Hele–Shaw cell. In particular, we are interested in investigating the effects of those variables which may have a significant impact on the pattern formation of granular mixtures in Hele–Shaw cells. The results indicate that the frictional forces influence the formation of piles on the grain level remarkably. Furthermore, we see that increasing grain insertion rate decreases the angle of repose slightly. We also find that the cell thickness is a significant factor and the angle of repose decays when the size of the gap between the lateral walls increases. In addition to agreeing with the experimental exponential decay law, our results are in accordance with a recently proposed model which takes into account the arching effects. Using grains with different sizes reveals that the behaviour of the angle of repose when both size and cell thickness are varied is controlled by a scaled function of the ratio of these two variables

  4. Selection Of Suitable Particle Size And Particle Ratio For Japanese Cucumber Cucumis Sativus L. Plants

    Directory of Open Access Journals (Sweden)

    Galahitigama GAH

    2015-08-01

    Full Text Available This study was conducted to select the best particle size of coco peat for cucumber nurseries as well as best particle ratio for optimum plant growth and development of cucumber. The experiment was carried out in International Foodstuff Company and Faculty of Agriculture University of Ruhuna Sri Lanka during 2015 to 2016. Under experiment one three types of different particle sizes were used namely fine amp88040.5mm T2 medium 3mm-0.5mm T3 and coarse 4mm T4 with normal coco peat T1 as treatments. Complete Randomized Design CRD used as experimental design with five replicates. Germination percentage number of leaves per seedling seedling height in frequent day intervals was taken as growth parameters. Analysis of variance procedure was applied to analyze the data at 5 probability level. The results revealed that medium size particle media sieve size 0.5mm -3mm of coco peat was the best particle size for cucumber nursery practice when considered the physical and chemical properties of medium particles of coco peat. In the experiment of selecting of suitable particle ratio for cucumber plants the compressed mixture of coco peat particles that contain 70 ww unsieved coco peat 20 ww coarse particles and 10 ww coconut husk chips 5 12mm has given best results for growth performances compared to other treatments and cucumber grown in this mixture has shown maximum growth and yield performances.

  5. Hydrolysis of Zr(4) with formation of mono- and polynuclear hydroxocomplexes in solutions

    International Nuclear Information System (INIS)

    Davydov, Yu.P.; Zabrodskij, V.N.

    1987-01-01

    The state of Zr(4) has been studied in the wide range of H + -ions concentrations (10 -3 -3.0 mol/l) and in the wide range of Zr(4) concentrations (10 -13 -10 -12 mol/l) in the solution using a set of such physical-chemical methods as spectrophotometry, ion exchange, dialysis, centrifugation. The conditions of formation of hydrated cations, monochange, dialysis, centrifugation. The conditions of formation of hydrated cations, mono- and polynuclear hydrocomplexes, colloidal-size particles have been determined. The thermodynamic stability of ZrOH 3+ and Zr(OH) 2 2+ complexes has been determined by the ion exchange and spectrophotometry methods

  6. Estimating particle number size distributions from multi-instrument observations with Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, T.

    2012-07-01

    Atmospheric aerosol particles have several important effects on the environment and human society. The exact impact of aerosol particles is largely determined by their particle size distributions. However, no single instrument is able to measure the whole range of the particle size distribution. Estimating a particle size distribution from multiple simultaneous measurements remains a challenge in aerosol physical research. Current methods to combine different measurements require assumptions concerning the overlapping measurement ranges and have difficulties in accounting for measurement uncertainties. In this thesis, Extended Kalman Filter (EKF) is presented as a promising method to estimate particle number size distributions from multiple simultaneous measurements. The particle number size distribution estimated by EKF includes information from prior particle number size distributions as propagated by a dynamical model and is based on the reliabilities of the applied information sources. Known physical processes and dynamically evolving error covariances constrain the estimate both over time and particle size. The method was tested with measurements from Differential Mobility Particle Sizer (DMPS), Aerodynamic Particle Sizer (APS) and nephelometer. The particle number concentration was chosen as the state of interest. The initial EKF implementation presented here includes simplifications, yet the results are positive and the estimate successfully incorporated information from the chosen instruments. For particle sizes smaller than 4 micrometers, the estimate fits the available measurements and smooths the particle number size distribution over both time and particle diameter. The estimate has difficulties with particles larger than 4 micrometers due to issues with both measurements and the dynamical model in that particle size range. The EKF implementation appears to reduce the impact of measurement noise on the estimate, but has a delayed reaction to sudden

  7. Effect of particle size on mixing degree in dispensation.

    Science.gov (United States)

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  8. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    Science.gov (United States)

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  9. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  10. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  11. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    International Nuclear Information System (INIS)

    Xie, Jin-Han; Vanneste, Jacques

    2014-01-01

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion

  12. Characterization of FeCo particles synthesized via co-precipitation, particle growth using flux treatment and reduction in hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Mikio, E-mail: kishimoto.mikio.gb@u.tsukuba.ac.jp; Latiff, Hawa; Kita, Eiji; Yanagihara, Hideto

    2017-06-15

    The possibility of high coercive force in FeCo particles was examined focusing on distortion introduced in the particles. The particles were synthesized via co-precipitation of Fe and Co ions, heat-treatment in potassium bromide flux for particle growth, and reduction using hydrogen gas. The particle shape was spherical or a slightly elongated with the size of approximately 30–200 nm, and the composition with approximately Fe{sub 60}Co{sub 40} was determined from the D-spacing of (110) peak. The coercive force of approximately 90 kA/m was obtained in particles with the saturation magnetization of approximately 150 Am{sup 2}/kg. The coercive force was higher than those in reported FeCo particles with same level of saturation magnetization. As one of the reason of high coercive force, we expected the possibility of occurrence of magnetic anisotropy based on the anisotropic distortion generated between FeCo alloy and surface oxides in a slightly elongated particles. - Highlights: • FeCo particles synthesized via Fe/Co:1/1, flux treated, and reduction. • Spherical or slightly elongated shape with size of approximately 30–200 nm. • Composition with Fe{sub 60}Co{sub 40} determined from D-spacing of (110) peak. • Coercive force of 90 kA/m and saturation magnetization of 150 Am{sup 2}/kg.

  13. Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.

    Science.gov (United States)

    1984-11-01

    34Particle Sizing by Optical , Nonimaging Techniques," Liquid Particle Size _Mjur-mentTechnjgjwi, ASTM publications STP848, ed. by J. MI. Tishkoff, R. D... Optical Nonimaging predictions do not account for nonideal lens effects. Techniques," in Liquid Particle Size Measurement Techniques, J.M.Tishkoff, ed...4S E. Dan Hirleman’ Particle Sizing by Optical , Nonimaging Techniques REFERENCE: Hieleman, E. D., "Particle Sizing by Optical , Nonimaging Tech- niques

  14. Element content and particle size characterization of a mussel candidate reference material

    International Nuclear Information System (INIS)

    Moreira, Edson G.; Vasconcellos, Marina B.A.; Santos, Rafaela G. dos; Martinelli, Jose R.

    2011-01-01

    The use of certified reference materials is an important tool in the quality assurance of analytical measurements. To assure reliability on recently prepared powder reference materials, not only the characterization of the property values of interest and their corresponding uncertainties, but also physical properties such as the particle size distribution must be well evaluated. Narrow particle size distributions are preferable than larger ones; as different size particles may have different analyte content. Due to this fact, the segregation of the coarse and the fine particles in a bottle may lead to inhomogeneity of the reference material, which should be avoided. In this study the element content as well as the particle size distribution of a mussel candidate reference material produced at IPEN-CNEN/SP was investigated. Instrumental Neutron Activation Analysis was applied to the determination of 15 elements in seven fractions of the material with different particle size distributions. Subsamples of the materials were irradiated simultaneously with elemental standards at the IEA-R1 research nuclear reactor and the induced gamma ray energies were measured in a hyperpure germanium detector. Three vials of the candidate reference material and three coarser fractions, collected during the preparation, were analyzed by Laser Diffraction Particle Analysis to determine the particle size distribution. Differences on element content were detected for fractions with different particle size distribution, indicating the importance of particle size control for biological reference materials. From the particle size analysis, Gaussian particle size distribution was observed for the candidate reference material with mean particle size μ = 94.6 ± 0.8 μm. (author)

  15. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  16. Particle clustering within a two-phase turbulent pipe jet

    Science.gov (United States)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  17. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis

    International Nuclear Information System (INIS)

    Sitko, Rafal; Zawisza, Beata; Talik, Ewa; Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa

    2014-01-01

    Highlights: • Graphene oxide (GO) covalently bonded to the spherical silica. • Very stable sorbent for SPE of metal ions. • Excellent contact with solution due to the softness and flexibility of GO nanosheets. • Several adsorption–elution cycles without any loss of adsorptive properties. • High adsorption capacity due to the wrinkled structure of GO nanosheets. - Abstract: Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO 2 ). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g −1 , respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO 2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and detection

  18. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland); Zawisza, Beata [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland); Talik, Ewa [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland)

    2014-06-27

    Highlights: • Graphene oxide (GO) covalently bonded to the spherical silica. • Very stable sorbent for SPE of metal ions. • Excellent contact with solution due to the softness and flexibility of GO nanosheets. • Several adsorption–elution cycles without any loss of adsorptive properties. • High adsorption capacity due to the wrinkled structure of GO nanosheets. - Abstract: Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO{sub 2}). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g{sup −1}, respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO{sub 2} was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and

  19. Synthesis of mono and multidomain YIG particles by chemical coprecipitation or ceramic procedure

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    Yttrium iron garnet powders have been synthesized by chemical coprecipitation using two different precursors, nitrates and chlorides, and by an oxides mixture route. It is shown that depending on the precursors and synthesis conditions used pure yttrium iron garnet powders can be obtained with a mono or multidomain magnetic behaviour. The yttrium iron garnet crystalline structure, as studied by Raman spectroscopy, was already formed after calcination at temperatures as low as 800 o C when the nitrate precursors were used. However, calcination temperatures of up to 1100 o C were required to obtain yttrium iron garnet powders when the precursors were chlorides or when the oxides mixture route was chosen. The saturation magnetization of the powders correlates well with the structural characterization: when nitrate precursors were used, the saturation magnetization was already close to the bulk value, 26.8 emu/cm 3 , after calcination at 800 o C. However, the saturation magnetization of the powders obtained by the chlorides and oxides mixture routes was close to zero up to calcination temperatures of 1100 o C. Finally, both the chlorides and the oxides mixture routes yield multidomain micron sized yttrium iron garnet powders, whereas the nitrates route led to monodomain submicron sized powders.

  20. Operation Procedure of Inspection Equipment for TRISO-coated Fuel Particle

    International Nuclear Information System (INIS)

    Kim, S. H.; Kim, Y. K.; Cho, M. S.; Kim, Y. M.; Park, J. Y.; Kim, W. J.; Jeong, K. C.; Oh, S. C.; Lee, Y. W.

    2007-03-01

    TRISO-coated fuel particle for HTGR(high temperature gas cooled reactor) is composed of fuel kernel and coating layers. The kernel and coated particle are characterized by inspection processes for inspection items such as diameter of kernel, thickness, density and an-isotropy of coating layer. The coating thickness can be nondestructively measured by X-ray inspection equipment. The coating thickness as well as the sphericity can be also measured by optical inspection system as a ceramography method. The an-isotropy can be characterized by photometer. The density of coating layer can be measured by density column. The size and sphericity of particles can be measured by PSA(particle size analyzer). The thermo-chemical characteristics of kernel can be analyzed by TG/DTA(Thermogravimetric/Differential Thermal Analyzer). The inspection objective, equipment composition, operation principle, operation manual for each equipment was described in this operation procedure, which will be used for the characterization of inspection items described above

  1. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  2. Sizes of particles formed during municipal wastewater treatment.

    Science.gov (United States)

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  3. Concentration and size distribution of particles in abstracted groundwater

    NARCIS (Netherlands)

    Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuijfzand, P.J.

    2010-01-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of

  4. Particle sizing experiments with the laser Doppler velocimeter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  5. Estimation of settling velocity of sediment particles in estuarine and coastal waters

    Science.gov (United States)

    Nasiha, Hussain J.; Shanmugam, Palanisamy

    2018-04-01

    A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can

  6. Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid

    CSIR Research Space (South Africa)

    Smit GJF

    2010-11-01

    Full Text Available the necessity to model the discrete nature of sep- cite this article in press as: G.J.F. Smit et al., Two-phase flow modeling for low concentration spherical particle motion through a ian fluid, Appl. Math. Comput. (2010), doi:10.1016/j.amc.2010.07.055 2... and Ribberin large-scale and long term morphologica Please cite this article in press as: G.J.F. Smit Newtonian fluid, Appl. Math. Comput. (2010), � 2010 Elsevier Inc. All rights reserved. modeling of multiphase flow has increasingly become the subject...

  7. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  8. How Is Mono Spread?

    Science.gov (United States)

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  9. Optimization of the Critical Parameters of the Spherical Agglomeration Crystallization Method by the Application of the Quality by Design Approach

    Directory of Open Access Journals (Sweden)

    Orsolya Gyulai

    2018-04-01

    Full Text Available This research work presents the use of the Quality by Design (QbD concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl. AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent, and composition (solvent/antisolvent volume ratio and three dependent variables (mean particle size, aspect ratio, and roundness were selected. Based on these, a 2–3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm, roundness (from ~2.4 to ~1.5, aspect ratio (from ~1.7 to ~1.4, and flow properties were observed while polymorphic transitions were avoided.

  10. Optimization of the Critical Parameters of the Spherical Agglomeration Crystallization Method by the Application of the Quality by Design Approach.

    Science.gov (United States)

    Gyulai, Orsolya; Kovács, Anita; Sovány, Tamás; Csóka, Ildikó; Aigner, Zoltán

    2018-04-20

    This research work presents the use of the Quality by Design (QbD) concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl). AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent), and composition (solvent/antisolvent volume ratio)) and three dependent variables (mean particle size, aspect ratio, and roundness) were selected. Based on these, a 2⁻3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm), roundness (from ~2.4 to ~1.5), aspect ratio (from ~1.7 to ~1.4), and flow properties were observed while polymorphic transitions were avoided.

  11. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  12. Study of the interaction between the indentation size effect and Hall-Petch effect with spherical indenters on annealed polycrystalline copper

    International Nuclear Information System (INIS)

    Hou, X D; Bushby, A J; Jennett, N M

    2008-01-01

    Methods to obtain tensile stress-strain properties of materials from a practically non-destructive indentation test are of great industrial interest. Nanoindentation is a good candidate. However, to do this successfully, indentation size effects must be accounted for. An indentation size effect with spherical indenters has been shown for a range of fcc metals with relatively large grain size (Spary et al 2006 Phil. Mag. 86 5581-93); the increase in yield stress being proportional to the inverse cube root of indenter radius. Here, we investigate these differences further and present results for the indentation size effect with spherical indenters on Cu samples with a range of different grain sizes from 1 μm to single crystal. The important experimental control parameter, of the relative size of the indentation compared with the grain size, is also explored by using indenters of different radii on the different grain sized samples. When the grain size, d, is less than 6 times the radius of the projected contact area, a, a Hall-Petch-like behaviour is observed superimposed on the indentation size effect. For d > 6a the indentation size effect dominates. The two effects may be combined by addition in quadrature. This new parametric function is able to predict the indentation pressure in annealed copper given input values of indenter radius and grain size

  13. Experimental investigation of particle size distribution influence on diffusion controlled coarsening

    International Nuclear Information System (INIS)

    Fang, Zhigang; Patterson, B.R.

    1993-01-01

    The influence of initial particle size distribution on coarsening during liquid phase sintering has been experimentally investigated using W-14Ni-6Fe alloy as a model system. It was found that initially wider size distribution particles coarsened more rapidly than those of an initially narrow distribution. The well known linear relationship between the cube of the average particle radius bar r -3 , and time was observed for most of the coarsening process, although the early stage coarsening rate constant changed with time, as expected with concomitant early changes in the tungsten particle size distribution. The instantaneous transient rate constant was shown to be related to the geometric standard deviation, 1nσ, of the instantaneous size distributions, with higher rate constants corresponding to larger 1nσ values. The form of the particle size distributions changed rapidly during early coarsening and reached a quasi-stable state, different from the theoretical asymptotic distribution, after some time. A linear relationship was found between the experimentally observed instantaneous rate constant and that computed from an earlier model incorporating the effect of particle size distribution. The above results compare favorably with those from prior theoretical modeling and computer simulation studies of the effect of particle size distribution on coarsening, based on the DeHoff communicating neighbor model

  14. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  15. Size-based sorting of micro-particles using microbubble streaming

    Science.gov (United States)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2009-11-01

    Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).

  16. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  17. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  18. Inorganic particle analysis of dental impression elastomers.

    Science.gov (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  19. First-principle study on optical properties of spherical and cylindrical hydrogen-passivated Si nanoparticles with different sizes

    NARCIS (Netherlands)

    Wang, Yinglong; Chen, Chao; Wu, Zhuanhua; Liang, Weihua; Wang, Xiuli; Ding, Xuecheng; Chu, Lizhi; Deng, Zechao; Chen, Jinzhong; Fu, Guangsheng

    To investigate the size dependence of the optical properties of the hydrogen-passivated Si nanoparticles (Hp-SiNPs), the energy bands and optical dielectric functions for two types of nanostructures, that is, the spherical Hp-SiNPs (SHp-SiNPs) with various diameters and the cylindrical Hp-SiNPs

  20. The effects of particle size distribution and induced unpinning during grain growth

    International Nuclear Information System (INIS)

    Thompson, G.S.; Rickman, J.M.; Harmer, M.P.; Holm, E.A.

    1996-01-01

    The effect of a second-phase particle size distribution on grain boundary pinning was studied using a Monte Carlo simulation technique. Simulations were run using a constant number density of both whisker and rhombohedral particles, and the effect of size distribution was studied by varying the standard deviation of the distribution around a constant mean particle size. The results of present simulations indicate that, in accordance with the stereological assumption of the topological pinning model, changes in distribution width had no effect on the pinned grain size. The effect of induced unpinning of particles on microstructure was also studied. In contrast to predictions of the topological pinning model, a power law dependence of pinned grain size on particle size was observed at T=0.0. Based on this, a systematic deviation to the stereological predictions of the topological pinning model is observed. The results of simulations at higher temperatures indicate an increasing power law dependence of pinned grain size on particle size, with the slopes of the power law dependencies fitting an Arrhenius relation. The effect of induced unpinning of particles was also studied in order to obtain a correlation between particle/boundary concentration and equilibrium grain size. The results of simulations containing a constant number density of monosized rhombohedral particles suggest a strong power law correlation between the two parameters. copyright 1996 Materials Research Society

  1. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  2. Particle size distribution of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Zeng Ke; Wu Wangsuo; Jin Yuren; Shen Maoquan; Han Zhaoyang; Hu Zhiqian; Ma Teqi

    2012-01-01

    Wet classification and γ ray spectroscopy had been applied to study the particle size distribution of Pu in the desert soil of somewhere in Northern China. It was found that nearly 90% of Pu exits in 0.1-10 mm particles. only 10% less in particles under 0.05 mm that still poses notable hazards to biosphere if any resuspension. Providing a decontamination target of 239 Pu <4000 Bq/kg, accident condition. (authors)

  3. Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow

    Science.gov (United States)

    Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony

    2018-04-01

    Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt

  4. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  5. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    Science.gov (United States)

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  7. Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2018-04-01

    Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution

  8. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    Science.gov (United States)

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  9. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  10. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  11. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    International Nuclear Information System (INIS)

    Aoi, Y; Tominaga, T

    2013-01-01

    Titanium dioxide (TiO 2 ) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  12. Improved soil particle-size analysis by gamma-ray attenuation

    International Nuclear Information System (INIS)

    Oliveira, J.C.M.; Vaz, C.M.P.; Reichardt, K.; Swartzendruber, D.

    1997-01-01

    The size distribution of particles is useful for physical characterization of soil. This study was conducted to determine whether a new method of soil particle-size analysis by gamma-ray attenuation could be further improved by changing the depth and time of measurement of the suspended particle concentration during sedimentation. In addition to the advantage of nondestructive, undisturbed measurement by gamma-ray attenuation, as compared with conventional pipette or hydrometer methods, the modifications here suggested and employed do substantially decrease the total time for analysis, and will also facilitate total automation and generalize the method for other sedimentation studies. Experimental results are presented for three different Brazilian soil materials, and illustrate the nature of the fine detail provided in the cumulative particle-size distribution as given by measurements obtained during the relatively short time period of 28 min

  13. Fly ash particles spheroidization using low temperature plasma energy

    Science.gov (United States)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  14. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  15. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant

    Directory of Open Access Journals (Sweden)

    Zhixiang Chen

    2018-03-01

    Full Text Available Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and entrainment recovery calculation, laser particle size experiments, adsorption tests, and advancing contact angle measurement as well as scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The maximum recovery increased with particle size increases in the absence of galactomannan FPY (Fenugreek polysaccharide. The obviously suppressed effect was observed for the size fraction of −74 + 38 μm after reacting with FPY, but low efficiency was received for −38 μm and −10 μm, respectively. Laser particle size analysis indicated that the FPY has a certain function for the flocculation of fine particles. It is beneficial for reducing recovery by entrainment. EDS and advancing contact angle test results showed that the difference in contact angles probably is a result of genuine differences in the quantity of O and Mg bearing surface species, while the contact angle varied with particle size fraction in the absence of FPY. Adsorption and SEM test results demonstrated that in the case of −74 + 38 μm, the depressant adsorption density on the mineral surface is higher than the other two size fractions. On the whole, FPY probably is not enough of a depressant for talc suppression.

  16. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis.

    Science.gov (United States)

    Sitko, Rafal; Zawisza, Beata; Talik, Ewa; Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa

    2014-06-27

    Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO2). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g(-1), respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption-elution cycles can be performed without any loss of adsorptive properties. The GO@SiO2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200-250) and detection limits (0.084 and 0.27 ng mL(-1) for Cu(II) and Pb(II), respectively). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  18. Coagulation-agglomeration of fractal-like particles: structure and self-preserving size distribution.

    Science.gov (United States)

    Goudeli, Eirini; Eggersdorfer, Maximilian L; Pratsinis, Sotiris E

    2015-02-03

    Agglomeration occurs in environmental and industrial processes, especially at low temperatures where particle sintering or coalescence is rather slow. Here, the growth and structure of particles undergoing agglomeration (coagulation in the absence of coalescence, condensation, or surface growth) are investigated from the free molecular to the continuum regime by discrete element modeling (DEM). Particles coagulating in the free molecular regime follow ballistic trajectories described by an event-driven method, whereas in the near-continuum (gas-slip) and continuum regimes, Langevin dynamics describe their diffusive motion. Agglomerates containing about 10-30 primary particles, on the average, attain their asymptotic fractal dimension, D(f), of 1.91 or 1.78 by ballistic or diffusion-limited cluster-cluster agglomeration, corresponding to coagulation in the free molecular or continuum regimes, respectively. A correlation is proposed for the asymptotic evolution of agglomerate D(f) as a function of the average number of constituent primary particles, n̅(p). Agglomerates exhibit considerably broader self-preserving size distribution (SPSD) by coagulation than spherical particles: the number-based geometric standard deviations of the SPSD agglomerate radius of gyration in the free molecular and continuum regimes are 2.27 and 1.95, respectively, compared to ∼1.45 for spheres. In the transition regime, agglomerates exhibit a quasi-SPSD whose geometric standard deviation passes through a minimum at Knudsen number Kn ≈ 0.2. In contrast, the asymptotic D(f) shifts linearly from 1.91 in the free molecular regime to 1.78 in the continuum regime. Population balance models using the radius of gyration as collision radius underestimate (up to about 80%) the small tail of the SPSD and slightly overpredict the overall agglomerate coagulation rate, as they do not account for cluster interpenetration during coagulation. In the continuum regime, when a recently developed

  19. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  20. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  1. New spectrometer for charged particles

    International Nuclear Information System (INIS)

    Wajsfelner, Rene

    1970-02-01

    This thesis is devoted to the study and development of an electrostatic spectrometer which is not only more accurate for the determination of size distributions of electrically charged radio-active atmospheric aerosols, but which can also be used for measuring the grain-size distribution of any cloud of particles which will previously have been charged according to a known, reproducible law. An experimental study has been made of the development of this precipitator and also of its calibration. The electrical charge on spherical polystyrene latex particles suspended in air by atomization has been studied; a theoretical explanation of these results is put forward. (author) [fr

  2. Particle size-dependent radical generation from wildland fire smoke

    International Nuclear Information System (INIS)

    Leonard, Stephen S.; Castranova, Vince; Chen, Bean T.; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M.

    2007-01-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H 2 O 2 generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more ·OH radicals in the acellular Fenton-like reaction. The

  3. Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

    Directory of Open Access Journals (Sweden)

    M. A. Moghri Moazzen

    2012-09-01

    Full Text Available ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. The particle  size  and structure of the products have been confirmed by XRD. The FT-IR study  confirms  the  presence  of  functional  groups.  Also,  the morphology  and  size  distribution  of  ZnO  nanoparticles  was analyzed by TEM images. The optical properties were investigated by UV–Visible  spectroscopy. The XRD  results  show  that  the  size of  the prepared nanoparticles  is  in  the  range  of 20–40 nm, which this value  is  in good agreement with  the TEM  results. The FT-IR spectrum clearly indicates the formation of an interfacial chemical bond between Zn and O. Also  the UV absorption depends on  the particles  size  and morphology,  so  the  optical properties  enhances with  decreasing  nanoparticles  size.  Moreover  the  direct precipitation technique is a feasible method for production of ZnO nanopowders.

  4. Radar cross-section measurements of ice particles using vector network analyzer

    Directory of Open Access Journals (Sweden)

    Jinhu Wang

    2016-09-01

    Full Text Available We carried out radar cross-section (RSC measurements of ice particles in a microwave anechoic chamber at Nanjing University of Information Science and Technology. We used microwave similarity theory to enlarge the size of particle from the micrometer to millimeter scale and to reduce the testing frequency from 94 GHz to 10 GHz. The microwave similarity theory was validated using the method of moments for single metal sphere, single dielectric sphere, and spherical and non-spherical dielectric particle swarms. The differences between the retrieved and theoretical results at 94 GHz were 0.016117%, 0.0023029%, 0.027627%, and 0.0046053%, respectively. We proposed a device that can measure the RCS of ice particles in the chamber based on the S21 parameter obtained from vector network analyzer. On the basis of the measured S21 parameter of the calibration material (metal plates and their corresponding theoretical RCS values, the RCS values of a spherical Teflon particle swarm and cuboid candle particle swarm was retrieved at 10 GHz. In this case, the differences between the retrieved and theoretical results were 12.72% and 24.49% for the Teflon particle swarm and cuboid candle swarm, respectively.

  5. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  6. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    International Nuclear Information System (INIS)

    Lu Xiaoyan; Jin Tingting; Jin Yachao; Wu Leihong; Hu Bin; Tian Yu; Fan Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury. (paper)

  7. Classical properties and semiclassical quantization of a spherical nuclear potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Brut, F.; Arvieu, R.; Touchard, J.

    1984-03-01

    The geometrical properties of the classical energy-action surface are studied for a nuclear Woods-Saxon-like spherical potential, in connection with the E.B.K. semiclassical method of quantization. Comparisons are made with other well known cases: the spherical harmonic oscillator and the spherical billiard. The shift of single particle energies from A = 208 to A = 16 is calculated by a simple method inspired by the Erhenfest adiabatic invariants. Semiclassical results are then compared with exact Schroedinger energies. It is seen that the most significant features of the single particle spectrum are explained by local properties of the energy action surface (curvature, slope) and by their evolution with the particle number

  8. Influence of particle size on physical and sensory attributes of mango pulp powder

    Science.gov (United States)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  9. Beta particle dose rates to micro-organisms in soil

    International Nuclear Information System (INIS)

    Kabir, M.; Spiers, F.W.; Iinuma, Takeshi.

    1977-01-01

    Studies were made to estimate the beta-particle dose rates to micro-organisms of various sizes in soil. The small insects and organisms living in soil are constantly exposed to beta-radiation arising from naturally occuring radionuclides in soil as in this case no overlying tissue shields them. The technique of measuring beta-particle dose rate consisted of using of a thin plastic scintillator to measure the pulse height distribution as the beta particle traverses the scintillator. The integrated response was determined by the number and size of the photomultiplier pulses. From the data of soil analyses it was estimated that typically about 29% of the beta particles emitted per gm. of soil were contributed by the U/Ra series, 21% by the Th series and about 50% by potassium. By combining the individual spectra of these three radionuclides in the proportion found in a typical soil, a resultant spectrum was computed representing the energy distribution of the beta particles. The dose rate received by micro-organisms of different shape and size in soil was derived from the equilibrium dose rates combined with a 'Geometrical Factor' of the organisms. For small organisms, the dose rates did not vary between the spherical and cylindrical types, but in the case of larger organisms, the dose rates were found to be greater for the spherical types of the same diameter. (auth.)

  10. Strategy for determination of an efficient Cochleate particle size.

    Science.gov (United States)

    Gil, Danay; Bracho, Gustavo; Zayas, Caridad; del Campo, Judith; Acevedo, Reinaldo; Toledo, Arturo; Lastre, Miriam; Pérez, Oliver

    2006-04-12

    Cochleate structures obtained from the outer membrane of Neisseria meningitidis serotype B have demonstrated to be high immunogenicity when administrated by intramuscular, oral or intranasal routes, and could be used as adjuvant and meningococcal nasal vaccine candidate. Due to the microparticulate nature of Cochleate it is necessary to control the particle size since it capture by cells of the immune system could be affected by this aspect. We combined optic microscopy and immunisation experiments to select the optimum particle size. Six different processes of producing Cochleate obtaining were evaluated and different mechanical stress conditions were carried out to homogenize and modulate the particles size. The more immunogenic particles were selected on the basis of the levels of specific IgA and IgG antibodies induced after intranasal immunisation in mice. The best treatment parameter for mechanical stress of the Cochleate was prolonged treatment with untrasonic low frequency waves.

  11. Morphological and light-absorption characteristics of individual BC particles collected in an urban seaside area at Tokaimura, eastern central Japan

    International Nuclear Information System (INIS)

    Fu Fengfu; Watanabe, Kazuo; Shinohara, Nobuo; Xu Xueqin; Xu Liangjun; Akagi, Tasuku

    2008-01-01

    To observe surface morphology and light-absorption property of different black carbon (BC) particles, different-sized aerosols were collected in Tokaimura (36.27 o N, 140.36 o E), an urban seaside area of eastern central Japan, using a high-volume Andersen type sampler during a whole year (Jan. to Dec. in 2004). The morphology of individual BC particle separated from different-sized aerosols was observed with Scanning Electron Microscope with Energy Dispersive X-ray Spectrometer (SEM-EDX) and four types of morphology were observed: 50 nm spherical particles, micrometer-sized plates with homogeneous surfaces, micrometer-sized spherical particles with homogeneous surfaces and micrometer-sized spherical particles with small holes on surfaces. The light-absorption property of BC particles with different morphology has been determined by infrared spectrometry (IRS) with a photoacoustic technique in a region of 400-4000 wavenumbers (cm -1 ). All morphology BC particles showed a strong light-absorption during 500-3000 wavenumbers (cm -1 ) with two strong broad peaks in 750-1100 and 1200-2200 wavenumbers (cm -1 ), implying that all morphology BC particles can absorb a significant part of thermal infrared emitted from the earth (wavelength 4000-50,000 nm). The seasonal variation and the size-distribution of aerosols and its chemical components (e.g. C, Na, Cl, NH 4 + , NO 3 - , SO 4 2- , Al, Ca, Mg and Fe) were also measured in this study. More than 55% of non-inorganic carbon (OC + BC) in the atmosphere was detected in the aerosols with a size smaller than 1.1 μm and the concentration of non-inorganic carbon in the atmosphere showed only a faint variation during a whole year, although the concentrations of total aerosols and its chemical components exhibited a distinct variation

  12. Morphological and light-absorption characteristics of individual BC particles collected in an urban seaside area at Tokaimura, eastern central Japan.

    Science.gov (United States)

    Fu, Feng Fu; Watanabe, Kazuo; Shinohara, Nobuo; Xu, Xueqin; Xu, Liangjun; Akagi, Tasuku

    2008-04-15

    To observe surface morphology and light-absorption property of different black carbon (BC) particles, different-sized aerosols were collected in Tokaimura (36.27 degrees N, 140.36 degrees E), an urban seaside area of eastern central Japan, using a high-volume Andersen type sampler during a whole year (Jan. to Dec. in 2004). The morphology of individual BC particle separated from different-sized aerosols was observed with Scanning Electron Microscope with Energy Dispersive X-ray Spectrometer (SEM-EDX) and four types of morphology were observed: 50 nm spherical particles, micrometer-sized plates with homogeneous surfaces, micrometer-sized spherical particles with homogeneous surfaces and micrometer-sized spherical particles with small holes on surfaces. The light-absorption property of BC particles with different morphology has been determined by infrared spectrometry (IRS) with a photoacoustic technique in a region of 400-4000 wavenumbers (cm(-1)). All morphology BC particles showed a strong light-absorption during 500-3000 wavenumbers (cm(-1)) with two strong broad peaks in 750-1100 and 1200-2200 wavenumbers (cm(-1)), implying that all morphology BC particles can absorb a significant part of thermal infrared emitted from the earth (wavelength 4000-50,000 nm). The seasonal variation and the size-distribution of aerosols and its chemical components (e.g. C, Na, Cl, NH(4)(+), NO(3)(-), SO(4)(2-), Al, Ca, Mg and Fe) were also measured in this study. More than 55% of non-inorganic carbon (OC+BC) in the atmosphere was detected in the aerosols with a size smaller than 1.1 microm and the concentration of non-inorganic carbon in the atmosphere showed only a faint variation during a whole year, although the concentrations of total aerosols and its chemical components exhibited a distinct variation.

  13. Production of various sizes and some properties of beryllium pebbles by the rotating electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Iwadachi, T.; Sakamoto, N.; Nishida, K. [NGK Insulators Ltd., Nagoya (Japan); Kawamura, H.

    1998-01-01

    The particle size distribution of beryllium pebbles produced by the rotating electrode method was investigated. Particle size depends on some physical properties and process parameters, which can practicaly be controlled by varying electrode angular velocities. The average particle sizes produced were expressed by the hyperbolic function with electrode angular velocity. Particles within the range of 0.3 and 2.0 mm in diameter are readily produced by the rotating electrode method while those of 0.2 mm in diameter are also fabricable. Sphericity and surface roughness were good in each size of pebble. Grain sizes of the pebbles are 17 {mu} m in 0.25 mm diameter pebbles and 260 {mu} m in 1.8 mm diameter pebbles. (author)

  14. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  15. Molecular binding thermodynamics of spherical guests by β-cyclodextrins bearing aromatic substituents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Wang, Li-Hua; Mao, Wen-Zhao; Liu, Yu, E-mail: yuliu@nankai.edu.cn

    2014-01-20

    Graphical abstract: - Highlights: • Different conformation of β-CD derivatives. • Enthalpy gain. • High binding ability. - Abstract: The molecular binding behaviors of two β-cyclodextrin (β-CD) derivatives bearing 1,2,3-triazole moieties, i.e. mono-6-deoxy-6-{4-(8-oxymethylquinolino)[1,2,3]triazolyl}-β-CD (1) and mono-6-deoxy-6-{4-(8-oxymethylnaphthol)[1,2,3]triazolyl}-β-CD (3), and their analogs without 1,2,3-triazole moieties, i.e. mono-6-deoxy-6-(8-oxymethylquinolino)-β-CD (2) and mono-6-deoxy-6-(8-oxymethylnaphthol)-β-CD (4) toward spherical guests (±)-borneol and (±)-camphor were investigated to elucidate how substituent moiety of host affects the binding abilities by 2D NMR as well as microcalorimetric titrations in aqueous phosphate buffer solution (pH 7.20) at 298.15 K. The binding modes of host–guest interactions obtained from 2D NMR displayed that host CDs without triazole moieties gave better induce-fit efficiency between hosts and guests, leading to stronger binding abilities. Thermodynamically, the inclusion complexation was driven by enthalpy with the stoichiometry of 1:1. Another factor contributed to the enhanced binding abilities was the enthalpy gain with the smaller entropy loss.

  16. Size limits for rounding of volcanic ash particles heated by lightning

    Science.gov (United States)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  17. Measurements of refractive index and size of a spherical drop from Gaussian beam scattering in the primary rainbow region

    Science.gov (United States)

    Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron

    2018-03-01

    The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.

  18. Gravitational agglomeration of post-HCDA LMFBR aerosols: nonspherical particles

    International Nuclear Information System (INIS)

    Tuttle, R.F.; Loyalka, S.K.

    1982-12-01

    Aerosol behavior analysis computer programs have shown that temporal aerosol size distributions in nuclear reactor containments are sensitive to shape factors. This research investigates shape factors by a detailed theoretical analysis of hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. First, basic definitions and expressions for settling speeds and collisional efficiencies of nonspherical particles are developed. These are then related to corresponding quantities for spherical particles through shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, the density correction factor, and the gravitational collision shape factor, are introduced to describe the collision kernel for collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program (NGCEFF) is constructed, and the dynamical equations are solved by Gear's method

  19. Equilibrium spherically curved two-dimensional Lennard-Jones systems

    NARCIS (Netherlands)

    Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.

    2005-01-01

    To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced

  20. Effect of dispersed phase particle size on microstructure of cup fracture

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1978-01-01

    A correlation-regressive analysis has been carried out to reveal the influence of the size and the mean distance between the disperse particles of deposits V(C,N) on the microstructure (size of micropores and cups, density of the cups) of a viscous cup-like fracture of specimens made of 30Kh2NMFA grade steel that has been hardened and annealed. It is shown that micropores develop at relatively large particles of deposits V(C,N) (>=0.04/m). A strong correlation linear connection exists between the size of a disperse particle of deposits V(C,N), the size of micropore and cup. This connection is attributable to the close, pairwise correlative connection between the size of the particle and the micropore, the micropore and the cup

  1. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    Science.gov (United States)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  2. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Energy Technology Data Exchange (ETDEWEB)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh, E-mail: nareshb@mech.iitd.ac.in [Indian Institute of Technology Delhi, Mechanical Engineering Department (India)

    2017-01-15

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  3. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  4. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  5. Size Determination of Au Aerosol Nanoparticles by Off-Line TEM/STEM Observations

    Science.gov (United States)

    Karlsson, Lisa S.; Deppert, Knut; Malm, Jan-Olle

    2006-12-01

    Determination of particle size distributions of Au aerosol nanoparticles has been performed by a TEM/STEM investigation. The particles are generated by an evaporation/condensation method and are size-selected by differential mobility analyzers (DMA) based on their electrical mobility. Off-line TEM measurements resulted in equivalent projected area diameters assuming that the particles are spherical in shape. In this paper critical factors such as magnification calibration, sampling, image analysis, beam exposure and, particle shape are treated. The study shows that the measures of central tendency; mean, median and mode, are equal as expected from a narrow size distribution. Moreover, the correlation between TEM/STEM and DMA are good, in practice 1:1. Also, STEM has the advantage over TEM due to enhanced contrast and is proposed as an alternative route for determination of particle size distributions of nanoparticles with lower contrast.

  6. Size Determination of Au Aerosol Nanoparticles by Off-Line TEM/STEM Observations

    International Nuclear Information System (INIS)

    Karlsson, Lisa S.; Deppert, Knut; Malm, Jan-Olle

    2006-01-01

    Determination of particle size distributions of Au aerosol nanoparticles has been performed by a TEM/STEM investigation. The particles are generated by an evaporation/condensation method and are size-selected by differential mobility analyzers (DMA) based on their electrical mobility. Off-line TEM measurements resulted in equivalent projected area diameters assuming that the particles are spherical in shape. In this paper critical factors such as magnification calibration, sampling, image analysis, beam exposure and, particle shape are treated. The study shows that the measures of central tendency; mean, median and mode, are equal as expected from a narrow size distribution. Moreover, the correlation between TEM/STEM and DMA are good, in practice 1:1. Also, STEM has the advantage over TEM due to enhanced contrast and is proposed as an alternative route for determination of particle size distributions of nanoparticles with lower contrast

  7. Application of Convolution Perfectly Matched Layer in MRTD scattering model for non-spherical aerosol particles and its performance analysis

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Li, Hao; Yang, Bo; Jiang, Zidong; Liu, Lei; Chen, Ming

    2017-10-01

    The performance of absorbing boundary condition (ABC) is an important factor influencing the simulation accuracy of MRTD (Multi-Resolution Time-Domain) scattering model for non-spherical aerosol particles. To this end, the Convolution Perfectly Matched Layer (CPML), an excellent ABC in FDTD scheme, is generalized and applied to the MRTD scattering model developed by our team. In this model, the time domain is discretized by exponential differential scheme, and the discretization of space domain is implemented by Galerkin principle. To evaluate the performance of CPML, its simulation results are compared with those of BPML (Berenger's Perfectly Matched Layer) and ADE-PML (Perfectly Matched Layer with Auxiliary Differential Equation) for spherical and non-spherical particles, and their simulation errors are analyzed as well. The simulation results show that, for scattering phase matrices, the performance of CPML is better than that of BPML; the computational accuracy of CPML is comparable to that of ADE-PML on the whole, but at scattering angles where phase matrix elements fluctuate sharply, the performance of CPML is slightly better than that of ADE-PML. After orientation averaging process, the differences among the results of different ABCs are reduced to some extent. It also can be found that ABCs have a much weaker influence on integral scattering parameters (such as extinction and absorption efficiencies) than scattering phase matrices, this phenomenon can be explained by the error averaging process in the numerical volume integration.

  8. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  9. The use of rotating electric are for spherical particle production

    Directory of Open Access Journals (Sweden)

    Bica, Ion

    2000-08-01

    Full Text Available This work presents an experimental device designed to obtain spherical partióles by means of a rotating electric are. A rotation frequency of the electric are of 750 s-1, a voltage of 50 V (dc and a current of 100 A was used. The mass flow rate was 3 g.min-1. Under these conditions particles of 15 to 20 μm in diameter were obtained.

    Este trabajo presenta la instalación experimental destinada a la obtención de partículas esféricas utilizando un arco eléctrico rotatorio. Para ello se utilizó una frecuencia de rotación del arco eléctrico de 750 s-1 a un voltaje del arco de 50 V (cc y una corriente de 100 A. La velocidad de flujo de materia fue de 3 g.min-1 obteniéndose partículas de diámetros comprendidos entre 15 y 20 μm.

  10. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  11. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    Science.gov (United States)

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  12. Revisiting the Fourier expansion of Mie scattering matrices in generalized spherical functions

    International Nuclear Information System (INIS)

    Sanghavi, Suniti

    2014-01-01

    Mie computations of the scattering properties of large particles are a time consuming step in the radiative transfer modeling of aerosol and clouds. Currently, there exist two methods based on the use of spherical functions for computing the Fourier moments of the phase matrix of a given spherical particle or particulate polydispersion: The first, developed over the years before being presented in a convenient form by Siewert [31], required an intermediate computation of the phase matrix over which numerical integration was performed to deliver the required Fourier components. The second, suggested by Domke [9], promised a direct computation of the Fourier moments using Wigner 3-j symbols. While the former was relatively easy to implement and is thus the most commonly used to date, its numerical implementation using an arbitrary user choice of angular quadrature (NAI-1) can produce inaccurate results. Numerical integration using quadrature points as recommended by de Rooij and van der Stap [5] (NAI-2) delivers accurate results with high computational efficiency. Domke's method enables a direct computation of the exact number of required Fourier components. However, the original manuscript contained several misprints, many of which were subsequently corrected by de Rooij and van der Stap [5]. Unfortunately, the main recurrence relationship used in Domke [9] remained uncorrected. In this paper, the corrected relationship is presented along with other minor corrections. de Rooij and van der Stap [5] had found the straightforward application of Domke's method viable only for size parameters smaller than ∼120 due to issues involving computer storage. A means of implementing the corrected Domke formalism using precomputed tabulations of Wigner 3-j symbols (PCW) is presented here, making it more computationally economical and applicable over much broader particle size ranges. The accuracy of PCW is only limited by machine precision. For a single particle, NAI-2 is found

  13. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  14. Preparation of spherical fine particulate pigments within water-in-oil emulsions and their properties. (II). ; Formation mechanism and characteristic of spherical fine particulate pigment of tartrazine. W/O emulsion wo mochiita kyujo biryushi ganryo no chosei to seishitsu(dai 2 ho). ; Kiiro 4 go kyujo biryushi ganryo no seisei kiko to tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T.; Iwano, K.; Hotta, H.; Takano, S.; Tsutsumi, H. (Kao Corporation, Tokyo (Japan))

    1991-12-20

    The previous report explained that an excellent spherical particulate pigment with a grain size of 0.5 mm or less can be obtained by preparing multinuclear aluminum lakes from acidic dyes and multinuclear aluminum salt using water droplets in a W/O emulsion as reaction fields. This paper describes preparing pigments varying the charging concentrations of the pigments in a W/O emulsion and the droplet particle size to discuss the mechanism of forming the pigments. As a result, it was found that the particle sizes in the produced pigments have a clear correlation with the charging concentrations of the pigments and the droplet particle sizes in the W/O emulsion. A pigment produced in the W/O emulsion forms only in its own droplets, and reflects its particle sizes. Films dispersed with pigments having different particle sizes were prepared to discuss their tinting abilities, whereas it was clarified that the smaller the particle size, the higher the tinting ability and the higher saturation in colored paint films. 6 refs., 9 figs., 3 tabs.

  15. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    Directory of Open Access Journals (Sweden)

    Daiva Laučytė

    2011-04-01

    Full Text Available The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The composite samples of drained storm water runoff sediments were collected at the sedimentation tanks located in the districts of Verkiai and Karoliniskes on the 2nd of June, 2008. The analyses of grain size distribution were performed according the standard ISO/TS 17892-4:2004. The results showed that the particles with the particle size of 1–2 mm were obtained up to 10 m from the inlet and the particles with the size of 0,01–0,05 mm mainly were obtained close to the outlet of sedimentation tank. It is recommended to divide the sedimentation tank in two parts in order to get proper management of sediments: the particles that size is 1–10 mm could be managed as waste from grit chambers and particles of smaller size could be managed as primary sludge.Article in Lithuanian

  16. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Influence of particle size in silo discharge

    Directory of Open Access Journals (Sweden)

    Gella Diego

    2017-01-01

    Full Text Available Recently Janda et al. [Phys. Rev. Lett. 108, 248001 (2012] reported an experimental study where it was measured the velocity and volume fraction fields of 1 mm diameter stainless steel beads in the exit of a two-dimensional silo. In that work, they proposed a new expression to predict the flow of granular media in silos which does not explicitly include the particle size as a parameter. Here, we study if effectively, there is not such influence of the particle size in the flux equations as well as investigate any possible effect in the velocity and volume fraction fields. To this end, we have performed high speed motion measurements of these magnitudes in a two-dimensional silo filled with 4 mm diameter beads of stainless steel, the same material than the previous works. A developed tracking program has been implemented to obtain at the same time both, the velocity and volume fraction. The final objective of this work has been to extend and generalize the theoretical framework of Janda et al. for all sizes of particles. We have found that the obtained functionalities are the same than in the 1 mm case, but the exponents and other fitting parameters are different.

  18. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  19. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  20. Size measurement of gold and silver nanostructures based on their extinction spectrum: limitations and extensions

    Directory of Open Access Journals (Sweden)

    A A Ashkarran

    2013-09-01

    Full Text Available  This paper reports on physical principles and the relations between extinction cross section and geometrical properties of silver and gold nanostructures. We introduce some simple relations for determining geometrical properties of silver and gold nanospheres based on the situation of their plasmonic peak. We also applied, investigated and compared the accuracy of these relations using other published works in order to make clear the effects of shape, size distribution and refractive index of particles’ embedding medium. Finally, we extended the equations to non-spherical particles and investigated their accuracy. We found that modified forms of the equations may lead to more exact results for non-spherical metal particles, but for better results, modified equations should depend on shape and size distribution of particles. It seems that these equations are not applicable to particles with corners sharper than cubes' corners i.e. nanostructures with spatial angles less than π/2 sr.

  1. Determination of size distribution function

    International Nuclear Information System (INIS)

    Teshome, A.; Spartakove, A.

    1987-05-01

    The theory of a method is outlined which gives the size distribution function (SDF) of a polydispersed system of non-interacting colloidal and microscopic spherical particles, having sizes in the range 0-10 -5 cm., from a gedanken experimental scheme. It is assumed that the SDF is differentiable and the result is obtained for rotational frequency in the order of 10 3 (sec) -1 . The method may be used independently, but is particularly useful in conjunction with an alternate method described in a preceding paper. (author). 8 refs, 2 figs

  2. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  3. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories

    Science.gov (United States)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-01-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of

  5. Particulate size growth in a buoyant aerosol cloud

    International Nuclear Information System (INIS)

    Bathula, Sreekanth; Anand, S.; Sapra, B.K.; Chaturvedi, Shashank; Chaudhury, Probal; Pradeepkumar, K.S.

    2018-01-01

    Intentional/accidental release of Chemical, Biological, Radiological or Nuclear (CBRN) contaminant into environment create air and ground contamination. Preparedness and response towards such incidents require reliable models to predict the contamination levels. If the released contaminant is a gas, then it will undergo dilution by mixing with the atmospheric air hence air concentration will reduce to a greater extent and ground contamination may not be possible unless by means of wet deposition. But if the released contaminant is in the form of an aerosol cloud, significant ground deposition is possible due to dry deposition as well as wet deposition along with the air concentration. Particle size distribution inside the cloud is essential information required in computing the air concentration as well as ground concentration. The particle size distribution inside the cloud also undergoes temporal variation due to microscopic processes like particle-particle interactions (coagulation) and macroscopic like buoyancy, air entrainment and volume expansion etc. In this paper, the numerical computation of particle size and particle number concentration in an instantaneous, uniformly mixed, buoyant spherical puff released from a pressurised container is presented

  6. Spray drying of spherical Li{sub 4}Ti{sub 5}O{sub 12}/C powders using polyvinyl pyrrolidone as binder and carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China); Shanghai Nanotechnology Promotion Center, Shanghai 200237 (China); Wang, Qian; Cao, Chunhui [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China); Han, Xuewu [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Jian, E-mail: zjskycn@163.com [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie, Xiaohua, E-mail: xiaohuaxie@126.com [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xia, Baojia [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China)

    2015-02-05

    Highlights: • The spherical Li{sub 4}Ti{sub 5}O{sub 12}/C granules were prepared by spray drying. • Polyvinyl pyrrolidone (PVP) was used as binder and carbon source. • Tap density and spherical structure increase with the increase of PVP content. • Li{sub 4}Ti{sub 5}O{sub 12}/C granules exhibits better rate capability and excellent cyclability. - Abstract: Polyvinyl pyrrolidone (PVP) was used as binder and carbon source to synthesize stable and spherical Li{sub 4}Ti{sub 5}O{sub 12}/C granules by spray drying. The effects of PVP content and atmospheres on the properties of Li{sub 4}Ti{sub 5}O{sub 12} were investigated. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical tests, respectively. The results indicate that the average particle size, tap density and degree of spherical structure increase accordingly to the increase of PVP content. However, the large secondary particle would deteriorate the rate capacity at high current density. The carbon coating could significantly improve the rate capacity, which is attributed to the smaller primary particle and higher electrical conductivity.

  7. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  8. Direct Simulation of Extinction in a Slab of Spherical Particles

    Science.gov (United States)

    Mackowski, D.W.; Mishchenko, Michael I.

    2013-01-01

    The exact multiple sphere superposition method is used to calculate the coherent and incoherent contributions to the ensemble-averaged electric field amplitude and Poynting vector in systems of randomly positioned nonabsorbing spherical particles. The target systems consist of cylindrical volumes, with radius several times larger than length, containing spheres with positional configurations generated by a Monte Carlo sampling method. Spatially dependent values for coherent electric field amplitude, coherent energy flux, and diffuse energy flux, are calculated by averaging of exact local field and flux values over multiple configurations and over spatially independent directions for fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal exponential attenuation of the coherent field and the coherent energy flux inside the particulate layer and thereby further corroborate the general methodology of the microphysical radiative transfer theory. An effective medium model based on plane wave transmission and reflection by a plane layer is used to model the dependence of the coherent electric field on particle packing density. The effective attenuation coefficient of the random medium, computed from the direct simulations, is found to agree closely with effective medium theories and with measurements. In addition, the simulation results reveal the presence of a counter-propagating component to the coherent field, which arises due to the internal reflection of the main coherent field component by the target boundary. The characteristics of the diffuse flux are compared to, and found to be consistent with, a model based on the diffusion approximation of the radiative transfer theory.

  9. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions

    DEFF Research Database (Denmark)

    Göke, Katrin; Roese, Elin; Arnold, Andreas

    2016-01-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bl......Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection...... treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones....

  10. Particle number size distributions in urban air before and after volatilisation

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2010-05-01

    Full Text Available Aerosol particle number size distributions (size range 0.003–10 μm in the urban atmosphere of Augsburg (Germany were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass.

    Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C, allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9 suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could

  11. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Science.gov (United States)

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  12. On the Effective Thermal Conductivity of Porous Packed Beds with Uniform Spherical Particles

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    Point contact models for the effective thermal conductivity of porous media with uniform spherical inclusions have been briefly reviewed. The model of Zehner and Schlunder (1970) has been further validated with recent experimental data over a broad range of conductivity ratio from 8 to 1200 and over a range of solids fraction up to about 0.8. The comparisons further confirm the validity of Zehner-Schlunder model, known to be applicable for conductivity ratios less than about 2000, above which area contact between the particles becomes significant. This validation of the Zehner-Schlunder model has implications for its use in the prediction of the effective thermal conductivity of water frost (with conductivity ratio around 100) which arises in many important areas of technology.

  13. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  14. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  15. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  16. Method of altering the effective bulk density of solid material and the resulting product: hollow polymeric particles

    International Nuclear Information System (INIS)

    Kool, L.B.; Nolen, R.L.; Solomon, D.E.

    1981-01-01

    Hollow spherical particles are made by spraying a mixture of powdered solid material with a solution of a film-forming polymer in a solvent therefor into a heated chamber where the solvent evaporates. The powder is thereby captured in the wall of the hollow polymer particles formed. Such particles are used to form a suspension in a fluid material. The hollow particles are of such size and wall thickness, in relation to the bulk density of the powdered solid material, that the bulk density of each hollow spherical particle is commensurate with the density of the fluid material. The particles thereby remain in suspension over a substantial period of time with little or no agitation of the fluid. (author)

  17. A low-cost, high-magnification imaging system for particle sizing applications

    International Nuclear Information System (INIS)

    Tipnis, Tanmay J; Lawson, Nicholas J; Tatam, Ralph P

    2014-01-01

    A low-cost imaging system for high magnification and high resolution was developed as an alternative to long-working-distance microscope-based systems, primarily for particle sizing applications. The imaging optics, comprising an inverted fixed focus lens coupled to a microscope objective, were able to provide a working distance of approximately 50 mm. The system magnification could be changed by using an appropriate microscope objective. Particle sizing was achieved using shadow-based techniques with the backlight illumination provided by a pulsed light-emitting diode light source. The images were analysed using commercial sizing software which gave the particle sizes and their distribution. A range of particles, from 6 to 8 µm to over 100 µm, was successfully measured with a minimum spatial resolution of approximately 2.5 µm. This system allowed measurement of a wide range of particles at a lower cost and improved operator safety without disturbing the flow. (technical design note)

  18. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  19. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  20. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  1. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    Science.gov (United States)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  2. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    Science.gov (United States)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  3. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    Directory of Open Access Journals (Sweden)

    Muhammad Akram Raza

    2016-04-01

    Full Text Available Silver nanoparticles (AgNPs of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM, UV-visible spectroscopy (UV-VIS, and X-ray diffraction (XRD techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.

  4. Simultaneous velocity and particle size measurement in two phase flows by Laser Anemometry

    Science.gov (United States)

    Ungut, A.; Yule, A. J.; Taylor, D. S.; Chigier, N. A.

    1978-01-01

    A technique for particle size measurement by using Laser Doppler Anemometry is discussed. An additional gate photomultiplier has been introduced at right angles to the optical axis in order to select only those particles passing through the central region of the measurement control volume. Particle sizing measurements have been made in sprays of glass particles using the modified Laser Anemometry system. Measurements in fuel sprays are also reported and compared with the results obtained by a photographic technique. The application of the particle sizing technique to opaque particles is investigated and suitable optical arrangements are suggested. Light scattering characteristics of Laser Anemometry systems for different optical geometries are calculated to select the optimum optical arrangement for the particle sizing measurements.

  5. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  6. Discrete element method modeling of the triboelectric charging of polyethylene particles: Can particle size distribution and segregation reduce the charging?

    International Nuclear Information System (INIS)

    Konopka, Ladislav; Kosek, Juraj

    2015-01-01

    Polyethylene particles of various sizes are present in industrial gas-dispersion reactors and downstream processing units. The contact of the particles with a device wall as well as the mutual particle collisions cause electrons on the particle surface to redistribute in the system. The undesirable triboelectric charging results in several operational problems and safety risks in industrial systems, for example in the fluidized-bed polymerization reactor. We studied the charging of polyethylene particles caused by the particle-particle interactions in gas. Our model employs the Discrete Element Method (DEM) describing the particle dynamics and incorporates the ‘Trapped Electron Approach’ as the physical basis for the considered charging mechanism. The model predicts the particle charge distribution for systems with various particle size distributions and various level of segregation. Simulation results are in a qualitative agreement with experimental observations of similar particulate systems specifically in two aspects: 1) Big particles tend to gain positive charge and small particles the negative one. 2) The wider the particle size distribution is, the more pronounced is the charging process. Our results suggest that not only the size distribution, but also the effect of the spatial segregation of the polyethylene particles significantly influence the resulting charge distribution ‘generated’ in the system. The level of particle segregation as well as the particle size distribution of polyethylene particles can be in practice adjusted by the choice of supported catalysts, by the conditions in the fluidized-bed polymerization reactor and by the fluid dynamics. We also attempt to predict how the reactor temperature affects the triboelectric charging of particles. (paper)

  7. Size exclusion chromatography with superficially porous particles.

    Science.gov (United States)

    Schure, Mark R; Moran, Robert E

    2017-01-13

    A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of maize flour particle size on gluten-free breadmaking.

    Science.gov (United States)

    de la Hera, Esther; Talegón, María; Caballero, Pedro; Gómez, Manuel

    2013-03-15

    Maize, one of the suitable grains for coeliac consumption, is, together with rice, the most cultivated cereal in the world. However, the inclusion of maize flour in gluten-free bread is a minority and studies are scarce. This paper analyses the influence of different maize flour types and their particle sizes on the quality of two types of bread without gluten (80% and 110% water in the formulation) obtained from them. We also analysed the microstructure of the dough and its behaviour during the fermentation. Finer flours had a lower dough development during fermentation in all cases. Among the different types of flour, those whose microstructure revealed compact particles were those which had higher specific bread volume, especially when the particle size was greater. Among the formulations, the dough with more water gave breads with higher specific volume, an effect that was more important in more compact flours. The higher volume breads had lower values of hardness and resilience. The type of corn flour and mainly its particle size influence significantly the dough development of gluten-free bread during fermentation and therefore the final volume and texture of the breads obtained. The flours having coarser particle size are the most suitable for making gluten-free maize bread. © 2012 Society of Chemical Industry.

  9. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  10. Theoretical calculations of the deposition of non-spherical particles in the upper airways of the human lung

    International Nuclear Information System (INIS)

    Sturm, Robert; Hofmann, Werner

    2009-01-01

    In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)

  11. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries

    International Nuclear Information System (INIS)

    Zou, Hongli; Zhang, Guanghui; Shen, Pei Kang

    2010-01-01

    An intermittent microwave heating method was used to synthesize spherical LiFePO 4 /C in the presence of glucose as reductive agent and carbon source without the use of the inert gas in the oven processes. The FePO 4 was used as iron precursor to reduce the cost and three lithium salts of Li 2 CO 3 , LiOH and CH 3 COOLi were chosen for comparison of the resulting materials. The materials can be alternatively heated by this method at a temperature controllable mode for crystallization and phase transformation and to provide relaxation time for protecting particles growth. The X-ray diffraction and scanning electron microscope measurements confirmed that the LiFePO 4 /C is olivine structured with the average particle size of 50-100 nm. The spherical LiFePO 4 /C as cathode material showed better electrochemical performance in terms of the specific capacity and the cycling stability, which might be attributed to the highly crystallized phase, small particle distribution and improved conductivity by carbon connection.

  12. Ultrasound Assisted Particle Size Control by Continuous Seed Generation and Batch Growth

    OpenAIRE

    Jordens, Jeroen; Canini, Enio; Gielen, Bjorn; Van Gerven, Tom; Braeken, Leen

    2017-01-01

    Controlling particle size is essential for crystal quality in the chemical and pharmaceutical industry. Several articles illustrate the potential of ultrasound to tune this particle size during the crystallization process. This paper investigates how ultrasound can control the particle size distribution (PSD) of acetaminophen crystals by continuous seed generation in a tubular crystallizer followed by batch growth. It is demonstrated that the supersaturation ratio at which ultrasound starts s...

  13. Neutron activation analysis of size-separated airborne dust particles, (2)

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1976-01-01

    The size distribution of the component element concentration in particle floating matters contained in the atmosphere is related closely to atmospheric pollution. In this paper, the results of the neutron activation analysis and the measurement of size distribution of component element concentration are reported, which were carried out in Minami-ku, Kyoto, in May and November, 1975, by collecting airbone dust with Andersen air samples. The activation of samples was carried out with the research reactor in Kyoto University. The gamma-ray spectra of the samples were measured with a Ge(Li) semiconductor detector. The size distributions of Al, Sc, Th and Ti showed the similar pattern. The concentration of Zn was abnormally high as compared with that in other districts, and it is related to the local industry in this district. The size distribution of airborne dust usually follows the logarithmic normal distribution when it is not affected by atmospheric pollution. Accordingly, the size distribution of the concentration also follows the same distribution. The accumulated percentages of the concentrations of Al, Sc and Th fall on the same straight line, and it means that these elements were contained in the same particles as the components. Also it was decided that the particles of Al, Sc, Th, Fe and Ti were soil particles. (Kako, I.)

  14. The immersion freezing behavior of size-segregated soot and kaolinite particles

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  15. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.

    Science.gov (United States)

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu

    2006-07-10

    The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.

  16. Attractive and Repulsive Forces on Particles in Oscillatory Flow

    Science.gov (United States)

    Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Thameem, Raqeeb; Hilgenfeldt, Sascha

    2016-11-01

    A large class of oscillating flows gives rise to rectified streaming motion of the fluid. It has recently been shown that particle transport in such flows, excited by bubbles oscillating at ultrasound frequencies, leads to differential displacement and efficient sorting of microparticles by size. We derive a general expression for the instantaneous radial force experienced by a small spherical particle in the vicinity of an oscillating interface, and generalize the radial projection of the Maxey-Riley equation to include this effect. Varying relevant system parameters, we show that the net effect on the particle can be either an attraction to or a repulsion from the bubble surface, depending in particular on the particle size and the particle/fluid density contrast. We demonstrate that these predictions are in agreement with a variety of experiments.

  17. Particle Scattering in the Resonance Regime: Full-Wave Solution for Axisymmetric Particles with Large Aspect Ratios

    Science.gov (United States)

    Zuffada, Cinzia; Crisp, David

    1997-01-01

    Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward

  18. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  19. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  20. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  1. Preparation of spherical and cubic Fe{sub 55}Co{sub 45} microstructures for studying the role of particle morphology in magnetorheological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul; Mukhopadhyay, P.K., E-mail: pkm@bose.res.in

    2014-06-01

    Cubic and spherical Fe{sub 55}Co{sub 45} alloyed microstructures were synthesized by borohydride reduction from aqueous solutions of metallic precursors, using stabilizers and polymer. Monosodium citrate, sodium acetate and PEG 6000 were utilized as electrostatic stabilizers and polymeric surface modifier. Suitable reaction conditions were maintained for synthesis of predominantly larger particles (0.7 µm to 1.2 µm), that facilitates use in magnetorheological fluids. Surface morphological studies by scanning electron microscopy revealed well shaped cubic and spherical geometry for the citrate and polymer-stabilized Fe{sub 55}Co{sub 45} alloys, while the alloy compositions remained nearly the same for both. X-ray diffractions of the as-prepared and annealed samples under various temperatures showed high degree of crystallinity with increasing temperatures. Studies of D.C. magnetization of the systems reveal that the particles have a core–shell structure, with inner magnetic core having a diameter around 30 nm with a log-normal distribution. Magnetorheological studies were performed with 8 vol% suspensions of as-synthesized particles dispersed in silicone oil (viscosity 30 mPa s at 25 °C) under different magnetic fields. Detailed studies of the magnetorheological properties were studied on these systems for practical use.

  2. The effect of reducing alfalfa haylage particle size on cows in early lactation.

    Science.gov (United States)

    Kononoff, P J; Heinrichs, A J

    2003-04-01

    The objective of this experiment was to evaluate effects of reducing forage particle size on cows in early lactation based on measurements of the Penn State Particle Separator (PSPS). Eight cannulated, multiparous cows averaging 19 +/- 4 d in milk and 642 +/- 45 kg BW were assigned to one of two 4 x 4 Latin Squares. During each of the 23-d periods, animals were offered one of four diets, which were chemically identical but included alfalfa haylage of different particle size; short (SH), mostly short (MSH), mostly long (MLG), and long (LG). Physically effective neutral detergent fiber (peNDF) was determined by measuring the amount of neutral detergent fiber retained on a 1.18 mm screen and was similar across diets (25.7, 26.2, 26.4, 26.7%) but the amount of particles >19.0 mm significantly decreased with decreasing particle size. Reducing haylage particle size increased dry matter intake linearly (23.3, 22.0, 20.9, 20.8 kg for SH, MSH, MLG, LG, respectively). Milk production and percentage fat did not differ across treatments averaging 35.5 +/- 0.68 kg milk and 3.32 +/- 0.67% fat, while a quadratic effect was observed for percent milk protein, with lowest values being observed for LG. A quadratic effect was observed for mean rumen pH (6.04, 6.15, 6.13, 6.09), while A:P ratio decreased linearly (2.75, 2.86, 2.88, 2.92) with decreasing particle size. Total time ruminating increased quadratically (467, 498, 486, 468 min/d), while time eating decreased linearly (262, 253, 298, 287 min/d) with decreasing particle size. Both eating and ruminating per unit of neutral detergent fiber intake decreased with reducing particle size (35.8, 36.7, 44.9, 45.6 min/kg; 19.9, 23.6, 23.5, 23.5 min/kg). Although chewing activity was closely related to forage particle size, effects on rumen pH were small, indicating factors other than particle size are critical in regulating pH when ration neutral detergent fiber met recommended levels. Feeding alfalfa haylage based rations of reduced

  3. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  4. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  5. Non-spherical granular flows down inclined chutes

    NARCIS (Netherlands)

    Hidalgo, R.C.; Rubio-Largo, S.M.; Alonso-Marroquin, F.; Weinhart, T.

    2017-01-01

    In this work, we numerically examine the steady-state granular flow of 3D non-spherical particles down an inclined plane. We use a hybrid CPU/GPU implementation of the discrete element method of nonspherical elongated particles. Thus, a systematic study of the system response is performed varying

  6. Particle size analysis in estimating the significance of airborne contamination

    International Nuclear Information System (INIS)

    1978-01-01

    In this report information on pertinent methods and techniques for analysing particle size distributions is compiled. The principles underlying the measurement methods are described, and the merits of different methods in relation to the information being sought and to their usefulness in the laboratory and in the field are explained. Descriptions on sampling methods, gravitational and inertial particle separation methods, electrostatic sizing devices, diffusion batteries, optical sizing techniques and autoradiography are included. Finally, the report considers sampling for respirable activity and problems related to instrument calibration

  7. Effect of round particles on shear strength properties of railway ballast

    CSIR Research Space (South Africa)

    Mvelase, GM

    2016-07-01

    Full Text Available particles. Sedimentary Petrology, 11, pp. 64-72, 1941. [11] Folk, R.L., Student operator error in determining of roundness, sphericity and grain size. Sedimentary Petrology, 25, pp. 297-301, 1955. [12] Janoo, V.C., Quantification of shape, angularity...

  8. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing paracetamol ...

  9. Rutile nanopowders for pigment production: Formation mechanism and particle size prediction

    Science.gov (United States)

    Zhang, Wu; Tang, Hongxin

    2018-01-01

    Formation mechanism and particle size prediction of rutile nanoparticles for pigment production were investigated. Anatase nanoparticles were observed by oriented attachment with parallel lattice fringe spaces of 0.2419 nm. Upon increasing the calcination temperature, the (1 1 0) plane of rutile was gradually observed, suggesting that the anatase (1 0 3) planes undergo internal structural rearrangement of oxygen and titanium ions into rutile phase due to ionic diffusion. Backpropagation neural network was used to predict particle size of rutile nanopowders, the prediction errors were all smaller than 2%, providing an efficient method to control particle size in pigment production.

  10. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  11. Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Santillán, J M J; Videla, F A; Scaffardi, L B; Schinca, D C; Fernández van Raap, M B; Muraca, D

    2013-01-01

    The study of metal nanoparticles (NPs) is of great interest due to their ability to enhance optical fields on the nanometric scale, which makes them interesting for various applications in several fields of science and technology. In particular, their optical properties depend on the dielectric function of the metal, its size, shape and surrounding environment. This work analyses the contributions of free and bound electrons to the complex dielectric function of spherical silver NPs and their influence on the optical extinction spectra. The contribution of free electrons is usually corrected for particle size under 10 nm, introducing a modification of the damping constant to account for the extra collisions with the particle's boundary. For the contribution of bound electrons, we considered the interband transitions from the d-band to the conduction band including the size dependence of the electronic density states for radii below 2 nm. Bearing in mind these specific modifications, it was possible to determine optical and band energy parameters by fitting the bulk complex dielectric function. The results obtained from the optimum fit are: K bulk = 2 × 10 24 (coefficient for bound-electron contribution), E g = 1.91 eV (gap energy), E F = 4.12 eV (Fermi energy), and γ b = 1.5 × 10 14 Hz (damping constant for bound electrons). Based on this size-dependent dielectric function, extinction spectra of silver particles in the nanometric–subnanometric radius range can be calculated using Mie's theory, and its size behaviour analysed. These studies are applied to fit experimental extinction spectrum of very small spherical particles fabricated by fs laser ablation of a solid target in water. From the fitting, the structure and size distribution of core radius and shell thickness of the colloidal suspension could be determined. The spectroscopic results suggest that the colloidal suspension is composed by two types of structures: bare core and core–shell. The former

  12. Induced charge of spherical dust particle on plasma-facing wall in non-uniform electric field

    International Nuclear Information System (INIS)

    Tomita, Y.; Smirnov, R.; Zhu, S.

    2005-01-01

    Induced charge of a spherical dust particle on a plasma-facing wall is investigated analytically, where non-uniform electric field is applied externally. The one-dimensional non-uniform electrostatic potential is approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate is introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge. (author)

  13. [Fluorescent and Raman scattering by molecules embedded in small particles]: Annual report, 1983

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1983-01-01

    An overview is given of the model formulated for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions), cylindrical, and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incoherently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescence under excitation by evanescent waves

  14. Aggregation and composition effects on absorption and scattering properties of dye-sensitized anatase TiO{sub 2} particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, William E. [Centro de Investigacion en Ciencia e Ingenieria de Materiales and Escuela de Fisica, Universidad de Costa Rica, 2060 San Jose (Costa Rica)], E-mail: vargasc@cariari.ucr.ac.cr

    2008-06-15

    A transition matrix approach is used to compute the scattering and absorption cross sections, as well as phase functions, asymmetry factors and forward scattering ratios, of clusters of spherical particles. In order to approach the local structure and composition of the nanosized active layer of photoelectrochemical solar cells, some clusters consist of homogeneous non-absorbing anatase spherical pigments, others have anatase particles coated with a monolayer of absorbing dye molecules, and others can consist of both uncoated and dye-coated anatase particles. Orientation average values of the volumetric scattering and absorption cross sections are computed in terms of the size of the spherical particles in the clusters and their number. The degree of scattering and absorption when considering dye-coated anatase particles in the clusters is characterized. The effect of dependent scattering on the average angular distribution of the scattered radiation is also considered.

  15. Polarized Radiative Transfer of a Cirrus Cloud Consisting of Randomly Oriented Hexagonal Ice Crystals: The 3 x 3 Approximation for Non-Spherical Particles

    Science.gov (United States)

    Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.

    2016-01-01

    The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.

  16. Particle-size distribution study: PILEDRIVER event

    Energy Technology Data Exchange (ETDEWEB)

    Rabb, David D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Reentry was made by mining into the chimney of broken rock created by a nuclear detonation in granite at a depth of 1500 feet. The chimney was 160 ft in radius and 890 ft high. An injection of radioactive melt was encountered at 300 ft from shot point. Radiochemical analyses determined that the yield of PILEDRIVER nuclear device was 61 {+-} 10 kt. Two samples of chimney rubble totalling over 5,000 lb were obtained during the postshot exploration. These samples of broken granite underwent screen analysis, a radioactivity-distribution study, and cursory leaching tests. The two samples were separated into 25 different size-fractions. An average of the particle-size data from the two samples showed that 17% of the material is between 20 mesh and I in.; 42% between 1 and 6 in.; and 34% between 6 in. and 3 ft. The distribution of radioactivity varies markedly with the particle size. The minus 100-mesh material comprizes less than 1.5% of the weight but contains almost 20% of the radioactivity. Small-scale batch-leaching tests showed that 25% of the radioactivity could be removed in a few hours by a film-percolation leach with distilled water, and 40% with dilute acid. Brief studies were made of the microfractures in the broken rock and of the radioactivity created by the PILEDRIVER explosion. (author)

  17. Particle-size distribution study: PILEDRIVER event

    International Nuclear Information System (INIS)

    Rabb, David D.

    1970-01-01

    Reentry was made by mining into the chimney of broken rock created by a nuclear detonation in granite at a depth of 1500 feet. The chimney was 160 ft in radius and 890 ft high. An injection of radioactive melt was encountered at 300 ft from shot point. Radiochemical analyses determined that the yield of PILEDRIVER nuclear device was 61 ± 10 kt. Two samples of chimney rubble totalling over 5,000 lb were obtained during the postshot exploration. These samples of broken granite underwent screen analysis, a radioactivity-distribution study, and cursory leaching tests. The two samples were separated into 25 different size-fractions. An average of the particle-size data from the two samples showed that 17% of the material is between 20 mesh and I in.; 42% between 1 and 6 in.; and 34% between 6 in. and 3 ft. The distribution of radioactivity varies markedly with the particle size. The minus 100-mesh material comprizes less than 1.5% of the weight but contains almost 20% of the radioactivity. Small-scale batch-leaching tests showed that 25% of the radioactivity could be removed in a few hours by a film-percolation leach with distilled water, and 40% with dilute acid. Brief studies were made of the microfractures in the broken rock and of the radioactivity created by the PILEDRIVER explosion. (author)

  18. Electromechanical characterization of individual micron-sized metal coated polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Bazilchuk, Molly; Kristiansen, Helge [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Conpart AS, Skjetten 2013 (Norway); Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying, E-mail: jianying.he@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway)

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  19. Electromechanical characterization of individual micron-sized metal coated polymer particles

    International Nuclear Information System (INIS)

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-01-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  20. Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations

    Science.gov (United States)

    Padrino, Juan C.; Sprittles, James; Lockerby, Duncan

    2017-11-01

    Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).

  1. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  2. Influence of crystallite size on the magnetic properties of Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sneha [Dept of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412 115 (India); Parekh, Kinnari [K C Patel R & D Center, Charotar University of Science & Technology, Changa 388421 (India); Pandey, Brajesh, E-mail: bpandey@gmail.com [Dept of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412 115 (India)

    2016-09-05

    Structural and magnetic properties of chemically synthesized magnetite nanoparticles have been studied using X-ray diffraction, Transmission Electron Microscopy and Vibrating Sample Magnetometer. Magnetically the synthesized nanoparticles are ranging from superparamagnetic to multi domain state. Average crystallite size of the synthesized magnetite nanoparticles were determined using X-ray line broadening and are found to be in the range of 9–53 nm. On the other hand, the TEM images show that the size is ranging between 7.9 and 200 nm with the transition from spherical superparamagnetic particles to faceted cubic multi domain particles. Magnetic parameters of the samples show a strong dependence on average crystallite size. The ratio of coercive field at 20 K to that at 300 K (H{sub c} (20 K)/H{sub c} (300 K)) increased sharply with decrease in crystallite size. A critical crystallite diameter of order 36 nm may be inferred as boundary between single domain to multi domain transition. Zero-field-cooled (ZFC) and field-cooled (FC) measurements at 10 Oe field validate the same for smallest and largest size samples, confirming that the anisotropy energy is greater than thermal energy upto 300 K temperature. For 9 nm sample broad ZFC curve with overlapping of FC curve is observed just at 300 K, indicating the effect of strong dipolar field in superparamagnetic system. - Graphical abstract: We present our study on magnetite nanoparticles. We observed that the synthesized nanoparticles behave like single domain particles in the range of 14 nm–36 nm. They show superparamagnetic properties if particles are smaller than 14 nm and multi-domain properties when the particles are bigger than 36 nm. - Highlights: • Magnetite nanoparticles have been synthesized using chemical precipitation method. • Smaller magnetite particles below 14 nm in size are in super-paramagnetic state. • Bigger particles show multi-domain character. • Magnetite in the size range 14–36 is

  3. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  4. A model experiment to study swallowing of spherical and elongated particles

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Swallowing disorders are not uncommon among elderly and people affected by neurological diseases. For these patients the ingestion of solid grains, such as pharmaceutical oral solid formulations, could result in choking. This generally results in a low compliance in taking solid medications. The effect of the solid medication size on the real or perceived ease of swallowing is still to be understood from the mechanistic viewpoint. The interplay of the inclusion shape and the rheology of the liquid being swallowed together with the medication is also not fully understood. In this study, a model experiment was developed to study the oropharyngeal phase of swallowing, replicating the dynamics of the bolus flow induced by the tongue (by means of a roller driven by an applied force. Experiments were performed using a wide set of solid inclusions, dispersed in a thick Newtonian liquid. Predictions for a simple theory are compared with experiments. Results show that an increase in the grain size results in a slower dynamics of the swallowing. Furthermore, the experiments demonstrated the paramount role of shape, as flatter and more streamlined inclusions flow faster than spherical. This approach can support the design of new oral solid formulations that can be ingested more easily and effectively also by people with mild swallowing disorders.

  5. Analysis of particles loaded fiber composites for the evaluation of ...

    African Journals Online (AJOL)

    The effective material properties are predicted for composites with different shape and size of inclusions such as cylindrical fibers, spherical and elliptical particles and cylindrical fibers with hemispherical ends. The analysis is based on a numerical homogenization technique using finite element method in connection with ...

  6. Invariants of the spherical sector in conformal mechanics

    International Nuclear Information System (INIS)

    Hakobyan, Tigran; Nersessian, Armen; Saghatelian, Armen; Lechtenfeld, Olaf

    2011-01-01

    A direct relation is established between the constants of motion for conformal mechanics and those for its spherical part. In this way, we find the complete set of functionally independent constants of motion for the so-called cuboctahedric Higgs oscillator, which is just the spherical part of the rational A 3 Calogero model (describing four Calogero particles after decoupling their center of mass).

  7. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2018-01-01

    of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...

  8. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    Science.gov (United States)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  9. Clinical Long-Term Outcome and Reinterventional Rate After Uterine Fibroid Embolization with Nonspherical Versus Spherical Polyvinyl Alcohol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Duvnjak, Stevo, E-mail: stevo.duvnjak@rsyd.dk [Odense University Hospital, Department of Radiology (Denmark); Ravn, Pernille [Odense University Hospital, Department of Gynecology (Denmark); Green, Anders [Odense University Hospital, Odense Patient Data Explorative Network (Denmark); Andersen, Poul Erik [Odense University Hospital, Department of Radiology (Denmark)

    2016-02-15

    PurposeThis study was designed to evaluate the long-term clinical outcome and frequency of reinterventions in patients with uterine fibroids treated with embolization at a single center using polyvinyl alcohol microparticles.MethodsThe study included all patients with symptomatic uterine fibroids treated with uterine fibroid embolization (UFE) with spherical (s-PVA) and nonspherical (ns-PVA) polyvinyl alcohol microparticles during the period January 2001 to January 2011. Clinical success and secondary interventions were examined. Hospital records were reviewed during follow-up, and symptom-specific questionnaires were sent to all patients.ResultsIn total, 515 patients were treated with UFE and 350 patients (67 %) were available for long-term clinical follow-up. Median time of follow-up was 93 (range 76–120.2) months. Eighty-five patients (72 %) had no reinterventions during follow-up in the group embolized with ns-PVA compared with 134 patients (58 %) treated with s-PVA. Thirty-three patients (28 %) underwent secondary interventions in the ns-PVA group compared with 98 patients (42 %) in s-PVA group (χ{sup 2} test, p < 0.01).ConclusionsSpherical PVA particles 500–700 µm showed high reintervention rate at long-term follow-up, and almost one quarter of the patients underwent secondary interventions, suggesting that this type of particle is inappropriate for UFE.

  10. Impact of spherical inclusion mean chord length and radius distribution on three-dimensional binary stochastic medium particle transport

    International Nuclear Information System (INIS)

    Brantley, Patrick S.; Martos, Jenny N.

    2011-01-01

    We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used. (author)

  11. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  12. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Particle size studies in the preparation of AQCS reference materials

    International Nuclear Information System (INIS)

    Fajgelj, A.; Zeisler, R.; Benesch, T.; Dekner, R.

    1994-01-01

    Particle size determination is one of the important steps in the characterization of physical properties of each particulate material. However, particle size distribution effects also a chemical composition of the material in terms of homogeneity and representativeness of the sample, as well as allows or not a possible sub-sampling of the material. All this is of great importance in the preparation of reference materials for which the chemical composition and physical properties have to be extremely well characterized. In the present paper we intend to present same efforts which have been done by Analytical Quality Control Services (AQCS) of the International Atomic Energy Agency (IAEA) in the field of particle size determination in the production of reference materials. The Malvern product MasterSizer X, based on laser light scattering is used for this purpose and the technique is also shortly discussed. (author)

  14. Effect of Fabrication Process Parameters on the Size of Gelatin/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2009-12-01

    Full Text Available Nano-hydroxyapatite/gelatin (nHA/Ge microspheres are currently used in bone tissue engineering as bone filler. In this  study, the effect of fabrication process parameters on the particle size of nano-hydroxyapatite/gelatinmicrospheres was investigated. The nHA/Ge microspheres were fabricated using water in oil emulsion. In order to design an experimental design, a surface response model with 2 factors including the rate of shaking and water to oil volume ratio in 3 levels was applied. Particle size was evaluated by using an optical microscope. The morphology of microspheres and distribution of nano-particles within the microspheres were studied by using scanning electron microscope and Ca elemental map obtained from energy dispersive X-ray analysis (EDX, respectively. Statistical analysis of the results obtained from particle size measurements revealed that the rate of shaking has stronger influence on the particle size of microspheres. Morphological studies showed that the fabricated microspheres were spherical with smooth surface. Ca elemental map of the microspheres showed that nano-hydroxyapatite particles distributed uniformly within the microspheres.

  15. Solid State Neutral Particle Analyzer Array on NSTX

    International Nuclear Information System (INIS)

    Shinohara, K.; Darrow, D.S.; Roquemore, A.L.; Medley, S.S.; Cecil, F.E.

    2004-01-01

    A Solid State Neutral Particle Analyzer (SSNPA) array has been installed on the National Spherical Torus Experiment (NSTX). The array consists of four chords viewing through a common vacuum flange. The tangency radii of the viewing chords are 60, 90, 100, and 120 cm. They view across the three co-injection neutral beam lines (deuterium, 80 keV (typ.) with tangency radii 48.7, 59.2, and 69.4 cm) on NSTX and detect co-going energetic ions. A silicon photodiode used was calibrated by using a mono-energetic deuteron beam source. Deuterons with energy above 40 keV can be detected with the present setup. The degradation of the performance was also investigated. Lead shots and epoxy are used for neutron shielding to reduce handling any hazardous heavy metal. This method also enables us to make an arbitrary shape to be fit into the complex flight tube

  16. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    Science.gov (United States)

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere.

  17. Optimizing the particle size of coal for CWM in view of fluidity. [Biomodal

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Seiji; Nonaka, Michio; Okano, Yasuhiko; Inoue, Toshio

    1987-10-25

    As is well known, the viscosity of CWM is considerably influenced by the distribution of coal particle sizes and has bearing on particle packing density or porosity. A model for representing the viscosity of CWM in terms of particle porosity and specific surface was designed. Also, experimental verification was conducted for the method of optimizing particle size on a two-stage grinding system. The results are as follows: The viscosity of CWM is influenced not only by the porosity of coal particles, but also by the specific surface; also, it is correlated to the distance between suspended particles. At the two-stage grinding experiments, a particle size distribution leading to a low viscosity was obtained by mixing coarse and fine particles at 4:1. This has demonstrated that the use of an agitating mill for fine particles is of help. (11 figs, 2 tabs, 6 refs)

  18. Phononic crystals of spherical particles: A tight binding approach

    Energy Technology Data Exchange (ETDEWEB)

    Mattarelli, M., E-mail: maurizio.mattarelli@fisica.unipg.it [NiPS Laboratory, Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06100 Perugia (Italy); Secchi, M. [CMM - Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy); Montagna, M. [Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy)

    2013-11-07

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  19. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  20. Effect of particle size on colloidal zirconia rheology at the isoelectric point

    International Nuclear Information System (INIS)

    Leong, Y.K.; Scales, P.J.; Healy, T.W.; Boger, D.V.

    1995-01-01

    This paper examines the effects of particle concentration and size on the yield stress of ZrO 2 suspensions at a well-defined surface chemistry condition of the isoelectric point (IEP). At the IEP, the relationship between yield stress τ y max and particulate volume fraction φ s , and mean particle size d was evaluated to be τ y max = K φ s 4.0 /d 2.0 . The difference in size distribution of the various ZrO 2 suspensions examined causes some degree of scatter in the data used to establish the τ y max , φ s , and d relation. The use of particle concentration n t based on the fine size fraction instead of volume fraction φ s provided a better correlation, because the fine particles govern the properties of the flocculated network structure